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ABSTRACT. — New examples of extremal Kéhler metrics are given on blow-ups of
parabolic ruled surfaces. The method used is based on the gluing construction of
Arezzo, Pacard and Singer [5]. This enables to endow ruled surfaces of the form P(O®L)
with special parabolic structures such that the associated iterated blow-up admits an
extremal metric of non-constant scalar curvature.
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482 C. TIPLER

1. Introduction

In this paper is adressed the problem of existence of extremal Ké&hler metrics
on ruled surfaces. An extremal Kéhler metric on a compact Kahler manifold
M is a metric that minimizes the Calabi functional in a given Ké&hler class {2:

{we QY (M,R),dw =0, w >0 /[w] = Q} — R
w = [y s(w)2w™.
Here, s(w) stands for the scalar curvature of w and n is the complex dimen-
sion of M. Constant scalar curvature metrics are examples of extremal metrics.
If the manifold is polarized by an ample line bundle L the existence of such a
metric in the class ¢;(L) is related to a notion of stability of the pair (M, L).
More precisely, the works of Yau [30], Tian [28], Donaldson [10] and lastly
Székelyhidi [25], led to the conjecture that a polarized manifold (M, L) admits
an extremal Kéhler metric in the Kahler class ¢, (M) if and only if it is rela-
tively K-polystable. So far it has been proved that the existence of a constant
scalar curvature Kahler metric implies K-stability [18] and the existence of an
extremal metric implies relative K-polystability [24].
We will focus on the special case of complex ruled surfaces. First consider a
geometrically ruled surface M. This is the total space of a fibration

P(E) — X

where E is a holomorphic bundle of rank 2 on a compact Riemann surface X.
In that case, the existence of extremal metrics is related to the stability of the
bundle E. A lot of work has been done in this direction, we refer to [2] for a
survey on this topic.

Moreover, in this paper, Apostolov, Calderbank, Gauduchon and Tgnnesen-
Friedman prove that if the genus of ¥ is greater than two, then M admits a
metric of constant scalar curvature in some class if and only if E is polystable.
Another result due to Tgnnesen-Friedman [29] is that if the genus of ¥ is greater
than two, then there exists an extremal K&hler metric of non-constant scalar
curvature on M if and only if M = P(0) ® L) with L a line bundle of positive
degree (see also [26]). Note that in that case the bundle is unstable.

The above results admit partial counterparts in the case of parabolic ruled
surfaces (see definition 1.0.1). In the papers [20] and [21], Rollin and Singer
showed that the parabolic polystability of a parabolic ruled surface S implies
the existence of a constant scalar curvature metric on an iterated blow-up of S
encoded by the parabolic structure.

It is natural to ask for such a result in the extremal case. If there exists
an extremal metric of non-constant scalar curvature on an iterated blow-up
of a parabolic ruled surface, the existence of the extremal vector field implies

TOME 141 — 2013 — N° 3



EXTREMAL KAHLER METRICS ON BLOW-UPS OF PARAB. RULED SURFACES 483

that M is of the form P(#) & L). Moreover, the marked points of the parabolic
structure must lie on the zero or infinity section of the ruling. Inspired by the
results mentioned above, we can ask if for every unstable parabolic structure
on a minimal ruled surface of the form M = P(® & L), with marked points on
the infinity section of the ruling, one can associate an iterated blow-up of M
supporting an extremal K&hler metric of non-constant scalar curvature.

Arezzo, Pacard and Singer, and then Székelyhidi, proved that under some
stability conditions, one can blow-up an extremal K&hler manifold and ob-
tain an extremal Kéhler metric on the blown-up manifold for sufficiently small
metric on the exceptional divisor. This blow-up process enables to prove that
many of the unstable parabolic structures give rise to extremal Kéhler metrics
of non-constant scalar curvature on the associated iterated blow-ups. A modi-
fication of their argument will enable to get more examples of extremal metrics
on blow-ups encoded by unstable parabolic structures.

In order to state the result, we need some definitions about parabolic struc-
tures. Let ¥ be a Riemann surface and M a geometrically ruled surface, total
space of a fibration

m:P(E)—> X

with E a holomorphic bundle.

DEFINITION 1.0.1. — A parabolic structure & on
7:M=P(E)—X

is the data of s distinct points (A;)1<i<s on 3 and for each of these points the
assignment of a point B; € 7~ 1(4;) with a weight o; € (0,1) N Q. A geomet-
rically ruled surface endowed with a parabolic structure is called a parabolic
ruled surface.

In the paper [20], to each parabolic ruled surface is associated an iterated
blow-up

®: BI(M,P) — M.
We will describe the process to construct BI(M, %) in the case of a parabolic
ruled surface whose parabolic structure consists of a single point, the general

case being obtained operating the same way for each marked point. Let M — %
be such a parabolic ruled surface with A € ¥, marked point Q € F := 7~ 1(A)

and weight a = g, with p and ¢ coprime integers, 0 < p < ¢. Denote the
q
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484 C. TIPLER

expansions of b and a-p into continuous fractions by:

1

and

1
¢
Suppose that the integers e; and e} are greater or equal than two so that these
expansions are unique. Then from [20] there exists a unique iterated blow-up
®:BI(M,?P) — M
with ®~1(F) equal to the following chain of curves:

’ U / ’
—€ek—1 —ep —1 —€ —€_1 —€y —€;

—e —ez2 ) ) )
— 00— --0—0—0—0 o -

The edges stand for the rational curves, with self-intersection number above
them. The dots are the intersection of the curves, of intersection number 1.
Moreover, the curve of self-intersection —e; is the proper transform of the fiber
F'. In order to get this blow-up, start by blowing-up the marked point and
obtain the following curves:

-1 -1
Here the curve on the left is the proper transform of the fiber and the one on
the right is the first exceptional divisor. Then blow-up the intersection of these
two curves to obtain
—2 -1 —2

) )
N\ A\

Then choosing one of the two intersection points that the last exceptional
divisor gives and iterating the process, one obtain the following chain of curves

—€1 —e2 _ {)*%—10 —eg o -1 o —e; *62_1(} _ —ey —e;
REMARK 1.0.2. — The chain of curves on the left of the one of self-intersection

number —1 is the chain of a minimal resolution of a singularity of A, , type
and the one on the right of a singularity of A,_, 4 type (see section 2).
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REMARK 1.0.3. — In [20], the curve of self-intersection —e; is the proper trans-
form of the exceptional divisor of the first blow-up while here this is the proper
transform of the fiber F.

Recall that the zero section of a ruled surface P(8) @ L) is the section given
by the zero section of L — ¥ and the inclusion L C P(@ @ L). The infinity
section is given by the zero section of ) — ¥ in the inclusion 6 C P(6 @ L).
Given a surface ¥, K stands for its canonical bundle and if A € ¥, [A] is the
line bundle associated to the divisor A. Then we can state:

THEOREM A. — Let r and (g;);j=1..s be positive integers such that for each j,
q; > 3 and
ged(gj,r) = 1.
For each j, let
pj+r
pj = —7rlg], 0<p; <gj,n; = Jq' .
j

Let ¥ be a Riemann surface of genus g and s marked points (A;) on it. Define
a parabolic structure P on

M =P(0® (X", [A;]~™))

consisting of the points (B;) in the infinity section of the ruling of M over the
points (A;) together with the weights (2’—1) If
J

1
X(Z) =Y (1-—=)<0
i %
then there exists an extremal Kdhler metric of non-constant scalar curvature
on BI(M,P). This metric is not small on every exceptional divisor.

REMARK 1.0.4. — The parabolic structure is unstable. We will see that the
infinity section destabilises the parabolic surface.

REMARK 1.0.5. — The Kéhler classes of the blow-up which admits the ex-
tremal metric can be explicitly computed; this will be explained in Section 3.5.
Moreover, these classes are different from the one that could be obtained from
the work of Arezzo, Pacard and Singer.

Using a slightly more general construction, we will obtain:

THEOREM B. — Let M = P(O@® L) be a ruled surface over a Riemann surface
of genus g, with L a line bundle of degree d. If g > 2 we suppose d = 2g — 2
or d > 4g — 3. Then there exists explicit unstable parabolic structures on M
such that each associated iterated blow-up BI(M,P) admits an extremal Kihler
metric of non-constant scalar curvature. The Kdhler class obtained is not small
on every exceptional divisor.
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REMARK 1.0.6. — In fact, a combination of the results in [25] and [24] shows
that the extremal K#hler metrics obtained by Tgnnesen-Friedman in [29] lie
exactly in the Kahler classes that give relatively stable polarizations. Thus
the unstable parabolic structures obtained might be in fact "relatively stable®
parabolic structures, in a sense that remains to be understood.

1.1. Example. — Consider CP! x T2 a three times iterated blow-up of the total
space of the fibration
CP! x T? — T2
The considered blow-up contains the following chain of curves:
E. B B3 F
—2 ~ —2 7 -1 7 -3

Here F' is the proper transform of a fiber of the ruling

CP* x T? — T2
FE1 , E> and E3 are the exceptional divisors of the iterated blow-ups. Let Sy be
the proper transform of the zero section. Then :

THEOREM C. — For each (a,b) € R:’Q such that § < ko where ks is a constant
defined in [29] and for each (a1,as,as3) positive numbers, there exists g9 > 0
such that for every e € (0,e9), there exists an extremal metric w with non-

constant scalar curvature on CP! x T2. This metric satisfies

and

1.2. Strategy. — The Theorem A will be obtained from a general process. The
first step is to consider Kahler orbifolds endowed with extremal metrics. Such
orbifolds can be obtained from the work of Bryant [7] and Abreu [1] on weighted
projective spaces. Legendre also provide examples in the toric case [16]. Other
examples will come from the work of Tgnnesen-Friedman [29], generalized to
the orbifold setting. These orbifolds will have isolated Hirzebruch-Jung sin-
gularities. The work of Joyce and then Calderbank and Singer enables us to
endow a local model of resolution of these singularities with a scalar-flat Kéahler
metric [9]. Then the gluing method of Arezzo, Pacard and Singer [5] is used
to glue these models to the orbifolds and obtain manifolds with extremal K&h-
ler metrics. Note that there exists an improvement of the arguments of [5] by
Székelyhidi in [27].
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REMARK 1.2.1. — The gluing process described in [5] works in higher dimen-
sion but there are no such metrics on local models of every resolution of isolated
singularities in higher dimension. However, Joyce constructed ALE scalar-flat
metrics on Crepant resolutions [14]. Then one can expect to generalize the
process described below in some cases of higher dimension.

1.3. Second example. — Using this gluing method we obtain an other simple

example. Let us consider CP? the three-times iterated blow-up of CP? with the
following chain of curves :

Here H denotes the proper transform of a line in CP? on which the first
blown-up point lies. Fy, E5 and E3 stand for the proper transform of the first,
second and last exceptional divisors. The dots represent the intersections and
the numbers below the lines are the self-intersection numbers. Then we can
state:

THEOREM D. — For every a,a1,as,as positive numbers there exists g > 0
such that for every e € (0,&¢), there is an extremal Kdhler metric w. of non-

constant scalar curvature on CP? satisfying
[we] - H = €%as,

[ws] . E3 =a, [ws] . EQ = 62a2
and

[we] - By = €%a.

REMARK 1.3.1. — If one starts with the first Hirzebruch surface endowed with
the Calabi metric and use the work of Arezzo, Pacard and Singer to construct

extremal metrics on EIPE, the Kéahler classes obtained are of the form
[we] - H = b,

[wg] . E3 = 820,3, [wa] . E2 = 62(12
and
[we] - E1 = a.

with a and b positive real numbers and € small enough . The K&hler classes ob-
tained with the new process can be chosen arbitrarily far from the one obtained
by Arezzo, Pacard and Singer.
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1.4. Plan of the paper. — In the section 2 we set up the general gluing theorem
for resolutions following [3] and [5]. In section 3 we build the orbifolds with ex-
tremal metrics that we use in the gluing construction, and identify the surfaces
obtained after resolution. This will prove Theorem A. Then in the section 4 we
discuss unstable parabolic structures and give the proof of the Theorem B. In
the last section we show how to obtain the examples of the introduction.

Acknowledgments. — I'd like to thank especially my advisor Yann Rollin for
his help and encouragement. I am grateful to Paul Gauduchon and Michael
Singer for all the discussions we had. I'd also like to thank Vestislav Apostolov
who pointed to me Abreu’s and Legendre’s work. I thank Frank Pacard and
Gabor Székelyhidi for their remarks on the first version of this paper, as well
as the referee whose comments enabled to improve the paper. And last but not
least a special thank to Andrew Clarke for all the time he spend listening to
me and all the suggestions he made to improve this paper.

2. Hirzebruch-Jung singularities and extremal metrics

The aim of this section is to present the method of desingularization of
extremal Kahler orbifolds.

2.1. Local model. — We first present the local model which is used to resolve
the singularities.

DEFINITION 2.1.1. — Let p and g be coprime non-zero integers, with p < gq.
Define the group I'y, , to be the multiplicative subgroup of U(2) generated by
the matrix

(21'77)

exp | — 0
— q
v= (2i7rp)
0 exp
q

The group I',, , acts on C? :

24 24
V(z0,21) € C2,7~(20,21) = (exp (%) 'Zo,eXP( Z;Tp) 'Z1> .

DEFINITION 2.1.2. — Let p and g be coprime non zero integers, with p < gq.
An A, , singularity is a singularity isomorphic to C%/T,,. A singularity of
Hirzebruch-Jung type is any singularity of this type.
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We recall some results about the resolutions of these singularities. First,
from the algebraic point of view, C?/T, , is a complex orbifold with an isolated
singularity at 0. There exists a minimal resolution

T Ypq— Cz/rp,q

called the Hirzebruch-Jung resolution. The manifold Y, ; is a complex surface
with exceptional divisor E := 771(0) and  is a biholomorphism from Y, , — E
to C2—{0}/I. For more details about resolutions see [6]. Next, C2/T, ;, and Y, ,
are toric manifolds. The action of the torus T? is the one that comes from the
diagonal action on C2. For more details on this aspect of the resolution see [11].
Lastly, the minimal resolution can be endowed with an ALE scalar-flat Kéhler
metric w, in each Kéahler class as constructed by Joyce, Calderbank and Singer
in [9]. The exceptional divisor of the resolution is the union of CP's embedded
in Y, , and the volume of each of these curves can be chosen arbitrarily. This
metric is T2-invariant and its behaviour at infinity is controlled:

PROPOSITION 2.1.3. — ([20], Corollary 6.4.2.) In the holomorphic chart
C* — {0}/Tp,q

the metric w, is given by w, = dd°f, with
1 _
f(z) = S |2* + alog(l=*) + O(|=]7")

and a < 0.

2.2. The gluing method. — The gluing method presented here comes from [5].
Let (M, J,w) be a Kéihler orbifold with extremal metric. Suppose that the
singular points of M are isolated and of Hirzebruch-Jung type. Denote by p;
the singular points of M and B(p;,¢) := B(p;,€)/T'; orbifold balls around the
singularities of radius € with respect to the metric of M. Fix r¢y > 0 such that
the B(p;,e) are disjoint for € < rg. Consider, for 0 < & < rg, the manifold
M, == M — UB(p;,e) . Let Y; stand for a local model of the resolution of
the singularity p;, endowed with the metric of Joyce-Calderbank-Singer. The
aim is to glue the Y; to M. in order to obtain a smooth K&hler manifold M
which resolves M and has an extremal Ké&hler metric. To do this, one needs
to perturb the Kahler potentials of the metrics to make them agree on the
boundaries of the different pieces, keeping the extremal condition on these
potentials. If we consider small enough ¢, the metric will look like the euclidian
metric in holomorphic chart because it is Kéhler. On the other hand, the Joyce-
Calderbank-Singer metric is ALE so one can hope to glue the metrics together
with a slight perturbation.
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490 C. TIPLER

Let s be the scalar curvature of w. Define the operator :
P, : C®(M) — A% (M, T?)
with
Ef=JVf+iVf.

A result of Calabi asserts that a metric is extremal if and only if the gradient
field of the scalar curvature is a real holomorphic vector field. Therefore a metric
w' is extremal if and only if P,/ (s(w’)) = 0, with s(w’) denoting the scalar
curvature. Let P} be the adjoint operator of P,. We will use the following
proposition:

PROPOSITION 2.2.1. — [17] Z € TYC is a Killing vector field with zeros if and
only if there is a real function f solution of PXP,(f) = 0 such that w(E,.) =
—df.

This result is initially proved for manifolds but the proof extends directly
to orbifolds with isolated singularities, working equivariently in the orbifold
charts.

A result of Calabi ([8]) states that the isometry group of an extremal metric is
a maximal compact subgroup of the group of biholomorphisms of the manifold.
Thus in the gluing process we can prescribe a compact subgroup T of the
group of biholomorphisms of M to become a subgroup of the isometry group
of M and work T -equivariantly. We want this group 7" to be contained in the
isometry group of M because the metric that will be obtained on M will be
near to the one on M away from the exceptional divisors. Moreover, its algebra
must contain the extremal vector field of w for the same reason. Let K be the
sugroup of I'som(M,w) consisting of exact symplectomorphisms. Let T' be a
compact subgroup of K such that its Lie algebra t contains X, := JVs, the
extremal vector field of the metric. Let b be the Lie algebra of real-holomorphic
hamiltonian vector fields which are T-invariant. These are the vector fields that
remains in the T-equivariant setup. X, is contained in b. b splits as §’ @ b”
with = h N t. The deformations of the metric must preserve the extremal
condition so we consider deformations

f— we +i00f
such that
(2.1) —ds(w+i85f) = (w+i85f)(Xs+Y, )

with Y € §’. As X, +Y € b, the proposition 2.2.1 of Lichnerowicz above
ensures that these deformations are extremal. Moreover, the vector fields from
b’ are precisely the ones that give extremal deformations.
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In order to obtain such deformations, consider the moment map &, associ-
ated to the action of K:

o i M — ¥,

&, is defined such that for every X € £ the function (£,, X) on M is a hamil-
tonian for X, wich means

w(X, .) = —d{&,, X).

Moreover, &, is normalized such that

/ (€u, X)w™ =0.
M
The equation (2.1) can now be reformulated:
s(w+i00f) = (€orio5p Xs +Y) + constant.
If we work T-equivariantly, we are interested in the operator :
F:hxC®(M)T xR — C>(M)T
(X, f,¢) »—>s(w+i85f)—<§w+ia5f,X>—c—cs

where C°°(M)T stands for the T-invariant functions and c; is the average of
the scalar curvature of w. There is a result which is due to Calabi and Lebrun-
Simanca:

PROPOSITION 2.2.2. — [5] Ifw is extremal and if X5 € b, then the linearization
of F' at 0 is given by
1
(faXac) — _ipw*ow - <§waX> —C.

The vector fields in ' are the "good ones" as they will give perturbations in
the isometry group of the future metric. It remains to use the implicit function
theorem to get the scalar curvature in term of these vector fields and the algebra
h” stands for the obstruction.

2.3. Extremal metrics on resolutions. — We choose a group T of isometries of
M so that working T-equivariantly will simplify the analysis. It is necessary to
choose a neighborhood of the singularities in which T" will appear as a subgroup
of the isometry group of the metric of Joyce-Calderbank-Singer. Moreover, in
order to lift the action of T to M. , it is necessary that T fixes the singularities.
We will see in lemma 2.4.3 that if we let 7" be a maximal torus in K then these
conditions will be satisfied. Thus the equivariant setup of [5] can be used all
the same in this orbifold case. Lastly, we will have h = t and no obstruction
will appear in the analysis. Following [3] and [5], we can state the theorem:
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THEOREM 2.4. — Let (M,w) be an extremal Kdhler orbifold of dimension 2.
Suppose that the singularities of M are isolated and of Hirzebruch-Jung type.
Denote by m : M — M the minimal resolution of M obtained using the
Hirzebruch-Jung strings. Denote by E; the CP's that forms the Hirzebruch-
Jung strings in the resolution. Then for every choice of positive numbers a;
there exists €9 > 0 such that Ve € (0,eq) there is an extremal Kdahler metric on
M in the Kéhler class
[r*w] —e* > a; PDIE)]
J

REMARK 2.4.1. — We notice that if s(w) is not constant, the metrics obtained
on the resolution are extremal of non-constant scalar curvature. Indeed, the
metrics converge to m*w away from the exceptional divisors, so does the scalar
curvature. On the other hand, if w is of constant scalar curvature, then the
extremal metric obtained on the resolution need not be of constant scalar cur-
vature. Genericity and balancing conditions have to be satisfied to preserve a
CSC metric [4] and [21].

REMARK 2.4.2. — The proof is the one in [5] so we refer to this text. The
tools and ideas are used here in an orbifold context, using the work of [3].
In the paper [3] the gluing method is developped in the orbifold context for
constant scalar curvature metrics. On the other hand, the paper [5] deals with
extremal metrics but in the smooth case. One of the differences in the analysis
between the constant scalar curvature case and the extremal case is that one
needs to lift objects to the resolution such as holomorphic vector fields. Thus
we will only give a proof of the following lemma which ensures that we can lift
the vector fields needed during the analysis.

LEMMA 2.4.3. — Let (M,w) be an extremal Kahler orbifold of dimension 2.
Suppose that the singularities of M are isolated and of Hirzebruch-Jung type.
Let K be the subgroup of Isom(M,w) which are exact symplectomorphisms. Let
T be a mazizmal torus in K. Then T fixes the singularities. Its Lie algebra con-
tains the extremal vector field. Moreover at each singularity of M with orbifold
group T there exists an orbifold chart U/T, U C C? such that in this chart T
appears as a subgroup of the torus acting in the standard way on C2.

Proof. — Let p € M be a singularity with orbifold group I" and U C C? such
that U/T is an open neighbourhood of p in M. T C Isom(M,w) so we can lift
the action of T to U such that it commutes with the action of I'. Thus T fixes

.
We see that X, belongs to t. Indeed,

VX € hv[XaXs] = fXXs =0
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because X preserves the metric. Thus X; € h and as h = t, X; € t. Then
we follow the proof of [5]. By a result of Cartan, we can find holomorphic
coordinates on U such that the action of T is linear. More than that, we can
suppose that the lift of w in these coordinates (z1, z2) satisfies

w=00(3 |2l +9)

where ¢ is T invariant and ¢ = O(|z|*). In this coordinates T appears as
a subgroup of U(2). Thus T is conjugate to a group whose action on C? is
diagonal. As T and I" commute, we can diagonalize simultaneously these groups.
In the new coordinates, the action of I" is described by definition 2.1.1 and
T C T? with T? action on C? given by

T? x C2 — C?

) ) O
(01,02), (w1, ws) — (e¥1wy, eP2w,).

REMARK 2.4.4. — Note that there exists a refinement of the proof of Arezzo,
Pacard and Singer in the blow-up case. This is given in the paper of Székelyhidi
[27]. Basically, the idea is to glue the metric of Burns-Simanca to the extremal
metric on the blow-up manifold. This give an almost extremal metric. It remains
to perturb the metric to obtain an extremal one. Moving the blown-up point if
necessary, this problem becomes a finite dimensional problem. This argument
might be used in the case of resolution of isolated singularities.

3. Extremal metrics on orbisurfaces

The aim of this section is to prove Theorem A. We first construct extremal
metrics on special orbisurfaces. Then we apply Theorem 2.4 to these examples,
and identify the smooth surfaces obtained after resolution.

3.1. Construction of the orbifolds. — In this section we generalize to an orbifold
setting the so-called Calabi construction. We shall construct extremal metrics
on projectivization of rank 2 orbibundles over orbifold Riemann surfaces. We
will focus on the case where the orbifold Euler characteristic x°™® of the Rie-
mann surface is strictly negative, thought the method would extend directly to
the other cases. See for example [13] for a unified treatment of the construction
in the smooth case. Our restriction will present the advantage of being very
explicit and will help to keep track of the manifolds considered in section 3.4.
The starting point is the pseudo-Hirzebruch surfaces constructed by
Tgnnesen-Friedman in [29]. These are total spaces of fibrations

PO L)— %,
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where ¥, is a Riemann surface of genus g and L a positive line bundle. We
briefly recall the construction of extremal metrics on such a surface. Let

U := {(20,21)/]20]* > |21|*} C C?
and
D :={(z0,21) € U/zo = 1}.
We can then consider U as a principal bundle over the Poincaré disc ID which
admits the trivialisation :

U —- C*xD

(20,21) — (20, (1, 22)).
20

The vector bundle associated to U is trivial and we can consider it as the
extension of U over zero. We will denote by U? the tensor powers of this vector
bundle.
Recall that U(1,1) is the group of isomorphisms of C? which preserve the
form
u(z, w) = —2zoWg + 21W71.-

Moreover,

ﬂ) ;o@—ﬂﬁzl;GER,(mﬂ) G(C2}’

a

— (it @
U(1,1)={ (ﬂ

and U(1,1) acts on U. One of the central results of this work of Tgnnesen-
Friedman is then (see [29]):

THEOREM 3.2. — Let q be a non zero integer. There exists a constant kg such
that for every choice of constants 0 < a < b such that g < kg, there is a
U(1,1)-invariant extremal Kdhler metric with non-constant scalar curvature
on U. This metric can be extended in a smooth way on P(0 @ U?).

REMARK 3.2.1. — The value of the scalar curvature is —% on the zero section
and —% on the infinity section.

REMARK 3.2.2. — Here the considered manifolds are non-compact and we say
that the metric is extremal if the vector field JVs associated to the metric is
holomorphic.

Tgnnesen-Friedman uses this result to obtain extremal metrics on pseudo-
Hirzebruch surfaces. Let ¥ a Riemann surface of genus greater or equal than
two and let I be its fundamental group. I' can be represented as a subgroup of
U(1,1) and we obtain a holomorphic bundle:

P(O@U?)/T - D/T =X.
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Tgnnesen-Friedman shows that P(O@U?) is isomorphic to P(Od K %) where K
stands for the canonical line bundle. The result of Tgnnesen-Friedman provides
extremal metrics on P(0) @& % 2).

Now we consider an orbifold Riemann surface ¥ of genus g, and refer to [20]
for more details on orbifold Riemann surfaces. The genus g is no longer assumed
to be greater than two but we assume that the orbifold Euler characteristic is
strictly negative. In that case, the orbifold fundamental group I' of ¥ can be
represented as a subgroup of U(1,1) such that

¥ =D/T.
We saw that
Uz=C"xD
The action of U(1,1) in this chart is given by:
7'(€az)'_>(ee(a+ﬁz)€a = )
a+ Bz

where B
v = e'? (a ﬁ) S U(l,l).
B a
The action of U(1,1) on C®? x D is then given by:

7 (6:2) = (o + B, T

)
and the change of coordinates
(62) = (€7,2)
enables to extend this action and to define
M=POaU)T.
This naturally fibres over ¥ and define an orbifold bundle
T: M —X.
We adopt the convention from [23] for the definition below.

DEFINITION 3.2.3. — An orbifold line bundle over an orbifold M is given by
local invariant line bundles L; over each orbifold charts U; such that the fol-
lowing cocycle condition is satisfied:
Suppose that Vi, Vo and V3 are open sets in M with orbifold groups G;, and
orbifold charts U;, such that V; = U;/G;, i = 1..3.

Then by definition of an orbifold there are charts U;; such that V; NV, =
V;j = ij/Gij with inclusions Uij — U; and Gij — Gi, {Z,]} C {1,2,3}
Pulling back L; and L; to Uj;, there exists an isomorphism ¢;; from L; to
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L; intertwining the actions of G;;. Moreover, pulling-back to Uy23, the cocycle
condition is that over Ujo3 we have:

P12¢23031 =1€ L1 @ L@ Ly ® Ly ® Ly ® L.

This definition can be generalized to define orbifold vector bundles, tensor
products, direct sums and projectivizations of orbifold bundles. It is enough
to define these operations on orbifold charts U; and verify that the cocycle
condition is still satisfied. The orbifold canonical bundle K .1, is defined to be
Ku on each orbifold chart U.

With these definitions in mind, we prove the following:

LEMMA 3.2.4. — Suppose that g = 2r. Then the surface M is isomorphic to
P(O® Kp)-

REMARK 3.2.5. — We will see in the study of the singularities that we need
to consider ¢ even.

Proof. — Following Tgnnesen-Friedman ([29]), we compute the transition
functions. Recall that the action of I is given by:

B+ az
o+ Bz

VyeT, v-(§2) = (2" (a+ B2)*"¢, )

in the chart C®%" x D. As D/T" = %, the transition functions are induced by
the maps:

Z -z
with 4 € T. Thus the transition functions for the bundle U?"/T" are
2z (a+ B2)%.
Now the transition functions for K., are computed by
- L

d(y - 2) = d(
because v € U(1,1). It shows that they are equal to
20 (a+p2)7"
and U?" /T = A, ,.So M =P(0 & K. ,) on %. O
The extremal metric mentioned in Theorem 3.2 is I'-invariant as it is U(1, 1)-
invariant and the result of [29] extend to the case of orbibundles:
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PROPOSITION 3.2.6. — Let ¢ = 2r be a non zero even integer. There exists
a constant kg such that for every choice of constants 0 < a < b such that
g < kg, there is an extremal Kdhler metric with non-constant scalar curvature
onP(O@ K. ,). The restrictions of this metric to the zero and infinity sections
of
]P)(@ D jcgrb) - i

are constant scalar curvature metrics. The value of the scalar curvature on the
zero section is —% and —% on the infinity section.

We have obtained extremal metrics on orbifold ruled surfaces.

3.3. Singularities and resolution. — We now proceed to the study of the singu-
larities of the orbifolds. Let (A;) denote the singular points of ¥ and let ¢; be
the order of the singular point A;.
As x°™(X) < 0, there exists a morphism :
¢ : T — Sly(R)/Zy = Isom(H?)

such that ¥ = H?/Im(¢). The transformation

z—1

Z+1

that sends the half-plane to the Poincaré disc gives :

¢o:T — SU(1,1)/Zs.

VA el

We recall a description of T':
I'=<(ai;bi)i=1..g, (li)i=1..s | Ma;, b;]Il; =1F =1>.
Then ¢¢ defines matrices A;, B;, L; in SU(1,1) satisfying the relations
I[A;, B;JIIL; = +£Id; LY = +Id.
The action of —Id on C®? x D is :
(57 Z) - ((_1)q§’ Z)
In order to obtain isolated singularities, we will suppose that ¢ is even.

To simplify notation we will denote by I' the image of ¢g. The singular points
of M come from the points of P(f) ® U?) with non-trivial stabilizer under the
action of I'/Zy. We will deal with points on the zero section in the chart C®4xD.
Let (&9, 20) be a point whose stabilizer under the action of I" is not reduced

to {£Id} and let v # +id in T fix (€, 20). The element v € U(1,1) can be

written:
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and satisfies

B+ az

o+ Bzo
The stabilizer of (&g, zo) is then include in the one of zp € I under the action
of T' on D. The point 2 gives a singular point A; of ¥ = /T and the point
(0, z0) gives rise to a singular point in M in the singular fiber 771(A;). The
isotropy group of A; is Z,, and we can suppose that v is a generator of this
group. As v is an element of SU(1,1) of order g;, its characteristic polynomial
is

= Z0-

X2+ 2Re(a)X + 1.
If Re(a) = 6 with 6 € {—1,+1}, there exists a basis in which ~y is one of the

following matrices:
§0) (41
06)°\06)"

It is not possible because 7 is suppose to be different from +1d and of finite
order. Thus the characteristic polynomial of v admits two distinct complex
roots and <y is diagonalizable in SU(1,1) so we can fix P € SU(1,1) such that

a0
P lyP= )

Then 7 is of finite order ¢; and det() = 1 so we can fix £, a primitive g!* root

of unity such that
.0
P lypP= b .
0 &t

As P € SU(1,1), P preserves the open set U and induces a change of coordi-
nates in a neighbourhood of the fixed point.
Indeed, the action of P on the coordinates (¢, z) is given by:

d+¢cz
)

P(€.2) = ((c+d2)%6

p:(;jj).

We compute the differential at (£, 20):

DP _ qd(c+ dz)7™ 1€ (c+ dzp)?
(§0,70) 1/(C+820)2 0 )

and the determinant of this matrix is

det(DPy, .,)) = —(c+ Ezo)q_Q.

with
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Note that ¢ > 2. As we don’t have ¢ = d = 0, this determinant is zero if and
only if zg = —%. But |z|2 < 1 so it would imply |c|? < |d|? which is impossible
because

det(P) = |c|* — |d|* = 1.

Thus P defines a change of coordinates near the singular point. In these new
coordinates (¢',2’), the action of v is

(€,2") = (€, €,6.7 2).

The only fixed points of v in this local chart are (0,0) and (co0,0), the point at
infinity corresponding to the action

(€,2) - (6,7¢,6% ).

As the singular points of ¥ are isolated, the singular fibers of M are isolated.
Moreover, we see that the singular points are on the zero and infinity sections
in the initial coordinates system, as the transformation P preserves the ruling
and the zero and infinity sections. We can recognize precisely the Hirzebruch-
Jung type of these singularities using the method described in [6]. To simplify
we will suppose ged(r, g;) = 1. If we set ¢; = €2, the action is

(€I7Z,) = (C@_T 6/3 Ci ZI)'

Summarizing:

PROPOSITION 3.3.1. — Let X be an orbifold Riemann surface with strictly neg-
ative orbifold FEuler characteristic. Let (A;)1<i<s be its singular points that we
suppose to be of order strictly greater than 2. Then if ¢ = 2r is an even inte-
ger, the orbifold P(0 & K. ) defined in the above construction has 2s singular
points, two of them in each fiber m~'(A;). Moreover, if ged(r,q;) = 1, the
singular points are of type Ay, 4, and Ag,_p, 4. 0 each fiber, with p; = —rq;].

REMARK 3.3.2. — The hypothesis on the order of the singularity of ¥ is needed
to avoid an isotropy group of the form {+Id}.

We can now apply the Theorem 2.4.

COROLLARY 3.3.3. — Let M be a orbifold surface as in Proposition 3.3.1, en-
dowed with an extremal metric arising from Proposition 3.2.6. Let 7 : M—M
be the Hirzebruch-Jung resolution of M. Then, M admits extremal Kéihler met-
rics with non-constant scalar curvature that converge to m*w on every compact
set away from the exceptional divisors.
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3.4. Identification of the resolution //. — We want to describe the surface that
we obtain after desingularization. Let’s consider M obtained in the Corol-
lary 3.3.3. This is the total space of a singular fiber bundle

f:MZP(@@j{T )—)i

orb

The 2s singular points are situated on s singular fibers F;, each of them admits
a singularity of type A,, 5, on the zero section and of type Ay, _p, ¢ on the
infinity section.

Let ¥ be the smooth Riemann surface topologically equivalent to %. We
define a parabolic ruled surface M in the following way: first we set

_pitr

= ”

for each singular fiber. Note that by construction n; is an integer. We define
the line bundle L on X:

nj

L=K" ®;[4;]™
where the A; stand for the points on ¥ corresponding to the singular points of
3. We set M to be the total space of the fibration

PO L) — 3.

The parabolic structure on M consists in the s points A; € X, the points
B; in the fiber over A; on the infinity section and the corresponding weights

aj = Pi Let BI(M, P) be the iterated blow-up associated to M as defined in
4

j
the introduction.

PROPOSITION 3.4.1. — The smooth surface obtained by the minimal resolution
of M is BI(M, P).

Note that together with corollary 3.3.3, proposition 3.4.1 ends the proof
of Theorem A. More precisions on the Ké&hler classes obtained are given in
section 3.5.

Proof. — We denote by

T:M—M
the minimal resolution of M. This is a ruled surface so it comes from blow-ups
of a minimal ruled surface M:

M/MXM
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M is the total space of a fibration P(6@® L') over X. Indeed, M is birationally
equivalent to M so M is a ruled surface over ¥. As M is minimal, it is of the
form P(E) where E is a holomorphic bundle of rank 2 on X. Then, to show
that E splits, we consider the vector field X, = JVs on M, with s the scalar
curvature of a metric from Corollary 3.3.3. The vector field X is vertical and
can be lifted to M. It projects to a vertical holomorphic vector field on M. The
latter admits two zeros on each fiber because it generates an S* action and not
a R action. The two zeros of this vector field restricted to each fiber give two
holomorphic sections of P(E) and describe the splitting we look for. Tensoring
by a line bundle if necessary, we can suppose that P(FE) = P(0 & L').

PO L) M

It remains to recognize L.

We set M* := D* x CP!/T, where D* denotes the Poincaré disc minus the
fixed points under the action of I'. M* is the surface obtained from M by
taking away the singular fibers. As 7 and 7 are biholomorphisms away from
the exceptional divisors, we get a natural injection from M* to M. M appears
as a smooth compactification of M*. Moreover, M* = P(0 & X, ) on *.

/\

P(O® L)

\/

We can understand the way of going from M to M in the neighbourhood of
the singular fibers using the work of [20]. If A; is a singular point of ¥ of order
g; and A; a small disc around A; then A; x (C]P’l/qu is a neighbourhood of
the singular fiber over A;. It follows from section 3.1 that the action of Z,, is
given by:

Aj X CPI — A]' X (C]P)l
(Z, [U,’U]) = (quza [U, gjv])
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with (g, a qj-h primitive root of unity and p; = —r[g;]. We get a neighbourhood
A; x CP' of the corresponding point in M by the map:

¢j : (AJ XCPl)/Zq% Aj XC]P)l
(2, [w,0]) = (2= 2%, [u, 27P50)).
Indeed, the resolution of Hirzebrugh-Jung singularities and blow-down —1-
curves are toric processes. From the theorem 3.3.1. of [20], we know that the
fan of the Hirzebrugh-Jung resolution of A; x CP!/ Zqg; is the same as the one
of the iterated blow-up BI(A; x CP!, R) of A; x CP! described in the intro-
duction With parabolic structure & consisting in the point (0,[0,1]) with the

welght . Moreover, the resulting map from A; x CP!/ Zq; to Aj X CP! is ¢;.
q]

I(A; x CPY, R

/\

Aj x CP! A; x CP'/Z,

\/

A% x CP!

We get M by gluing to M* the open sets A; x CP! on the open sets (A} x
CP')/Z, with the maps ¢;. We now show that these maps modify P(O® X )
on X* to P(O @ L) on X. Indeed, from the identity

L
dz=2x% dx
on A} /Zg,, we see that on AZ, a local trivialization for L’ is given by
T - :cT_"Lj(dx)@’

Then the maps ¢; define the coordinates
L
W=uv=zPo=zg Yo
wich implies that the trivializing section extends over A; in ¥ by
_pitr

r—z 9 dz®".

In other words, gluing A; x CP' to M* using the ¢; is the same as tensoring
Kow, With the [A;] % . Thus we conclude that L' = A" ®; [4,]"~" = L.

So far, we have seen that M comes from P(O@® L) from an iterated blow-up.
The iterated blow-up is described locally in the toric framework in [20] and it
corresponds exactly to the one of BI(M, %), which ends the proof. O
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3.5. The Kiihler classes. — Let (M,w) be an orbifold extremal Kéhler surface
and (M,w.) the smooth surface obtained after desingularization with an ex-
tremal metric as in Corollary 3.3.3

T M — M.
Away from the exceptional divisors, w. is obtained by a perturbation of the
form w. = w + 09 f so the Kéhler class doesn’t change. In order to determine
[we] it is sufficient to integrate w. along a basis for Ha(M,R). We will compute
the Kéhler class in the case of a unique singular fiber, the general case can be
deduced from this one. Denote by M = P()® L) the minimal model associated
to M

m: M — M.
It’s homology Ho (M, R) is generated by the zero section and the class of a fiber.
Thus the homology Hy(M,R) is generated by the proper transform of these
two cycle and the exceptional divisors. Consider the chain of curves coming
from the resolution of the singular fiber of M

—€k—1 —eg -1 —62 *62—1 —€éqy —e;

—€1 —e2
o 2o -0t o "0 o -
Eq Eo Er_1 Ey S El/ El’—l Eé E;

Note that S is the proper transform under 7 of the singular fiber of M. Ej
is the proper transform under 7 of a fiber of M. The construction of w, shows

that integrating
[ ow=ev
i JE

Z/ we =2V’

for small positive number ¢ and V and V' depending on the volume of the
metric on each resolution. The construction of the metric of Joyce, Calderbank
and Singer enables to choose the volume of each curve E; and E provided that
the sum is equal to V and V' respectively. Thus if we choose (a;) and (a}) such

or

that
Z aj = V
J
and
Z a, =V’
we get

/ we = €2a;
E.

J
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/ we = €2d}
B

’
i

and

If we denote by Sy the proper transform of the zero section of M with =, it
remains to compute [we] - Sy and [we] - S. These two integrals can be computed
on M following Tgnnesen-Friedman [29]. On the zero section, the metric is
of constant sectional curvature and its scalar curvature is equal to b so the
Gauss-Bonnet formula for orbifolds gives

A= [ w.=—7mbx°™.
So

On S, the explicit form of the metric on U enables to compute

b—
B = / We = ng.
s 2rq

where r is related to the degree d of L by d = —ry + Zj(r —mnj), a and b
are constants satisfying % < ko, and ¢ is the order of the singularities of the
singular fiber.

Now, if we write w, in the basis formed by the Poincaré duals of the gener-
ators So, S, (E;) and (E7) of Hy(M,R) we have
We = COPD(SO) + ClpD(El) + ..+ CkPD(Ek) + CPD(S)
+c;PD(E]) + ..+ ¢, PD(EY).
We can compute the vector
C = [co,C1, -y Chy €, Cy -y 4"

using the matrix ) which represents the intersection form of Hy (M ,R) in this
basis

-I-11 0
1 —€1 1
0 1 —ey---
Q: —€L 1 0
1 -1 1

0 1 —¢

!
—e}
If we set
2 2 2 4 2 11t
I=[4,¢%ay,...,e%a, B,e%qaj, ...,e%a]]
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the vector which represents the integration of w. along the divisors, we have
I=Q-C

S0
C=Q'I

and this gives the parameters (c;) we were looking for, determining the Kéhler

class of w,.

The surface M is a ruled surface obtained by blowing-up a minimal ruled
manifold. If the minimal model admits an extremal metric and under certain
assumptions, one can construct extremal metrics on M using the gluing theory
of [5]. However the K&hler classes are not the same. For example we consider
the chain of curves that comes from resolution of a singular fiber:

’ 76' ’ ’
€k—1 —eg -1 —€ -1 —€5 —e;

e —e2 — ) ) )
—0—=0--0—0—0—0 o -

Every curve is small except the middle one of self-intersection —1. On the other
hand, if we used the method from [5], we would have had small curves except
for the one on the right hand side wich corresponds to the proper transform of
the original fiber on the smooth minimal ruled surface.

4. Applications to unstable parabolic structures

This section is devoted to unstable parabolic structures and the proof of
Theorem B. Let M = P(F) be a ruled surface over a Riemann surface 3.
From [2] if the genus of ¥ is greater than two, then M admits a metric of
constant scalar curvature in some class if and only if E is polystable. On the
other hand, Tgnnesen-Friedman has proved in [29] that M = P(0 @ L) with
deg(L) > 0, if and only if M admits an extremal Kahler metric of non-constant
scalar curvature. In that case the bundle is decomposable and not polystable.

REMARK 4.0.1. — Note also that Ross and Thomas have shown that for any
vector bundle E the K-stability of P(E) was equivalent to the polystability of E
[22]. An adaptation of their argument in an equivariant context should enable
to prove that P(E) admits an extremal metric of non-constant scalar curvature
if and only if E splits as a direct sum of stable sub-bundles, as conjectured in

[2]-

REMARK 4.0.2. — The papers [25], [24] and [29] confirm the Yau-Tian-
Donaldson-Székelyhidi conjecture on geometrically ruled surfaces. Together
with corollary 1 from [2], this solves the problem of existence of extremal
Kéhler metrics on geometrically ruled surfaces in any K&hler class.
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We now focus on parabolic ruled surfaces, performing an analogy with the
previous results mentioned. Suppose that the ruled surface is equipped with a
parabolic structure &. Let’s recall the definition of parabolic stability from [20]:
we consider a geometrically ruled surface 7 : M — ¥ with a parabolic structure
given by s points A; in X, and for each of these points a point B; € 7r_1(Aj)
with a weight a; €]0,1[NQ.

DEFINITION 4.0.3. — A parabolic ruled surface M is parabolically stable if for
every holomorphic section S of 7 its slope is strictly positive:

pS) =8>+ ;=Y a; >0
J¢l Jel

where j € I if and only if B; € S.

REMARK 4.0.4. — If M = P(FE), one can check that this definition is equivalent
to the parabolic stability of E in the sense of Mehta-Seshadri [19].

In that case, Rollin and Singer have shown [20] that if the bundle is parabol-
ically stable then there exists a scalar-flat Kdhler metric on BI(M, ). More
generally, if the surface is parabolically polystable and non-sporadic, then there
exists a constant-scalar curvature metric on BI(M, P) ([21]).

Given a parabolically unstable ruled surface, is there an extremal metric of
non-constant scalar curvature on Bl(M, P)?

First of all, we show that if BI(M, %) admits an extremal metric of non-
constant scalar curvature, then the bundle E is decomposable and one of the
zero or infinity section might destabilise M. Thus the situation looks like in
the case studied by Tgnnesen-Friedman.

PROPOSITION 4.0.5. — Let M = P(E) be a parabolic ruled surface over a Rie-
mann surface of genus g with a parabolic structure P. Let % be the weights of
J

the parabolic structure. Suppose that BI(M,P) admits an extremal metric of
non-constant scalar curvature. Then M = P(0 & L). Moreover, if

1
229~ Y (1- 1) <o
j 9
the marked points of the parabolic structure all lie on the zero section or the
infinity section induced by L.
REMARK 4.0.6. — If )
2-29-) (1-—)<0
i 4

we can suppose that the marked point all lie on the same section. Indeed, the
iterated blow-up associated to a point on the zero section with weight 2 is the
same as the one with marked point in the same fiber on the infinity section with
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weight =2, Moreover, we see that the infinity and zero sections have opposite
slopes so one of them might destabilize the surface.

Proof. — Let x°™ =2 —2g — (1= é) In the case x°*® > 0 the genus g of
3 is 0 and in that case every ruled surface is of the form P()® L). We suppose
that Xorb <0.

BI(M, ?) admits an extremal metric of non-constant scalar curvature. Thus
the extremal vector field is not zero. It generates an action by isometries on
the manifold. Using the openness theorem of Lebrun and Simanca [15] we
can suppose that the Kahler class of the metric is rational. In that case, the
periodicity theorem of Futaki and Mabuchi [12] implies that the action induced
by the extremal metric is a S'-action. The extremal vector field is the lift under
the iterated blow-up process of a vector field X on M. This vector field projects
to the basis of the ruling X.

The projection vanishes and X is vertical. Indeed, as x°*® < 0, this projection
is parallel and as X lifts to the blow-ups it has to vanish somewhere, thus its
projection vanishes and is zero. The restriction of X on each fiber vanishes twice
because it induces an S' action. The zero locus provides two sections of the
ruling and FE splits. Moreover, in order to preserve this vector field under the
blow-up process, the marked point need to be on the zero or infinity section. [

We can state a partial answer to the question of this section:

PROPOSITION 4.0.7. — Let M =P(O@® L) be a ruled surface over a Riemann
surface of genus g > 1 with L a holomorphic line bundle of strictly positive
degree. If & is an unstable parabolic structure on M with every marked point
on the infinity or zero section, then the iterated blow-up BI(M,P) carries an
extremal Kdhler metric of non-constant scalar curvature.

REMARK 4.0.8. — With the work of Tgnnesen-Friedman in mind, and the pre-
vious result, one could expect that every unstable parabolic structure which
gives rise to extremal metric of non-constant scalar curvature on the associated
iterated blow-up would lie on a surface of the form P(£) & L) with L of degree
different from zero. The theorem 4.1 proves that this is not the case.

Proof. — This is an application of the main theorem in [5].

From [2] (see also [26]), we know that there exists extremal Kéhler metrics
of non-constant scalar curvature on M. Then, the action of the extremal vector
field is an S! action which rotates the fibers, fixing the zero and infinity sections.
Indeed, the maximal compact subgroup of biholomorphisms of these surfaces is
isomorphic to S' and by Calabi’s theorem the isometry group of these metrics
must be isomorphic to S*. Then we can apply the result of Arezzo, Pacard and
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Singer to each step of the blow-up process, working modulo this maximal torus
of hamiltonian isometries. O

The gluing method of section 2 enables to obtain more extremal metrics from
unstable parabolic structures. The end of this section consists in the proof of
the following, stated as Theorem B in the introduction:

THEOREM 4.1. — Let X be a Riemann surface of Euler characteristic x and L
a line bundle of degree d on X. If x < 0, we suppose thatd = —x ord > 1—2x.
Then there exists an unstable parabolic structure on P( @ L) such that the
associated iterated blow-up admits an extremal Kdhler metric of non-constant
scalar curvature. The Kdhler class obtained is not small on every exceptional
divisor.

REMARK 4.1.1. — This theorem provides extremal metrics on iterated blow-
ups of parabolically unstable surfaces in different Kéhler classes that the one
that we got in the proposition 4.0.7. It also gives examples in the case g = 0.
In the cases where g = 0 or g = 1, it also provides examples in the case of a
line bundle of degree 0.

REMARK 4.1.2. — The work of Székelyhidi [25], and [24], show that the Kah-
ler classes of the metrics constructed by Tgnnesen-Friedman are exactly those
which are relatively K-polystable. It might be possible to find a notion of rel-
ative parabolic stability that corresponds to the different parabolic unstable
structures considered.

We will slightly modify the construction of section 3 in order to obtain more
general results. Let ¥ be a Riemann surface. If L1 and L, are two line bundles
over ¥ of same degree, then Ly ® Ly !is a flat line bundle. We will try to write
every line bundle on X in the following manner:

K" ®; [A4;]"7 ® Lo
with Lo a flat line bundle.

Let L be a flat line bundle on ¥. Let ¥ be an orbifold Riemann surface
topologically equivalent to ¥ with strictly negative orbifold euler characteristic
. Recall that

ﬂi)rb(i) =L (ai,bi)izlug, (li)izl..s |H[az,bz] Hll = l;h =1>.
and
71'1(2) =L (ai,bi)izlug |H[a1,bl] =1>.
There is a morphism:
p:7™(E) - m(D)
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which sends [; to 1. As L is flat, there exists a representation
p:m(X)—-UQ)
such that
L=%xC/m (%),
where ¥ is the universal cover of X. The action on the first factor comes from
the universal covering and on the second factor from p. Thus we have an other
representation:
p () - U(1)
given by
p=poy
and a flat bundle on X:
L' =D x C/7™(T).
We consider the orbifold Kéhler surface
M=PO® (X, ®L)).

Following an idea of T'gnnesen-Friedman , we see that this orbifold admits an
extremal Kahler metric of non-constant scalar curvature. Indeed, there is an
extremal metric on A, ,, which extends to P(O® X, ). This metric and the flat
metric on L' provide an extremal metric on K, ® L’ which extends similarly.
The singularities of this orbifold are the same as the one of P(O® X, , ). Indeed,
the choice of the representation

o mh(E) - UL)
is such that
p(li) =1
so the computations done in section 3.3 work in the same way. We can use the

result of theorem 2.4 and we obtain a smooth ruled surface with an extremal
Kaéhler metric. This surface is an iterated blow-up of a ruled surface which is

P(O & (Ly(q,) ® L))
where
Lig) = K" ®; [4]™
as in section 3.4 because the resolution and blow-down process does not affect
the “L’ part”. We can state:

PROPOSITION 4.1.3. — Fliz positive integers r and (q;);j=1..s such that for each
J, ¢; > 3 and ged(r,q;) = 1. For each j, let
_ pj+r
p; = —rlg], 0<p; <gqj, nj = Jq‘ :
j
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Then consider a Riemann surface ¥ of genus g with s marked points A;. The
previous integers define a parabolic structure on

M= ]P)(Q & (LT,(qj) ® Lo))
with
Ly = K" ®; [A;]77"
and Lo any flat line bundle. The parabolic structure & consists of the points
Bj in the infinity section of the ruling of M over the points Aj together with
. Dbj
the weights —. If

J

1
X(E) =) (1-—)<0
j %
then BI(M,%) admits an extremal Kihler metric of non-constant scalar cur-
vature.

We now end the proof of theorem 4.1

Proof. — In order to prove theorem 4.1, it remains to show that to any Rie-
mann surface ¥ and to each line bundle L on it, we can associate an orbifold
Riemann surface ¥ defined by %, marked points (A;) and weights g; > 3 such
that x°™(¥) < 0 and
L=X"®;[A;]7™™ ® Lo

where Lg is a flat line bundle. Then the associated iterated blow-up admits an
extremal metric from proposition 4.1.3.

So let L be a line bundle over ¥ and let d be its degree. We only need to
show that there is a line bundle of the form

L= K" @ [A] ™

with degree d on X, keeping in mind the euler characteristic condition. If we
manage to build such a line bundle, then Ly = L ® L ! is a flat line bundle
and following the last proposition, we know how to obtain an iterated blow-up
of P(O @& L) with an extremal metric.

We can suppose d > 0 because

P(OeL)=P(L™ e 0)

and deg(L) = —deg(L™'). We will consider three cases.

First we suppose that the genus g of ¥ is 0, that is x = 2. We consider the
orbifold Riemann surface with s > 4 marked points A; with orders ¢; = g2 =
..=¢qs = 3 and we set r = 2. With this choice we have

X =(2-29)-> (1- i) <0.

4q;
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Then we compute the degree d’ of
K@ [A;]77.

d’:r(?g—Q)—i—Z(T—nj) =-2r+s(r—1)=-4+s.
Then s = 4 + d gives the desired degree.

For g = 1, we consider d marked points of order 3 and r = 2. The degree of
the bundle is then equal to d.

It remains to study the x < 0 case. We use the same method, s marked point
of order 3. Thend' = —xr+s(r—1)ifr=1orr =2.r =1 gives d = —x and
r = 2 gives d = s — 2x, which give the restriction stated in 4.1.

It is not difficult to see that the surfaces considered in the theorem A with
the parabolic structure of section 3.4 are not parabolically stable. Indeed, if we
consider P( @ L), and if we denote Sy and S, the zero and infinity sections,
following [20] we have

H(Se) = 5% = ) 0y
J

and
5% = deg(0 ® L) — 2deg(L) = —deg(L).
So
p(Se) = =(orx+ 3 (r =) = 3
J
1
wSe) =r(x =Y (1——))
j 9
Thus
1(Ss0) =X < 0
And S, destabilises M. O
REMARK 4.1.4. — If we consider more general constructions, we have

d = (—X-i-S)T—an
J

with s marked points. However the left part grows linearly in r while if we write
r = g;7; — p; the right part decreeses as —r; so we do not expect to obtain
smaller degrees with this method.

5. Examples

We will give two examples which lead to the results Theorem D and Theo-
rem C.
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5.1. First example. — Here we will use the extremal metrics on weighted pro-
jective spaces constructed by Bryant [7]. We also refer to the work of Abreu [1].
In his paper, he constructed extremal Kéhler metrics with non-constant scalar
curvature on weighted projective spaces

CP%, . :=C3/C*

a,b,c

where the action is
Yt € C* t.(z,y, 2) = (t%, t%y, t°2).

In particular, we can endow (C]P’%z,3 with an extremal metric. This orbifold
has two isolated singularities: A; o at [0,1,0] and As 3 at [0,0,1]. Thus we
can endow a minimal resolution X of (C]P%,2,3 with an extremal Kéhler metric.
Following Fulton ([11]), we use the fan description of these toric manifolds. The
fan associated to (CIE”%’Q’3 is represented on Figure 1. The minimal resolution
is represented Figure 2. The fan of figure 2 is also associated to a three times
iterated blow-up of CP2.

N

Ficure 1. CP}, 3

Now we describe the Kéahler classes which arise this way. The singular ho-
mology group Ho(X,Z) is generated by H, E1, E5 and E3 where H is the proper
transform of a hyperplane in CP? and the E!s are the successive exceptional
divisors. If the first blow-up is done on a point of H, we get the following chain
of curves:
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FIGURE 2. Minimal resolution

E; and E; come from the resolution of the A3 singularity and H from the
resolution of the A, singularity of CP§, 3. So these divisors are small. E3
comes from (C]P’%J’3 as the pull back of the line H joining the two singularities,
and integrating the metric on it will be related to the volume of CP , 5, which
can be chosen arbitrarily. Indeed, the construction of the metric by Abreu is
done on a space (C]P’[Ql,m] and then pulled back to CP} , ; by a map

p: (CIP’%’Z,?, — (CIP’%LQ’?,].

As (CIP’[21 23] is diffeomorphic to CP? (it is even biholomorphic but not as an
orbifold), its homology group Ho ((CIP[QLZ:,)], Z) is one dimensional and evaluating

the metric on p(H) will give a constant proportional to the volume. So it is
for H. Next, following the method of Section 3.5, we compute the intersection
form @ in the basis H, E3, E5 and F,

21 0 0
1 -11 0
Q= 0 1 -2 1
0 0 1 —2

Then
I = [e%a3,a,%as,6%a1]"
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with a and the a; arbitrary positive numbers and ¢ small enough. The compu-
tation of Q7! - I gives the Kihler class

(3a + £%(az + 2az + a1))PD(H) + (2a + €*(az + a2))PD(E1)
+(4a + €%(2a3 + 2a3 + a1))PD(Es) + (6a + £2(3a3 + 4as + 2a1))PD(E3).

It proves Theorem D.

5.2. Second example. — We now consider the orbifold Riemann surface of genus
1 with a singularity of order 3. In this case x°*® < 0 and we can use the results
of Corollary 3.3.3 with » = 1. The associated orbifold ruled surface has two
singular points of order 3 and from Proposition 3.4.1 we know that a minimal
resolution is a three times iterated blow-up of the surface P(O@® L) over X1 ~ T2.
Here L = 0. Thus we get an extremal Kéhler metric on a three times blow-up
of CP! x T2. The iterated blow-up can be made more precise. The first point
to be blown-up is the point on the zero section above the marked point of X.
The iterated blow-up replace the fiber F' by the chain of curves:

-2 -2 -1 -3
O O O
19 19 19

with the —3 self-intersection curve corresponding to the proper transform of the
fiber F' above the first blown-up point. This ends the proof of the Theorem C
stated in the introduction.
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