Annales scientifiques de l'É.N.S.

ETIENNE DELASSUS

Sur les systèmes algébriques et leurs relations avec certains systèmes d'équations aux dérivées partielles

Annales scientifiques de l'É.N.S. 3^e série, tome 14 (1897), p. 21-44.

http://www.numdam.org/item?id=ASENS_1897_3_14__21_0

© Gauthier-Villars (Éditions scientifiques et médicales Elsevier), 1897, tous droits réservés.

L'accès aux archives de la revue « Annales scientifiques de l'É.N.S. » (http://www.elsevier.com/locate/ansens), implique l'accord avec les conditions générales d'utilisation (http://www.numdam.org/legal.php). Toute utilisation commerciale ou impression systématique est constitutive d'une infraction pénale. Toute copie ou impression de ce fichier doit contenir la présente mention de copyright.

Article numérisé dans le cadre du programme Numérisation de documents anciens mathématiques http://www.numdam.org/

SYSTÈMES ALGÉBRIQUES

ET LEURS

RELATIONS AVEC CERTAINS SYSTÈMES D'ÉQUATIONS

AUX DÉRIVÉES PARTIELLES,

PAR M. ÉTIENNE DELASSUS.

PROFESSEUR AU LYCÉE DE DOUAL.

La méthode que j'ai récemment indiquée (¹) pour la réduction des systèmes différentiels les plus généraix à une forme canonique peut, sans modifications importantes, s'appliquer aux systèmes d'équations algébriques.

Étant donné un système algébrique homogène S, à m variables, on sera conduit à une forme canonique caractérisée par des indices β_1 , β_2 , ..., β_{m-4} . La comparaison avec la méthode donnée par Kronecker (2) montre que ces indices sont précisément les degrés des facteurs de la résolvante générale du système S, de sorte qu'ils font connaître les degrés des diverses multiplicités qui en composent la solution générale.

Cette méthode pour étudier les systèmes algébriques est peu intéressante en elle-même, car on voit facilement qu'elle n'est que celle

⁽¹⁾ Delassus, Extension du théorème de Cauchy aux systèmes les plus généraux d'équations aux dérivées partielles (Annales scientifiques de l'École Normale, 1896).

⁽²⁾ Kronecker, Grundzüge einer Theorie der algebraischen Grössen (Journal de Crelle, t. 92).

de Kronecker, dans laquelle on se serait assujetti à faire toutes les éliminations par le procédé de Sylvester.

Son intérêt réside dans ce fait que les systèmes algébriques et les systèmes différentiels peuvent s'étudier par des méthodes présentant de très grandes analogies, ce qui permet de faire entre ces deux sortes de systèmes des rapprochements intéressants.

Soit Σ un système différentiel à m variables $x_1, x_2, ..., x_m$, à une inconnue z et dont chaque équation $\Phi = 0$ a pour premier membre une fonction linéaire homogène et à coefficients constants des dérivées d'un même ordre de z. Dans toutes les équations Σ , remplaçons chaque terme

$$\frac{\partial^p z}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_m^{\alpha_m}}$$

par le monome correspondant

$$x_1^{\alpha_1}x_2^{\alpha_2}\dots x_m^{\alpha_m};$$

nous obtiendrons un système algébrique homogène S.

On sait depuis longtemps que toute solution de S fournit des solutions de Σ .

En cherchant à réduire Σ et S à leurs formes canoniques, on voit facilement que Σ et S ont forcément les mêmes indices et l'on en tire cette conclusion :

Dès que, par un procédé quelconque, on connaît les degrés des diverses multiplicités qui composent la solution générale de S, on connaît, par là même, le nombre et la nature des fonctions arbitraires qui figurent dans l'intégrale générale de Σ ,

qui montre que l'intégrale générale de Σ est intimement liée à la solution générale de S.

CHAPITRE I.

RÉDUCTION GÉNÉRALE DES SYSTÈMES D'ÉQUATIONS ALGÉBRIQUES A UNE FORME CANONIQUE (1).

Les monomes algébriques et de degré n à m variables présentent de grandes analogies avec les dérivées partielles d'ordre n d'une fonction de m variables.

1. Soient $x_1, x_2, ..., x_m$ les m variables prises dans un ordre déterminé.

Les monomes

$$x_1^{\alpha_1} x_2^{\alpha_2} \dots x_m^{\alpha_m} \qquad (\alpha_1 + \alpha_2 \dots + \alpha_m = n)$$

pourront, par la considération des exposants $\alpha_1, \alpha_2, \ldots, \alpha_m$, se ranger en groupes $G_1, G_2, \ldots, G_{m-1}$.

Ces monomes pourront former des *ensembles canoniques*, que nous désignerons encore par E^n et dont les indices seront les exposants de x_1, \ldots, x_{m-1} dans le dernier terme.

L'ensemble dérivé de E^n sera l'ensemble obtenu en multipliant par x_1, x_2, \ldots, x_m , successivement tous les monomes de E^n .

L'ensemble dérivé d'un ensemble E^n est encore un ensemble canonique. Un ensemble canonique E^n et son ensemble dérivé $(E^n)'$ ont les mêmes indices.

Si, dans une série infinie d'ensembles canoniques

E
$$\mu$$
, E μ +1,

on a toujours $(E^p)' \subseteq E^{p+1}$, il existe certainement un nombre fini n à partir duquel on a indéfiniment $(E^p)' = E^{p+1}$.

¹⁾ Pour toutes les démonstrations des propriétés énoncées dans ce Chapitre, se reporter à la première partie du Mémoire déjà cité. Il suffira d'y remplacer le mot dérivée par le mot monome.

2. Si p équations entières, homogènes et d'ordre n en x_1, x_2, \ldots, x_m , sont résolubles par rapport à p monomes de cet ordre, il est possible, et d'une infinité de façons, de faire un changement linéaire de variables, de telle sorte qu'elles puissent être résolues par rapport aux p premiers monomes.

Ces p premiers monomes constituent un ensemble canonique E^n , nous dirons que le système est résolu par rapport à E^n .

Soit

$$x_i = \lambda_1^i \xi_1 + \lambda_2^i \xi_2 + \ldots + \lambda_m^i \xi_m$$
 $(i = 1, 2, \ldots, m)$

un changement linéaire de variables dans lequel nous considérerons, jusqu'à nouvel ordre, les λ comme des constantes arbitraires.

Soient

$$F_1(x_1, ..., x_m) = 0, ..., F_p(x_1, ..., x_m) = 0$$

les p équations homogènes et d'ordre n. Soient

$$\Phi_1(\xi_1,\ldots,\xi_m)=0, \qquad \ldots, \qquad \Phi_p(\xi_1,\ldots,\xi_m)=0$$

les équations transformées.

Les équations Φ seront résolubles par rapport aux termes d'un ensemble canonique et les expressions obtenues seront des fonctions bien déterminées des autres monomes et des λ ; fonctions qui ne seront identiquement ni infinies ni indéterminées.

3. Nous appellerons déduites d'une équation F = o les équations de la forme

$$x_1^{\alpha_1} x_2^{\alpha_2} \dots x_m^{\alpha_m} \mathbf{F} = \mathbf{0}.$$

Ces déduites sont analogues aux dérivées d'une équation aux dérivées partielles.

Si l'on ne considère que les solutions autres que

$$x_1 = x_2 \dots = x_m = 0$$
,

une équation homogène et d'ordre n, F = o est équivalente à l'ensemble

de ses déduites d'ordre n + n', car, parmi ces déduites, on trouve

$$x_1^{n'} \mathbf{F} = 0,$$

$$x_2^{n'} \mathbf{F} = 0,$$

$$\dots,$$

$$x_m^{n'} \mathbf{F} = 0,$$

et, comme tous les x ne sont pas nuls, on en déduit forcément F = o.

Si donc, dans un système, toutes les équations ne sont pas du même ordre, on ramènera à ce cas en remplaçant chaque équation qui n'est pas de l'ordre maximum μ par l'ensemble de ses déduites d'ordre μ .

Soit S_{μ} le système ainsi obtenu et Σ_{μ} le système transformé. Désignons par $S_{\mu+\mu'}$ le système formé par les déduites d'ordre $\mu+\mu'$ des équations S_{μ} et par $\Sigma_{\mu+\mu'}$ le système formé par les déduites d'ordre $\mu+\mu'$ des équations Σ_{μ} . Le système $\Sigma_{\mu+\mu'}$ sera équivalent au système transformé de $S_{\mu+\mu'}$ et, par suite, sera résoluble par rapport à un ensemble canonique ε_{μ} .

4. Formons les systèmes successifs

$$\Sigma_{\mu}$$
, $\Sigma_{\mu+1}$, ...;

ils seront résolubles par rapport à des ensembles

$$\varepsilon^{l,L}, \quad \varepsilon^{l,L+1}, \quad \ldots,$$

qui satisferont toujours à la condition

$$(\varepsilon^p)' \subseteq \varepsilon^{p+1};$$

car les équations Σ_p , qui sont résolues par rapport aux monomes de Σ^p , donneront des déduites résolues par rapport à tous les monomes de $(\varepsilon^p)'$ et il y en aura en plus des équations d'intégrabilité obtenues en égalant deux expressions d'un même monome de $(\varepsilon^p)'$, et que nous continuerons à appeler ainsi par analogie avec ce qui se passe dans la formation des systèmes d'équations aux dérivées partielles.

Il existera certainement un ordre fini n à partir duquel on aura

$$(\varepsilon^p)' = \varepsilon^{p+1}$$
.

Si ε^n est complet, le système Σ_n ne peut être vérifié qu'en annulant Ann. de l'Éc. Normale. 3° Série. Tome XIV. — JANVIER 1897. 4

tous les monomes d'ordre n, ce qui exige

$$\xi_1 = \xi_2 = \ldots = \xi_m = 0;$$

de sorte que le système proposé S n'admet que la solution

$$x_1 = x_2 = \ldots = x_m = 0.$$

Ce système est donc incompatible.

Supposons que ε^n ne soit pas complet. Les expressions des monomes de ε^n sont des fonctions des autres monomes et des λ ; elles ne sont identiquement ni infinies, ni indéterminées. Ce sont des fonctions linéaires et homogènes de ces monomes et les coefficients sont des fonctions rationnelles des λ .

On pourra fixer numériquement ces λ de façon que leur déterminant ne soit pas nul et qu'aucune de ces fractions rationnelles n'ait un dénominateur nul.

Les λ étant ainsi fixés, le système Σ_n auquel on arrive constitue notre forme canonique générale.

5. Dans le Chapitre suivant, nous verrons que le degré d'indétermination des solutions d'un système dépend uniquement de n, β_1 , β_2 , ..., β_{m-1} , les β étant les indices de ϵ^n .

Il est possible de déterminer tous ces nombres sans être obligé de faire le changement linéaire à coefficients indéterminés qui conduit à des calculs très pénibles.

Considérons les systèmes successifs

$$S_{\mu}$$
, $S_{\mu+1}$, ..., S_{k} .

Soit p_k le nombre des équations de S_k , qui sont linéairement indépendantes. Considérons l'ensemble canonique d'ordre k, qui aurait p_k termes, et désignons par q_k le nombre des termes de son ensemble dérivé.

Tant que l'on aura k < n, on aura

$$p_{k+1} > q_k$$

et pour k = n

$$p_{n+1}=q_n;$$

n se trouvera ainsi déterminé et $\beta_1, \beta_2, \ldots, \beta_{m-1}$ seront les indices de l'ensemble canonique d'ordre n et ayant p_n termes.

CHAPITRE II.

ÉTUDE DE LA FORME CANONIQUE.

1. Forme des identités d'intégrabilité. — Considérons un système canonique S_n et, d'une façon générale, désignons par

$$S_{\alpha_1,\alpha_2,\ldots,\alpha_m} = 0$$

l'équation de S_n, qui est résolue par rapport à

$$x_1^{\alpha_1} x_2^{\alpha_2} \dots x_m^{\alpha_m}$$
.

Désignons, en outre, par β_1 , β_2 , ..., β_{m-1} les indices de E^n et par e^n l'ensemble complémentaire de E^n .

En multipliant par x_m les monomes de e^n , on n'obtient jamais le monome appartenant à $(\mathbb{E}^n)'$.

Il n'en est plus de même si on les multiplie par x_{m-1} .

Le monome

$$x_1^{\beta_1} x_2^{\beta_2} \dots x_{m-1}^{\beta_{m-1}-1} x_m^{\beta_{m+1}},$$

qui forme le premier groupe G_{m-1} de e^n , donnera

$$x_1^{\beta_1} x_2^{\beta_2} \dots x_{m-1}^{\beta_{m-1}} x_m^{\beta_{m+1}},$$

constituant le dernier groupe G_{m-1} de $(E^n)'$. Mais ce monome peut encore s'obtenir en multipliant par x_m le monome

$$x_1^{\beta_1} x_2^{\beta_2} \dots x_{m-1}^{\beta_{m-1}} x_m^{\beta_m},$$

qui forme le dernier groupe G_{m-1} de E^n . On l'obtiendra donc en résolvant l'équation

$$x_m S_{\beta_1 \beta_2 \dots \beta_m} = 0$$
,

et l'expression ainsi obtenue ne contiendra pas d'autres monomes appartenant à $(E^n)'$.

Voyons maintenant la multiplication par x_{m-2} . Les termes de e^n , qui donneront des monomes appartenant à $(E^n)'$, seront de la forme

$$x_1^{\beta_1} x_2^{\beta_2} \dots x_{m-2}^{\beta_{m-2}} x_{m-1}^{\alpha_{m-1}} x_m^{\alpha_m} \qquad (\alpha_{m-1} < \beta_{m-1})$$

ou

$$x_1^{\beta_1}x_2^{\beta_2}\dots x_{m-2}^{\beta_{m-2}-1}x_{m-1}^{\alpha_{m-1}}x_m^{\alpha_m} \qquad (\alpha_{m-1} \geq \beta_{m-1})$$

et proviendront de la seconde portion du groupe G_{m-2} , qui est à cheval sur E^n et e^n , ou du groupe G_{m-2} qui suit immédiatement.

On obtiendra ainsi les monomes

$$x_1^{\beta_1} x_2^{\beta_2} \dots x_{m-2}^{\beta_{m-2}+1} x_{m-1}^{\alpha_{m-1}} x_m^{\alpha_m} \qquad (\alpha_{m-1} < \beta_{m-1}),$$

$$x_1^{\beta_1} x_2^{\beta_2} \dots x_{m-2}^{\beta_{m-2}} x_{m-1}^{\alpha_{m-1}} x_m^{\alpha_m} \qquad (\alpha_{m-1} \ge \beta_{m-1}).$$

Les premiers n'existent que si $\beta_{m-1} \neq 0$. On a alors

$$\beta_1 + \beta_2 + \ldots + \beta_{m-2} + 1 + \alpha_{m-1} + \alpha_m = n + 1,$$

 $\beta_1 + \beta_2 + \ldots + \beta_{m-2} < n,$

ce qui montre que α_{m-1} et α_m ne peuvent pas être simultanément nuls. En divisant ces monomes soit par x_m , soit par x_{m-1} , on obtiendra donc des monomes appartenant à E^n .

Voyons les seconds; si l'on a $\alpha_{m-1} > \beta_{m-1}$, en les divisant par x_{m-1} , on obtiendra sûrement des monomes de E^n . Si l'on a $\alpha_{m-1} = \beta_{m-1}$, on aura sûrement $\alpha_m \neq 0$, car

$$\beta_1 + \beta_2 + \ldots + \beta_{m-2} + \beta_{m-1} + \alpha_m = n + 1,$$

 $\beta_1 + \beta_2 + \ldots + \beta_{m-2} + \beta_{m-1} \le n.$

En divisant par x_m , on obtiendra forcément des monomes de \mathbb{E}^n .

Ces monomes de E^n appartiendront aux deux derniers groupes G_{m-2} du dernier groupe G_{m-3} .

Désignons d'une façon générale par $S_{(p)}$ des équations appartenant aux deux derniers groupes G_p du dernier groupe G_{p-1} , nous voyons que les termes de $(E^n)'$ qui proviennent de termes de e^n par la multiplication par x_{m-2} s'obtiennent en résolvant des équations de la forme

$$x_m S_{(m-2)} = 0$$
 ou $x_{m-1} S_{(m-1)} = 0$;

les premières ne contiennent pas d'autres termes appartenant à $(E^n)'$, mais il n'en est pas de même des secondes; elles peuvent contenir un terme de $(E^n)'$, provenant de la multiplication d'un terme de c^n par x_{m-1} .

On le fera disparaître en considérant une équation de la forme

$$x_{m-1}S_{(m-2)}+CS_{\beta_1,\beta_2,...,\beta_m}=0,$$

C étant une constante convenablement choisie.

En faisant des raisonnements analogues, on verra que les monomes, appartenant à $(E^n)'$ et provenant de la multiplication par x_{m-3} de monomes de e^n , s'obtiendront en résolvant des équations de l'une des formes

$$x_m S_{(m-3)} = 0,$$
 $x_{m-1} S_{(m-3)} + C x_m S_{\beta_1, \beta_2, ..., \beta_m} = 0,$
 $x_{m-2} S_{(m-3)} + x_{m-1} \Sigma C S_{(m-2)} + C' x_m S_{\beta_1, \beta_2, ..., \beta_m} = 0,$

qui ne contiennent aucun autre monome appartenant à $(E^n)'$. Et ainsi suite.

Considérons un monome appartenant à $(E^n)'$. Il peut provenir de plusieurs monomes de E^n . Si S' et S' sont deux équations dont il provient, on aura une équation de la forme

$$x_n S' - x_n S'' = 0$$

qui devra se réduire à une identité en vertu des autres équations. En y remplaçant par les valeurs obtenues précédemment les monomes de $(E^n)'$ qui proviennent de la multiplication des monomes de e^n par x_p ou x_q et en supposant p > q, on arrivera ainsi à des identités de la forme

$$x_p S' - x_q S'' + \Sigma P_{p+1} S_{(p)} + \Sigma P_{p+2} S_{(p+1)} + ... + \Sigma P_{m-1} S_{(m-2)} + P_m S_{\beta_1, \beta_2, ..., \beta_m} = 0,$$

où P_{γ} représente un polynome homogène du premier degré et à coefficients constants en x_m , x_{m-4} , ..., x_{γ} .

2. Existence des solutions d'un système canonique. — Admettons que tout système canonique à m-1 variables possède des solutions où ces variables ne sont pas toutes nulles.

Reprenons notre système canonique S_n aux m variables x_1, x_2, \ldots, x_m et aux indices $\beta_1, \beta_2, \ldots, \beta_{m-1}$.

Posons

$$x_m = y x_{m-1};$$

le système S_n se transformera en un nouveau système Σ_n formé par des équations homogènes en $x_1, x_2, \ldots, x_{m-1}$ et contenant en outre un paramètre arbitraire γ .

Considérons l'ensemble canonique ε^n formé par des monomes en x_1 , x_2, \ldots, x_{m-1} et qui a pour indices

$$\beta_1, \beta_2, \ldots, \beta_{m-2},$$

et désignons par ε^n son ensemble complémentaire.

On voit immédiatement que tous les monomes en $x_1, x_2, \ldots, x_{m-1}, x_m$ qui appartiennent à un même groupe G_{m-2} donnent, par la transformation considérée, le même monome en $x_1, x_2, \ldots, x_{m-1}$.

Tout monome de \mathbb{E}^n donnera un monome de ε^n , et réciproquement, tout monome de ε^n proviendra d'un monome de \mathbb{E}^n .

Il n'existe pas tout à fait la même correspondance entre e^n et ε^n .

Puisque les transformés des monomes de E" appartiennent toujours à ε ", les monomes de ε " ne peuvent provenir que de termes de ε "; mais la réciproque n'est pas vraie; les termes de ε " donnent en général des termes de ε ", mais il y a exception pour les termes de ε " qui appartiennent au groupe G_{m-2} qui est à cheval sur E" et ε "; tous les termes de ce groupe ont le même transformé qui, étant transformé d'un terme de E", appartient certainement à ε ".

Rangeons les équations S_n en groupes G_{m-2} .

Deux équations S' et S' appartenant à un même groupe G_{m-2} ont des premiers membres qui ne différent que par les exposants de x_{m-4} et x_m . En en prenant deux consécutives, elles fourniront une identité d'intégrabilité

$$x_{m-1}S' - x_mS'' + Cx_mS_{\beta_1,\beta_2,...,\beta_m} = 0,$$

qui restera encore une identité après la transformation. On obtiendra ainsi

$$x_{m-1}\Sigma'-yx_{m-1}\Sigma''+Cyx_{m-1}\Sigma_{\beta_1,\beta_2,...,\beta_m}=0,$$

ou plus simplement

$$\Sigma' - \gamma \Sigma'' + C \gamma \Sigma_{\beta_1, \beta_2, ..., \beta_m} = 0.$$

Désignons par $f_1, f_2, ..., f_k$ les équations S du dernier groupe G_{m-2} , en commençant par la dernière, et par $\varphi_1, \varphi_2, ..., \varphi_k$ les équations transformées. Nous aurons les identités

$$y \varphi_2 = (1 + C_1 y) \varphi_1,$$
 $y \varphi_3 = \varphi_2 + C_2 y \varphi_1,$
 $\dots,$
 $y \varphi_k = \varphi_{k-1} + C_{k-1} y \varphi_1.$

De ces identités on déduit immédiatement que $\varphi_1, \varphi_2, \ldots, \varphi_k$ sont respectivement divisibles par $x^{k-1}, x^{k-2}, \ldots, x^1, x^0$, et, en posant en général

$$\varphi_i = x^{k-1} \psi_i,$$

on aura

$$\psi_i := \psi_1(1 + C_1 y + C_2 y^2 + \ldots + C_{k-1} y^{k-1});$$

toutes les équations provenant du dernier groupe G_{m-2} se réduisent donc à l'équation unique

$$\psi_1 = \alpha$$
,

qu'on obtient en prenant la transformée de la dernière équation S^n et la divisant par \mathcal{Y}^{β_m} , puisque l'on a évidemment

Soient maintenant $\theta_1, \theta_2, \ldots, \theta_q$ les équations successives d'un groupe G_{m-2} quelconque. Nous aurons les identités

$$\begin{aligned}
\theta_2 - y \theta_1 &+ C_1 y \varphi_1 &= 0, \\
\theta_3 - y \theta_2 &+ C_2 y \varphi_1 &= 0, \\
&\dots &\dots &\dots &\dots \\
\theta_q - y \theta_{q-1} + C_{q-1} y \varphi_1 &= 0.
\end{aligned}$$

On en déduira en général

$$\theta_i = y^{i-1}\theta_1 + y \varphi_1(C_{i-1} + C_{i-2}y + \ldots + C_1y^{i-2}),$$

et par conséquent toutes ces équations se réduiront, en vertu de $\psi_4 = o$, à l'équation unique

$$\theta_1 = 0$$
.

Je dis que le système Σ_n ainsi obtenu est résoluble effectivement par rapport aux monomes de ε^n .

En effet les équations Σ_n qui proviennent des groupes G_{m-2} autres que le dernier seront immédiatement résolues par rapport à tous les monomes de ε^n autres que le dernier, et les expressions obtenues pourront contenir ce dernier monome en même temps que ceux de ε^n . Il suffit alors de montrer que l'équation ψ_1 détermine ce monome.

La dernière équation S_n est de la forme

$$x_1^{eta_1}x_2^{eta_2}\dots x_{m-1}^{eta_{m-1}}x_m^{eta_m} = \sum_{i=1}^{i=eta_{m-1}} \mathbb{C}_i x_1^{eta_1}x_2^{eta_2}\dots x_{m-1}^{eta_{m-1}-i}x_m^{eta_{m}+i} + \Lambda,$$

A désignant une expression formée avec les monomes des groupes G_{m-2} qui suivent dans e^n .

La transformée sera

$$y^{\beta_m}x_1^{\beta_1}\dots x_{m-1}^{\beta_{m-1}+\beta_m}=y^{\beta_m}x_1^{\beta_1}\dots x_{m-1}^{\beta_{m-1}+\beta_m}\sum_{i=1}^{i=\beta_{m-1}}\mathbb{C}_iy^i+\mathbb{B},$$

B désignant une expression formée avec les monomes de ε ⁿ.

On sait *a priori* que l'équation ainsi obtenue est divisible par y^{β_m} , de sorte que l'équation ψ_i se réduit à

$$x_1^{\beta_1} \dots x_{m-1}^{\beta_{m-1}+\beta_m} \left(1 - \sum_{i=1}^{i=\beta_{m-1}} C_i y^i \right) = B',$$

B' ne contenant que des monomes de ε'' . Le coefficient de $x_1^{\beta_1} \dots x_{m-1}^{\beta_{m-1}+\beta_m}$ ne peut pas être nul identiquement, de sorte que, si on laisse γ arbitraire, cette équation sera résoluble effectivement par rapport au dernier monome de ε'' .

Supposons que ε^n ne soit pas complet, c'est-à-dire que $\beta_1, \beta_2, \ldots, \beta_{m-2}$ ne soient pas tous nuls; je dis que Σ^n est canonique.

Pour le démontrer, nous allons comparer les systèmes S_{n+1} et Σ_{n+4} . Toute transformée d'une équation de S_{n+4} est évidemment une équation Σ_{n+4} et toute équation de Σ_{n+4} peut s'obtenir en faisant la transformation dans une équation de S_{n+4} convenablement choisie; il en résulte que le nombre des équations distinctes de Σ_{n+4} sera rigou-

5

reusement le nombre de groupes G_{m-2} qui se trouvent dans S_{n+1} , c'est-à-dire qu'il y a de termes dans l'ensemble transformé de $(E^n)'$.

(E'')' ayant $\beta_1, \beta_2, \ldots, \beta_{m-1}$ pour indices, ceux de l'ensemble transformé seront $\beta_1, \beta_2, \ldots, \beta_{m-2}$. Ces indices étant précisément ceux de ε'' , il en résulte que l'ensemble transformé de (E'')' n'est autre que $(\varepsilon'')'$.

 Σ_{n+1} a donc autant d'équations distinctes qu'il y a de termes dans $(\varepsilon^n)'$ et cela suffit pour démontrer que Σ_n est canonique.

Supposons en dernier lieu que ε^n soit complet, c'est-à-dire que l'on ait

$$\beta_1 = \beta_2 = \ldots = \beta_{m-2} = 0.$$

L'équation $\psi_i = 0$ se réduit ici à

$$x_{m-1}^n\left(1-\sum_{i=1}^{i=eta_{m-1}}\mathbb{C}_iy^i
ight)=0.$$

Si on laisse y arbitraire, elle donnera $x_{m-4} = 0$ et les autres équations de Σ_n montreront que toutes les autres variables doivent être nulles. Il y a donc incompatibilité.

Mais déterminons y par l'équation

$$1 - \sum_{i=1}^{i=\beta_{m-1}} C_{i,i} \mathcal{V}^i = 0,$$

l'équation $\psi_i = 0$ se réduira à une identité et le système Σ_n sera résolu par rapport à un ensemble canonique ε_i^n à m-1 variables ayant pour indices

La dernière équation de Σ_{n+4} étant une déduite de ψ_i = o se réduira aussi à une identité, de sorte que Σ_{n+4} aura un nombre d'équations distinctes au plus égal au nombre des termes d'un ensemble canonique ε_i^{n+1} ayant pour indices

Cet ensemble ayant les mêmes indices que ε_i^n n'est autre que $(\varepsilon_i^n)'$ et cela suffit pour démontrer que Σ_n est canonique.

Le raisonnement précédent suppose essentiellement que y a une valeur finie. Il est donc en défaut si β_1 , β_2 , ..., β_{m-2} étant tous nuls, les C_i le sont également.

Reprenons alors le système S_n . Les équations du dernier groupe G_{m-2} se réduisent à

$$x_{m-1}^n = 0, x_{m-1}^{n-1} x_m = 0, \dots, x_{m-1}^{\beta_{m-1}} x_m^{\beta_m} = 0$$

et exigent par suite que l'on ait $x_{m-1} = 0$.

Faisons alors $x_{m-1} = 0$ dans toutes les équations de S_n ; toutes celles du dernier groupe G_{m-2} se réduiront à des identités et les identités, dont on s'est déjà servi, et qui existent entre deux équations consécutives d'un même groupe G_{m-2} , montrent que, parmi les équations d'un même groupe G_{m-2} , la dernière seule ne se réduira pas à une identité. Un raisonnement analogue à celui qui a été fait dans le cas précédent montrera que le système en $x_1, x_2, \ldots, x_{m-2}, x_m$ ainsi obtenu est canonique.

Puisque, dans tous les cas, on est ramené à un système canonique à m-1 variables qui, par hypothèse, admet des solutions où ces m-1 variables ne sont pas toutes nulles, le système proposé à m variables admet certainement des solutions autres que

$$x_1 = x_2 = \ldots = x_m = 0.$$

On est donc ramené à démontrer la propriété pour les systèmes canoniques à deux variables. Ces systèmes sont composés d'une seule équation, de sorte que, dans ce cas particulier, le théorème général se réduit au théorème classique de d'Alembert. Donc :

Tout système canonique admet des solutions où les inconnues ne sont pas toutes nulles.

3. La résolvante générale de Kronecker. — Considérons un système d'équations homogènes à m variables. Remplaçons-le par un système équivalent dont toutes les équations seront du même degré et faisons, pour éviter des cas particuliers, le changement linéaire de variables le plus général.

Soient

$$F_1(x_1, ..., x_m) = 0, F_2(x_1, ..., x_m) = 0, ...$$

ces équations.

Elles peuvent avoir un facteur commun

$$P_m(x_1,\ldots,x_m).$$

En le supprimant, on obtiendra

$$\mathbf{F}'_1(x_1,\ldots,x_m)=0, \quad \mathbf{F}'_2(x_1,\ldots,x_m)=0, \ldots;$$

formons les deux combinaisons

$$U_1 F'_1 + U_2 F'_2 + \dots = 0,$$

 $V_1 F'_1 + V_2 F'_2 + \dots = 0.$

Entre ces deux équations, éliminons x_i , nous obtiendrons une équation

$$\Phi(x_2, ..., x_m, \mathbf{U}_1, ..., \mathbf{V}_1, ...) = 0,$$

qui sera homogène en x_2, \ldots, x_m . En annulant les coefficients de termes en U et V, nous arriverons à un système

$$G_1(x_2,\ldots,x_m)=0, \qquad G_2(x_2,\ldots,x_m)=0,$$

qui exprimera les conditions nécessaires et suffisantes pour que les équations F', considérées comme des équations en x_1 , aient une solution commune.

On traitera les équations G, qui sont à m-1 variables, comme on a traité les équations F, et l'on arrivera à trouver, pour chacun des systèmes qu'on obtiendra successivement, un facteur P qui pourra avoir le degré o.

Kronecker appelle résolvante générale l'équation

$$P_m(x_1,\ldots,x_m)P_{m-1}(x_2,\ldots,x_m)\ldots P_3(x_{m-2},x_{m-1},x_m)P_2(x_{m-1},x_m)=0;$$

à chaque facteur P_q de degré autre que o correspondent des solutions dépendant de q-2 paramètres arbitraires, en ne tenant pas compte de celui qui provient de l'homogénéité des équations.

Si l'on prend le langage géométrique, on peut dire que, à un facteur P_q de degré γ_q , correspond, dans l'intersection des multiplicités

algébriques considérées, en équations homogènes dans l'espace à m-1 dimensions, une multiplicité I_{q-2} à q-2 dimensions et qui est de degré γ_q .

4. Signification géométrique des indices d'un système canonique. — Soient

$$Φ1 = A0 x1μ + ... + Aμ = 0,$$
 $Φ2 = B0 x1μ + ... + Bμ = 0$

deux équations homogènes d'ordre μ , dans lesquelles on a mis x_i en évidence. Pour éliminer x_i par la méthode de Sylvester, on considère les équations

$$x_1^i \Phi_1 = 0$$

 $x_1^i \Phi_2 = 0$ $(i = 0, 1, ..., \mu - 1).$

On y considère toutes les puissances de x_i comme des inconnues distinctes et, en prenant le déterminant de ces équations linéaires, on a le résultant

Si l'on appelle $C_1, C_2, \ldots, C_p, D_4, D_2, \ldots, D_p$ les mineurs relatifs à la dernière colonne, lesquels sont des polynomes en x_2, \ldots, x_m , on aura

$$\mathbf{R} = \Phi_1 \sum_{i=1}^{i=\mu} \mathbf{C}_i x_1^{\mu-i} + \Phi_2 \sum_{i=1}^{i=\mu} \mathbf{D}_i x_1^{\mu-i},$$

ce qui montre que R est une combinaison linéaire des déduites de Φ_* en des déduites de Φ_* .

Supposons maintenant que l'on ait

$$\Phi_1 = U_1 F_1 + U_2 F_2 + \dots,$$

 $\Phi_2 = V_1 F_1 + V_2 F_2 + \dots$

les U et V étant des constantes arbitraires.

Dans l'expression de R, Φ_i et Φ_2 seront des polynomes en U et V; il en sera de même des C_i et D_i , de sorte que le coefficient d'un terme quelconque de la forme U^iV^k sera de la forme

les Q_i étant des polynomes en x_1, x_2, \ldots, x_m ; et l'on sait, a priori, que toutes les puissances de x_1 disparaîtront d'elles-mêmes. Donc, toutes les équations obtenues en écrivant que R = 0 est une identité relativement aux U et V sont des combinaisons linéaires des déduites des équations F.

Reprenons maintenant le système canonique S_n , ayant pour indices $\beta_1, \beta_2, \ldots, \beta_{m-1}$ et provenant du système initial S_{μ} composé des équations

$$\mathbf{F}_1 = \mathbf{o}, \quad \mathbf{F}_2 = \mathbf{o}, \quad \dots$$

ayant toutes le même degré p.

Si les équations F ont un facteur commun qui, à cause du changement indéterminé de variables, contient certainement toutes ces variables, on ne pourra jamais trouver des combinaisons linéaires des déduites, ne contenant pas x_1 , puisque le système admet des solutions dans lesquelles on peut prendre arbitrairement x_2, \ldots, x_m . De là résulte immédiatement que l'on aura

La réciproque est vraie, car, si les équations F n'avaient pas de facteur commun, les deux équations

$$\Phi_1 = \sum U F = o,$$

$$\Phi_2 = \sum V F = o$$

n'auraient pas de facteur commun et, en éliminant x_i entre elles, on tomberait, en appliquant le procédé de Kronecker, sur des équations F qui ne seraient pas des identités et qui seraient des combinaisons linéaires de déduites de F; donc Σ_n contiendrait des équations dans lesquelles ne figurerait pas x_i et, par suite, on aurait

$$\beta_1 = 0$$
.

Ce facteur $P_m(x_1, \ldots, x_m)$ de degré γ_m contient certainement un

terme en $x_4^{\gamma_m}$, car, dans Σ_n , la première équation est de degré n et contient le terme x_4^n . On peut évidemment supposer que le coefficient de $x_4^{\gamma_m}$ dans P_m est l'unité.

De ce que la dernière équation de Σ_n contient x_i à la puissance β_i résulte immédiatement que l'on a

$$\gamma_m \leq \beta_1$$
.

Je vais démontrer que, si l'on divise par P_m toutes les équations du système Σ_n , on obtient un nouveau système $S_{n-\gamma_m}$, qui est encore canonique.

Remarquons d'abord que, si l'ensemble E^n est canonique et a pour indices

$$\beta_1, \beta_2, \ldots, \beta_{m-1},$$

en divisant tous ses termes par $x_{+}^{\gamma_m}$, on a un nouvel ensemble $E^{n-\gamma_m}$, qui est encore canonique et qui a pour indices

$$\beta_1 - \gamma_m, \quad \beta_2, \quad \ldots, \quad \beta_{m-1}.$$

Désignons par $M_{n-\beta_i}$ les monomes en x_2, \ldots, x_m et de degré $n-\beta_i$ qui, multipliés par $x_4^{\beta_i}$, donnent des termes de E^n , et par $M'_{n-\beta_i}$ les monomes analogues fournissant des termes de e^n .

Toutes les équations du dernier groupe G_4 de Σ_n seront de la forme

$$x_1^{\beta_1} \mathbf{M}_{n-\beta_1} = \sum \mathbf{C} x_1^{\beta_1} \mathbf{M}'_{n-\beta_1} + \Lambda$$

A désignant un ensemble de termes qui, relativement à x_1 , sont de degré inférieur à β_4 .

En divisant par P, on aura des équations

$$x_1^{\beta_1-\gamma_m}(\mathbf{M}_{n-\beta_1}-\Sigma \mathbf{C}\mathbf{M}'_{n-\beta_1})+\mathbf{B}=\mathbf{0},$$

B désignant un ensemble de termes qui, en x_i , sont de degré inférieur à $\beta_i - \gamma_m$. Les équations ainsi obtenues seront donc résolubles par rapport à tous les termes

 $x_1^{\beta_1-\gamma_m}\mathbf{M}_{n-\beta_1}$

c'est-à-dire par rapport à tous les monomes du dernier groupe G, de $E^{n-\gamma_m}$.

Considérons maintenant l'avant-dernier groupe G_1 de Σ_n . Toutes les équations seront de la forme

$$x_1^{\beta_1+1}\mathbf{M}_{n-\beta_1-1}-\mathbf{A}=\mathbf{0},$$

 $M_{n-\beta_1-1}$ désignant successivement tous les monomes en x_2, \ldots, x_m de degré $n-\beta_1-1$ et A étant un ensemble de termes qui, en x_1 , sont au plus de degré β_1 .

Après division, on obtiendra

$$x_1^{\beta_1 - \gamma_m + 1} \mathbf{M}_{n - \beta_1 - 1} - \mathbf{B} = 0,$$

B étant un ensemble de termes qui, en x_i , sont au plus de degré $\beta_i - \gamma_m$. Ces équations seront donc résolubles par rapport à tous les monomes de la forme

$$x_1^{\beta_1-\gamma_m+1}M_{n-\beta_1-1}$$

c'est-à-dire à tous les monomes de l'avant-dernier groupe G_4 de $E^{n-\gamma_m}$. En continuant ainsi, on verra que les équations $S_{n-\gamma_m}$ sont résolubles par rapport à tous les monomes de $E^{n-\gamma_m}$.

On remarque que les déduites des équations $S_{n-\gamma_m}$ s'obtiennent forcément en divisant par P_m les déduites des équations S_n , c'est-à-dire les équations S_{n+1} . Il en résulte, par le raisonnement précédent, que les déduites des équations $S_{n-\gamma_m}$ seront résolues par rapport à tous les monomes d'un ensemble canonique d'ordre $n-\gamma_m+1$, ayant pour indices

$$\beta_1 - \gamma_m, \beta_2, \ldots, \beta_{m-1},$$

et qui, par suite, est l'ensemble dérivé de $\mathbb{E}^{n-\gamma_m}$.

Le système $S_{n-\gamma_m}$ est donc canonique.

Mais, par hypothèse, les équations $S_{n-\gamma_m}$ n'ont plus de facteur commun; donc le premier indice de ce système doit être nul, ce qui prouve que l'on a

$$\gamma_m = \beta_1$$
.

Dans le système $S_{n-\beta_1}$ ainsi obtenu, et ayant pour indices

$$0, \beta_2, \ldots, \beta_{m-1},$$

séparons les équations qui ne contiennent pas x_i ; elles formeront un

nouveau système à m-1 variables, qui sera canonique et aura pour indices

$$\beta_2, \ldots, \beta_{m-1}.$$

Ce système sera précisément le système

$$G_1(x_2, ..., x_m) = 0, \qquad G_2(x_2, ..., x_m) = 0, \qquad ...,$$

déjà considéré à propos de la résolvante de Kronecker, qui aurait été mise sous forme canonique.

En reprenant les raisonnements précédents, on pourra en déduire que

$$\gamma_{m-1}=\beta_2$$

et ainsi de suite. On aura finalement les égalités

$$\gamma_m = \beta_1, \quad \gamma_{m-1} = \beta_2, \quad \ldots, \quad \gamma_3 = \beta_{m-2}, \quad \gamma_2 = \beta_{m-1}.$$

Nous obtenons donc cette propriété:

Les indices d'un système algébrique sont les degrés des facteurs de la résolvante générale de ce système,

ou:

Si, dans l'espace à m-1 dimensions, les surfaces forment un système ayant β_1 , β_2 , ..., β_{m-1} pour indices, leur intersection complète 1 se compose :

en convenant de désigner par multiplicité à o dimension et de degré β_{m-1} un système de β_{m-1} points.

CHAPITRE III.

SUR CERTAINS SYSTÈMES D'ÉQUATIONS AUX DÉRIVÉES PARTIELLES.

Soit Σ un système d'équations aux dérivées partielles à une seule inconnue z, aux m variables $x_1, x_2, ..., x_m$, et dont toutes les équations sont linéaires, homogènes et à coefficients constants.

Dans toutes ces équations, remplaçons chaque dérivée

$$\frac{\partial^p z}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_m^{\alpha_m}}$$

par le monome correspondant

$$x_1^{\alpha_1}x_2^{\alpha_2}\dots x_m^{\alpha_m}$$
.

Nous formerons ainsi un système algébrique S à m inconnues homogènes. Nous appellerons S le transformé algébrique de Σ .

On a remarqué depuis longtemps que, si

$$a_1, a_2, \ldots, a_m$$

est une solution du système S,

$$f(a_1x_1 + a_2x_2 + \ldots + a_mx_m)$$

est une solution du système Σ , f étant une fonction arbitraire. Il y a, entre ces deux systèmes, des relations beaucoup plus étroites, que nous allons mettre en évidence.

A tout terme $\frac{\partial^p z}{\partial x_1^{\alpha_1} \partial x_2^{\alpha_2} \dots \partial x_m^{\alpha_m}}$ de Σ correspond un terme $x_1^{\alpha_1} x_2^{\alpha_2} \dots x_m^{\alpha_m}$ de S. Si, dans Σ et S, on fait simultanément le changement

$$x_i = \lambda_1^i \xi_1 + \lambda_2^i \xi_2 + \ldots + \lambda_m^i \xi_m \quad (i = 1, 2, \ldots, m),$$

les équations S resteront encore les transformées algébriques des équa-Ann. de l'Éc. Normale. 3º Série. Tome XIV. — Février 1897. 42

tions Σ , et si l'on désigne par Σ_j et \mathbf{S}_j deux équations correspondantes, l'équation

ÉT. DELASSUS.

$$\frac{\partial}{\partial x_i} \Sigma_j = 0$$

aura pour transformée algébrique

$$x_i S_i = 0$$
.

Il résulte immédiatement de ces remarques que si l'on fait la réduction de Σ à sa forme canonique Σ_n par le procédé indiqué dans le Mémoire déjà cité, puis celle de S à sa forme canonique $S_{n'}$, comme il a été expliqué dans le premier Chapitre du Mémoire actuel, le système $S_{n'}$ sera le transformé algébrique du système Σ_n .

De là on conclut immédiatement:

Un système Σ et son transformé algébrique S ont toujours les mêmes indices.

Soient $\beta_1, \beta_2, ..., \beta_{m-1}$ ces indices.

Nous avons vu que ces indices déterminent complètement la nature de l'intersection des multiplicités S, et, d'autre part, nous savons, par le théorème de Cauchy étendu aux systèmes différentiels les plus généraux, que le système Σ , qui ne peut pas être incompatible, a une intégrale générale qui contient :

β_1 fonctions	arbitraires	de m - r	variables,
β_2	»	m-2	»
	• • • • • • • • • • • • • • • • • • • •		,
β_{m-1}))	1	. ,,,

et, en plus, un nombre limité de constantes arbitraires.

En comparant ces deux résultats, nous allons arriver aux propriétés que nous avions en vue. Supposons d'abord que l'on ait

$$\beta_1 = \beta_2 = \ldots = \beta_{m-1} = 0;$$

c'est la condition nécessaire et suffisante pour que S soit incompatible, c'est-à-dire admette la solution unique Mais c'est en même temps la condition nécessaire et suffisante pour que l'intégrale générale de Σ dépende seulement d'un nombre limité de constantes arbitraires. Dans ce cas, les équations S_n s'obtiendront en égalant à o tous les monomes d'ordre n; par suite les équations d'ordre n de Σ_n s'obtiendront en annulant toutes les dérivées d'ordre n de z.

z sera donc un polynome entier en x_1, x_2, \ldots, x_m . En y considérant les coefficients comme des constantes arbitraires et écrivant que les équations Σ sont vérifiées identiquement, on aura entre ces coefficients des relations linéaires. Nous pouvons, par suite, énoncer cette propriété:

La condition nécessaire et suffisante pour que le système Σ ait une intégrale générale dépendant seulement d'un nombre limité de constantes arbitraires est que le système algébrique S soit incompatible.

Dans ce cas, l'intégrale générale de Σ est de la forme

$$a_1 P_1 + a_2 P_2 + \ldots + a_q P_q$$

les a étant des constantes arbitraires et les P étant des polynomes entiers en x_1, x_2, \ldots, x_m .

Supposons maintenant que ce système algébrique S soit compatible, c'est-à-dire que les β ne soient pas tous nuls.

Supposons, par exemple, que l'on ait

$$\beta_i \neq 0$$
.

Désignons par I l'intersection totale des multiplicités S et par σ l'intégrale générale de Σ .

La condition nécessaire et suffisante pour qu'il y ait dans I une multiplicité I_{m-i-4} de degré β_i est que le $i^{\text{ème}}$ indice de S ait pour valeur β_i . C'est aussi la condition nécessaire et suffisante pour que, dans σ , figurent β_i fonctions arbitraires de m-i variables. Donc :

La condition nécessaire et suffisante pour que σ contienne β_i fonctions arbitraires de m — i variables est que I contienne une multiplicité I_{m-i-1} de degré β_i .

Nous pouvons alors énoncer le théorème général suivant :

La condition nécessaire et suffisante pour que l'intégrale générale d'un système Σ dépende de

$$eta_1$$
 fonctions arbitraires de $m-1$ variables, eta_2 » $m-2$ » \dots β_{m-1} » 1 »

et d'un nombre limité de constantes arbitraires est que la solution générale du système algébrique S se compose :

On peut remarquer que si I contient une multiplicité I_{m-2} , le système Σ peut se simplifier. En effet, dans ce cas, les équations S ont un facteur commun $R(x_1, x_2, ..., x_m)$. Désignons par $\rho(z)$ l'expression linéaire dont R est la transformée algébrique.

En prenant $z' = \rho(z)$ comme nouvelle inconnue, on sera ramené à un nouveau système Σ' qui aura pour indices

o,
$$\beta_2$$
, ..., β_{m-1}

et dont l'intégrale générale ne contiendra aucune fonction arbitraire de m-1 variables. Connaissant z', on aura z en intégrant l'équation

$$\rho(z) = z',$$

intégration qui introduira des fonctions arbitraires de m-1 variables.