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CONVEX FUNCTIONS ON COMPLETE NONCOMPACT
MANIFOLDS: DIFFERENTIABLE STRUCTURE

By R. E. GREENE anp K. SHIOHAMA

The determination of the structure of a manifold from the analysis of a function on the
manifold by the Morse theory of critical point behavior depends in the theory’s standard
version upon the function’s being of differentiability class C? at least. Most functions which
arise naturally from the geometry of the manifold are constructed from the Riemannian
distance function and are not in general even of class C!, but rather are locally Lipschitz
continuous only. It is natural to try to remedy this discrepancy by constructing
approximating functions which have the essential behavior of the geometrically arising
functions but have at the same time a higher degree of differentiability. A typical instance of
this situation is in the study of geodesically convex functions on Riemannian manifolds. A
procedure is known ([6], [9]) for approximation of geodesically convex functions by C*
functions which in a suitable sense are almost convex; and the approximations of strongly
convex functions can be taken to be strongly convex. But it remains unknown whether an
arbitrary convex function on a Riemannian manifold can be approximated by C? convex
functions.

The purpose of the present paper is to show how, in spite of the possible absence of smooth
convex approximations, a complete Morse-theoretic analysis of a convex function can be
obtained even though the function might not have C? regularity. In the authors’ previous
work [5] (see also their preliminary announcement in the last section of [17]), topological
versions of the present paper’s differentiable structure Theorems were established; the
present paper’s emphasis is thus specifically on differentiable structure. To some extent, the
results on differentiable structure could be deduced from the topological versions combined
with general results on differential topology. For instance, under the hypotheses in
Theorem A of this paper, it was shown in [5] that the manifold is homeomorphic to a product
of a topological manifold with R; it follows then from general results ([13], ¢f. also [3], [12])
that the manifold is diffeomorphic to a product of a differentiable manifold with R if the
manifold has dimension at least five (¢f. the remarks on the application of the #-cobordism
Theorem in [4]). The authors are indebted to S. Morita for helpful conversations
concerning this point. To achieve the most general possible results in all dimensions as well
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358 R. E. GREENE AND K. SHIOHAMA

as to obltdin a self-contained treatment, a different approach to the differentiable structure
questions is used here; the approach here is to use the smooth approximation results of [6]
(see also [7], [8]; in the case of nonnegative curvature, similar techniques were applied in [16]
and [18]).

The analysis of the Morse theory of convex functions given here does not depend directly
upon the convexity of the functions; rather it depends primarily upon the local Lipschitz
continuity of the functions [6] and upon the existence, on the complement of the global
minimum set of the function, of continuous vector fields along which the rate of change of the
function is locally bounded from above by a negative constant [5]. This second property is
the nonsmooth analogue of noncriticality. In the presence of these properties, but without
further appeal to convexity, the smooth approximation technique of [6] and [9] yield C*
approximations which are without critical points (away from the minimum set). Although
the main goal is the investigation of the convex function case, some attempt has been made to
separate the arguments which depend explicitly on convexity from those which apply in more
general circumstances.

A critical point of a C* convex function on a complete Riemannian manifold is necessarily
a global minimum. As noted, a possible nonsmooth convex function is also, in a suitably
generalized sense, noncritical except at its global minimum set. Associated to this property
is a manifold structure Theorem:

THEOREM A. — If ¢ : M — Risa convex function on a complete C* Riemannian manifold M
andif { xe M| @ (x)=infy ¢ } is empty, then there is a differentiable manifold N such that M is
diffeomorphic to N x R.

In fact, N is homeomorphic to any level set { xe M| @ (x)=a}, ae M, all these sets being
homeomorphic to each other according to [5].

In Theorem A, much more structural determination is obtained than is obtainable simply
from the existence of a C* function on M without critical points, since such a nowhere critical
function exists on any noncompact C* manifold [15]. The convexity of ¢ forces a certain
focusing of the analogues of the negative gradient integral curves of the function and makes
the situation resemble the Morse theory of smooth functions without critical points but with
compact level sets, even though @ nay have noncompact level sets. (In the case where @ is
C* and has compact levels, a product structure was obtained in [1], using the techniques
initiated in [2].) A similar phenomenon occurs in the situation where the global minimum
set is nonempty. The global minimum set is, if nonempty, a totally geodesic submanifold
with perhaps nonempty and not necessarily smooth boundary (¢f. [4]).

THEOREM B. — If @ : M — Ris a convex function on a complete Riemannian manifold M and
if {xeM|@(x)=infy ¢} is nonempty then:

(a) there is a differentiable manifold N and a continuous mapping F : N x[0, +00) > M
such that F is a proper mapping and F [N x (0, 4+ 00) is a C* diffeomorphism of N x (0, + o0)
onto M— {xeM|o(x)=infy @ ! ;

(b) if {xeM|@(x)=infy @} is a smooth (totally geodesic) submanifold of M without
boundary then M is diffeomorphic to the total space of the normal bundle in M of
{xeM|o(x)=infy ¢ }.
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DIFFERENTIABLE STRUCTURE 359

As in Theorem A, the manifold N in part (a¢) of Theorem B is homeomorphic to
{xeM]|o (x)=a}, a>infy @, these sets being all homeomorphic to each other. If ¢ hasa
disconnected level set, then the minimum set {xeM|@(x)=infy @} is a (connected)
codimension one C* submanifold of M with trivial normal bundle [5]; in this case, M is
diffeomorphic to the minimum set x R, according to Theorem B (b).

If the minimum set is allowed to have nonempty interior in M, then Theorem B imposes
no restriction, other than noncompactness, on M. 1In fact, on any noncompact manifold,
there is a nonconstant C* function which is convex relative to a suitable complete
Riemannian metric [5]. M clearly has the homotopy type of the minimum set of any convex
function on M, if the minimum set is nonempty; hence, if the interior of the minimum set is
required to have empty interior, then considerable restrictions on the topology (and
differential topology) of M do occur: For example, M has then the homotopy type of a lower
dimensional manifold-without-boundary (in the case of empty minimum set) or of a lower
dimensional submanifold (possibly) with nonempty, nonsmooth boundary in case of
nonempty minimum set, since in that case the minimum set is a totally geodesic lower
dimensional submanifold with possibly nonempty, possibly nonsmooth boundary. Also, if
the minimum set has empty interior, then M has at most two ends [5].

1. Vector fields and Lipschitz continuous functions

A locally Lipschitz continuous function on a Riemannian manifold is almost everywhere
differentiable. Even so, the appropriate idea of a point of the manifold being a noncritical
point of such a function cannot be defined directly in terms of the almost everywhere existing
derivative because by its very nature critical point behavior is typically concentrated on sets
of measure zero. To escape this difficulty, it is useful to introduce the idea of one-sided
upper and lower derivatives along a vector field: Suppose @ : M — R is a locally Lipschitz
continuous function on a Riemannian manifold M (see, €. g., [6] for detailed definition and
basic properties). 1f peM and Xe TM, (= the tangent space of M at p), then the quantity:

lim sup @ (C()—9(C(0)),
ot
is finite and is the same for all C* curves C with C(0)=p and C’(0)=X; this fact is an
immediate consequence of the agreement to second order of any two such curves and of the
Lipschitz continuity of . Set Xy @=the value of this lim sup; similarly set
Xg =lim inft " (@(C(1))—@(C(0))). C as before. And set X =—[(—X)k (9)],

=0
XL (@)= —[(=X)g (¢)]. Of courseit ¢ is differentiable at p, all four of the Xy (¢), X (®),
X[ () and X[ () are equal, being all <X, grado ).

DEerFINITION. — A vector field X is transversal to alocally Lipschitz continuous function ¢ at
a point p if there are neighborhood U of p and €>0 ‘such that, at every geU,
X& (@)< —e&. A peint p is noncritical for ¢ if there is a C* vector field X defined in some
neighborhood of p such that X is transversal to ¢ at p.
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360 R. E. GREENE AND K. SHIOHAMA

If B>0 is a local Lipschitz constant for ¢ near p and if X, YeTM p» then
I XK (©)=Yr ()| £ || X—Y]|.B, as one sees from elementary considerations. It follows
from standard approximation-by-C* results that if there is a continuous vector field Y
defined near p and transversal to ¢ at p, then there is a C* vector field near p also transversal
to ¢ and p is thus a noncritical point for @.

If ¢ is a geodesically convex function on a Riemannian manifold M (¢ is then
automatically locally Lipschitz continuous: [6]) and if a point p is not a local minimum of ¢,
then p is a noncritical point of @ in the sense just introduced. This fact can be verified in the
following way: Choose a number b less than ¢ (p) but very close to @ (p). Then there will be
points of the set M? (@)= { xe M | ¢ (x)<b} near p, since p is not a local minimum. Every
point g close enough to p has a unique shortest (geodesic) connection to M®(¢) and the
direction of this connection depends continuously on ¢ (¢f. [19]). The vector field ¢ — the
unit tangent vector to the shortest (geodesic) connection from ¢ to M® () is transversal to @
at p so that, by the C* approximation observation of the previous paragraph, p is a
noncritical point of ¢. On a complete Riemannian manifold, a local minimum of a convex
function is necessarily a global minimum; thus the critical points of a convex function
¢ : M —> R on a complete Riemannian manifold M are exactly the points p (if any) such that
o (p)=infy @ (see [5] for detailed discussion of the properties of convex functions just
asserted).

If X is a C* vector field and if @ is a locally Lipschitz continuous function, the restriction
@ (C(1)) of @ to an integral surve C(z) of X is a locally Lipschitz continuous function
of t. Thus:

f

m(C(zz))—(p(C(tl))=j %[@(c'(,m,

fH
the derivative existing almost everywhere. It follows that if X is transversal to ¢, then
1 = ©(C(r)) is a strictly decreasing function of 1.

ProrosiTioN 1.1. — If @ : M > R is a locally Lipschitz continuous function on a
Riemannian manifold M, if X is a C* vector field on M everywhere transversal to @, and if each
maximal integral curve C on X has the property that the range of ¢ o C=the range @ (M) of @
on M, then:

(1) for any numbers a, be @ (M) the sets {xeM|@(x)=a} and {yeM|@(y)=b} are
homeomorphic and M is homeomorphic to { xe M| ¢ (x)=a} xR;

(2) there exists a differentiable manifold N, homeomorphic to {xe M| (x)=a} for any
ac @ (M), such that M is diffeomorphic N x R.

Proof. — As noted, the function ¢ — @(C{(¢)), C an integral curve of X, is a strictly
monotone decreasing function. For each be ¢ (M), there is by hypothesis a value ¢, such
that @(C(ty))=a and hence there is exactly one such value. The function from
{xeM|o(x)=a}to{yeM|@(y)=>b} defined by x — C(z,), where C=the integral curve of
X through x and ¢, =the unique 7, such that @ (C(z,))=>, is a homeomorphism. Similarly,
one obtains a topological product structure on M, ie, a homeomorphism
{xeM](p(x)=a} x¢@(M)—M by (x, b) > C(t,). Since @ oC being strictly monotone
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DIFFERENTIABLE STRUCTURE 361

decreasing implies thai ¢ (M)=the range ot @ o C is a connected open subset of R, (M) is
homeomorphic to R and (1) follows.

To prove (2), some smooth approximation procedure is needed. In outline, N will be
obtained by fixing a number a € ¢ (M), approximating ¢ near { xeM|o(x)=a } by a suitable
C* function, and letting N be a level set of the approximating function. The vector field X
will be transversal to N (in the usual sense) and each maximal integral curve of X will
intersect N in exactly one point. Since M is a union of these integral curves, the required
diffeomorphism M — N x R can be constructed.

For the construction of the smooth approximations, the process of smoothing by
integration against a C* kernel will be used. Specifically, let ¥ : R — R be a nonnegative
even C¥ function, constant on some interval around 0, with support in[—1, 1] and with the

property that j ®(||v||)=1, n=dimension M. For any function f: M — R define
veR"
fs : M >R by:

fa(p)=5_"J J(exp,v). x(llv|l/8)dv,

veTM,

where dv is the Riemannian volume measure on TM ,.  Then for any compact set K in M, the
functions f; are C* in a neighborhood of K for all sufficiently small positive 8,and as & — 0*
the functions f; | K converge uniformly to /| K [6]. Alsoifa C* vector field X is transversal
to @ at pwith Xg @ < —e <0 ona neighborhood of p, then there is a neighborhood of pand a
8, >O0such that, forall 3 €(0, 3,), X¥P; < —¢&/2 on the neighborhood (this is a special case of a
property proved in [7]).

It @ (p)=a, then, for all sufticiently small 6 >0, the function @; attains the value a on the
integral curve of X through p at exactly one point near p: this follows from the facts that @y is
near ¢, uniformly in a neighborhood of p, and that @ is strictly monotone decreasing at least
rate €/2 along the integral curve. Similarly, if ¢;(g)=a for some g near p then there is
exactly one point g, near p on the integral curve of X through g with @ (¢;)=a. Thuslocally
near p for >0 sufficiently small there is a bijection from the a-level of @ to the a-level
of . This bijection is bicontinuous. Also, the a-level of @5 is a C* submanifold of
codimension 1 since X @s=Xg ©3;#0 near p. Thus locally the construction of N is
accomplished.

To construct N globally, it is necessary to use different values of >0 near ditterent
points p (a uniform choice of & can be made in general only if {xeM|@(x)=a} is
compact. It is then necessary to combine the resulting ¢; functions to obtain an
approximation of ¢ in a neighborhood of { xe M| @ (x)=a}. The construction proceeds in
a standard partition-of-unity fashion, using the following easily calculated estimates on
variable-coefficient finite convex combinations of approximations:

(a) ikal =1 and A,=0, all i, then:

[0(p)— X 05 (P) S DMl 0(p)—0s(p)l;
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362 R. E. GREENE AND K. SHIOHAMA

(b) if Y A;,=1and 1,20, all i, then:
XQEA0s1,)=Y (X )@+ X (XA) (@5 —0)+ A (X 0s,)

S Y MX@a),+ Y IXA) e (p) =5 ()]
since ) (X1;)=0. I

The first estimate shows that combining approximations with a partition of unity yields an
approximation no worse at p than the worst among the individual approximations having
nonzero coefficient at p.  The second estimate shows that if, for instance, X @5, < —¢/2 at p
then X(Q. X, ¢;)< —¢/3 at p, provided that each ¢@s, is a sufficiently good (uniform)
approximation of ¢ at p. Thus transversality can be preserved under the partition-of-unity
process.

It follows by the standard partition-of-unity arguments that there is an open set U
containing {xeM|<p(x)=a} and a C* function { : U - R such that Xy <0 on U, and
every maximal integral curve of X intersects {xe M| \lf(x):a} exactly once.

Since each maximal integral curve of X also intersects {xe Mio (x)=a} exactly once, it
follows that {xeM | (p(x)———a} and {xeM | \ll(x)=a} are homeomorphic. Also, because
XV <0 on U, the set {xeMI\j/(x)=a} is a C* codimension one submanifold of M.

Now choose a positive continuous function v : @(M)— R* such that the interval
(e—vy(a), a+y(x)=e(M) and y(x)<1/2 for all ae@(M). The function ¥ could have
been and will now be assumed to have been chosen so that [ Y (p)—o¢ (p)| <(1/2)y (9 (p))for
all peU. Again by applying the local approximation process and the partition-of-unity
construction, a C’ function {, : M — R can be obtained such that ¥, (p)=a if Y (p)=u;
[V (p)—o(p)| <y(e(p)) for all pe M; and X, <0. Clearly the range of {; e C=¢ (M)
for any maximal integral curve C of X. The map of {peM |V (p)=a} xo(M)—>M
defined by (p, t) — the unique point on the maximal integral of X through p at which {; =¢is
a diffeomorphism. Thus, as required, M is diffeomorphic to an (n— 1)-manifold x R, the
(n—1)-manifold being homeomorphic to {xe M| (p(x)=a} . O

An alternative formulation of noncriticality can be given: Let @ : M — R be a locally
Lipschitz continuous function, and set, for each peM, Limgrad ¢ (p)= {ve TM,,|v=the
limit of grad¢(p,) for some sequence {p;} converging to p with ¢ differentiable at
each p; } . This set is closed in TM , and the union of the sets Lim grad @ (p) over pe M is
closed in the tangent bundle of M. It is easy to check that a point p € M is noncritical for ¢
in the sense already introduced if and only if Lim grad ¢ (p) is contained in an open half-space
in TM,. This property of Limgrad ¢ (p) at noncritical points p can be used also to
approximate ¢ on a compact set every point of which is noncritical by smooth functions with
gradients nonvanishing on a neighborhood of the compact set [11].

2. The differentiable structure theorems

To apply the results of the first section to prove Theorems A and B, one needsa C’ vector
field which is transversal to the convex function ¢ (away from the minimum set of ¢) and
. which has integral curves each meeting every (non-minimum) level of @. Vector fields
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transversal to ¢ are constructed in [S], but they are not generally C*. The finding of
suitable transversal C* vector fields will make use of the following Lemmas. These are
stated in the form suitable for the proof of Theorem A. The easy modifications to suit the
proof of Theorem B will be summarized briefly at the end of the section.

LeMMA 2.1. — If X is alocally Lipschitz continuous vector field on M which is transversal to
a locally Lipschitz continuous function @ on M and if, for every maximal integral curve C of X,
the range of @ o C=@ (M), then there is a(C° fine) neighborhood U of X in the C° fine topology
on continuous vector fields on M such that: if Y is a C* vector fieldin U then'Y is transversal to
¢ on M and, for any maximal integral curve Cy of Y, range @ oCy=0¢ (M). In particular, a
C* vector field Y exists which is transversal to ¢ and has range @ o Cy =@ (M) for all maximal
integral curves Cy.

Proof of Lemma 2.1. — The second statement follows from the first together with the
density of C* in C° vector fields relative to the C° fine topology (see, €. g.,[14], which see also
for the detailed definition of the C° fine topology).

To prove the first statement, recall from the previous section that transversality is a stable
property, i.e., if X is transversal to ¢ at p then there is an € >0 such that if || X—Y || <e in
some neighborhood of p then Y is transversal to ¢ at p. 1t follows that if X is a continuous
vector field transversal to @ on M then there is a neighborhood % of X in the C° fine topology
on the continuous vector fields of M such that if Y e then Y is transversal to @ on M. The
standard results on stability of integral curves of vector fields imply easily (because of the
hypotheses on the integral curves of X) that the C° fine neighborhood # can be chosen to
have the further property that, if Y € %, then the maximal integral curves Cy of Y have range
(@oCy)=0(M). More precisely, the integral curves of Y can be forced (by suitable choice
of %) to remain close to those of % so that the monotone strictly decreasing function
t — (¢ o Cy)(¢) reaches a given value [in ¢ (M)] at a z-value near the z-value at which ¢ along
an X integral curve does: in particular, @ o Cy will then assume every value in ¢ (M). The
straightforward details of this point are left to the reader. [

The obvious analogue of Lemma 2. 1 for X such that — X is transversal to ¢ also holds: in
this case, ¢ is monotone strictly increasing along integral curves of X and nearby integral
curves of approximating vector fields reach a level above a given level at approximately the
same parameter value as the original integral curve of X. (Incidentally, the role of local
Lipschitz continuity of X in all this discussion is simply to make the existence-and-
continuous-variation Theorem for integral curves apply.)

In the first statement of Lemma 2.1 and its — X analogue, that Y be C* is not essential to
the conclusions; but it is the second, existence assertion of Lemma 2.1 that is to be applied
later- to produce C* vector fields of a specific sort, so the other assertions have been
formulated for the C* case only, also.

Now suppose that M is a complete Riemannian manifold and that ¢ : M — Ris a convex
function (¢ is then automatically locally Lipschitz continuous, as noted earlier, even if M
were not complete). If pe M and @ (p)>infy @, then there is a locally Lipschitz continuous
vector field X defined near p and transversal to @ at p.  Such a vector field can be constructed
as follows (for details of this and related constructions to be used later. see [5]). Pick a
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number b less than ¢ (p) but close to @ (p). Set M°(@)= {xeM|@(p)<b}. Ifbisclose
enough to @ (p) then there is, for each ¢ near p, a unique shortest (geodesic) connection from
g to M”(¢). The unit direction vectors of these connections form a locally Lipschitz
continuous vector field [19]; more precisely, the value of the vector field at ¢ is the unit tangent
vector at g, to the shortest connection from ¢ to M®(@).  This vector field is transversal to ¢
at p. This construction can be extended to find a vector field defined on M (or
M— {xeM|¢(x)=infy @ }), which vector field is transversal to ¢ and has a further
desirable geometric property which will be called piecewise local Lipschitz continuity.

DEerINITION. — If @ : M — R is a locally Lipschitz continuous function and X is a vector
field on M transversal to ¢ then X is said to be piecewise locally Lipschitz continuous if it has
the following property: For each compact set K in M, there exist a finite set of numbers
a,, ..., a and locally Lipschitz vector fields X;, i=1, ..., k defined, respectively, in a
neighborhood of Kn {xeM|a; <@ (x)<a,,,} such that:

(@) a,fa,= ... =aq;

(b) a; <infx @ Ssupx 9 =a,;

(c) X(y)=X;(y) f yeKn{xeM|a,; <@ (x)Sa;+,},i=1,2, ...,k

The intuitive meaning of piecewise local Lipschitz continuity of a vector field is that the
vector field between the a-levels of @ is locally Lipschitz continuous but that X may jump as
an a-level is crossed.

Piecewise locally Lipschitz vector fields have integral curves: indeed a unique maximal
integral curve passes through each point. These are simply the integral curves of the X;
between a-levels attached continuously across a-levels; the curves are piecewise C* (see [5]for
details of this point).

The following result was proved in [5] by a partition-of-unity construction applied to the
geodesic connections to sublevels already described here. (Note, however, that the
terminology of piecewise local Lipschitz continuity was not used in [5].)

LEMMA 2.2, — If ¢ : M — R is a convex function on a complete Riemannian manifold with
{x eEM|o@(x)=infy @ } =, then there exists on M a piecewise locally Lipschitz continuous
vector field X, the maximal integral curves Cx of which each have the property that the range of
9o Cx=0(M).

To be able to apply Proposition 1 combined with Lemma 2.1 to the convex function
situations (Theorem A), it is necessary to be able to modify the vector field X to obtain an
everywhere locally Lipschitz continuous vector field on M that has still full-@-range maximal
integral curves:

LEMMA 2.3. — If @ : M — Risa convexfunction on a complete Riemannian manifold M with
{ xeM|o(x)=infy @ } =, then there exists on M a locally Lipschitz continuous vector field
Y the maximal integral curves Cy of which each have the property that the range of
9o Cy=0(M).

Proof of Lemma 2.3. — Let {U;} be a locally finite covering of
M — { xe M| @ (x)=infy ¢ } such that each U, has compact closure and let p; : U, > Rbe a
partition-of-unity subordinate to { U;}. Then, with X the vector field of Lemma 2.2, write
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DIFFERENTIABLE STRUCTURE 365

X=3Y p,X. The required new global vector field Y will be expressed in the form
Y= Zp,f(,», where each X, is a modification of X|U,. Of course. cach X, need only be

detined on the corresponding U;. Fortixed .1', note that, because Oi i1s compact and from the
piecewise local Lipschitz continuity of X, there exist an £€>0, a finite set of numbers

b, ..., b,by<...<b,,and aneighborhood V,(also with compact closure)ofﬁi such that
V,c {xeM|b; <@ (X)<b,}, such that X is locally Lipschitz continuous on the sets:

{xevilbj<(p(x)§bj+1}, j=1,...,k—1,

and in fact such that, for each of these sets, X restricted to the set is the restriction to the set of
a locally Lipschitz continuous vector field defined on a neighborhood of the closure of the
set. X is then constructed by patching together these locally Lipschitz continuous vector
fields. The situation will be clear if the first stage of the patching is described: Suppose Z isa
locally Lipschitz continuous vector field defined in a neighborhood of the closure of:

{xeV,|bj<o@(x)<b,} with Z,|{xeV,|b;<@(x)<bh,} =X|{xeV,|b;<p(x)<b,}

and Z, is locally Lipschitz continuous in a neighborhood of the closure of:

tzeV b, <@ (x)Shs)
and

Z,|{xeVilby<@(x)shyj=X|{xeV,|b;<@(x)<h, .

Let p be a C* function in V; such that p=1 on {xe\’ilb1<(p(x)<b2} and p=0 on
{xeV,|b, <(p(x)§b3} except (in both cases) in a very small neighborhood W, of
{xeV,|o(x)=b,}, in which neighborhood p goes rapidly from 0 to 1 (pis to take
valuese[0, 1] everywhere). The vector field pZ;+(1—p)Z, then =X on
{xeV,|b, <@ (x)<b, } except very near { xe V| ¢ (x)=b, } , where it changes rapidly from
Z,t10Z,: On{xeV,|b, <p(x)<h, } ,PpZ,+(1—p)Z, islocally Lipschitz continuous and
its integral curves differ (in C°) arbitrarily little from those of X if W, is a sufficiently small
neighborhood of { xe V| ¢ (x)=b, } And as before pZ, +(1 —p)Z, is transversal to @
everywhere. Continuing this patching construction in an obvious way yields the
required X,.

1t is now straightforward to verify (using local finiteness of { U, } ) that if for each i the W’s
are all chosen sutficiently small then the vector field ) p, X, (which will be locally Lipschitz

continuous and transversal to ¢) will again have maximal integral curves C such that the
range 9o C=0(M). [

Proof of Theorem A completed. — According to Lemma 2.1, the vector field Y from
Lemma 2.3 can be replaced by a C* vector field still transversal to ¢ and with maximal
curves again each having range of ¢ along the curve equal to @ (M). Then Theorem A
follows immediately from Proposition 1. []
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Essentially the same arguments used to prove Theorem A are uscd to prove Theorem B.
but some modifications are necessary.  They arc as follows: The vector ficld of Lemma 2.2 s
replaced by another piecewise locally Lipschitz continuous vector tield X such that X on
M- {xeM|o(x)=infy ¢ } is transversal to ¢ there, such that the integral curves of X on
M— {xeM|¢(x)=infy ¢} each reach a unique limit in { xe M| (x)=infy ¢} in finite
parameter value, while ¢ on the integral curves of M — { xe M| ¢ (x)=infy @} has range
=(infy @, +00), and such that, for any ae(infy@, +00), the map
{xeM|@(x)=a} > {xeM|o(x)=infy ¢ } obtained by running along integral curves of X
to their limits in { xe M| ¢ (x)=infy ¢ } is a continuous proper map; such a vector field was
produced in [5], again by shortest geodesic connections. Using again the argument already
used to prove Lemma 2.3 allows one to show that there is a locally Lipschitz vector field (not
just a piecewise locally Lipschitz one) on M — {xe M| o (x)=infy @ } which otherwise has
all the properties just required of X. A suitable C* fine approximation (as in Lemma 2.1)
of this locally Lipschitz vector field will still retain the integral curve properties of X as
indicated. Then the proof of Theorem B is completed by applying a modification of
Proposition 1.1, obtained by essentially the same method as is Proposition 1.1 itself.
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