MOSHE FLATO
GEORGES PINCZON

JACQUES SIMON
Non linear representations of Lie groups

Annales scientifiques de | 'E.N.S. 4¢ série, tome 10, n°3 (1977), p. 405-418
<http://www.numdam.org/item?id=ASENS_1977_4 10_3_405 0>

© Gauthier-Villars (Editions scientifiques et médicales Elsevier), 1977, tous droits réservés.

L’accés aux archives de la revue « Annales scientifiques de I'E.N.S. » (http:/www.
elsevier.com/locate/ansens) implique 1’accord avec les conditions générales d’utilisation
(http://www.numdam.org/conditions). Toute utilisation commerciale ou impression systé-
matique est constitutive d’une infraction pénale. Toute copie ou impression de ce fi-
chier doit contenir la présente mention de copyright.

NuMbDAM

Article numérisé dans le cadre du programme
Numérisation de documents anciens mathématiques
http://www.numdam.org/


http://www.numdam.org/item?id=ASENS_1977_4_10_3_405_0
http://www.elsevier.com/locate/ansens
http://www.elsevier.com/locate/ansens
http://www.numdam.org/conditions
http://www.numdam.org/
http://www.numdam.org/

Ann. scient. Ec. Norm. Sup.
4¢ série, t. 10, 1977, p. 405 i 418.

NON LINEAR REPRESENTATIONS OF LIE GROUPS

By MosuE FLATO
GEORGES PINCZON AND JAcQues SIMON

AsBsTrRACT. — Non linear representations of Lie groups in Banach spaces and their connection with non
linear representations of Lie algebras are studied. Applications to their equivalence with linear represen-
tations are given.

Introduction

The aim of this article is to study the non linear actions of a Lie group in a (complex)
Banach space. It seems that such a general treatment did not appear up to now. Most
of the research connected with this subject is either geometrical, in which case the diffe-
rentiability conditions are too strong (when the space is not finite dimensional) to apply
even for linear representation, or related to the theory of partial differential equations,
in which case the Lie group is the real line.

Given a Fréchet space E, we denote by &, (E) the space of the n-linear continuous
mappings from E" into E. When E is a Banach space, if we denote by B, the open ball
of radius r, £, (E) is a Banach space with the norm || f|| = sup || f(Byx ... xBy)||.
We denote by f the polynomial associated with the n-linear mapping /. The set & (E)
of formal power series of the type Y f”, with f"e %, (E), is a complex vector space.

nz1

DEerFINITION 1. — A formal representation (S, E), of a real Lie group G, in a Fréchet
space E, is a morphism S from G to the group of the invertible elements, for the compo-
sition law in % (E), such that, if S, = ), S;(g€G)and ¢;€E (1 £ i < n), the mappings

n=1
g— S, (91, ..., ) are measurable for every n 2 1.

The fact that S is a morphism is equivalent to the set of equations

) .= Y & Y Sie.. @Sk

1<psn hi+...+ip=n

In particular S! is a strongly measurable (and therefore continuous when E is a Banach
space) linear representation of G in E; (S!, E) will be called the free part of (S, E).

In Section 1, we prove (Prop. 1) that in Definition 1 we can replace measurable by
continuous when E is a Banach space.
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406 M. FLATO, G. PINCZON AND J. SIMON

DEFINITION 2. — Ar analytic representation (S, E) of a real Lie group G in a Banach
space E, is a formal representation such that there exists a neighbourhood V of the identity
in G such that S, = ) S; is an analytic mapping in a neighbourhood U, of the origin

nx1
in E for every geV.

In Section 2, we prove (Lemma 2) that the neighbourhood of the origin in E can be
taken independent of g in V. Moreover we prove (Corol. 1) that if the neighbourhood
of the origin is taken small enough, V can contain any given bounded set in G. We then
introduce the notion of smooth representation (Def. 6) and prove for these representations
differentiability properties which will be utilized in Section 4.

Given an analytic mapping A = Y A" A"e %, (E), in a neighbourhood of the
n=1
origin in the Banach space E, A is an analytic isomorphism around the origin if and only

if A! is an automorphism of E.

DEFINITION 3. — Two analytic representations (S, E) and (S’, E') of a real Lie group G
in Banach spaces E and E' respectively are equivalent if there exists an analytic mapping
A=Y A" A! being an automorphism of E, such that the equality S, =AS, A~ of
power" iéries holds for every geG.

Such an equivalence is obviously an equivalence relation. In Section 5, we prove
(Prop. 5) that every analytic representation is equivalent to a smooth representation.

Given two elements A = ) A"and B= ) B"in # (E), we define a new element
n21 n=1
Ax*BeZ (E) by
(A«B)Y'= Y A’( Y L®B7"IQ®IL_, o,
1

1spsn 0sqsp-—

A

where o, is the symmetrization operator on the projective tensor product E é) E é ...®E
(n times) defined by

1
Gn((P1®"'®(Pn)=—‘ Z (pc(l)®"' ®(po(n)

NnloceGn

foreveryn =2 1, @4, ..., ¢, € E and &, is the group of permutations of » elements. The
composition law (A, B)— A *B from # (E)x% (E) to & (E) is bilinear.

Define [A, B], = A+ B—B » A. We shall see in Section 4 that the complex vector
space & (E) becomes a Lie algebra for this bracket.

DErFINITION 4. — A formal representation (S, E) of a real Lie algebra g in a Fréchet
space E, is a linear mapping S : ¢ — F (E) such that if x, yeg

S[x.y] = [Sx’ Sy]t

In particular (S!, E) is a linear representation of g in E; (S*, E) will be called the free
part of (S, E).

In Section 4, we prove (Prop. 7) that it is possible, under a technical assumption, to
differentiate a formal representation of a real Lie group G and to get a formal represen-
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NON LINEAR REPRESENTATIONS 407

tation of its Lie algebra. When the group representation is smooth, this Lie algebra
representation is not only formal in the sense of formal power series, but acts as functions
on a subset in the space of the differentiable vectors of the free part of the smooth repre-
sentation (Prop. 8).

In Section 5, we make the passage from the Lie algebra to the Lie group (integrability).

DEFINITION 5. — An analytic representation (S, E) of a real Lie group G in a Banach
space E is called banal if it is equivalent to a linear representation.

In Section 6, we prove that any analytic representation of a semi-simple Lie group in
a finite-dimensional space is banal, and that any analytic representation of a nilpotent Lie
group, the free part of which is a non trivial unitary irreductible representation, is banal.
The first result, which was a conjecture of Palais and Smale, was initially proved by
Guillemin and Sternberg [4], by different technics.

As one can see from the definitions, the representations we consider leave the origin
invariant. We did not look at a more general situation. Many propositions given
for analytic representations have their counter part in formal representations. We did
not give them here to avoid a too heavy formulation.

1. Formal representations

Given a Fréchet (resp. Banach) space E, we denote by ®" E the projective tensor product
of E by itself n-times; E, = @ (®'E) is a Fréchet (resp. Banach) space. We define
i=

the (algebraic) vector space E = U E,. The set L (E) of all linear endomorphisms

nx1
of E leaving E, invariant for every n = 1 and continuous on E,, is a complex algebra.

We shall keep the same notation for an element in %, (E) and its canonical identifi-
cation with an element of < (@" E, E).

We define a mapping A : & (E) — L(E) in the following way : if A = ) A"

nz1

ABA)(01®...00)= Y A'Q...QA"(6,(¢:® ... ®9,)),

1Spsn it+etip=n
for every n =1 and o4, ..., ¢, in E.
One easily sees that A (AB) = A (A) A (B) and that the mapping A is one to one.
Given a formal representation (S, E) of a real Lie group G, the mapping g S = A(S)

is a homomorphism from G into the group of the invertible elements in L (E) (S E) will
be called the linear representation associated with (S, E).

PROPOSITION 1. — Given a formal representation (S, E), of a real Lie group G in a Banach

space E, S, = Y S}, the mappings (g, @) — S, (@) are continuous from GxE" to E.
nz1
Moreover, if E is finite dimensional, the mappings g — S; from G to £, (E) are analytic.

Proof. — (S, E) is a continuous representation (resp. an analytic representation when E
is finite dimensional). Suppose that the result is true for 1 < p < n—1. Since Sy is
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408 M. FLATO, G. PINCZON AND J. SIMON

a measurable and therefore continuous (resp. analytic) representation of G, the continuity
(resp. analyticity) of S” results from the identity

S;((pls ce ey (Pn)
=Sg((P1®"’®(Pn)_ Z Z S;‘®®S;P(cn((p1®®(pn))

2spsnitt..tip=n
LemMMA 1. — Given a formal representation (S, E) of a real Lie group G in a Banach
space E, S, = Y. S, suppose that there exists an open neighbourhood V, of the identity
nz1
in G such that the function (g, ¢) — R} (@) = S;_ 155 (9) is C* from V,xE" to E, for
every n =2 1. Then, if we denote by E_ the Fréchet space of the differentiable vectors
Sfor the free part of (S, E), the function (g, ¢) — S (¢) is C* from G xE} to the Fréchet
space E . Consequently Sje £, (E,) and S, restricted to E, defines a formal represen-
tation of G on E_.

Proof. — The result holds for n =1 ([6], Prop. 1.2). Suppose it is true for
1<p=<n-1. Take ¢ =(¢y, ...,9,) in E". The function

(&g, 0)2A (@)= Y S Y Si®...0S8206,(0:®...800,)),

2<psn-1 i1+..tip=n

is C® from GxGxE? to E_ . From identity (1) we have
Ag, ¢ (9) = Sg (9) =5, 57 (@) — S;(® "S¢ ().

Multiplying on the left by S{,;,-:, we get that the mapping,

(g9
(8 g, 9) > Ry (@) —R3(9)—S)-1 R}(®" S, (9)),

is C* from GxGxE_ to E,. Choose now an open neighbourhood V,, of the identity
in G such that V,> = V,. Then the function

(8, &, 9)> B, =Sy-1R}(9)

is C* from V, x V; x E_ to E and therefore takes its values in E,,. Therefore R} € %, (E,)
and, deriving B” with respect to the variable g’, we get that g — R (¢) is C* from V,
to E_ for every 9 €E,. Consequently g — S} (@) = S} R} (¢) is C* from V, to E_.
It results then from relation (1) that g — S; (¢) is C® from G to E,. Then obviously
(& 9)—S;(p) is C* from GXE to E,.
Q.E.D.
This lemma will be utilized in Section 4.

2. Analytic representations

LEMMA 2. — Given an analytic representation (S, E) of a real Lie group G in a Banach
space E, there exist a neighbourhood V of the identity in G, a > 0 and r > 0, such that
the function ¢ — S, (¢) = Y, St (9) is analytic in the ball B, in E, and || St || S a" (n 2 1)

nz1

for every g in V.
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NON LINEAR REPRESENTATIONS 409

Proof. — Denote by U an open neighbourhood of the identity of G where ) S?
n=1
has a radius of convergence r, # 0 for every ge U.
1/r, = lim sup || 87 ||*/* is lower semi-continuous on U. Choose a symmetric neigh-
bourhood U, of the identity in G such that U,;.U; < U.

There exist a non empty open set U, in U; and A = O such that r, 2 A on U,. Then,
if 0<p<)and geU,, define A,= Y p"||S; ||< +. The mapping g A,
nz1

being lower semi-continuous on U,, there exist a non empty open set U3 < U,and K > 0
such that A, < K for every geU,. Therefore ||S| < Kpu™ for every geUs,.
By modifying K and p we have the same result in a non empty set U, in U3 . Therefore
the result holds on Us = U, u U;! which is symmetric.

It results from (1) that ||S2. || ¥ [|s2 ] X || si]|...]|S%]|. And,
1Sp=sn wotip=n
on the other hand, there exists L > 0 :uch that L"ig i Y a(iy, ..., ip)

1Spsn i+...+ip=n

where a(iy, ...,i,) = 1. Therefore if geV = U;.Us, we have ||S|| <" with
a = LK2
Q.E.D.

PROPOSITION 2. — Given an analytic representation (S, E) of a real Lie group G in a
Banach space E and a left invariant Riemannian metric d on G, there exists C > 0 such
that ||St|| £ C*@@9*D for every ge G and every n 2 1.

The existence of a left invariant Riemannian metric on G is straightforward [3]
(take a ds? at the identity and translate it).

Proof. — We saw, in Lemma 2, that there exist a neighbourhood V of the identity
in G and a > 0 such that || S} || < a" for every n 2 1 and ge V. Choose M > 0 and
® > Osuch that || S} || £ M e* @9 for every g € G ([3], § 2, Lemma 1). We can choose d
in such a way that the unit ball around the identity is contained in V. Given g € G, define m
as the smallest integer such that d(g, ¢) < m. Then ([3], § 1), there exists g’ € G such
that d(g,g) <1 and d(g',e) <m-—1.

Since
Se=Shy-i,= 2 SL( Y Sty®...0®8p-1,)0,,

1spsn 1t...+tip=n
we have
ISl < (@LyMe* ™™D+ ¥ IS,
1=psn

L being the same as in the proof of Lemma 2. Define C = sup (2a L, M ¢®).
Suppose that for d(g’, &) < m—1 (m = 2) we have || T%. || £ C*™~ 1 for every n = 1.
We then have
|S;]| £ 2"@aLyC"™ D <™

Therefore
szl s creeowo,
Q.E.D.
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410 M. FLATO, G. PINCZON AND J. SIMON

COROLLARY 1. — Given an analytic representation (S, E) of a real Lie group G, then
Sfor every bounded subset V in G, there exists r > 0 such that S, is analytic in the ball B,
for every geV.

COROLLARY 2. — Given an analytic representation (S, E) of a compact Lie group G,
there exists r > O such that S, is analytic in the ball B, for every geG.

Given r > 0, we denote by #, (E) the subset of the formal power series f= Y. f"

nz1
on the Banach space E such that ||f]|], = r* || /|| < + . #,(E) is a Banach
Z
space for the morm || ||, ([1],3.1.2). The mapping F, :5,(E)xB,—E defined

by F,(f, 9) =f(9) is obviously C=.

DEFINITION 6. — A4 smooth representation (S, E) of a real Lie group G in a Banach
space E is an analytic representation of G in E such that there exist r > O and an open
neighbourhood V of the identity in G such that, if (S', E) is the free part of (S, E), the
mapping g — R, =S}, S, is C° from V to #,(E).

PROPOSITION 3. — Given a smooth representation (S, E) of a real Lie group G in a Banach
space E, we denote by (S, E) its free part. There exist an open neighbourhood V of the
identity of G and r > 0 such that:

(1) The functions
(2, 9) = R,(9) = S;-:S,0
and
(g, )= L,(9) =S,S;-10,
are C® from VxB, to E.
(2) The function g — R} = S,k S; is C® from V into Z,(E) for every n 2 1.

Proof. — (1) There exist a symmetric neighbourhood V of the identity in G and r > 0 such
that the mapping g — R, is C® from V to#, (E). Therefore (g, ¢) = R, (¢) = F, (R, ¢)
is C® from V xB, to E.

Consider the mapping A: 5, (E)XxExB,— E defined for all Res#,(E), ¢ €E,
VYeB, by AR, 9, ¥) = R()—09. It is a C® function and we have the derivative
D(31,0,0) A = 1. Therefore, by the implicit functions theorem, there exist r’ > 0 and
a C* function u : %, x B, — E (4, is the ball of radius r’ around I in #, (E)) such that
R (R, 9)) = 9. Now we choose V small enough such that g — R,-, is C* from V
to %,. We have R -: (@ (R,-: ¢)) = 9. So, if r’ is taken small enough, the function
(8 0)—>S,S;-1¢ is C* from VxB, to E.

(2) The mapping R — R"is C* from 5, (E) into %, (E), so that g — R} is C* from V
to %, (E).
Q.E.D.
DEFINITION 7. — Given an analytic representation (S, E) of G in a Banach space E, a

differentiable vector of (S, E) is a vector ¢ € E such that g — S, (9) is C* from a neigh-
bourhood of the identity in G into E.
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PROPOSITION 4. — Given a smooth representation (S, E) of a real Lie group G in a Banach
space E, there exist a neighbourhood V of the identity in G and r > O such that, if E | is
the space of the differentiable vectors of the free part (S*, E) of (S, E):

(1) E, N B, is the set of the differentiable vectors of (S, E) contained in B,.
(2 If 9€E_ n B, the mapping g —S,(¢) is C® from V to the Fréchet space E.

Proof. — Choose a bounded symmetric neighbourhood V of the identity in Gand r’ > 0
satisfying the conclusions of proposition 3. Suppose that ||S} || < M if geV. Take
r=M"1r.

(a) Suppose that g E_ nB,. Then g—S,0 =L, S; ¢ is C® from V to E.

(b) By proposition 2, since V is bounded, there exists A > 0 such that S, (¢) € B, if
g€V and ¢ € B,. Suppose now that ¢ € B, is a differentiable vector for (S, E). The
mapping g — S; (9) = R;-1 S, () is C* on V, hence 9 € E,, n B,. Then, the mapping
g—S, S, () = S,, (¢)is C* from a neighbourhood V’ of the identity such that V'. V' < 'V
into E if ¢eB, so S,(E,nB) < E_ if geV"

The mapping (g, g’)—»Sj Sy, @ =R,-: S, ¢ is C*° from V'xV' to E if ¢ is in
E, n B,. Therefore, deriving this function k& times with respect to g, we get that
g —dS, ...dS. S, (9) is C* from V' to E for every k = 0, x4, ..., X, in the Lie
algebra of G (d S! being the expression of the differential of the representation S on the
element x in the Lie algebra). By definition of the topology of E_, this means that the
mapping g — S, (¢) is C*® from V’ to the Fréchet space E,.

Q.E.D.

3. Smoothing of analytic representations

PROPOSITION 5. — Given an analytic representation (S, E) of a real Lie group G in a
Banach space E and a compact subgroup K of G, there exists a smooth representation (S', E),
equivalent to (S, E), such that the restriction of S’ to K is linear.

Proof. — Suppose that S, = S; is defined and analytic on B, (r > 0) for every g

n=1
in an open bounded neighbourhood V of the identity containing K. Choose an open

symmetric set V' containing K such that V'.V' < V and a C* function with compact

support in V’ such that j f(g) dg = 1. If ¢ €B, define
G

D,(¢) = Lf (88") Sy Sy -1 (9) dg’

for geV'. It results from proposition 2 that || Si-.Si|| < C"@@9*D, Therefore,
for r > 0 small enough and g € V', the mapping g — D, is C* from V' to 5, (E). Given
an open neighbourhood V” of the identity containing K such that V' V" < V’, there
exists r’ > O such that S} D,, = D,.-: S,on B,, if g, g’ are in V”.  Define T, = D,S,D;*;
since T;-l T, =D, D!, (T, E) is a smooth representation of G. More precisely, there
exists r” > 0 such that g —T}-, T, is C* from V" to #,.(E).
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412 M. FLATO, G. PINCZON AND J. SIMON

Define

A((p) =J.KTk1"lTk((p)dk’ (peBr"’

and S, =AT,A”'. We have
T}- AT, (9) = L Thep-1 Tig (@) d.

Suppose that g is taken in an open neighbourhood U of the identity in G, such that
K.U = V": the mapping g— T;-1 AT, is C* from U to 5#,,(E). Therefore (S, E)
is a smooth representation of G. Obviously the restriction of S’ to K is linear and (S’, E)
is equivalent to (T, E) and therefore to (S, E).

Q.E.D.

PROPOSITION 6. — Given an analytic representation (S, E) of G in a Banach space E,
there exist r > 0 and a neighbourhood V of the identity in G such that the mapping
(g, 9) — S, (¢) is continuous from VxB, to E.

Proof. — (S, E) is equivalent to a smooth representation (S’, E), and since the latter
has the desired property, so does (S, E).

4. Passage from the Lie group to the Lie algebra

Given a Fréchet space E, we define a linear mapping d A: # (E) > L (}~3) as following:
if A= ) APfand g, ...,9,€E,

r21

(4) dA(A)((pl ® o ® (Pn) = Z ( Z Iq ® A"_p+1 ®Ip—q—1)(cn(q)1 ® e ® q)n)):

1spsn 05qsp-1
for every n = 1.

We easily see that dA ([A, B],) = [dA(A), dA (B)] and the linear mapping d A
is one to one.

Consequently the bracket [ , ], defines a Lie algebra structure on & (E).

Given a formal representation (S, E) of a real Lie algebra g in E, the mapping
x— S, =dA(S,) is a homomorphism from g into the Lie algebra of the associative
algebra L (E). (S, E) will be called the linear representation associated with (S, E).

Given a linear continuous representation (S, E) of a real Lie group G, we denote by
(dS, E,) its differential defined on the space E_ of the differentiable vectors.

PROPOSITION 7. — Let (S, E) be a formal representation of a real Lie groups G, in a
Banach space E such that, if S, = Z S;, there exists an open neighbourhood V of the
n21

identity of G, where g—R% = S1_, St is C® from V to ¥, (E).
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NON LINEAR REPRESENTATIONS 413
Define now for x e g, the Lie algebra of G,
n d n
dsx = d_(Rexptx t=0 (n é 2)
t

The mapping
x—dS,=dSi+ Y dSs;
nz2
from g into & (E ) defines a formal representation (d S, E_) of g in the Fréchet space E .
This representation of g will be called the differential of (S, E).

Proof. — The linear representation (§, l~5) of G associated with (S, E) is continuous
when restricted to E,. Then, by Lemma 1 if ¢, ..., ¢, are in E_, 0, ® ... @ @, is

a differentiable vector for (§, E,) and we have :

(5) dgx((pl ® e ® (Pn) = Z ( Z Iq ® dS;—IH-l ® Ip—q—l)(o-n(q)l ® v ® q’n)a

1spsnm 0sqsp-1
for every xeg.

Since d -éx and d S! are linear in x € g, we find by induction, using (5), that d S” is linear
in xeg for every n = 1.

Suppose now that dS2 (¢; ® ... ® ¢,)€E_ if ¢y, ..., 9, areinE and1 < p < n—1
(this is obviously true for p = 1). Since

dS; (0, ® .- ® 9,
=dsx(q>1® e ®(pn)_ Z ( Z Iq®dS:_p+l®Ip—q—l)cn((Pl® oo ®(Pu)’

25p<n 0=gsp-1
we have dS}(¢; ® ... ® 9,)eE_. Hence, since dS}e %, (E) for n = 2, we have
dS"e Z,(E.). It is well known that dS!le Z (E,). Therefore dS,e # (E_). We

have dA(dS,)=d §x and therefore
dA(dS,,,) = dg[x,,] = [dg,,, dgy] = [dA(dS,), dA(dS,)] = dA([dS,, dS,].),

Since d A is one to one we have dS, ,; = [dS,, dS,],.
Q.E.D.

DEFINITION 8. — Given a continuous linear representation (U, E) of a real Lie group G,
in a Banach space E, an analytic representation (T, E_) of the Lie algebra g of G compa-
tible with (U, E) is a formal representation of g in the Fréchet space E , of the differentiable
vectors of (U, E) such that the free part (T*, E_) is equal to (d U, E_), T € £, (E) (n = 2)
and Z T% is analytic around the origin in E for every xeg. '

nz2

PROPOSITION 8. — Given a smooth representation (S, E) of a real Lie group G in a Banach
space E, the differential (d S, E) of (S, E) is an analytic representation of the Lie algebra g
of G, compatible with the free part of (S, E). Moreover, there exists r > 0 such that d S,
is a mapping from E_, N B, to E_ for every xeg.
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414 M. FLATO, G. PINCZON AND J. SIMON

Proof. — (dS, E_) is a formal representation of the Lie algebra g of G. By Proposi-
tion 4 there exist an open neighbourhood V of the identity in G and r > 0 such that the
mapping (g, g8') = R,-1S,, ¢ is C*® from VxV to E for every ¢ € E_ N B,.

ButR, .. S ¢ = S; S, ¢. Therefore g — S; (d/dt) (Sexp ex ©); = o is C* from V into E,
and (d/dt) (Sepix ©)=0 € E,. Since g— R, is C* from V to 5, (E), the series
I+ ) dS}is in #,(E). Since

nz2

d 1 /\n
d_t(sexptx(p)t=0 = de (P+ Z dsx((P)eEoo s

nz2

dS, is an operator defined on E_ n B, with values in E_.
QE.D.

Remark. — A formal representation (S, E) of a real Lie algebra g in a Fréchet space E
can easily be extended to a representation (S’, E) of the complexified g. of g.
If moreover (S, E) is an analytic representation of g in a Banach space E, the series ), S
defines an analytic mapping around the origin in E for every x € g,. nz2

5. Passage from the Lie algebra to the Lie group

PROPOSITION 9. — Let G be a connected and simply connected real Lie group, and (U, E)
a continuous linear representation of G in a Banach space E. We denote by E  the Fréchet
space of its differentiable vectors. Given a formal representation (S, E ) of the Lie algebra g
of G on E_ such that, if xeg and S, = ) S}, SL=dU, and S}e %, (E,) [resp.

nx1
Ste Z,(E,) 0%, (E)] for n = 2, there exists a unique formal representation (T, E_)

(resp. (T, E)) of G in E, (resp. E) such that, if T, = y T; and ¢y, ..., ¢, are in E_,
n=1
the mapping g — T3 (9y, ..., 9,) from G to E has a derivative and

n d n
Sx((p13 L] (pn).:E(Texptx((pI’ RS ] (Pn) |t=0'

Proof. — (1) Consider first the case where G = R. As usual, if x € g is chosen, we shall
denote by ¢ the element exp #x.

Define by induction

t
T!=U, and T?=jU,_sZS§ Y Ti®...®Trdsoo,.

0 25p=En  it+..tip=n
Denote %, = &, (E) (resp. &Z,(E,) n Z,(E)). We have T; € ¥, and the mapping
t—R=U_T; from R to &, has a derivative. Define

R,= Y Rl and A=) U_SH®"U).

nz1 nz2
For every n = 1, we have

R? . . i
d t Z U—tS;(®"U:). Z R'®... ®Ro0,.

dt 2<psn i1+ ...+ip=n

(6)
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Which we shall write more concisely

) %Rtl=A,oR,.

This equation has only one solution in & (E) with R, given. Indeed, dR}/dt = 0
and hence R} = Ry; by induction, we see that the right hand side of (6), for a given n,
contains only the applications R? with p < n.

Define T, = U, R, = ) T;. If #,¢ are real numbers define f(t) = U_, T,,, and

n=1
g() =U_, T, T,. The functions f and g satisfy equation (7) with £ (0) = g (0) = T,.
Therefore T,,, = T, T, and (T, E_) [resp. (T, E)] has the required properties.
(2) Let us now return to the general case.
Consider the linear representation (S, E,) of g associated with (S, E_). We have

S |&.), = dU. Suppose that &"* =S |©)._, is the restriction to (E,),—y of the
differential of a continuous linear representation (7"~ !, (E_),-;) [resp. ("%, E,_,)]
of Gon(E_),-, (tesp. E,~;). Now, " = S |(Eoo)n is an extension [5] of "~ ! by d(®"U),
the l-cocycle of the extension being

= 3y (Y LSl )0,

1=psn-1 0=gsp-1
(this follows from formula (4)) and 1" € & with & = Z (®"E,,(E_),— ) [resp. € = Z(®"E,,,
(Eoo)n—l) NnN% (®n E’ En-—l)]'
Now, it is proved in ([5], Prop. 6.1) that there exists a unique 1-cocycle g — F; from G
into & such that g — F} (b) is C* from G to (E),—, and (d/dt) (Fg,, 1 (0))=0 = 7% (D)
for every x € g (this was proved in [4] when the spaces are Banach spaces but the proof

remains valid, in any locally convex quasi complete topological vector space, without
changes).

Therefore (7", (E,), [resp. (7" E,)] is defined by
Th(a+b)=T7 " (a)+®"U,(b)+Fj(b)
for ae(E_),-, and be Q"E_.
We obviously have d7" = &" on (E_),.

We can now define a unique linear representation (7, I:Zw) [resp. (7, I:Z)] such that
the restriction to (E_ ), (resp. E,) is ™

It results from the first part that, if g = exp rx,
T,=AT,) with T,=Y T, T,=0,
n21
and

t
T:xptx = Jl) Uexp(t—.s:)x2 z SJpc Z T«‘elxps ® e ® Ti‘;ps dSOO'n fOI' h g 2.

<p=<n ig+...+ip=n

Choose now a neighbourhood V of the identity in G such that V.V is a normal
neighbourhood.
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Then, if g, g’ are in V, we have
A(Ty) =T 49 =T 3T ¢ = A(THA(Ty) = A(T,T,)

Since A is one-to-one we have T, = T, T, if g and g’ are in V. It results from
([2], Chap. 11, § 7, Th. 3) that T can be extended from V to G, and this extension has the
required properties.

Q.E.D.

ProposITION 10. — Given a continuous linear representation (U, E) of a connected and
simply connected Lie group G in a Banach space E and an analytic representation (S, E )
of its Lie algebra g, compatible with (U, E), the formal representation (T, E) of G defined
by Proposition 9 is analytic. Moreover, if ¢ €E  and x € g, the mapping t — T, .. (¢)
has a derivative around zero and (d|dt) (T tx (0))i=0 = S: ©.

Proof. — Since we can restrict ourselves to a normal neighbourhood of G, it is sufficient
to prove the proposition for G = R.

Let us choose xe g and as usual make the identification ¢ = exp tx.
If S, = ) S, we define A= ) S:and A,=U_,cA-U,. We choose a >0

nx1 nz2
and r > 0 such that A, is analytic on B, for every | t l < a. We denote by # the Banach

space of the bounded continuous functions from ]—a, g into E with the norm
||£]] = sup || /|l We define the mapping & from the ball W,, of radius r in %,
|t|<a

into # by, if feW,, & (f), = A,(f). This mapping is analytic from W, into 4.
t

The mapping B: W, xE — 2, defined by B (f, ¢), =f,—(p—f A (f)s ds, is analytic.
0

Moreover B (0, 0) = 0 and D' B, o) = Ig. It results from the implicit functions theorem
([1], 5.6.7) that there exist an open neighbourhood V of the origin in E and
a unique analytic mapping v : V— £ such that B(u (@), ) = 0. This means that

t
u(9), = (p+J‘ A, (u (9),) ds. Therefore the function r— u (), is C* from]—a, 4 into E

0o
and du (9),/dt = A, (u (¢),) with the initial condition u (@), = ¢. Since u is analytic
from V to & the mapping ¢ — u (), is analytic from V to E for every ] t | < a. Itresults
then from the first part of the proof of Proposition 9 that T, is analytic on V and
u(@),=U_T () if Itl <a.
Q.E.D.

6. Examples of banal representations

ProPOSITION 11. — Every analytic representation of a connected real semi-simple Lie
group in a complex finite dimensional vector space is banal.

Proof. — We denote by (S, E) the analytic representation of the group G. By Propo-
sition 5 we can suppose that (S, E) is smooth and that (d S, E) is an analytic representation
of its Lie algebra g, compatible with the free part (S, E) of (S, E). The representation
(d S, E) can be extended to a representation of the complexified g, of g. In view of Propo-
sition 10, this representation of g, can be exponentiated to a unique analytic representa-
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tion (S’, E) of the connected and simply connected Lie group G’ the Lie algebra of which
is g.. By Proposition 5, this representation is equivalent to a smooth representation S”
linear on the maximal compact subgroup K of G’

Since the representation (d S”, E) of g, is linear on the Lie algebra T of K, its associated

linear representation (dS”, E) satisfies d§£ = Y ®"dS;' for every kel
nz1

Now, g, being the complexified of f, we have dS.i: = Y ®"dS:'. This means
n=1
that (S”, E) is a linear representation of G’ equivalent to (S’, E). Therefore (S, E) is

banal.
Q.E.D.

LemMA 3. — Let (S, E) be a formal representation of a connected nilpotent real Lie group G
in a Fréchet space E such that its free part (S, E) is a non constant representation of G by
homotheties. Then, the kernel of (S, E) is equal to the kernel of (S, E).

Proof. — It is sufficient to prove that the kernel of (S, E) is a subgroup of the kernel
of (S, E).

We denote by (G);=, ..« (G' =G and G* = {e}) the central decreasing series
of G. G?is contained in the kernel H of (S', E). Take p = 2, and suppose that S | p+1
is constant. If ge G and g'e€ G? we have S, S, =S, S,, hence S}, =S} (n2=1).
S! is constant on GP?. Suppose now that S? is constant on GP? (hence equals to zero)
for 1 <g=<n—1. We then get from relation (1) that S} S}, =S}, ®"S;. Since
S, =%, 1(A,eC), we have (\,—A}) S}, =0 hence S}, = 0. This proves that S, =1
for every ge G®. Take now g and g’ in G.

We have S,S,. = S, S,. Suppose that H is a periodicity group of S?for 1 < p < n—1
(this is true for p = 1). It then results from relation (1) for ge G and g’e H, that
(A—2}) Sy, = 0, and hence S}, = 0. Therefore H is in the kernel of (S, E).

PROPOSITION 12. — Every analytic representation of a connected nilpotent real Lie group
in a Hilbert space such that the free part is unitary, irreducible and non-trivial, is banal.

Proof. — Denote by (S, E) an analytic representation of the nilpotent group G such that
the hypotheses of the proposition are satisfied.

We denote by C the largest analytic subgroup of G on which S! is represented by homo-
theties. This representation of C is not constant. The kernel H of S! restricted to C
is such that C/H n C is compact since S! is unitary. It results from corollary 2 and
Lemma 3 that there exists » > 0 such that S, is analytic on B, for every ce C. We can

therefore define A = j S¢-1Sc dC. The representation S, = A S, A™! satisfies
c/HNC

S. =S} for every ceC. Therefore, it follows from relation (1), since S,S; =S, S,
that S!S/> =S!?®2S.. Therefore (A,—A2) S,>=0, and S;> =0. Suppose that
S;7 =0 for 2<p<n—1. From relation (1) we get that (A,—A7) S =0, so that
S, = 0. Therefore (S', E) is a linear representation equivalent to (S, E).

Q.E.D.
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