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SOME REGULARITY THEOREMS
IN RIEMANNIAN GEOMETRY

BY DENNIS M. DETURCK (1) AND JERRY L. KAZDAN (1)

This paper consists of some variations on a theme. We begin with an artificial
example. Consider the metrics given in local coordinates in IR2 by:

and:
g,=(l+3x\x\)2dx2+[l+(x+\x\3)2}dy2,

g,=(l+3x\x\)2(dx2+dy2).

For each of them one may ask if there is a coordinate system (containing the origin) in which
the metric is smooth. For the first metric, the change of variables t = x +1 x |3 reveals that:

g,=dt2+(l^t2)dy2,

which is certainly smooth. On the other hand, the metric g^ cannot be made smoother in
any other coordinates, as we shall see in Example 2.2. This question of smoothness of the
metric and other tensors when the coordinate system is changed is the underlying theme of
the paper.

We systematically investigate this local question in Section 2. The key idea is that there
are natural coordinate systems in which a metric is as smooth as it can be. The first
candidate for such a coordinate system that comes to mind is geodesic normal
coordinates. As we shall see, this intuitive notion is false in general: changing to geodesic
normal coordinates may involve loss of two derivatives. For optimal regularity properties
one should use harmonic coordinates, in which each coordinate function is harmonic. These
were first used by Einstein [E] in a special situation, and subsequently by Lanczos [L], who
observed that they simplify the formula for the Ricci tensor. We learned of this from [FM],
where harmonic coordinates were used to study the Cauchy problem for the homogeneous
Einstein equation of general relativity. One should also note that in two dimensions,
isothermal coordinates are harmonic, that the coordinates of a minimal immersion in R" are
harmonic, and the work ofGreene and Wu [GW], who used global harmonic coordinates to
embed open manifolds.

(1) Research supported in part by the National Science Foundation.
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250 D. M. DETURCK AND J. L. KAZDAN

In Section 3, we show that if a connection comes from a metric and if the connection is
smooth, then so is the metric (this is also proved for non-Riemannian metrics). Regularity
of Ricci curvature is treated in Section 4. There, we show that if Ricc(^) is smooth in
harmonic coordinates, then so is the metric g . This is false in arbitrary coordinates as one
can see from the example g = (p* (^o)» where QQ is the standard flat metric and the map (p is not
smooth (see Remark 4.6). However, if Rice (g) is smooth and invertible, then we can prove
that g must be smooth. We also discuss the cases where Rice (g) is in the Holder class C^'a or
O^ real analytic).

These ideas are applied to Einstein metrics in Section 5. The results are: (i) Einstein
metrics are real analytic in harmonic coordinates, (ii) a unique continuation theorem: if two
Einstein metrics agree on an open set, then up to a diffeomorphism they are globally identical,
and (iii) a local isometric embedding statement. Kahler and Kahler-Einstein metrics are
briefly treated in Section 6.

Our approach here was strongly influenced by Malgrange's proof [M] of the Newlander-
Nirenberg theorem. All of the regularity statements ultimately boil down to showing that
some differential operator is elliptic. For simplicity, we have not stated the corresponding
regularity results for Sobolev spaces; no new ideas are needed for this extension.

NOTATION. — We say that a function / defined on an open subset of IR" is of class C^ a

(written fe C^ a) if all of its derivatives up to order k are continuous and if its fe-th derivatives
satisfy a Holder condition with exponent a, 0 < a ̂  1. We write feC^iff is a real analytic
function. We use standard tensor notation and write ^/g for (dei^g^))112. A metric
Q = Z Qij axi ̂ xj ls salc*to ^e °^ ̂ ass ^k> a (or (^G)) m ̂  coordinate chart (x1, . . . , x")if the
coefficients g^eC^" (or C"). The analogous definition is used for any tensor to be of
class C^a.

It is a pleasure to thank Professors J.-P. Bourguignon, E. Calabi, J. Eells, D. B. E. Epstein,
J. Gasqui and N. Koiso for useful discussions. In particular, the question of real analyticity
of Einstein metrics was pointed out by Bourguignon, the possibility of their unique
continuation was suggested by Eells, and their local isometric embedding was raised by
Gasqui. We are grateful to the friends of A. Besse who organized a valuable meeting at
Espalion, France in September 1979. That meeting was a basic stimulus for this
paper. Some of our original naive delusions about normal coordinates were fortunately
caught by the referee, whom we thank.

1. Harmonic coordinates

We recall some basic facts, some of \vhich do not seem to appear explicitly in the
literature. A coordinate chart (x 1 , . . . , x") on a Riemannian manifold (^, g) is called
harmonic if Ax^ = 0 for j = 1, . . . , n. Our first lemma relates this to the Christoffel symbols.

LEMMA 1.1. — In a local coordinate chart (x1, . . . , x"), let F^^F^. A coordinate
function x11 is harmonic if and only if ^k=0. In fact, Axk= —F^.
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REGULARITY THEOREMS IN GEOMETRY 251

Proof. — By a straightforward computation:

r^---(^).
^/g dx

Thus, for any function u, its Laplacian is given by:

.. S^u .8u
^=glJ—^-^-^J—

8xl9xJ 9xJ

In particular, Ax^= —F^
Q.E.D.

Next, we prove the existence of harmonic coordinates.
LEMMA 1 . 2 . — Let the metric on a Riemannian manifold (M', g) be of class C^ a (for k ̂  1)

(resp. C") in a local coordinate chart about some point p. Then there is a neighborhood of p in
which harmonic coordinates exist, these new coordinates being Ck+l''l (resp. C0) functions of
the original coordinates. Moreover, all harmonic coordinate charts defined near p have this
regularity.

Proof. — Since:

(1 .3) A«=^^+ l a ( ^^ ) ^ l ; ,
ox dxJ /g dx ox3

and g e C^ a, the coefficients of this differential operator are of class C^"1; a. By a standard
result ([BJS], p. 228, § 5.4), insome neighborhood of p there isa solution ueC^1 '" of AM =0
with u(p) and Su/Sx^p prescribed. Let y^u^x), j=l , . . . , n be the solution with
uJ(p)=0 and ()u•l/8x^\p=S•l^. These functions y3 are the desired harmonic
coordinates. The regularity is a consequence of the standard elliptic regularity theorems,
see [BJS], p. 136, §5.8 and [Mo], Thm. 5.8.6.

Q.E.D.

On a two-dimensional manifold, one can use a special type of harmonic coordinates:
isothermal coordinates. To obtain them, one begins as above with one harmonic function u
with grad u(p)^Q. Then let the second coordinate v be the harmonic function conjugate
to M, so that (by definition):

dv= -kdu,

where * is the Hodge star operator mapping one-forms to one-forms. Having already
found M, then * du is closed (since u is harmonic), so u exists. The function v is harmonic
because Au= -kd-kdv= — -kddu==Q. In higher dimensions, there is no known adequate
generalization of the harmonic conjugate, so harmonic coordinates are all one has. Note
however that in any dimension we can find harmonic coordinates .such that:^.(p)=§^. by
composing with an auxiliary linear transformation. . ,

The following corollary gives the regularity of various tensors in the change to harmonic
coordinates.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



252 D. M. DETURCK AND J. L. KAZDAN

COROLLARY 1 .4 .— Let the metric g e C^ a, k ̂  1 in the coordinate chart (x1, . . . , x") an^ kr
(3^, . . . , y " ) be a harmonic coordinate chart. If a tensor ^~ is of class C 1 ' p with I ̂  k and (3 ̂  a
in the original coordinates, then it is of class at least C^ a in harmonic coordinates. If both g
and 3~ are in C" in the original coordinates then ST will be in C" in harmonic coordinates.

Proof. — This is clear from the last part of Lemma 1.2 and the fact that the expression for
y in the new coordinates involves at most the first derivatives of those coordinates.

Q.E.D.

2. Regularity of metrics in various coordinates

We prove that a metric has optimal regularity in any harmonic coordinate chart, i. e., that
it is no smoother in any other coordinates. By an example, we see that a metric may have
less than optimal regularity in geodesic normal coordinates.

THEOREM 2.1. — If a metric g e C^ a, 1 ̂  k ̂  oo (or C") in some coordinate chart, then it is
also of class C^ a (or C") in harmonic coordinates, while it is of at least class C^ 2J a (or C") in
geodesic normal coordinates.

Proof. — (a) harmonic coordinates. This is a special case of Corollary 1.4 where the
tensor 3~ is the metric tensor itself;

(b) geodesic normal coordinates. We show that the (isometric) map / from geodesic
coordinates is of class C^"^ a. The components of/ clearly satisfy the geodesic ordinary
differential equations:

^+r^^=odr2 I J dr dr '

where r is arc length along the geodesies from the origin. The Christoffel symbols involve
the first derivatives of the metric, so if the metric is in C^a then F^ is in^fc ~1 ' a . Hence, / is a
^k+i , (x function of r; however the "angular" variables arise in the equation only as
parameters, so there is no gain of differentiability of/ in these variables. Thus, all one can
assert is that / is of class C^^a in these angular variables.

Q.E.D.
Example 2.2. - If 0 < p (x, y) e C^ a in an open set, then the metric g = p (x, y ) (dx2 + dy2)

is also of class C*'a in that set. Moreover, its differentiability cannot be increased by
changing coordinates. To see this, simply note that isothermal coordinates are
harmonic. This proves the assertion made in the Introduction concerning the metric g^.

Example 2.3. — I f ^eC^" in some coordinates, then all we were able to assert in
Theorem 2.1 is that geC^2'a in geodesic normal coordinates. This example shows that
one can do no better, in general. Near the origin in (R2, consider the metric:

^=(l+Mk+a)(^2+^2),
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REGULARITY THEOREMS IN GEOMETRY 253

where 0 < a < 1. Clearly g e C^ a in these (harmonic) coordinates. We claim that g is not of
class C^"1 in geodesic normal coordinates. To prove this, we recall that Hartman [H] has
shown that the map / from these coordinates to normal coordinates is in C^1'a but not in C^
(Hartman's proof, which only addresses the. case fe=2, can be directly applied for
k > 2). But a result of Calabi-Harfman [CH] says that any isometry between metrics of class
C^ ~1 must itself be of class C^. Therefore, g could not be of class Ck ~1 in geodesic normal
coordinates.

3. Regularity of metrics with smooth connections

The canonical torsion-free connection F of a metric g involves the first derivatives of the
metric. Thus, if F e C^ then the most one can expect is that g e C^1. This is essentially
what we will prove.

LEMMA 3 . 1 . — Let g be aC1 metric, and let T be the operator that maps metrics to their
connections, so T(^)=F. Then, at g , T is ah overdetermined elliptic partial differential
operator.

Proof. — In local coordinates, the equation T(^)=r can be rewritten as the linear
equation:

A ( \ s c h k s 9 i k ^ij ^ T-S f\
Mg)=^+^~^~2gks^-=Q'

The principal symbol of A, o^), for any vector ^ is:

(3-2) ^)h=(^){h^h^-h^),

where h^ is any symmetric matrix. Overdetermined elliptic means that the map a^(^) is
injective for any real ̂ 0. Thus, given that 0^ (^) h = 0, we must show that h = 0. We sum
(3.2) over the terms where 1=7 to obtain:

(3-3) E2^^=^^^.
i i

Also, multiply (3.2) by ^ and sum over i. Then use (3.3) to conclude that:

0=^1^12+I:(^^^-^^^)=^|^|2,
i

where l^l2^^. Therefore ^=0, i.e., OA^) is injective if ̂ 0.
Q.E.D.

THEOREM 3 . 4 . — Let r be the connection of aC2 metric g . If in some local coordinates
^(=^l^j) is of class C^ a for some k^ 1 (resp. C"), then in these coordinates the metric g is of
class C^^^^esp. C").

Proof. — Let A* be the formal L^ adjoint (using the Euclidean inner product, say) of the
operator A above. Then g also satisfies the second-order linear system:

A*A<7=0.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



254 D. M. DETURCK AND J. L. KAZDAN

Buta^(^)=[aAa*,sothat:

CW^)=[<^)]*CT^),

which is bijective for all ̂ 0 since c^ (^) is injective. Therefore A* A g = 0 is a (determined)
elliptic system. Since the coefficients of A* A involve first derivatives ofr, they are of class
(^"^"(orC01). Therefore, by the usual elliptic regularity ([Mo], Thms. 6.8.1 and6.7.6)
we obtain the asserted regularity of g .

Q.E.D.
In this proof, we used a simple general device to obtain regularity for overdetermined

elliptic systems from the corresponding results for systems that are elliptic in the usual
sense. Because of this device, we needed to assume that g e C2 and F e C^a, k ̂  1, although
it would have been more natural if this were relaxed to just assuming that geC1 and
k ̂  0. This extension is also true because the equation A* A g = 0 is linear. We can thus
use the regularity for weak solutions in [Mo], Thm. 6.4.3. The details are left to the
interested reader (Hint: in the notation of [Mo], let A* A^=0 be (6.4.5) with /=0, ^=2,
s^=0, m^=l , ho= -1, and /i=0).

Remark 3.5. - Nowhere in this section did we use the fact that g was a Riemannian
metric. Thus, Theorem 3.4 is true for nonsingular metrics of any signature, for instance,
Lorentz metrics.

4. Regularity of metrics with smooth Ricci tensors

Our first task is to find the formula for Ricc(^) in harmonic coordinates.

LEMMA 4.1 (Lanczos). - Let Yk=gijYk^. Then:

«., ^ -̂4,.̂ 4(̂ ,,̂ ),...
where the dots indicate lower-order terms involving at most one derivative of the metric. In
particular, in harmonic coordinates:

(4.3) Rfcc(,,),,-^.^+...

Proof. — From the standard formula for Ricc(gr) in terms of the Christoffel symbols one
has:

(4.4) Ricc(,),=-l^^+l,4^+^-a^^+...j 2 o^Sx8 2 [^cx^x3 ox^x1 9xl8xJ J

Also, by a direct calculation:

^^^=,a^:+^^+
" 8x!!9xj y r i 8x-i 2y Qx'Qx3

4° SERIE - TOME 14 - 1981 - N° 3
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Substitution of this into (4.4) yields (4.2). The formula (4.3) is then an immediate
consequence of Lemma 1.1.

Q.E.D.
The next theorem considers the question: "If Rice (g) is smooth, then is g smooth? " This

problem is more subtle than those considered up to now in this paper. Following the
statement of the theorem we make some remarks containing examples which help clarify the
picture. Normal coordinates are briefly discussed after the proof of the theorem.

THEOREM 4.5. — Let geC2 be a Riemannian metric with Ricci tensor ^ in some
neighborhood of a point p :

(a) if ^(p) is invertible and if in some local coordinate chart ^eC^'" (or C") in a
neighborhood ofp, then in these coordinates geC^^ (or C");

(b) if in harmonic coordinates ^eC^'", k^O (or C") near p , then in these coordinates
geC^^^orC^

(c) if in some coordinates g(=Ck'a(k^2) and ^eC^il^k), then geCk+2f a in harmonic
coordinates;

(d) if, in addition to the hypotheses in part (c),^ is invertible, then g e C ^ 2 ' a in harmonic
coordinates.

Remark 4.6.- The assumption in part (a) that ̂  (p) is invertible is clearly needed, as the
following example shows: let g be the standard flat metric near p and let (p be a
diffeomorphism (keeping p fixed) of class C3. ThenRice ((p^^EsOeC" near p , but the
metric (p* (g) is only twice differentiable. By taking products like ̂ "^T^^xJ^""2 (here T2

is the flat torus) with (p the identity on c/T, one obtains more complicated examples. Note
that this example also shows that the metric of a smooth Ricci tensor need not be smooth in
arbitrary coordinates.

Remark 4.7. — In part (a) one is tempted to try to prove that, in fact, g e C k + 2 ' a . This
must fail. To see this, let g be an Einstein metric, say the canonical metric on S", and let
(p : S" -^ S" be a C^15 a diffeomorphism. Then g^^(g)eCk^, so Ricc^feOeC^
because Ricc((p*(^))=c (p*(^) for some constant c^O. This gives an example where in
some local coordinates Ricc^^eC^'" with ^eC^'", but such that the regularity of g^
cannot be improved in these coordinates.

Remark 4.8. — If Riem (g) is the full (sectional) curvature tensor, then its smoothness is
reflected in that of Ricc(g). Thus, Theorem 4.5 also shows how regularity of Riem(^)
implies regularity of the metric. Note, too, that the obvious modification of Remarks 4.6
and 4.7 apply to Riem(^). Thus, in some local coordinates one can have Riem(^)
smooth — say identically zero — but g is not smooth. For the analog of Remark 4.7 one uses
constant sectional curvature metrics instead of Einstein metrics.

Proof of Theorem 4.5. — (a) Since g is a solution of Rice (g) = ̂ , then the Bianchi identity
must hold:

0=Bianto,^)=^1,^-,^^..

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Consequently (as was first observed in [Dl] and [D2]), since St (p) is invertible then g and ^
must also satisfy:
(4.9) Ricc(^)+div*[JT1 Bian(^, ̂ )]-^=0.

Here, we define div*(r)=(F,.;+r, , , .)/2 fora covector field v. Of course, for a metric c)
with Ricc(^)=^, equation (4.9) is obvious because Bian(^, ̂ ) is identically zero. If one
writes (4.9) in local coordinates, then one finds that it is of the form:

(4.9)' _ 1 ^ ^ Q i j _^. ^ . Q
I9 Sx^x5 {g9 'v9

where H is a real analytic function of its variables and involves at most first order partial
derivatives of g and second order partial derivatives of^. The virtue of this more
complicated (4.9) becomes evident when written out as (4.9)', namely, it is an elliptic
differential operator and is uncoupled in the second order derivatives o f i y . To be even
more specific, from (4.9)' one observes that the principal part of the linearization of (4.9)
(varying g , keeping ̂  fixed) is simply half the Laplacian. The conclusion now follows by
elliptic regularity.

(b) By Lemma 4.1, Equation (4.3), we see that Rice (g) is elliptic in harmonic coordinates,
and the result follows.

(c) By Corollary 1.4, applied where ^ there is the Ricci tensor, we find that ̂  e C^'a in
harmonic coordinates. One now uses part (fc) to complete the proof.

(d) Since Rice (g) is invertible, then by part (a), g e C 1 ' a in the original coordinates. By
part (c), we get that geC^2'^ in harmonic coordinates.

Q.E.D.
Remark 4.10.- The analog of Theorem 4.5 (b) for geodesic normal coordinates is false, as

one can see from the following example. The coordinates (r, 9) for the metric:

(4.11) g=dr2+(l-^r2x¥(r,Q))r2dQ2,

on [R2 are geodesic polar coordinates. In geodesic normal coordinates x=rcos9 and
y=r sin 9, this metric becomes:

(4.1iy g=(l+y2^f}dx2-2xyYVdxdy+(l-}-x2xy)dy2.

If we set O2 =(1 +r2 ^F) r2, then it is classical that the Gauss curvature Jf(r, 9) of the
metric g satisfies Jacobi's equation:

(4.12) O'+Jf^O,

where the primes denote differentiations with respect to r. In particular, if:

(4.13) vp=|^+o(^),

near the origin, then:

(4.14) jr^-1^^?^)^!^^).
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If ̂  = k + a with k a.n integer and 0 < a < 1, then the function ^ in (4.13) is clearly of class
C^'" near the origin, but is not smoother than C^". From (4.11)', we see that the
coefficients of the metric g are thus of at least class C^a, and the coefficient of dy2 is of class
exactly C^'a. Since the function Jf in (4.14) is also of class C^'a, we have Rice (g) = 2 Jf g is
in class C^a as well. Thus, we have an example of a metric for which both g and Ricc(^)
have the same degree of differentiability in geodesic normal coordinates.

It would be interesting to further clarify the relation between regularity of Ricc(^) and of
the metric g in normal coordinates. In view of Theorem 4.5 (a), the unresolved situation is
when Ricc(^) is not invertible. For example, if Ricc(^)eC00 in normal coordinates, is
g e C°°? (In two dimensions the answer is "yes" by (4.11) and (4.12) along with the proof
of Lemma 4.4 in [KW].) If Rice (g) e C" is g e 0° ?

Note that these latter questions are not addressed by Theorems 2.1 and 4.5, since we do
not know that Ricc(g)eC(x) in some coordinates implies that geC^ in harmonic
coordinates. Our guess is that this is not necessarily the case, although (again) by 4.5 (a),
one need only consider the case where Rice (g) is not invertible at the point in question. One
should first resolve the case where dim ̂ =2.

As is clear from Remarks 4.6 and 4.7, in any discussion of regularity one must control the
group ofdiffeomorphisms, which acts as a "gauge group". In 4.5 (b) this was evident since
we explicitly restricted our attention to harmonic coordinates. In 4.5 (a), control was
obtained by using the Bianchi identity to obtain (4.9). The relation between the Bianchi
identity and the group of diffeomorphisms was made more specific in [K]. In fact, both the
present paper and the results in [Dl] and [D2] were the main motivation to seek the proof of
the Bianchi identites contained in [K]. Note also that invertibility of Rice (g) is a key issue in
[Dl] and [D2] where local existence and non-existence of metrics with prescribed Ricci
curvature is discussed.

Since the equation Ricc(^)=^ is elliptic in harmonic coordinates, one might try to use
them to solve for the metric g given a Ricci candidate ^. Now, one can always solve
Ricch(g)=^ locally, where Ricc^ is the expression (not tensorial) for the Ricci tensor in
harmonic coordinates, as indicated by equation (4.3). The catch is that the given
coordinates may not be harmonic for the metric obtained. Instead one must solve the
overdetermined elliptic system:

Ricc^)=^, rte)=0, F^-O, . . . , F^^O.

Presumably this can be treated as in [D2], but because of the counterexample in [Dl] to
local existence if ̂  is not invertible, somewhere one will have to invoke the invertibility of ^.

5. Einstein metrics

Throughout this section we assume dim ̂ ^3. Then a (Riemannian) Einstein metric
satisfies:

(5.1) Ricc(^)=c.^,

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE



258 D. M. DETURCK AND J. L. KAZDAN

for some constant c. Let (p be a diffeomorphism of Ji. Vg is Einstein, then so is (p* (g); so
that by varying the differentiability of (p one sees that in various coordinates, Einstein metrics
can have various degrees of smoothness. By using "natural" coordinates, one can do very
well indeed.

THEOREM 5.2. — Let {M,g) be a connected Einstein manifold of class C2 with
dim ̂ ^3. Then g is real analytic in harmonic and geodesic normal coordinates.

Proof. — By Lemma 4.1, Equation (5.1) is quasi-linear elliptic in harmonic
coordinates. Since (5.1) is an analytic function of all its dependent and independent
variables, then all of its solutions are real analytic in harmonic coordinates ([Mo],
Thm. 6.7.6). Analyticity in geodesic normal coordinates now follows from Theorem 2^1.

Q.E.D.
An immediate corollary concerns local isometric embedding.

COROLLARY 5.3. - An Einstein manifold (^, g} of class C2 with dim jy=n^3 is locally
isometrically embeddable in Rn{n+l)f2.

proof. - By Theorem 5.2, we may pick local coordinates in which g is real analytic. The
assertion now follows from the Cartan-Janet theorem ([J], [C], also [S], p. 230), which states
that any real analytic metric can be locally isometrically embedded in IR"^1^2 .

Q.E.D.
It would be interesting to determine the optimal dimension for local isometric embeddings

of Einstein manifolds.
Our final theorem of this section concerns the unique continuation of Einstein metrics.

THEOREM 5.4.- Let M be a simply connected manifold and letg^ and g^ be Einstein metrics
on J / . Ifg^= g^ (as tensor fields) on some open set, then up to a diffeomorphism, g^ == g^ on all
of M. In other words there is a diffeomorphism f : M -> J( such that g^ =/*(^2)-

This is a consequence of a result ofMyers ([My], Thm. 3; see also [KN], Cor. 6.4, p. 256),
which applies to analytic metrics.

6. Kahler manifolds and their Ricci curvature

It is straightforward to apply the results of the previous sections to a Kahler manifold with
metric g^. Since in this case the Laplacian is:

^-y^-
one immediately observes that the coordinate functions in a local chart (z1, . . . , z", z1, . . . , z")
are always harmonic. In other words, the corresponding real coordinates x", y " given by
za=xa-{-iya sire harmonic. Therefore we can apply Theorems 4.5 and 5.2 above to
conclude the following:

46 SERIE - TOME 14 - 1981 - N° 3
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THEOREM 6 . 1 . — Let g be a Kdhler metric of class C2 with Ricci tensor Ricc(^);
(a) if Rice (g) is in C^ a, then g is in C^2' a;
(b} ifRicc(g) is analytic in (z1, . . .,z",z1, . . .,z"), then so is cf:
( c ) A C2 KahJer-Einstem metric is analytic in the coordinate rariahles

( ^ 1 ,, n ~\ ~n\
\^ -> ' • • ? 7 ? 7 ? • • • ? 2 J-

Note that if the Kahler metric is analytic in (z1, . . . ,2" )—so it does not involve
z"1 , . . . ,?—then by the usual formulas it is Hat. Analyticity of a metric in the variables
(z1, . . . ,z",?,...,?) is equivalent to the real and imaginary parts of g^ being real analytic
m(x \ . . . , x n , y l , . . ^ y n ) .

One can give a direct proof of Theorem 6.1, without resorting to harmonic
coordinates. The ingredients are:

1. Locally:

a2/
gap 8z"8?'

for some real-valued function/. This is an overdetermined elliptic system for/.
2. Therefore:

g2 log det g
Ricc(g)=- ^^ ,

can be written as a fourth-order nonlinear equation for the function /. Since this equation is
also overdetermined elliptic, one can use the regularity results for elliptic equations to prove
Theorem 6.1.
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