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A POST-PREDICTIVE VIEW
OF GAUSSIAN PROCESSES (*)

By F. B. KNIGHT

0. Introduction

The prediction problem for stationary Gaussian processes with continuous covariance is
well understood, and for the present purposes we may consider it to be solved. That is,
letting X(¢) denote the process, —oo<t<oo, we assume known an expression for
E(X(t+s)|X(t—t), 0=1), 0<s, depending only on X(¢—1), 0=71. Such an expression,
called the predictor, involves s but may be assumed to be independent of z, and is linear in
X(.) asfunction of t—1,0=<t. The complete solution of this problem, going back to Wold
(1938), Kolmogorov (1939), and Wiener (1949), may be found for example in Dym and
McKean [6], and another method of solution is in Yaglom [17].

It X(#) is not assumed stationary, then the corresponding problem can become very
complicated, but general forms for the solution are known (T. Hida [8], H. Cramer [2]) going
back to P. Lévy’s canonical form (P. Lévy [12]). In the nonstationary situation we may, of
course, still assume linearity of the predictor in X(#—1t), 0=1, but the predictor will depend
explicitly on ¢.

A closely related problem is to obtain for X (¢) a ‘““moving integral” representation in terms
of Gaussian processes with independent increments. In the stationary case, if we assume
that X () has no deterministic component, we may write:

X(t)=ft h(t—s)dW(s)  where heL?(0, 0),

is a fixed function and W (s) is a standard Brownian motion, — co <s< oo (since only dW is
involved, we may assume W (0)=0). Furthermore, W may be chosen so that:

©.1) E(X(t+s)|X(1:), T§I)='[t h(t+s—1)dW (7).

(*) Work supported by NSF MCS 80-02660.
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542 F. B. KNIGHT

(See [4], Theorem 5.3.) In the non-stationary case, a similar representation is again
possible, but instead of only dW (¢) it may involve a countable sum of stochastic integrals with
respect to independent Gaussian processes with independent. increments, and the
corresponding integrands may depend on #(see [8], Theorem 1.5 and below, Theorem 1.12).

In either case, a natural question to ask is how, given the solution to the prediction
problem, one can best obtain the stochastic integral representation. In both cases the
known answers seem to us rather unsatisfactory, at least from the standpoint of
calculation. For the stationary case the answer (in [4], p. 589 for instance) involves the
spectral representation:

X(n)= jez’“"" () de* (w),

in which ¢(u) is often difficult to obtain and the white noise d&* is impossible to obtain from
X(t),1<t. Usingc(u) the method provides #(x)in(0.1) and also a Fourier integral formula
for W(z), but this may be hard to implement. In the non-stationary case, the construction of
[8], § 1.3 utilizes a deus ex machina in the form of the Hellinger-Hahn multiplicity theory for
self-adjoint operators on Hilbert space (see, for example, [7]). This construction is non-
unique, and gives little if any idea of how it can be implemented in pratice.

Accordingly, the main purpose of this paper is to bridge the above gap between the
solution of the prediction problem and the ‘‘moving integral” representations. Thus we
obtain what is (in our opinion) a simpler access to the generating processes of independent
increments (i. e., Gaussian martingales) than is found elsewhere, and no use is made of any
spectral representations. In so far as actual prediction of X () must probably involve more
or less continuous up-dating of the predictors, the moving integral type of representation
appears to have potential computational advantages over the solution carried out separately
foreach ¢, but this this is a direction in which we lack the necessary expertise to give a qualified
opinion.

Our main result is stated in Theorem 1.4. This leads us to introduce a new index N(?)
which we call the index of stationarity [if X(¢) is stationary, N(¢)=1]. We then relate N(?)
to the index of multiplicity E(¢) of [7](*), and obtain the generalized canonical representation
of X(#) (Theorem 1.12a). Of course, since this is a “‘wide sense” result (in the language of
[4], p. 77) it then translates immediately to the non-Gaussian case if we replace ‘‘independent
increments” by ‘‘orthogonal increments” and also replace E(X(z+s) | F(t+)) by the
orthogonal projection of X(¢+s) onto the corresponding closed linear manifold
H(1+)= n H(t+¢), where H(z+¢) is the Hilbert space closure of { X(s), s<t+¢} (the

£>0

author is indebted to Professor J. L. Doob for reminding him of this). Each of our other
results also has an immediate wide sense extension when the analogous replacements are
made, so that in particular martingales are replaced by wide sense martingales.

In the second section of the paper, which actually does not depend on Theorem 1.4, we
express the martingales of Section 1 in terms of an arbitrary generalized canonical

(*) This N(#) is not to be confused with the multiplicity function N(¢) of H. Cramer [3], which is simply a
localization of the multiplicity E () of [7].
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GAUSSIAN CANONICAL REPRESENTATION 543

representation of X (#), with emphasis on the canonical case E(¢)=1. In this case there is
only one underlying martingale, and when N(f)=1 our method provides the canonical
representation explicitly. The general case E(f)=1, however, presents a more difficult
problem which we consider elsewhere (). Our main concern is with characterizing N(¢) in
terms of the generalized canonical representation. We are able to completely characterize
it, even when E(7)> 1, where it determines a specific form for the integrands (Theorems 2.2
and 2.4).

In the third section, we begin by showing that the statistics (i. ., the covariance) of the
martingales obtained in Section 1 determine uniquely the covariance of the original
process. Thusitis possible, in theory, to replace the study of X (#) by that of a certain family
of Gaussian processes with independent increments. But this seems quite unwieldy except
in the case of multiplicity 1, treated in Section 2. The main result of Section 3 is to give the
explicit expression for the covariance of these martingales in terms of that of the predictors,
and hence (under the wide sense interpretation) in terms of the covariance of X.

After completing the present paper, it came to our attention that some of the results extend
without difficulty in various other directions. Thus, if X(¢) is complex or vector valued, as
for example in [2], the methods and results of Section 1 carry over without
change. However, the results of Section 2 are more intricate, and we make no claims as to
their extendibility in this case. On the other hand, some of the results also extend to non-
Gaussian X (?) if we omit the word “‘Gaussian” but do not replace conditional expectation by
projection on H(z+) (thus they remain strict sense results). This is true of Theorem 1.2,
and it is ““almost” true of the basic Theorem 1.4. Infact, before the proof of Corollary 1.8
the only place at which a special property of the Gaussian distribution really is used isin (1. 6)
in the form of a moment of order exceeding 2. Whether this can be avoided is an open
guestion, but in any case Corollary 1.8 does not extend in this sense.

1. A Family of Martingales

As before, we let X(¢), teT, be a real-valued Gaussian process, with complete probability
space (Q, &, P). To avoid details, we assume that X(¢) is continuous in quadratic
mean. We allow either T=[0, c0) or T=(—o0, c0), with the understanding that
T=(— 00, c0) whenever X(¢) is assumed stationary. Without loss of generality (except
when the statistics of X(¢) are not known) we assume that EX(#)=0. The covariance is
denoted, as usual, by I'(s, 1) =E(X(s) X(?)), and we assume that:

J e M o2(s)ds<oo for A>0 where c2(s)=I(s, s)
0

(otherwise we would simply replace X(f) by o~ !(#)X(#), or by any other appropriate
continuous multiple). For A>0 and ¢=0 the expression J e *X(t+s5)ds exists in the
0

(?) The solution is given in a paper of the author in Séminaire de Probabilités XVIL.

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



544 F. B. KNIGHT

sense of an integral in quadratic mean. Indeed, by Schwartz’ inequality
|T(s, )| So(s)o(2), whence

E(Jwe'*slX(t+s)|ds)zé(Jwe'*’c(s+t)ds>2,
0 0

which is finite by our hypothesis.

Next, let #°(¢) denote the o-field generated by X (s), s< tlet & (f) denote #° () completed
by adjoining all P-null sets in %, and set #(t+)= "\ &% (t+¢). Then the family # (¢+) is

e>0
right-continuous, and each contains all P-null setsin . We now introduct the martingales

which are our main concern, beginning with:

Lemma 1.1. — For A>0, the expressions
1.1) Mx(t)=7\.|:E<J‘ e'“X(t+s)ds|?’(t+))—E<j e'“X(s)ds]?(0+))
0 0

+jt (X(u)—kE(Jme‘“X(u+s)ds|.7(u+))du:|,
0 0

are Gaussian martingales in t with respect to % (t+), where the integrals are in quadratic
mean.

Proof. — The existence of the last integral is easily seen when we recall that the conditional
expectation given & (u+) which appears in the integrand is simply the mean-square

9]

projection of the Gaussian random variable J e *X(u+s)ds onto a certain Gaussian
]

linear space (namely H (4 ); however, even in the non-Gaussian case it may be interpreted as
a projection). Now for u, <u, we have

E(Jwe'“X(uz+s)ds|?(u2+)>—E(Jme‘“X(u1+s)ds|.97(u1 +)>
0 0
=E(jwe‘*‘(X(u2+s)—X(ul+s))ds|377(u2+))

0

+E(Jwe'“X(u1+s)ds|9’(u2+)>—E<Jwe‘“X(ul+s)ds|5‘7(u1+))
0 0

and using the continuity in quadratic mean of X(u), it follows that

E ( f e X (u+s)ds| F (u+) ) is right-continous in quadratic mean.
o]

4° SERIE — TOME 16 — 1983 — N°4



GAUSSIAN CANONICAL REPRESENTATION 545

The remainder of the proof is by direct verification. Setting for brevity
E,(s)=E(X(s)| # (t+)) we have

EM,(2,)— Mx(t1)| F(t,+))

=kE<j e (X (t,+5)—X(t,+5)) ds| F (1, +)>

+kjle(X(u)~XJ e~ ™ X (u+s)ds| F (t,+)) du

=X<I e‘“"‘Z)R,l(s)ds—J e‘“s“l’E,l(s)ds>
5

+lj E, (u)du— XZJ‘ '[ e *C"WE, (s)dsdu

J '[ e *¢"WE, (s)dsdu

=xj (e M — A6 xj ~46=9 gu)E, (s)ds
t, L5

+KJ z(l—e'“‘_"’—kJ~ e M5 W dy)E, (s)ds=

L I

where we used several times the fact that integration in quadratic mean commutes with
projection on fixed subspace.

From the above comments, we also see that the M, () are square integrable and right-
continuous in quadratic mean. It is well-known (see [4], Theorem 11.5) that for each A we
may choose a standard modification of M, (#) which is right-continuous, with left limits for
t>0 [the possibility of identifying M, () with its right-hand limit along rationals r>¢
following since M, (¢) is right-continuous in quadratic mean]. We thus introduce

DerinNiTioN 1.1. — Let M, (#), M, (0)=0, denote henceforth a standard modification of
(1.1) which is right-continuous with left limits for #>0.

The use of e”** in Lemma 1.1 turns out to have real advantages over other choices of
integrands. However, for the sake of completeness we may extend as follows.

THEOREM 1.2. — For any bounded Borel f, and any .>0, the expression:

E(Jw I, f(s)X(t+s)ds|f(t+))—E<JmIxf(s)X(s)dslf(O-f-))

J\(Ilf(O)X(u) E(j e M f(s)X(s+u)ds| F (u+)))du,

oo}

wherel, f(s)=| e " f(v)dv,isa Gaussian martingale withrespect to ¥ (t1+). Forfixedt,

the family of all such martingales generates the same (completed) o-field as { M, (2), >0 }

" ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



546 F. B. KNIGHT

Proof. — For f=e™*, n20, the above expression is just (A +p) "% M, , ,(¢). Since it is
linear in f, the Stone-Weierstrass approximation theorem extends it to all continuous f with
limit O at co. Finally, by the monotone class theorem and monotone convergence of
conditional expectations, it extends as stated.

Thus far, we have not given any pathwise meaning to the separate terms appearing in
M, (¢). This can be done as follows. Since X(r) is continuous in quadratic mean we may

choose a measurable and integrable standard modification, in the sense of [4], Theorems 2.6
t

and2.7. We use this to define f X (u) du as a Lebesgue integral, which is then continuous
0

in t. Now we set
E(Jme_“X(t+s)ds|.%'(t-l—))—ljt E(Jwe‘“ X(u+s)ds|.97(u+)>du
=31 Mx(t)+E<re—“X(s)dS|"f(0+))—j‘ X(u) du,

in accordance with the definition of M, (). The right side of this expression is now right-
continuous with left limits. Denoting it by K(#)(=K(¢, w)), we can solve the equation
uniquely in ¢ for the function

Pl(t)=7»E<J e‘“X(t+s)ds|.9"'(t+)>-
V]
Indeed, the solution is given by

t t §
Pl(t)=9»K(t)+?»2J K(sl)ds1+K3J~ J K(s,)ds,ds,+. ..
(4] o (1]

where the terms of the series converge uniformly in ¢ for ¢ in compact sets because K (s) is then
bounded. The uniqueness follows by forming the difference D (¢) of any two solutions, and

t
observing that we have D(¢)—A | D(s) ds=0 which implies that D (¢) is continuous, hence
0

differentiable. Therefore D’(f)=A D(¢) with D(0)=0,so D(f)=0. Summing up, we may
introduce

DeriniTion 1.3. — Let P, (#) denote the above choice of

)»E(f e M X(t+s)ds| 97(t+)> . Thus P, (¢) is right-continuous (3), with left limits for
' 0

(3) The existence of a right continuous version of P, (¢) follows easily from the fact that e~ P, (¢) is a difference of
two positive supermartingales. However the above proof shows more, namely the possibility of constructing the
prediction P, from M, and X.

4° SERIE — TOME 16 — 1983 — N°4



GAUSSIAN CANONICAL REPRESENTATION 547
t>0, and we have the pathwise identity
t
(1.2) ML) =Pu(O=P, O+ [ (X =Py @),
0

where X(¢) is the version used above.

Itis easy to see that P, (¢), and hence M, (¢), is continuous in quadratic mean as function of
Aforfixed r. Further regularity of the dependence on A will not be needed below, except for
the fact that lim E(P,(#)—X(#))>=0 uniformly in finite intervals of 7. This is an easy

A= 0
consequence of

© 2
(1.3) E(Pl(t)—X(t))2=E(E'[ },e'“(X(t+s)—X(t)ds|97(t+))
0

éE(Jw M‘“(X(t+S)—X(t))dS>2,
0 .

by Jensen’s inequality, where the right side tends to 0 by continuity of I'(s, £). Thus we see
that the o-field generated by { P, (s), 0<s<t,r>Orational } contains that generated by X(s),
0=<s<t,uptoP-null sets. Since it also is contained in #( ¢+ ) we see that (in the case when
the parameter set is [0, 00)) its completion by all P-null sets in & lies somewhere between
F(t) and F(t+). We will see below (Corollary 1.8) that it equals (¢ +).

What we wish to show next, and it is then main result of the paper, is that { P,(0),
M, (s), s<t, A in a suitable countable set} generates the same completed o-fields as
{Pl(s), 0<s55t, A>0 } We note the difficulty: as A — oo it does not in general hold that

t

kj (X(u) — P, (1)) du tends to zero, hence one cannot easily obtain X () — X (0) from the
0

M, (#). For example, let B(¢) be a standard Brownian motion and let N be an independent

t
standard normal random variable. If X(?) =N+j B(s) ds, then we obtain easily
0

O

’e"“(j’ B(u)du+SB(t)>dS=X(l‘)+7v—1 B(1),
0

0

Pl(t)=N+xJ
and

Mx(t)=P1(t)—Pk(0)—7»Jt A1 B(u) du=A"1B(2).
[}

Thus it is true that { P,(0) and M, (s), 0<s<t} generates the same completed o-field as
{P,(s), 0Ss=<t}, but not entirely trivial even in this simple case. In the general case our
methods are of the ‘‘existential” type: no explicit general method of obtaining P, (7) from
P, (0) and M, (s), 0<s<1t, has beenfound. One might hope to learn how to solve (1.2) for
P, (and for X=lim P,) by replacing ¢ by a discrete parameter n, and using geometric

A= o0
sums instead of integrals to define the martingales in (1.1). However, it turns out that the
discrete analogue of (1. 2) then does not determine P, and X uniquely. Hence we apparently

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



548 F. B. KNIGHT

have a situation in which a result holds in the continuous parameter case, but the discrete
analog does not hold. We note also that, in this example, it suffices to know the quantities
for only asingle A. This turns out to be true whenever X (¢) is stationary, or more generally
has a Lévy canonical representation with F=F (t—u) [see (2.10)].

THEOREM 1.4. — For each 0<t, and integer K>O0, the o-fields generated by
{P;(s), 0551, A>0} and by { P, (0), M, (s), 0<s< 1, integer k>K } differ only by P-null
sets [i. e., they have the same completion in F(t+)].

Proof. — The idea of the proof is to transfer the pathwise identity (1.2) to a canonical path
space on which it can be shown that the paths (M, (s)) determine [P, (s), r rational] uniquely
fora given { P,(0)}. Then the correspondence is one-to-one and Borel measurable hence a
well-known theorem of D. Blackwell[1, Chap. 111, Theorem 26] implies that they generate the
same o-fields.

Added in proof. — We omit our original attempted proof. It has been completed and
simplified by P. A. Meyer. His proof is given in the note at the end the paper, for which we
are extremely grateful.

We do not in general have & (f) = # (1 +), but it next will be shown that the completion in
Theorem 1.4 always equals F(¢+).

CoroLLARY ‘1.8. — The ofields F*(t) generated by {P,(s), 0<s=<t, A>0} have
completions F(t+).

Proof. — For t; <t,, the completed o-field generated by { P, (s), s< 1, } contains F (¢; +)
[since it contains & (¢,)] hence it suffices to show that these o-fields are right-continuous
in t,. By Theorem 1.4 they are generated by { P,(0), M, (s), 0<s=<t}, where M, (s) for
each integer k is a right-continuous Gaussian martingale relative to & (s+). Itfollows that
the increments M, (z,) — M, (¢,) are orthogonal to the Gaussian space generated by P, (0),
M, (s), 0<s=<t,. Therefore, they are jointly independent of this subspace, and it follows
that,if Se n F*(¢,) for fixed ¢, then S is independent of M, (¢,) — M, (¢, +¢) for every k

>t

and £>0. By right-continuity it is therefore independent of M, (¢,) — M,(¢;). Butfor any
t,>t, wWe can write

IS=f(Mk(si), 55t Mk(sj)_Mk(tl)’ 15 <Sj§t2),

where fis a Borel function of countably many variables. Letting o (X,) denote the o-field
generated by {X,}, it follows that for Aeoc(M,(s)—M,(1,); t;<s;<t,) and
Beao(P,(0), M, (s,); s;<t,) we have

P(SNA N B)=P(A)P(SNB)=P(A) E(P(S|P,(0), M (s)); 5;<1,); B)
=E(P(S|P(0), M, (s); 5:<1,); AN B).

Therefore, by the monotone extension theorem I;=P (S|P, (0), M,(s); 5;<1,), and hence
Se #*(t,) as required for right-continuity.

4° SERIE — TOME 16 — 1983 — N°4



GAUSSIAN CANONICAL REPRESENTATION 549

We now introduce for X () an index N(¢) which measures, in effect, the number of
translation invariant averages of Gaussian processes with independent increments needed, to
represent X () (Theorems 2.4 and 2.5). This index is quite different from the index of
multiplicity E(¢) introduced by T. Hida ([8], Definition I.5) for the case
T=[0, c0). Subsequently, we will define E(¢) in an equivalent way, and make some
comparison of the two.

DEeriniTION 1.9. — The index of stationary of X(#), 0<¢< o0, denoted by N(?), is the
dimension of the linear (Gaussian) space generated by { M, (?), 0<K} (see also
Theorem 1.2).

We note explicitly that N(¢) = oo is allowed in Definition 1.9. In fact simple examples
show that N ()= o0 can actually occur (for instance below, Example 1.15) and from the
standpoint of Gaussian Markov processes, N(#)= oo is perhaps the rule rather than the
exception. We will see that N(¢) need not be either right or left-continuous
(Example 1.16). However, we have:

ProrosiTioN 1.10. — The index N () is non-decreasing. If0<t, <t, and N(t,)< oo, then
the Gaussian process X(t, +t), t>0, has index at t=t,— t, bounded below by N(t,) —N(t,),
and above by N(t,).

Proof. — Suppose first (contrary to what is asserted) that N(#,) <N(¢;). Then by the
Gram-Schmidt orthogonalization procedure it is seen that there exist integers
0<k,<...<ky for some N>N(t,) such that { M, (¢,), 1 Si<N} generates a Gaussian
subspace of dimension N. By definition of N(z,), there must be a non-trivial linear
dependence at t=t,

N N
0=> ¢ M, (2,); > c2#0.
i=1 i=1

Writing this in the form

N N

2 G M, (1))=Y ;M (1)) —M, (1)),

i=1 i=1
the right and left sides are independent Gaussian variables with mean 0. Itfollows that both
are 0, contradicting the choice of N.

The basic observation needed to prove the second assertion is that the martingales
M, (¢, + £) — M, (1,) are precisely the M, (¢) corresponding to the process X (¢, +¢). Thisis
seen immediately from their definition. Then, if there are k,<...<ky such that
M, (¢,) — M (1,) are linearly independent (up to a P-null set), as in the first part of the proof
M, (1,), 1 <i<N, are also linearly independent, and so N<N(¢,). On the other hand, if
{Mk‘_(tl), 1<i<N(t,)} generates the same Gaussian space as

{M,(t,),A>0} and if { M, (¢;)—M; (1,), 15j=N 1,
generates the same Gaussian space as { M, (1,) =M, (;), A>0 }, then for A >0 we can write
M, (£,)=M, (¢,)+(M, (¢,) — M, (¢,)), i.e. as element of the space of dimension N(¢,)+N
generated by these two sets together. Therefore N(#,) —N(#,) <N, as asserted. -

ANNALES SCIENTIFIQUES DE L’ECOLE NORMALE SUPERIEURE



550 F. B. KNIGHT

We turn next to a basic structure theorem for & (¢t+). For this, we need to introduce the
multiplicity index E(¢), first applied in our situation by T. Hida and H. Cramer. In
relation to N(), we mention here only that E(£) <N(¢) always holds. We will not repeat
the definition of E(7) from [8], which is complicated and derived from abstract Hilbert space
theorems (4). Instead, we use

DerFiniTioN 1.11. — The index of multiplicity E(7) (0SE () £ o) of X(¢) is the smallest
integer for which there exist right-continuous independent Gaussian processes

Y1(5), Y5(5),. .., Yg(s) with mean O and independent increments, whose Hilbert space
closure in

O<s<u is H{M(s), k=1, s<u} for ust  (B(t)=0 if M,(£)=0).

The choice of Y,(s),..., Yg,(s) is obviously not unique. In the multiplicity theory
approach, one obtains Y,(s) having the further property du,>dp,> ... where
dp,(s)=dEY?2(s) and > denotes absolute continuity from right to left. Then the dp, are
unique but not the Y,. A succint exposition of this theory is given in [10], Theorem 1, and it
need not concern us here. All that is important for the present work is the fact that, given
any sequence Z, (s),. .., Z,(s),.. ., (k<k,+1= o) of right-continuous, square-integrable
martingales, one may define as above the multiplicity E, (¢) <k, of the Hilbert space closures
Hy()=H{Z,(5), sst, k<ky+1 }, and construct in a standard way an orthogonal sequence
for 051 of the form

Y, () =k Jsf,.,k(u)dzk(u), n<E;()+1,
0

which generates the same H,(¢), t<1, and has the above absolute continuity. The
construction may of course be repeated in 1=<s=<2, etc., to extend Y, for all z.

We can now state the basic result of Hida [8], and prove the inequality of indices
mentioned. = For this we fix a choice of Y, in Definition 1.11.

THEOREM 1.12. — (@) There are functions F,(t,u), 0 Su < t, measurable in u and continuous
in t2u, such that

t

X(=EX()|F0+)+ Ef J F,(t, u)dY,(u),

0

the integrals and sum being in quadratic mean.
For each (n, t), F,(t, u) is unique up to a du,null set.
(b) The indices satisfy E(t) SN().

Proof. — We observe first that X (¢) —E(X(?) } Z (0+)) is in the Gaussian subspace
generated by { M, (s), s<#,k=1}. Otherwise it would have a component orthogonal to,

() In [8] it is assumed that { P, (0), A>0} generates only the null subspace. This may be obtained here by
replacing X(¢) by its projection on the orthogonal complement.
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hence independent of, that subspace, contrary to Theorem 1.4. Since the operations
defining the Y, are all linear, the Y, (s), s< ¢, generate this same subspace, hence X(¢) is the

sum of its projections onto the subspaces of Y,(s), s<¢. But the projections are simply
" dEX()Y, ()

— = dY, (),

0 dpy (v) «®)

as noted previously.
By Schwartz’s inequality, for u, <u,<t,<t,

| E(X(2,) = X(#)) (Y, (43) = Y, (1)) l
E(Yy(u,) Y, (ul))z

SEV2(X(1,)—-X(11))?,

where the right side tends to zero as ¢, —» ¢;+. It follows that

dE(X(r)) Y, () dEX(ry) Y, ()
dp (1) dp, () ’
may be chosen to be bounded in absolute value by EY2(X(r,)—X(r,))? for all 0<u<r,,
when 0=<r, <r, are rationals. Then we may define for all 1=>0;

Fi(t, w)= lim d_E%(%@

and F.(t, u).

is continuous in ¢, uniformly in < ¢ for ¢ in bounded sets [at t=u, of course, we only have
F (t+, u)=F (1, u)).

Turning to part (b), we recall that N(z) may be defined by .ortogonalizing
{M,(9)}. Thusif {M,; k<N(#)+1} denotesforfixed ¢an orthonormal set generating the
same subspace as { M, (), r rational }, then the martingales E(M, | # (s+)), 0<s<1,
1<k <N(#)+1, generate for each s the same o-field as { M, (s) } since each M, (?) is a (finite
or infinite) linear combination of { M, }, and M, (s)=E(M,(?) | F (s+)). Consequently,in
defining E(¢) we may use these N (#) martingales and proceed as in the original construction
to obtain at most N(¢) independent processes generating the same o-fields. By the
minimality property of E(r), we therefore have E(#) S N(7).

Before going further, we will give a few examples of E(#) and N(7) in the simplest cases.

Example 1.13. — Let T=(—o00, o) and X(¢) be the stationary Ornstein-Uhlenbeck
process with parameter 3>0. Such a process may be written in the form

X(t)=Jt e PC-WgW(w)  where dW(u)

is a process of Brownian increments, or ‘‘white noise”. We have for t=0

E(X(I+S)(g(t+)))=ft e—B(t+s—M)dW(u)‘
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Thus

M, ()= HBU' e “'"‘)dW(u)—Jo_ e"“dW(u))

+xjt (Js 0B G- u)d\y‘/(u)_)w?;[3 J’-‘ ‘“““’dW(M))dS

A
TA+P A+B

ﬂ—(] jt e‘“sdse“"dW(u)—%—Jt J' e‘“%ise”“dW(u))
)" B - 0 0 u

e~ P gW (1) — r);_ﬁ jt (e_Bt_e-Bu)eBudW(u)_

€ “RETD IW (u)

(e P — I)J P dW (W) + ——

A
B Jo B

We see immediately that E(f)=N(7)=1 for all >0, and in fact M, (¢) has the form
JA)(W (1) — W (0)) where W(#) — W (0) provides the “‘white noise” for the moving average
representation. Of course, by stationarity of X(#) we can just as well extend the definition
of M, (?) to replace 0 by any 7,<0. Such stationarity always implies that, for fixed A,
M, () is a process of stationary independent increments, hence it is always a Wiener process
when X(7) is stationary. The meaning of the factor of f(A) is provided in Section 2.

(WO —-W(0).

t
Example 1.14. — Let T=[0, o0), and consider a process X () =J (2 t—u) dW (u), where
0

again W (u) is a Wiener process. This is an example, due to P. Lévy [12], of a “‘proper
canonical representation” of X(#). Insuch a case,itiseasy toseethat E(f)=1forall . In
fact, by Theorem 1.6 of Hida [8], the necessary and sufficient condition that there exists a
proper canonical representation of X (#) is that E(#) =1 for all ¢, but since we are permitting
degenerate Gaussian processes (X(¢)=0, 0= t=¢,) this conclusion should be restated as
E(t—)<1 in our notation. Now we have:

E(X(t+s)|f(t+))=ft Q2(t+s)—u)dW (u).

Mx(t)=J‘ jw Ae™™(Q(1+5) —u) ds AW ()
0oJo
+th (Js(Zs—u)dW(u)—js(2s—u+2k—1)dW(u)>ds
o\J o 0
=J! (2t—u+2l"1)N(u)—2ft W (s)ds
0 0

=2(z+x—1)wm—f udW(u)—er(t>+2j udW ()

-7+ z)wm—f W) du
0
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We see in this case that { M, (), A >0} generates a o-field with respect to which both W (#)

t
and J W (u) du are measurable. Hence N(¢)=2 for all >0, and so E(f) <N(¢) in this
o .

example.

We will investigate the meaning of N(#) more fully in Section 2. Here we give two more
examples of E(¢), of a kind not found in Lévy [12] or Hida [8] (but they may be implicit in
some of the many papers of Lévy on this subject).

Example 1.15. — Let &,, &,,..., E,,... be independent, standard normal random
variables. The process

X0= 3. &

is well-defined for 0<¢, and has continuous covariance. It is readily seen that
E(1)=N(#)= oo for all t>0 in this case.

Example 1.16. — Let S<[1, c0) be a set with the property that both S and [1, c0)—S have
Lebesque density 1 on everywhere dense subsets of [1, o0). To obtain S, it suffices to
choose any Borel set S such that both S and [1, c0)—S intersect every interval in sets of
positive Lebesgue measure. By a Theorem of Lebesgue ([13], Chap. 1V, Theorem (6.1))
S has density 1 at almost every point of S, and the same holds true of [1, c0) —S, so these
density sets are both dense in [1, o0). We now let W, (¢) and W, (#) be two independent
Wiener processes, and we set X(1)=0 for 05¢<1, and (for t>1)

X(t)=Jl s Wy (s—1)+(1-15(s)) Wy (s— 1)) ds.
1

Then d/dtX(1)=W,(t—1) for ¢ in the dense set where S has Lebesgue density 1 and
d/dtX(t)=W,(t—1) for ¢ in the dense set where [1, c0)—S has Lebesgue density 1. It
therefore follows that, for > 1, the process X(s), 1 <s<t, generates both W;(s—1) and
W,(s—1) in this interval. On the other hand, at =1 we known by the 0-1 Law for
(W, (1), W, (1) that # (1+) can contain only sets of probability 0 or 1. It follows that
E(1)=0for 0<¢<1, and E(¢#)=2 for all t>1. In particular, this shows that we do not
obtain right-continuity of E(¢), in general, even if X(#) is continuous. Similarly, since
M, (1) is # (1 + )-measurable, we must have N(#)=0for 0<z¢<1, and since N(#) 2 E(¢) we
see that N () cannot be right-continuous in the present case. It is, of course, easy to give
examples in which neither E(#) or N(¢) is left-continuous by introducing discrete normal
variables at a fixed time: for example

X(1)= 0 for 0Z:<1,
“l(—1&  for 1<t (& standard normal).

2. The Canonical Case, and Extensions Thereof

The object here is to examine briefly the relationship of M, (#) and the representation of
Theorem 1.12(a) in the case that E(f)<oo. This includes, of course, the case of
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stationary X(t). As before, we use a fixed but arbitrary choice of theY, in
Theorem 1.12. The key result is the following [inwhich we do not require E(#) < c0].

LemMA 2.1. — In the sense of quadratic mean, we have

M, () =YE0, f

t

(I ’ re MF, (u+s, u) ds) dy (),
1]

o

where the inner integrals converge absolutely for du,—a.e.u., and are in L?(dp,) on (0, 1].

Proof. — We observe first the expression (1.1) for M, (?) is linear in X(.). Therefore,
when we substitute into M, the expression of Theorem 1.12a, the part involving
E(X(.) | & (0+) separates out. Since it is independent of the rest and & (04 )-measurable,
it must already be a martingale and hence it must be identically 0 along with M, (0). Hence
we may assume here that E(X(.)|# (0+))=0. Then P, () becomes

pl(t)zxjwe—xsE<E%s) jﬁs F, (t+s, u)dY,,(u)Ig"'(t+)> ds
0

/] n=1
E@®) ©

=i ) e‘“(f F,(t+s, u)dY,,(u))ds,
n=1 0 V]

because the summands are independent with independent increments, and Y,(¢)=0 for
E(t)<n=ZE(t+s). Itis necessary to interchange order of integration, which is justified as
follows. We have

(2.1) oo>E1/zj e M X2(t+s)ds
0

= jwe'*sE’/? (Jt F,(t+s, u)a’Y,,(u))2 ds
0

0
© t 1/2
zr”z(f e‘“f Fﬁ(t+s,u)du,.(u)dS) :
0 ]

Since, analogously, we have

© 2 [+¢]
(I e MF, (t+s, u)ds) sa? I e M F2(t+s, u)ds,

0 0
t

this proves the existence of the L2-integrals J e MF, (t+s, u)dsdY,(u). Since they

0 0
are in the L2-closure of { Y, ('), u' < ¢ }, to justify the interchange of integration it is enough
to apply Fubini’s Theorem to obtain

E(Y, () va e s J" F,(t+s, u)dY  (u)ds)
=f®e—xs Jw F,(t+s, wdp,(u)ds
0 (4]
=E(Y,,(u’) jt va e s F"(t+s, u) deYn(u))a ulé t.
0 0
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Recalling now that F (¢, u) is continuous in ¢, and noting that M, (¢) is the sum of E(?)
independent terms correspondmg to the terms of P, (#), we may compute the n-th term as
follows

Mm(t)=f r e M. (t+s, u) dsdY,, ()

(]
J“ (J\m AS J (I n(l’9 u) I n(l’ | S, u)) n( )ds) dv
0 (4] 0 dy u

- J ' J " e F, (14, u) dsdY ()
0

0o

0

+)"J“ (mee—u Jt(Fn(v, u)—F,(v+s, u))dvds)dY,,(u),

where the interchange of integration is not hard to justify using the same method as
before. Therefore, our coefficient of dY,(x) becomes

t

u

Jw e M(F,(t+s, u)+Ar j F,(v, u)dv)ds—\ ft F,(v, u)dv

© t+s ©
—J‘ Xe'“gs— J F,(w, u)dwds=‘[ re MF (u+s, u)ds,

V] uts 0

which completes the proof of the Lemma.
We turn now to characterizing N(¢) in the case N(#)=1.

THEOREM 2.2. — (a) Suppose that E(t)=1 for a fixed t>0, and let the representation of
Theorem 1.12(a) be

2.2 X()=EX()|# (0+))+Jll F(', u)dY (u),
0o

plus additional terms which may appear only for t'>t. Then N(t)=1 if and only if we may
choose F(t', u)=G(t' —u), 0Zu=t, for some function G.

(b) If T=(— 00, ) then X is stationary and nondeterministic (¢ & (— o)) if and only if:

(i) for every t,, the process X(t,+t) satisfies N(£)=1 for t>0,

(ii) when F(t w)=G(t'—u), —o<ust <o, as in(a), we have dE(Y*(u))= czdufor a
constant *>0, and

t
(iii) .the process X(t) ——J G(t—u)dY (u) is stationary.

— 0

Remark. — We note that in(2.2) dY (u) is unique only up to some multiple f(x) which may,
in general, be absorbed in F(¢', u).
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Proof. — By Lemma 2.1, N(¢) is the dimension of the Gaussian subspace generated by

{jt Jw e M F(u+s, u)dsdY (u); l>0}.
0 0

If F=F(¢ —u) for all 0<u<=¢, this becomes simply

{J e"“F(s)dsY(t);X>0},
(4]
so clearly N(?)=1.

Conversely, if N(#) =1 we may assume the entire subspace to be generated at a single A, say
A=1. Thus

2.3) J re-"F(uH,u)dde(u)=c(x)f re-SF(uﬂ,u)dde(u),
(1] 0 (4] o

for constantsc(A). Letting C, denote the continuous functions with limit0 at co, we will
obtain

(2.4) Jt fwf(s)F(u+s, u)dsﬂ(u)=cU)Jt fwe"F(u+s, u) ds dY (u),
o 0 0 0

for all f with e** f € C, for some A >0, where c(f) depends only on f and equality is up to a
P-null set. Indeed, by (2.1) with t=0 we have for any A >0

(2.5) J' <'roe‘“|F(u+s, u)|ds)2du(u)
=Jt (ezxu'[we—x(ws)ll?(u-}-s, u)|d§)2dp(u)
0

(4]
§e“‘jt <Jme‘*”|F(v, u)Idv)zdu(u)<oo.
0 u

Then if e* f(s)eC,, for £>0 there is by the Stone-Weierstrass Theorem a g (s) with

|Ae“ f(s)—g(s)| <& uniformly and g(s) has the form Y c,e**. Thus applying (2.3) to
1

e *g(s), it follows by (2.5) that

lim j (ij(s)—e'l‘g(s))F(u+s, u) ds)2 dp(u)
0

t
=0 0

-0 1]

élimsJ' (Jwe‘“lF(u+s, u)|ds)2 dp.(u)=0.

Hence the left side of (2.4) is well-defined as a limit in quadratic mean, and hence the
constants c(e”** g) on the right side must converge to a limit c(f). Itisalso clear that c(f)is
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unique, hence linear and continuous in ffor norms of the form sup | e* f(s) | It follows by
the Riesz Representation Theorem that there is a unique signed measure 1 (ds) on [0, o0) such
that

c(f)= f f(s)n(ds) whenever €** f(s)eC,,
V]

and n(ds) is bounded in the sense that

J e *|n(ds)|<oo forall A>0
(1]

(this is an easy consequence of the usual statement given in[5], IV,6.3 for a compact
space). Nowitfollows by(2.4),choosingfin a countable dense set with respect to any norm
sup|e* f(s)|, that

0=rf(s)F(u+s, u)dsf<wa(s)n(ds)><Jwe"’F(u+v, u)dv),
0 ] ]

fordp—a.e. u< t,andfor allfwith e** f€C,. Therefore we have for du—a. e. u the identity
of measures.

F(u+s, u)ds&j(‘[we“"F(u+v, u)dv)n(ds).

o
From this we see that nj(ds) is absolutely continuous, and setting 1 (ds) =h(s) ds,

Fu+s, u)=h(s)‘[ e "F(u+v, u)dv,
(1]

except for a set of (s, «) which is ds x du-null on (0, 00) x(0, /J. Equivalently, we have outside
a dt x du-null set

o9

(2.6) F(t, wy=h(t—u) j e "F(u+v, u)dv.

o

But since F(z, u) is continuous in ¢ for fixed u, it follows by Fubini’s Theorem that the
essential right limits esslim /4 (t —u), exist for all s=u and u< ¢, except on a set of u <t which
T—=s+
e o)

is either dp-null or on which e *F(u+v, u)dv=0 (for a discussion of the ‘‘essential
0

topology”, see[14]). However a set of the latter type must also be dp-null, since the
representation (2. 2) in conjunction with (2. 6) implies that we can replace Y (1) by 0 on such
a set a.e. 7, and hence for all ¢ since X(r) is continuous in quadratic mean, implying
that dY () on such a set would not be & (1+ )-measurable. Thus esslim 4(t —u) exists for

1—=s+

all s=u and dp-a.e. u<t. Clearly these limits are consistent in ¥ whenever they exist for
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all s=u, hence we can define F(z—u)=esslim 4(t—u) for all u outside a dp-null set, and
T=t+

obtain from(2.6):

2.7 F(t, u)=F(t—u)f e "F(u+v,u)dv for all t=u,
(1]

except for u in a dp-null set. Finally, setting

dZ(u)=’<J‘00 e "F(u+v, u)dv)dY(u),

0

we obtain in place of (2.2) the representation

(2.8) X(t’)=E(X(t’)'3*‘(0+))+j F(t' —u)dZ(u), 0<t'st,
0+
which completes the proof of (a).
Before proving (b), we insert another

Remark. — In the general case E(f)=1, we showed in Lemma 2.1 that

th (Iwe_“F(u+s, u)ds)dY(u)r—Ml(t).

0 0

Thus it is plausible that observation of M, (s), s<¢, should lead, via inversion of the
transform, to F(#, u), 0<u=t'=t, and to dY (u), 0<u=t, up to equivalence. By (2.10)
below, this is easily implemented whenever N(7) =1.

Turning to the proof of (b), we require one fact from the general theory of wide-sense
stationary processes in one dimension, namely that if X (¢) is stationary then E(£)<1. This
is obvious in the discrete parameter case, and the present case may be reduced to this by use of
a transform, as in[4], p.583. We next show that N(#)=E(#). Indeed, since
M, (¢, +1)—M, (¢,) is M, (?) for X(t,+¢) (Proposition 1.10) we see that for fixed >0,
M, (¢; +1)—M, (¢,) is stationary in ¢;. But if N(z,)>E(¢,) for some ¢,, then there are
orthonormal

Y:i(t))=Z,c; M, (%), 1=i<E(t)+1,

and it follows easily that ¢3/>Y;(f) are independent Wiener processes. Hence
E(9)2E(t,)+1, which is a contradiction. !

The proof of (a), applied in the present case, now shows that F = F (¢ —u) may be chosen the
same for all ¢ [where F =Y =0 if N(#) =0; we note that, by stationarity, N(#) does not depend
on ¢f]. Thus we obtain a representation

lo

X(t0+t)=E(X(to+t)|97(t0+))+J F(ty+t—u)dY (u).

o+t
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If we set t; =t,+¢ and let t, - — oo then this becomes

4

2.9) X(t1)=E(X(t1)I97(—OO))+J F(t, —u)dY(w),

and in particular

J‘l F2(t;—uw)dp(u)< o where dp(u) =dEY?(u).

—

On the other hand, whenever N(f)=1 and F=F(t—u), Lemma 2.1 implies
(2.10) M, (#,+8)—M,(t))=A J e MF(s)ds(Y(t,+ 1))=Y (¢)).
0

In our case this is stationary in ¢, hence either Y=0 or else du(«) = 62 du for a 62 >0, and
then o~ ! dY is an incremental Wiener process.  Since this implies the stationarity of the last
term in (2.9), which is orthogonal to the first term on the right, this is also stationary. The
converse in (b) is immediate, completing the proof of Theorem 2.2.

This result gives direct access to the moving average representation whenever the
prediction problem for X(¢) is solved. For instance, in Example 1.13 of the Ornstein-
Uhlenbeck process, it is just as simple to begin with the transition function of this (Markov)
process, write the solution of the prediction problem, and then deduce the moving average
representation. There is a variety of means available to solve the prediction problem, and
we do not enter into them here. To give another illustration of how they lead directly to the
moving average, we apply our method to the final example of Yaglom [17 b], Example 4.

Example 2.3. — Let X(7) be the process with spectral density (§2 +a?) (E*+a*) ™!, where
a>0 is fixed and & is the spectral variable. A classical criterion of Szego shows that
the term (iii) of Theorem 2.2 (b) is zero. The prediction problem may be solved by
“Yaglom’s method™ and vields [17]. (6.68)

E(X(t+5)| # (1+)) =A@ X () —a(A ()~ B(5) f " e X (1—v)ds,
0

where

A(s)=exp(—ocs/\/f_)(cosas/\/i+(ﬁ— 1) sincxs/\/z),
B(s)=exp(—as/\/§)(cosas/\/z+(1 —\/E) sinas/\/z).

Then it is straightforward to compute our

P,(0)=£,() X (D) + £, (0) j " e X(t—1)dr,
0
where:

[)=20A+0)(/2h+0)? +a?) 71,
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and:

L00)=22—/D? (/2A+0)? +a?) L.

From this it is again straightforward, but somewhat tedious, to compute our
t

2.11) M,(H=1; (k)[X(t)—X(0)+(2—\/§_)o;<e‘““f e X (u)du

- o0

__Jo e““X(u)du>+aJ’ X(u)du].
—w® 0

Therefore, the factor in brackets on the right of (2.11) is just ¢ W(#) for a normalizing
constant ¢ (depending on o), and we have

ljwe'“’h(v)dv#c'lfl()»).

This is easily inverted by reversing the calculation used to obtain f;(A), and we get
h()=c 'A(v). Therefore, denoting the process in brackets at the right of (2.11) by B(?),
our moving average representation is

(2.12) X(t)=jt A(1—u) dB(u).

We emphasize that this expression involves only observable quantities, unlike the spectral
representation of X(¢) which involves quantities dependent on the future. '

In the most general case of arbitrary E(#) <N(¢) the picture is much the same as in
Theorem 2.2a. We have

TueOREM 2.4. — If E(f)=K < o0 for given t>0, then N(t)=k <oo if and only ¥, in the
representation of Theorem 1.12a

(2.13) X()=EX@®|FO0+)+ i It F,(t, wdY,(u),
n=1 0

there are c;(v) and g, ;(w), 1 Sj<k, such that
k
(2.14) F, (0, 0)=3 c,(t —uw)g, W, 1=nZK,

j=1

outside a set which is dt’ x du,-null in { t Zu, u<t}, where the signed measures c ;(v)dv are
linearly independent in (0, o), and the random variables

Z gn j)dY,w), 155k,
are also linearly independent.
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Proof. — The same argument which led to (2.4) [based on (2. 5)] applies here to yield from
Lemma 2.1 that N(¢) is the dimension of the Gaussian space generated by

U { il j (J:f(S)Fn(u+s, u)ds>dY"(u) . eLSf(s)eCo}‘

t
A>0 (n= 0o

Thus, if N(#)=k, there are f}, ..., f, such that these &k sums generate the entire
space. Consequently, if e** f € C,, there exist ¢, (f), ..., ¢,(f) such that

(2.15) 0=( il J; J:f(s)F,,(u+s, u)dY,,(u))

-i(c,-(f)i Jt rf,-(s)Fn(uH, u)dde,,(u)).
j=1 n=1 0 0

We will show that, in fact, the c;(f) are continuous linear functionals on {f:e*feC,,
| f||=sup|e* f|}foreachA>0. Itisclear,first, that the c;(f) are unique, since a difference
of two such representations would contradict the choice of f;. The linearity then follows
trivially. To prove continuity, it suffices to consider a sequence

gn: lim sup|e*g,(s)|=0 and show that limc;(g,)=0, 1=Zjsk.

m-— oo s m

In the contrary case, either there is a subsequence (also denoted m — o0) such that
max| ci(gm | — o0, or there is a subsequence and two bounds 0 <& <M such that, for all m,
j

e<max|c;(g,)| <M. In the former circumstance, if we divide (2.15) with f =g,, by the
j

constant c¢;(g,,): | c j(g,,,)|= qulci(gm) |, and choose a further subsequence to make each
i

new coefficient on the right of (2.15) converge as m — oo, we obtain a nontrivial relation
among the generating set contradicting the choice of the f;. In the latter case, the same
contradiction is obtained without the preliminary division, since the first terms on the right in
(2.15) with f =g, tend to zero in quadratic mean by (2.5).

It follows that there are unique signed measures 1, ..., M, such that
c;(f )='[f (s)n;(ds), 1<j<k, and by independence of the terms in (2.15) we have, for

1=n=K
(2.16) 0=j‘ fwf(s)F,,(u+s, u) ds dY ,(u)
0 V]

kK (o ©
— ;1 fo f(S)T'lj(dS)J‘o S F,(u+v, u)dvdY,(u).
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Choosing, as before, f'in a countable dense subset (for some fixed A >0) it follows that:

k

F,(u+s, uyds= Z(nj(ds)Jwﬁ(v) F,(u+v, u)dv),
' 0

Jj=1

holds, as an identity of measures, for du,-a.e. u<t,1<n<K. Obviously this will also hold
if we replace each n ;(ds) by its absolutely continuous component (if there is any singular part)
and we henceforth assume this replacement. Setting

n(ds)=c;(s)ds and &n j(u)=waj(v) F,(u+v, u)dv,
0
we have:

k
F,(uts,u)= ) c;(u+s,u)g, ;ju),
ji=1
except on a set which is ds x du,-null in (0, c0) x(0, 7], as asserted in the Theorem.

Substituting this expression into the generating set of (2.15), we find that the random
variables

Z:1 J: Z1' (J:fm(S)cj(s) ds>g"’j(u) dYn(u)

t
must be linearly independent, 1<m<k. Hence, in particular, ), J &n j(WdY,(w)=2;
n=1 0
must be linearly independent, 1<j<k. Moreover, the measures c;(s)ds must be linearly
independent on (0, 00), or else we could write the above sums using fewer than k linear

combinations of the Z;, which would clearly not generate a space of dimension k.

Suppose, conversely, that such functions c¢; and g, ; exist
v <WithJ g2 j(w)dp(u)<oo and J e | c;(s)|ds< 0, by hypothesis).
0o 0

Then we may write, if e** f € C,

k

>

ji=1

K t © © K t
2 j f S F,(uts, u)ydsdY,(w) = (J f@cis)ds 3 | & ;) dY,.(u)>-
n=1 0 0 0 n=1 0
Since the measures c;(s) ds are linearly independent, we may choose functions Ay, ..., h;
such that (j h;(s)c;(s) ds) has non-zero determinant. Then the dimension of the
) 0

Gaussian space generated by the above expressions with f =h;, 1 Si<k, is the same as that
generated by Z,, ..., Z,, which by hypothesis is k, completing the proof.

The general expression (2.14) explains our use of the term “‘index of stationarity” for
N(#). Of course, real stationarity is obtained only if the g, ; are constants and the dY, are
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homogeneous, in which case the dY, are combined into a single Wiener process so that
E(9)=N(#)=1, in accordance with Theorem 2.2. We do not know if the exceptional
dt xdp,- null sets in Theorem 2.4 can be avoided [relying on the known continuity of
F,(#, w)in t2u, as in the proof of Theorem 2.24]. Asexamples of cases in which N(#) < o0,
we may extend Example 1.14 to any case in which E(f)<oo and each of the F,(z, u),
1=n=E(?),isapolynomialin(z, u). Infact, if the polynomialis of degree K, in ¢, then this
term of (2.13) generates a space of degree at most K,+1, and consequently

E(f)
N@®H=Y (K,+1).

n=1

3. The covariance

In Theorem 1.4 we showed that, for a given Gaussian process X (¢), the martingales M, (s),
k=K >0, determine the same c-fields as the projections of X(s), 0 <s=t¢, on the orthogonal
complement of the Gaussian subspace corresponding to % (0+) (i.e. orthogonal to
E(X(£)| # (0+))forall f). Infact, M, (s) together with P, (0),k =K, determine X (s) almost
uniquely in 0=Ss<:¢. Then it follows that the determination of X(s) from M, (s) and P, (0)
can be made for any two processes X by the same Borel function, and hence the joint
distributions of P, (0) and M, (s) determine uniquely those of X(s),0<s<¢. Unfortunately,
it does not seem easy to write the covariance I" of X explicity in terms of that of P,(0) and
M, (s). On the other hand, itis an interesting and nontrivial exercise to write the covariance
of M, (s) in terms of that of P,(s) (hence, ultimately, in terms of I'). This exercise may
indicate how to estimate the covariance of P, (0) and M, in the non-stationary case, thus
leading perhaps to estimates of the elements of the canonical representation of Theorem
1.12a once the prediction problem is solved. _

To obtain the covariance of M,, since the M, have mutually independent increments in
time(i. e. M, (s,) — M, (s;) and M, (1,) — M, (¢,) are independent for s, <s, < ¢, <t, and all
Aqs Ay), it suffices by writing

4E(My, (1) M, (1)) = E(M, () + M, (1)) —~E(My, () — M, (9)?,

to obtain only the second moments of M, + M, and of M, — M, ,foreach . Weshall write
the proof for EM?(¢), and leave it to the reader to check that it extends easily to
E(M, +M;,)? This last result is therefore simply stated as a Corollary.

THEOREM 3.1. — With the notation of Definition 1.3

EMf(t)=EP§(t)—EP§(0)+2}»J' E(X (1) P, (1) — P2 (u)) du.

Proof. — We make repeated use of the device of writing, for >0

[ee]

3.1) f e_*‘X(t+8+s)ds—J e M X(t+5)ds
0 0

=(e“-—1)Jwe_“X(t+s)ds——J e X (t+s)ds.

€ 0
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As afirst consequence, by ““projecting” this identity onto & (¢+ ) it follows immediately that

E(Px(t+8)| F(t+)) =P, (t)=¢erP ,(£)—er X (1) + o(g) in the sense of quadratic mean,

1.e. that lim
e—>0+

e E(P,(t+8)— P, ()| F (t+)=AP, () —X(9)

in quadratic mean, uniformly in finite time intervalis.
Setting for convenience =1, we now write

eMi=tm e £ (o0 G)-00(52))

(£ ()T )] xo-renag

(G ()= G G ()

“ime £ ((n () (5)) 6T ()
“ime & () ()

where the third and fifth equalities are justified by the above estimate (and right-continuity of
X (u)— P, (u) in quadratic mean) while the fourth is by squaring the sum and introducing
conditional expectations given % ((i—1)/n+) term by term. We remark that this
calculation is also valid in the non-Gaussian case, where projection onto H((i—1)/n+)
replaces conditional expectation.

On the other hand, (3.1) also shows that

e £ (m(0) - (52)
=11:1; AZE éi (E(J:e‘*’X(£+s)ds|f<£+>)

n[\/]: 35

l
= lim E<

n— oo

~.

S
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Reordering the terms of the sum by a familiar device due to Abel, and then applying a simple
algebraic identity term by term, this becomes

E(P}(1)—P3(0))

Sl o)
(it ()

Now two more applications of (3.1) show that this is the same as

-t (1 56 o)

=EP}(1)—EP; (0)+22 J 1 E(X(u) P, (u)— P () du,

0
as asserted.

As remarked before the theorem, the same reasoning may be applied to linear
combinations M, (#)+M, (1), and leads without more difficulty to

CoroLLARY 3.2.

EM,, ()M, (9)=E(P,, (1) P,, (1) —E(P,,(0) P,,(0))

+ J ' EX@@) (A, P, @) +4, Py () —(Ay +1,) Py, (@) Py, (w)) du.

0

We note that these expressions may be written out explicitly in terms of the covariance
EEXu+s,)|F wu+)EX@u+s,)|#u+)) of the assumed solution to the
prediction problem, and hence in terms of the covariance I'.  However, while we know that
{ EM,, () M,, (1), E(P,,(0)P,, (0)), 0<¢, Ay, A, } determines I'(s, 1), it does not seem
possible to solve the equations explicitly for E(P, (¢) Py, (#))(which would lead to I", using the
fact that E(X(¢) P,())= lim E(P, (1)P,(1))). On the other hand, we should again call

Ao
attention to thefact that when E (z) = 1, which is by all odds the most prevalent case, the proof
of Lemma 2.1 gave us

M;‘(t)=.[t,<J‘we_“F(u+s, u)ds)dY(u),
0 0

\
from which it would not seem too difficult to obtain the function F(s, ) and corresponding
variance o2(f)=EY?(¢) by making observations of M, (z). With these it is, of course, a
trivial matter to write both the covariance of P, and the covariance of X. Finally, we recall
that the problem of obtaining F (s, ¢) from the covariance of X (in the case E(#) =1) has been
extensively studied by P. Lévy (see for example[11]; 2.3). However, even under strict
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differentiability assumptions onT, it leads to a Fredholm integral equation which is not
explicitly solvable in general. This reinforces our viewpoint that it is often necessary to use
the predictor in obtaining the canonical representation of X(?).
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