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ACTION OF ALGEBRAIC GROUPS
OF AUTOMORPHISMS ON THE DUAL OF A CLASS

OF TYPE I GROUPS [(1) (2)]

BY L. PUKANSZKY

1. Let G be a real linear algebraic group operating on the finite dimen-
sional real vector space V. If Go is the connected component of the
neutral element in G, by virtue of a known theorem of C. Chevalley
(c/*. [4], p. 316 and [6], p. 183, bottom) the orbit space V/Go is countably
separated. Using this, in the present paper we are going to prove the
the following :

THEOREM. — Suppose, that Q and t) are algebraic Lie algebras of endo-
morphisms of V, such that 1) is an ideal of g. Let G be a connected and
simply connected Lie group belonging to fl, and H the analytic subgroup

of G determined 1). Then the natural action of G on the dual H of H is
countably separated.

An assertion of the indicated type plays an important role in J. Dixmier's
discussion of the semifiniteness of the left ring of an arbitrary separable
locally compact connected group (cf. [7], 4.6.Lemme, p. 432 and Theoreme,
p. 423 resp., and Remark 1.2 below) (3). Our proof depends in an essential
fashion on various reasonings, to be specified later, of the papers [4] and [7]
of this author.

(1) This paper was partially supported by a grant from the National Science Foundation.
(2) An outline of this paper was submitted to the International Congress on Harmonic

Analysis, University of Maryland, November 8-12, 1971.
(3) One of the motivations of the present research is to complete the proof given

loc. cit. Our Theorem easily implies 4.6.Lemme in [7]. The proof of this, however,
as given loc. cit. is incomplete, since it is not shown, that the maps ^ and W (cf. p. 433)
are bijective, as claimed there.
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380 L. PUKANSZKY

Remark 1.1. — We recall, that by virtue of 2.1. Proposition of [7]
(p. 425), in particular, any real connected Lie group, which is locally
isomorphic to a linear algebraic group, is of type I. Thus H, as in the
Theorem, is of type I.

Remark 1.2. — Let us observe, that in [1] only the following special
case is needed (4). Assume, that rt is a Lie algebra of endomorphisms
of V, such that the greatest nilpotent ideal n (== nilradical of tt) consists
of nilpotent endomorphisms. Then take for jj the smallest algebraic
Lie algebra containing tt and set 1) = u 4- [rt, d].

Remark 1.3. — Let us add, that statements, similar to our Theorem,
can be established in other situations. For instance, assume, that g
is a real solvable exponential Lie algebra, G a corresponding connected
and simply connected group, & an algebraic Lie algebra of derivations
of g such that &3ad(J j ) and D the corresponding connected subgroup

A /
of Aut (G). Then G/D is countably separated. We only sketch the proof.
We infer first from the result, quoted at the start, of Chevalley, that
fl'/D (fl' = dual of the underlying space of fi) is countably separated. On
the other hand it is known, that there is a canonical bijection from

A . .fl'/(Ad (G))' onto G, which is equivariant with respect to Aut (G) and
continuous (c/*. [12], Proposition 2, p. 89 and the references at the end

A
of loc. cit.). Since G is of type I, G is countably separated, and thus the
said map is a Borel isomorphism (c/*. e.g. [I], Proposition 2.11, p. 9);
whence the result.

2. SOME NOTATIONAL CONVENTIONS. — Given a group G operating
on the set X as a group of transformations, if x is some element in X, Gx
will stand for the stabilizer of x in G. Given a group G or a Lie algebra g,
we shall write G^ (g^ resp.) for its center. All Lie groups and Lie algebras
occurring in the sequel will be assumed to be defined over the real field.
Given a Lie algebra $, we shall write exp (fl) for a corresponding connected
and simply connected Lie group. Let G be any connected Lie group
belonging to fl, and 1) a subalgebra of fl; then exp (1); G) will denote the
analytic subgroup, determined by 1), of G. ad ( ) and Ad ( ) will
indicate the adjoint representation of $ and G resp. Given unitary
representations U and V of a group G, we write U ~ V, if they are uni-
tarily equivalent, and U ^ V, if they are quasi-equivalent {cf. e. g. [5],
13.1.4, p. 250). If G is invariant in K, for any a € K, aV will stand for the

0 Cf. footnote (3).
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unitary representation defined by (a U) (g) === U (a~1 ga) (g€G). Observe,
that we shall use the same symbol for a unitary representation and the corres-
ponding unitary equivalence class, whenever convenient.

3. Let H be a separable locally compact group, and N a closed, invariant
and type I subgroup of H. Given a factor representation X of H, A ] N
is quasi-equivalent to a continuous direct sum, formed by aid of a Borel

A . .measure [f^\ on N, of irreducible representations of N, the equivalence
class (== quasi-orbit) of [̂  being uniquely determined by A. Following [7],

A , A
4.1. Definition (p. 429), given a subset A of N, we shall write HA for the

. . A

set of all those elements A in H, for which [̂  is carried by A. Let co be
A

a fixed element of N. Then S === H^ is a closed subgroup, containing N,
A . A .

of H. We denote by Sw the subset of all those elements in S which, when
restricted to N, are multiples of oo. Let us assume, that G is a separable
locally compact group containing H and N as closed invariant subgroups.

A . A A
(0 being as before, we set Q === G OL>C N; Q is a Borel subset of N, and HQ

A
is invariant under the action of G on H (c/*. the end of 2 above). Similarly

A . .
Go transforms Sco into itself.

LEMMA 3.1. — With the above notations let us assume, that H is of type I,
A . . . . . . A

and that each A in HQ gives rise to a transitive quasi-orbit on N. Then
A / A / .if one of the spaces HQ/G or S^/ Gw is countably separated, so is the other,

and then the two are Borel isomorphic.

Proof. — a. We start by observing, that in virtue of our assumptions,
A
Sco is standard. In fact, we denote by oo' a (t (a))"1 extension of co to S
(cf. [I], p. 59-61) and put A == (S/N, a)'. Since H is of type I, (S/N, a),
too, is of type I (c/*. [I], Proposition 10.4, p. 63) and thus there is a Borel
cross section ^ from A into the space of concrete a representations of
S/N. We set 9 (A) = co' (g) t (6 (X)) (AeA). It is known, that 9 is a
Borel injection from A into the standard Borel space Irr (S) (c/*. [5], p. 323)

A
and, if ^ is the canonical projection from Irr (S) onto S, ^ ° y is a bijection

A n .between A and Sw C S. From this we conclude first, using the theorem
of Souslin (c/*. e.g. [I], Proposition 2.5, p. 7) that y (A) = E C Irr (S)
is Borel. Next we observe, that the canonical map from E C Irr (S) C Fac (S)

A A .
onto its image in SiC S is a Borel isomorphism (c/*. [5], 7.2.3. Proposition,

A
p. 136). This image, however, corresponds to Sco under the canonical

A A
isomorphism between Si and S {cf. [5], 18.6.2, p. 324).
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b. Let us put 0 = HcocN. Our next objective is to establish the

existence of a G^ equivalent Borel isomorphism from S(o onto Ho. Let

Y be a Borel cross section from Sco into its inverse image in Irr (S). Then

the map T) ̂  S (fj) === ind 7 (T]) (y]€ Sco) is a Borel map from S^ into Irr (H)
S -̂ . H

{cf. [II], Theorem 10.1, p. 123) such that, if o- stands for the canonical

projection from Irr (H) onto H, ^ = a o o is a. Borel bijection from Sco
A . . A

onto Ho. Since H is of type I, the Borel structure of H is standard and
hence, by Souslin's theorem, $ is a Borel isomorphism. Its Gco equi-
variance is clear.

We conclude from the preceding discussion, that to establish our Lemma,

it suffices to prove the assertion arising by replacing loc. cit. Sw/Gw through
A /
HO/GM.

c. In the sequel we are going to make a repeated use of the following
result (c/*. [I], Proposition 2.11, p. 9). Assume, that E and F are Borel
spaces such that E is analytic and F countably separated. Let f be a
Borel map from E into F, and let us also write f for the equivalence relation
on E defined by the condition, that x ̂  y {x, y€E) if and only if
f{x) =f[yY Then /*(E)cF is analytic, and the natural map from E//*
onto /'(E) is a Borel isomorphism. Thus E//*, too, is analytic.

From this we conclude first, thar HQ is analytic. In fact, since any X
A . . . . . . A A A

in HQ gives rise to a transitive quasi orbit on N, we have HQ = Uaec ^ Ho.
A . A

Let us denote by F the map, from G X Ho into H, defined by F (a, X) = a A ;
/ A \ A A

we have F \GX Ho) = HQ. Since Ho is standard [cf. (a) above], so is
A . A A

GX Ho. It is known, that the map (a, T]) i-> a T] from Gx H onto H is

continuous, and thus F is Borel. Finally, H being of type I, H is
countably separated. In this fashion, by the assertion quoted above,

F (GX Ho) = HoC H is analytic.
A /

d. Let us suppose now, that Ho/Gco is countably separated. We are
A /going to show, that then so is Ho/Gaud that the two are Borel isomorphic.

In fact : (c? 1) Let us denote by p the canonical projection from Ho onto
A / . . . . /
HO/G(O. It is easy to see, that if we have Oi Xi == 03 ^.2 ^i, aa€G;

Xi, A^eHo) , then p (Ai) = p (/^). In fact, since /^ (/c = 1, 2) restricts



ALGEBRAIC GROUPS OF AUTOMORPHISMS 383

on N to 0 == H a), we obtain at once ai H co = 02 H co and thus a~^ ai is of
the form bh (&€Ga>, / i€H) implying ^2 ==== & Ai or p (Xi) == p (^2). Since
A A , , A
HQ •== GHo, we conclude from this, that there is a map $ from HQ onto

Ho/G^ such that 3 > ( a A ) = p (X) (a€G, XeHo) . {d 2) We show next,
that ̂  is Borel. We set y = $ o F and observe, that since y ((a, X)) = p (X),

A A
y is a Borel map from GX Ho onto Ho/Goo. Let B be a Borel subset of

-i A .
the last space and set D = $ (B); we have to prove, that D C HQ is Borel.

-i A
By what we have just seen, F (D) is Borel in GX Ho, from where the desired
conclusion follows through an easy application of the assertion, quoted

A
at the start of (c). {d 3) By the same token, setting E = HQ [= analytic

A . /
by (c)], F == Ho/Go (== countably separated by assumption) and f == $

A / A /
we get, that HQ/^ is Borel isomorphic to Ho/Gco. From here to complete

A
our proof it is enough to observe, that on HQ the ^-fibers and G orbits
clearly coincide.

• - A /e. In order to prove our Lemma, it suffices now to show, that i fHo/G
A /

is countably separated, then it is Borel isomorphic to HO/G(O. Let I be
A A / A \

the identity map from Ho onto HQ\?HO/, ^ the canonical projection

from the latter onto HQ/G, and let us put W == TI o I. Then W is a Borel
A A /

map from Ho onto HQ/G. From here we complete our proof proceeding

analogously as in {d) above by observing, that on Ho the families of W
fibers and G^ orbits resp. coincide. Q. E. D.

4. PROPOSITION 4.1. — Let G, H and N be as above. We assume,
A . . . . . . A A / •that each A in H gwes rise to a transitive quasi orbit on N, and that N/ G is

countably separated. Then H/G is countably separated if and only if,
A A /

for any choice of co in N, Sco/Gco {cf. 3) is countably separated.
A /

Proof. — a. Let us suppose first, that H/G is countably separated. If co
A A / .

is any fixed element of N and Q = G co, then HQ/G, too, is countably
A /

separated. Thus, by the previous lemma, so is Sco/Gc,).
b. Our proof of the opposite implication follows closely a reasoning of

J. Dixmier {cf. [7], p. 430-431). To start we recall {cf. [9], Theorem 1,
p. 124) that if G is a locally compact group acting as transformation group
on the locally quasi-compact and almost Hausdorff space M, G and M
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both being assumed to satisfy the second axiom Of countability then, in
particular, the following conditions are equivalent : (1) M/G is countably
separated; (2) For any m in M, G m is locally closed \cf. (3) and (1), loc. cit.].
Instances, to be considered in the sequel, of this situation are provided
by a separable locally compact group acting on the dual of a type I closed
invariant subgroup. In this fashion to establish our point it is enough

A . . A
to show that, for any A in H, G A is locally closed in H. Let us suppose,

A / ^ . A / .that A restricts to H <o C N [w € N^. Since, by hypothesis, N/ G is countably
separated, by virtue of the result just quoted, Sl = G co is locally closed

A . , . . . . A .
in N. From this, using 4.2.Lemme (iii) in [7] we conclude, that HQ is

A . . .locally closed in H. In this fashion, to arrive at the desired conclusion
. A

it suffices to show, that G A is locally closed in HQ. In fact, in this case
A A

there are closed sets F, Fi and open sets 0, Oi in H, such that HQ == FnO

and G X === HonFiHOi , and thus G A === (FnF i )n (OnOi ) , proving
A / .our point. Since, by assumption, S(O/G(O is countably separated, the

A / A
Lemma of Section 3 above implies the same forH^/G. HQ, being locally

A . . . .closed in H, it is, in the induced topology, locally quasi compact and almost
Hausdorff. Therefore another application of the result quoted at the

start of this section yields, that G ^ is locally closed in HQ, completing
the proof of our Proposition. Q. E. D.

5. We insert here another proof for one of the assertions in the demons-
tration of Lemma 3.1 (Section 3) which, though operating under somewhat
more restrictive assumptions, throws light from a different angle on the
situation studied there. Let G, H, N, co and ^ be as loc. cit., and assume,

A . ^ , ^ /
that ilc. N is locally closed and Gw H is closed in G. ^Observe, that the last

A / A / \two conditions are satisfied, if N/G and N/H are countably separated.^
A / . . A /Then, if Ho/G^o is countably separated, so is HQ/G [cf. (d), loc. cit.]. We

A
start by observing, that 0/H is standard. In fact, since N is standard,

the map ^, from G/G^) onto Q ===== G coC N, defined by ^ (a Gco) ===== a oj
(a€G) is a Borel isomorphism between these spaces (c/*. [I], Proposition 3*7,
p. 16). Since ^ is clearly equivariant with respect to H, to obtain the desi-
red conclusion it is enough to observe that, Go>.H being closed, G/G^.H
is standard and Borel isomorphic to ti/H. Prom this we infer, that

^ ^ A • . - • • -. . .
any A in HQ, when restricted to N, gives rise to a transitive H orbit 0 (A).



ALGEBRAIC GROUPS OF AUTOMORPHISMS 385

We define a map <p from HQ onto D == Q/H by setting y (^) = 0 (A)
and claim, that y is continuous. To show this it is enough to establish,

that if 0 is any H invariant open set in N, then H^^ is open in HQ. This,

however, follows from the easily verifiable fact, that H^^= H^nH^

along with the observation, that H^ is open in H (c/*. [7], 4.2.Lemme, (ii)).
In this fashion, in particular, 9 is Borel, and is evidently G equivariant.
Next we recall the following (c/*. [I], p. 70-75). Let E be an analytic G
space, D a. transitive analytic G space, and 9 a G-equivariant Borel map
from E onto D. If \^ is some Borel measure on E, and v its direct image
on D, then for each y in D there is a Borel measure p-y, carried by

— i
E (y) == y (y), on E, such that for any Borel set o' in E,

^(<7)== /^(cr)dv(y).
^j)

Let us assume furthermore, that p- is quasi-invariant, ergodic and non-
transitive under G. Then, as shown by C. C. Moore, we can assume
that, for each a in G and y in E, \^ay and a \^y are equivalent, and that \^y
is non transitive-ergodic, with respect to Gy, on E (y) (c/*. Theorem 1,
p. 75, loc. cit.). Bearing this in mind, we complete our proof in the following

A
fashion. Since ti, by assumption, is locally closed, so is Hn [cf. 4 above),

A /
and thus it is locally quasi compact and almost Hausdorff. If H^/G is
not countably separated, there is a Borel measure p-, which is quasi-inva-

A
riant, ergodic and non-transitive with respect to G, on HQ (c/*. [9], Theorem 1,

A
(3) and (4), p. 124). We apply the result just quoted with E = HQ,
D == Q/H and 9 defined as above. Let y be the image, in ii/H, of O)€^t;

A
then Gy = Gw. H and E (y) = Ho. Thus there is a Borel measure p/,

A
quasi-invariant, ergodic and non-transitive with respect to G^? on Ho.

A /
But this contradicts out assumption that HO/GO) is countably separated.

Q. E. D.

6. We turn now the proof of our Theorem and employ the notations
explained in Section 1. We proceed by induction, assuming the validity
of the assertion to be established for dimensions, smaller than that of fi.
The method of reduction, to be used in the sequel, is partly inspired by a
reasoning of J. Dixmier (c/*. [4], p. 326-328).

We denote by w the greatest ideal of nilpotency (cf. [2], Definition 2, p. 60)
of the identical representation of I). Let r be the radical of t) and 0 the
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set of all nilpotent elements of r; then m = e. In fact m, being composed
of nilpotent endomorphisms, is a nilpotent ideal of 1), and therefore rnCr
and hence also mCr. The converse is implied by Corollaire 6 in [2] (p. 67).
In the following we shall distinguish notions, already defined for 1), with
respect to fl, by an index zero. This being so we observe, that m = Wo n I),
and thus, in particular, m is an idea.1 in g. To show this all what we
have to establish is that inCttto. But tnCr = r on t )Cro , and hence the
desired conclusion is implied by the result of [2] just quoted.

We can assume from the beginning, that m is nontrivial. In fact,
otherwise the nilpotent radical [1), r] of 1), too, is trivial (cf. [2], Definition 3
and Remarque 2, p. 64, and Proposition 6, p. 81 resp.) In this case,
however, 1) is reductive and hence of the form l ) iXl )o , where l)i = [(), ()]
and l)o = ̂  {cf. [2], Proposition 5, p. 79). Putting HA = exp (A,; H)

(/c = 1, 2) {cf. 2) we have also H = H i X H , and H = HiX PL (product
of Lie groups and of topological spaces resp.). Since l)i is semi-simple,

we have Ad (G) | l)i CAd (Hi) and thus H/G = Hi X (H./c). Hence
it suffices to show, that the last factor is countably separated. Since,
by assumption, the Lie algebra 1) of G is algebraic, Ad (G) [cGL(fl)],
and thus also Ad (G) | 1)2 [CGL (1)2)] is the connected component of a
real linear algebraic group. Hence the same is valid for the contragredient
group operating on t)^, whence the desired conclusion follows by an easy
application of the result of Chevalley quoted at the start of Section 1.

We recall [cf. 4 (&)], that H/G is countably separated if and only if,

for each A in H, G A is locally closed in H. Let us choose and keep fixed
a X of the said sort. Since m is nontrivial and nilpotent, it contains a
nonzero abelian fl ideal a (e. g. t^). We set A = exp (a$ H)cH. A is
closed, simply connected and invariant under G. By virtue of a reasoning

A A
just given, A/G and A/H are countably separated. From this we conclude
first, that A on A restricts to a transitive quasi-orbit H co (say). Next,

writing 0 = G co c A, we remark, that Q is locally closed and hence so
A A

is HQ [cf. 4 (5)] in H. In this fashion we shall attain our goal by esta-

blishing, that G A is locally closed in HQ (cf. loc. cit.). Let us set S === Hco.

LEMMA 6.1. — S is of type I.

Proof. — We recall {cf. 1), that 1) is given as an algebraic subalgebra
of fit (V). Let Hi be the irreducible algebraic group, C GL (V), determined
by t). For each fixed h in Hi the map a^hah-' (a€f t ) transforms rt
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into itself, and thus Hi operates on A and A. Let us put d co == if
(yea'). We have (Hi)^ = (Hi)/-, the right hand side being taken with
respect to the action, contragredient to that just described, of Hi on ft'.
Hence (Hi),, is algebraic. Let us denote by H the connected component
of the identity in Hi and by T the canonical homomorphism from
H [== exp (t))J onto H. We have S = T1 ((H)^) and hence So is locally
isomorphic to (fl)^ and thus also to (Hi)^ implying {cf. Remark 1.1),
that So is of type I. Let us denote by Si the complete inverse image,
in H, of ((H)^)o. We have T (Si) = T (So) and hence Si = KSo, where
K == ker (r)cH\ From this we conclude at once, that Si, too, is of
type I. In fact, writing R (T) for the von Neumann algebra generated
by the unitary representation T, we have clearly R (U) = R (U [ So)
for any factor representation U of S. From here we complete our proof
by observing that S/Si, being isomorphic to a subgroup of (Hi)(o/((Hi)^)o,
is finite, implying, that S is of type I {cf. [4], Lemme 3, p. 319).

Q. E. D.

We shall distinguish two cases, according to whether : (A) There is an
abelian fl ideal rt in m, such that either dim (rt) > 1, or if dim (rt) = 1,
(KJ:^; (B) Condition (A) can not be fulfilled. Case (B) will be discussed
in the next section.

(Ad A) Here we shall consider two subcases : (A 1) dim (£2) > 0;
(A 2) dim (Q) = 0.

(A 1) To show, that G A is locally closed it is enough to establish [cf. 4

(&) above], that HQ/G is countably separated. Since A is abelian and A/H
countably separated we can employ Lemma 3.1 by substituting A in
place of N loc. cit. and conclude that, to attain our objective, it suffices

A /
to show, that Sco/G(o is countably separated. This, however, is implied
by the following :

A /
LEMMA 6.2. — If dim (G^) < dim (G), S/G(,) is countably separated.

Proof. — (a) Let us put F = (G^)o and show first, that So/F is countably
separated. We denote by Gi the irreducible algebraic group, determined
by g, in GL (V). Hi (c/*. Lemma 6.1) is invariant in Gi. We see as loc.

cit.^ that Gi operates on A and A, and that (Gi)o, is algebraic, containing
(Hi)(o as an invariant subgroup. Let us denote by gco and t),.j resp. the
Lie algebras of these groups. They are algebraic Lie algebras in fit (V),
l),o is an ideal in flco and hence they satisfy the conditions of our Theorem

ANN. EC. NORM., (4), V. —— FASC. 3 51
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(Section 1). We denote by £ the universal covering of F$ we have
£ = exp (fi^), Let us write Si = exp (l),o; JT). Since

dim ($«)) == dim (G(.)) < dim (G) = dim (g)

we are in position to employ the assumption of our inductive procedure
/\ /

{cf. the start of this section) and conclude, that 'S'/.f is countably separated.
From here, to obtain the desired conclusion, it is enough to remark, that
A . . . A
50 is identifiable to a closed, £ invariant subset of '9 and that clearly
A A
So/F = So/r.

(&) Let us write G for (Gi)o, and a- for the canonical homomorphism
from G onto G. Its kernel L is discrete in G^ and we show, as in the
proof of the previous lemma (with G in place of H loc. cit.), that L. F is

A /
of a finite index in G^. Hence the latter operates on So/F as a finite

group and thus we can conclude, that So/Gro is countably separated.

{c) We recall, that S, == KSo, where K = L n H c L c G ^ thus Si

is invariant in G^. Next we show, that SI/G,,) is countably separated.
This can be obtained, for instance, through a simple application of Propo-
sition 4.1. In fact, upon replacing loc. cit. G, H and N by G(,), Si and So
resp., all conditions are fulfilled since, besides what we saw in the proof

of the previous lemma, by virtue of (&) So/G^ is countably separated and

51 acts trivially on So. Therefore Si/G^ is countably separated since, for
A ^ . . . /A \

each T] in So, its stabilizer in G^ acts trivially on (Si^.

{d) From here we complete the proof of our lemma through another
application of Proposition 4.1. We substitute loc. cit. in place of G,
H and N, Go>, S and Si resp. Since S/Si is finite, by virtue of what we saw

above all conditions are met. Therefore to conclude, that S/GO) is coun-

tably separated it is enough to remark that, for each T] in Si, putting
A

K == Sr,, Ky, is finite. Q. E. D.

Summing up, in this fashion we have completed the proof, that if

dim (Q) > 0 [case (A 1)] G A is locally closed in H.
(A 2) Here we assume, that dim (Q) === 0. This implies immediately,

that the restriction of X to A is a multiple of a character co of A. Fur-
thermore, co is G invariant, hence its kernel J is a closed invariant subgroup,
contained in A, of G. We remark, that its dimension is positive. This
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is evident, if dim (rt) > 1. If, however, dim (a) == 1, oj is the unit charac-
ter and thus A = J. In fact, by assumption, in this case il is not contained
in jg^. Hence, if lo is a nonzero element in rt, we have

Ad^Zo-^^eG),

where ;̂  is not identically one. In this fashion we have for all a in G
and real t :

(a co) (exp («o)) == co (exp (t Ad (a-1) I,)) == ^ (exp ([^ (a)] Zo)) == ^ (exp (//o)),

proving our statement. Let us denote by ( the Lie algebra of J. By
what we have just seen \ is a nontrivial g ideal contained in ilCiu. Hence,
being composed of nilpotent endomorphisms, it is an algebraic subalgebra
of gl (V). We recall, that a linear representation p of g is called rational,
if it is the differential of a rational representation of Gi (cf. [3], p. 47).
In this case p (1)) is algebraic for any algebraic subalgebra t) of g {cf. [3],
Corollaire 1, p. 48). Finally we conclude from Proposition 11 in [3]
(p. 119), that there is a rational representation cr of fl, such that its kernel
is equal to 1. With o" so chosen, the pair cr (g) Dcr (t)) satisfies the conditions
of our Theorem. Let (& be a simply connected group belonging to p (g)
and let us put ^ = exp (cr (t)); (6). Since dim ((&) < dim (G) we are in
position to apply the hypothesis of our induction and conclude, that
A / .4!)/<6 is countably separated. We set J = exp ( ( ; H). i) is isomorphic

to H/J and hence £) identifies to a closed subsed of H. J is contained
in the kernel of A and thus, if y is the canonical homomorphism from H

onto 4), there is a ^ in ^, such that A = 7. o ©. Finally one sees at once,
that ( & A = = G X under the above identification. Since the left hand

A A . A
side is locally closed in ^C H, so is the right hand side in H, which is the
desired conclusion.

7. (Ad B) We recall (cf. 6 above), that to complete the proof of our
Theorem it suffices to discuss the situation arising when any abelian g
ideal rt in m is of dimension one and contained in ^ [case (B), loc. cit.].
In the following we shall assume, that m itself is not abelian, and leave
the modifications, necessary to settle the remaining case to the reader.

We recall, that a nilpotent algebra n is called a Heisenberg algebra,
if [n^ n] = n^, and dim (n2) = 1. Let us show, that w is a Heisenberg
algebra. It is clear, that dim (w^) = 1 and [m, wJDtl l 5 ; therefore it is
enough to establish, that dim ([w, m]) ===1. To prove this we proceed
as in Lemma 10 of [4] (p. 325). If dim ([in, nr]) > 1, there are ideals
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WA (k = 1, 2) of w, such that

dim (m/,) = k (k == 1, 2) and [m, m] 3 m, 3 mi = nA

But then [[w, til], W2]C[m, Wi] = 0 and thus the center of [m, w],
which is an abelian g ideal in w, is of a dimension larger than one,
contradicting the assumption of (B).

Our objective is to show that, for any A in H, G A is locally closed in H.
Let us put M = exp (m; H). Since we have M^ R\ A | M^ is multiple
of some character r^ of M\ We can assume, that T] is not identically one;
in fact otherwise, to attain our goal, we could adopt the reasoning of (A 2)
in 6. Since M is a Heisenberg group, it admits a uniquely determined
irreducible representation co which, on M^, restricts to a multiple of Y).
Since M'CG', co is G invariant and clearly A M is a multiple of co, or
^ A A A A
A € S^ (c/1. the start of 3). Since { co } is closed in M, so is So in H (c/*. e. g. [7],

4.2.Lemme, (i)). In this fashion to show, that G A is locally closed in H,

it suffices to prove the same with S^o in place of H. In order to establish

this, it is enough to show, that Sco/G is countably separated [cf. 4 (&)].
The subsequent construction is inspired by 4.4 and 4.5 in [7] (p. 431).

LEMMA 7 .1 .— Let g be some Lie algebra, 1) an ideal in g and 1*0 the radical
of g. There is an ideal gi of g, such that fl == fli +1) (sum of subspaces)
and [gi, t)]C[fl, ro]nl).

Proof, — We write r for the radical of 1); we have r = to Hi). Let ^2
and & be Levi subalgebras of t) and g resp., such that & 2 C & (e/1. [2], Defi-
nition 7, p. 88 and Corollaire 1 (&), p. 91). We have t^ = trni) and hence
there is an ideal ^i in &, such that b == &i + ^3 and [&i, t^] == 0. We
set fli = &i + ^ and claim, that it meets the requirements of our lemma.
First fli is an ideal, since [fli, fl]C[^, tr] -}- 1-0 == &i + Fo = $1. We have
evidently fl = gi + t). Finally, since [gi, l)]Ct), to complete our proof
it is enough to observe that, by virtue of [t^i, ^2] == 0,

[9i, 1)1 = [^i + ^o, ̂  + ̂ S:K ^1 + [^2, yol + [ro, r]C[g, ro].
Q. E. D.

COROLLARY 7.1. — Suppose, that g, t) OMC? w ar<? as prior to Lemma 7.1.
Then there is an ideal fii of g such that, putting Gi = exp (gi $ G), we haw
G = Gi. H an6?, /br any r in Gi and h in H, rAr~1 €A M [M == exp (m; G)].

Proof. — The first assertion is clear from fl = gi 4- t) along with the
connectedness of G. To prove the second we observe first, that m being
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the greatest ideal of nilpotency of the identical representation of l)Cfll (V),
we have [$, ro]nl)Cw, and hence also [fli, t)]cm. From here, by virtue
of the formula of Hausdorff-Campbell we infer, that if r and h are close
to the unity in Gi and H resp., we have rh.r-1 h~1 €M and thus rhr-^Ch M.
Using the connectedness of Gi and H, and the invariance of M in G the
validity of the same relation, for any r and h as just indicated, follows
easily. Q. E. D.

Let / be an element of m' {= dual of the underlying space of m), such
that co (as above) belongs to the orbit M ^ C m ' in the sense of Kirillov.
All we shall use from this circumstance in the sequel will be that : (1) We
have then T] (exp (<)) = exp [i {I, f)] ( < € w ) $ hence, since T) ̂  1, f is not
orthogonal to in5. (2) If M (as above) is a closed, invariant subgroup
of the Lie group A, and A/ is the stabilizer of f with respect to the repre-
sentation which is contragredient to A 3 a \-> Ad (a) | m, we have
A(O = Ay.M. Thus, in particular, G = G^ == G/.M.

Let co' be an (i (a))-1 extension of co from M to H,> = H [a € Z2 (H/M, T);
cf. for all this [i], Section 4, p. 18]. We set K = H/M and, given some
group R, we write X (R) for the group of characters of R. We recall
(cf. loc. cit.}. That if co^ is another extension of the indicated kind, there
is an element / of X (K) such that co77 = i (y) co', where L (/J stands for /
lifted to H. Let a be some element of Gi. We infer from Corollary 7.1,
that a CD' is a (^ (a))~1 extension of aco; hence we have, with some 7 in
X (K), a co' = i (y) co' in the sense of unitary equivalence.

LEMMA 7.2. — There is a continuous homomorphism y from (Gi)/
into X (K), such that, for each a in (Gi)/, a co' = i (y (a)) co' in the sense
of unitary equivalence.

We shall give the precise form of y below (c/*. Remark 7.1).

Proof. — (a) We denote by H (co) the space of co and show, that there
is a continuous unitary representation T of G/ on H (co) such that
T (a) co (m) T (a~1) == co {ama~1) for all a in G/ and m in M. In the follo-
wing we shall write al for Ad (a) I (a€G, ?€m).

(a 1) Let c be a nonzero element of m^. Since [in, in] == m^ {= Re),
there is a bilinear form Bi on mxin such that [x, y] = Bi (x^ y) c (x, y€ni).
By in^Cfl^, we see at once, that Bi (ax, ay) = Bi {x, y) for all a in G. We
denote by Wo the annihilator of/* in w; we have clearly G/nioCnio .
Since fis not orthogonal to w^, the restriction of Bi to n toXnio is nondege-
nerate. Let JSi be the group of linear transformations on nio leaving B
invariant. Summing up, putting ^ (a) == Ad (a) tHo (a€G^), we obtain
a representation of G/ in J9.
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(a 2) We denote by 11 the universal covering of J?, and by p the canonical
projection from II onto ll?. We claim, that there is a homomorphism ^'
of G/ into 11, such that the diagramm

G/
^ \^
^ \•$<—m/-»

be commutative. To this end it suffices to show, that G/ is simply connec-
ted. We have M/ = M', hence My is connected and simply connected.
In this fashion it is enough to establish that G/-/M/-, too, is connected and
simply connected. But since G = G^ = G/.M we have :

G/M = Gy.M/M = Gy/G^nM == Gy/My,

proving our statement.

(a 3) We have m = nio + R c. One verifies easily that, for any fixed s
in 0, the map I + tc ̂  sl + tc (?€ nio, t€ R) defines an automorphism of m.
Let us denote by m ̂  m' (m€M) the corresponding automorphism of M.
One shows easily, that m^ = amcT1 (m€M; a€G/) .

(a 4) It is known (c/1. [10], Lemma 3, p.3 9), that there is a representation W
of M on H (OJ), such that W (&) co (m) W(&-1) = co (m^6)) (m€M, &eM).
Hence, to obtain T with the properties specified above, it is enough to
put T(a) = W C V ( a ) ) ( a € G y ) .

(&) Let Y be a Borel cross section from H//My into H/, and let us set
S = v ( H y / M y ) . We have then Hy = SMy. Since H == H, = Hy.M,
any a in H admits a unique representation sm (^eS, m € M ) ; sometimes
we shall write s (a) and m {a) in place of s and m resp. This being so,
let us define co' (a) = T {s (a)) co (m (a)). We claim, that

o/ (a) c,/ (b) == (3 (a, b) ̂  (ab), where p (a, b) = v? (m (s (a). s (6))) (a, b e H).

In fact, assuming a = rm, b = in ((, ^€S ; m, n€M) we have

co' (a).co' (6) - T (r) co (m) T (Q co (n) == T (rQ co (<-1 mt.n) == T (s (r0).co (̂  m/.n)

by (a), bearing in mind, that T My ===: I. On the other hand,

ab === rmtn == s (r<) [m (rt) t-1 mt.n]

and thus since co M^ is a multiple of T],

co' (a6) = -n (m (r/)) T (s (rt)) co ^-1 m^n)
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proving our statement. Since p (am, bn) = p (a, b) (a, &€H, m, ^€M),
there is a a€Z 2 (H/M, T) such that ? == (i (a))-4 and hence co' is a (t (a))-1

extension of GO from M to H.

(c) Given elements a, b of G, we shall write [a, b] = aba~s b~1. Let
c be a fixed element of (Gi)/ ' . We are going to show, that with T and co'
as in (a) and (6) above, we have (c co') (a) ̂  ^c (^) (T (<'))-l co' (a) T (c),
where ®c (^) = Y] ([r ' ? c l]) [y == 5 (a), a€ H]. In fact putting c~1 re = r.r,.,
by Corollary 7.1, re belongs to M / = = M\ Hence, writing m in place
of m (a), we have by definition

(c c^) (a) == GJ' (c-1 ttc) = T (r). co (fc. c~1 me) == -^ (re) T (r). co (c-1 me).

Since, by (a), co (c~1 me) == T (c"1).^ (m) T (c), and T is a representation
of G/, to complete our proof, it is enough to establish, that T {crc~1) == T (r).
This, however, is implied by T [ M^ = I.

(d) Next we show the existence of a continuous homomorphism /
from (Gi) /- into X (K), such that 9,. (a) = L (% (c)) (a) [c€(Gi) / ' ) a€H].
This results from the following series of observations, the verification
of which we leave to the reader, (d i) Setting, for a fixed c € ( G i ) / and
a€ Hy, ^ (a) = ̂  ([c, a]), the map a ̂  ^c (ft) is in X (H/); {d 2) Evidently
^ M/ = 1 and hence, since M / = = H / n M , there is an element ^ of
X (H), uniquely determined by the conditions ^ | H/ ̂  ̂ c M = 1$
(^ 3) The map (Gi) /3ci ->^ is a continuous homomorphism of (Gi)f
in X ( H ) ; {d 4) We have y,.(a) ̂  ̂  (a) (a€H). Hence, finally, there
is a ^p, as in our lemma, with y^ (&) =E '• (/, (c)) (&) [a€(Gi)/ , &€H].

(e) We have thus established the claim of our lemma for a particular
choice, described in (b) above, of co'. From here to prove the general
case it is enough to recall, that if co^ is another projective extension of co
from M to H, we have co77 = i (K) co', where h is some mesurable function
from K == H/M into the circle group. Q. E. D.

Remark 7.1. — Observe that, by what we have just seen, / can be
chosen such, that we have t (rj (a)) (&) == y ([^"S b]) '= ^ ([a, b~1])
[a€(Gi)/ , &€H/] . Since H = H / . M , these conditions determine %
uniquely.

Remark 7.2. — Using the results of [8] and Lemma 7.1 above, one
can prove analogous results for the following situation. Suppose, that G
is a connected Lie group, H, N are closed, connected, invariant subgroups
of G and H3N. We denote by n the Lie algebra of N and assume, that tl
is nilpotent. Let co be an irreducible representation of N corresponding,
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in the sense of Kirillov, to the orbit N^CH' , and such that G,> = G. All
what one has to do is to replace above r^ by ' / j , the latter being the character
of N/, uniquely determined by the condition that d^j == i {f\ n^-) (n^ = Lie
algebra of N/).

We recall (c/*. the start of this section), that to complete the proof of

our Theorem it suffices to show, that S,o/G is countably separated

(i-L = { E $ E€ H, E | M ^ co 0. Since G = Gi H, and G, = (Gi), = (Gi)y M

we have G = (Gi)/ H and thus it is enough to consider So>/(Gi)/. Let
again co' be an (i (a))-1 extension of co to H, and let us put A == (K, a)^
Since H is of type I, A is standard. As in (a) of the proof of Lemma 3.1
(Section 3) we show, that there is a Borel isomorphism 9 from A onto Sco,
such that

?0)=co'(g)^) (7€A).

If a is in (Gi)y, we have a. 9 (A) = 9 (/ (a) /.); hence to attain our goal,
it suffices to prove, that the action of (Gi)/ on A, consisting of multipli-
cation by y, is countably separated. We remark, that K = H/M is
simply connected and reductive. The last observation follows from
[1), to] Cm ([2], Remarque 2, p. 64 and Proposition 6, (a), p. 81). Let us
denote by a € HP (K, T) the cohomology class of aeZ' (K, T), and by K,
the corresponding central extension, by the circle group, of K. Hence Ka
contains a well-determined central 1-torus T, such that K,,/T is isomorphic

to K. A class one representation of Ka is an element of Ka which, when
restricted to T, coincides with the identity map of the circle group onto

A

itself. We denote by Ka the set of all unitary equivalence classes of
class one representations and recall, that there is a canonical Borel isomor-

A
phism between A and K,/. Let us write /' [eHom (K«, T)] for y (c/1.
Lemma 7.2) lifted to K,,. Then to the action of &€(Gi) / on A, it is the

^
multiplication by /' ( & ) € X (K,,) which corresponds on K,,. By what we
saw above concerning K, K,, is a direct priduct DxA<,xA, where D is
semi-simple, A,, central extension, by T, of a vector group, such that Ka
is also factor group of a Heisenberg group according to a discrete subgroup
of its center, and A is a vector group (c/1. the proof of Lemma 9, p. 324

A
in [4]). It is known, that A.a contains a uniquely determined class one
representation. Let ^ and 9 be the restriction of /' onto D and A resp.
Since D is semi-simple, ^ is trivial. In this fashion we conclude, that

there is a Borel isomorphism between K,,, and hence also between S^,
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A A .
and DxA, such that the action of a€(Gi)/ on the former goes over into

multiplication by y (a) € X (A) of the A component of the latter. Since
(Gi)/ is connected, 9 ((Gi)/) = L is a closed subgroup of A. Hence,

finally, S^/G == Sco/(Gi)/ is Borel isomorphic to Dx(A/L) and thus, in
particular, countably separated, completing the proof of our main theorem.
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