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ON A QUESTION OF SWAN IN ALGEBRAIC K-THEORY

BY PRAMOD K. SHARMA AND JAN R. STROOKER

0. In their proposal for an algebraic K-theory Karoubi and Villamayor
attach functorially to every short exact sequence of rings

0-> A-^ B-^ C-^ 0

where f is a fibration, a long exact sequence of abelian groups

(1) ... -> K- (A) -> K- (B) -> K- (C) -> K-^1 (A) ->...
-> K-1 (C) -> Ko (A) -> Ko (B) -> Ko (C)

in which Ko is the usual functor of Grothendieck and K"7' is defined
starting with the functor K~1 and putting K-^(R) == K-^^R) for
every ring R and n ̂  1. For the definitions of fibration, 0 and other
unexplained notions, see section 1.

Now the K~^ are homotopy functors for all n ̂  1; but one knows that Ko
is not ([3], 3). It is therefore natural to enquire whether the sequence (1)
remains exact if we replace Ko by its homotopic counterpart K°. If the
new sequence H(l) were exact for all fibrations, it would mean that,
rather than K~1, the functor K° is the basic one and we may define
K'^R) == K°(I^R) as there exists then a functorial isomorphism
K-^^^R) ̂  K°(^R). This again is equivalent to saying that the
formula
(2) K— (R [t, t-1]) = K— (R) ® K-"4-1 (R)

holds functorially for all rings R and n ̂  1. Formula (2) in turn would
imply that for a stable fibration f:B -> C the sequence H(l) is exact.

In this form the question was raised by Swan in his address to the
Nice congress ([i0], 5) (beware of two misprints). In the paper we obtain
positive results in some cases but show that in general the answer is
negative.
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Our investigation was begun at the Tata Institute of Fundamental
Research, Bombay, where we collaborated with F. Bachmann; we also
thank several authors, in particular S. M. Gersten, for making their work
available to us before publication.

1. The theory of Karoubi and Villamayor has been developed by these
authors in [6] and [7], by Gersten in [2], [3], [4] and [5] and by Swan in [12].
We review the facts we shall need, confining our attention to discrete rings.

For any ring R (not necessarily with 1) we write AR for the polynomial
ring in one indeterminate (free paths on R) R[X], ER for the principal
ideal (paths with base point) XR[X] and QR for the ideal (loops)
X(l — X) R[X]. There are two split projections po, pi : AR _^ R given
by po (2 r, X1) = ro and p , (2 n X1) = 2 r. Then ER = ker po and
the restriction of pi to ER is called £. Thus

O-^R^ER^R-^O

is functorially a short exact sequence of rings.
Two ring homomorphisms /*, g : A :^ B are called simply homotopic if

there exists a ring homomorphism s : A -> AB such that f = po s and
g == pi s. The transitive closure of this relation defines homotopy between
ring homomorphisms, which is compatible with composition of maps.
The category of rings furnished with homotopy classes of maps as mor-
phisms is called Hot Rg. A functor G from Hot Rg to the category of
groups Gr (or abelian groups Ab) is called a homotopy functor; it may
be composed with the natural functor h: Rg -> Hot Rg to obtain a full
embedding of functor categories

(HotRg,Gr)^(Rg,Gr).

This embedding has a left adjoint H, making (Hot Rg, Gr) into a reflective
subcategory of (Rg, Gr); in fact, for any functor F : Rg -> Gr the homo-
topy functor HF is just defined by HF(R) is the coequalizer of the
maps Fpo(R) and Fpi(R) : F(AR)^F(R) . The functor H is right
exact. A ring R is called contractible it the identity map and the zero
map of R are homotopic or, equivalently, if the map £(R) splits; ER is
always a contractible ring, the splitting ER-^E^ being given by
X ^-> XY. A homotopy functor F clearly vanishes on a contractible
ring, but it is necessary and sufficient that F(R) -> F(AR) be an iso-
morphism for all R.

The general linear group extends to a functor GL : Rg -> Gr if one
defines GL(R) as the kernel of the split epimorphism GL^R^) -> GL(Z)
where R+ is the ring obtained from R by (< adding a unit )?. This accords
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A QUESTION OF SWAN 87

with the original GL(R) in case R already possesses one. Similarly, one
extends Ko and Ki to rings without unit. Now suppose F : Rg ~-> Gr
(or Ab) is such that for every ring R the split surjection po(R) gives rise
to an exact sequence

(3) F (ER) -> F (AR) -> F (R).

Then HF(R) == cok(F£(R) : F(ER) -> F(R)) as is easily seen. The
sequence (3) is exact for F = GL, F = Ko or Ki. Indeed, GL is even
left exact and the functors K^ are connected by Gersten's exact sequence
([2], 5.7) stemming from the split surjection po(R).

Write EL(R) for the elementary group of R (extended to Rg as domain
in the same way as GL) and consider the exact sequence of functors
1 -> EL -> GL -> Ki -> 1 which defines Ki. Apply the right exact
functor H to obtain an exact sequence HEL -> HGL -> HKi -> 1.
Now EL preserves the surjection s(R) and HEL vanishes on the contrac-
tible ring ER; hence HEL(R) = 1 for all rings R. Therefore HGL = HK,
and it is this functor which is called K~1; one knows that K~1 == GL/LJN
(UN(R) is the subgroup of GL(R) generated by unipotent matrices) is
a factor group of Ki = GL/EL. As recalled before, one then defines
K~" = K~1 ̂ -1, n^l, which are all homotopy functors.

A ring homomorphism f: B -^ C is called a fibration provided
GL{Enf) : GL(EnB) -> GL(E"C) is surjective for every M^I . A fibra-
tion is certainly surjective, but not every surjection of rings is a fibration.
Put A = ker /, then if f is a fibration one has the long exact sequence (1).
The functors K~^, n ̂  1, enjoy the excision property : K~^(A) is defined
as ker (K'^A4) -> K~^(Z)) and is therefore independent of the ring B
in which A is an ideal. Of course, this property is also known to
hold for Ko.

We now consider the process of adjoining Laurent polynomial
variables. Put AR = R [(, r1]. A fibration f: B — C is called stable if
A^: A'^B ̂  A^C is a fibration for all m^O. It is clear that functors
from Rg to Rg which commute (up to isomorphism) with A and the p,,
will preserve homotopy between maps and also contractible rings. Such
are the functors A, E, 12 and A which moreover commute with each other
and are exact. Furthermore, the first three are known to preserve fibra"
tions and then, by definition, all four of them stable fibrations,
([6], 2) and ([5], 2). For all rings, £ is a stable fibration.

2. A ring R is called K-semiregular if

Ko (R) -^ Ko (R [X,, . . . , Xn]) == Ko (̂  R)
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is an isomorphism for any number of polynomial variables or, equivalently,
if Ko(E"R) = 0 for all n^l ([5], 1.3).

A ring R is called K-regular if A^R is K-semiregular for all m^O.
This notion is due to Karoubi who observed that a noetherian regular
ring is certainly K-regular by a result of Bass-Heller-Swan ([7], 3.6).
The functors A, E and ti preserve both K-semiregular and K-regular
rings ([7], 3.8), while A preserves K-regular rings by definition.

For any ring R with 1 there is a split exact sequence due to Bass
([I], XII, 7.4; [7], 2.6) :

0 -^ Ki (R) ̂  K, (R [t]) C K, (R [t-^]) -> K, (R [/, ^]) ̂  Ko (R) -> 0,

which is functorial in R. Apply the right exact functor H, bearing in
mind that HKi = K~1 is a homotopy functor, to obtain a split short
exact sequence
(4) 0 -^ K-1 (R) -> K-1 (R [/, t-1]) -> K° (R) -^ 0

where we have defined K° as the homotopy functor HKo. One may
extend this to rings R without 1 by considering the augmentation
0 — R - ^ R + - > Z - > 0 and observing that A, K~"1 and Ko all preserve
a splitting.

Consider now the composite morphism

Y (R) : K-1 (R) --> Ko (^ R) -. K° (^2 R)

in which the first map is the connecting homomorphism S(R) in the
sequence (1) attached to the fibration £(R) and the second is passing to
homotopy : Ko(^R) -> HKo(^R). Thus y(R) maps

ker (Ko (^ R) -> Ko (ER)) to cok (Ko (E i2 R) -> Ko (^2 R))

or, briefly, -y == HS. If the sequence H(l), derived from (1) by applying
the functor H, were always exact, it would in particular be so for the
fibration s(R) and v(R) should be an isomorphism for all rings R.

Suppose now that K-1 (t^R) ̂  K°(^R), n ̂  1, for a certain
ring R, i. e. the y^^R) are all isomorphisms. For this ring we obtain
the formula (2) by applying (4) to the ring î -1 R and taking into account
that the functors Q and A commute. This is substantially more general
than ([7],3.11).

This happy state certainly prevails for a K-semiregular ring ([3], 2.2).
There we even have isomorphisms K~1 (^^R) ̂  Ko(^R) ^ K^^R)
for all n^ 1 (the latter also holds for n = 0), since K-^E^-'R) = 0
because EO^R is contractible while ^(Et^R) and Kc^EI^R) are
both 0 because Q. preserves K-semiregularity. In this case K~^ (R[(, r"1])
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is expressed entirely in terms of Ko as
(5) K- (R [/, /-1]) = Ko (^ R) ® Ko (^-1 R).

Remark. — From our point of view, it would be more logical to accord the <( regular "
terminology with that regarding fibrations. Thus Karoubi's <( K-regular " would become
(< stably K-regular ", Gersten's <( K-semiregular " would become (< K-regular " and a
ring with all y (Q^-1 R) isomorphisms would be called (< K-semiregular ". Alternatively
one may follow Swan and speak of a (< stable fibration ff as a <( fibration " etc. But it
is not yet clear which of these notions should be regarded as basic, so we hesitate to
introduce a shift in nomenclature.

3* We now list a few situations in which we may conclude that the
sequence H(l) is exact.

PROPOSITION 1. — Let f : B -^ C be a surjection of rings. In the following
cases H(l) is exact :

(a) The surjection f is split and Ko(EC) == 0$
(&) f is a stable fibration and y(B) and y(C) are isomorphisms^
(c) f is a fibration and Ko(EB) == Ko(EC) ==0 ; in this case the

sequences (1) and H(l) coincide.

Proof :
a. First remark that any split surjection is a (stable) fibration hence

the sequence (1) is exact with K^B) -> K~1 (C) split surjective. There-
fore Ko(A) -> Ko(B) is injective, while Ko(EC) = 0. Apply the Snake
Lemma to connect kernels and cokernels of the maps Ko£ plying between
the Ko-sequences of E/* and f to obtain the split exact sequence

0 -> K° (A) -> K° (B) -> K° (C) -̂  0.

Join the exact sequences together to obtain the result.
b. Consider the splitting (4) for R and for 12 R and observe that

K-1 ( \^2 R) = K-1 (\^ R) = K-^ (AR).

The connecting homomorphisms in the sequence (1) attached to the fibra-
tion A/* are compatible with such splittings hence there is an exact sequence

K° (12 B) -> K° (i2 C) -> K° (A) -> K° (B) -> K° (C).

Together with the isomorphisms postulated in the data and the exact
sequence (1) this furnishes the proof.

c. The fibration f yields a surjection Ki (EB) -> Kj (EC), consequently
the sequence

0 -^ Ko (EA) -> Ko (EB) -> Ko (EC)
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is exact. Since the last two groups are 0, so is Ko(EA) and the
sequences H(l) and (1) coincide.

In particular this is the case if B and C are K-semiregular. So is then A
and the sequences (1) == H(l) belonging to the fibrations ^f are all
identical for n ̂  0.

4. Gersten has established some results on K-regularity in ([5], 1),
based on the work of Bass-Murthy ([I], XII, 10).

First, a ring R which is (left) regular modulo some nilpotent ideal, is
certainly K-regular. Further, the picture is fully clear for unital commu-
tative noetherian rings of dimension 1 which are reduced and of finite
normalization. Let A be such a ring, B its integral closure in its full
ring of fractions and c the conductor of A in B. The ring A is called
seminormal if c is square free as an ideal of B [13].

PROPOSITION 2. — The ring A is Vi-semiregular if and only if it is semi-
normal. In that case it is even K.-regular.

Gersten states this for group rings ZTI, ri a finite abelian group ([5], 1.8),
but his proof really treats this as a special case of the above.

For an ideal a in a Dedekind domain A he has also shown the equi-
valence of the following conditions (1) and (2) ([5],1.6); (3) is equi-
valent by ([7],3.7) :

(1) n is square free;
(2) tt is K-semiregular;
(3) A ->- A/il is a fibration.

In this case, n is even K-regular and A -> A/d is a stable fibration.

Remark. — In Gersten's proof, the isomorphism should read

Ki (AA/a, EA/n) ̂  Ko (AA, EA) = Ko (EA).

His assertion that Ki (EA) == 0 for a regular ring A appears to be unproven and indeed
unlikely in view of the obstruction to excision for Ki described in ([II], 4.6).

We shall now exhibit in sections :
5. A ring R for which all y(t2^R), n ̂  0, are isomorphisms but

K o ( O R ) ^ K ° ( Q R ) ;
6. A ring R with y(R) not an isomorphism. For this ring, the

sequence H(l) attached to the fibration £(R) is not exact.
Both rings will be ideals in Euclidean domains.

5. For a given ring k, suppose R is a contractible subring of
E/c == X/c[X], Contractible rings being preserved by t2, we know that
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K-^R^K^R)^ for n^O, therefore the sequence H(l)
attached to the fibration £(R) consists of only zeroes. As desired,
all f(^R) are isomorphisms.

Put Ac/c[X] for the ring R augmented by /c. Then K-^(A) = K-^/c)
for n^O, and, because A preserves splittings and contractible rings, we
have K-^(AA) = K-^(AA-). If k for instance satisfies (2), so does A.

It is now easy to produce contractible rings with Ko(^R)^0.
In order to be concrete, take k a field and R the principal ideal (X2) in
the polynomial ring k [X]. The mapping X \-> XY induces a homo-
morphism R -> ER which splits s(R), hence R is contractible. According
to 4 it is not K-semiregular. Since ([I], XII, 10.5), the ring A = k [X2, X3]
is an old favourite so we shall not dwell on the computations. These
show that the Ko-tail end of the sequence (1) attached to the fibration c(R)
may be identified with the short exact sequence

0->^k-^Ek^k-^0,

hence Ko(tiR) = Q/c does not vanish.

Turning to A, we see that Ko(A) == Z © k while K°(A) = Z; in point
of fact, almost the same example illustrated Gersten's statement ([3], 3)
that Ko is not a homotopy functor.

Furthermore, K-1 (A)1= K-1 (k) = K,{k) = U (/c), the multiplicative
group of /c. But Krusemeyer and Van der Kallen have proved ([8], 12.1)
that SKi (A) depends on the size of the field. For k is, for instance, the
real field, one has Ki (A) = k (f) V where V is a real vector space of
dimension equal to the continuum. So not only are fibrations rather
special, but passing to homotopy functors by means of H looses a good
deal of information.

6. Consider a prime p€Z and for typographical ease also denote the
ideal generated by it as p. Apply the functors il and E il to the short
exact sequence 0 -> p" -> p ~> p / p 7 1 -> 0. Write down Gersten's exact
sequences, connected by £, thus

Ki (E ^ p) —> K, (E 9. p i p - ) —> Ko (E ^ p-) ——> Ko (E .Q p) ——^ Ko (E ^ p/p'Q
(6) 4 I I |^^ 4- ^ 4 •[

K, (^ p) ———> Ki (.Q p i p - ) ——> Ko (i2 p-) ———> Ko (t2 p) ———> Ko (^2 p/p")

Here, Kj (Hp/p") is by definition Bass5 relative group Ki ((^p/p7^, ^pip71)
Since our rings are commutative, we know the latter group splits as

SK, ((^2 p /p^, ^ p I p - ) © U ((^ p /?-)+, 12 p /p-).
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Now notice that the ideal a=ilp|pn is nilpotent, hence a well-known
Lemma ([I], IX, 1.3) asserts that the SKi term vanishes; the relative
units are isomorphic to the ideal a made into a group by the circle opera-
tion : a o b = a + b + a&. Thus Ki (U p/p") ^ 0 p/p^ and for the same
reason K, (E iip/p") ^ E tip/p" so that Kic^p/p") just yields the
surjection E Ii p/p"—^ 12 p/p".

Now consider the stable fibration z -> Z/p and remark that the kernel p
is K-regular by proposition 2. So is then Up hence Ko(Et2p) === 0.
Consequently

K° (i2 p^) ̂  cok (Ki (12 p I p - ) -. Ko (^ p")).

We claim that this last map is injective. Indeed, because of the splitting
Ki == SKi ® U we need only consider the image of U^p)4', tip).
But this group is trivial. Thus K0^?^) ̂  Ko(^p") when n^2.

For any regular ring R, a theorem of Bass-Heller-Swan asserts that R
is Ki-regular, i. e. for the rings A^R the Ki remains unchanged under
polynomial extensions. This implies that any surjection onto a regular
ring is a stable fibration ([6], 2 . 6$ [5], 2.1).

Apply the functor Q to the stable fibration Z/p" -> Zip and take the
Karoubi-Villamayor sequence (1) associated with this. Since we divide
out by a nilpotent ideal, Ko (^ Z/p") -^ Ko (^ Z/p) is an isomorphism
([I], IX, 1.3). Now K-i(Qz|p)=K-2(Z|p)^K,{Z|p). The isomor-
phism holds because Z/p is a field ([12], 4 .7) ; since Z/p is a finite field,
K.(Z/p)=0 ([9], 9.13).

We conclude that Ko(^p/p7 ') = 0. Going back to our diagram (6)
we now know that K0^?") = Ko(t2p).

We have noticed that p is K-regular, so Ko(^p) = K"^?). To
compute this group, write down a segment of the sequence (1) attached
to the stable fibration Z —^ Z/p :

(7) .. .^ K-2 (Z/p) -> K-1 (p) -> K-1 (Z) -^ K-1 (Z/p) -....

The first term is trivial, and

K-1 (Z) = K, (Z) = U (Z) while K-1 (Z/p) == K, (Z/p) = U (Z/p).

Since the units of Z go into the units of Z/p we find

K-1 (2) == Z/2 but K-1 (p) ==0 for p > 2.

Thus K0^?") =0 for p > 2 but Z/2 for p = 2.

46 SERIE — TOME 6 — 1973 — ?1



A QUESTION OF SWAN 93

It remains to compute the groups K-^p71). First, K^O^) = HKi(p");
by definition, Ki (p") = Ki ((p71)4-, p"). Since (p^ maps surjectively
to Z, we have the excision isomorphism Ki ((p^, p") ^ Ki (Z, p71) ([9], 6.3).
The latter group is known to be U(Z, p^), the SKi term being 0 ([i], VI, 7.3).
Looking at the relative units shows that Ki (p") == 0 except for p = 2
and n= 1, where Ki(2) = Z/2. For all p", the Ki and K-1 coincide.

The upshot is that for R = 2", n ̂  2, we have

0 = K-1 (R) ̂  K° (.Q R) = Z/2;

so v(R) is not an isomorphism. For the stable fibration c(R) the
sequence H(l) fails to be exact.

Adding a unit, put A == (2/^)+. There are isomorphisms

A ̂  Z [X] /(X2 — 2^ X) ̂  Z [Y] /(Y2 — 22^-2)

described by (m, /c.2^) ̂  m + /c X and X ̂  Y + 2n~i respectively.
One readily verifies that

K-2 (A [/, ]̂) = K-2 (A) ® Z/2 © Z/2 while K-1 (A) = Z/2,

violating formula (2).

By keeping track of the prime factors, it is now easily seen that the
ring (m)^ provides a counter example to Swan's question whenever 4
divides m.
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