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COMPLEX PROJECTIVE SPACES

by David Chataur & Jean-François Le Borgne

Abstract. — In this short note we compute the Chas-Sullivan BV-algebra structure
on the singular homology of the free loop space of complex projective spaces. We
compare this result with computations in Hochschild cohomology.

Résumé (Sur l’homologie des lacets d’espaces projectifs complexes)
Sur l’homologie de l’espace des lacets des espaces projectifs complexes résumé :

Dans cette note, on calcule l’homologie singulière de l’espace des lacets libres des
espaces projectifs complexes munie de la BV-structure de Chas-Sullivan. On compare
ces calculs avec ceux effectués en cohomologie de Hochschild.

Introduction

Let us begin by recalling the definitions of Gerstenhaber algebras and BV-
algebras. A Gerstenhaber algebra is a triple (A, •, {−,−}) such that (A, •) is a
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504 D. CHATAUR & J.-F. LE BORGNE

commutative graded algebra and (A, {−,−}) is a graded Lie algebra of degree
+ 1. Moreover the product and the Lie bracket satisfy the following relation
the so-called Poisson relation:

{a, b • c} = {a, b} • c+ (−1)(|a|+1)|b|b • {a, c}.

A Batalin-Vilkovisky algebra or BV-algebra is a Gerstenhaber algebra
(A, •, {−,−}) equipped with a degree +1 linear map

∆ : Ai → Ai+1

such that ∆2 = 0 and such that we have the formula

{a, b} = (−1)|a|(∆(a • b)−∆(a) • b− (−1)|a|a •∆(b)),

these algebras are closely related to topological field theories [9].
The first examples of Gerstenhaber algebras go back to Gerstenhaber him-

self. Let A be an associative algebra, Gerstenhaber proved that the Hochschild
cohomology of A denoted by HH∗(A,A) is a Gerstenhaber algebra [8]. L.
Menichi [13] and T. Tradler [18] proved that for any symmetric algebra A

the Hochschild cohomology HH∗(A,A) is a Batalin-Vilkovisky algebra. In this
case the ∆-operator is induced by the Connes coboundary map. This result has
been reproved and extended by many people. In particular, L. Menichi proved
in [14] that the Hochschild cohomology HH∗(A,A) of a differential graded al-
gebra A which is a symmetric algebra at the level of the derived category of
algebras is a Batalin-Vilkovisky algebra. Let M be a d-dimensional connected
closed oriented manifold and C∗(M,Z) its singular cochain complex, in [7] the
authors proved a linear isomorphism

D : HH∗+d(C∗(M,Z), C∗(M,Z))→ HH∗(C∗(M,Z), C∗(M,Z)).

This linear isomorphism depends on choices of C∗(M,Z)-bimodules quasi-
isomorphisms between chains and cochains of M . And it is required that
these quasi-isomorphisms induce the Poincaré duality at the homology level. L.
Menichi’s results imply that the Connes coboundary map on Hochschild coho-
mology HH∗(C∗(M,Z), C∗(M,Z)) defines via the isomorphism D a structure
of BV algebra extending the Gerstenhaber algebra HH∗(C∗(M,Z), C∗(M,Z)).

The second examples of BV-algebras we encounter in this note come from
string topology. The free loop space of M denoted by LM is the space of con-
tinuous maps from the circle S1 to M . In [3], M. Chas and D. Sullivan defined
on the shifted homology H∗( LM) := H∗+d( LM,Z) a structure of BV algebra.
The commutative product is the loop product denoted by ◦. This loop product
is a kind of intersection product for free loop spaces of manifolds. It mixes the
intersection product of the singular homology of M together with the Pontrya-
gin product of the homology of the based loop space ΩmM . The ∆-operator
comes from the natural action of the circle on LM given by reparametrization
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of loops. More precisely, this operator is the composition of the two following
maps. First, we consider the morphism

[S1]× : H∗( LM)→ H∗+1(S1 × LM)

x 7→ [S1]× x
given by the cross product with the fundamental class of S1. Next, we consider

act∗ : H∗+1(S1 × LM)→ H∗+1( LM)

the map induced in homology by the reparametrization action of the circle:

act : S1 × LM → LM

(θ, γ(t)) 7→ γ(θ + t).

For more details on the constructions of the loop product and of the string
topology BV-structure we refer to Chas-Sullivan and Cohen-Jones’papers ([3]
and [4]).

A fundamental problem in string topology is to compare (H( LM), ◦,∆) to-
gether with HH∗(C∗(M,Z), C∗(M,Z)). Working over a field F, in [4] Cohen
and Jones proved an isomorphism of graded commutative and associative al-
gebras

H∗( LM,F) ∼= HH∗(C∗(M,F), C∗(M,F)).

Now, let us suppose that M is a formal manifold, that is to say that C∗(M,Z)

and H∗(M,Z) are isomorphic in the homotopy category of differential graded
algebras. For example, spheres and projective spaces are formal manifolds. In
that cases, in first approximation one can use the structure of Poincaré du-
ality algebra of H∗(M,Z) and try to compare (H∗( LM), ◦,∆) together with
HH∗(H∗(M,Z), H∗(M,Z)) as BV-algebras. For the manifoldM = CP 1 = S2,
L. Menichi in [15] proved that (H∗( LS2,Z/2Z), ◦,∆) cannot be isomorphic to
HH∗(H∗(S2,Z/2Z), H∗(S2,Z/2Z)) as a BV-algebra. Then L. Menichi asked
for the case of complex projective spaces. It is the aim of this paper to give
these computations. We prove the existence of an isomorphism of BV-algebras
for M = CP 2m but never for M = CP 2m+1 , however we always have an iso-
morphism of Gerstenhaber algebras. All our computations are with homology
with integral coefficients, we notice that few computations of loop homology
BV-algebras were done over the integers, H. Tamanoi in [17] did it for com-
plex Stiefel manifolds. These computations prove that in string topology the
comparison of the Chas-Sullivan BV-algebra with Hochschild cohomology of
cochains is very subtle. In fact the main point is to produce a correct notion
of homotopy Poincaré duality algebra. And maybe for such a notion com-
plex projective spaces of odd dimension are not formal manifolds. Recently R.
Hepworth in [11] has also computed the Chas-Sullivan BV-algebra of complex
projective spaces by using different methods.
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506 D. CHATAUR & J.-F. LE BORGNE

Statements and results

Chas-Sullivan BV structure. — In [6], the authors proved that rationaly for
1-connected closed oriented manifolds, there is an isomorphism of BV al-
gebra betwen the Hochschild cohomology HH∗(C

∗(M,Q), C∗(M,Q)) and
(H∗( LM,Q), ◦,∆). As a consequence of this isomorphism T. Yang deduced
that ([19, theorem 4.3])

As BV algebras,

H∗( LCPn; Q) = Q[α−2, ξ−1, ζ2n]/(αn+1
−2 , ξ2−1, α

n
−2ξ−1, ζ2nα

n
−2)

where the subscripts are the degrees of the generator.

∆(ζk2nα
l
−2) = 0

∆(ζk2nξ−1α
l
−2) = (−(k + 1)n− k + l)ζk2nα

l
−2

In [5], the authors compute the loop algebra H∗( LCPn,Z). Their computation
uses the Leray-Serre spectral sequence of the evaluation fibration

ΩmCPn → LCPn ev0→ CPn.

They used the fact that this fibration is multiplicative with respect to the loop
product and showed that

The algebra H∗( LCPn) is isomorphic to

Z[a−2, x−1, y2n]/(an+1
−2 , x2

−1, a
n
−2x−1, (n+ 1)y2na

n
−2)

where the subscripts are the degrees of the generators.
One can already notice that Cohen-Jones-Yan’s computations rely upon W.

Ziller’s results [20] that are based on Morse theoretic arguments.
Using Morse theory we prove that:

Theorem 0.1. — The BV structure on

H∗( LCPn) ' Z[a−2, x−1, y2n]/(an+1
−2 , x2

−1, a
n
−2x−1, (n+ 1)y2na

n
−2)

is given by
∆(yk2na

l
−2) = 0.

For l 6= 0,
∆(yk2nx−1a

l
−2) = (−(k + 1)n− k + l)yk2na

l
−2

If n is odd,

∆(yk2nx−1) = (−(k + 1)n− k)yk2n + (k + 1).
n+ 1

2
an−2y

k+1
2n .

If n is even,
∆(yk2nx−1) = (−(k + 1)n− k + l)yk2n.
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The first step of this computation involves the Morse spectral sequence as-
sociated to the energy filtration. The filtration of loops by the energy leads at
least for rank 1 symmetric spaces to a spectral sequence that is multiplicative
with respect to the loop product. The E1 page of this spectral sequence de-
pends of the intersection homology of CPn and of the intersection homology of
UCPn which is the unit tangent bundle of CPn. The second step of the proof
is the computation of the operator ∆ on each column of this spectral sequence.
We compute the action of ∆ on H∗(UCPn). In order to finish this computation
we consider the action of ∆ on the torsion free part of H∗( LCPn) given by the
rational homotopy theoretic computations of Félix-Thomas and Yang.

Comparison with Hochschild cohomology. — The cohomology of CPn is isomor-
phic to the graded algebra Z[a−2]/(an+1

−2 ). It is the cohomology ring of a
closed oriented manifold, thus it is a symmetric algebra. Based on the study of
Hochschild cohomology of symmetric algebras cited previously, in [19] T. Yang
has determined the BV-algebra structure on

HH∗(Z[a−2]/(an+1
−2 ),Z[a−2]/(an+1

−2 ))

an thus on HH∗(H∗(CPn,Z), H∗(CPn,Z)) this structure is given by the
Poincaré duality isomorphism H∗(CPn,Z) ∼= H2n−∗(CPn,Z). Let us call this
structure the formal BV-structure. In that case we have the following result

The formal BV structure on

HH∗(H∗(CPn,Z), H∗(CPn,Z)) ∼= Z[a−2, x−1, y2n]/(an+1
−2 , x2

−1, a
n
−2x−1, (n+ 1)y2na

n
−2)

is given by

∆f (yk2na
l
−2) = 0.

and

∆f (yk2nx−1a
l
−2) = (−(k + 1)n− k + l)yk2na

l
−2.

Thus we get the following comparison theorem:

Theorem 0.2. — 1) For CP 2m the Chas-Sullivan BV-structure is isomorphic
to the formal BV-structure, whereas it is never the case for CP 2m+1. But we
always have a Gerstenhaber algebra isomorphism.

2) For CP 2n+1 we have a BV -isomorphism when working with coefficients
in the ring Z[ 1

2n+2 ].

3) Over Z
2Z the Chas-Sullivan BV-structure of the homology of LCP 4n+1 can

not be isomorphic to the formal BV-structure.
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508 D. CHATAUR & J.-F. LE BORGNE

Proof. — 1) If n is even, the Chas-Sullivan BV-algebra H∗( LCPn,Z) and the
formal BV-algebra HH∗(H∗(CPn,Z), H∗(CPn,Z)) are the same and 1) is ob-
vious. Suppose that n is odd. Let

φ : HH∗(H∗(CPn,Z), H∗(CPn,Z))→ H∗( LCPn,Z)

be an isomorphism of algebras. Since φ is an isomorphism in degree −1,
φ(x−1) = ±x−1. And since φ is an isomorphism of algebras φ∆f (x−1) =

φ(−n.1) = −n.1. Since H0( LCPn,Z) ∼= Z < 1 > ⊕ Z
n+1Z < an−2y2n > and since

∆(φ(x−1)) = ±(−n1 +
n+ 1

2
an−2y2n)

we have φ(∆f (x−1)) 6= ∆(φ(x−1)). An easy computation shows the two corre-
sponding Gerstenhaber algebras are the same.

2) It is a direct consequence of the Kunneth isomorphism and the fact that
for any commutative ring R the canonical map

i : H∗( LM,Z)→ H∗( LM,R)

is a morphism of BV-algebra (see [15]).
3) We compute Hi( LCP 4n+1, Z

2Z ) for i = −1 and i = 0, a direct application
of the universal coefficient theorem shows that for i = −1, 0 we have

Hi( LCP 4n+1,
Z
2Z

) ∼= Hi( LCP 4n+1,Z)⊗ Z
2Z
.

Thus we have
H−1( LCP 4n+1,

Z
2Z

) ∼=
Z
2Z

< x−1 >

and in degree zero

H0( LCP 4n+1,
Z
2Z

) ∼=
Z
2Z

< 1 > ⊕ Z
2Z

< an−2y2n >

the arguments used to prove assertion 1) remain valid because the operators
commute with reduction mod 2, and because modulo 2 we have ∆f (x−1) = 1

and ∆(x−1) = 1 + an−2y2n.

1. The Morse spectral sequence for CPn

Let us recall the basics of Morse theory for free loop spaces, we refer the
reader to Bott’s survey paper [1]. N. Hingston and M. Goresky have studied
the compatibility of the loop product together with the energy fitration in [10].
In this section we follow F. Laudenbach’s presentation [12]. Let M be a 1-
connected rank 1 symmetric space. In that case all the geodesics of M are
closed, moreover we suppose that their length is equal to 1. We denote by
Λ the space of loops parametrized proportionnaly to arc-length, and we work
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with a completion of the space of piecewise-smooth loops. We recall that the
inclusion

Λ→ LM

is a homotopy equivalence. Let l2 : Λ→ R be the square-length. This function
satisfies the Morse-Bott non-degeneracy condition. Let p ∈ N, we consider the
space Λp ⊂ Λ of loops of length ≤ p and Σp the space of geodesics of length p.
We have a geometric filtration

M = Λ0 ⊂ Λ1 ⊂ · · · ⊂ Λp ⊂ · · · ⊂ Λ.

We define a filtration
FpCp+q(Λ) := Cp+q(Λp).

This filtration yields a spectral sequence called the Morse spectral sequence.
We remark that as the S1-action preserves the length of the loops we have the
following result :

Proposition 1.1. — The operator ∆ is compatible with the length filtration
namely ∆(Cp+q(Λp)) ⊂ Cp+q+1(Λp) .

The first page. — We identify the E1-term of the spectral sequence together
with the action of the operator ∆. We first remark that the elements of Σp are
the primitive geodesics traversed p times. They are the critical points of l2 of
index αp (for p > 0). In order to compute the E1-term one needs to determine
the relative groups

H∗(Λp,Λp−1,Z),

it follows from Morse theory that there is a S1-equivariant attaching map f :

Σp → Λp−1 and that we have

Λp ∼= Λp−1 ∪f Σp.

The pair (Λp,Λp−1) is S1-equivariantly homotopy equivalent to a pair (Dp, Sp).
The space DP (resp. SP ) is the disk bundle (resp. the sphere bundle) of a S1-
vector bundle

µ−p → Σp

over Σp ([16], sections 7 and 8). Associated to this bundle we have Thom’s
isomorphism φp for p > 0

φp : H∗(Σp,Z)→ H∗+αp
(Dp, Sp) ∼= H∗+αp

(Λp,Λp−1).

We recall that the index αp satisfies Bott’s iteration formula

αp = pα1 + (p− 1)(d− 1).

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



510 D. CHATAUR & J.-F. LE BORGNE

We have a ∆ operator on H∗(Σp,Z) coming from the natural S1-action on iter-
ated geodesics, the relative homology groups H∗+αp

(Dp, Sp) are also equipped
with a ∆-operator because

µ−p → Σp

is a S1-vector bundle and the action is compatible with the metric. From the
existence of S1-Thom spaces (see [16], section 5) and equivariant Thom classes
it follows that φp respects the ∆-operators. Let UM be the unit tangent bundle
of M , we have a diffeomorphism

D : Σp → UM

γ 7→ (γ(0), γ′(0)/‖γ′(0)‖).
which equips UM with p-iterated S1-actions. We conclude that the computa-
tion of ∆ on the first term of the spectral sequence follows from the determi-
nation of ∆ on the homology of Σp.

Algebra structure. — Now, we describe its multiplicative structure. Let us de-
note by H∗(M) := H∗+d(M,Z) and H∗(UM) := H∗+2d−1(UM,Z) the inter-
section algebras of M and UM . We introduce a bigraded algebra A∗,∗. We
set

A0,q := Hq(M)

and
Ap,q := Hp+q−αp

(UM) < T p >

if p > 0 where T is an element of bidegree (1, α1 + d − 2). The multiplicative
structure of A∗,∗ is given by :

1) the intersection algebra H∗(M) if p = 0,
2) the algebra Hp+q−αp(UM)[T ]≥1 of polynomials of degree ≥ 1 in T with

ocefficients in the intersection algebra H∗(UM) when p > 0,
3) the products involving an element of H∗(M) and an element of

Hp+q−αp
(UM)[T ]≥1 is given by a topological H∗(M)-module structure on

H∗(UM). This structure is given by the Gysin map

p! : H∗(M)→ H∗(UM)

associated to the canonical projection p : UM → M , the morphism p! is a
morphism of intersection algebra. Then at the homological level the module
structure is given by the formula

Hu(M)⊗Hv(UM)T k → Hu+v(UM)T k

x⊗ yT k 7→ (p!(x) • y)T k.

We are now ready to recall the main computational tool (see [10] and [12])
used in this note.
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Theorem 1.2. — If M is a d-dimensional 1-connected rank 1 symmetric
space, the Morse spectral sequence is a spectral sequence of algebra converging
to the algebra (H∗( LM), ◦,∆). As algebra, E1

∗,∗( M)( LM) is isomorphic to
A∗,∗. In other words, the multiplicative structure on the shifted Morse spectral
sequence

Erp,q( M)( LM) := Erp,q+d( M)( LM)

is given at the E1-level by:

E1
∗,∗( M)( LM) = H∗(M)⊕H∗(UM)[T ]≥1.

The bidegree of T is (1, α1 + d− 2), elements of H∗(M) and of H∗(UM) are of
bidegree (0, ∗). We have

E1
0,q( M)( LM) = Hq(M)

and for p ≥ 1,
E1
p,q( M)( LM) = Hq−pα1

(UM) < T p >

The multiplication between the 0-th column and the others is induced by the
H∗(M)-module structure on H∗(UM). Moreover this spectral sequence collapses
at the first term.

The case of complex projective spaces. — In the case of complex projective spaces
we have α1 = 1. Moreover the intersection algebras of CPn and UCPn are
given by

H∗(CPn,Z) ∼= Z[a]/(an+1)

where deg(a) = −2 and

H∗(UCPn,Z) ∼= Z[α, β]/((n+ 1)αn, αn+1, β2, αnβ)

where deg(α) = −2, deg(β) = −2n − 1. The computation of H∗(UCPn,Z)

follows from the Leray-Serre spectral sequence of the fiber bundle

S2n−1 → UCPn → CPn.

Description of the first term. — We consider the E1-term of the Morse spectral
sequence. From the preceding theorem one has that

E1
∗,∗( M) = Z[a]/(an+1)⊕ Z[α, β]/((n+ 1)αn, αn+1, β2, αnβ)[T ]≥1,

where bideg(a) = (0,−2), bideg(α) = (0,−2), bideg(β) = (0,−2n − 1) and
bideg(T ) = (1, 2n−1). In order to get a complete description of the multiplica-
tive structure we have to give the H∗(CPn)-module structure on H∗(UCPn).
Let

p : UCPn → CPn
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be the canonical projection, by a direct application of Poincaré duality and of
the Leray-Serre cohomological spectral sequence of p one deduces that p!(a) =

α. Thus one deduces the isomorphism of algebras

E1
∗,∗( M) ∼= Z[a−2, x−1, y2n]/(an+1

−2 , x2
−1, a

n
−2x−1, (n+ 1)y2na

n
−2)

where we have identified a with a−2, βT with x−1 and T with y2n.

The E∞-term. — From W. Ziller’s results on the loop homology of free loop
spaces of rank 1 symmetric spaces [20], we know that this spectral sequence
collapses at the first term, but let us redo the computation for complex projec-
tive spaces. To compute the E2-term of this spectral sequence we only need to
compute the differential d1 of the three generators because d1 is a derivation
(we have a spectral sequence of algebra). If d1(a−2) = d1(y2n) = 0 for obvious
degree reasons we have d1(x−1) = l.α−2, but l = 0 because H∗(M) is a direct
factor of H∗( LM) (due to the inclusion of constant loops). We deduce that
E1 = E2 and that the derivations dr = 0 when r > 1 for degree reasons. Then
we have the isomorphism of graded algebras E1

∗,∗( M) ∼= E∞∗,∗( M).

Extensions issues. — The only possible extension issues are in total degree 2kn,
in degree zero we have

E∞0 = Z1⊕ Z/(n+ 1)Zan−2y2n.

As H∗(evaluation)(an−2y2n) = 0 and because H0(M) ∼= Z.1 is a direct factor
of H0( LM) we deduce that H0 = Z ⊕ Z/(n + 1)Z. In degrees 2kn we use the
multiplicative structure to conclude. As we have (n+ 1)-torsion in degree zero
we get the equation

(n+ 1)an−2y
k+1
2n = 0

thus we have (n + 1)-torsion in H2kn( LM,Z). The fact that we have no mul-
tiplicative extension issues follows for degree reasons, for example x2

−1 = 0

because the Chas-Sullivan algebra is a graded commutative algebra.

Thus we have an isomorphism of graded algebra

H∗( LM,Z) ∼= Z[a−2, x−1, y2n]/(an+1
−2 , x2

−1, a
n
−2x−1, (n+ 1)y2na

n
−2).

We have recovered Cohen-Jones-Yan computation [5].

tome 139 – 2011 – no 4



ON THE LOOP HOMOLOGY OF COMPLEX PROJECTIVE SPACES 513

2. The BV-operator

2.1. On some algebraic considerations. — In this section we follow Cadek-
Moravek’s paper [2] where they compute the BV structure for quaternionic
projective spaces. We know that BV -algebras satisfy the 7-terms relation

∆(abc) = ∆(ab)c+ (−1)|a|a∆(bc) + (−1)(|a|+1)|b|b∆(ac)

−∆(a)bc− (−1)|a|a∆(b)c− (−1)|a|+|b|ab∆(c).

This relation tells us that in order to determine the operator ∆ of a BV algebra
we only have to compute it on generators and double product of generators.
Moreover for the BV Chas-Sullivan algebra ∆ vanishes on the image of H∗(M)

in H∗( LM), because the S1-action is trivial on constant loops. For complex
projective spaces we deduce that

∆(ak−2) = 0

for any k. As we have noticed precedently the S1-action respects the filtration,
moreover we know that as graded modules

Hi( LCPn) ∼=
⊕
p+q=i

E∞p,q

thus we get that for any x ∈ E∞p,q we have

∆(x) ∈
⊕

l+m=p+q+1,l≤p

E∞l,m.

For example if x ∈ E∞1,q then ∆(x) ∈ E∞1,q+1⊕E∞0,q+2. From these considerations
by looking at the three first columns of the Morse spectral sequence it follows
that

∆(yk2na
l
−2) = 0

for any k and l. We are left with the following computations :

∆(x−1),∆(x−1a−2),∆(y2nx−1).

Lemma 2.1. — We have

∆(x−1) = −n.1 + λan−2y2n

where λ ∈ Z/(n+ 1)Z, and for any l 6= 0 we have

∆(x−1a
l
−2) = −(n− l)al−2.

Proof. — Let us suppose that n ≥ 2, we also suppose that

∆(x−1) = µ0.1 + λan−2y2n

and that for l > 0

∆(x−1a
l
−2) = µla

l
−2.
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Thanks to the 7-terms relation applied to

∆(x−1a
l
−2) = ∆(x−1a−2a

l−1
−2 )

we get µl = µ1 − µ0 + µl−1. Since x−1a
n
−2 = 0 we get the equality µn = 0.

Moreover we have nµ1 = (n − 1)µ0 and µ0 = nµn−1. In order to determine
µn−1 we consider the canonical inclusion S2 → CPn and the induced map
i : LS2 → LCPn, in homology we get a morphism

i∗ : Hi( LS2) ∼= Hi+2( LS2)→ Hi+2( LCPn) ∼= Hi−2(n−1)( LCPn).

In degree −1 we have an isomorphism (this can be proved easily by using the
Cohen-Jones-Yan spectral sequences associated to LS2 and LCPn)

H−1( LS2) ∼= Z < x′−1 >
∼=→ H−2n+1( LCPn) ∼= Z < an−1

−2 x−1 >

we have i∗(x′−1) = an−1
−2 x−1. We also recall that

H0( LS2) ∼= Z < x′−1 > ⊕
Z
2Z

< a′−2y
′
2 >

we have i∗(1) = an−1
−2 and i∗(a′−2y

′
2) = 0. Now we use the fact that i∗ commutes

with ∆, as we have i∗(∆(x−1)) = i∗(−1 + a′−2y
′
2) = −i∗(1) = −an−1

−2 (see [15]
for the computation of ∆(x′−1) in the case of a 2-sphere), we get that µn−1 = −1

thus µ0 = −n and µ1 = −(n− 1).

Lemma 2.2. — We have

∆(y2nx−1) = (−2n− 1)y2n + µan−2y
2
2n.

Proof. — We suppose that ∆(y2nx−1) = µ′y2n + µan−2y
2
2n. Let

i : H∗( LM,Z)→ H∗( LM,Q)

be the canonical map. this map is a morphism of BV-algebras. The rational
BV-structure described in the introduction is only determined up to a BV-
isomorphism thus we have

i(a−2) = u.α−2, i(x−1) = v.ξ−1, i(y2n) = w.ζ2n

where u, v, w ∈ Q∗. As i is a morphism of BV-algebras we consider the equality
∆(i(x−1)) = i(∆(x−1)), from this equality we deduce that v = 1. Finally we
consider i(∆(y2nx−1)) = ∆(i(y2nx−1)),

i(∆(y2nx−1)) = i(µ′y2n + µan−2y
2
2n) = wµ′ζ2n

∆(i(y2nx−1)) = ∆(wζ2nξ−1) = w(−2n− 1)ζ2n.

thus µ′ = (−2n− 1).

In the next sections we end our computation by using the action of S1 on
the spaces of geodesics this gives us the value of λ and µ.
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2.2. A S1-principal bundle for spaces of geodesics. — We consider the complex
projective spaces equipped with the Fubini-Study metric. Let Σ1 be the space
of primitive closed geodesics f : S1 → CPn. For an integer q ≥ 1, we denote
by Σq the space of closed geodesics of the form f(qt) for f ∈ Σ1. As manifolds
we have a canonical diffeomorphism Σ1

∼= Σq, one has a natural S1-action on
the spaces of q-iterated primitive geodesics Σq, of course this action depends of
q. Then one has an action Act1 : S1 × UCPn → UCPn of S1 on UCPn given
by the following diffeomorphism

D : Σ1 → UCPn

γ 7→ (γ(0), γ′(0)/‖γ′(0)‖).

We can also identify Σq with UCPn and we get another S1-action denoted by
Actq, we get

Actq(θ, x) = Act1(qθ, x)

for any θ ∈ S1 an x ∈ UCPn. Since the isomorphism E1
k+1,∗

∼= H∗(Bk+1(CPn))

is compatible with the ∆’s, ∆mss(βT
2) = 2∆(βT ). On the other hand,

∆mss(βT ) = λan−2T2n and ∆mss(βT
2) = µan−2T

2
2n, we get the equality

µ = 2λ.

Thus we focus on the case q = 1 and on the action of ∆ on H∗(Σ1,Z) ∼=
H∗(UCPn,Z). The quotient of UCPn by this action is denoted by ∆0(CPn).
This gives the S1-equivariant fiber bundle ρ : UCPn → ∆0(CPn).

The authors of [16] compute the cohomology ring H∗(∆0(CPn)).

Lemma 2.3. — Corollary 3.3 of [16]. There is an isomorphism

H∗(∆0(CPn); Z) ' Z[x1, x2]/(Qn, Qn+1)

with deg(x1) = deg(x2) = 2 and Qk =
∑k
i=0 x

k−i
1 xi2.

By Poincaré duality, we deduce from this Lemma the intersection product
ring algebra H∗(∆0(CPn); Z).

Lemma 2.4. — There is an isomorphism

H∗(∆0(CPn); Z) ' Z[y1, y2]/(Qn, Qn+1)

with deg(y1) = deg(y2) = −2 and Qk =
∑k
i=0 y

k−i
1 yi2.
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2.3. The action of ∆. — Let us recall the isomorphism of algebras:

H∗(UCPn) ∼= Z[α, β]/(αn+1, β2, (n+ 1)αn, αnβ)

with deg(α) = −2 and deg(β) = −2n− 1.

Proposition 2.5. — ∆(β) = (n+1)
2 αn if n is odd, otherwise it is equal to 0,

thus λ = (n+1)
2 αn if n is odd, otherwise it is equal to 0

Proof of Proposition 2.5. — In order to compute ∆ We use the fact that for
any S1-principal bundle

S1 → E
p→ B

one has the formula

∆ = p! ◦ p∗ : H∗(E)→ H∗+1(E).

First step. We compute p∗(β). We use the shifted Serre spectral sequence
E∗∗,∗(ρ) of the fibration ρ : UCPn → ∆0(CPn). We use Poincaré duality to
work multiplicatively with the cohomology structure. We have

E2
∗,∗(ρ) = H∗(S1)⊗H∗(∆0(CPn)).

Let us denote by s ∈ H−1(S1) a generator of H−1(S1). Since we know the E∞-
term of this spectral sequence, we compute the differentials on the generators
and deduce the other differentials by applying the Leibniz derivation rule. As
we have

H∗(∆0(CPn)) ∼= Z[y1, y2]/(Qn, Qn+1)

the computation of differentials of the spectral sequence follows from the for-
mula

d2(s⊗ 1) = 1⊗ (y1 − y2).

This formula follows from the corollary 3.7 of [16]: we consider the Gysin exact
sequence in cohomology, in low degree we have

H0(UCPn)
∪eu→ H2(∆0(CPn))

p∗→ H2(UCPn)
p!→ H1(∆0(CPn)) = 0

1 ∪ eu generates the kernel of p∗ which is equal by the corollary 3.7 of [16] to
(x1 − x2) where xi are Poincaré dual to yi, we conclude by identifying the cup
product with the euler class with the d2-differential. For degree reasons, the
spectral sequence collapses at the E3-page. There is no extension issues also
for degree reasons.

Lemma 2.6. — The element σ = s ⊗ (
∑n
i=0(i + 1)yn−i1 yi2) ∈ E2

−2n,−1(ρ) rep-
resents β.
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Proof of Lemma 2.6. — Since σ is a tensor product of s with a unitary polyno-
mial, it is a generator of the Z-module E2

−2n,−1(ρ). To prove that it represents
β, we only need to prove that it survives at the E∞ level that is to say d2(σ) = 0.

d2(σ) = d2(s⊗ (
n∑
i=0

(i+ 1)yn−i1 yi2))

= 1⊗ (y1 − y2)(
n∑
i=0

(i+ 1)yn−i1 yi2)

and

(y1 − y2)(
n∑
i=0

(i+ 1)yn−i1 yi2) =
n+1∑
i=0

yn+1−i
1 yi2 − (n+ 2)yn+1

2

= Qn+1 − (n+ 2)(Qn+1 − y1Qn).

Then, d2(σ) lies in (Qn, Qn+1). This ends the proof of Lemma 2.6.

From the preceding lemma we deduce that p∗(β) =
∑n
i=0(i+ 1)yn−i1 yi2.

Second step. In order to compute p!(p∗(β)) we use Poincaré duality, we have

p! = H∗(∆0(CPn))
D−1

→ H∗(∆0(CPn))
p∗→ H∗(UCPn)

D→ H∗(UCPn)

from the Gysin exact sequence we know that p∗(x1) = p∗(x2) and that
p!(D−1(α)) ∈ H1(∆0(CPn)) = 0. Thus we get that p∗(x1) = p∗(x2) = D−1(α)

and that

p!(p∗(β)) =
n∑
i=0

(i+ 1)p!(y
n−i
1 )p!(y

i
2) = (

n∑
i=0

(i+ 1))αn.
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