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Abstract. — In this paper, we recall the existence of graphs with bounded valency
such that the simple random walk has a return probability at time n at the origin of
order exp(−nα), for fixed α ∈ [0, 1[ and with Følner function exp(n

2α
1−α ). This result

was proved by Erschler (see [4], [3]); we give a more detailed proof of this construction
in the appendix. In the second part, we give an application of the existence of such
graphs. We obtain bounds of the correct order for some functional of the local time of
a simple random walk on an infinite cluster on the percolation model.

Résumé (Existence de graphes à transitions de probabilités sous-exponentielles et ap-
plications)

Dans cet article, nous rappelons l’existence de graphes à valence finie tels que la
probabilité de retour de la marche aléatoire simple soit de l’ordre de exp(−nα), pour

α ∈ [0, 1[ et tels que la fonction de Følner du graphe soit en exp(n
2α

1−α ). Ce résultat a
été prouvé par Erschler (voir [4], [3]). Une preuve plus détaillée de cette construction
est donnée en annexe. Dans une seconde partie, nous donnons une application de
l’existence de tels graphes. Nous obtenons des estimées du bon ordre pour certaines
fonctionnelles des temps locaux de la marche aléatoire simple sur un amas infini de
percolation.
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492 C. RAU

1. Introduction and results

A graph G is a couple (V (G), E(G)), where V (G) stands for the set of
vertices of G and E(G) stands for the set of edges of G. All graphs G which
are considered here are infinite and have bounded geometry and we denote by
ν(g) the number of neighbors of g in G.

We study the following random walk X on G defined by:{
X0 = g,

P(Xn+1 = b|Xn = a) = 1
ν(a)+1 (1{(a,b)∈E(G)} + 1{a=b})

(1)

The random walk X jumps uniformly on the set of points formed by the point
where the walker is and his neighbors. Thus X admits reversible measures
which are proportional to m(x) = ν(x) + 1.

In this context, the transition probabilities are linked by the isoperimetric
profile. For a graph G and for a subset A of G, we introduce the boundary of
A relatively to graph G defined by

∂GA = {(x, y) ∈ E(G);x ∈ A and y ∈ V (G)−A}.

Actually, we will rather work with Følner function to deal with isoperimetry.
Let G be a graph, we note FolG the Følner function of G defined by:

FolG(k) = min{|U |;U ⊂ V (G) and
|∂GU |
|U |

≤ 1

k
}.

If G′ ⊂ G is a subgraph of G, we will use the Følner function of G′ relatively
to G defined by:

FolGG′(k) = min{|U |;U ⊂ V (G) and
|∂GU |
|U |

≤ 1

k
}.

We have the following proposition (see Coulhon [1])

Proposition 1.1. — Let m0 = infV (U) m > 0 and X be the random walk
defined by (1). Assume that Fol(n) ≥ F (n) with F a non negative and non
decreasing function, then

sup
x,y

P(Xn = y|X0 = x) � v(n),

where v satisfies: {
v′(t) = − v(t)

8(F−1(4/v(t)))2 ,

v(0) = 1/m0.
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GRAPHS WITH SUB EXPONENTIAL TRANSITIONS PROBABILITY DECAY 493

(We recall that an � bn if there exist constants c1 and c2 such that for all
n ≥ 0, an ≤ c1bc2n and an ≈ bn if an � bn and an � bn.)

For example, we retrieve that in Zd, the random walk X defined above has
transitions decay at time n less than n−d/2 and in F 2 the Cayley graph of the
free group with two elements, the transition decay of the random walk are less
than e−n. A natural question is to know if there exist graphs with intermediate
transitions decay. Some others motivations can be found in Section 2.

The answer is given by the following proposition due to Erschler (see [4]).

Proposition 1.2. — Let α ∈ [0; 1[, F := ex
2α

1−α and σ(n) := e−n
α

. There
exists a graph DF = (V (DF ), E(DF )) with bounded valency such that:

(i) FolDF ≈ F ,
(ii) there exists a point d0 ∈ V (DF ) such that, for all n, pDFn (d0, d0) ≈ σ(n),

where pDFn (, ) stands for the transitions probability of the random walk X defined
above when G = DF .

Most important steps of the proof can be found in [4] for α ≥ 1/3 and in
[3] for α ≤ 1/3. A complete proof is given in the appendix at the end of this
paper following arguments of Erschler. Graphs given in the proof, are called
wreath products. Note that a recent study of isoperimetry for wreath products
on groups has been done by Gromov in [5]. Wreath products would be useful in
the next section, so we recall here the definition. Let A a graph and (Bz)z∈V (A)

a family of graphs.

Definition 1.3. — The wreath product of A and (Bz)z∈V (A) is the graph
noted by A o (Bz)z∈V (A) (or shortly A oBz) such that:

V (A oBz) = {(a, f); a ∈ A and f : A→ ∪zBz with supp(f) <∞

and ∀z ∈ A, f(z) ∈ Bz} and E(A o Bz) = {
(

(a, f)(b, g)
)

; (f = g and (a, b) ∈
E(A)) or (a = b and ∀x 6= af(x) = g(x) and

(
f(a), g(a)

)
∈ E(Ba))}.

This graph can be interpreted as follow: imagine there is a lamp in each
point a of A such that each point of Ba defined a different intensity of the
lamp. The different intensity of each lamp can be represented by a configuration
f : A→ ∪aBa which encodes the intensity of the lamp at point a by the value
f(a). A point in the wreath product is the couple formed by the position of a
walker in graph A and the state of each lamp. A particular case is when the
graph Ba (called the fiber) is the same for all a ∈ A.
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494 C. RAU

1.1. Example of application of Proposition 1.2. — With the help of graphs DF

given in Proposition 1.2 and with some others good wreath products, we will
be able to find upper bound of functional of type: E(e−λ

∑
F (Lx,n,x)) where

Lx,n = #{k ∈ [0;n];Xk = x} on the graph Cg get after a surcritical percolation
on edges of Zd, where edges are kept or removed with respect to Bernoulli
independent variables. The points of Cg are the point of the infinite connected
component C which contains the origin; we will give more details in Section 2.
In particular, we will prove the following property:

Theorem 1.4. — Consider a simple random walk X on the infinite cluster of
Zd that contains the origin Q-a.s. on the set | C | = +∞, and for large enough
n we have:

∀α ∈ [0, 1] Eω0 (e

−λ
∑

z;Lz;n>0

Lαz;n

1{Xn=0}) ≈ e−n
η

,(2)

∀α > 1/2 Eω0 (
∏

z;Lz;n>0

L−αz;n 1{Xn=0}) ≈ e−n
d
d+2 ln(n)

2
d+2

,(3)

where η = d+α(2−d)
2+d(1−α) .

The constants present in the relation ≈ do not depend on the cluster ω.

Remark 1.5. — If we take α = 0 in Equation (2), we retrieve the Laplace
transform of the number of visited points Nn (see [8]),

Eω0 (e−λNn) ≈ e−n
d/d+2

.

In the whole article, C, c are constants which value can evolve from lines to
lines.

2. Applications: study of some functionals

2.1. Kind of problems, case of the lattice Zd. — Recall that for G a graph and
X is a simple random walk on G, we note Lx,n = #{k ∈ [0;n];Xk = x}. The
question is to estimate functional of type

Eω0 (e

−λ
∑

z;Lz;n>0

F (Lz;n,z)

),(4)

where F is a two variables non negative function. The method developped
here is due to Erschler and can be applied on general graph G provided the
isoperimetric profile on the graph G is known and the function F has some
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“good” properties. For the case of the simple random walk on Zd, in [4] it is
proved that

∀α ∈ [0, 1] Eω0 (e

−λ
∑

z;Lz;n>0

Lαz;n

) ≈ e−n
η

,(5)

∀α ≥ 1/2 Eω0 (
∏

z;Lz;n>0

L−αz;n) ≈ e−n
d
d+2 ln(n)

2
d+2

,(6)

where η = d+α(2−d)
2+d(1−α) . This section is devoted to extend these estimates to an

infinte cluster of the percolation model.

2.2. In an infinite cluster of the percolation model.

2.2.1. Percolation context. — Consider the graph Ld = (Zd, Ed) where Ed are
the couple of points of Zd at distance 1 for the N1 norm. Now pick a number
p ∈]0, 1[. Each edge is kept [resp. removed] with probability p [resp. 1− p] in
an independent way. We get a graph ω and we call C the connected component
that contains the origin and Cn the connected component of C ∩ [−n, n]d that
contains the origin.

We still use the notation ω for the application Ed → {0, 1} such that ω(e) = 0

if e is a removed edge and 1 otherwise. Let Q be the probability measure under
which the variable (ω(e), e ∈ Ed) are Bernoulli(p) independent variables. If p
is larger than some critical value pc, the Q probability that C is infinite, is
strictly positive and so we can work on the event {# C = +∞}.

We denote by Cg the graph such that V ( Cg) = C and E( Cg) = {(x, y) ∈
Ed;ω(x, y) = 1} and Cgn the graph such that V ( Cgn) = Cn and E( Cgn) =

{(x, y) ∈ Ed;x, y ∈ Cn and ω(x, y) = 1}. We will note D(x, y) for the minimal
distance between x and y in the graph C and Bm( C) = {x ∈ C ;D(0, x) ≤ m}.

From now on and until the end, p would be larger than pc and we will work
on the event {# C = +∞}, X will design the simple random walk on the graph
Cg. We are going to prove estimate (5) and (6) for the walk X.

2.2.2. Sketched plan. — Let (Bx)x∈ C be a family of graphs and let 0x an
arbitrary point in each Bx that we call the origin. For all x ∈ C , consider the
random walk (Y xn )n on Bx starting from point 0x, and jumping uniformly on
the set of points formed by the point where the walk is and its neighbors. Let
PBx0x

be the law of (Y xn )n.
Transition kernels of Y x satisfy:

pBx(a, b) =
1

νx(a) + 1
(1{a=b} + 1{(a,b)∈E(Bx)}),

where νx(a) stands for the number of neighbors of a in graph Bx.
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Consider now the graph

W = W C = Cg o (Bz)z∈ C .(7)

Let f0 be the null configuration, such that, for all x ∈ C , f0(x) = 0x, and let
o = (0, f0). And we look at the random walk (Zn)n on the graph W C starting
from o, defined by the following: suppose that the walk is at point z = (x, f),
then in one unit of time, the walk makes three independent steps. First, the
value of f at point x jumps in graph Bx with respect to the walk Y x starting
from f(x). Secondly, we make the walker in C jump on his neighbors with
respect to uniform law on his neighbor, so the walker in C (projection on C
of walk on W C ) arrives at point y ∈ C . And thirdly, the value of f at point y
jumps in graph By with respect to the walk Y y starting from f(y).

Thus, calling p̃ transitions kernel of Z, we have: for all ((a, f); (b, g)) ∈
(V ( Cg oBz)2:

p̃[(a, f)(b, g)] =
χ[(a, f), (b, g)]

ν(a)[νa(f(a)) + 1][νb(f(b)) + 1]
,(8)

where χ[(a, f), (b, g)] is equal to 1 if the walk is able to jump from (a, f) to
(b, g) and 0 otherwise.

More precisely,

χ[(a, f), (b, g)] = ω(a, b)(χ1[(a, f), (b, g)] + χ2[(a, f), (b, g)]

+ χ3[(a, f), (b, g)] + χ4[(a, f), (b, g)]),

with
χ1[(a, f), (b, g)] = 1{∀xf(x)=g(x)}, χ2[(a, f), (b, g)] = 1{(f(a),g(a))∈E(Ba)

∀x6=af(x)=g(x)
},

χ3[(a, f), (b, g)] = 1{(f(b),g(b))∈E(Bb)
∀x 6=bf(x)=g(x)

}, χ4[(a, f), (b, g)] = 1{∀x∈{a,b}(f(x),g(x))∈E(Bx)
∀x6=a,bf(x)=g(x)

}.

Notice that m̃ defined by,

m̃(a, f) = ν(a),(9)

is a reversible measure for the walk Z. We note ã the following kernels:

ã(x, y) = m̃(x)p̃(x, y)(10)

Let P̃ωo be the law of Z starting from o. The key for our problem is the following
interpretation of the return probability of Z:

Proposition 2.1

P̃ωo (Zn = o) = Eω0 (
∏

x;Lx;n>0

PBx0x
(Y xLx;n = 0x) 1{Xn=0}).
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Proof. — We have

P̃ωo (Zn = o) = P̃ωo
(

(Xn, fn) = (0, f0)
)

=
∑

(k0,k1,...,kn)∈Zd
k0=kn=0

P̃ωo (X0 = k0, X1 = k1, . . . , Xn = knetfn = f0)

=
∑

(k0,k1,...,kn)∈Zd
k0=kn=0

P̃ωo (X0 = k0, X1 = k1, . . . , Xn = kn)

× P̃ωo (fn = f0|X0 = k0, . . . Xn = kn)

=
∑

(k0,k1,...,kn)∈Zd
k0=kn=0

Pω0 (X0 = k0, X1 = k1, . . . , Xn = kn)

×
∏

x;Lx;n>0

PBx0x
(Y xLx;n = 0x)

= Eω0 (
∏

x;Lx;n>0

PBx0x
(Y xLx;n = 0x) 1{Xn=0}).

In order to estimate functional such as (4) and in view of Proposition 2.1,
we have to find graphs Bx such that for all m ∈ N :

(11) PBx0x
(Y xm = 0) ≈ e−λF (m,x).

Moreover, since we know that an isoperimetric inequality with volume counted
with respect to measure m̃ and boundary counted with respect to kernels ã,
gives an upper bound of the decay of the probability transitions of walk Z, in
a first time we have to estimate the Følner function of W C and so (by results
of Erschler, see [4] [2] and [7]) we should know Følner function of each Bx and
Følner function of Cg.

Finally, we have to find graphs Bx which satisfies two conditions:

– the condition (11) of return probability for the random walk Y x on Bx,
– and Følner function known.

Concerning Følner function of Cg, in [6] the following isoperimetric inequal-
ity is proved:

Proposition 2.2. — There exists a constant β = β(p, d) > 0 such that Q-a.s.
on the set | C | = +∞ we have,

∃nω ∀n ≥ nω inf
A⊂ Cn,|A|≤| Cn|/2

|∂ CgnA|
|A|1− 1

ε

≥ β

n1− dε
,

where ε = ε(n) = d+ 2d log log(n)
log(n) .

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



498 C. RAU

If we start from this isoperimetric inequality, we will not obtain the expected
decay for our functionals (2) and (3). Basically, the raison is due to the log-
arithm factor in the term ε (which is related to the dimension) which holds
along computations. So we will use an other isoperimetric inequality (see [8]),
adapted to our bound.

Before starting the proof of estimates (2) and (3), let us give one precision.
The graph formed by the possible jumps of walk Z is not W C = Cg o (Bz)z∈ C ,
so we introduce the graph with same set of points of W C but different set of
edges. We call it Cg o o(Bz)z∈ C or shortly W ′C (or W ′), the graph such that:

V (W ′C ) = V (W C ) and,(12)
((a, f); (b, g)) ∈ E(W ′C ) ⇐⇒ χ[(a, f); (b, g)] = 1.

Thus, in the graph W ′C , the random walk Z is a nearest neighbor walk. By the
same way, we construct Cgn o o(Bz)z∈ C . Properties of Z are linked to geometry
of W ′C but as we will see later W C and W ′C are roughly isometric, so we can
study the isoperimetric profile of W C .

2.2.3. Study of Eω0 (e−λ
∑
Lαz;n).

Upper bound. — Let α ∈]0, 1[ and β = 2α
1−α and let F (x) = ex

β

. Let DF be
the graph given by Proposition 1.2. We put for all x ∈ C , Bx = DF .

We want to obtain a lower bound of FolC
gooDF

CgnooDF
(k). We proceed in 3 steps:

First, by using general results on wreath product, see [4], [2] and [7], we have:

Fol CgoDF
CgnoDF

(k) ≈ (FolDF (k))
Fol Cg

Cgn
(k)
.

Secondly, by Proposition 1.4 of [8], we get: for all γ > 0, there exists β > 0

such that for all c > 0, Q-a.s. for large enough n, we have:

Fol CgoDF
CgnoDF

(k) �

{
F (k)k if k < cnγ ,

(F (k)βk
d

if k ≥ cnγ .
(13)

In the last step, we want to carry (13) on Fol CgooDF
CgnooDF

. Let δ a imaginary point
and consider the following graphs:

Wn = Cgn oDF ,(14)

and

W ′n = Cgn o oDF ,(15)

defined by:

V ( Cgn oDF ) = V ( Cgn o oDF ) = V ( Cgn oDF ) ∪ {δ}
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and set of edges are given by

E(Wn) = E( Cgn oDF ) ∪ {(x, δ);x ∈ V ( Cgn oDF ) and

∃y ∈ V (W )(x, y) ∈ E(W )}

and

E(W ′n) = E(CgnooDF ))∪{(x, δ);x ∈ V (CgnooDF )and∃y ∈ V (W ) (x, y) ∈ E(W ′)}.

Let respectively d and d′ be the distances on W and W ′, given by edges of
these graphs. Wn are W ′n are roughly isometric with constants independent of
n. With the notations of Definition 3.7 in [10], we have A = 3 and B = 0.

Indeed, consider
id : (V (Wn), d)→ (V (W ′n), d).

For all x, y ∈ V (Wn) = V (W ′n), we have:
1

3
d(x, y) ≤ d′(x, y) ≤ 3d(x, y).

Thus the respective Dirichlet forms E and E′ for simple random walks on Wn

andW ′n satisfy: there exist c1, c2 > 0 such that for all f : V (Wn)→ R we have,

c1 E(f, f) ≤ E′(f, f) ≤ c2 E(f, f),

with
E(f) =

∑
(x,y)∈E(Wn)

(f(x)− f(y))2,

and
E′(f) =

∑
(x,y)∈E(W ′n)

(f(x)− f(y))2.

Now, let U ⊂ V (Cgn o oDF ) and take f = 1U , we get:

c1|∂WU | ≤ |∂W ′U | ≤ c2|∂WU |.

Hence, we have proved that (13) carry to Fol CgooDF
CgnooDF

, so we deduce:

Proposition 2.3. — For all γ > 0, there exists β > 0 such that for all c >
0,Q a.s. on the set | C | = +∞ and for large enough n, we have:

FolC
gooDF

CgnooDF
(k) �

{
F (k)k if k < cnγ ,

(F (k)βk
d

if k ≥ cnγ .
(16)

Now we are able to get an upper bound of P̃ωo (Z2n = o) and then an upper
bound for our functional. Let τn = inf{s ≥ 0;Zs 6∈ V (Cgn o oDF )}.

We have,

P̃ωo (Z2n = o) = P̃ωo (Z2n = o and τn ≤ n) + P̃ωo (Z2n = o and τn > n).
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The first term is zero since the walk can not go out the box V (Cgn o oDF ) before
time n.

The second term can be bounded using Proposition 2.3. Let:

H (k) =

{
F (k)k if k < cnγ ,

(F (k)βk
d

if k ≥ cnγ .
(17)

– H is increasing and we can define an inverse function by

H −1(y) = inf{x; H (x) ≥ y}.

– Besides, with the help of (16),

FolC
gooDF

CgnooDF
� H .

– C and DF have bounded valency and from formula of m̃ and ã (see (10)
and (9)) we have: inf

V (W ′)
m̃ ≥ 1

2d > 0 and inf
E(W ′)

ã > 0.

Thus, (see Theorem 14.3 in [10] for example) there exist constants c1, c2 and
c3 > 0 such that

P̃ωo (Z2n = o and τn > n) � u(n)

where u is solution of the differential equation:{
u′ = − u

c2( H−1(c3/u))2
,

u(0) = c1.

Replacing F (k) by ek
β

into H , we get the expression of H −1 :

H −1(y) =


c(ln(y))

1−α
1+α if 1 ≤ y < ecn

γ(1+α)
1−α

,

cnγ if ecn
γ(1+α)
1−α ≤ y < ecn

γ(d+α(2−d))
1−α

,

c(ln(y))
1−α

d+α(2−d) if ecn
γ(d+α(2−d))

1−α ≤ y.

(18)

Solving the differential equation in the different cases, we get:

u(t) =



ce−ct
1+α
3−α if t ≤ cn

γ(3−α)
1−α ,

cecn
γ

1+α
1−α

e−ct/n
2γ

if cn
γ(3−α)

1−α < t

≤ cn
γ(d+2−dα)

1−α + n
γ(3−α)

1−α ,

ce−(ct−c′n
γ(d+2−dα)

1−α −cn
γ(3−α)

1−α )
d+α(2−d)
2+d−dα if cn

γ(d+2−dα)
1−α + n

γ(3−α)
1−α ≤ t.

(Each c designs a different constant.)
Now we choose γ such that 0 < γ < min( 1−α

d+2−dα ,
1−α
3−α ), then we get: there

exists c = c(p, d, α, λ) > 0 such that

u(2n) ≤ e−cn
η

,
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with η = d+α(2−d)
2+d(1−α) . So, Q-a.s. on the set | C | = +∞, and for large enough n

(which depends on the cluster ω),

P̃ωo (Z2n = o) � e−n
η

.

By Proposition 2.1, we deduce that Q-a.s. on the event | C | = +∞ and for
large enough n,

Eω0 (
∏

x;Lx;2n>0

PDFd0 (Y DFLx;2n
= d0) 1{X2n=0}) � e−n

η

.(19)

By our choice of graph DF , there exist C1, C2 > 0 such that for all n ≥ 1:

PDFd0 (Y DFn = d0) ≥ C1e
−(C2n)α ,(20)

≥ e−λ0n
α

,(21)

for some λ0 > 0.
From (19) and (21), we get that there exists λ0 > 0 such that Q-a.s. on the

set C | = +∞ and for large enough n,

Eω0 (e

−λ0

∑
x;Lx;2n>0

Lαx;2n

1{X2n=0}) � e−n
η

.(22)

To conclude, it remains only to prove that we can suppress the indicator func-
tion and that we can extend the inequality (22) to all λ > 0. We explain this
in 3 steps. First of all, notice that it is sufficient to prove (3) only for one value
of λ. Indeed, let λ > 0, assume that for λ = λ0, we have:

Eω0 (e

−λ0

∑
x;Lx;n>0

Lαx;n

) � e−n
η

.(23)

– If λ ≥ λ0, (23) is true because we can replace λ0 by λ using merely the
decrease.

– If λ < λ0, we write

Eω0 [e

−λ
∑

x;Lx;n>0

Lαx;n

] = Eω0 [(e

−λ0

∑
x;Lx;n>0

Lαx;n

)
λ
λ0 ]

≤ (Eω0 [e

−λ0

∑
x;Lx;n>0

Lαx;n

])
λ
λ0

(Jensen inequality applied to concave functionx→ x
λ
λ0 .)

� e−n
η

.

In the second step, we want to take out the indicator function. We use the
following lemma:

Lemma 2.4. — For all m ≥ 0, we have:

Pω0 (
∑
x

Lαx;n = m)2 ≤ 2d(2m+ 1)dPω0 (
∑
x

Lαx;2n ≤ 2m and X2n = 0).
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Proof. — We have

[Pω0 (
∑
x

Lαx;n = m)]2 =
( ∑
h∈Bm( C)

Pω0 (
∑
x

Lαx;n = m;Xn = h)
)2

=
( ∑
h∈Bm( C)

»
ν(h)× 1/

»
ν(h)

×Pω0 (
∑
x

Lαx;n = m;Xn = h)
)2

≤ ν(Bm( C))
∑

h∈Bm( C)

(1/ν(h))Pω0 (
∑
x

Lαx;n = m;Xn = h)2

(Cauchy-Schwarz inequality)

≤ 2d(2m+ 1)d
∑

h∈Bm( C)

Pω0 (
∑
x

Lαx;n = m;Xn = h)

×Pωh (
∑
x

Lαx;n = m;Xn = 0)(1/ν(0))

(by reversibility )

≤ 2d(2m+ 1)d
∑

h∈Bm( C)

Pω0 (
∑
x

Lαx;n = m;Xn = h)

×Pω0 (
∑
x

Lαx;[n;2n] = m;Xn = h;X2n = 0)

(where Lx;[n;2n] = #{i ∈ [n; 2n];Xi = x})

≤ 2d(2m+ 1)dPω0 (
∑
x

Lαx;2n ≤ 2m;X2n = 0).

because {
∑
x L

α
x;n = m and

∑
x L

α
x;[n;2n] = m} ⊂ {

∑
x L

α
x;2n ≤ 2m}, since for

α ∈ [0, 1[, we have:

Lαx;2n ≤ (Lx;n + Lx;[n;2n])
α ≤ Lαx;n + Lαx;[n;2n].

Then we write,

Eω0 (e−λ0

∑
x
Lαx;2n1{X2n=0}) =

∑
m≥1

e−λ0m Pω0 (
∑
x

Lαx;2n = m;X2n = 0)

= (1− e−λ0)
∑
m≥1

e−λ0m Pω0 (
∑
x

Lαx;2n ≤ m;X2n = 0),
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since {
∑
x L

α
x;2n = m} = {

∑
x L

α
x;2n ≤ m} − {

∑
x L

α
x;2n ≤ m − 1}. Thus, we

have,

Eω0 (e−λ0

∑
x

Lαx;2n1{X2n=0}) ≥ (1− e−λ0)
∑
m≥1

e−2λ0mPω0 (
∑
x

Lαx;2n ≤ 2m;X2n = 0)

(we add only the even m)

≥ (1− e−λ0)
∑
m≥1

1

2d(2m+ 1)d
e−2λ0m [Pω0 (

∑
x

Lαx;n = m)]2

(by lemma 2.4)

≥
∑
m≥1

e−λ1m[Pω0 (
∑
x

Lαx;n = m)]2

(for some λ1 > 2λ0 )

≥
(∑
m≥1

e−λ1m
)−1

×

(∑
m≥1

e−mλ1Pω0 (
∑
x

Lαx;n = m)
)

(By Cauchy-Schwarz inequality)

≥ c0Eω0 [e−λ1

∑
x
Lαx;n ].

We can now conclude. By the previous inequality and by (22), there exists
λ1 such that:

Eω0 [e−λ1

∑
x
Lαx;n ] � e−n

η

.

Then by step 1, we can extend this inequality to all λ1. Finaly we have proved:

Proposition 2.5. — Q-a.s. on | C | = +∞ for large enough n and for all
λ > 0 we have, for all α ∈ [0, 1[,

Eω0 (e

−λ
∑

x;Lx;n>0

Lαx;n

) � e−n
η

,

where η = d+α(2−d)
2+d(1−α) .

Remark 2.6. — 1) If α = 0, we retrieve the Laplace transform of the num-
ber of visited points by the simple random walk on an infinite cluster.

2) For α = 1, inequality is satisfied since
∑

x;Lx;n>0
Lx;n = n and η = 1 in this

case.
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Lower bound. — The proof falls into 4 steps.
1) By concavity of the function x 7→ xα for α ∈ [0, 1], we have:∑

x;Lx;n>0

Lαx;n ≤ Nn(
∑

x;Lx;n>0

Lx;n

Nn
)α

= N1−α
n nα.

So,

E0(e

−λ
∑

x;Lx;n>0

Lαx;n

) ≥ E0(e−λn
αN1−α

n )

≥ P0( sup
0≤i≤n

D(0, Xi) ≤ m)e−λV (m)1−αnα .

where V (m) = |Bm( C)| stands for the volume of the ball of C centered at the
origin with radius m.

2) By Proposition 5.2 of [8], we have:

P0( sup
0≤i≤n

D(0, Xi) ≤ m) ≥ e−c(m+ n
m2 ).(24)

3) By Lemma 5.3 of [8], there exists c > 0 such that Q-a.s. on | C | = +∞
and for large enough n,

V (m) ≥ cmd.

4) So, we deduce, there exists C > 0 such that Q-a.s. on | C | = +∞ and for
large enough n,

E0(e

−λ
∑

x;Lx;n>0

Lαx;n

) ≥ e−C(m+ n
m2 +λnαmd(1−α))

Taking m = n
1−α

2+d(1−α) , we get:

E0(e

−λ
∑

x;Lx;n>0

Lαx;n

1{Xn=0}) ≥ e−cn
η

,

with η = d+α(2−d)
d(1−α)+2 and for all α ∈ [0, 1]. Hence, we have proved:

Proposition 2.7. — For all α ∈ [0, 1], Q-a.s. on | C | = +∞ and for large
enough n,

E0(e

−λ
∑

x;Lx;n>0

Lαx;n

) � e−cn
η

,

with η = d+α(2−d)
d(1−α)+2 .

Thus, the first assertion of Theorem 1.4 comes from Proposition 2.5 and
Proposition 2.7.

2.2.4. Study of Eω0 (
∏
L−αz;n). — We assume α > 1/2.
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Upper bound. — For this functional, one can take for all x ∈ C , Bx = L1 =

(Z, E1) (if we take some Lr, we get the same bound). We have:

Fol L1(k) = 2k.

We still use a random walk Y the jumps of which can be represented by: Let

1/3

1/3
n − 1 n n + 1

1/3

Figure 1.

P L1

be the law of the random walk Y .
As before, let W,W ′,Wn and W ′n be the graphs defined respectively by (7)

(12) (14) and (15) with DF = L1 = (Z, E1). With the help of Proposition 1.4
in [8] and general properties of isoperimetry on wreath product, we deduce: for
all γ > 0, there exist c, β > 0 such that Q-a.s. on | C | = +∞ we have:

FolWWn
(k) �

{
kk if k < cnγ ,

kβk
d

if k ≥ cnγ .
(25)

With the same argument as in the upper bound of Section 2.2.3, we carry
(25) to FolW

′

W ′n
by rough isometry between graphs Wn and W ′n. We get: for all

γ > 0, there exists β > 0 such that for all c > 0, Q-a.s. on | C | = +∞ we have:

FolW
′

W ′n
(k) �

{
kk if k < cnγ ,

kβk
d

if k ≥ cnγ .
(26)

In order to get an upper bound of P̃ωo (Z2n = o), let again:

τn = inf{s ≥ 0;Zs 6∈ V (W ′n)}.

We still have P̃ωo (Z2n = o) = P̃ωo (Z2n = o and τn > n). We use the same way
to get the upper bound from (26).
Inequality (26) implies:

∀k ≥ 0 FolW
′

W ′n
(k) � JN (k) =

{
1 if k < cnγ ,
Nβd′kd if k ≥ cnγ ,

(27)

where N ≤ cnγ .
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JN is increasing and we can compute J−1
N :

J−1
N = inf{x; JN (x) ≥ y}

=

 cnγ if 1 ≤ y < N cndγ ,

c
(

ln(y)
ln(N)

)1/d

if N cndγ ≤ y.

Remark 2.8. — Let

J (k) =

{
kk if k < cnγ ,

kβk
d

if k ≥ cnγ .
(28)

Inequality (26) can be read FolW
′

W ′n
(k) � J (k). J is increasing but the form of

J does not enable us to compute an inverse and for this reason we use JN for
the lower bound of FolW

′

W ′n
(k) instead of J .

C and L1 have bounded valency so we still have inf
V (W ′)

m̃ ≥ 2 > 0 and

inf
E(W ′)

ã > 0. Thus with the same tools as in Section 2.2.3 we get, there exist

constants c1, c2 and c3 > 0 such that

P̃ωo (Z2n = o and τn > n) � u(n)

where u is solution of the differential equation:{
u′ = − u

c2( J−1
N

(c3/u))2
,

u(0) = 1/2.

Solving this equation, we obtain:

u(t) =

{
e−ct/n

2γ

if t ≤ t0 := cnγ(d+2) ln(N),

e−(c(ln(N)2/d(t−t0)+ln(1/u(t0))
d+2
d )

d
d+2 if t > t0.

Chosing γ < 1
d+2 and taking N = cnγ , we obtain in t = n: Q-a.s. on the event

| C | = +∞ and for large enough n,

P̃ωo (Z2n = o) � e−n
d
d+2 ln(n)

2
d+2

.

So with Proposition 2.1, we deduce:

Proposition 2.9. — There exists a constant C > 0 such that Q-a.s. on | C | =
+∞ and for large enough n,

Eω0 (
∏

x;Lx;2n>0

P L1

0 (YLx;2n = 0) 1{X2n=0}) ≤ e−Cn
d
d+2 ln(n)

2
d+2

.(29)
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For the walk Y, we know that there exists c0 > 0 such that P L1

0 (Yn = 0) ∼
c0
n1/2 . In particular,

∃c1 > 0,∀n ≥ 1 P L1

0 (Yn = 0) ≥ c1
nα
,(30)

with c1 ≤ 1. So, for α > 1/2 we can find A > 0 and c2 > 0 such that

∀n ≥ 1 P L1

0 (Yn = 0) ≥

{
1
nα if n ≥ A,
c2
nα if n < A,

(31)

with c2 ≤ 1. If we directly use the lower bound (31) in (29) at time Lx;2n,
there appears a supplementary factor c#{x;0<Lx;2n<A}

2 on which we do not have
control.

So we put:

Nn,2 = #{x;Lx;n ≥ 2},

which is the number of visited points at least twice by the walk X. And for
ε1, ε2 > 0, consider the following events:

A1 = {N2n ≤ ε1n
d
d+2 ln(n)

2
d+2 },

A2 = {N2n ≥ ε1n
d
d+2 ln(n)

2
d+2 and N2n,2 ≥ ε2n

d
d+2 ln(n)

2
d+2 },

A3 = {N2n ≥ ε1n
d
d+2 ln(n)

2
d+2 and N2n,2 ≤ ε2n

d
d+2 ln(n)

2
d+2 }.

We have

Eω0 (
∏

x;Lx;2n>0

L−αx;2n1{X2n=0}) = Eω0 (
∏

x;Lx;2n>0

L−αx;2n1{X2n=0}1A1
)(32)

+ Eω0 (
∏

x;Lx;2n>0

L−αx;2n1{X2n=0}1A2)

+ Eω0 (
∏

x;Lx;2n>0

L−αx;2n1{X2n=0}1A3
).

Let us examine these three 3 terms. For the term corresponding to A1, we
write:

Eω0 (
∏

x;Lx;2n>0

L−αx;2n1{X2n=0}1A1) = Eω0 (
∏

x;Lx;2n>0

c1
Lαx;2n

×
∏

x;Lx;2n>0

1

c1
× 1{X2n=0}1A1)

≤ Eω0 (
∏

x;Lx;2n>0

P L1

0 (YLx;2n = 0)× (
1

c1
)N2n

× 1{X2n=0}1A1
)

( by 30)
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≤ Eω0 (
∏

x;Lx;2n>0

P L1

0 (YLx;2n = 0)1{X2n=0})

× (
1

c1
)ε1n

d
d+2 ln(n)

2
d+2

≤ e−(C+ε1 ln(c1))n
d
d+2 ln(n)

2
d+2

.

( by proposition 2.9)

Now, choosing ε1 small enough (recall that ln(c1) ≤ 0), we deduce that there
exists a constant C1 > 0 such that Q-a.s. on | C | = +∞, we have,

Eω0 (
∏

x;Lx;2n>0

L−αx;2n1{X2n=0}1A1
) ≤ e−C1n

d
d+2 ln(n)

2
d+2

.(33)

For the second term, we notice that on the eventA2 the product
∏
x;Lx;2n>0 L

−α
x;2n

is less than (1/2)ε2n
d
d+2 ln(n)

2
d+2 . Thus there exists a constant C2 > 0 such

that,

Eω0 (
∏

x;Lx;2n>0

L−αx;2n1{X2n=0}1A2
) ≤ e−C2n

d
d+2 ln(n)

2
d+2

.(34)

For the last term, we use the following lemma:

Lemma 2.10. — There exists ε′ > 0 such that for all ε > 0, there exists a
constant C3 > 0 such that, for all n,N ≥ 0,

Pω0 (Nn ≥ εN and Nn,2 ≤ ε′N) ≤ e−C3N .(35)

Proof. — Let τ0 = 0 and for k ≥ 1 let,

τk = min{s ≥ τk−1;Xs 6∈ {X0, X1, . . . , Xs−1}}.

The τk represent times when the walk X visits a new point. Consider now, the
variables εk defined by:

εk =

{
1 if Xτk = Xτk+2,

0 otherwise.
(36)

These variables have the following interpretation, εk is equal to 1 only when
the new visited point Xτk is immediately visited anew after a back and forth.
The εk are not independent but their laws are all some Bernoulli with different
parameters. Besides, these parameters have a same lower bound δ > 0, since
the graph Cg has bounded valency.

Consider the following filtrations,

Gm = σ(Xj ; 0 ≤ j ≤ m),
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F m = σ(Xj ; 0 ≤ j ≤ τm).

εk are G2+τk
measurable and so F k+2 measurable. For all λ > 0 and for all

L > 0, we can write,

Eω0 (e−λ
∑L

k=1
εk) = Eω0 (e−λ

∑L−2

k=1
εk Eω0 (e−λ(εL−1+εL)| F L))

≤ Eω0 (e−λ
∑L−2

k=1
εk Eω0 (e−λεL | F L)).(37)

For the term Eω0 (e−λεL | F L), we have:

Eω0 (e−λεL | F L) = e−λPω0 (εL = 1| F L) + Pω0 (εL = 0| F L)

= 1 + (e−λ − 1)Pω0 (εL = 1| F L).(38)

Now, we want a lower bound of Pω0 (εL = 1| F L). We have successively:

Pω0 (εL = 1| F L) = Pω0 (εL = 1|XτL)

( Markov property)

=
∑

x;Pω0 (XτL=x)>0

1{XτL=x} Pω0 (εL = 1|XτL = x)

≥ δ2.(39)

Last inequality comes from the fact that the graph Cg has bounded valency, so
in each point x the probability to do a back and forth is greater than δ2 (with
δ ≥ 1/2d).

So, we deduce from (38) and (39) that,

Eω0 (e−λεL | F L) ≤ 1 + (e−λ − 1)δ2.

Iterating (37), we get,

Eω0 (e−λ
∑L

k=1
εk) ≤ (1 + (e−λ − 1)δ2)bL/2c,(40)

where bac stands for the whole number portion of a. Let:

aλ = − ln(1 + (e−λ − 1)δ2) > 0.

By Bienaymé inequality, we deduce,

Pω0 (
L∑
k=1

εk ≤ ε′L) ≤ eε
′λL−aλbL/2c.

Using bL/2c for L ≥ 2, L ≤ 3, we get:

Pω0 (
L∑
k=1

εk ≤ ε′L) ≤ e−bL/2c(aλ−3λε′).

Note that this last inequality is still valid for L = 1.
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Fix λ > 0, ( by example λ = 1) then we can choose ε′ small enough such
that aλ − 3ε′ > 0. We deduce the existence of constant b such that:

Pω0 (
L∑
k=1

εk ≤ ε′L) ≤ e−bL.(41)

Now, notice that

{Nn ≥ εN and Nn,2 ≤ ε′N} ⊂ {
εN∑
k=1

εk ≤ ε′N}.

Indeed, first if Nn ≥ εN that means that at least εN new points have been
visited. Secondly if there are less than ε′N points visited more than twice then
there are less than ε′N points which have been immediately visited after their
first visit. Finaly we have:

Pω0 (Nn ≥ εN and Nn,2 ≤ ε′N) ≤ e−εbN .

We can now get an upper bound of the term corresponding to A3 The
product is less than 1, so we can write:

Eω0 (
∏

x;Lx;2n>0

L−αx;2n1{X2n=0}1A3) ≤ P0(A3)

Let ε1 small enough satisfying the first point (event A1 ), Lemma 2.10 with
ε = ε1 give us the existence of ε′ such that (35). Then we take ε2 = ε′ and we
deduce there exists a constant C3 > 0 such that,

Pω0 (A3) ≤ e−C3n
d
d+2 ln(n)

2
d+2

.

So,

Eω0 (
∏

x;Lx;2n>0

L−αx;2n1{X2n=0}1A3) ≤ e−C3n
d
d+2 ln(n)

2
d+2

.(42)

Finally, we deduce from (33) (34) and (42), the following property.

Proposition 2.11. — Q-a.s. on | C | = +∞ and for large enough n, for all
α > 1/2,

Eω0 (
∏

x;Lx;2n>0

1

Lαx;2n

1{X2n=0}) � e−n
d
d+2 ln(n)

2
d+2

.

To get the upper bound of the second point of Theorem 1.4, it remains to
take out the indicator 1{X2n=0}. We use the same way as in the Section 2.2.3.
We prove:
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Lemma 2.12. — For all m ≥ 0, we have:

Pω0 (
∑
x

ln(Lx;n) = m)2 ≤ 2d(2m+ 1)dPω0 (
∑
x

ln(Lx;2n) ≤ 2m and X2n = 0).

The proof is similar to Lemma 2.4. We use in particular:

ln(Lx;2n) ≤ ln(Lx;n + Lx;[n;2n]) ≤ ln(Lx;n) + ln(Lx;[n;2n]).

Then

Eω0 (
∏
x

L−αx;2n1{X2n=0}) = Eω0 (e−α
∑

x
ln(Lx;2n)1{X2n=0})

=
∑
m≥1

e−αm Pω0 (
∑
x

ln(Lx;2n) = m;X2n = 0)

= (1− e−α)
∑
m≥1

e−αm Pω0 (
∑
x

ln(Lx;2n) ≤ m;X2n = 0).

≥ (1− e−α)
∑
m≥1

e−2αmPω0 (
∑
x

ln(Lx;2n) ≤ 2m;X2n = 0)

≥ (1− e−α)
∑
m≥1

1

2d(2m+ 1)d
e−2αm [Pω0 (

∑
x

ln(Lx;n) = m)]2

(by lemma 2.12)

≥
∑
m≥1

e−α1m[Pω0 (
∑
x

ln(Lx;n) = m)]2

(for some α1 > 2α )

≥
(∑
m≥1

e−α1m
)−1

×

(∑
m≥1

e−α1mPω0 (
∑
x

ln(Lx;n) = m)
)

(by Cauchy-Schwarz inequality)

≥ cEω0 [e−α1

∑
x

ln(Lx;n)]

= cEω0 (
∏
x

L−α1
x;n ).

So, with this last inequality and with Proposition 2.11, we obtain the ex-
pected upper bound for some value α1:

Eω0 (
∏
x

L−α1
x;n ) � e−n

d
d+2 ln(n)

2
d+2

.(43)

From this inequality at point α1, we extend this relation for all α > 1/2. Let
α > 1/2.

– If α ≥ α1, we can replace in (43) α1 by α, by monotonicity in α.
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– If α < α1, we write

Eω0 [e

−α
∑

x;Lx;n>0

ln(Lx;n)

] = Eω0 [(e

−α1

∑
x;Lx;n>0

ln(Lx;n)

)
α
α1 ]

≤ (Eω0 [e

−α1

∑
x;Lx;n>0

ln(Lx;n)

])
α
α1

( Jensen inequality to concave function x→ x
α
α1 .)

� e−n
η

.

So we have proved:

Proposition 2.13. — Q-a.s. on the set | C | = +∞ and for large enough n,
for all α > 1/2,

Eω0 (
∏

x;Lx;n>0

1

Lαx;n

) � e−n
d
d+2 ln(n)

2
d+2

.

Lower bound. — By concavity of the function ln, we get:∏
z;Lz;n>0

L−αz;n = e

−αNn
∑

z;Lz;n>0

1
Nn

ln(Lz;n)

≥ e

−αNnln(
∑

z;Lz;n>0

Lz;n
Nn

)

= e−αNnln( n
Nn

).

On the event { sup
0≤i≤n

D(0, Xi) ≤ m}, it comes that:

Nn ≤ |Bm( C)| ≤ cmd,

and
n

Nn
≥ n

cmd
.

Since function x 7→ ln(x)
x is decreasing on [e,+∞], if we choose m such that

n

cmd
≥ e,(44)

then we can write:

E0(
∏

x;Lx;n>0

L−αx;n ) ≥ e−αcm
dln( n

cmd
)P0( sup

0≤i≤n
|Xi| ≤ m).

Then by using (24), we deduce:

E0(
∏

x;Lx;n>0

L−αx;n ) ≥ e−αcm
dln( n

cmd
)e−c(m+ n

m2 ).

Taking m = ( n
ln(n) )

1
d+2 , inequality (44) is indeed satisfied for large enough n.
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Finally, for large enough n we obtain,

E0(
∏

x;Lx;n>0

L−αx;n) � e−n
d
d+2 ln(n)

2
d+2

.

So,

Proposition 2.14. — For all α > 1/2, Q-a.s. on the set | C | = +∞ and for
large enough n,

E0(
∏

x;Lx;n>0

L−αx;n ) � e−n
d
d+2 ln(n)

2
d+2

.

Remark 2.15. — In the proof of the lower bound, we have only used the as-
sumption that α ≥ 0, so this bound is valid for all α ≥ 0.

So the second assertion of Theorem 1.4 follows from Propositions 2.13 and
2.14.

Appendix A
Proof of proposition 1.2

In this section, we first explain our strategy aimed at the construction of
our expected graphs. This leads naturally towards two cases corresponding to
Subsections A.2 and A.3.

A.1. Wreath products and explanation of our method. — Let us explain the way
we construct graph DF of Proposition 1.2. Consider the wreath product of
the graph of (Z,+) by the Cayley graph of Z

2Z with 1̄ as generator. By the
Theorem 1 in [2] (or Proposition 3.2.1 in [7]) we immediately deduce that the
Følner function of this wreath product is like en. So this graph satisfies the
conclusion of Proposition 1.2 in the case 2α

1−α = 1, i.e.: α = 1/3.
In the case α 6= 1/3, it would be rather natural to think that we can get the

expected graph, by considering the wreath product of Z by fibers with variable
sizes.

If α ≥ 1/3, the return probability in the graph DF should be like e−n
α

so
less than in the graph Z o Z

2Z (in e−n
1/3

). Thus to force the walk to come back
rarely at the origin, an idea is to make the size of the fibers grow when we move
away from the origin in order to force the walk to loose time in the fiber.

Note that for α ≥ 1 condition (ii) is always satisfied (in a graph with bounded
geometry).

If α ≤ 1/3, the return probability in the graph DF should be larger than
e−n

1/3

. The idea is to add some links (some edges for example) to force the
walk to come back often to the origin. Suppose all lamps are identified then we
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get a decay in n−1/2 and if all lamps are independent we get a decay in e−n
1/3

,
so it remains to find an identification of lamps which implies an intermediate
decay. We are going to construct a wreath product where the walker (at a
certain point) is allowed to change the value of the configuration at different
points. Such graphs are sometimes called generalized wreath products.

To prove isoperimetric inequality on wreath product ( point (i) of the Propo-
sition 1.2) we use idea of Erschler and the concept of “satisfactory” points. We
begin to introduce this notion in Section A.2. At the beginning of Section A.3,
we explain why an improvement is needed in the definition of “satisfactory”
points. The improvement takes place through the introduction of a new and
more theoretical way of defining the notion of “satisfactory” points than in Sec-
tion A.2. For simplicity, we use the same words for this concept in the two
sections but notions which appear in Sections A.3 and A.2 are independent.

A.2. Case 1
3 ≤ α < 1.

A.2.1. Construction of the graph and preliminary notions and lemmas. — Let
A′ = (Z, E(Z)) where E(Z) = {(x, y); |x− y| = 1} and (B′z)z∈Z be the Cayley
graph of the groups ( Z

l(z)Z ,+) with {1̄} as generators where l(z) = |V (B′z)| =
F (|z|+1)
F (|z|) , (F is defined at Proposition 1.2).
Notice that since α ∈ [1/3, 1], the function z 7→ l(z) is increasing on R+.

Finally put
DF = A′ oB′z.

Let us prove that this graph satisfies the conclusion of Proposition 1.2.
We begin by proving (i).
The proof is similar to that of Theorem 1 in [2] or Proposition 3.2.1 in [7].
Let ψ(n) = FolA′(n) = min

U⊂Z
|∂
A′U|
|U| ≤1/n

|U | = 2n.

Take U ⊂ V (DF ) = V (A′ o B′z) such that |∂DF U ||U | ≤ 1/n for some n. We
want to find a lower bound on |U |.

For each set U , we attach an hypergraph KU =
(
V (KU ), ξ(KU )

)
such that:

– the vertices of KU are the configurations f which belong to the set
{f ;∃a ∈ Z(a, f) ∈ U},

– let us now define the edges of KU : for all f ∈ V (KU ) and a ∈ Z, we link
f to all configurations g satisfying:{

(a, g) ∈ U , and
∀x 6= af(x) = g(x),
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by a multidimensional edge l of dimension d where

d = dim
a
f := #{g; (a, g) ∈ U and ∀x 6= af(x) = g(x)}.

We say that the edge l is associated to point a.

To each hypergraph KU we associate a graph called the “one dimensional
skeleton”, noted by Γ(KU ) = ΓU = (V (ΓU ), E(ΓU )) and defined by:

– V (ΓU ) = V (KU ),

– two configurations f1 and f2 are linked by an edge if they belong to a
same multidimensional edge in KU .

Let w be the weight defined by w(e) = 1/d for e belonging to E(ΓU ) and
coming from a multidimensional edge in KU of dimension d. Notice that this
choice of weights gives:

|U | ≥ 2
∑

e∈E(ΓU )

w(e),(45)

and if we assume moreover that for all (x, f) ∈ U,dimxf ≥ 1 (U has no
separated points) then the equality holds in (45) Let p be the projection ZoB′z →
Z. Let us now introduce some notations. Denote λ = (λa)a∈p(U) ∈ Rp(U) and
b ≥ 0.

For f ∈ V (KU ), we say that f is (λ, b)-satisfactory if:

#{a ∈ p(V ); dim
a
f ≥ λa} ≥ b.

i.e.: f is (λ, b)-satisfactory if there exists at least b multidimensional edges
attached to f in KU of dimension at least λa at point a. We denote by SU (λ, b)

the set of these points. Most of the time, in order to simplify notations we will
drop the subscript U when there is no ambiguity.

Otherwise we say that f is (λ, b)-nonsatisfactory and we denote by NS(λ, b)

the set of nonsatisfactory points.

An edge of ΓU is (λ, b)-satisfactory if it links two (λ, b)-satisfactory config-
urations otherwise it is said (λ, b)-nonsatisfactory. We denote Se(λ, b) [resp.
NSe(λ, b)] the set of (λ, b)-satisfactory [resp. (λ, b)-nonsatisfactory] edges.

A point u = (x, f) ∈ U is (λ, b)-satisfactory [resp. (λ, b)-nonsatisfactory] if
f ∈ S(λ, b) [resp. NS(λ, b)]. We denote by Sp(λ, b) and NSp(λ, b) the set of
points which are (or are not ) (λ, b)-satisfactory.

A point u = (a, f) ∈ U is said b-good if dim
a
f ≥ b otherwise it is b-bad.

Let us now explain the main steps of the proof. We take U ⊂ V (DF ) such
that |∂DF U ||U | ≤ 1

10n . We begin to prove that there exists some value of b and
some sequence λ such that there are few points (λ, b)-nonsatisfactory. Then,
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we extract a subgraph of ΓU where all points are ( λ10 ,
b
10 )-satisfactory and this

allows us to obtain a lower bound of |U |. We begin by the following lemma.

Lemma A.1. — Let U ∈ V (A′ oB′z) such that |∂DF U ||U | ≤
1

10n then

(i) #{u=(x,f)∈U ;uisλx(n)-bad }
#U ≤ 1

10

(ii) #{u=(x,f)∈U ;u∈NSp(λ(n)/2,ψ(n)/2)}
#U ≤ 1

5 ,

where λ = (λx)x with λx(n) = FolB′x(n) and ψ(n) = FolA′(n).

Proof. — For (i) we notice that we can associate to certain bad points, some
point of the boundary of U . Indeed, for (x, f) a point, we call:

P̃x,f = {g(x); (x, g) ∈ U and ∀y 6= xg(y) = f(y)} and

Px,f = {(x, g); g(x) ∈ P̃x,f}.

Note that |P̃x,f | = |Px,f |.
F0 stands for a set of configurations such that:⋃̇

x∈A′,f∈F0

Px,f = {u = (x, g) ∈ U ;u is FolB′x(n)-bad}.

Notice that, for a point u = (x, f) which is FolB′x(n)-bad, by the definition of
a Følner function, we have:

|P̃x,f | < FolB′x(n).

So,

|∂Bx P̃x,f | ≥
1

n
|P̃x,f |

Now the application
⋃̇

x∈A′,f∈F0

∂Bx P̃x,f −→ ∂DFU is injective,

(g1, g2) 7→
(

(x, fx,g1), (x, fx,g2)
)

where (g1, g2) ∈ ∂Bx P̃x,f and fa,h : v → f(v) for v 6= a.

a→ h

Hence, we have:
|U |
10n
≥ |∂DFU | ≥

∑
x∈A,f∈F0

|∂BP̃x,f |

≥ 1

n

∑
x∈A,f∈F0

|P̃x,f |

=
1

n
#{u = (a, f) ∈ U ;u is FolB′a(n)-bad}.

For (ii), the proof splits into three parts.
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First, let

Neud = {u ∈ U ;u ∈ NSp(λ
2
,

FolA′(n)

2
)}

= {u = (x, f) ∈ U ; f ∈ NS(
λ

2
,

FolA′(n)

2
)},

and let:
Neud(f) = {(x, f); (x, f) ∈ U}.

Notice that p(Neud(f)) = {x; (x, f) ∈ U}.
For F a set of configurations, we call

Neud(F ) =
⋃
f∈F

Neud(f).

Note well that it is a disjointed union.
Secondly, take f ∈ NS(λ2 ,

FolA′ (n)
2 ), and look at the set p(Neud(f)). There

are only two possibilities:

– either, it gives a large part of boundary in ‘base’,
– either, it gives a few part of boundary in ‘base’. If this is the case, taking

into account that f is not satisfactory, we retrieve boundary in ‘configura-
tion’. Anyway, we get some boundary of U , but our assumptions restrict
this contribution.

So we distinguish two cases:

First case. — f ∈ F1 := {f ∈ NS(λ2 ,
FolA′ (n)

2 ); #∂A′p(Neud(f))
#p(Neud(f)) > 1

n}.

The application
⋃̇

f∈F1

∂A′p(Neud(f)) −→ ∂DFU is injective.

(x, y) 7−→
(

(x, f) ; (y, f)
)

So, we get:

(46) |∂DFU | ≥
∑
f∈F1

|∂A′p(Neud(f))| ≥ 1

n

∑
f∈F1

|p(Neud(f))| ≥ 1

n
|Neud(F1)|.

Second case. — : f ∈ F2 := {f ∈ NS(λ2 ,
FolA′ (n)

2 ); #∂A′p(Neud(f))
#p(Neud(f)) ≤

1
n}.

Since f ∈ NS(λ2 ,
FolA′ (n)

2 ) it follows that:

#{x ∈ p(Neud(f)); dim
x
f ≥ λx

2
} < 1

2
FolA′(n).

Hence,

#{x ∈ p(Neud(f)); dim
x
f <

λx
2
} ≥ |Neud(f)| − 1

2
FolA′(n)

(We use that |p(Neud(f))| = |Neud(f)|.)
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Since f ∈ F2 and by definition of a Følner function:

|Neud(f)| ≥ FolA′(n).

As a result, we have:

#

ß
x ∈ p(Neud(f)); dim

x
f <

λx
2

™
≥ 1

2
|Neud(f)|.

i.e.: |Pf | ≥
1

2
|Neud(f)|,(47)

with Pf = {x ∈ p(Neud(f)); dim
x
f < λx

2 }.

Let P̃x,f = {g(x); (x, g) ∈ U and ∀y 6= x g(y) = f(y)}. To each point of
∂B′x P̃x,f we can associate, by the same way as before, a point of ∂DFU . So, we
have:

|∂DFU | ≥
∑

x∈Pf ,f∈F2

|∂B′x P̃x,f |.

Now for x in Pf ,dim
x
f = |P̃x,f | < λx

2 = 1
2FolB′x(n) < FolB′x(n). So

|∂B′x P̃x,f | >
1

n
|P̃x,f |,

i.e.:
|∂B′x P̃x,f | ≥ 1.

Then, ∑
x∈Pf ,f∈F2

|∂BP̃x,f | ≥
∑
f∈F2

1

2
|Neud(f)| by (47) ,

≥ 1

2
|Neud(F2)|

We have thus

|∂DFU | ≥
1

n
|Neud(F2)| for n ≥ 2.

Adding (46) and this last equation and using the inequality |∂DF U ||U | < 1
10n , we

obtain:

|Neud|
|U |

<
1

5
.

Lemma A.2. — Let (ΓU , w) be the one dimensional skeleton with weights w,
constructed from KU . Let η = (ηa)a∈p(U).
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Assume that E(ΓU ) 6= ∅ and ∀(a, f) ∈ U dim
a
f ≥ ηa > 0. If the following

condition is satisfied: ∑
e∈NSe

U
(η,b)

w(e)∑
e∈E(ΓU )

w(e)
< 2/5,

then there exists a not empty subgraph Γ′ =
(
V (Γ′), E(Γ′)

)
of ΓU such that all

edges are SeU (η/5, b/5).

Proof. — In the graph
(
V (ΓU ), E(ΓU )

)
, we remove all points NSpU (η/5, b/5)

and the adjacent edges. After this step, there may appear new points which
are NSPU1

(η/5, b/5), where U1 = U −NSpU (η/5, b/5).

We remove once again these points and adjacent edges and we iterate this
process.

Let Ui be the set of points still present at step i.{
U0 = U,

fori ≥ 1 Ui+1 = Ui −NSpUi(η/5, b/5).

It is sufficient to prove that this process stops before the graph becomes empty.

Let C1 =
∑

e∈NSU (η,b)

w(e), C2 =
∑

e∈SeU (η,b);e removed
at the end of the process

w(e), and

C0 =
∑

e∈E(ΓU ));e removed
at the end of the process

w(e).

If we show that C2 ≤ 3
2C1, the proposition is proved, since:

C0 ≤ C1 + C2 ≤
5

2
C1 <

∑
e∈E(ΓU )

w(e).

Indeed, this means that there remains point(s) not removed, i.e.: ∃k0 ∈ N
such that all vertices of the graph we get at step k0, are S

p
Uk0

(η/5, b/5), so
SpU (η/5, b/5).

In order to see this, let us introduce an orientation on edges removed: if L
and Q are points of the graph, we orient the edge from L to Q if L is removed
before Q, and we choose an arbitrary orientation if they are removed together.
We denote by L

↓
the set of edges leaving the point L and L

↑
the set of edges

ending at point L, both at step 0.
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Sublemma A.3. — Let k ∈ N and let L stands for a point of the graph ΓU
(satisfying assumptions of Lemma A.2), removed after k + 1 steps. Suppose
that L is initially SpU (η, b), then∑

e∈L
↓

w(e) ≤ 3

5

∑
e∈L
↑

w(e).

Initial state State just before L was removed

L

  L

L is S(η, b). There are at least b mul-
tidimensional edges of dimension at
least ηX associated to point x.

There are at least b/5 multidimen-
sional edges of dimension at least ηX/5
associated to point x.

Figure 2.

These pictures are represented at step 0 on the left side and at step k on the
right side.

Proof. — It is useful to notice that for a multidimensional edge e, the sum of
the weights (in the skeleton) of edges coming from e and adjacent to a point,
is always equal to 1. This is implied by our choice of the weight.

The proof is divided into five parts.
A. Let N0 the number of multidimensional edges at step 0. Since L is

SpU (η, b), there are at least b multidimensional edges attached to L. So,

N0 ≥ b.(48)

Note that: ∑
e∈E(ΓU )

e contains L

w(e) = N0.

B. Let:

L1
↓

= {e ∈ L
↓
, e coming from a multidimensional edge ofKUk ,

associated to a point x, of dim ≥ ηx/5},
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and

L2
↓

= {e ∈ L
↓
, e coming from a multidimensional edge of KUk ,

associated to a point x, of dim < ηx/5}.

We have:

L
↓

= L1
↓
∪ L2
↓
,

because edges of L
↓
, are edges leaving L at step k.

C. Since L becomes NSpUk(η/5, b/5), there are less than b/5 multidimen-
sional edges associated to each point x, of dimension at least ηx/5. Call them
f1, . . . , fq, with q < b/5.∑

e∈L1
↓

w(e) =
∑

k=1,...,q

∑
e

coming from fk

w(e)

︸ ︷︷ ︸
≤1

≤ q.(49)

(Initially this last sum was equal to 1, but after removing some edges, this sum
becomes less than 1.)

D. Let g1, . . . , gh be the other multidimensional edges attached to L at step
k associated to a point x, and with dimension strictly less than ηx/5. We have
h ≤ N0 − q.

Consider an edge e coming from a multidimensional edge associated to a
point x. For all k = 1, . . . , h we have:∑

e
coming from gk

w(e) ≤ 1

ηx

ηx
5
≤ 1

5
.(50)

Indeed, firstly since all configurations (relatively to this edge e) have initially
dimension at least ηx we deduce that w(e) ≤ 1/ηx. And secondly a multidi-
mensional edge of dimension less than ηx/5 gives less than ηx/5 edges in the
skeleton.

E. Finally by (49) and (50), we get:∑
e∈L
↓

w(e) =
∑
e∈L1
↓

w(e) +
∑
e∈L2
↓

w(e)

≤ q + (N0 − q)
1

5
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=
1

5
N0 +

4

5
q

=
9

25
N0.

(q < b/5 ≤ N0/5 by (48).)

So, ∑
e∈A
↓

w(e) ≤ 9

25
N0 and

∑
e∈A
↑

w(e) ≥ N0 −
9

25
N0 =

16

25
N0.

And finally, ∑
e∈A
↓

w(e) ≤ 9

16

∑
e∈A
↑

w(e) ≤ 3

5

∑
e∈A
↑

w(e).

To finish the proof, let us consider: D1 = { vertices removed at step 1 },
and for i ≥ 2,

Di = { vertices SpU (η, b) removed at step i},
Fi = { edges between Di and Di−1},
F ′i = { edges leaving Di−1}.

Note that Fi ⊂ F ′i and that the edges of F ′i are removed.

D1

D2

} F2

F3}
D3

Figure 3.

The proof ends up in four parts:
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A. Apply SubLemma A.12 to each point of Di, in the graph staying at step
i− 2. (Each point of Di is S(η, b).) We get:

∀i ≥ 2
∑

e∈F ′
i+1

w(e) ≤ 3

5

∑
e∈Fi

w(e).

So, ∑
e∈F ′

i+1

w(e) ≤ (
3

5
)i−1

∑
e∈F2

w(e).

(We use that Fi ⊂ F ′i .) Hence,∑
e∈ ∪
i≥3

F ′
i

w(e) ≤ (
∑
i≥1

(
3

5
)i)
∑
e∈F2

w(e)

=
3

2

∑
e∈F2

w(e).

B. Now, an edge of F2 is NSeU (η, b) since if it was SeU (η, b), it would link two
points SpU (η, b) and in particular points of D1 would have been SpU (η, b), then
SpU (η/5, b/5) and so would not have been removed. In consequence:∑

e∈F2

w(e) ≤
∑

e∈NSe(η,b)

w(e) = C1.

C. Besides, all removed edges SeU (η, b) are in some F ′i with i ≥ 3, so

C2 =
∑

e removed at the end of the process
e∈Se

U
(η,b)

w(e) ≤
∑

e∈ ∪
i≥3

F ′
i

w(e).

D. Hence, C2 ≤ 3
2C1, which achieves the proof.

Now, we use the following lemma to get a lower bound on the volume of U .

Lemma A.4. — Let N : R+ −→ R+, a non decreasing function. Let
us take b ∈ N∗ and A a not empty set of configurations such that:
∀f ∈ A,∃x1, x2, . . . , xb ∈ Z such that ∀i ∈ [|1; b|]gi ∈ A where gi is one
of the following functions, defined from f by:

gi(x) =

{
f(x) if x 6= xi,

there are N(|xi|) possibilities for gi(xi) if x = xi,

then |A| ≥

N(0)
(
N(1)N(2) · · ·N( b−1

2 )
)2

if b is odd,

N(0)
(
N(1)N(2) · · ·N( b−2

2 )
)2

N( b2 ) if b is even.
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Proof. — We will proceed by induction on b.
If b = 1 it is true, since N is non decreasing on R+.
Assume b ≥ 1 and consider a point x0 in the base such that: |x0| ≥ b−1

2 if b
is odd and |x0| ≥ b

2 if b is even, and there exists f1, . . . , fN(|x0|) ∈ A satisfying
∀i ∈ [|1;N(|x0|)|] fi(x0) range among the N(|x0|) possible images.

For i ∈ [|1;N(|x0|)|], we denote by Ai the set {f ∈ A; f(x0) = fi(x0)},
which is not empty. We have A =

⋃̇
1≤i≤N(|x0|)

Ai. Besides, the Ai satisfies

the induction assumption with constant b − 1. So, if for example b is odd,
N(|x0|) ≥ N( b−1

2 ) and we have:

|A| =
∑

1≤i≤N(|x0|)

|Ai|

≥
∑

1≤i≤N(|x0|)

N(0)
(
N(1) · · ·N(

b− 3

2
)
)2

N(
b− 1

2
)

≥ N(0)
(
N(1) · · ·N(

b− 3

2
)
)2

N(
b− 1

2
)N(x0)

≥ N(0)
(
N(1) · · ·N(

b− 1

2
)
)2

.

The proof is similar when b is an even number.

A.2.2. Proof of (i) of the Proposition 1.2.

Lower bound of Følner function. — For the lower bound of FolDF , take U ⊂
V (A′ oB′z) such that |∂DF U ||U | ≤

1
10n Let K̃ =

(
V (K̃), ξ(K̃)

)
the subhypergraph

of KU constructed with points (x, f) which are FolB′x(n)/2 − good. K̃ is not
empty, since by the part (i) of the Lemma A.1 |V (K̃)| ≥ (1− 1

10 )|U |.
Then we have:∑

e∈E(Γ(K̃))∩NSe(λ(n)
2 ,

ψ(n)
2 )

w(e) ≤ 1

2
#{u ∈ U ;NSp

(λ(n)

2
,
ψ(n)

2

)
}

by remark (45 )

≤ 1

10
|U | by Lemma A.1(ii)

≤ 1

9
#{u = (x, f) ∈ U, λx(n)

2
− good}

by Lemma A.1(i)

≤ θ
∑

e∈E(Γ(K̃))

w(e).
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with θ = 2
9 < 2

5 , so Lemma A.2 can be applied to K̃, to deduce there
exists a subgraph K ′ = (V (K ′), E(K ′)) of K̃ such that all edges are
Se(λ(n)/10, ψ(n)/10).
Then by Lemma A.4 applied with N(|x|) = FolBx(n)/10 to the set of
configurations relatively to K ′, we deduce for large enough n:

|U | ≥ l(0)
(
l(1) · · · l(ψ(n)

30
)
)2

=
F (1)

F (0)

(F (2)

F (1)
· · · F (n/30 + 1)

F (n/30)

)2

.

(We use that for k ≥ 3,FolB′x(k) = |B′x| = l(|x|) = F (|x|+1)
F (|x|) .) So,

|U | ≥ cF (n/30)2 � F (k).

(Since F (x) = ecx
2α

1−α we have F ≈ F 2.) i.e.:

FolDF (k) � F (k).

Upper bound of Følner function. — For the upper bound of the Følner function
of DF , we take:

U = {(a, f); 0 ≤ a ≤ n; supp(f) ⊂ [|0;n|]}.
We have

|U | = nF (n) and |∂DFU |/|U | ≤ c/n,
so,

FolDF (n) ≤ nF (n) � F (n).

So the graph DF has the expected Følner function on the case α > 1/3.

A.2.3. Proof of (ii) of the Proposition 1.2. — We proceed in 5 steps.
A. Let d0 = (0, f0) where f0 is the null configuration.
Let Hn = (Kn, gn) the random walk on DF starting from d0 which jumps

uniformly on the set of points formed by the point where the walker is and
its neighbors. This random walk admits a reversible measure µ defined by
µ(x) = νDF (x) + 1. Note that for all x ∈ V (DF ), µ(x) ≤ 5.

B. Using reversibility, we can write,

pDF2n (d0, d0) =
∑
z

pDFn (d0, z)p
DF
n (z, d0)

≥
∑
z∈A

pDFn (d0, z)
2µ(d0)

µ(z)

≥ µ(d0)

µ(A)
[
∑
z∈A

pDFn (d0, z)]
2

≥ µ(d0)

µ(A)
[PDFd0 (Hn ∈ A)]2,

where A is some subset of V (DF ).
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Choose A = Ar = {(a, f); |a| ≤ r and supp(f) ⊂ [−r, r]}.
C. The structure of edges on DF implies:

PDFd0 (Hn ∈ Ar) ≥ PDFd0 (∀i ∈ [|0, n|]|Ki| ≤ r)
≥ PK0 (∀i ∈ [|0, n|]|Ki| ≤ r),

where PK0 is the law of (Ki) which is again a random walk with probability
transitions that can be represented for n large enough by:

1/5

1/5
n − 1 n n + 1

3/5

Figure 4.

Indeed, as soon as l(|n|) > 3, the point (n, f) has 2 neighbors in “configura-
tion”, 2 neighbors in “base” and itself as neighbor. For this walk we can prove
(as in Proposition 5.2 in [8]) that:

∃c > 0,∀n ≥ 0 PK0 (∀i ∈ [|0, n|]|Ki| ≤ r) ≥ e−c(n/r
2+r).

In fact, a better bound holds PK0 (∀i ∈ [|0, n|] |Ki| ≤ r) ≥ e−cn/r
2

(see
Lemma 7.4.3 of [9]) but it is not necessary here. Thus,

PDFd0 (Hn ∈ Ar) ≥ e−c(n/r
2+r).(51)

D. Compute now µ(Ar), we have:

µ(Ar) ≤ |Ar|max
Ar

µ

≤ (2r + 1)
F (1)

F (0)
(
∏
k=1..r

F (k + 1

F (k)
)2 × 5

≤ CrF (r + 1)2

� F (r).

(This last inequality comes from the form of F (r) in ecr
2α

1−α .)

E. Gathering the results, by inequality (51) and the fact that 2α
1−α ≥ 1, we

deduce that it exists c > 0 such that:

pDF2n (d0, d0) ≥ e−c(
n
r2

+r
2α

1−α ).
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The function r 7→ n
r2 + r

2α
1−α is minimal for r like n

1−α
2 . So, there exists c > 0

such that:
pDF2n (d0, d0) ≥ e−cn

α

.

Remark A.5. — Note that by Proposition 1.1 and with our estimate of FolDF ,

we have for all x, y in DF , p
DF
2n (x, y) � e−nα . So pDF2n (d0, d0) ≈ e−nα

A.3. Case 0 ≤ α ≤ 1
3 .

A.3.1. Construction of the graph and preliminary lemmas. — Consider the
general following context: let A and B two graphs and φ an application A→ A′.
Now we look at the graph such that:

– the points are elements of (A×BA′),
– edges are couple ((a, f); (b, g)) such that:

(i) either ∀x ∈ A′, f(x) = g(x) and a is neighbor of b in A.
(ii) either a = b and ∀x 6= φ(a) f(x) = g(x) and f(φ(a)) is neighbor of

g(φ(a)) in B.
Such graphs are called generalized wreath products.

If A′ = A and φ = id we retrieve our ordinary wreath products.
Case which interest us is when A = A′ = (Z, E(Z)) and B is the Cayley

graph of Z
2Z with 1̄ as generator.

To define φ : Z→ Z, it is sufficient to give the following sets Ai = {x;φ(x) =

i}, which should form a partition of φ(Z) (which is here Z). Let A = {Ai}, we
note Ao AB the generalized wreath product considered.

Let β = 2α
1−α < 1. If we want a Følner function like en

β

, we should construct
φ (or the partition A) with some redundancies. Suppose for example that
Følner sets are:

Un = {(a, f); a ∈ [−n;n] and supp(f) ∈ [−n;n]},(52)

we should have

#φ([| − n;n|]) = {i;Ai ∩ [−n;n] 6= ∅} ≈ nβ .

For Ω ⊂ A, it would be useful to introduce:

N A(Ω) = #{i;Ai ∩ Ω 6= ∅},

and
Sj(Ω) = #(Aj ∩ Ω).

In particular, let:

N A(k, k +m) = N A([k, k +m]) and Sj(k, k +m) = Sj([k, k +m[).

The following lemma gives us the construction of the partition which answers
our problem.
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Lemma A.6. — Let g : N→ N increasing with g(1) = 1 such that for all n in
N,

g(2n) ≤ 2g(n).

Then there exists a partition Ag = {Ai} of Z satisfying:

(i) for all m ≥ 0 and for all k in Z,

N Ag (k, k +m) ≈ g(m),

(ii) there exists K > 0 such that for all m ≥ 0, for all k in Z and for all i, j
in Sj(k, k +m) 6= 0:

Si(k, k +m)

Sj(k, k +m)
≤ K.

Proof. — A. We first define a partition on intervals [1, 2s] (s ≥ 0) by induction
on s, such that:

( Ps)

{
N Ag (1, 2s) = g(2s),
Si(1,2

s)
Sj(1,2s)

≤ 2 for Sj(1, 2s) 6= 0.

For s = 0, we put the point 1 in some Ai, since g(1) = 1 (for example A1).
Let s ≥ 1 and suppose now the partition is built on [1, 2s]. We extend

this partition to ]2s, 2s+1]. Let A1, A2, . . . , Ag(2s) the partition on [1, 2s]

given by the induction assumption. Rank by decreasing cardinal these sets:
Ai1 , Ai2 , . . . , Aig(2s) . (*)
i.e.: #(Ai1 ∩ [1, 2s]) ≥ #(Ai2 ∩ [1, 2s]) ≥ · · · ≥ #(Aig(2s) ∩ [1, 2s]).
(*) is only to get (ii).

Let j ∈]2s, 2s+1], there exists ik such that j − 2s ∈ Aik ,
– if k > g(2s+1)− g(2s), we put j in Aik ,
– otherwise, we put j in a “new” class, j ∈ Ag(2s)+k.

Thus we have:

N Ag (1, 2s+1) = N Ag (1, 2s) + #{k ∈ [1, g(2s)]; k ≤ g(2s+1)− g(2s)}
= g(2s) + g(2s+1)− g(2s)

= g(2s+2).

Besides, note that by construction either Si(1, 2s+1) = Si(1, 2
s) or either

Si(1, 2
s+1) = 2Si(1, 2

s). So the second assertion of (P) is well satisfied at
the rank s + 1, except when Si(1, 2

s+1) has doubling and Sj(1, 2
s+1) is un-

changed. But in this case, by (*) we have #(Ai∩ [1, 2s]) ≤ #(Aj ∩ [1, 2s]), that
could be written Si(1, 2s) ≤ Sj(1, 2s). So,

Si(1, 2
s+1)

Sj(1, 2s+1)
= 2

Si(1, 2
s)

Sj(1, 2s)
≤ 2.
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B. We end up the construction of the partition on Z as follow: for j ≤ 0, we
put j ∈ Ai where −j + 1 ∈ Ai. we call Ag this partition.

C. Let us check conditions (i) and (ii).
First, notice that for all integers A and for all s ≥ 0, partitions on[1, 2s] and

[A2s + 1, (A+ 1)2s+1] are equivalents. And in particular we have:

N Ag (0, 2s) = N Ag (2sA, 2s(A+ 1)),(53)

and
Si(2

sA, 2s(A+ 1))

Sj(2sA, 2s(A+ 1))
≤ 2.(54)

Consider k ∈ Z and m ≥ 0.
Let s ≥ 0 be such that 2s−2 < m ≤ 2s−1 and let A = min{D; k ≤ D2s−2}. We
have [A2s−2, (A+ 1)2s−2] ⊂ [k, k +m] and then

N Ag (k, k +m) ≥ N Ag (2s−2A, 2s−2(A+ 1))

= N Ag (0, 2s−2)

= g(2s/4)

≥ g(m/4)

� g(m).

Let B = max{D;D2s−1 ≤ k}, we have [k, k + m] ⊂ [B2s−1, (B + 2)2s−1].
So,

N Ag (k, k +m) ≤ N Ag (B2s−1, (B + 2)2s−1)

= N Ag (B2s−1, (B + 1)2s−1) +N Ag ((B + 1)2s−1, (B + 2)2s−1)

= 2g(2s−1)

≤ 2g(2m)

� g(m).

That proves (i).
Let now C = max{D;D2s−3 ≤ k}, by the definition of s, it is easy to verify

that:

[(C + 1)2s−3, (C + 2)2s−3] ⊂ [k, k +m] ⊂ [C2s−3, (C + 5)2s−3].(55)

Let i, j be the subscript which index the partition such that Si(k, k +m) 6= 0

C FB D E

A A

E

Figure 5.
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and Sj(k, k +m) 6= 0, we can write,

Si(k, k +m) ≤ Si(C2s−3, (C + 5)2s−3)

≤ 2Sj(C2s−3, (C + 5)2s−3) by (54)
= 2[Sj(C2s−3, k) + Sj(k, k +m) + Sj(k +m, (C + 5)2s−3)].(56)

Consider the terms Sj(C2s−3, k) and Sj(k +m, (C + 5)2s−3).
First we have Sj(C2s−3, k) ≤ Sj(C2s−3, (C + 1)2s−3).
Besides, there exists j1 such that

Sj(C2s−3, (C + 1)2s−3) = Sj1((C + 1)2s−3, (C + 2)2s−3).

We deduce

Sj(C2s−3, (C + 1)2s−3) = Sj1((C + 1)2s−3, (C + 2)2s−3)

≤ 2Sj((C + 1)2s−3, (C + 2)2s−3) by (54)
≤ 2Sj(k, k +m) by the first inclusion of (55)

By using the same approach, we prove, Sj(k+m, (C+5)2s−3) ≤ 2Sj(k, k+m).

Finaly with (56) we get,

Si(k, k +m) ≤ KSj(k, k +m) with K = 10.

That proves (ii).

Remark A.7. — The property (ii) of Lemma A.6, can be extended immedi-
ately for all finite set Ω. Indeed, we have for each connected component Ωs of
Ω, Si(Ωs) ≤ KSj(Ωs). Then summing on s, we get Si(Ω) ≤ KSj(Ω)

Before showing that the graph A o Ag B is a solution to our problem, let us
notice the following property of the partition Ag, that will be useful in the
next.

Lemma A.8. — Let g satisfying assumptions of property A.6 and Ag = {Ai}
the associated partition. There exist constants c1, c2 > 0 such that for all
Ω ⊂ Z, satisfying |∂A′Ω||Ω| ≤

1
k , for all Ωδ ⊂ Ω such that |Ωδ| ≥ δ|Ω|, (δ > 0) we

have:
#{i;Ai ∩ Ωδ 6= ∅} ≥ c1

δ

2K
g(c2FolA(k)),

where K is the constant which appears in the item (ii) of Lemma A.6.

Proof. — 1. Let Ω ⊂ Z such that |∂A′Ω||Ω| ≤ 1
k . There exists at least one

connected component Ωs0 of Ω such that |∂A′Ω
s0 |

|Ωs0 | ≤
1
k and so |Ωs0 | ≥

FolA(k).
2. Take for c1 and c2 the constants verifying N Ag (k, k+m) ≥ c1g(c2m), for

all k in Z and m in N.
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3. There exists i0 such that 0 < |Ai0 ∩ Ω| ≤ |Ω|
c1g(c2FolA(k)) .

Indeed, if for all j such that |Aj ∩Ω| > 0 we had |Aj ∩Ω| > |Ω|
c1g(c2FolA(k))

then we would have had,

|Ω| =
∑
j

|Aj ∩ Ω|

> N Ag (Ω)
|Ω|

c1g(c2FolA(k))

> N Ag (Ωs0)
|Ω|

c1g(c2FolA(k))

> |Ω| ( by the choice of c1 and c2),

which is absurd.
4. We deduce that for all i, |Ai ∩ Ω| ≤ K|Ω|

c1g(c2FolA(k)) .

Indeed, by Remark A.3.1, for all i we can write:

|Ai ∩ Ω| = Si(Ω) ≤ KSi0(Ω) = K|Ai0 ∩ Ω| ≤ K|Ω|
c1g(c2FolA(k))

.

5. Assume now that #{i;Ai ∩Ωδ 6= ∅} ≤ c1 δ
2K g(c2FolA(k)). Then we have

successively,

δ|Ω| ≤ |Ωδ|

=
∑

i;Ai∩Ωδ 6=∅
|Ai ∩ Ωδ|

≤ #{i;Ai ∩ Ωδ 6= ∅} ×max
i
|Ai ∩ Ωδ|

≤ #{i;Ai ∩ Ωδ 6= ∅} ×max
i
|Ai ∩ Ω|

≤ c1
δ

2K
g(c2FolA(k))× K|Ω|

c1g(c2FolA(k))
=
δ|Ω|

2
,

which is absurd.

Take now g : x→ xβ . Since β < 1, assumptions of Lemma A.6 are satisfying.
Let DF = A o Ag B, in the following lines we are going to prove that this graph
is solution of Proposition 1.2.

A.3.2. Proof of (i) of Proposition 1.2.

Upper bound of Følner function. — Using the sets Un defined by (52), we get
upper bound of Følner function..

FolDF (n) � |Un| = (2n+ 1)2N
Ag (−n,n) ≈ en

β

.
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Lower bound of Følner function. — We get the lower bound by the same ideas
as in the case α > 1/3, but we have to improve the definition of satisfactory
points. Let M a set of part of V (A) and let ε > 0 and y > 0. Given U ⊂ V (Ao Ag
B) and f a configuration of U , we say that the configuration f is (1 − ε, y) M

satisfactory if there exists M ∈ M such that M ′ ⊂ M and (1 − ε)|M | ≤ |M ′|,
where M ′ = {a ∈ V (A); dim

φ(a)
f ≥ y}.

Then the proof falls into 3 steps.

1. Let U ⊂ V (DF ) such that |∂DF U ||U | ≤
1

10k . (**)
2. For W ⊂ V (DF ), we call Wc = {f ;∃a ∈ V (A)(a, f) ∈ W}. By the same

way as in the proof of Proposition 1.2 in the case α > 1/3, we prove that
there exists ε > 0 such that for all U verifying (**), there exists W ⊂ U

such that all f of Wc is (1− ε,FolB(k)/10) M satisfactory, with

M = {D ⊂ V (A);
|∂AD|
|D|

≤ 1

k
}.

This result is analogous to Lemma A.1 and A.2 is proved in Section A.4.
3. Take now f ∈Wc, there exists M ∈ M such that,

M ′ = {a ∈ V (A); dim
φ(a)

f ≥ FolB(k)/10} ⊂M

and
|M ′| ≥ (1− ε)|M |.

Lemma A.8 applies with δ = 1−ε,M = Ω andM ′ = Ωδ. We deduce that
for all f in Wc, we can change the value of the configuration f in at least
c1

1−ε
2K g(c2FolA(k)) points in FolB(k)/10 different ways by staying in Wc.

Then we conclude by the following lemma:

Lemma A.9. — Let Y > 0 and X > 0. Let A a non empty set of configura-
tions, such that for all configurations of A, there exists at least Y points where
we can change the value of the configuration in X way without leaving A. Then:
|A| ≥ XY , i.e. (∀f ∈ A∃a1, a2, . . . , aY ∈ A such that g ∈ A) =⇒ |A| ≥ XY ,

where g is defined from f by g(x) =

{
f(x) if x 6= ai0 ,

X possibilities for g(ai0) if x = ai0 .

Proof. — We proceed by induction on Y .

If Y = 1, it is exact.

Suppose Y ≥ 1 and consider a point x0 in the base such that there exists X
distinct configurations f1, . . . , fX ∈ A such that ∀y 6= x0f1(y) = f2(y) = · · · =
fX(y). For all i = 1, . . . , X, let Ai = {f ∈ A; f(x0) = fi(x0)}, which are not
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empty. A =
⋃̇

i=1,...,X
Ai and the Ai satisfy induction hypothesis with constant

Y − 1. So, |A| =
∑

i=1,...,X
|Ai| ≥ X.XY−1 = XY .

Finally, Lemma A.9 gives,

|U | ≥ |Wc| ≥ (
FolB(k)

10
)c
′
1g(c2FolA(k)) � eg(k),

since first FolB(n) = 2 and secondly FolA(k) = 2k.

A.3.3. Proof of (ii) of Proposition 1.2. — We follow the idea of case α ≥ 1/3.
1. Let d0 = (0, f0) where f0 is the configuration which is null everywhere.

Let Xn = (Kn, gn) be the random walk on DF defined above. X starts
from d0 and jumps uniformly on the set of points formed by the point
where the walk is and its neighbor. On this generalized wreath product,
this walk is still reversible for the uniform measure since the number of
neighbor in DF is constant, equal to 4. Now write:

pDF2n (d0, d0) =
∑
z

pDFn (d0, z)p
DF
n (z, d0)

≥
∑
z∈G

pDFn (d0, z)
2

≥ 1

|G|
[
∑
z∈G

pDFn (d0, z)]
2

≥ 1

|G|
[PDFd0 (Xn ∈ G)]2,

where G is some finite set of V (DF ).

2. Take G = Gr = {(a, f); |a| ≤ r and supp(f) ⊂ φ([| − r, r|])}. By the
structure of edges on DF , we have:

PDFd0 (Xn ∈ Gr) ≥ PDFd0 (∀i ∈ [|0, n|]|Ki| ≤ r)
≥ PK0 (∀i ∈ [|0, n|]|Ki| ≤ r),

where PK0 is the law of (Ki)i which is still a random walk with transitions
probability which can be represented by:

3. Now we have to find a lower bound for PK0 (∀i ∈ [|0, n|]|Ki| ≤ r). It is
not sufficient to use PK0 (∀i ∈ [|0, n|]|Ki| ≤ r) ≥ e−c(n/r

2+r) as in the case
α > 1/3, because β = 2α

1−α < 1 (see step D of this proof). However we
can prove that:

∃c > 0,∀n ≥ 0 PK0 (∀i ∈ [|0, n|]|Ki| ≤ r) ≥ e−cn/r
2

.

One can find this result in the Lemma 7.4.3 of [9]. It is known for a simple
random walk on Zd and we can deduce it in this particular case with a
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1/4

1/4
n − 1 n n + 1

1/2

Figure 6.

coupling. Consider K ′i which takes values in Z2. K ′i follows the horizontal
jumps of Ki if Ki moves and jumps uniformly on its 2 vertical neighbors
if Ki stays at its place. On the first hand we have {sup0≤i≤n |K ′i| ≤ r} ⊂
{sup0≤i≤n |Ki| ≤ r} and on other hand K ′i is a simple random walk on
Z2. (For x = (a, b) ∈ Z2, we note |x| := max(a, b).) Then the result for
Ki in Z follows from the result for K ′i in Z2.

4. We can end up the proof. From |Gr| = (2r + 1)2N
Ag (−r,r) � er

β

, we
deduce there exists c > 0 such that:

pDF2n (d0, d0) ≥ e−c(
n
r2

+rβ).

But the function r 7→ n
r2 + rβ , is minimal for r like n

1
β+2 .

So there exists c > 0 such that:

pDF2n (0, 0) ≥ e−cn
β
β+2

= e−cn
α

.

A.4. Complement on satisfactory points. — In this section we improve the notion
of satisfactory point used in Subsection A.3 which is more abstract that the
notion introduced in Subsection A.2. The reasons of this improvement will be
explain in the next.

We still consider a wreath product A o B of two graphs A and B or a
generalized wreath product A o A B associated to some partition A. We take
U ⊂ V (A o B) and as before to each U we associate an hypergraph KU and
its one dimensional skeleton ΓU with weight w, built as the same way that in
Section A.2.

Let ε > 0 and a ≥ 0. Let M a set of parts of V (A). To light the way
of this definition and to link it with the old definition of satisfactory points
(Section A.2), one can think to take for M set of the form {D ⊂ V (A);
|∂AD|
|D| ≤

1
k}.

A configuration f of V (KU ) is said (1− ε, a) M satisfactory if:

there exists M ∈ M such that

{
M ′ ⊂M, and
(1− ε)|M | < |M ′|

(57)
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where M ′ = {m ∈ V (A); dim
m
f ≥ a}. Once again, we denote by SU (1 − ε, a) M

(or S(1− ε, a) M ) the set of satisfactory configurations.

Otherwise f is not satisfactory and we note NS(1 − ε, a) M ) the set of not
satisfactory configurations.

If Γ′ is a subgraph of ΓU , we say that f is S(1−ε, a) M with respect to Γ′ if f
satisfies the same condition as in (57) but where dimension of f is counted only
with edges in Γ′. More precisely: dim

m,Γ′
f = #{g; (f, g) ∈ E(Γ′) and (x, g) ∈ U

and ∀y 6= x, f(y) = g(y)}.

An edge of ΓU is said (1 − ε, a)M satisfactory if it joins two (1 − ε, a) M

satisfactory configurations, otherwise it is said (1− ε, a) M not satisfactory. As
before we denote by Se(1− ε; a) M [resp. NSe(1− ε, a) M] the set of satisfactory
edges [resp. not satisfactory].

A point u = (x, f) ∈ U is said (1 − ε, a) M satisfactory [resp. (1 − ε, a) M

not satisfactory ] if f ∈ S(1 − ε, a) M [resp. NS(1 − ε, a) M]. We denote by
Sp(1 − ε, a) M and NSp(1 − ε, a) for the set of points which are (or are not )
satisfactory.

We keep the same definition for good points, u = (x, f) ∈ U is said a− good
if dim

x
f ≥ a otherwise it is said a-bad.

The interest of this new definition of satisfactory points is the following.
Consider a set Uc of (λ, b)-satisfactory configurations. With the “old” definition
we know that we can change the value of f in at least b points in λx different
ways (at point x) without leaving Uc but we do not know exactly where are
these b points whereas with the “new” definition, for a set Uc of S(1 − ε, a) M

configurations, we know that we can change the value of f in at least (1 −
ε) min
M∈M

|M | points in a different ways without leaving Uc and moreover we know

that these points are contained in some M ∈ M. This would be useful for our
generalized wreath products since this property concentrate points where we
can change value of f . By the properties of the partition, it remains only to
get lower bound of #φ(M).

Let U ∈ V (A o B) such that |∂AoBU ||U | ≤ 1
10k , the two following lemmas are

similar to Lemmas A.1 and A.2.

Lemma A.10. — Let M = {D ⊂ V (A); |∂AD||D| ≤
1
k} then we have:

(i) #{u∈U ;u is FolB(k)−bad }
|U | ≤ 1

10 ,

(ii) there exists ε > 0 such that #{u∈U ;(1−ε,FolB(k)/2) M−not satisfactory }
|U | ≤ 1

5 .
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Proof. — For (i), it is the same argument that in part (i) of Lemma A.1.
For (ii) let,

Neud = {u ∈ U ;u ∈ NSp(1− ε, FolB(k)

2
) M}

= {u = (x, f) ∈ U ; f ∈ NS(1− ε, FolB(k)

2
)},

and let:
Neud(f) = {(x, f); (x, f) ∈ U}.

Note that p(Neud(f)) = {x; (x, f) ∈ U}.
For F a set of configurations, let

Neud(F ) = ∪
f∈F

Neud(f).

Note the union is disjoint.
Take now f ∈ NS(1− ε, FolB(k)

2 ) M, and consider the set p(Neud(f)).
Two cases appear. Either p(Neud(f)) gives a large part of boundary in “base”

either not and this case by assumptions on f we will prove that p(Neud(f))

gives boundary in “configurations”.

First case. — f ∈ F1 := {f ∈ NS(1− ε, FolB(k)
2 ) M; #∂Ap(Neud(f))

#p(Neud(f)) > 1
k}.

The application
⋃̇

f∈F1

∂Ap(Neud(f)) −→ ∂AoBU is injective: (x, y) 7−→(
(x, f) ; (y, f)

)
.

So, we can write:

(58) |∂AoBU | ≥
∑
f∈F1

|∂A p(Neud(f))| ≥ 1

k

∑
f∈F1

|p(Neud(f))| ≥ 1

k
|Neud(F1)|.

Second case. — f ∈ F2 := {f ∈ NS(1− ε, FolB(k)
2 ) M; #∂Ap(Neud(f))

#p(Neud(f)) ≤
1
k}.

Since f ∈ NS(1− ε, FolB(k)
2 ) M we have:

for all M ∈ M

{
∃m′ ∈M ′ −M, or
|M ′| ≤ (1− ε)|M |,

(59)

where M ′ stands for {m ∈ V (A); dim
m
f ≥ FolB(k)

2 }.
Choose M = p(Neud(f)) since f ∈ F2 we have M ∈ M and M ′ ⊂M . So it

is the second item of assertion (59) which is satisfied, i.e.: |M ′| ≤ (1 − ε)|M |.
So,

#{x ∈ p(Neud(f)); dim
x
f ≥ FolB(k)

2
} < (1− ε)|M | = (1− ε)|Neud(f)|.

(We have used that |p(Neud(f)| = |Neud(f)|.)
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So

#{x ∈ p(Neud(f)); dim
x
f <

FolB(k)

2
} ≥ ε|Neud(f)|

i.e.: |Pf | ≥ ε|Neud(f)|,(60)

with Pf = {x ∈ p(Neud(f); dim
x
f < FolB(k)

2 }.
To each point of Pf ( for f in F2), we can associate in an injective way a

point of the boundary (in configuration ) of U . Indeed, as before: for x ∈ Pf
and f ∈ Neud(F2), we have:

|P̃x,f | ≤
FolB(k)

2
< FolB(k).

where P̃x,f = {g(x); (x, g) ∈ U and ∀y 6= xg(y) = f(y)}.
Thus,

|∂BP̃x,f | >
1

k
|P̃x,f | ≥ 0,

and then
|∂BP̃x,f | ≥ 1.

Finally,

|∂AoBU | ≥
∑

x∈Pf ,f∈F2

|∂BP̃x,f |∑
x∈Pf ,f∈F2

|P̃x,f | ≥
∑
f∈F2

ε|Neud(f)| by (60),

≥ ε|Neud(F2)|

≥ 1

k
|Neud(F2)| by choising ε < 1/k.

By adding (58) and this last inequality and using the fact that |∂AoBU ||U | < 1
10k ,

we get:
|Neud|
|U |

<
1

5
.

Lemma A.11. — Let ε > 0 and x > 0. Consider ΓU the one dimensional
skeleton with weight w, constructed from KU . Assume that E(ΓU ) 6= ∅ and
∀f ∈ KU dim

x
f ≥ a and M does not contain the empty set. If we have:∑

e∈NSe
U

(1−ε,a) M

w(e)∑
e∈E(ΓU )

w(e)
< 2/5,

then, there exists a not empty subgraph Γ′ of ΓU such that all edges are SU (1−
4+ε

5 , a5 ) M satisfactory with respect to Γ′.
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Proof. — In the graph ΓU , we remove all points NSpU (1− 4+ε
5 , a5 ) M and adja-

cents edges. After this first step, there may appear some new points NSPU1
(1−

4+ε
5 , a5 ) M, where U1 = U − NSpU (1 − 4+ε

5 , a5 ) M. We remove again all adjacent
edges and points and we iterate this process.

Let Ui the set of vertices staying at step i.{
U0 = U,

for i ≥ 1 Ui+1 = Ui −NSpUi(1−
4+ε

5 , a5 ) M.

it is sufficient to prove that this process ends up before the graph becomes
empty.

Let C1 =
∑

e∈NSU (1−ε,a) M

w(e), C2 =
∑

e∈SeU (1−ε,a) M ;e removed
at the end of the process

w(e), and

C0 =
∑

e∈E(ΓU ));e removed
at the end of the process

w(e).

If we show that C2 ≤ 3
2C1, the result is proved since:

C0 ≤ C1 + C2 ≤
5

2
C1 <

∑
e∈E(ΓU )

w(e).

That would mean that it stays at least one point not removed, i.e.: ∃k0 ∈ N
such that all points of the graph get at step k, are SpUk0 (1 − 4+ε

5 , a5 ) M, so
SpU (1− 4+ε

5 , a5 ) M.

To see this, let us introduce an orientation on removed edges: if L and Q

are points of the graph, we orient the edge from L to Q if L s removed before
Q otherwise we choose an arbitrary orientation. We note L

↓
the set of edges

leaving the point L and L
↑
for the set of edge ending in L at step 0.

Sublemma A.12. — Let k ∈ N and let L be a point of the graph ΓU (satisfying
assumptions of Lemma A.11) removed after k + 1 steps. Assume that L is
initially SpU (1− ε, a) M, then∑

e∈L
↓

w(e) ≤ 3

5

∑
e∈L
↑

w(e).

Proof. — It would be useful to notice that for a multidimensional edge e, the
sum of the weight (in the skeleton) of edges coming from e and adjacent to a
point, is equal to 1. This is implied by our choice of the weight.
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1. Let now N0 be the number of multidimensional edges at step 0. Since
L is initially SpU (1 − ε, a) M, there exists M0 ∈ M such that (1 − ε)|M0|
multidimensional edges are attached to L. So,

N0 ≥ (1− ε)|M0|.(61)

Besides notice that: ∑
e∈E(ΓU )

e contains L

w(e) = N0.

Let L1
↓

= {e ∈ L
↓
, e coming from a multidimensional edge of KUk , of

dim ≥ a/5}, and L2
↓

= {e ∈ L
↓
, e coming from a multidimensional edge

KUk , of dim < a/5}.
We have L

↓
= L1
↓
∪ L2
↓
, because edges of L

↓
correspond to edges leaving

L at step k.

2. Since L becomes NSpUk(1− 4+ε
5 , a5 ) M, we have:

for all M in M

{
M ′′ 6⊂M, or
|M ′′| ≤ (1− 4+ε

5 )|M |

where M ′′ = {m ∈ V (A); dim
m,Uk

L ≥ a
5}.

Take M = M0, observe that M ′′ ⊂ M0 so that implies |M ′′| ≤
(1 − 4+ε

5 )|M0|. Finally L has less than (1 − 4+ε
5 )|M0| multidimen-

sional edges of dimension at least a/5. call them f1, . . . , fq, with
q < (1− 4+ε

5 )|M0|.∑
e∈L1
↓

w(e) =
∑
k=1..q

∑
e

coming from fk

w(e)

︸ ︷︷ ︸
≤1

≤ q.(62)

(Initially this last sum was equal to 1, but after removing some edges,
this sum is less than 1.)

Besides, call g1, . . . , gh the other multidimensional edges of dimension
strictly less than a/5, attached to L at step k, with h ≤ N0 − q. For all
k = 1, . . . , h, ∑

e
coming from gk

w(e) ≤ 1

a

a

5
≤ 1

5
.(63)
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(Indeed, first, all point have initially dimension at least a so we deduce
∀e ∈ E(ΓUi) w(e) ≤ 1/a and secondly, an edge of dimension less than
a/5 gives less than a/5 edges attached to one point, in the skeleton. )

3. Finally with (62) and (63), we get:∑
e∈L
↓

w(e) =
∑
e∈L1
↓

w(e) +
∑
e∈L2
↓

w(e)

≤ q + (N0 − q)
1

5

=
1

5
N0 +

4

5
q

=
9

25
N0.

(q < (1− 4+ε
5 )|M0| ≤ N0

1− 4+ε
5

1−ε ≤
N0

5 by (61).)
So, ∑

e∈L
↓

w(e) ≤ 9

25
N0 and

∑
e∈L
↑

w(e) ≥ N0 −
9

25
N0 =

16

25
N0.

And then, ∑
e∈L
↓

w(e) ≤ 9

16

∑
e∈L
↑

w(e) ≤ 3

5

∑
e∈L
↑

w(e).

The proof ends up by the same way as Proposition A.2, let:

D1 = {vertices removed at step 1},

and for i ≥ 2

Di = {vertices SpU (1− ε, a) removed at step i},
Fi = {edges between Di and Di−1},
F ′i = {edges leaving Di−1}.

Notice that Fi ⊂ F ′i and that edges of F ′i are removed.
By SubLemma A.12 applied in each point of Di in the graph get at step

i − 2 (see fig. 3). (Each point of Di is at this moment, at least S(1 − ε, a) M.)
We get:

∀i ≥ 2
∑

e∈F ′
i+1

w(e) ≤ 3

5

∑
e∈Fi

w(e).

so, ∑
e∈F ′

i+1

w(e) ≤ (
3

5
)i−1

∑
e∈F2

w(e).
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(We have used that Fi ⊂ F ′i .) Thus,∑
e∈ ∪
i≥3

F ′
i

w(e) ≤ (
∑
i≥1

(
3

5
)i)
∑
e∈F2

w(e)

=
3

2

∑
e∈F2

w(e).

Now, an edge of F2 is NSeU (1 − ε, a) because if this edge were SeU (1 − ε, a),
this edge would have linked two points SpU (1− ε, a) and in particular, points of
D1 would have been SpU (1 − ε, a), so SpU (1 − 4+ε

5 , a/5) and so would not have
removed. Thus: ∑

e∈F2

w(e) ≤
∑

e∈NSe(a,b)

w(e) = C1.

Besides, all removed edge SeU (1− ε, a) is in some F ′i with i ≥ 3, so

C2 =
∑

e removed at the of the process
e∈SeU (1−ε,a)

w(e) ≤
∑

e∈
⋃
i≥3

F ′
i

w(e).

That ends the proof.

Now we are able to explain the fact that we used in Section A.3.2 in or-
der to prove the lower bound of FolDF . We recall that U ⊂ V (DF ) is such
that |∂AoBU ||U | ≤ 1

10k . Let K̃ be the sub hypergraph of KU which contains only
FolB(k)/2−good points. As in the proof of (i) in the case α > 1/3 of Proposi-
tion 1.2, we prove by using Lemma A.10 that there exists θ < 2/5 such that,∑

e∈NSeU (1−ε,FolB(k)/2) M
e∈E(ΓK̃)

w(e)

∑
e∈E(ΓK̃)

w(e)
< θ,

for some ε > 0 and M = {D ⊂ V (A); |∂AD||D| ≤
1
k}.

Lemma A.11 gives us a sub graph where all edges are Se(1−δ,FolB(k)/10) M

for δ = 1 − 4+ε
5 . By definition of satisfactory points, this proves the fact that

we have used.
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