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ON SOME SERIES OF REPRESENTATIONS RELATED TO SYMMETRIC SPACES.

by

H. Schlichtkrull

In this paper, the series of representations constructed by
M. Flensted-Jensen in [3] and [4] are considered. The main results of
[8), on lowest K-types and Langlands parameters of the representa-
tions of [3] in the equal rank case, are generalized to the other
series as well. The representations are identified with subquotients
of parabolically induced representations. The parabolic subgroup we
use, P = MAN, is cuspidal, and moreover, the symmetric space
M/MNH satisfies the equal rank condition. The inducing representa-
tion ™ ® v ® 1 of MAN is given by a Flensted-Jensen representa-
tion 7 of M, and thus the determination of Langlands parameters
is reduced to Flensted-Jensen representations of M. Further, these
results imply unitarity of the representations under certain condi-
tions (see Theorem 4).

Since the proofs of some of our results are rather straight-
forward generalizations of those of [8], we do not give all the de-
tails in these cases, but refer to [8] in stead.

Our results generalize some results of G. Olafsson [5], [6] (in
fact, Theorem 1 and 3 below were obtained before we received [5] and
[6]).

The author expresses his gratitude to the organizers of the
conference for the invitation to participate.
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4. SCHLICHTKRULL -

1. Notation. Let G/H be a semisimple symmetric space with G and
H connected and linear. Let 1T be the corresponding involution, and
let 6 be a commuting Cartan involution. Denote by g = h @ ¢ and
g = k ® p the corresponding decompositions of the Lie algebra g,
and let K be the maximal compact subgroup of G with Lie algebra

k. Let Gy denote the analytic subgroup of G with Lie algebra

9, = knh + pngqg .
Choose a 6-invariant maximal abelian subspace ao of ¢, and

*
put ¢t = a®nk . Let aAc ag be the set of roots of a® in 9¢

and choose a positive system 8% which is 8-compatible, i.e.
o € A" ana alt # 0 implies 6a € a¥. Put o = o(a%) =
3 (i spha € al” .

Let £ = gt be the centralizer of % in g, and let T
denote the orthocomplement of t in £ (w.r.t. the Killing form
of g) . Choose 12 maximal abelian in fl\k ng , then 2 =1+1
is maximal abelian in kNgqg. Let Ac = A(t¢,h¢), A =

c,1 .
{a € a. | ol * ?) and A = {a € a laje = 0}. Put Ac,1 =
{GEACIBBGA:it

2
’
= u;t} and choose a positive system AC 2
’
for the root system A ' then &' = a' uat is a positive
c,2 +C 4 c,2 4 ~
system for Ac . Define Pe = o(AC) ==z 4 (dim k¢)u € it* and
p = pat ) similarly. Notice that aeAc
c,1 c,1
Dc,1 | t does not vanish in general, but at least we have:
2

2

Lemma 1. <°c,1'°> =0 fon all a € Ac,2'

Proof: Let a € A and denote by Sq reflection in a . Then

c,2’
su(A; 1) = A; 1 and hence the lemma. o
’ ’
Ot ~% A
For each X € ap we define vy € t¢ by the following
equations:
(1) (by*20 )1, = (A+p)|, and (“X‘2DC,1)|12 =0.

2. Flensted-Jensen's representations. Let ¢ > 0 be the smallest

possible constant such that [4] Theorem 1 holds, and define

*
Acag‘ to be the set of those X € ag satisfying the following
conditions (2) and (3):
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SERIES OF REPRESENTATIONS

(2) Re<)A,a> > ¢ for all a € a* with aj, =0
¢ <y, ,a>
A’ + +
( T‘,—)—EZ for all GEAC

(3) y
[ ux(x) €a2 for X € t, exp 2miX = e .

For each ) € A Flensted-Jensen [4] defines a function
wx € C”(G/H) by an integral formula (for the dual function on the
dual symmetric space GO/HO), and the following properties hold for

these functions:

a) The representation of K generated by wk is finite
dimensional and irreducible. Denoting by GA the contragredient of
this representation of K, éx is spherical for K/KNH and has
highest weight My .

(We have not included Condition (9) of [4], since it is redundant
by Lemma 1).

b) wx is a joint eigenfunction for U(g)K acting on C’(G/H)
from the left. The eigenvalues are determined as follows: There is a
unique homomorphism y: U(g)K - U(ao) such that for u € U(g)K:

= a0 0
(4) u-y(u) € (Lnk)c U(g) + U(g) (hc +n)
0 a
where n = I gdn. Then uy, = y(u) (=A=p)y, .
a€A‘ ¢ A A

Remark. In the sequel we use only properties a) and b) of the func-
tions wx . If ¥, can be defined (e.g. by analytic continuation

in X) , such that a) and b) still hold for some X which does

not satisfy (2), then our results can be extended to these parameters

as well.

From a) and b) it follows by [2] Proposition 9.1.10 (iii) that
the K-type u; has multiplicity one in the g-module generated by

wk . Consequently, this module has a unique irreducible quotient TA
which contains ux.

If t is maximal abelian in kNg, then wx is the same as
the function defined in [3]. In this case ¢ = 0, but (2) is not
necessary for defining wX . In fact (2) is not serious since one
can prove that then wsk = W\ for all elements s from the Weyl
group of the root system {a € & | °|t = 0}. The series of (g,K)-
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H. SCHLICHTKRULL

modules Tx is in this case called the fundamental series for the

symmetric space G/H.

If we can choose ao such that & = ao , we say that G/H
satisfies the equal rank condition. If furthermore <X,a> > 0 for
all a € a* B then wx is square integrable with respect to invari-
ant measure on G/H, and hence wx generates a unitary irreducible
representation “XG of G, whose Harish-Chandra module is TX.
This was proved under stronger assumptions on A in [3], and sub-
sequently proved in general by T . Oshima (unpublished, cf.
however [10] and [131]).

3. Lowest K-types. Let L = Gt ’ then L is connected and has Lie

algebra £ . Put n, =t . g; and n, = b . gg,
a€a ,u|t#0 a€A ,alt=0

and observe that £¢ +ny is a 6-stable parabolic subalgebra of

Choose an Iwasawa decomposition £ = £Nk & a & n, such that

¢ -
a0 Npca and "2 c ne . Notice that a is Tt1-stable, and
anqg = ao N p by maximality of ao in q so that a =a0 Np+aNh .

Define Pp € a* by Pp = 4 Tr ad'l , then it follows easily that

X 4 ox* L *

Dl'anq Dlaonp - Define for each” ) € a, an element V) € a, by

L L
(5) v =] and vy = Py .

Xiang aonp Al anh £ anh
Theorem 1. Assume X € A and
(6) <O+o)l ., ol > >0 forall aea’.
Then u; 18 a lowest K-type of TA, and Tx has no other lowest
K-types.

Proof: Let V, denote the spherical representation of L (the

A

*
analytic subgroup with Lie algebra 7) with parameter vt € ag

and denote by V, the representation of L which extends V
u,=20(n,Np) -
the character e on exp it (then VX is well de-

A with
fined, cf. [8] Lemma 5.5 and the succeeding remark).

Let X(£c¢n1, A
in the sense of [11], then one can conclude by comparing actions of

VA' ux) be the (g,K)-module induced from V

U(g)K on u, that the module TAV, contragradient to TX, is equiv-
alent to x(£¢¢n1, Vy, uy), (cf. (8] Lemma 5.6 where T has been

interchanged with TXVL
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SERIES OF REPRESENTATIONS

When £t = ao Theorem 1 is exactly [8] Theorem 5.4, and the

general case follows in the same way as there, the only complication
being the analogue of [8] (5.10), but at that point one can apply
Lemma 1 above. o

4. Definition. The symmetric space G/H is said to satisfy
Condition D, if the subgroup T=c is compact or, equivalently,
if

(7) rank G/H = rank G/G0 = rank K/K N H.

Notice that if G/H satisfies Condition D, then rank G =
rank K, so that the discrete series of G is nonempty. In fact,
by (8] Theorem 6.1, w? belongs in this case to the discrete series
of G whenever <X,a> > k for all a € A" ’ where k is a certain
nonnegative constant explicitly determined. However, for "smaller"
X it happens that ﬂi no longer belongs to the discrete series of
G (cf. [8) Example 7.5), and we do not know in general the Langlands

parameter Vv of nf in this case.

Examples. 1° GxG/d(G) satisfies Condition D if and only if
rank G = rank K.

20

classical satisfy Condition D:

From the list of [1] exactly the following spaces with G

su(2r,q) /SU(r,k) +SU(r,g=-k) +T, Su(p,q) /SO(p.q),
su(2r,2s)/spl(r,s) , SU(n,n)/SL(n,C)+R, SO*(2n)/SO(n,C) ,
SO*(4n) /SU*(2n)+R, SO(2r,q)/SO(r,k)+SO(r,g-k) ,
s0(2r,2s)/U(r,s) (r and s not both odd), Sp(n,R)/SL(n,R)+R,

sp(2r,q) /Sp(r,k) +Sp(r,qg-k) , Sp(p,q) /U(p,q) .

5. TX as induced representation. Let a be as defined in Section

3, let A = exp a and let P = MAN be a cuspidal parabolic subgroup
of G with A as its split component.

Observe that M is invariant under =<, and that t 1is a
maximal abelian subspace of m N ¢ where m denotes the Lie alge-
bra of M. Moreover, M/(MnH)e (where subscript e means "identity
component") satisfies Condition D (which is generalized to non-

connected reductive groups in the obvious fashion).
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a. SCHLICHTKRULL

Let Am c it* (resp. Amc c it*) consist of the roots of <t
+ +
in mg (resp. in mg N kc) » let 4 =4 N {alt | «a €A} and

A;C = A;11Amc » and put p_ = 4z . (dim mg)u and p, . =
}I . (@immg  kela . okl
a€A
mc .
For X € tc, uT € t¢ is defined by uT =Moo -zpmc . By the

o*

following lemma we get for X € ac

m
that = U, | .
Mg Atz

Lemma 2. plt-ZDCII = 0p =20, -

Proof: Suppose B is a weight of it +a in and assume

Qe v
alte{a|t|aeA‘}. The claim is that if a!:*o then B|,
contributes nothing to (p-2p_)|,. This follows from the fact that
then 68 is also a weight and B[, € {a|, | a € A;} . o

Let X € A, Since the highest weight My of ? has multipli-
city one in GA , it follows from Lemma 1 that the multiplicity of
the weight “Alt of 1 in GA is also one. Therefore, 6A contains
a unique irreducible subrepresentation 6? of M N K of highest

weight uxit . Assuming

(8) <Algo @> >0 for all a € 4y

it follows from the last paragraph of Section 2 above that Xlt
determines a Flensted-Jensen representation ﬂ? of M in the
discrete series of M/(MnH)e (here one should also take into account
the possibility that M is not semisimple or not connected. In the
latter case “T is determined by GT rather than by Xlt . See

[6] Section 4.8).

. *
Theorem 2. Let X € A and assume (8). Define v& € a

¢ by (5).

(1) u; 18 a lowest K-type of Indﬁ(ﬂ? © v& ® 1) where 1t occurs

with multiplicity one.

(1i) Tl 18 equivalent to the trreducible subquotient of
Indg(ﬂT (] vﬁ ® 1) containing u; .
We prove (i) in the next section and (ii) in Section 7.

6. Langlands parameters. For ) € A let Pf = MEA Nf and
P? = MTATNT be cuspidal parabolic subgroups of G and M,

> Q)
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SERIES OF REPRESENTATIONS
respectively, associated to the K-type 61, respectively the
M N K-type G?V by [12].Proposition 5.3.3, and let cf and OT be
the associated discrete series representations of M? and M? ’
(cf£. [12] Lemma 6.6.12). Notice that only the associate classes of

P? and P? are uniquely determined.

Lemma 3. We can choose Pg and P? such that P? c P and P? =

P? N M. Then M? = M? and moreover 0? = 0? .

The proof is similar to the proof of [8] Lemma 6.5, and we omit
it.
In particular a? = a? e a.

G *

*
Assume (8) and let vy € (ag)c and v? € (a?)

Py be the Lang-

lands parameters of T and T, , respectively.

Proof of Theorem 2 (i): Since by definition ﬂ? is a subquotient
of Indgb; (0? © vr; ®© 1), the composition factors of Indg(ﬂ’favl)“a 1)
are also composition factors of IndgG (0¥ [ (v? + V&) ® 1) using

induction by stages. Theorem 2 (i) then follows from Lemma 3. o

Though Theorem 2(ii) is still to be proved, we observe the
following corollary to this and the preceding proof of Theorem 2 (i):

Corollary: v? = v? + vV

Thus the determination of Langlands parameters of Flensted-
Jensen's representations is reduced to the case of symmetric spaces
satisfying Condition D.
is itself in the discrete series

of M (cf. Section 4), so G? ﬂ? and thus Theorem 2 (ii) implies:

For "large" values of X, 7

n>X

Theorem 3. There is a congtant c, 2 0 such that if A € A and

(9) <Xl alg>> ey for all a €8 with af, * 0

1

then P, ﬂT, v& and u, constitute a set of Langlands parameters
for T (i.e. T = JG(P,ﬂﬁ,v&,ux) in the notation of [8] Section
3).
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HENRIK SCHLICHTKRULL

Since we need Theorem 3 in our proof of Theorem 2 (ii), we
indicate how to prove the former without reference to the latter.

Proof: The proof follows that of [8] Lemma 6.7 with only minor

modifications (see also [11], proof of Proposition 4.13). In short,

since TAV ~ X(L,. + nys Vx, UA)’ (cf. the proof of Theorem 1), the

a-parameters of T)‘v and Vx in the Langlands classification
coincide when Uy is sufficiently "large", which is ensured by (9).

V) however, has the same a-parameter as GA'
spherical this is -v& . o

and since VA is

Remark. In particular, Theorems 1 and 3 generalize the results of
[8] to the fundamental series for G/H. For these representations,
the results have been obtained independently by G. Olafsson [6],
where they are also generalized to arbitrary real reductive linear
groups (in the sense of [12] p. 1).

7. Proof of Theorem 2 (ii). From Theorem 3 the statement of Theorem

2 (ii) immediately follows for sufficiently large values of . We

will now prove Theorem 2 (ii) in general by explicit construction of

a C®-vector for the induced representation Indg(r¥ ® v? ® 1),

generating a subrepresentation which contains T as a quotient.
Consider the K-type 6\ of highest weight uy - Let U, be a

representation space for ¢, , and assume that ék is unitary on

u, . Let uj and u,

of weight Y respectively, normalized to (u},uo) = 1.

p £ a* by ¢p = 4 Tr ad . Guided by [3] Eq. (3.18)

we attempt a definition of a function ®, on G for X € A:

in U, be a K n H-fixed vector and a vector

Define ¢

S R et
(10) @, kxhan)= | (£, (kluy,ugle "7 dl e

(Mnan)e
for k € K, x € (Mnco)e , hE€ (MnH)e , a@a €A and n € N.
The term H(x-1l) appearing in (10) is defined using the Iwasawa
projection corresponding to 2% of the dual group G0 - see (3] or

[4]).

s A oo .
Proposition 1. £¢. (10) definee 2 nonzerc C -functicon 0, c¢crn G
< . 9 . .. - . - .. v P N N .
which is K=Ffintte ¢f tne irrciuciiic type w.. When (B) hclae the
function m - o, (gm) on M Icicnge tc L (M/(MﬂH)e) fer cack
: M

g € G, and <s in the rerreseniaiion spacc ¢f T,
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SERIES OF REPRESENTATIONS

Proof: For connected semisimple M it follows from [9] Example 3.5
that the formula

-1
<-X-om,H(x 1)>

(11) ¥, (kxh) 8, (kl)u,e dal

-
(MnKﬂH)e

for k € M N K, x € (MﬂGo)e and h € (MnH)e , gives a well defined
U,-valued c”-function on M satisfying Wx(km) = Gx(k)wx(m) for
k € MN K, m€ M. Moreover, when (8) holds the function
m - (Wx(m),uo) is in LZ(M/(MnH)e) and generates ﬂT .
The preceding remarks are easily generalized to the general
nonconnected reductive M.
From (11) we have that (10) is equivalent to:*

<—VL

A_Dp' log a>
(12) wx(kman) = (5ﬁk)WA(m),u0)e

for k € K, m€M, a €A and n € N. From this Proposition 1

follows.
o

From Proposition 1 we see that we may regard v, as a c®-vector
for Ind?(ﬂ? © v& ® 1). Since ®, is K-finite of type u; which
has multiplicity one, ®, is a joint eigenvector for U(g)x .

Proposition 2. The eigenvalues for U(g)K of @, and Vv, are
equal.

Proof: Let u € U(g)K . We will first prove the existence of an
element u, € U(ao) such that uw, = u1(k)wX for all X € A,

By symmetrization we identify the symmetric algebra S(k+m) with

a subspace of U(g). Since g = n & a @ (m+k) we can determine

elements v1,...,vp in U(a) and w1,...,wp in S(k+m) such that

u - Z§=1 vw, € nUu(g) (cf. [2) 2.4.14), and since a and m N k

commute we may assume that wy is centralized by m n k (i=1,...,p).
Put w{(g) = wx(yg) for y,g € G, then since u € U(Q)K we

have that (uwx)(yq) = (uw{)(g) for y € K. Using the decomposition
G = KMeAN we may take g = man, m € Me , a €A, n € N. Since

@, is invariant under N and homogeneous under A from the right
we get
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HENRIK SCHLICHTKRULL
p L y <-v§-pp,loga>
(13) (v, ) (yman) = Z,_, v, (=Vy=pp) (w;03) (m)e

To prove our claim that we, = uT(A)wA for some u, € U(ao) it is

then clearly enough to prove that for each w € S(m*k)mnh there
exists w, € U(t) such that
(14) (wo) (m) = wy (A |,)e] (m)
for all A € A and m € Me , Y € K.
Let w € S(m+h)mnk and write w = z?=1 aj © bj where

aj € S(mnp) and b, € S(k), according to the identification
S(m+k) =~ S(mnNp) © S(k). Denote by v - v' the principal
antiautomorphism of U(g). From (12) we then get for m € Me that:

y - 9 .
wod) (m) = 29, (8, (¥)6, (bJ) (az¥,) (m) , ug) .

Let Mo denote the group dual to M by Flensted-Jensen's duality.

<’A-Dmrﬂ(x)> 0
Put f(x) = e ) for x € M, and write m = kxh where

k € (MnK)e , X € (MnGO)e and h € (MnH)e , then (11) gives that

- -1
¥, (m) = I(MnKnH)e 8, (kl)uy£(x '1)dl

and therefore it follows that

) -1 -1
(2390 () = f (oo & (e, (1A kD) oyl 6) a1
where [Ad(kl)

aj]L denotes Ad(kl)-1aj acting as a left invariant
differential operator on Cw(MO) (cf. [9] Eq.'s (2.3) and (4.6)).

Now we get

q '
13, 6,(b3) (ag¥,) (m)

_ q =1, =1 -1,

= I(Mnxnﬂ)e éA(kl){Zj=1 8, (Ad (k1) bj)ux([Ad(kl) aj]Lf)(x 1) 1dl
= q ] =1

= I(Mnan)e éx(kl){Ij=1 Gx(bj)ux(aij)(x 1) }d1

since w = zaj Q® bj commutes with kl.
Using the decompositions

"

0 z 0
me T(m¢nn ) ® me ® t@ ® (m¢nn )
and

q L & (Zﬂk)¢ ® IQ

286
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SERIES OF REPRESENTATIONS

where "o, = b . kz , Wwe can define a map n: S(m*k)t - U(2)
a€Z
uniguely by c.1

w-n (w) € (nc'1+znkc)s(m+k) + S(m+k)(m£npc¢mcnn°npc) .

Using Lemma 1 one can see that Gx(x)ux =0 for X € n.oq*
Zl\kc . Since also X;f =0 for X € mé +mg N n® , it follows

then that
(wod) (m) = n(w) (11,193 (m)

as claimed in (14).

To finish the proof of Proposition 2 we prove that u1(x) =
Y(u) (-A-p) for all X € ag. - Since ¢, generates the K-type u;
in Indg(ﬂT ] v% @ 1) this follows immediately from Theorem 3 when
(9) holds. Since u, and Y(u) are polynomials in )X the assertion

holds for all .

Theorem 2 (ii) follows immediately from Proposition 2.

Remark. It would be interesting if one could construct a G-homomor-
phism from the space

o <-v§-op,loga>

{f e C(G) | f(gman) = f(g)e

vm € (MMH), , a €A, n€N, g€ G}

to CT(G/H), taking o, to ¥, . In the special case of o = 0,
12 is the spherical function, P is a minimal parabolic and ¢, is
the function g = e<)-o,H(g)> , and thus the homomorphism searched

for is the Poisson transformation. In general the work of Oshima (cf.
[7]) can probably be used to construct such a homomorphism.

8. Unitarity. Let X € A and consider the following condition on )\

(15) <Ay alp >0 forall o € 2* with a o, =0
a np
Theorem 4. Assume (15), and moreover that A 1§ purely imaginary

on ao N p. Then TX 18 unitarizable.
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HENRIK SCHLICHTKRULL

Proof: Choose a parabolic subgroup P = MAN with Langlands decompo-
sition as indicated, such that MA = Gaonp and Pc P. Then a is

T-invariant, and a n q = aon p since @ centralizes a° and a°

is maximal in ¢. ™ is invariant under 1 and t is a maximal

abelian subspace of m n ¢, and thus ﬁ/('ﬁnH)e satisfies equal rank.

By (15) A|£ determines a representation “A in the discrete series
of M/ (MnH) .

Observe that a = (anm) ® @. Put Z = £ n m, %L =ny nZ and
3( = & Tr ad; € (anm)*. It is then easily seen that -
o . . M M, L
Pe °£1anm . Therefore m, 1is a subquotient of IndpnM(“A“vAIanﬁ°1)

by Theorem 2, and using induction by stages and Theorem 2 once more
we get that TA is a subquotient of Ind%(w? © v&lz ® 1).
"~ 0 . A L.
Now a =anNhea np and Pelanh = 0, therefore Vy|z is
purely imaginary by (5), and the theorem follows. o

Remark. Theorem 4 was proved for the fundamental series for large
values of ) by Olafsson ([5]).
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