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ABsTrRACT. — We study liftings or deformations of D-modules (D is the ring of dif-
ferential operators from EGA IV) from positive characteristic to characteristic zero
using ideas of Matzat and Berthelot’s theory of arithmetic D-modules. We pay special
attention to the growth of the differential Galois group of the liftings. We also apply
formal deformation theory (following Schlessinger and Mazur) to analyze the space of
all liftings of a given D-module in positive characteristic. At the end we compare the
problems of deforming a D-module with the problem of deforming a representation of
a naturally associated group scheme.

RESUME (Relévement de D-modules de caractéristique positive en caractéristique
nulle)

Nous étudions des relévements des D-modules (D est ’anneau des opérateurs diffé-
rentiels de EGA IV) de la caractéristique positive en caractéristique nulle en utilisant
des idées de Matzat et la théorie de descente par Frobenius (pour les D-modules arith-
métiques) de Berthelot. Nous prétons une attention particuliére a la croissance du
groupe de Galois différentiel du relévement. Nous appliquons aussi la théorie locale
des déformations (d’aprés Schlessinger et Mazur) pour analyser I’espace local de mo-
dules des relévements. A la fin, nous comparons la théorie des déformations (locales)
d’un D-module avec la théorie des déformations (locales) d’une représentation d’un
schéma en groupes naturellement associé.
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194 J. P. P. DOS SANTOS

1. Introduction

The present work focuses on deformations of D-modules (stratified modules)
from positive characteristic to zero characteristic. Abandoning generality, this
can be grasped by the following situation. Let k be an algebraically closed field
of characteristic p > 0, W be its ring of Witt vectors, & the ring of convergent
power series >, a;z" with coefficients in W, so that &/p0 = k[z]. We consider
a “linear differential system” (or a Dj,)/,-module structure on k[z]®#)

"
(1) Oqyi = _ali, j,q)y;

j=1
where a(i,7,q) € O/p0, 0, is the differential operator of order ¢ analogous to
%% and the matrices (a(4, j,q));,; are required to satisfy certain compatibili-
ties arising from the relations between the various 8;. Then we can ask if there
is a lifting of these matrices to & giving rise to a linear differential system. Fur-
thermore, it is reasonable to require that the differential Galois group (DGG)
of the lifted system bears resemblance to the differential Galois group of (1). It
is the latter question that the present work sets out to analyze (in greater gen-
erality). The analysis runs in two distinct directions corresponding to a natural
division of the text into two main parts. The first one, comprising sections 3 to
5 deals with the problem of finding such a lifting (with the property concerning
the DGG mentioned before). The second part, which occupies sections 6 to 9,
deals with the quantitative nature of these liftings or, more precisely, studies
the associated deformation problem as understood and proposed as a theory by
Schlessinger [38] (and named “a scientific approach” by Kontsevich). Of course,
the idea to threat the problem like this comes from Mazur [28]. We now briefly
summarize the contents of each section.

In section 2 we review some standard material concerning monoidal cate-
gories and torsors. The categories shaping this article are monoidal categories
of D-modules and the algebraic Geometry (commutative Algebra, rather) in a
monoidal category plays an important conceptual role: we talk about algebras,
groups, torsors, comodules etc. These and some minor folkloric results will be
discussed in section 2 in order to be applied further on.

The existence of section 3 is justified by its expository nature — we fix relevant
notations concerning the Frobenius morphism — and by the explicit construc-
tions made in 3.2.2. The main result, Theorem 11, is not proved or commented
on and the work is left to [6]; section 3.2.2 will give an operational view of the
theory. The principal cognitive gain the reader should look for in section 3
is the understanding that, like D-modules in positive characteristic (after [13,
Thm. 1.3]), D-modules in mixed characteristic can be controlled by certain
“Frobenius divisions” (see Definition 10). This important observation, in the
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LIFTING D-MODULES 195

present context, is due to Matzat and van der Put [27], [26]; in a more general
context it is an application of Berthelot’s robust theory of Frobenius descent
and arithmetic D-modules [3], [4] and [5].

In section 4 we use the concepts from commutative algebra in a monoidal
category (§2.3) to develop a “torsor” version of the ideas in section 3. Since
the work of Nori [31], it is clear that to a theory of objects in a monoidal
category, there should exist a theory of torsors (see also [36]). The application
of this principle to the case of D-modules (see Definition 14) is important to the
handling of the problem concerning liftings with controlled DGGs as we propose
first to find liftings of the torsors (see Theorem 16) and then, by lifting the
representation, obtain the desired D-modules in characteristic zero by twisting
(§2.4.3). The existence of liftings of the torsors (see Proposition 13, Corollary
15 and Theorem 16) comes fairly mechanically from the amount of elbow room
left by Grothendieck once we incorporate the ideas of Section 3.

Section 5 collects the fruits of the previous ones. Its main result is the
existence of liftings of D-modules from positive to zero characteristic whose
differential Galois group is “close” to the one in positive characteristic, see
Theorem 17. Here the term “close” should be interpreted in the following
way. A lifting ¥ of a D-module in positive characteristic ¥y has an integral
differential Galois group (see [37] and its references) which contains the DGG
of ¥4 on its closed fibre. Then “close” should mean that the DGG of % is the
closed fibre. To repeat what was said above, the construction of the liftings of
the torsor allows us to pass from the problem of finding a lifting of a D-module
to the problem of deforming a representation. The principal result, Theorem 17,
is not free of restrictive assumptions on the type of group and representations
that we allow; the analysis of the hypothesis (§5.3) proves to be an interesting
exercise in group theory. It raises pertinent questions — whose answers may
be well known — concerning the nature of groups over discrete valuation rings.
(For example: are there affine and flat group schemes over a DVR of mixed
characteristic whose special fibre is trivial?)

In section 6 we study the natural formal deformation problem associated
to liftings (or deformations) of D-modules; the mould is that of [38] and [24],
while the main inspiration is the seminal work of Mazur [28] on deformations
of Galois representations. The main product, Theorem 26, shows that the
corresponding deformation functor or moduli problem (Definition 19) is homo-
geneous (Definition 20). Due to a celebrated theorem of Schlessinger [38, Thm.
2.11], homogeneity in the presence of finite dimensionality of tangent spaces
means representability. But, as the tangent space of the deformation functor
proposed at this point has no reason whatsoever to be of finite dimension, we
will need to be more selective in the deformations allowed; this is the reason
for section 7.
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196 J. P. P. DOS SANTOS

In section 7 we propose to study certain classes of deformations — called peri-
odic (Definition 30) — of a D-module in positive characteristic. Using methods
similar to those of section 6, we obtain the homogeneity (Definition 20) of the
functor associated to this problem (Theorem 31). The introduction of these
classes is motivated by the fact that the corresponding deformation functor has
a finite dimensional tangent space in many cases, as will be seen in section 8.
The idea behind the notion of periodic deformations is that the “solutions” of
the deformed D-module will appear in a fized extension of the base ring. Per-
haps the mental image, suggested by the analytic picture, is that of a family
of representations whose image lies in a fixed subgroup of some general linear
group. (We are inclined to use the word isomonodromy, but this may not be
helpful.)

In section 8 we carry the calculations of the tangent spaces to the functors
introduced (see Definition 21) in sections 6 and 7. (The calculation of tpe¢ is
completely standard and is included in the text for lack of a mild reference.)
The principal result is Proposition 33, which hints that for a large class of
differential Galois groups, the tangent space is finite dimensional; we also state
Corollary 35 in order to encapsulate our findings.

The last section, section 9, is devoted to showing that the formal deformation
theory proposed in section 7 is isomorphic to the formal deformation theory
of the representation attached to the DGG of the D-module in positive char-
acteristic (see Theorem 38). This is reminiscent of the well known fact from
differential Geometry: deforming a flat connection is equivalent to deforming
a representation of the topological fundamental group [15]. Clearly, there is
a considerable difference here, which is the infancy of a theory for the funda-
mental group scheme, specially when it varies over a DVR. As an application,
we obtain a result (Corollary 41) which allows us to say when two liftings to
characteristic zero are isomorphic as D-modules.

1.1. Acknowledgements.— The origin of this work was a suggestion made by
Matzat to the author. For this, and for the major influence which his ideas exert
on the present article, we thank him heartily. We thank Berthelot for agreeing
to write [6] and for responding, with characteristic care, to the question which
originated [6]. Thanks are also due to M. Florence for providing an example
which is in §5.3.

1.2. Conventions and notations

1.2.1. The base ring.— We fix A a complete discrete valuation ring. Its field
of fractions, which will be denoted by K, is of characteristic zero; the residue
field, which will be denoted by k, is algebraically closed and of characteristic
p > 0; the uniformizer will be denoted by .
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LIFTING D-MODULES 197

1.2.2. From deformation theory.— By % we shall denote the following sub-
category of the category of A-algebras. Objects are pairs (A, f) where A is a
local Artinian ring and f : A — A is a local homomorphism which induces
an isomorphism between residue fields. (This is the classical notation of [38].)
Arrows are local homomorphisms of A-algebras.

1.2.3. The ambient space.— Let & be a noetherian A-algebra which is a do-
main. We assume that & is complete for the w-adic topology. Furthermore,
we suppose that there exists a morphism of A-algebras

i ANz, 1y — O

which is an etale morphism in the following sense: the truncations v ® A/
are all etale morphisms. (In particular &' ® k is of finite type over A and hence
topologically of finite type over A [EGA 0y, Prp. 7.5.5, p. 71].) The spectrum
of ¢ will be denoted by X (note that X and X ® k are connected).

1.2.4. A base point.— We let £ : & — A be a section of the structural
morphism, i.e. a A-rational point of X.

1.2.5. Differential operators and stratified sheaves.— Under the smoothness
assumption on X made above, the ring of differential operators (continuous
ones that is, see below) is

D=Dy=@ ¢-9,

geNd

where 0, : & — 0 is the extension to & of the operator ™ — (’(’;)xm‘q on
Mzy,...,2q) [EGAIV-4,16.11.2] or |7, 2.6]. For any given A € %), the ring of
A-linear differential operators on X ®, A will be D @5 A [EGA IV-4, 16.4.5 or
16.2.3(ii)] (Notation: Dy4). The left ideal of D4 consisting of those operators
which annihilate 1 will be denoted by Dj.

Let Y — S be a smooth morphism of schemes. The category of S-stratified
Oy-modules [7, 2.10] which are also coherent as Oy -modules will be denoted by
str(Y/S). The category of stratified Jy-modules which are only quasi-coherent
will be denoted by Str(Y/S). Since stratified sheaves are simply D-modules
[7, 2.11], we will sometimes call stratified sheaves by this more suggestive term.
Moreover, in this work we will not essentially use the concept of a stratification
but that of a D-module. The only place where there may be a cognitive loss in
forgetting the theory of stratifications is in understanding Berthelot’s proof of
Theorem 11 (which is the subject of [6]). The reader who wishes to substitute
the notation “str(Y/S)” by something like “Dy/g-mod” is invited to do so.

Those objects of str(Y/S) which are furthermore flat as &y-modules form
a full subcategory which will be denoted by str(Y/S). (As is customary in
algebraic Geometry, we shall abuse notations when the schemes in question
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198 J. P. P. DOS SANTOS

are affine, e.g. if Y = Spec B, then str(Y/S) = str(B/S) etc.) Y — S
is in fact an adic and formally smooth morphism of locally noetherian formal
schemes, then we work with continuous differential operators and continuous
stratifications: this means that one has to substitute in the definition of 273 /s
[7, 2.1] the usual fibered product by the fibered product in the category of
formal schemes.

1.2.6. Representation theory. — (i) Let S be a ring and G an affine flat group
scheme over S (flatness assumption comes from what is developed in [20, Ch.
2, §2.9]). The category of representations of G, denoted Repg(G), consists of
O (G)-comodules which are of finite presentation when regarded as S-modules;
except for the finiteness assumption we follow the definitions of Jantzen [20,
2.7-2.9, pp. 30-33]. The full subcategory of Repg(G) whose objects are the
representations which, when regarded as S-modules, enjoy the property of being
projective will be denoted by Rep? (G). When the need for €(G)-comodules
which are not finitely presented over S arises, we shall use the term G-modules
to bring them to mind: the category of G-modules will be denoted by Rep), (G).
(These terminologies are not standard.) Using [8, 4.2.2] and [20, Part I, 2.13]
the reader can conclude that

(2) Rep's (G) = Ind Reps (G)

if S is noetherian. An object of Reps(G) will tipically be denoted by (V, p),
where V' is an S-module and p has an ambiguous meaning: it will either be
the arrow of S-modules defining the &(G)-comodule structure or the homo-
morphism of group schemes G — GL(V).

(ii) If (V, p) and (W, o) are &(G)-comodules, then V ® W carries a natural
O (G)-comodule structure, which will be denoted by p X o.

(iii) If Y is an S-scheme on which G acts on the right, then its ring of
functions 0(Y) is naturally a G-module. If we let G act on itself on the right
by £-g = g~ 'z, then the corresponding G-module will be called the “left regular
representation” and will be denoted by (0(G), p1) or O(G)est. Analogously we
can define &(G)igny and observe that the coaction in this case is given by the
comultiplication map.

1.3. Monoidal categories. — In this work all monoidal categories [23, VII, §1]
will be assumed symmetric [23, XI, §1]. If S is a commutative ring, an S-
abelian-monoidal category (C, ®,/) is a monoidal category such that: (1) C is
S-linear and abelian and (2) ® is S-bilinear and right exact on each variable.
By an abelian-monoidal category we will understand a Z-abelian-monoidal cat-

egory.
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2. Generalities on torsors and monoidal categories

2.1. Intentions. — We use this section to gather some facts and notations from
the theory of torsors (§2.2) and the theory of monoidal categories (§2.3). Many
results concerning monoidal categories can be found, at least in essence, in [22,
Ch. III] or in [9]. The results on torsors stem from the theory of sheaves [SGA
4 11], [14].

2.2. Torsors

2.2.1. Definitions

DEFINITION 1. — Let Y be a scheme and let G be a group scheme over Y.

(a) A G-torsor over'Y is a couple (P,«), where P is a faithfully flat and
quasi-compact Y -scheme and

a:P Xy G—P
is a morphism of Y -schemes defining a right action of G on P such that
(pr;,a): Pxy G— P xy P

is an isomorphism. A morphisms of torsors is just a morphism of Y -schemes
which respects the actions. The phrase “P is an'Y -torsor under G” will also be
employed to specify that P is a G-torsor over Y.

(b) The category of all Y-torsors under G—which forms a fibered category
over (Sch/Y)—will be denoted by TORS(G)y -

(¢) If Y is a scheme over a base scheme S and Gq is an S-group scheme, a
Go-torsor over Y will be simply a Gg Xg Y -torsor. The category of Go-torsor
over'Y will be denoted by TORS(Go)y. The collection of all TORS(Go)y forY
variable forms a fibered category over (Sch/S).

Remark. — If E/y denotes the site obtained by endowing (Sch/Y’) with the
fpqc topology, then what we call TORS(G)y, Giraud calls the category of rep-
resentable objects in TORS(E,y;G). By descent, if G is affine, then every
torsor (in the sense of Giraud) is representable. (See [14, 1.1.5, p 107] for the
definition of a pseudo-torsor in a category; [14, 1.4.1, p. 117] for the definition
of torsor over a topos; [14, 1.7.1, p. 126] for the definition of a torsor over a
site.) The fibered category TORS(G) — (Sch/Y) is in fact a stack for the
fpqc topology [14, II1, 1.4.5, p. 119].
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200 J. P. P. DOS SANTOS

2.2.2. Contracted products [20, I, 5.14], [12, III §4 no. 3|, [14, III, 1.3, p. 114].
— Let Y be a scheme and assume that (Sch/Y’) has been endowed with a
Grothendieck topology. Let (Sch/Y ) denote the category of sheaves (of sets) on
(Sch/Y") (i.e. a topos). The category (Sch/Y ) admits small direct (inductive)
limits [SGA 4 II, 4.1, p. 235] and, furthermore, these are universal [SGA 4 II,
4.3, p. 237]. (Below we will recall a consequence of universality.) The inductive
limits which interest us most in the present work are certain quotients by group
actions, called the contracted products: Let G be a group scheme over Y, Z
an Y-scheme endowed with a left action of G, and P a G-torsor over Y. The
contracted product of P by Z is the quotient (thus a co-kernel, thus a direct
limit) of
P Xy VA

by the “diagonal” action of G — (p,q) -g = (p- 9,9~ - q). It will be denoted by
P x% Z (Giraud writes P A® Z). Note that, a priori, P x© Z is simply a sheaf.

We now recall what universality of direct limits entails (for complete defi-
nitions, see [SGA 4 I, 2.5, p. 13]); this property together with descent theory
will give representability of the contracted products in certain cases. Let I be
a small category, .# : I — (Sch/Y ) a functor, f : Z' — Z an Y-morphism,
and v : F = Z a natural transformation from .# to the constant functor Z.
To the data (F,v, f : Z' — Z) we can associate the functor

F'=F xz 7' : I — (Sch/Y )~
together with a canonical arrow
n:lim % — (hm?) Xz Z';
— —
I I
universality guarantees that 7 is an isomorphism. This implies that quotients
commute with base extension, which in turn has the following application. Let

G be a group scheme over Y, Z an Y-scheme endowed with a left action of G,
and P a G-torsor over Y. Then, for any U — Y, we have a cartesian diagram

in (Sch/Y)™
Py xCGv Zy, — = Px%Z
e
U Y.
By assuming that Homy (U, P) # &, so that Py = Gy, we have

Zy —=Px%Z7

| o

U Y.
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LIFTING D-MODULES 201

By descent, P x© Z is a scheme if Z — Y is affine and U is a covering of
Y. (Of course here we should work with some specified Grothendieck topology
like fppf or fpqc.)

Warning. — The reader here is advised to use the above theory with caution.
Usually, the word “quotient” is overburdened and the formal constructions made
in SGA 4 and partially reproduced above are not equivalent with more intuitive
notions as that of “invariant functions.”

2.3. Standard constructions in a monoidal category. — Let (C,®,k) be a
monoidal category.

2.3.1. Algebras and modules [23, VII, §3, §4],[22, III]. — An algebra of C
is a triple (a,u,&) consisting of an object a endowed with a multiplication
U :a®a — a and an identity € : ¥ — a; these are subjected to some
compatibility constrains which include commutativity (therefore differing from
[23]). Sometimes we will only specify the object a and refer to it as an algebra.
A module over a is a pair (z,«) consisting of an object z and an arrow « :
a ® r — x satisfying the expected axioms. There is an obvious notion of
morphism of a-modules; these data produce the category of a-modules which
will be denoted by a-Mod. (In [23, VII], MacLane adopts the notation ,Lactn.)

2.3.2. Hopf algebras and comodules. — A Hopf algebra of C' is a quintuple
(h,p, e, A, n) where (h, u,€) is an algebra, A : h — h®h is a co-multiplication,
and n : h — W is a co-unit. These are required to satisfy the usual compati-
bilities [22, III, pp. 80-81].

If h is a Hopf algebra of C and m € C is any object, a co-action is an arrow
k : m — m®h which satisfies id,,, = (id,,®¢)ok and (id,, ®A)ok = (k®idy)ok.
The pair (m, k) will be called an h-comodule. The category of h-comodules will
be denoted by (h-Comod). Provided that h is flat (Definition 3), (h-Comod)

is abelian-monoidal.

2.3.3. Relative tensor products [22, III, p. 82]. — Assume that C is abelian-
monoidal (§1.3). Let a be an algebra of C' and let (z, @), (y,5) be a-modules.
The tensor product of x and y over a is defined as the cokernel of the obvious
pair of arrows

o a®y z®p
TRaARQRY—=aRrxQYy——zRy and r2RQeRY——r QY.

The relative tensor product will be denoted by zx ®, y; the category
(a-Mod, ®,, a) is a abelian-monoidal [22, III, 18.3].

The following Lemma will be useful latter on and the proof can be extracted
from [22, 18.2, p. 82].
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LEMMA 2. — Let ¢ : a — b be a morphism of algebras of C and let ¢, :
b-Mod — a-Mod be the obvious functor. Then
®* : a-Mod — b-Mod, r—b®z

is a left adjoint to w.. For an x € a-Mod, the unit ¢, : t — b®, = is defined
by means of e, : ¥ — b.

Notation. — If the object y carries another structure of a-module, say v :
a®y — y, then we will use the notations z ®,,, y and z ®, 4 y to distinguish
these structures.

2.3.4. Torsors. — Assume that C is abelian-monoidal (§1.3).

DEFINITION 3. — [9, §7.7] An object x € C such that the functor 7, : y — x®y
is exact (resp. exact and faithful) will be called flat (resp. faithfully flat).

If h is a Hopf algebra and b is an algebra which is faithfully flat, we say that
b is a torsor under h if there exists a co-action £ : b — b® h which furthermore
satisfies:
(1) & is an arrow of algebras.
(2) The composition

idp®r py®idp
_—

C:b®b beboh—"2" _peh

is an isomorphism.
(Note that faithful flatness of b implies flatness of h.) Finally, we shall
employ another useful

Terminology. — Let (C',®', ') be another monoidal category and T : ¢/ —
C a monoidal functor. If A’ is a Hopf algebra in C’ and b an algebra in C, we
will say that b is an h/-torsor if it is a Th’-torsor. If, in particular, C’ is the
category of modules over a commutative ring S — so that a Hopf algebra “is”
an S-group scheme — then we will, as usual, confuse Hopf algebras with their
spectra and talk about torsors of C' under affine group schemes.

Key example. — [31, §2], [36, §2.3.2] Let S be a noetherian ring and let G be
an affine flat group scheme over S. Recall that €(G) affords two G-module
structures: the left regular and the right regular (§1.2.6). It is clear that both
O(G)iess and O(G)yight are algebras in Reps(G). Let O(G)uyiv denote the G-
module obtained by letting G act trivially on O(G): it is a Hopf algebra in
Reps(G). Let A denote the comultiplication on 0(G):

A O(Giety — O(G)left %) O(G)riv-

Then A endows O(GQ)f; with a structure of a torsor (of Reps(G)) under
ﬁ(G)triv-
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LIFTING D-MODULES 203

2.4. Twisting by representations: applications of (abstract) faithfully flat descent.
— The process of twisting a torsor by a representation to get a sheaf on the
quotient space is central in this work. Giraud [14, III, §1.6] threats this process
from the point of view of sheaves on a site, which is very convenient if one
wants schemes (sheaves) as the output. Since we want sheaves of modules with
additional structures, we will take the more algebraic point of view (which is
closer to [20, Part 1, Ch. 5]).

2.4.1. The case of sheaves of modules |20, Part I, 5.8-5.15]. — The contents
of this paragraph are presented in a more general form further below (§2.4.2,
§2.4.3). Let S be a base affine scheme, X an S-scheme, G an affine group scheme
flat over S. Let ¢ : P — X be a torsor under G (in particular 1) is fpqc) with
action morphism denoted by u. Using the isomorphism P xg G =2 P xx P, a
descent data ¢ : prs& — prié& for & relative to P [TDTE I, 1.6] gives rise
to a morphism A : pu*& — prié together with a certain “cocycle” condition.
(See also [30, pp. 110-111].) Quasi-coherent sheaves endowed with such an
isomorphism are the objects of a category (arrows defined in the obvious way),
denoted by Qcth(P); they are called G-equivariant sheaves or simply G-
sheaves. From the main theorem of descent theory [TDTE I, Thm. 1], we have
an equivalence of categories

¥* : Qeoh(X) — Qcoh®(P).

The construction of an equivalence inverse to 1* proceeds by taking G-
invariants as ruled by the construction (see for example [29, 2.21, p. 18]).

Given a representation M of G, we get a canonical G-sheaf structure on the
coherent P-module Op ®g M. By “descending” 0p ®g M to X, we obtain the
sheaf associated to the representation M or twisted product of M by P. In what
follows this sheaf will be denoted by P x“ M. (In [20, Part 1, Ch. 5] this sheaf
is denoted by Zp,g(M).) We remark that for an open and affine Spec A C X
with pre-image 1~ !Spec A = Spec B, we have

['(Spec A, P x¢ M)) = (M ®g B)®.
This construction is extended in §2.4.3.

2.4.2. Descending equivariant objects. — Let (C,®,#) be abelian-monoidal
(§1.3). Let (h,pn,en, A,n) be a Hopf algebra of C and b a torsor under it
(§2.3.4); as usual the coaction b — b ® h is denoted by k. The canonical
homomorphism of algebras b — b ® h will be denoted by d;.

DEFINITION 4. — An h-equivariant b-module is a pair (z,)\) consisting of a
b-module = together with a morphism of b ® h-modules

A (z)=0bh) @z —di(z)=2 @ (bQh)=z®h
K,b b,dy
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which is required to satisfy the following two axioms:

(1) By abuse of notation, let n : b® h — b denote the arrow induced by
the coidentity of h. Identify n*(k*z) and n*(diz) with x. Then the arrow of
b-modules

Az —x

is the identity.
(2) The following diagram

s*k*(z) = t*k*(x) ro) t*di(z) = r*k*(x)

(X
k lm

r*di(z) = s*dj(z)

is commutative, where:

r=id, ®id, QRep—=

b®h =id, ®A bR®h® h.
t=rk®id},
Remark. — It follows from the axioms that the descent morphism A of the

above definition is actually an isomorphism. This observation is usually omitted
from the definition of descent data; it was Deligne in [9, 4.1] who brought
this simple fact to our attention. (And this is of course in Grothendieck’s
Fondements.)

Using the isomorphisms
C: bbb h

and
((®idp) o (idy ®C¢): bRbRbEbR AR h,

the definition of an h-equivariant module is simply a reproduction of the defi-
nition of a b-module with descent relative to b. (We leave it for the reader to
precise this. For the standard case of modules and rings, see [29, 2.21], but be-
ware that we have inverted the sense of the descent isomorphism A.) Therefore,
either by copying the proof of the fundamental result of descent theory — that
of [29, 2.21] can be conveniently reproduced — or by applying the Theorem of
Barr-Beck [23, VI, §7], [9, §4.1], we obtain the following result.

THEOREM 5. — Let (x,\) be an h-equivariant b-module and let py : © — z®h
be the composition

Ko (A
) k«dj(z) =z ® h.

T — Rk (x)
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(Note that py is the right adjunct of A, see p. 81 of [23] for vocabulary and [23,
IV §1, Thm. 1] for a justification.) Define the subobject Des(z, \) of x by

P
(3) Des(z,\)=ker | t —_—Zz®h |.
id, ®ep

Then the canonical arrow
b® Des(z,\) —

is an isomorphism of b-modules. Moreover, this defines an equivalence inverse
for the functor

C — {h-equivariant b-modules}, Zo — b ® xo.

Remark. — Alternatively, one can add the assumption that C is a monoidal
subcategory of the category of quasi-coherent sheaves on a scheme and apply
directly the main result of descent theory. Of course, it would be necessary to
make proper arrangements: we do not know a priori that b would correspond
to a faithfully flat algebra over the base scheme. In all the applications which
the above formalism finds in the present work, this will be the case.

COROLLARY 6. — Let C' be another abelian-monoidal category, T : C — C’
a monoidal, additive and right-exact functor, x,b,h and A as in the theorem.
Suppose that T'(b) is faithfully flat.

(1) Let ¢ : a1 — ag be an arrow of algebras in C, ¢’ : o} — a), the arrow
of algebras in C' obtained from T. Then the obvious functors T; : a;-mod —
a}-mod define a map of adjunctions between (p*,¢.) and (©'*,¢.) [23, IV §7,
p- 99].

(2) There exists a canonical isomorphism

0 : TDes(z, \) = Des(Tz, T)).

Proof. — (1) We always have Ty, = ¢, T» and the right exactness of T' gives
Top* = ¢'*Ty. Using [23, IV §7, Prp. 1] and the explicit expression of the unit
Id = @.¢* (Lemma 2), we can conclude easily.

(2) By (1), we know that the the h-equivariant b-module structure A on z
is taken to a Th-equivariant Tb-module structure on T'z. Since p) (notations
from Theorem 5) is the right adjunct of A, T'(py) is the right adjunct of T'(\),
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so that ppry) = T(px). The construction of § stems from the commutative
diagram (¢ is the equalizer)

T(px)
TDes(z,\) ——=Tzx - T(z®h)

I
Sl
Y PT(N)

Des(Tz, TA) ——Tx —_T(z) @ T(h).

That § is an isomorphism follows from the fact — which uses the isomorphisms
T(b) ® TDes(z,A) & Tz and T(b) ® Des(Tx,TA) =& Tx — that T(b) ® § is
likewise. O

2.4.3. Twisting by representations. — We keep all notations and assumptions
of §2.4.2. An important source of h-equivariant b-modules is the category of
h-comodules: Let p : v — v ® h define an h-comodule. The h-comodule
structure on b ® v, call it kK X p, can be regarded as an arrow in b-Mod from
b®v to k(b ® v ® h). Lemma 2 gives us the left adjunct of k X p:

A" b®v) —bvh=d](b®v) € Arr (b ® h-Mod) .
The pair (b ® v, \) is then an h-equivariant b-module and, due to (3):
)
(4) Des(b®v,A) :=ker | b®wv “bueh | = (B!,
bRURen

where the upper script “A” means that we are taking “h-invariants” of the
h-comodule b ® v.

DEFINITION 7. — Let (v, p) be an h-comodule. The twisted product of v by b
is the object (b® v)" of eq. (4) and is denoted by Twy(v) or b x" v.

COROLLARY 8. — Keep the above notations.
(1) The natural arrow b® b x" v — b® v is an isomorphism of b-modules.
(2) The association

(h-Comod) — C,; v bx"o

is a monoidal and exact functor.

(3) Let C' be another abelian-monoidal category and let T : C — C’ be a
monoidal, additive and right-ezact functor. Assume that T(b) is faithfully flat.
Then there is a canonical isomorphism

§:T(bx"v) — T(b) xTM T(v).
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3. ®-divided and stratified sheaves
(Applications of Berthelot’s theory of Frobenius descent)

The main difficulty of working with stratified sheaves in positive character-
istic is that it is quite hard to fabricate such objects ex nihilo. This difficulty is
surpassed using a theorem of Katz [13, Thm. 1.3] (which in turn is an iteration
of Cartier’s celebrated theorem on the p-curvature [21, Thm. 5.1]) which states
that a stratified sheaf is simply a family of (coherent) sheaves together with
isomorphisms relating the various pull-backs by Frobenius (see Definition 10).
This result is extremely useful due to the fact that it allows us to translate the
problem of dealing with an infinite number of differential operators into a ques-
tion of commutative algebra (this method is crowned by the elegant solution
of the “connected” inverse problem in [27]).

After Berthelot’s seminal work on arithmetic D-modules and “Frobenius de-
scent” [3], [4], [5], it becomes clear that the generalization of Katz’s theorem
should also hold. Nevertheless, the precise statement of the desired general-
ization, which is Theorem 11, is not directly available from [3], [4], [5], but is
the subject of [6]. Finally, it should be pointed out that Matzat had already
discovered and successfully used such a fundamental principle in [26]; in fact,
the inspiration to pursue such a direction comes directly from loc.cit. (Unfor-
tunately the setting in [26] is not very convenient if one wants to apply all the
machinery of algebraic Geometry and commutative Algebra.)

The proof of the main theorem of this section, Theorem 16, will be the
subject of [6]. We also present, in section 3.2.2, a technique which explicitly
associates to a ®-division (Definition 10) an action of the ring of differential
operators. That aside, we merely gather notations and introduce terminology
pertinent to the rest of the work.

3.1. The Frobenius morphisms. — We let 0 : A — A be an isomorphism lifting
the Frobenius of k. For any given A-algebra A and any given integer m, we
let A(™) be the A-algebra obtained by endowing the ring A with the twisted
multiplication by A: A-a =0~ (A)a. This is simply the A-algebra AQu o= A.
Analogous notations are in force for schemes over A.

Let us fix once and for all a o-linear ring homomorphism
b:0— 0
which satisfies
®(f) = f* mod w0;
this is a lifting of the Frobenius
F: 0y — O, f=fP
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and it will be called simply a Frobenius morphism. (Here we will reserve the
letter F' for the Frobenius in positive characteristic.) To establish the existence
of ®, one needs to use the formal smoothness of & over A [EGA IV-1, Ch. 0,
19.0.1] to construct liftings ®,, : 0/w" 10 — O /w10, step by step, of the
“true” Frobenius F. We remark that since the rings ¢(") are all the same (only
their A-algebra structures vary), ®, which is o-linear, induces homomorphisms
of A-algebras ¢(m+1) — (™) for any m € N; we will abuse notation and let
® denote not only these morphisms but also the corresponding one between
the spectra.

The following result is useful and can be proved combining [4, 2.3.1], [25,
Thm. 8.4, p. 58] and the local flatness criterion [25, Thm. 2.23, p. 74].

LEMMA 9. — ® is finite and flat (hence faithfully flat).

3.2. F and ¢ divided modules
3.2.1. Statement of Berthelot’s Theorem

DEFINITION 10. — The category of ®-divided modules (or sheaves) over X =
Spec O, denoted ®div(C/A), has as

1. objects: families {M;,a;}i=01.., where M; a finitely generated 0
module and a; : ®*M; 1 — M; is an isomorphism of ﬁ(i)-modules;

2. arrows: families of morphisms of modules {t; }i=o,... which are compatible
with the given isomorphisms.

The category of F-divided sheaves over Xy = Spec Oy, Fdiv(Oy/k), is defined
analogously, by replacing ® by F [13, 1.1],[36, Def. 4].

We can now state the main result of this section. We warn the reader that
the hypothesis are not the weakest possible.

THEOREM 11 ([6]). — Let
Ak : Fdiv(ﬁk/k) — str(ﬁk/k)

be the equivalence defined in [13, Thm. 1.3]. There exists a monoidal, A-linear
and exact equivalence

Ay : &div(O/A) — str(0/A)

which makes the diagram

(5) Bdiv(0/A) —22~ str(6/A)

| |

Fdiv(0y/k) = str(0y/k)
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commute (vertical arrows are reduction modulo w). The O-module underlying

Ar({M;}) is simply M.

3.2.2. Construction of a D-module from a ®-division (the functor A). — We
now present Matzat’s technique [26]; this construction is equivalent to the one
presented in [6], to which we refer the reader for more details. Let {M;, a;} be
a family of &(Y)-modules and isomorphisms

o M = 0D @ g1y Myyr — M;

of ¢M-modules. We further assume that M := M, is flat over ¢, which
entails that M; is flat over 09, since ® is faithfully flat. The isomorphisms of
O-modules

O sy M; = My=M
naturally obtained from the {«;} will be denoted by g;.

STEP 1. Let s € M and 7 € N be an index. Let
> fi®s; and ) fi®s
J

J

be elements of & ® 5 M; corresponding to s under §; (so they are in fact
equal).

LEMMA 12. — (i) Let 0 : € — O be a A-linear derivation. For each v > 1
and each f € 0, 0[®Y(f)] € w¥ 0.

(ii) Let p denote the prime ideal w@ and let p; be the i-th symbolic power of
p, i.e. p; = (pO,)" N . Then we have

Bi (Z a(f;) © 5j> =6 (Z of) ® sé) mod p; M.

Proof. — (i) This follows from a simple induction; the equations

o{e"1(f)} = 0{®"(f? + wg)}
= o{[e"(N)IP + 0" (@)®"(9)}
=p-0[®"(f)]- [ (AP + 0¥ (@) - 9[@"(g)]

form the heart of a proof.

(i3) Let p’ be the prime ideal of &) generated by w. Localizing we have an
isomorphism

ﬁi : ﬁp ®ﬁ(i/) (Mi)p’ ; Mp.
p
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Let {v1,...,v.} C (M;), be a basis of this free ﬁ(l)—module and let a,; € ﬁ(l)
(resp. af/]) be the coordinates of s; (resp. s7) Wlth respect to this basis. Then

ng a‘l/] ij/(pl(ai/j)
J
Applying O to both sides and using (i) we have:
Z@ (f) - - i( (av;) 28 al ,;) mod piﬁp.
This gives
D0 ®s; =) 0(f)®s; mod (pO,) @ 40 (Mi)y.
- - p’
j J

Which implies that the difference

b <Z o(f5) @ 39’) - Bi (Z a(fj) ® sé)

belongs to M N (piMp). The proof of the lemma is then reduced to the proof
of the following:

Claim. — M N (p'M,) = p;M
Proof. — We clearly have that M N (piMp) D p;M. Now let F be a free 0-
module, on the basis {e1,...,e;} say, which contains M and whose quotient

F/M is also flat over &. (This is possible since M is projective [39, Thm. 3.2.7,
p. 71] and since any projective module is flat.) Let

m=2a,,~e,,€Mﬂ(piMp).
By definition, there exists s € A\ p such that

s-m= E S ay ey
14

belongs to p'M C p*F. This entails that sa, € p° for each v, which implies
that a, € p; and consequently that m € p;F. As the quotient F/M is flat, it
follows that m € p; M. The claim is proved, and so is Lemma 12. O

STEP 2. Let
3(0,1) € M/p;M

Bi <Z a(fj) @ 3j>

be the class of
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modulo p; M, where ), f; ® s; € 0 ® gy M; is taken, via 3;, to s € M. Due
to Lemma 12:
5(0,4) =3(0,i+1) mod p; M.
This defines an element
5(9) € lim M/p; M.

By (one of) Zariski’s theorem on holomorphic functions, the p-adic topology is
equivalent to the topology defined by the filtration p, [40, Lemma 3, p. 104].
Since the -module M is complete for the p-adic topology [25, 8.7, p. 60], it is
complete for the {p,}-adic topology. We have thus obtained a unique element
V(9) - s such that

(6) V(9)-s=p (Z o(f;) ® Sj) mod p; M

for each 7 € N and for each Zj fi ® s; € 0 ®puy M; which corresponds to s
under S;.

STEP 3. From the constructions it is obvious that V : Derp (&) —
Enda (M) is an integrable connection.

STEP 4. Finally we show that V prolongs to a stratification, that is, to a
homomorphisms of J-algebras

V : Dy — Endy(M).

(Recall that Dy is an O-algebra on the left.) As the algebra Da[1/p] is gen-
erated over O[1/p] by the derivations, it is clear that, on the generic fibre, we
have an extension of V to a homomorphism (of &'[1/p]-algebras)

V([1/p] : Da[1/p] — Endyp ) (M[1/p]).
We need to show that

V[1/pl(Da) M=) %v (a%q) .M C M.
g€eEN? g

This is verified once since M admits a set of “small” generators (compare with
[27, §8]). That is, if for any given x € N, we can find generators {s,} of the
O-module M such that
0 :
\Y (8%) -8, €w"M Vv, 5).

But the image of M; via (;, for ¢ sufficiently large, always contains such a
“small” set of generators, since by Zariski’s theorem [40, Lemma 3, p. 104]
p; C p® = w”0 for i sufficiently large (notations of Lemma 12).
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Summary of the construction. — Let {M;, a;} be ®-divided; assume further-
more that M := M, is flat. Let 0 : & — € be a A-linear derivation, s an
element of M and, for each 7 € N,

{Si,j 1] € SJ}

a set of generators of the ¢(¥-module M;. Imagine that M, is contained in M.
If f; ; € O are such that
D fuisig=s

JES:
let 0 act on s by the rule

V(0)-s= 4lim Z a(fi,j) © 855

JES:

Let ¢ = (q1,-..,94) € N% be a multi-index. For any t € M; and any
derivation 0, we know that

V(@) -tepMCw™®. M,

for some 7(i) € N. Choosing i wisely, we can assume that 7(¢) > v + ord(q!),
for any fixed v. This shows that there exists a unique t(q) € w”M such that

o A P

Thus
V(9q) - t = t(q).
In particular V(9,) -t € w”M. Since any element of M can be written as a

linear combination of elements of some M;, we have an action of Dg/5 on M.
Explicitly and informally:

V@) s=> > 0afij) V() si;

JES; At+q=k

= Z Z Ox(fij) - si3(q)-

JES; At+q=k

(7)

With these explicit definitions, it is not hard to see that the Dg-module struc-
ture induced on M ® k is the one coming from the F-division {M; ® k, a; ® k}
through Katz theorem [13, Thm. 1.3].
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4. ®-divided torsors

In [26] Matzat uses the key principle discussed in section 3 to construct
liftings of stratified modules from positive characteristic to characteristic zero
(this can be seen already in [27]). But, since the differential Galois group is
understood by looking at the corresponding torsor (in the appropriate monoidal
category), it is interesting to regard liftings of the latter if one wishes to curb
the growth of the former. This conducts to the study of ®-divided torsors (see
[36] for the introduction of the analogous objects in positive characteristic).
One of the ground ideas in this work is to use the fact that the torsors do
always lift to characteristic zero in order to translate the problem of lifting of
stratified modules into the problem of lifting of representations.

4.1. Lifting of torsors. — In this section we will concentrate on some standard
facts about torsors and the lifting of those. All that follows is thus pure alge-
braic Geometry with no mention to differential structures. Let us now write
S = Spec A. For any given S-scheme Z, the reduction modulo w"t! of Z will
be denoted by Z,,. The following proposition is central to the remaining of this
work, its proof is a collection of standard facts from the theory of deformations
(as in [SGA 1]) and from the theory of torsors.

PROPOSITION 13. — Let G/A be an affine and smooth group scheme, Py —
Xo a Go-torsor.

1. There exists a G-torsor P — X which induces Py — X upon reduction
modulo w.

2. Given any other G-torsor Q — X and an isomorphisms of G-torsors
oo : Py — Qq, then there exists an isomorphism of G-torsors o : P —
Q inducing og.

Proof. — We note that to find a formal lifting of Py, i.e. a compatible family
of liftings P, — X,,, we could simply quote [14, VII, 1.3, p. 374]. But as we
are not only looking for a formal lift, we will need to do some more work.

(1) We will first suppose that G = GL(r). It is well known (see for example
[12, II1, §4, Cor. 2.4, p. 367]) that there is an equivalence of fibered categories
over (Sch/S)

(8) Tors(G) —= FiB(r),

where FIB(r) is the fibered category whose fibre over X € (Sch/S) is the
groupoid of all coherent &x-modules which are locally free of rank r (mor-
phisms are isomorphisms). Therefore, in order to find P — X reducing to
Py — Xy, we need to show that it is possible to lift the locally free sheaf of
rank r associated to Py, call it &y, to a locally free sheaf of rank r over X.
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Using [SGA 1 III, Prp. 7.1], it is possible to find a compatible family of liftings
&, € F1B(r)x, . Using the completeness of &, the existence of a lifting is now
a consequence of Thm. 8.4 and Thm. 22.3 of [25].

Let us now pass to the general case. Consider p : G — GL(r) a faithful
representation of G; this means that p is a closed embedding. Let Ey — X
be the induced GL(r)q-torsor (§2.2):

E(] = P() ><G0 GL(T)O

(That this is a scheme follows from fpqc descent, see §2.2.2.) From the first
part of the proof it follows that there exists a lifting of the GL(r)o-torsor Ey
to a GL(r)-torsor £ — X.

Now let @ be the scheme representing the fppf sheaf GL(r)/G [1, Thm.
4.C, p. 53]. We contend that @ is smooth and separated over S. From [12,
IIT §3, 2.5, p. 328| the projection GL(r) — @ is faithfully flat and of finite
presentation, in particular @ is of finite presentation over S. So we are allowed
to use [12, III §3, 2.7, p. 329] to conclude that @ is smooth over S. Now
we observe that the following diagram is cartesian (all arrows are the obvious
ones

)

GL(r) x¢g GL(r) GL(r) xg GL(r)

| |

Q Qx5 Q.

diag.

As GL(r) x¢g GL(r) = GL(r) xg G, we obtain another cartesian diagram

(9:h)—(g.gh)

GL(r) xs G GL(r) xg GL(r)

| |

Q Qxs Q.

diag.

Since the upper horizontal arrow is a closed embedding and the right vertical
arrow is fppf, [EGA IV-2, 2.7.1] shows that Q@ — QX @ is a closed embedding:
Q is separated.

Claim. — The sheaf E xG") Q = E/G is represented by a smooth and
separated X-scheme. In particular, the sheaves E, /G, are represented by
smooth and separated X, -schemes (E/G),.

TOME 139 — 2011 — N° 2



LIFTING D-MODULES 215

Proof. — There exists a covering of X by affine open subsets Uy, ..., U,, such
that Homx (U;, E) # &. Hence, by §2.2.2, we obtain a cartesian diagram

UXSQHE/G

]

uu; =U X.

Using Zariski descent [SGA 1 VII, Cor. 7.3] (or simply common sense) it follows
that E/G is a scheme. Smoothness and separateness follow from [EGA IV-2,
2.7.1] and [EGA IV-4, 17.7.4]. As the second assertion is a direct consequence
of the explications made in §2.2.2, we have proved the claim. O

Now let .¥ — (Sch/S) be the fibered category whose category of sections
over U € (Sch/S) is defined as follows:

1. Objects are pairs (R,0), with R — U a GL(r)-torsor and o €
Homy (U, R/G) a section.

2. Arrows from (R,0) to (R',0’) are morphisms of torsors which are com-
patible with the sections.

Another standard result from the theory of torsors [14, III, §3, 3.2.1, p. 159]
is that the functor
Tors(G)y — S,
which maps a G-torsor P to the pair (P x& GL(r), 0can), where
Ocan : U = P/G — [P x% GL(r)]/G

is the canonical section, defines an equivalence of fibered categories. Therefore,
exhibiting a lifting P of Py — X amounts to finding a sectiono : X — E/G
which induces the canonical section o¢ : Xg — Eo/Go = (E/G)o. Now we
first find a sequence of liftings
(0n) € limHomy, (Xn, (E/G)y),
then, using Grothendieck’s algebraization, find a ¢ € Homx (X, E/G) lifting
(0n). The existence of (o,,) is guaranteed by [SGA 1 III, Cor. 5.5] and that of
o € Homx (X, E/G) by [EGA 1II-1, 5.4.2, p. 157].
(2) Let Q be another G-torsor over X. Then the functor

(Sch/X) — Set; f:Y — X — Homrogrs(c)y (f* P, f*Q)

is represented by the smooth and affine X-scheme P x€ Q, where Q is the
scheme @ with the obvious action of G on the left by g-q = q- g~ 1; see [14,
ITI, §1, Thm. 1.6.1, p. 123]. Thus the isomorphism oy : Py — Qo can be seen
as an element of

Homx (Xo, P x Q);
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by the smoothness of P x& Q — X, o can be lifted to a sequence
(o) € limHomy, (X, P x“ Q).
It follows easily that o can be lifted to a
o € Homx (X, P x¢ Q) = Isomg (P, Q).

4.2. P-divided torsors. — We will use the notations introduced in §3.1.
Throughout, G will stand for an affine and flat A-group scheme.

DEFINITION 14. — Let A be a A-algebra. The category of ®4-divided G-
torsors over X ®p A, denoted by ®TORS(X,G)a, has as objects N-indezed
families of G ® A-torsors {P;} over X® @x A together with isomorphisms

(673 ((I) ®A)*PZ+1 I Pz

of G ® A-torsors. A morphisms between ® 4-divided torsors is simply a
family of morphisms of torsors which respects these isomorphisms. The
category ®TORS(X,G)4 is the category of sections of a co-fibered category
®ToRS(X,G) — (A-dlg).

Reconciliation. — Using the terminology of §2.3.4, every torsor of the category
Ind ®div(&/A) under the Hopf algebra (G) @ ¥ (Definition 10) gives rise to
a $-divided G-torsor. In fact, these two categories coincide; to show that one
needs to use the fact that any G-module is a direct limit of finitely generated
G-modules (representations) [20, Part 1, 2.13]. This will be explained further
in the proof of Theorem 16.

Warning. — The notation here can lead to confusions: while TORS(G)x de-
noted the category of G-torsors over X, ®TORS(G)4 denote the category of
®-torsors under G over X ®4 A, and not over Spec A.

Note that Proposition 13 immediately gives:

COROLLARY 15. — Assume that G is smooth over A. Then the restriction
functor ®TORS(X,G)y — PTORS(X, G)y, is essentially surjective.

The following important result is a consequence of Theorem 11 and of Corol-
lary 15.

THEOREM 16. — Let G/A be a smooth affine group scheme. Let By be a
torsor under Gy in Indstr(0y/k) (§2.3.4). Then there exists a torsor B of
Indstr(0/A) under G and an isomorphism of torsors of Ind str(0} /k)

Br A k = Py
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Proof. — The only purpose of this proof is to verify some technicalities concern-
ing inductive limits. Since str(0)/k) and Fdiv(0y/k) are equivalent monoidal
categories, %y, corresponds to a torsor of Ind ®div(X/A)y, Br,e = {Pr.,i}i say,
under Gj. Using Theorem 11 we only need to find a G-torsor of Ind ®div(&/A)
above %y, . Let
Pie = {Pg,itien € PTORS(X, G)y
be the F-divided torsor associated to %y . by taking the spectra of the quasi-
coherent algebras. Let us lift P, o to an object
P, = {P;}; € PTors(X, G)a
using Corollary 15. Let L; : Rep, (G) — coh(X ) be the associated sheaf:
L;(V) = P; x¢ V; these functors produce a monoidal and exact functor
L ={L;} : Rep, (G) — @div(O/A),

which can be extended to a monoidal functor of Ind categories, it will be de-
noted likewise. Since the left regular G-module Ryt = (0(G), p1) is a torsor of
Ind Rep, (G) under the Hopf algebra O(G)iiv (§2.3.4) it follows that L takes
Ryest to an algebra of Ind @div(&/A),

Bo = {B;} = {Pi xC Riets }i = {[Op, @ Riess) 4,

which automatically fulfills all axioms defining a torsor under G except faithful
flatness. This missing property can be demonstrated with the help of two
observations: (1) %, is faithfully flat over & since By ®¢ Op, = RQA Op,, and
(2) the canonical functor Ind ®div(€0/A) — Qcoh(X) is exact (c.f. [SGA4 1],
8.9.9(c) and 8.9.7), faithful [SGA4 I 8.6.4] and monoidal.

Applying Corollary 8 to the category of quasi-coherent sheaves we see that
the reduction modulo w of %A,,

{(P; x% Ryert) ® k}4,
is isomorphic to the object
{Pr,i X (Riets @ k) }4

of Ind ®div(€0/A),. Now the co-identity produces an arrow of Gy-torsors of
Ind &div(O/A)y,

9) id®e: {[Bri @k (Riots ® k)|*}i — {Br.i}i-
The homomorphism of quasi-coherent modules
(10) [P0 Ok (Riett ® k)]G’“ — B0

corresponds to the natural morphism of torsors
G .
Pro — Pro xX7* Gi left;
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as a morphism of G-torsors is always an isomorphism, we conclude that (10) is
an isomorphism. Due to the fact that the obvious functor Ind ®div(&/A), —
Qcoh(X) is exact and faithful (references as above), it follows that the arrow
in (9) is an isomorphism. Therefore %, is the required lifting of By .. O

5. Liftings to characteristic zero which preserve the differential Galois group

5.1. Introduction. — Let ¥} be an Oy-module of finite type which possesses a
stratification

and let ¥4 be a flat 0-module lifting ¥} (this is gratuitous [SGA 1 III, Prop.

7.1], [25, 22.3, p. 174]). We will use the ideas developed in §4, specially
Theorem 16, to guarantee the existence of deformations (or liftings)

VA :Dy —>EndA(7/A); VaA®k=Vyg,

whose integral differential Galois group (see [37] and the references there) is
“close” to the differential Galois group of (¥, V). The precise definition of
“close” in the previous sentence is: the closed embedding ([26], [37]) of the differ-
ential Galois group of (¥4, V) into the special fibre of the integral differential
Galois group of (¥4, V) is an isomorphism, see Theorem 17.

5.2. The principal result. — Let us keep the notations of the introduction. We
will make some natural constructions concerning the differential Galois group
of (¥, Vi) and its natural inclusion into a general linear group. These con-
structions, which involve liftings of objects in positive to characteristic zero,
are not gratuitous and the cost will be analyzed in §5.3.

Assume (see Hypothesis 1 in §5.3) the existence of a smooth and affine group
scheme G/A such that
G ® k = differential Galois group of (¥, Vi) at &.
The functor
(&k)" : (Ok-mod) — (k-mod)
factors through an equivalence of monoidal categories
€+ (7, Vi))e — Rep(G @ k).

Here (#4)e = (W%, Vi))g is the full subcategory of str(Xj/k) whose objects
are subquotients of the generalized tensors

T

B [(#, Vi) ®* ® Dual(¥, Vi)®"] (ai,b; € N).

i=1
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The canonical representation EZ(”//k) will be denoted by
Pk Gk — GL(Vk)

in the sequel.

Let O(Gg)uriv denote the object of Ind Rep,, (Gy) obtained by letting Gy, act
trivially on its ring of functions &(Gj). Then €(Gg)ets (see §1.2 for nota-
tion) is a torsor under &(Gy)iriv (§2.3.4). Transporting this construction to
Ind str(&y/k) by using Nori’s method (see [31, §2, Prop. 2.5] or [36, 2.3.2]),
we obtain a torsor

B
of Indstr(0y/k) under the Hopf algebra of Indstr(&y/k) corresponding to
O(Gr)triv: O(Gr) ®k Oy (§2.3.4). This torsor has the property that

(11) By X Vi = W,

in str(0/k), as By, x Ok (e) induces an equivalence inverse to £,. (Here we are
abusing the notation introduced in Definition 7 and replacing the Hopf algebra
by “Gy”.) Using Theorem 16 we obtain a torsor of Indstr(¢’/A) under G —
or better, under the Hopf algebra €(G) ® & constructed by letting Dy act
“horizontally” on O(G) — call it
'%7

lifting ..

Let V be a flat A-module lifting Vi, = &} (7%) and assume that there exists
a faithful representation

p: G — GL(V)
lifting pi : G, — GL(Vy). (See §5.3 for some comments on this hypothesis.)
Hence
(V,V):=Bx°V
(we are again abusing the notation in Definition 7 and replacing “0(G) ® 67 by
“@) is a stratified module over & which, using Corollary 8, induces ¥}, on the
special fibre. Note that ¥ is &-flat, since its obtained by “descending” Z® V.
Let
I =II(7, €)

be the corresponding integral differential Galois group at the point & as pro-
posed in [37, 4.3.1], see also (12) below.

THEOREM 17. — Assume that each connected component of G maps surjec-
tively onto Spec A (see §5.3). Then the group scheme II is isomorphic to G
and the closed embedding of the differential Galois group Gk of (Y&, Vi) into
II® k [37, Thm. 27] is an isomorphism.
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Proof. — We will construct, using Tannakian formalism, a closed embedding
p: I G.

This will give us all properties envisaged in the statement via the following
general arguments. Let

a: Gk TI®k
denote the closed embedding referred to in the statement. As G ® k is smooth,
the closed embedding (p ® k) oa: G® k —— G ® k is an isomorphism (this
is firstly checked on the neutral component using [12, II, §5, 5.6, p. 252]).
Consequently ¢ ® k and « are isomorphisms. Since IT is A-flat, this implies
that, if
A :=ker o*: 0(G) —= 0O(II),

then w - A = 2A. Due to our assumption on G and the regularity of 0(G),
exercise 9.11 on p. 70 of [25] shows that

:@Ruu

with R, an integral domain which is faithfully flat over A. Applying Krull’s
Intersection Theorem [25, 8.10, p. 60] to each one of the ideals 2AR, C R,, we
obtain that 2 = 0. This shows that ¢ is an isomorphism.

Construction of the closed embedding @: Since p : G — GL(V) is faithful,
every representation W € RepA (@) is of the form W'/W" with W’ a sub-
representation of some tensor power

Ve = @ V®% @ Dual(V)®°
i=1
such that V,*/W’ is in Rep? (G) [37, §3]. Therefore, ecach B x% W (W €
Rep}é{E (@)) is an object of the following full subcategory of str# (&/A):

7y = ¥/ V" where ¥’ is a subobject (in str) of some 7#°
"] for which %,.2/¥" is also in str# (0/A) '
Due to [37, Thm. 24], we know that the functor £* induces an equivalence of

monoidal categories

=%

(12) & (Mg — RepA (I0)

(in fact, this is the definition of II in [37]) and that € (%) is a faithful repre-
sentation of II. This produces a monoidal functor

=€ o[# x% (7)] : Rep (G) — Rep (II).
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Claim. — There exists a homomorphism of group schemes ¢ : II — G such
that res(¢) = v.

Granted the claim, the verification that ¢ is a closed embedding is immedi-
ate.

Let us now justify the claim using [35]. Let I'/A be any flat and affine group
scheme, wr : Repf (T') — (A-mod) the forgetful functor. Then T', regarded as
a functor from (A-alg) to sets, is naturally isomorphic to the functor

End®* (wr) : (A-alg) — Set
defined by
R — {endomorphisms of the monoidal functor wr ®, R};

the isomorphism being given by the obvious natural transformation ' —
End®" (wr) [35, Ch. II, §3.4, p. 151]. (We observe that by [35, Ch. I, 5.2.3,
p. 82|, End could in fact be replaced by Aut.) Thus, the homomorphism
¢ will be obtained once we establish the existence of a natural isomorphism
N : wpov = wg of monoidal functors. The monoidal functor wy o E* is
naturally isomorphic (as a monoidal functor) to £*, so we need to show that
€* o [# xY (7)] is naturally isomorphic to wg. Such an isomorphism can be
obtained from the existence—which is guaranteed by the triviality of torsors
under smooth group schemes over strictly henselian rings [SGA 3 XXIV, Prp.
8.1(i), p. 401]—of a A-point on Spec # above £ € X (A). O

Apart from finite and etale 0-algebras, the most successful way to construct
D-modules is via the F-division. We chose matrices a; € GLH(@?)) to define
an F-divided module M, := {ﬁ,gi)ew,ai}. If the a; are elements of G(ﬁ,gi)),
where G — GL,, is a closed A-subgroup scheme satisfying the hypothesis of
Theorem 17, then the differential Galois group II(M,, &) is naturally a closed
subgroup scheme of G ® k [27, Prp. 5.3]. In the sequel, we assume that this
closed embedding is an isomorphism; explicit examples of this phenomenon —
which are not easily available — are described in [27, §7] (see specially the end
of p. 30 there). The choice of the o; € Gk(ﬁ,gi)) = Homk(X,ii), Gy,) is simply
the data of an F-divided Gg-torsor: P, = {X,Ei) X G; a; }, so that any family of
liftings &; € G(0®) will produce a ®-divided torsor P, = {X® x G, a;} (resp.
a ®-divided module M, := {0 §,}) lifting P, (resp. M,). From the proof
of Theorem 17, we see that the differential Galois group H(M,, €) is isomorphic
to G, since M, (resp. M,) is derived from P, (resp. 13.) using the twisting
construction applied to the representation Gy — GL, (resp. G — GL,).
This is, of course, a slight generalization of the last example in [26].
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5.3. Analysis of the hypothesis in Theorem 17. — There are four main hypothesis
in Theorem 17, which we now enumerate and comment on.

Hypothesis 1. — “There exists a lifting of the differential Galois group II(#%, &x)
of (¥, Vi) to a flat (hence smooth) group scheme over A.” As usual this
problem is divided into two other.

Formal: Using [SGA 3 III, 3.7] we obtain cohomological criteria for infinites-
imal liftings of II(¥%, k). In particular, if

H3 (H(%m gk)? Lle) = 07

then there exists a formal group scheme II over Spf A lifting II( 7%, &k ).

Algebraization: Unless II(¥%, &) is etale, we are unable to mention some-
thing relevant here if the generality is as above; that is to say, we are unable to
find algebraization techniques for formal groups (similar to those of Artin and
Elkik).

Therefore, in a very general case, we cannot say that the standard methods
give something interesting. But, since each reductive group over k comes from
a base change of a reductive group over Z (see Thm. 3.6.6 and Prp. 5.1.6 of
[11]), we do not need to enter into these algebraization question—even though
they are quite interesting per se—if we know that II(¥%, &x) is a reductive group
or a product of such by an etale group.

Hypothesis 2. — “There exists a lifting of px to a homomorphism p : G —
GL(V).” To verify this hypothesis in general, we proceed, as above, in two
steps.

Formal: Using deformation theory, notably [SGA 3 III, Cor. 2.6, p. 117], one
can obtain cohomological constrains to infinitesimal liftings of a representation.
In particular, if H?(Gg,Ad(pr)) = Exték(pk,pk) = 0, then we can find a
compatible family of liftings

P GeA; — GL(V)® Ay, j=0,1...,

where A; = A/wi*! and py, := p°.
Algebraization: If G is a split reductive group scheme over A [SGA 3 XXII
1.13, p. 162], [11, 3.1.1], then the functor

(A-alg) — Set; R — Homp ¢ (Gr,GL(V)R)

is representable by a scheme locally of finite presentation over A [SGA 3 XXIV
7.1.10, p. 389] and hence, the obvious map

Hom g (G, GL(V)) — lim Hom, ¢+ (G ® A, GL(V) ® A;)

is a bijection. (For a counter example in the case of arbitrary generality, the
reader is directed to [SGA 3 IX, 7.4, p. 73|.) Consequently, in this case, if we
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know that H2(G, Ad(px)) = 0, then there exists p : G — GL(V) reducing to
pr, modulo w.

Nevertheless, it is possible to show that certain irreducible representations of
GL(2), cannot be lifted to characteristic zero: simply pick a dominant weight
for which the highest weight module in positive characteristic has a smaller
dimension than the corresponding one in characteristic zero (see [20, Part I,
2.16]).

Hypothesis 3. — “The lift guaranteed in Hypothesis 2 is a closed embedding
into GL(V').” This leads to a problem which we are unable to deal with: Let
G/A be a smooth group scheme over A and let Z be a flat A scheme on which
G acts (on the right). Is it true that a faithful action on the special fibre entails
a faithful action? If we replace our DVR of characteristic (0,p) by a DVR of
characteristic p, then the following is a counter example (thanks are due to M.
Florence for pointing this out to us): Define G to be the additive group and
let G act on itself by means of the homomorphism

w - Frobenius — Id : G — G.

Hypothesis 4. — “Each connected component of G dominates Spec A.” This
will be satisfied once &(G) is a projective A-module or when the generic fibre
G ® K is connected (straightforward proofs).

6. Unrestricted deformations

We now enter the second part of the article, where we will study the defor-
mation theory (as envisaged by [38]) of a D-module in positive characteristic.
We fix ¥ a flat and coherent &-module of rank p and assume that ¥ @ k = %
is endowed with a stratification

Vi : Dy — Endg(%).

This notation will be in force for the remaining of the text.

The deformations of Vj, to stratifications on ¥4, for A € %, are our main
subject of interest.
6.1.
DEFINITION 18. — Let A € €. Define the set Def™ (A) by

{Va:Dys—> Enda(¥a) stratifications which induce the stratification Vi} .
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The functor from % to Set, A — Def™ (A), is not really the object we wish
to study in this section; its introduction is convenient due to the simple nature
of the deformation theory obtained. What we really want is to understand
deformations modulo isomorphisms. Define the automorphisms functor

G : %y — Grp
by
G(A) :=ker (Autg, (V4) — Autg, (Y:)) ={p € Endp, (V4): ¢ ®4 k=1d}.
(The second equality being a consequence of [38, Lemma 3.3].) The functor G
acts naturally (i.e. functorially) on the right of Def™:
(Vaxg)(®)-v=9"'Vad) -gv, (9€G(A), d€ Da, v e ¥a).

DEFINITION 19. — The functor Def : €5 — Set takes A € €5 to the set of
equivalence classes of Def T (A) modulo G(A); symbolically:

Def(A) = Deft(A)/G(A).

Remark. — Here is another way to describe the functor Def. Let A € G,.
Consider the set E4 of all pairs (.#4,a), where .44 is a D4-module which
is flat as an O -module and « : . #4 ®p k — ¥ is an isomorphism of Dj-
modules. Define an isomorphism f : (.#a,a) — (A4, ) as an isomorphism
of D s-modules which satisfies 8o f ® A = «. Since any two flat & 4-modules
deforming ¥ are (non-canonically) isomorphic, we have

Def(A) = E4/isomorphisms.

Abstract deformation theory is the study of certain classes of functors
%n — Set. Let us recall from [24, §2] what some of these classes are.

DEFINITION 20. — 1. A functor ® : €y — (Set) is a functor of Artin
rings if (k) = {e}.
2. A functor of Artin rings is homogeneous if, given a diagram in Gy :

C

B—— A,
the natural map
(13) Ne : ®(B x4 C) — ®(B) xg(a) 2(C)

is bijective whenever B — A is surjective (as usual B x 4 C 1is the fibered
product of these rings).

3. A functor of Artin rings ® is a deformation functor if ne is (i) surjective
provided that B — A is surjective and (ii) bijective whenever A = k.
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4. A functor of Artin rings is smooth if for every surjection B — A in 6y,
the map ®(B) — ®(A) is surjective.

Of course, every homogeneous functor is a deformation functor. Smoothness
is not generically related to homogeneity. Following Schlessinger’s celebrated
theorem [38, 2.11]|, homogeneity gives “pro-representability” once the tangent
spaces are finite dimensional. For the convenience of the reader we recall the
definition of tangent space.

DEFINITION 21. — [38, 2.10], [24, Prp. 2.6, p. 30]. Let ® : ¥4 — Set be
a deformation functor. Let k[e] = k[T]/T? be regarded as a A-algebra through
the trivial homomorphism A — k — k[e]. Then te := ®(k[e]) has a natural
structure of k-vector space and is called the tangent space of ®.

LEMMA 22. — The functor Def™ is homogeneous.

Proof. — Let a: B — A and : C — A be arrows in %, with «a surjective;
let S := B x4 C. Note that we have natural identifications ¥s ®¢ B = ¥3,
Os ®s B = 0p, Ds ®s B = Dp etc. Applying Corollary 3.6 of [38], we see
that the natural maps 0g — O x¢, Oc, Vs — VB Xy, Vo and Dg —
Dgpxp, D¢ are isomorphisms. Furthermore, the natural maps 75 — 7s®gB,
Dgs — Dg ®g B, etc. are identified to the projections ¥5 Xy, Yo — ¥B,
Dpg XDa Dec — Dp, etc.

If we are given Vg € Def(B) and Vo € Def'(C) which induce V4 €
Def™(A) we can then form the homomorphism Vg xvy, V¢ by

(14) VB Xv, Ve(0B,0¢) - (vp,ve) = (VB(0B) - ’UB,Vc(ac) “ve).

In other words nps+ (notation from (13)) is surjective.

To prove injectivity of npe+, we let Vg : Dg — Endg(¥s) be a strat-
ification which induces V7, on ¥ for 7 = A,B,C. Let us spell-out what
this last assertion means using the identification Dg = Dp xp, D¢. Take
(0B,0¢c) € Dpxp, Dc. Then for any (vp,vc) € ¥5 Xy, Yo we have (by defini-
tion) that Vg (9p)-vp is the image of Vg(9p5,0¢) - (vp,vc) € ¥s in 5. Thisis
just the component corresponding to ¥ in the identification ¥s = ¥5 X v, Y.
The same holds if we replace B by C. We have thus obtained that

Vs(9B,0c) - (vB,vc) = (VB(9B) - vB,Vc(0c) - ve) € VB X, Vo;

Vs is uniquely determined by the elements it induces in Def ™ (B) x Def ™ (C).
We have just proved that Def™ is homogeneous. O

LEMMA 23. — The functor Def is a deformation functor.
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Proof — Since we already know that Def™ is homogeneous, [24, Lemma, 2.20]
will take care of the proof provided that we show that G is a smooth deforma-
tion functor. Smoothness is verified using deformation theory as developed in
[SGA 11J; in [19, 5.3(a)] Illusie gives a result which demonstrates smoothness
promptly. Let us now analyze homogeneity. Consider A, B,C,S := B x4 C as
in Definition 20 and assume that B — A is surjective. Applying [38, Cor. 3.6]
we know that the obvious maps ¥s — 7B Xy, Yc and O0g — Op xXp, Oc
are bijective; the homogeneity of G follows without difficulty. O

6.2. Lifting of automorphisms and homogeneity. — In this paragraph we review
some results from abstract deformation theory which we learned from appendix
A of [32]. (Unfortunately, the criterion Pridham presents there—Corollary
A.1.15—does not fit exactly our purposes.) They are well known to deformation
theorists; the main result, Proposition 24, is silently used in [28, Prp. 1]. The
considerations made here will be later applied to the functor Def (see Theorem

26).
We introduce some notations. Let
F: %6\ — Set
and

G : €y — (Group)
be deformation functors (Definition 20) with G acting on the right of F.
PROPOSITION 24. — Assume furthermore that G is smooth and F is homo-

geneous. The functor @ = F/G : €5 — Set is homogeneous if the following
condition holds:

Lifting of automorphisms. — For every surjection A’ — A and every a’ €
F(A"), the natural map

{geG(A); d-g=a"} — {g€G(A); (a|4)-g=(a|A)}

s surjective.

Proof. — We need to show that for every cartesian diagram

A x g AN — A

L

A" A

in 5 with A’ — A surjective the natural map
n:Q(A x4 A") — Q(A") xg(a) Q(A")
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is bijective. As surjectivity of n is already documented knowledge [24, Lemma
2.20], we concentrate on the injectivity. Take a,b € F(A’ x4 A”) such that the
induced elements in Q(A’ x4 A”) have the same image under n. This means
that there are ¢’ € G(A4') and ¢"” € G(A”) such that a’-¢' = b and o’ - ¢" = V"
(here @’ := a|A’, a” := a|A”, etc.). As G is smooth and A’ x4 A” — A" is
surjective, we can assume that ¢’ = id. Therefore,

(a'|A) - (¢'|A) = b'|A =blA=b"|A=a"|A=a|A=d]|A

from the lifting of automorphism assumption, there exists v/ € G(A’) above
g'|A such that a’ - v = a’. Hence we obtain an element ((y/)~! . ¢ id) €
G(A’) xga)G(A"); as G is a deformation functor there exists vy € G(A' x4 A”)
such that v]A’ = (y/)~! - ¢’ and v|A” = id. Hence

a"y|A,:a,'(’}/)_1'g/:a/'g,:bl:b|A/
and a-y]A” = b"” = b|A”. The homogeneity of F proves that a-G(A' x4 A”) =
b-G(A x4 A"”), so that the images of a and b in Q(A’ x4 A”) coincide. O

In order to study the lifting of “automorphisms” property of Proposition 24,
we can still use abstract deformation theory a little more. Let us keep the
assumptions preceding Proposition 24. Let R € € and take £ € F(R). Define
the following functor of Artin rings:

(15)  Ie:%r — (Grp);  I(A) ={g € G(4): (£|4)-g=¢|A}.

PROPOSITION 25. — Assume that F is homogeneous (and that G is a defor-
mation functor). Then I is a deformation functor with tangent space

tr, ={9€tg: 0-g=0}

If G is homogeneous, then I is homogeneous.

Proof. — With the exception of the last statement—which is immediate—this is
proved in Proposition 2.21 of [24]. O

6.3. Applications to Def. — After this interlude on abstract deformation theory,
we come back to our study of Def.

THEOREM 26. — Assume that Endp, (%) = k. Then Def : €4 — Set is
homogeneous.

Proof. — We want to apply Proposition 24. Let R — A be a surjection in
% and let Vg € Def™(R) induce V4 € Def™ (A). We want to show that

(16)

{9€G(R): VrR*g=Vg}=Iv,(R) — Iv,(A)={g € G(A): Vaxg=Va}
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is surjective. This will be accomplished using a direct description of Iy, as in
[28, Prp. 1]. Define

Gm.r: €r — (Grp); G r(B) = ker (B* — k*) =1+rad(B).

It is immediate to see that Gmﬁ C Iy, and we wish to show that this is an
equality.

Claim. — G r(k[e]) = Iy, (k[e]).

Proof. — Let V. : Dy — End(74[¢)) be the stratification induced from
Vg. It is the same as the stratification induced from Vj via the inclusion
k — kle]. By definition, Iy, (k[e]) is just the group of automorphisms of
the Dyj)-module (74, V:) which induce the identity when reduced modulo
€. But it is not hard to see that any such element is of the form Idy, , +¢-g
with g € Endp, (¥%). This proves the claim.

Using Schlessinger’s main theorem [38, Thm. 2.11], we know that
Iy, = Hompg(S,e),

where S is a complete local R-algebra of residue field k. Furthermore, the
inclusion of functors Gm, r C Iy, comes from a continuous homomorphism of
R-algebras f : § — R|[t]], since R][[t]] pro-represents G,, r. The claim guar-
antees that the induced k-linear map df : t"]‘%[[t” /R 123 /R O1 Zariski cotangent
spaces is an isomorphism. It is easy to prove that such a homomorphism is an
isomorphism (|38, Lemma 1.1] can be used here). In summary, we showed that
Gm,R = Iv,, so that the map in eq. (16) has to be surjective. This allows us
to apply Proposition 24 to conclude that Def = Def" /G is homogeneous. [J

EXAMPLE 27. — By Schur’s Lemma, once the stratified sheaf ¥} is simple, we
have Endp, (#%) = k. Another interesting case happens when the differential
Galois group G of 7, at the point & is reductive and the canonical represen-
tation attached to it is of the form indg(A), where B C G is a Borel subgroup
and A is a dominant character in a maximal torus of B [20, Part II, Prp. 2.8,
p. 202].

7. Periodic deformations

We maintain the notations introduced in the beginning of §6. In section 6
we saw that Def is a homogeneous functor. Unfortunately, its tangent space
may be much too large, so that the local moduli space is too big to be of any
interest (see Lemma 32 and the remark after it). With this in mind, we consider
certain restrictions on the kind of deformations allowed. In section 8 we show
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how to describe the tangent spaces in cohomological terms (see Lemma 32 and
Proposition 33).

Let (%, ) € Ind str(0/A) be an algebra (§2.3) which satisfies the following
hypothesis:

B1 For any A € %), the 0 4-algebra £ 4 is faithfully flat and % is a domain.
B2 The only elements of %, which are annihilated by D,j are of the form
a-1g, with a € k. (The only horizontal sections are the constants.)

B3 There exists a map

B — By, @6, Y

which is simultaneously an isomorphism of %ji-modules and of Dj-
modules.

Before we give the main definition of this section, let us pause to gather two
results which will be useful further on.

LEMMA 28. — Let A € €. Then the only elements of B4 which are annihi-
lated by the ideal Dj_; are of the form a - 1g with a € A. (The only horizontal
sections are the constant ones.)

Proof. — We proceed by induction on the length of the Artin ring A; the case
of length one is guaranteed by axiom. So let

0—I—A—A—50

be a small extension in %,: this means that the kernel I is generated by
one element ¢ which is annihilated by the radical t(A’)—consequently I is a one
dimensional k-space. Let o € Z®x A’ be annihilated by D¥,. By the inductive
hypothesis, we can assume that there exists a € A’ such that a—a-1 », belongs
to the kernel Z ®, I. Since % ®, I is isomorphic both as an &-module and
as a Dpy-module to %y, it follows that o —a-14,, belongs to the image of A
which finishes the proof. O

LEMMA 29. — Let # € str(0y/k) and let G denote its differential Galois
group at the point &. As usual, we denote the monoidal equivalence from
(#)g to Rep,(G) by &, (§5.2). Regard the left regular representation O(G)es
as a torsor under G (§2.3.4) and let %y € Ind str(Oy/k) be the G-torsor which
corresponds under &, to O(G)e,. If B is an algebra of Indstr(0/A) which
is flat over O and reduces modulo w to %Ay, then conditions Bl and B2 are
satisfied.
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Proof. — This is well known and standard: one can say that it provides the
link between classical differential Galois theory and its Tannakian counterpart,
since % is then a PV extension. Condition B2 is immediately verified as we
have an isomorphism of k-spaces

Homp, (W, Bo) = Homg (W, O(G)iey) = k - 1.

It is also easy to verify that A is a faithfully flat Oy-algebra and thus, by
transport of structure,
Po = Specﬂo — Xk

is a G-torsor. (Note that £, is consequently faithfully flat over 04.) Since G is
a smooth group scheme over k [36, Cor. 12(iii)], Py is a smooth k-scheme [EGA
IV-2, 2.7.1] and [EGA IV-4, 17.7.4]. Now assume that %, fails to be a domain.
As a regular ring with more than one minimal prime has to admit non-trivial
idempotents [25, ex. 9.11, p. 70] and idempotents are always annihilated by
D,:r, we would obtain dimy Homp, (W, %) > 1, which is impossible. Therefore
A is a domain. O

DEFINITION 30. — Let & be as before. We say that a deformation (¥a,Va) €
Deft(A) is B-periodic if there exists a map

@i“ — BaQep, Va

which is an isomorphism of D s-modules and of % 4-modules. In an equivalent
way: There exists a basis {v1,...,v,} of the Ba-module B ®¢, Va which is
annihilated by D. Such a basis will be called a periodic basis.

For each A € €y, we let Def;fg(A) denote the set of all B-periodic deforma-
tions in Def ™ (A). It is clear that Def}é defines a functor from €y to Set.

Remark. — From Lemma 28, it follows that any two periodic basis of 4 ®¢,
¥4 are related by a matrix in GL,(A).

THEOREM 31. — Assume that Endp, (¥%) = k.
(i) The subset Defly(A) of Deft(A) is invariant under G(A).
(ii) The functor Defg := Def},/G is homogeneous.

Proof. — Assertion (i) is easy and we concentrate on (ii). Let « : A’ — A

and A” — A be morphisms in % with « surjective. We need to show that
n: Def@(A’ X A AH) — Def%(A’) XDefg)(A) Def%(A")

is bijective. Since Defg is a subfunctor of Def, the injectivity of n follows

from the homogeneity of Def (see Theorem 26). We are left with the proof of
surjectivity. Since G is smooth, we only need to show that

nt : Deff(A x4 A”) — Deff(A) X Dot (4) Def},(A”)
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is surjective. So let V' € Def;(A’) and V" € Def!(C) induce V € Def}(A).
Let S = A’ x4 A”. From Lemma 22 (or rather, its proof), we only need to
show that the diagonal stratification defined in eq. (14)

\vA Xv v’ DS = Dy XDa Dpv — Ends(”//s)

is #-periodic. This will be done if we can find periodic basis {v1,...,v,}
of Ba ®e,, Var and {v7,...,v,} of Bar ®e,, Var which induce the same

periodic basis of 4 ®¢, Ya. (Here the reader should recall that the proof of
Lemma 22 shows that the only stratification on #Bs = Bar Xz, Bar, resp.
Bs Qos Vo = Ba @ Var Xzaov, Bar @ Var, compatible with those of A4
and of B, resp. Ba @ Vi and Bar @ Va4, is the one given “diagonally”.)
But this is possible since we know that any two periodic basis of B4 ®¢, Va
are related by a matrix in GL,(A) (see Lemma 28 and the remark after it). [

The importance of the concept of #-periodic deformations comes from the
calculation of its tangent space made in Section 8 (see Proposition 33 and
Corollary 34).

8. The tangent spaces and representability

8.1. General remarks on deformations of structures from % to k[c]. — We shall
work with deformations of structures from k to k[e] = k[T]/T?. Let E be
a k-algebra (k is central); we note that an F ®y kle] = Ele¢]-module M is
the same as a pair (e(M),:) of an an E-module e(M) and an element ¢ €
Endg(e(M)) of square zero which commutes with the elements in the image
of F in Endg(e(M)). In particular, the F-module obtained from M via the
inclusion E C Ele] is just e(M) (the E-module underlying M). In this para-
graph, a deformation of an E-module M will stand for a couple (N, a) of an
Ele]-module and an isomorphism of E-modules a: N/eN — M.
The following Lemma is standard.

LEMMA 32. — Keep the above notations and assumptions. Let M be an E-
module (on the left). Let N be an Ele]-module which is flat over kl[e] and
which deforms the E-module M. Then the E-module underlying N, e(N), is
an extension of M by itself and this association defines a bijection between the
isomorphism classes of deformations of M which are flat as kle]-modules and
Exty (M, M).

Proof. — Let N be an E[e]-module deforming the E-module M. Let {m;} be
a basis of M over k and let n; € N be above m;. From [38, Lemma 3.3] it
follows that {n;} is a k[e]-basis of N. The k-linear map which takes m; to en;
defines an injection of k-spaces M — e(N); in order to check E-linearity, the
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reader can write the action of F in terms of matrices. Thus we have associated
to each deformation N an extension of M by itself. Let us now associate to an
extension

0—>Mi>N0‘a>M—>O

of E-modules an E[e]-module structure on Ny, call it IV, by letting ¢ (see above)
be Boa. Then N is flat over k[e] since the natural map

M ®y kle] — N; m @ (a + eb) — aa’(m) + bB(m),

where o/ : M — Ny is a section of «, is an isomorphism of k[e]-modules.
Furthermore, N/eN = M (through «). Finally, it is easy to see that the two
constructions define the desired bijection. O

Remark. — From the above lemma, we see that the tangent space of Def is
isomorphic to Ext}jk (Y%, %). Taking the point of view of Tannakian cate-
gories, the latter extension group can be seen as ExtllT(V, V), where II is the
(affine) fundamental group scheme of the category str(0%/k) at & € X (k)
and V is the representation of IT obtained from %j;. This Ext group can easily
be infinite dimensional: Assume that G, appears as a quotient of II. Then
we have an inclusion of the infinite dimensional vector space Ext(%;a () =
Homy, g (G, Go) = @ik - Frob® in Exti (K, ).

8.2. The tangent space to the functor Def 5. —

PROPOSITION 33. — Let e : Def(k[e]) — Ext}jk(”f/k, Vi) be the bijection con-
structed in Lemma 32. Then the B-periodic deformations correspond to the %B-
periodic extensions (that is, extensions # of Vi by itself which satisfy # @ B, =
%’292“ as PBy- and Dy-modules).

Proof. — We recall that %}.) is endowed with the obvious action of Dy, aris-
ing from the action of Dy, on %y. Let (¥z,V.) = (Y[, V<) be a deformation of
(7, V) to the ring of dual numbers k[e], i.e. an element of Def ™ (k[¢]). From
Lemma 32, we know that the Djg-module underlying ¥z, denoted by e(%%),
determines an extension of ¥ by itself:

(17) 0 — (= eh) -2 e(%) - % — 0;

where « is reduction modulo €. (In terms of Oy-modules seq. (17) is the obvious
one.) We now assume that e(¥;) is By-periodic — this means that By ®g, e( %)
is isomorphic, both as a Di-module and as a %Bi-module, to 33292” — and we
want to establish that

‘@k[a] ®ﬁk[€] 7/6
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has a Hy.)-basis which is annihilated by D,':[E]. As %y, is flat over O, the exact

sequence (17) becomes the exact sequence of %By- and Dy-modules

0— BP Lo g T g,

Let (a;;) be the matrix of @. Due to B2, it follows that each a;; belongs to
k C ). Because By, is a domain, it follows that some p x p-minor of (as;),
which is in k, is invertible in %). This means that u-vectors among the

Apj

say the first u, form a HBj-basis of 93,?” . Let us now make the following
identification

(18) B @ e(Ve) —= B @ Ve,

Ok Okle)

under which @ : %y ® Vo — P ® ¥}, corresponds to reduction modulo €.
Hence, {€1,..., €.} C PBrie) @y Ve i a By-basis (again by [38, Lemma
3.3]). By the construction of e(¥%), it follows that the above identification
also respects the Dg-module structures. (Here we use that the stratification
on % is the obvious one obtained from that on %j.) Furthermore, €, is
annihilated by D,‘c"[e}7 as it is by D,j. In conclusion, {€1,..., ?u} is a periodic
basis.

Now assume that (74, V) is Py[e)-periodic. This means that the %y .-
module By ©g, ., Vile) has a basis {wi, ..., w,} which is annihilated by D;“[E].
Using that (a) the natural identification in (18) also preserves the action of Dy
and (b) {w;, ew;} is a basis of the #j-module underlying By ® o, Vi), and
so of By, ®g, e(7i)), the By-periodicity of e(¥4[.)) follows immediately. [

Linguistic remark. — In the above statement we have introduced the term
“A-periodic extension”, which is not directly defined by the concept of %-
periodic deformation.

COROLLARY 34. — Let (Wi, Ax) € str(Ok/k), Gy its differential Galois group
at the point & and EZ : (#)e — Repi(Go) the defining equivalence (see §5.2
for notations). Let 2 € Indstr(C/A) be an algebra. Assume that By is a tor-
sor of Ind str(0y /k) under Gy which corresponds to O(Go)ety (see the example
in §2.3.4) via EZ Suppose that (¥4, Vi) € (#i)g- Then B satisfies B1, B2
and B3 and the k-vector-space Def g (k[e]) is isomorphic to Ex‘cé0 Y, Ex 7).
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Proof. — We will show that the objects of (#%)g are precisely the %y-periodic
objects of str(0}/k). This will establish that %}, satisfies B3. That % fulfills
Bl and B2 was already treated by Lemma 29. Applying Proposition 33 we
conclude that

Def s(k[e]) 2 Extly . (Y, %) = Bxtg, (€, 7k, €, 74)-

Let (7/,V’) be $y-periodic, so that ¥’ ® %y, = 93,?5 as Dy-modules. We
obtain an inclusion of Dg-modules ¥’ C %’,?5. As W, is finitely generated as
an Og-module and %y, is, as a Di-module, a direct limit of objects in (#%)g,
it follows that ¥’ is a sub-object of an element in (#})g and consequently is
also an object of (#4)g.

Let us suppose now that ¥” is in the category (#})s; we wish to show that
V' is PBy-periodic. The equivalence EZ of tensor categories can be extended
to an equivalence between Ind((#})g) and the category of all Gp-modules (see
§1.2.6 for conventions). Thus, we are left with the task of showing that there
is an isomorphism of Gg-modules

(19) 0(Go)Eh = E (V) @k O(Go)rets

which is also an isomorphism of &(Gp)-modules. This is accomplished by
noting that for any (W,w) € Rep,(Go):

(20) Mor (Go, AT™ W) — Mor(Go, Wa),  f — (¢ w(z) - f())

induces the sought isomorphism

o

(21) [0(Go)ets) IV ——= O(Go)tess @ (W, w).
O
As an application of [38, Thm. 2.11], we have:
COROLLARY 35. — Notations as in corollary 3. Assume that Exté0 (GE/NINA

is finite dimensional. Then the functor Defg : €5 — Set is pro-represented
by a complete noetherian A-algebra R(Vy, B).

We now give some examples of affine group schemes G/k satisfying
dim H'(G,V) < oo for all V € Rep,(G) (and hence the hypothesis of Corol-
lary 35). As one can use the Hochschild complex to compute group cohomology
[20, Ch. 1, 4.16, p. 63], finite group schemes are an obvious class of examples.
Another important class are reductive groups. Let B be a Borel subgroup of
the reductive group G (all over k) and let M and N be representations of B
and G respectively. Using the spectral sequence in [20, 4.5, p. 58], we see
that H'(G,ind$G M) — H'(B,M). Since H'(B, M) is finite dimensional [20,
4.10(a), p. 235|, H'(G,ind§ M) is likewise. Let L be a simple G-module; L
is then a submodule of some induced character ind$(\) [20, 2.4, p. 200] —
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which is finite dimensional. It follows that dim H!(G, L) < oco. Consequently,
dim H'(G; V) < oo for any representation.

9. Deformations of representations and deformations of D-modules

We maintain the notations introduced in the beginning of §6.

9.1. Organization and assumptions. — We assume that Endp, (¥;) = k. Let
G} be the differential Galois group of 7, at the point &x: this means that we
have a commutative diagram

(s Vi) —=—— (k-mod)

\\ T forget
€

Repk (Gk)a

where EZ is a monoidal equivalence. Assume that Gy, lifts to a smooth and
affine group scheme over A: G. We shall fix a free A-module Vj such that
Vi = Vo ® k affords the representation

£.(%) = pr : G, — GL(V).
These hypothesis produce a G-torsor
By, € Ind str(0y/k)

(terminology from §2.3) by using the left regular representation (as in §2.3.4);
see the discussion adjacent to formula (11), which becomes valid in the present
situation. We let

P € Indstr(C/A\)

be a G-torsor reducing to %), modulo w; the existence is, of course, guaranteed
by Theorem 16. Lemma, 29 assures that the assumptions B1 and B2 are satified.
The fact that assumption B3 holds in this case was discussed in the proof of
Corollary 34, see egs. (20) and (21)).

Notation. — If we let ¢ denote the object of Indstr(&’/A) obtained by en-
dowing & ®a O(G) with the trivial stratification, then the co-action morphism

B — BRQs H
(which is an arrow of algebras in Ind str(&'/A)) will be denoted by .
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9.2. The functor of deformations of group representations

DEFINITION 36. — For each A € G, let Def;'k (A) denote the set of all homo-
morphisms of group schemes

pa: Ga — GL(Vy)
such that pa ®4 k = pi. Define I'(A) as the group
ker (Aut4(Va) — Auty(Vi)) .
Let T act on the right of Def:k (A) by conjugation. The functor
A Def} (A)/T(A)
will be denoted by Def,, .

PROPOSITION 37. — (i) The functor Def,, is homogeneous. (ii) Its tangent
space Def, (kle]) is isomorphic to Exté,C (Vie, V).

Proof. — The proof of the homogeneity of Def, — in the presence of
Endg, (Vi) = k — is similar to the proof of homogeneity of Def. (That is, one
uses the criterion given in Proposition 24 and the same method I, = @m as in
Theorem 26.) A calculation of the tangent space can be extracted from [SGA
3 III], Theorem 2.1 and its corollaries. A more methodic way of proceeding
uses Pridham’s approach [33] of simplicial deformation complexes and the
co-monadic adjunction

U
(22) 0(G 4)-Comod” —= A-Mod* , U*HU.,

U.
where, for A € €y, 0(G4)-Comod?# (resp. A-Mod¥) denotes the category of
O(G 4)-comodules which are flat as A-modules (resp. A-flat modules), U* the
forgetful functor and U, : M — O(G 4)right @4 M. O

9.3. Main result: A natural isomorphism Def,, — Defz. — Fix A € €. Since
2 is a torsor under G, the twisting construction (§2.4.3) defines a (monoidal)
functor
Ba x4 (7) : Reps(Ga) — str(04/A).

(We are again abusing notation as we did in §5.2, p. 219: to perform the
twisting construction we are using the Hopf algebra ¢4 = 0(G4) ®4 O4.) If
pa s Ga — GL(Vy) is a lifting of p;,, Corollary & assures that %4 x4 (pa)
is a deformation of (¥4, V), so that we obtain a natural transformation of
deformation functors

Def,,

In fact, this construction gives a natural transformation

— Def.

T : Def,, — Defg
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due to the following;:
Observation (1): the functor %4 x4 (?) transports the torsor &(G )t of
the example in §2.3.4 to the torsor #4 and
Observation (2): for each W4 € Repf(G 4) of rank 7, the representation W4 ®
O(G Aoty is isomorphic to 0(G4)Ef, as indicate egs. (20) and (21).

We can now state the main result.

THEOREM 38. — The natural transformation T4 defined above is an isomor-
phism of functors.

The proof relies mainly on the procedure that associates to every %-periodic
deformation a representation of the group. It is the topic of the following
paragraph.

9.3.1. The holonomy. — We recall in a more algebraic setting some usual
constructions from differential Galois theory (see for example [34, Obs. 1.26(1),
p. 19] and [34, 2.33]).

Let A € %A and assume that (¥4,V4) is a HB-periodic deformation. By
definition, there exists an isomorphism of D 4-modules

(23) @:%fu—)%A ® Va
Oa
which is also an isomorphism of % 4-modules. Bearing in mind the notations
introduced on §9.1, we obtain an ¢ = O(G 4) ® 4 0 a-comodule structure on
@A (7N ”f/A:
H®7/AI<@A®"//A—>(%’A®’VA> ® Hy.
[ Oa Oa Oa
Using the isomorphism O, we obtain an ##4-comodule structure
x: BN — B @ Sy
A

on Z$* (in the category Str(04/A)). This produces an (G 4)-comodule
structure

x: B — B © 0(Ga)

on the A-module £, (with the additional property that x is an arrow of D 4-
modules). If we let
Hor = Hom (W, ?) : Str(04/A) — (A-Mod)

denote the functor of horizontal sections, Lemma 28 allows us to deduce a
0(G 4)-comodule structure on Hor(#%") = AP i.e. a representation

(24) hol(V4;0) : G4 — GL, 4.
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Of course, hol(V 4, 0) does not depend too much from the particular choice of
©, due to the fact that any other such isomorphism is of the form © o (a;;)
with (a;;) € GL,(A). The representation in (24) will be called the holonomy.

LEMMA 39. — Let (Va,n) be a representation of Ga whose underlying A-
module is free of rank . Let ¥y := PB4 x4V be the stratified module obtained
from V4. Then the holonomy of ¥4 is isomorphic to (Va,n). In particular, the
functor T4 is a monomorphism (injective on “A-valued points”).

Proof. — To ease notation we will omit the subscripts alluding to A. Also, we
will write Riegt (resp. Ruignt) instead of O(Ga)iers (resp. O(G a)right). Let R
and V denote the G-modules obtained by letting G act trivially; using eq. (20)
we have an isomorphism of G-modules

0 : Riett ® V — Riets @ (V, 7).

The isomorphism
0:=Bx%0): B% — BRYV
0

defines the %-periodicity of #. The holonomy representation is constructed,
by transport of structure using ©, from the .7#-comodule structure on Z ® ¥
arising from the 7-comodule structure of 4. The latter comodule structure
already “comes” from the category Rep’y(G); the defining arrow is the image of

ARV :Riett @V — Riess @ V ® R € Arrow (Rep;‘(GA))

by % x% (?) (see Obs. (1) on page 237). Thus, for a better understanding of
hol(®; ), we need to consider the arrow ¢ in the commutative diagram (in

Rep)s (G))

(25) Riets @V ; Rt @V
¢ L J/A@V
[Riett ® V] ® R = [Riett ® V] ® R.
00R

It is not hard to verify that ¢ is the arrow A X n (see §1.2.6 for notation)
defining the G-module structure on Ryignt @ (V, 7). (It is sufficient to show that
the the diagram is still commutative if one replaces {( by A X n, and one way
to verify this is to give V a basis and do the calculations.) Therefore, the .77-
comodule structure on %*, named y in the above construction of hol(©;V 4),
is obtained as the tensor product of the two .##’-comodule structures (%, k)
and (V ®4 O,n® 0). Since Hor(#) = A -1, it follows that the representation
hol(©, ¥) is 7. O
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9.3.2. Proof of Theorem 35. — We make use of some basic terminology from
the theory of functor of Artin rings. Let ®, ¥ : ) — Set be functors of Artin
rings and let A : ® — ¥ be a morphism between them. We say that h is
smooth if for any given surjection B — A in %), the natural map

is also surjective. (In particular, a functor ® is smooth if and only if & —
(trivial functor) is smooth.) We say that h is etale if it is smooth and dh :
tg — ty is an isomorphism.

As Def % is homogeneous (Theorem 31), it is sufficient to show that 74 is
etale [24, Cor. 2.11]. It is possible to show that drg is an isomorphism by
tracking the natural identifications giving the tangent spaces in Propositions
37 and 33, but, since the case of real interest is dimy, tper,, < 00, we only need
to apply Lemma 39. Hence we are left with the verification of smoothness.
This will follow from the proof of the standard smoothness criterion [24, Prp.
2.17] once we verify the following claim. (The hypothesis in [24, Prp. 2.17]
concerning injectivity on obstruction spaces is essentially the content of the
claim.)

Claim: Let A" — A be a small extension in € and let (V4,14) € Def,, (A)
be such that %4 x4 na =: (¥a,V) € Def z(A) admits a lifting (¥4/, V') €
Defz(A’). Then there exists a lift of (Va,n4) to Def,, (A’).

Proof. — The holonomy representation hol(V’) is a lifting of hol(V), the latter
is isomorphic, as we have seen in Lemma 39, to (Va,n4).

We have proved Theorem 38. [

COROLLARY 40. — Let us assume that Gy is a reductive and that Vi is a
simple G-module. Assume furthermore that, for each I € N, there exists a
lifting pa et G®A/w! — GL(Va ® A/w') of pr. Then Def,, and Defgy are
pro-represented by A.

Proof. — The tangent space of Def ,, is zero dimensional since Extg Vi, Vi) =
0 [20, Part II, Ch 2, 2.1.2]. Hence, the ring R pro-representing Def, (and
Def %) is isomorphic to either A or A/w’ for some j € N. The existence of
the lifting to A/w’*! means that the possibility R = A/w’ is to be discarded.
Thus R = A. O

COROLLARY 41. — Keep the assumptions and notations of Corollary /0. Let
(¥,V) and (¥,V') be two objects of str(C/A) such that (1) Vk=V' @k =
Vi and (2) the reductions of (¥,V) and (¥,V') modulo w" are ZB-periodic
for each given n € N. Then (¥,V) = (¥,V') as objects in str(CT/A).
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Proof. — Denote the reductions modulo ™! by a subscript n. From Corol-
lary 40, we know that, for each n € N, there exists g, € G(A/w™) such that
Van * gn = V.. We want to conclude that there exists an element

7 = () € lim G(A,) = Auts(7)

n

which verifies V,, %y, = V., for each n. This is proved by induction using that

the homomorphism in eq. (16) is surjective. O
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