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THE COMPACTIFIED JACOBIAN

BY C. J. REGO

Let X be a reduced and irreducible curve over an algebraically closed field k. For X
singular the generalized Jacobian variety of X i.e. the group variety parametrising line
bundles of degree zero, on X, is an extension of an Abelian variety by a commutative affme
group. In particular it is not complete. In [11] Mumford and Mayer proposed a natural
compactification of the Jacobian consisting of torsion free Ox modules of rank 1 with Euler
characteristic equal to 5c(0x). The construction of this compact scheme was settled in
D'Souza's thesis where more was proved. The main results of [6] are:

(i) For any integer d let P ^ be defined as follows. Fix a regular point "/' e X so for any
^-scheme S we get a section defined by Og (S)=(^) x S.

P^(S)= {isomorphism classes of coherent Oxxs modules Fg,
flat over S, inducing on the geometric fibres of

/s '' X x S -> S, torsion free sheaves F^ of rank 1

and /(F^ )=ri, plus isomorphisms <7s*Fs w Og}.

Then P^ is a representable functor.
(ii) The morphism of functors

0,: Hilb-^P,

[obtained by considering an ideal sheaf Is c= Ox^s ̂ t on S as an element ofP^(S)] is smooth
at points FeP^), where F is an Ox module of Gorenstein dimension zero, whenever
-d ^> 0. In particular 0^ is smooth when X is Gorenstein (and -d ^> 0). (Recall that a
module M over a local ring A has Gorenstein dimension zero if:

(i) M is reflexive;
(ii) Ext^M.^Ext^M^A)^.
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212 C. J. REGO

We say F is of Gorenstein dimension zero if each stalk satisfies the above conditions.)

(iii) If at each point x e X the 8 invariant at x i. e. length [normalization (Ox x)/0x xl l s ^ess

than or equal to one then P^ is reduced and irreducible. If the singularities of X have
multiplicity at most two then P ^ is irreducible.

See [2] for related material.
It is observed in [6] that (ii) implies the method of Chow-Matsusaka-Grothendieck for the

construction of the Picard scheme extends to represent P^ in the Gorenstein case. In
general (ii) is false and the equidimensionality ofOj, — d ^> 0, implies that X is Gorenstein, as
is verified in [12].

The main results of this article are:

THEOREM A. — If the singularities of X have embedding dimension two then P is
irreducible. IfX has a singularity of embedding dimension ^ 3 then P is reducible.

THEOREM B. — TheboundaryP — Pic°{X) of P, when X has planar singularities, is a union of
m irreducible, codimension one subsets ofP where

m= V {multiplicity Ox Q — 1).
..... Qex

The first statement of Theorem A is deduced in [1] from larrobino's calculation of the
dimension of the Punctual Hilbert scheme of k [X, Y] {see [10]). We give a short self
contained proof by induction on the multiplicity of a singular point of X. The induction
works because the "polar is an adjoint curve of lower multiplicity than the given
curve". We find it convenient to work with the scheme E of paragraph 2 rather
than P. Since larrobino's estimate appears as a Corollary of our method the treatment
may be viewed as an application of curves to punctual Hilbert schemes of smooth
surfaces. The proof of Theorem B utilizes Brian^on's recent result [4] that the Punctual
Hilbert scheme of k [X, Y] is irreducible. It seems likely that Brian^on's Theorem may be
provable using the method of Theorem A.

The scheme E of paragraph 2 is useful also in describing the boundary of P when X has
singularities of module type in the sense of [14].

An amusing aspect of the techniques used here is the amount of mileage one can get from
the use of the fact that a** = a when a is an ideal in a one dimensional Gorenstein ring.

1. Preliminaries and Notation

We write P for P ̂

^=^(0x)=rank H°(X, Ox)-rank H1 {X, Ox)

4' . S I K H I O M I 1^ 19<SO - \" 2
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The functor P is identified with the scheme representing it. As P can be constructed for a
family Xg -^ S we sometimes write P (X) or P (Xg | S). Note that the algebraic group Pic° (X)
is contained as_an open subset in P but Pic°(X)^P in general. The morphism
Pic°(X)^ Pic°(X) obtained by pulling back line bundles to the normalization X is
surjective with kernel G. One can think of G as Ox submodules L of K = the function field
of X, with Ly=0x y , for smooth points y and L^ = = u , . Ox ^ , for x, singular points and
where u^ is a unit in the normalization of 0\x- Hence dimension
G=5=rank H°(X, Ox/Ox). Note that Pic°(X) and hence G acts on P by ten-
soring. Suppose FeP(/c) and LeG(^c), L^ =i^. O^ then i fF(x)L=F ' , F^F' if and
only if u,-e End (F^) for some i. Hence the dimension of the G orbit through F is equal to
rank H°(Ox/End(F)). Remembering that if two fractional ideals over a domain are
isomorphic then one is a multiple of the other by an element of the quotient field, we see
immediately that the two torsion free Ox modules which are locally isomorphic "differ" by a
line bundle.

DEFINITION 1 .0 .— We say F e P (fc) is a boundary point if F is not locally free and there is a
coherent module ̂  on X x Spec k [t ] flat over Spec k [t ] with ̂ / t . ̂  w F and ̂  ® k ((r)) on
X x Spec k((t)) a locally free rank one Oxxspec/c((t)) module.

Remark 1.1. - For an arbitrary flat deformation of F as above we have ^ to be of
maximal depth, hence principal, at all smooth points o fXx Spec k \t ]. Hence the property
of being a boundary point is local around the singular points { Xi} — and depends only on the
0^ modules F^. If the modules F^, for every f, can be deformed (flatly) on 0^ (x) ^ k [ t }
to a (generically) locally principal module then F is a boundary point. To see this assume for
simplicity that X has one singular point (xo) and write S=Spec k [ t ] . The deformation of
F^ defines a torsion free module ^y on v x s. for an affme ̂ ^ neighbourhood V of Xo,
with the property ^y \(^ xs)-(xo) x (closed point of S), is locally free. Extend ^y as a
coherent sheaf to X x S and double dualize to get ^ ' . Now ^/, being reflexive and rank
one, ^ ' is flat over S. Put ^ ' I t . ̂ ' = F' and note that F;^ w F^, so F;^ =/. F^, where/is a
rational function on X. Tensoring by a suitable line bundle L we get L (x) F' w F. Then
L (x) fe k [t] ® y = ̂  has F for special fibre and exhibits F as a boundary point. The case of
several singular points is left to the reader. We will usually speak of boundary points as
being modules over the local ring Ox,^.

The simplest non-trivial example of a boundary point is the maximal ideal. Write
0 = Ox,^ and look at the diagonal ideal I c 0 (x) ^ 0 and consider one 0 as parameter. The
generic fibre of I is supported at smooth points, hence is locally principal, and the special fibre
is just the maximal ideal. Since boundary points form a closed subset of P the limit of
boundary points is a boundary point.

In the study of boundary points it suffices for most purposes to work with the points in the
closure of G in P. This is because of the:

PROPOSITION 1.2. — J/F e P is a limit of line bundles then there is a line bundle L such that
F 0 L is a limit of line bundles belonging to G i.e.: F (x) LeG.

ANNALES SCIENTIFIQUFS DE L'ECOLE NORMALE SUPERIEURE



214 C. J. REGO

Proof. — Suppose ^F is an O^xspec/citi module expressing F an a boundary point so
^ I t . ^F w F and defines a morphism h : Spec k [t ] -> P with generic point of h (Spec k [t ]) in
Pic°(X). By composition with the morphism Pic°(X) -> Pic°(X) we have a morphism
p ' : Spec H(r))->Pic°(X) and since Pic°(X) is complete p ' can be extended to
p : Spec k [ t ] -^ Pic° (X). By smoothness of Pic° (X) -> Pic° (X) we can lift p(Spec k [t])
to a curve T in Pic°(X) and we have a morphism po : Spec k [t],-> Pic°(X) with image T.
Write ^ ~1 for the line bundle on X x Spec k [ t ] defined by po- Ky construction Jzf ® ̂
is a family of Ox modules with the generic member a point in G(k((t))) and with
limit equal to L (x) F, L w ^f/t .J^f. This proves the proposition.

Remark 1.3. — One may try to prove P irreducible as follows. Let I c O x ^ ,
length (O^ /I)=^. If I can be deformed to an ideal with non-trivial support at smooth
points of X so that its colength at XQ is less than n, then by induction on n, I is a limit of
boundary points hence is a boundary point. In general this argument fails because the
Punctual Hilbert scheme HS(X) of ideals in Ox supported at XQ and of colength n, is a
component of Hilb"(X). Let X be (locally at Xo) embedded in a smooth surface
S. larrobino has shown that the dimension of HS (S) is equal to (n -1) so HS (X) c^ H^ (S)
has dimension less than or equal to (n— 1). To prove the irreducibility of P in this case it
thus suffices to show that the components of Hilb" (X) have dimension greater than or equal
to n. This can be checked as follows. Suppose/e0s defines X at XQ and/el with
length (Os /1) = n. By [8] Hilb" (S) is smooth with a dense open subset defined by n distinct
points on S. Let ^c:0s®fe [t] define a deformation of Og/I into "n distinct points"
and/e ̂  map to/in ^ /1. ̂  = I. Then, locally,/defines a family of curves over Spec k [t ]
and gives a section of

Hilb"(0s ®k [t}/(f)\k [^])-. Spec k [ t ] .

Look at the generic fibre of the relative Hilbert scheme; it has an n-dimensional component
defined by the collection of "n-distinct points on the generic curve". By construction the
point of Hilb"(X) defined by Ox/I is in the limit of these n dimensional components of
"nearby fibres". Since I was arbitrary Hilb" (X) is of dimension greater than or equal to n at
every point. In [1] this fact was verified as follows. The Poincare sheaf M = Oy ® Os 1^ is
a rank n vector bundle on H = Hilb" (S). Then the section of M given by 1 00 / e Oy (x) Og
vanishes exactly on Hilb" (X) c Hilb" (S). By [8] dim H = 2 n so dim Hilb" (X) ^ n at every
point. In paragraph 3 we will prove that any extra component of P, when X has planar
singularities, has smaller dimension that Pic° (X). By D'Souza's Theorem this would yield
a component of Hilb^X), d t> 0, of dimension less than d which is impossible. As a
Corollary we derive larrobino's estimate for dimension HS(S).

One final remark: if a Gorenstein curve has irreducible P it has irreducible Hilb" for
every n. To see this take I c Ox^ , where I is the stalk at XQ of ^, a sheaf of ideals
on X, with H°(X, Ox/JQ of dimension d, d ^> 0. By D'Souza's Theorem P irredu-
cible => Hilb^X) irreducible. So ^ can be deformed to a product of maximal
ideals. Restricting this deformation to a neighbourhood ofxo shows that I is in the closure
of the open subset of Hilb defined by n distinct points of X. Hence Hilb" (X) is irreducible.

4eSERIE - TOME 13 - 1980 - ?2
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2. The Functor E

Let ^ be the sheaf of conductors on X and write U = X — [ x i ] for the open subset of
smooth points of X. Denote by ̂  i a subsheaf of ̂  with ̂  i an Ox module. Let A be the
semi local ring of functions regular at the { x ; } and C, C i the ideals in A corresponding to ̂
and ^i. For d ^ rank H°(X, Ox /^i)= length (A/Ci), A the normalization of A, we
define the functor E(rf, ^i) by

E(^,^)(S)={Fs|FseP,(S),

^=X(Ox)-ri, ̂ i ®fc0s c Fs c Ox ®fc0s

and Ox ® Og /F§ is a locally free 0§ module of rank d ] .

Since ̂  i ® Og = Ox ® Os on U x S the functor E (d, ̂  i) may be identified with the functor
E ( d , C i ) :

E( r i ,CO(S)={ls |Ci®,OscIscA®, ,Os ,

Is an A ®k0s module and A OO^Og/Is a locally free
Og module of rank d } .

PROPOSITION 2.1. — E(^, ^i) LS representable by a projective scheme.
Proof. — It is more convenient to check that E(^, Ci) is representable. Look at the

Grassmanian of vector subspaces of A/C i of codimension d. For a subspace V to be an A
module it suffices (and is necessary) that V be closed under the action of the group
of units of A/C. In fact an S valued point of the Grassmanian is a locally free Og module I §
where I§ comes from I§, Ci ® 0§ dg ^A (x) 0^. For Ig to be an A 0^0^ module, !<,
must be invariant by multiplication by sections of A (x) Og and as Ig is an Og module it is
enough that Ig is closed under multiplication by units of A. Since

Ci . IscCi . (A®Os)c:Ci®Os,

the finite dimensional algebraic group (A/Ci)* acts on Grass (A/Ci, d) and Ig defines a
point ofE(Ci, d) iff it is a fixed point for the action of (A/C i) *. We may therefore apply the
results of Fogarty [7] to conclude that E is representable by a closed subscheme of
Grass (A/C ̂  d).

Remark 2.2. — There is an obvious morphism

e=e(C^d): E(Ci,d)^P, , ^=x(0x)-d,

which is proper as E is projective. Note that E (d, C i) is defined by A/C i so we get the same
scheme for two curves with analytically isomorphic singularities. In particular, E is not
sensitive to the birational character of the curve.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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THEOREM 2.3. — (a) Given ^f^^i^^ there is an injective, proper morphism

q^.^^d): E(^i,d)-^E(^^).
(b) The morphism ^(^i, 5) : E(^\, 5) -> P has image containing

G = ker (Pic ° (X) -^ Pic ° (X))

and is contained in the set of¥ with F U w Oy . In particular, putting ̂  i = ̂ , every boundary
point defines an element o/E(^, 8). For ̂ \ "sufficiently small" every isomorphism class of
fractional ideals modulo multiplication by a line bundle is represented in E(^i, 8).

(c) The morphism e (^ i, d) is finite V d and is injective if0^ /^ is local. In general e (^ i, 8)
restricted to e~l(G)is injective.

(d) X is Gorenstein <=> every isomorphism class of fractional ideals modulo multiplication by a
line bundle is represented in E(^, 8). In particular ifX is not Gorenstein then P is reducible.

Proof. — The proof of (a) is immediate. To verify (b) let F e E (^ i, 8) so there is an exact
sequence O ^ F - ^ O x - O x / F ^ O ,
with^(Ox/F)=rankH°(Ox/F)=8. Hence ^(F)=^ (Ox)-8=^ (Ox) so image of ^ is in
P^(OX) =^ • ^e^ L be a line bundle with L®o ^x trivial on X i.e. : L is defined by
u e A. Then L can be embedded in Ox so that L | U = Ox I U and L^ = u. Ox ^ . Hence
H°(OX/L) has rank 8 and as u.O^ ^ =)M.^ ^ ==^i ^. we find L defines an element of
E(^i, 8). This shows that Gc^(E(^i, 8)). It remains to prove the last assertion of
(b). Let I be an ideal in A. Since A is a P.I.D., I.A = ( y ) . A and it is easy to verify that y can
be chosen in I. Then we have 1 e y ~1.1 so

Ac=}^~1 . l c z y ~ 1 .};.A==A.

Let Z i , Z 2 ? . . . , ^ r generate the maximal ideals of A. Any x in the quotient field of A can be
written x = u. Y[ z^, u a unit in A and 51 e Z. Put v i (x) = 5;. If x. I c A one checks easily that

_ _ r

length (A / x . I) = length (A/I)+ ^ y,(x).

Choose C i = = z ^ . C . Given an A module isomorphic to say an ideal I we can get
an isomorphic copy y ~ 1 . ! between A and A, as above. Then z { . y ~ 1 . ! with
p= length^"1.1/A) contains z?.C and is contained in A with length (A/zf.^"1.!)^.
Further as p ̂  8 we have z?. C =) C i. So with the above choice of C i every fractional ideal is
represented in E(Ci, 8). It is now easy to globalize this fact; given an arbitrary Ox module
torsion free of rank one we may assume after tensoring with a line bundle that it contains Ox
and is contained in Ox. Now the above argument can be applied. This proves (b).

To verify (c) suppose Ji, J^ , are A modules contained in A representing two points of
E(Ci ,d )=E(^ i ,d ) . I fJ^J^ then there is an x in the quotient field with J i = x. J 2. If
v i (x) is too large or too small for some i then x.J 2 ~h Ci orx .J^ <^ A so V f , y , ( x ) is bounded
above and below. Hence modulo multiplication by elements of A there are finitely many x

satisfying x.J^Ji. But for a unit ueA with u . J i ^ J i we have Ji and u. J i mapping to

46 SERIE - TOME 13 - 1980 - ?2



THE COMPACTIFIED JACOBIAN 217

different points in P ̂  q = 7 (Ox) - d. On the other hand if A has only one maximal ideal the
above considerations show that J i ^ J^ imply J 1=1^2, ^eA*, so e ( C ^ d ) is

injective. Finally if e(C^ 8) ( J i )eG i.e.: J i ^A then x.Ji c= A implies X . A C A so that x is
inAand^.(x)^0, V L Butaslength(A/Ji)=length(A/x.Ji)wehave2:i ; , (x)=Osoxisa
unit. This proves (c).

From the preceeding it follows that to prove (d) we must verify that A is Gorenstein o
every A submodule of the quotient field is represented by an element ofE(C, 8). So suppose
AisGorensteinandletCcJcAwith^eAandJ.A^.A^^.fJ.zf- . We claim Vs^
length (A/J). To see this look at the picture

^.A q^ A
U U, 5=^5,,

which shows that Y • A c= J c= A

length (A/J) ̂ length (^.A/^.A)+length (A/^.A)-length (A/A)=8+s-8=5.
Hence 3( / i , l^ . . . , 4), ^s,,V^ and J^n^'.J^ with E^=length (A/J). But as
length (A/Ji)=8 and Cc^z^ .CcJ^, J^ defines an element ofE(C, 5). We must now
show that every isomorphism class is represented by an ideal between C an A. But ifJ is an
arbitrary fractional ideal then by Gorenstein duality we can write J = N -1 and embed N in A
so AcNcA. Then J%;N~ 1 is isomorphic to an ideal of A containing C.

To complete the proof of (d) we will verify that for A not Gorenstein there is a module J
with Ac: J and length (J/A)== 1; but no multiple ofJ defines an element ofE(C, 8). We may
assume that A is local. Let AcJcA with length (J/A)= 1 and suppose there is a y with
^.JcA, length (A/^.J)=8. Since length (A/J)=8-1, y=u.Zi for some i and u a unit
in A. If C = Y\ z ^ . A then z;~ l. C => C so if C c: z,. A we get z,~1. C c: A which contradicts
the definition of C as the largest A ideal in A. Hence C^z^ .A and C+Z; .A=)Z; .A
which gives

M.Z;.A+K.C=M.Z(.A+C=>K.Z;.AC=};.J.

Length considerations give J = A + z,~1. C. So any point ofE(C, 8) defined by a J with J =) A
and length (J/A) = 1 must be of the above type for some i. But if A is non Gorenstein length
(End (m)/A) > 1, m the maximal ideal of A. Further every one dimensional subspace of
End (m)/A defines an A module of the required type and since k is infinite (algebraically
closed) there are infinitely many such. Hence for A non-Gorenstein there is a fractional
ideal not represented in E(C, 8) and we are through.

Remark 2.5. - If J defines an element of E(Ci, d), d>b we have length (A/J)>8 so J
cannot contain a unit of A. Hence J.A=]~[z^.A, r^O, some ^>0. I f s a y r i > 0 then
Cicz^.Ciczi^JcA which defines an element o fE (C i , d-1). If A is local there is
only one z, and we get a map E(Ci , d) -^ E (C i , d- 1). It is easily checked (using the fact
that every A module in A is represented by one between A and A) that the E(C, rf),
d< 8 "cover" (E(Ci , 8)-G) for Ci sufficiently small. Here a map is defined by
multiplying J by an element of A of suitable valuation.

ANNALES SCIENTIFIQUES DE L'ECOLE NORMALE SUPERIEURE
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Given a divisor ̂  Hp. P on a smooth curve X with rip ̂  0 there corresponds a curve X with
one singular point and with X its normalization [14]. Given an affine open neighbourhood of
the P with yip>0 having coordinate ring R then X is defined by the subring of R equal
to fc+m^, nip the maximal ideal of Ox, p . These singularities are characterized
by property that the maximal ideal is the conductor. For these singularities
we have E(C, 8)%P5 and as G is of dimension 5 we have E(C, 5)=G. Hence in this
case E yields exactly the boundary points of P. We leave it to the reader to verify that
there are only finitely many G orbits in this case. For example if X is defined
by Specfe[x", x"^, . . . , x2"] the points in E(C, 8), &=n-_l are defined by
J^=(x", . . ., xm,xm+2, . . .,x2"). There are therefore 5 G orbits in G - G and these are of
decreasing dimension.

PROPOSITION 2 . 6 . — For X rational with one unibranched singularity P 15 simply connected.

Proof. - By the above P is bijective with E(Ci, 8) for Ci sufficiently small. Now E is
defined as a fixed point subset of a Grassmanian under the action of the group of units of
A/C i, A the singular local ring. As k * c units (A/C i) acts trivially we have an action of an
additive group on Grass. By [7] :

7Ci(E(Ci,8))^7ii(Grass)=(60,

which proves the proposition.
For an arbitrary family of curves (p : Xg -> S=Spec k [ t ] it is not clear how to define a

relative E functor. Suppose however that the normalization X§ is smooth and the induced
mapping (p : X§ -> S has smooth fibres. Also assume that if C is the conductor of Xg then
Ox /C is S flat and C / t . C is the conductor of (p -1 (0). Then the relative E functor can be
defined in an obvious way and is .representable. This is because it can be interpreted as a
fixed point set in Grass (0^ /C, d) of the group of units of Ox /C. Note that as Oxg /t is S
flat Fogarty's results [8] apply.

PROPOSITION 2.7. — Dimension P ̂  genus (X)+(8/2+l)2.

Proof. - Dimension P= dimension (Pic °(X))+dimension E(Ci, 8), Ci sufficiently
small, so we have to estimate the dimension of E. The constructions of [13] show that given
any curve singularity X there is a family

(p : Xs -^S=Spec k [ t ]
with

Xs®H(r) )%X®fcfe( (0) and Xo=Xs®^]fe

a singularity associated to a divisor ̂  Up as described above. Further, the family (p satisfies
the conditions given above which enable us to construct a relative E scheme over S which
yields the E schemes of the fibres. By upper semi-continuity it suffices to obtain the estimate

dimE^+l)2^,

4eSERIE - TOME 13 - 1980 - ?2



THE COMPACTIFIED JACOBIAN 219

for a singularity associated to a divisor ̂  Up . P. But as the maximal ideal is the conductor,
alltheE(C, d)'s are Grassmanians and they cover E(Ci, 5). As dim E(C, d)=d(S-\-l-d),
We get the required estimate.

3. Main Theorems

THEOREM A. - P is irreducible <?> the embedding dimension ofX at every point is less than
or equal to two.

Proof. — Let X have planar singularities. By paragraph 1 the property of an 0^ module
^ being a boundary point is local around the singular points x,eX. So let there be one
singular point x o. Then it suffices by Theorem 2.3 to show that E (C, 5) is irreducible (since
X is Gorenstein). Finally, the E scheme depends only on Ox ^ /C so we can as we can as
well study the completion Ox^ wk[X, Y]/(/)=A. Put y=ord/and suppose the initial
form of/is not X". Then if the characteristic of k is zero one checks easily (or see [3]) that
^=/Y is an adjoint i.e.: g defines an element of the conductor C of A in A and
ord g=v— 1. More generally we have the:

LEMMA. - In any characteristic there is a " g " in C of order (v-1).

Proof. - Let A i be the blow up of the maximal ideal m of A and C i the conductor of A i
in A. Recall that mv ~1 is the conductor of A in A i and C = C i. mv ~1. Also by the defini-
tion of blowing up there is a Z in m satisfying Z . A i = = m . A i so that m ^ ' ^ A ^ =ZU - 1 .Ap

As C=Cl.m l ; - l , C c m1'"1 and we have to show that Ccj:m1 . Suppose not, then

(3.1.0) Ci .m^cm1

implies

(3.1.1) CicHom^-Sm")

==Hom(ZV-l.A„ZV-l.Z.A,)=Hom(Z-l.A„A,)=Z.A,.

This says that Z ^ . C i c A ^ Z a non-unit in A and contradicts the definition of C i as the
largest A ideal in A^. The Lemma is thereby proved.

Remark. — We refer to any such '^" as a polar of "/ ".

To continue with the proof assume P is irreducible for plane curves of multiplicity less
than v. By the final remark of paragraph 1 this means that the punctual Hilbert
scheme Hilb5(^[X, Y]/(^)) has dimension less than or equal to (n-1). As
HilbS(A/C) c, Hilb5(^[X, Y]/(e0) we have dim HilbS(A/C)^n-1. For d>S write E ' ( d )
for the closure of the subscheme of E(C, d) generated by Hilbf^A/C) c, E(C, d) via
translation by elements of G = A * /A *. As noted in Remark 2.5 we do not have morphisms
E(C, d)->E(C, 5) when A is not local and d>S. However working with ^(E(C, ^))wesee
easily that if Z is a closed G-stable subset of ^(E(C, d))cp^ then "tensoring by a line
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bundle" of suitable degree defines a bijection Z -> Z()C:P^Q ) ==P. In this sense we note
that as A is Gorenstein and every fractional ideal lies between C and A, we can cover
6?(E(C,5)-G) by e ( E ' ( d ) ) , §<^25. Hence P-Pic°(X) is covered by

U Pic^X).^'^)). As
d

dim Pic°(X).6?(E'(d))=dim E'(^)+dim Pic°(X)

and by paragraph 1 the dimension of every component ofP is greater or equal to dim Pic ° (X)
it suffices to prove:

(3.1.2) dimE'(ri)<8 for 5<rf^28.

Let W^(=E'(rf) be an irreducible open subset satisfying the property that the G orbits in
Wd are of the same dimension s, where automatically, s is the maximal dimension of the G
orbits in the closure of W^=W^c=E'(^). Then taking a generic quotient by G we have:

(3.1.2) dim {isomorphism classes of modules in W^} = dim W^ — s.

Let J define a point inW^soCcJcA and length (A /J) == d — 8. The intersection of the G
orbit through J with Hilb^'^A/C) is identified with [u.]\ueG, u . JcA} so we have:

(3.1.3) dim ((G. J) n Hilb'o"5 (A/C))= length (J-^End (J)).

Further for J in W^,

(3.1.4) length (End (J)/A)=length (A/A)-length (A/End (J))=8-5.

Hence we get,

(3.1.5) dim ((G.J) n Hilb^A/C))

= length (A/A)-length (A/J-1)-length (End(J)/A)
(by duality) = 5 - length (J/C) - 5 + s = d + s - 2 5.

Outside a proper closed subset of W^ every J has (G.J)n Hilbi^^A/C)^^ and hence
we get

(3.1.6) dimHilb'-^A/C)
=dim (generic moduli of isomorphism classes in W^)

+dim (G.^nHilb'o'^A/C),
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which by the above yields,

(3.1.7) (d-b)-l^dimHi\bdo~s(k[X^]/(g}) (g a polar)

^dim Hilb^A/Q^dim Wd-s+(^+s-2§).

Since W^ is an arbitrary irreducible component of E' (d) we get dim E' (d) < § and so (3.1.2)
is proved. Hence P is irreducible. For the other implication note that if A is not
Gorenstein the result is contained in Theorem 2.3; so let A be Gorenstein.

We must show that A has embedding dimension two. If not the vector space m/m2 with
m the maximal ideal of A, is of rank greater than or equal to 3. Note that every subspace of
m/m2 yields an ideal so that the projective space of codimension 1 subspaces yields a closed
subscheme of Hilb 2 (A) of dimension greater than or equal to 2. But for X Gorenstein we
have noted in the final remark of paragraph 1 that for P (X) to be irreducible every Hilb" (X)
must be irreducible. In order that Hilb 2 (X) be irreducible it must have the same dimension
as the second symmetric product of X i.e. : equal to two. Now Hilb2 (A) is a closed
subscheme of Hilb^X) not equal to the whole of it so dim Hilb2 (A) ̂ 2 implies
dim Hilb ̂ X)^ 3 which proves P(X) is reducible.

Remark 3.2. — Essential use is made of D'Souza's smoothness theorem in the last
paragraph of the above proof via the remark "for X Gorenstein, P irreducible <=> Hilb"(X) is
irreducible Vn".

COROLLARY. — Dimension Hilb 5 (fe[X, Y ] ) = n — l .

Proof. — Let /efe[X, Y] define a reduced and irreducible curve through (0, 0) with
multiplicity n at the origin and Y its projective closure. Now Hilb5(fe[X, Y]//) being a
proper closed subscheme of Hilb"(X) (which by the Theorem and paragraph 1 is of
dimension n) has dimension less than or equal to ( n — 1). But

Hilb"o(/c[X, Y])=HilbS(^[X, Y]//)

as /e(X, Y)" and every ideal of length n contains (X, Y)". It remains only to exhibit a
component of dimension (n — 1). This is given by the family of ideals

ge{X\ Y + a l X + a 2 X 2 + . . . + f l „ _ l X " - l )

Recently Brian^on [4] has proved that Hilb 5 (k [X, Y]) is irreducible so the above family is
dense open. The above discussion quickly yields.

THEOREM B. — The boundary of P for a curve with planar singularities has m irreducible
components each of codimension one in P, where

(3.3) m = ^ [multiplicity (Q) -1].
QeX

Proof. — It is easily seen and left to the reader to check that the irreducible components of
the boundary are "generated" by Pic° (X) action by the corresponding subsets o fG—G. It
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therefore suffices to work with the E scheme of A = 6 x, ̂  where x o is a typical singular point
ofX. Let

\=k [X, Y]//, i;=ord /=mult (xo),

C the conductor of A. As recalled earlier m^~1 =3 C and in fact m^~1 is the conductor of A in
its first blow up. On the one hand, the polar is an adjoint curve of multiplicity v — 1 and is
contained in C. We have

Hilb^^Hilb^A/C) for n<v-l.

On the other hand,

Hilb^A^Hilb^A/C) for n^v.

This is because if g is the polar of / then

^ e ( X ^ Y + a l X + a 2 X 2 + . . . + a „ - l X n - l )

for generic choice of a, since (g, Y+f l i X+ . . . ) will have length v— 1 for almost all a^ By
Brian^on's Theorem dim HilbS (A/C) < n — 1, n ̂  v. The calculation of Theorem A shows
that E' (d) is irreducible of dimension 5 — l f o r d ^ 5 + y - l and dimension E' (d) < 8 -1 for
d>S+v-l. Now the e(Er{d)) cover 6?(E(C, 8))-G in the sense outlined in the proof of
Theorem A. Further, since P is irreducible (i. e.: every fractional ideal is a boundary point)
we have ^(E(C, 8))=G by Theorem 2.3. As G is affme G-G is a union of codimension
one subsets. These are defined by the E' (^) for 5 < ̂  8 + r -1. This proves the Theorem.

Remark 3.4. — It is likely that Brian^on's Theorem is provable by the methods
introduced here.
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