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Abstract. — The Nagaev-Guivarc’h method, via the perturbation operator theorem
of Keller and Liverani, has been exploited in recent papers to establish limit theorems
for unbounded functionals of strongly ergodic Markov chains. The main difficulty of
this approach is to prove Taylor expansions for the dominating eigenvalue of the Fourier
kernels. The paper outlines this method and extends it by stating a multidimensional
local limit theorem, a one-dimensional Berry-Esseen theorem, a first-order Edgeworth
expansion, and a multidimensional Berry-Esseen type theorem in the sense of the
Prohorov metric. When applied to the exponentially L2-convergent Markov chains, to
the v-geometrically ergodic Markov chains and to the iterative Lipschitz models, the
three first above cited limit theorems hold under moment conditions similar, or close
(up to ε > 0), to those of the i.i.d. case.

Résumé (La méthode de Nagaev-Guivarc’h via le théorème de Keller-Liverani)
La méthode de Nagaev-Guivarc’h, via le théorème de perturbation de Keller et

Liverani, a été appliquée récemment en vu d’établir des théorèmes limites pour des
fonctionnelles non bornées de chaînes de Markov fortement ergodiques. La difficulté
principale dans cette approche est de démontrer des développements de Taylor pour
la valeur propre perturbée de l’opérateur de Fourier. Dans ce travail, nous donnons
une présentation générale de cette méthode, et nous l’étendons en démontrant un
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416 L. HERVÉ & F. PÈNE

théorème limite local multidimensionnel, un théorème de Berry-Esseen unidimension-
nel, un développement d’Edgeworth d’ordre 1, et enfin un théorème de Berry-Esseen
multidimensionnel au sens de la distance de Prohorov. Nos applications concernent
les chaînes de Markov L2-fortement ergodiques, v-géométriquement ergodiques, et les
modèles itératifs. Pour ces exemples, les trois premiers théorèmes limites cités pré-
cédemment sont satisfaits sous des conditions de moment dont l’ordre est le même
(parfois à ε > 0 près) que dans le cas indépendant.

1. Introduction, setting and notations

Let (Xn)n be a Markov chain with values in (E, E), with transition prob-
ability Q and with stationary distribution π. Let ξ be a π-centered random
variable with values in Rd (with d ≥ 1). We are interested in probabilistic limit
theorems for (ξ(Xn))n namely:

– central limit theorem (c.l.t.),
– rate of convergence in the central limit theorem: Berry Esseen type the-

orem,
– multidimensional local limit theorem,
– first-order Edgeworth expansion (when d = 1).

We want to establish these results under moment conditions on ξ as close as
possible to those of the i.i.d. case (as usual i.i.d. is the short-hand for “in-
dependent and identically distributed”). Let us recall some facts about the
case when (Yn)n is a sequence of i.i.d. Rd-valued random variables (r.v.) with
null expectation. If Y1 ∈ L2, we have the central limit theorem and, under
some additional nonlattice type assumption, we have the local limit theorem.
If Y1 ∈ L3 and d = 1, we have the uniform Berry-Esseen theorem, and the
first-order Edgeworth expansion (under the nonlattice assumption). All these
results can be proved thanks to Fourier techniques. If Y1 ∈ L3, (Yn)n satisfies
a multidimensional Berry-Esseen type theorem (in the sense of the Prohorov
metric). The proof of this last result uses Fourier techniques and a truncation
argument.

To get analogous results for Markov chains, we shall use and adapt the
Nagaev-Guivarc’h method, introduced in [63, 64] and [36, 37] in the case d = 1.
This method is based on Fourier techniques and on the usual perturbation
operator theory applied to the Fourier kernels Q(t)(x, dy) = eitξ(y)Q(x, dy)

(t ∈ R). The idea is that E
�
eit

�n

k=1
ξ(Xk)� is close enough to an expression of

the form λ(t)n, and the calculations are then similar to those of the i.i.d. case.
Indeed, let us recall that, if (Yn)n is a sequence of i.i.d. random variables, then
we have E

�
eit

�n

k=1
Yk

�
=

�
E[eitY1 ]

�n.
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The Nagaev-Guivarc’h method, also called the spectral method, has been
widely strengthened and extended, especially since the 80’s with the contri-
bution of Le Page [56], Rousseau-Egele [70], Milhaud and Raugi [62]. This is
fully described by Hennion and the first author in [43], where other references
are given. Roughly speaking, to operate the spectral method, one needs the
following strong ergodicity assumption (specified below) w.r.t. some Banach
space B, namely: Qn→π in the operator norm topology of B. Under this
assumption, the sequence (ξ(Xn))n then satisfies the usual distributional limit
theorems provided that (Q, ξ) verifies some operator-moment conditions on B.
This method is especially efficient when B is a Banach algebra and ξ is in B.
Unfortunately, on the one hand, since Banach algebras are often composed of
bounded functions, the condition ξ ∈ B implies that ξ must be bounded. On
the other hand, usual models as v-geometrically ergodic Markov chains or it-
erative Lipschitz models (typically E = Rp) are strongly ergodic w.r.t. some
weighted supremum normed space or weighted Lipschitz-type space which are
not Banach algebras, and the above mentioned operator-moment conditions
then hold under very restrictive assumptions involving both Q and ξ. For in-
stance, in these models, the usual spetral method cannot be efficiently applied
to the sequence (Xn)n (i.e. ξ(x) = x); an explicit and typical counter-example
will be presented in Section 3.

In recent works [14, 32, 34, 39, 44, 46, 47], a new procedure, based on the
perturbation theorem of Keller-Liverani [54] (see also [5] p. 177), allows to
get round the previous difficulty and to greatly improve the Nagaev-Guivarc’h
method when applied to unbounded functionals ξ. Our work outlines this new
approach, and presents the applications, namely: a multidimensional local limit
theorem, a one-dimensional Berry Esseen theorem, a first-order Edgeworth
expansion. We establish these results under hypotheses close to the i.i.d. case.
We also establish a multidimensional Berry-Esseen type theorem in the sense
of the Prohorov metric under hypotheses analogous to Y1 ∈ Lm with m =

max (3, �d/2�+ 1) instead of Y1 ∈ L3. The reason is that, when adapting [53],
we can use Yurinskii’s smoothing inequality (valid for r.v. in Lm) but we cannot
adapt Yurinskii’s truncation argument.

When the usual perturbation theorem is replaced with that of Keller-
Liverani, the main difficulty consists in proving Taylor expansions for the
dominating eigenvalue λ(t) of the Fourier kernel Q(t). This point is crucial
here. Such expansions may be obtained as follows:

(A) To get Taylor expansion at t = 0, one can combine the spectral method
with more probabilistic arguments such as martingale techniques [47]. In
this paper, this method is just outlined: the local limit theorem obtained
in [46] is extended to the multidimensional case, and the one-dimensional
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418 L. HERVÉ & F. PÈNE

uniform Berry-Esseen theorem of [47] is here just recalled for complete-
ness.

(B) To establish the others limit theorems, we shall use a stronger property:
the regularity of the eigen-elements of Q(·) on a neighbourhood of t = 0.
We shall see that this can be done by considering the action of Q(t) on a
“chain” of suitable Banach spaces instead of a single one as in the classical
approach. This method, already used for other purposes in [33, 40, 58],
has been introduced in the spectral method [44] to investigate the c.l.t. for
iterative Lipschitz models. It is here specified and extended to general
strongly ergodic Markov chains, and it will provide the one-dimensional
Edgeworth expansion and the multidimensional Berry-Esseen type theo-
rem.

Next, we introduce our probabilistic setting, and the functional notations
and definitions, helpful in defining the operator-type procedures of the next
sections.

Probabilistic setting. — (Xn)n≥0 is a Markov chain with general state space
(E, E), transition probability Q, stationary distribution π, initial distribution
µ, and ξ = (ξ1, . . . , ξd) is a Rd-valued π-integrable function on E such that
π(ξ) = 0 (i.e. the ξi’s are π-integrable and π(ξi) = 0). The associated random
walk in Rd is denoted by

Sn =

n�

k=1

ξ(Xk).

We denote by |·|2 and �·, ·� the euclidean norm and the canonical scalar product
on Rd. For any t ∈ Rd and x ∈ E, we define the Fourier kernels of (Q, ξ) as

Q(t)(x, dy) = ei�t, ξ(y)�Q(x, dy).

N (0,Γ) denotes the centered normal distribution associated to a covariance
matrix Γ, and “ D

> ” means “convergence in distribution”. Although (Xn)n≥0

is not a priori the canonical version, we shall slightly abuse notation and write
Pµ, Eµ to refer to the initial distribution. For any µ-integrable function f ,
we shall often write µ(f) for

�
fdµ. For x ∈ E, δx will stand for the Dirac

mass: δx(f) = f(x). Finally, a set A ∈ E is said to be π-full if π(A) = 1, and
Q-absorbing if Q(a, A) = 1 for all a ∈ A.

Functional setting. — Let B, X be complex Banach spaces. We denote by
L(B, X) the space of the bounded linear operators from B to X, and by
� · �B,X the associated operator norm, with the usual simplified notations
L(B) = L(B, B), B� = L(B, C), for which the associated norms are sim-
ply denoted by � · �B. If T ∈ L(B), r(T ) denotes its spectral radius, and
ress(T ) its essential spectral radius. For the next use of the notion of essential
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spectral radius, we refer for instance to [41, 67, 72] and [43, Chap. XIV]. The
notation “ B �→ X” means that B ⊂ X and that the identity map is continuous
from B into X.

We denote by L1
(π) the vector space of the complex-valued π-integrable

functions on E, and by Cl(f) the class of f modulo π. We call B
∞

the space of
all bounded measurable functions on E equipped with the supremum norm, and
Lp

(π), 1 ≤ p ≤ +∞, the usual Lebesgue space. If B ⊂ L1
(π) and X ⊂ L1

(π),
we shall also use the notation “ B �→ X” to express that we have Cl(f) ∈ X for
all f ∈ B and that the map f �→ Cl(f) is continuous from B to X.

If f ∈ L1
(π), it can be easily seen that the following function

( Q) (Qf)(x) =

�

E
f(y)Q(x, dy)

is defined π-a.s. and is π-integrable with: π(|Qf |) ≤ π(|f |). If B ⊂ L1
(π),

Q(B) ⊂ B and Q ∈ L(B), we say that Q continuously acts on B. If B ⊂ L1
(π),

we shall use the same definition with Q given by Q
�
Cl(f)

�
= Cl(Qf) (which

is possible since Cl(f) = Cl(g) implies Cl(Qf) = Cl(Qg)). Clearly, Q is a
contraction on B

∞
and Lp

(π).

Strong ergodicity assumption. — Unless otherwise indicated, all the normed
spaces (B, � · �B) considered in this paper satisfy the following assumptions:
(B, � · �B) is a Banach space such that, either B ⊂ L1

(π) and 1E ∈ B, or
B ⊂ L1

(π) and Cl(1E) ∈ B, and we have in both cases B �→ L1
(π). We then

have π ∈ B�, so we can define the rank-one projection Π on B:

Πf = π(f)1E (f ∈ B),

and we shall say that Q (or merely (Xn)n) is strongly ergodic w.r.t. B if the
following holds:
(K1) Q ∈ L(B) and limn �Qn −Π�B = 0.
One could also say “geometrically ergodic w.r.t. B.” Indeed, one can easily see
that the last property in (K1) is equivalent to:

(K�1) ∃κ0 < 1, ∃C > 0, ∀n ≥ 1, �Qn −Π�B ≤ C κn
0 .

We shall repeatedly use the following obvious fact. If Q is strongly ergodic
w.r.t. B, and if f ∈ B is such that π(f) = 0, then the series

�
k≥0 Qkf is

absolutely convergent in B.
Now, let us return to more probabilistic facts. When (Xn)n is Harris re-

current and strongly mixing, the so-called regenerative (or splitting) method
provides limit theorems, including the uniform Berry-Esseen theorem [11] and
Edgeworth expansions [60]. We want to point out that here the Harris recur-
rence is not assumed a priori. Moreover, the Markov chains in Examples 1-2
below are strongly mixing, but for these two examples, our results will be as
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efficient as all the others hitherto known ones, even better in many cases. The
random iterative models of Example 3 are not automatically, either strongly
mixing, or even Harris recurrent (see [3]).

Example 1: The strongly ergodic Markov chains on L2
(π). — (see e.g. [68]). We

assume here that the σ-algebra E is countably generated.
Let us recall that the strong ergodicity property on L2

(π) (namely, (K1) on
B = L2

(π)) implies that (K1) holds on Lp
(π) for any p ∈ (1,+∞), see [68]. This

assumption, introduced in [68] and called the exponential L2
(π)-convergence

in the literature, corresponds to ergodic and aperiodic Markov chains with
spectral gap on L2

(π), see for instance the recent works [28, 72] (and the
references therein).

The previous assumption is for instance satisfied if we have (K1) on B
∞

(see
[68]): in this case, according to the terminology of [61], we will say that (Xn)n

is uniformly ergodic. Equivalently, (Xn)n is aperiodic, ergodic, and satisfies the
so-called Doeblin condition, see [68]. This simple example was used in Nagaev’s
works [63, 64] (see Section 3).

The strong ergodicity on L2
(π) provides a first motivation and a good

understanding of the present improvements. Indeed, (except for the mul-
tidimensional Berry-Esseen theorem) for results requiring Y1 ∈ Lm in the
i.i.d. case, whereas the usual Nagaev-Guivarc’h method needs the assumption
supx∈E

�
|ξ(y)|mQ(x, dy) < +∞ [17, 27, 64], the present method appeals to

the moment conditions ξ ∈ Lm
(π) or ξ ∈ Lm+ε

(π).
In more concrete terms, let (Xn)n be a strongly ergodic Markov chain on

L2
(π), and for convenience let us assume that (Xn)n is stationary (i.e. µ = π).

From Gordin’s theorem (Section 2), if π(|ξ|22) < +∞, then (Sn/
√

n)n converges
in distribution to a normal law N (0,Γ) (see also [15, 52]). It is understood
below that the covariance matrix Γ is invertible. The nonlattice condition will
mean that the following property is fulfilled: there is no a ∈ Rd, no closed
subgroup H in Rd, H �= Rd, no π-full Q-absorbing set A ∈ E, and finally no
bounded measurable function θ : E→Rd such that: ∀x ∈ A, ξ(y) + θ(y) −
θ(x) ∈ a + H Q(x, dy)-a.s.

The next statements, that will be specified and established as corollaries of
the abstract results of Sections 5-9, are new to our knowledge. Some further
details and comparisons with prior results will be presented together with the
corollaries cited below:

(a) If π(|ξ|22) < +∞ and ξ is nonlattice, then (ξ(Xn))n satisfies a multidi-
mensional local limit theorem (Corollary 5.5).

(b) (d = 1) If π(|ξ|3) < +∞, then (ξ(Xn))n satisfies a one-dimensional
uniform Berry-Esseen theorem (Corollary 6.3).
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(c) (d = 1) If π(|ξ|α) < +∞ with some α > 3 and ξ is nonlattice, then
(ξ(Xn))n satisfies a one-dimensional first-order Edgeworth expansion
(Corollary 8.2).

(d) If π(|ξ|α2 ) < +∞ for some α > max (3, �d/2�+ 1), then (ξ(Xn))n satisfies
a multidimensional Berry-Esseen theorem in the sense of the Prohorov
metric (Corollary 9.2).

Application to the Knudsen gas model.— Corollary 9.2 just above summarized
enables us to specify the slightly incorrect Theorem 2.2.4 of [66] concerning
the Knudsen gas model studied by Boatto and Golse in [10]. Let us briefly
recall the link with the uniform ergodicity hypothesis, see [66] for details. Let
(E, E, π) be a probability space, let T be a π-preserving transformation. The
Knudsen gas model can be investigated with the help of the Markov chain
(Xn)n on (E, E, π), whose transition operator Q is defined as follows, for some
δ ∈ (0, 1):

Qf = δ π(f) + (1− δ) f ◦ T.

Then (Xn)n is clearly uniformly ergodic. Theorem 2.2.4 of [66] gave a rate
of convergence in n−1/2 (in the sense of the Prohorov metric) in the multidi-
mensional c.l.t. for (ξ(Xn))n under the hypothesis ξ ∈ L3

(π) ∩ L�d/2�+1
(π).

However, the proof of this statement is not correct as it is written in [66] (1).
By Corollary 9.2 of the present paper, the above mentioned rate of convergence
is valid if we have ξ ∈ L3+ε

(π) ∩ L�d/2�+1+ε
(π) for some ε > 0.

Of course Example 1 is quite restrictive, and another motivation of this work
is to present applications to the two next Markov models of more practical
interest.

Example 2: the v-geometrically ergodic Markov chains. — (see e.g [55, 61]).
This example constitutes a natural extension of the previous one. Let
v : E→[1,+∞) be an unbounded function. Then (Xn)n is said to be
v-geometrically ergodic if its transition operator Q satisfies (K1) on the
weighted supremum normed space (Bv, � · �v) composed of the measurable
complex-valued functions f on E such that �f�v = supx∈E |f(x)|/v(x) < +∞.

Applications of our abstract results to this example are given in Section
10. For all our limit theorems (except for the multidimensional Berry Esseen
theorem), when Y1 ∈ Lm is needed in the i.i.d. case, the usual spectral method
requires for these models supx∈E v(x)

−1
�

|ξ(y)|mv(y)Q(x, dy) < +∞ (see e.g
[26]) which, in practice, often amounts to assuming that ξ is bounded [55].

(1) Proposition 2.4.2 of [66] stated that, if ξ ∈ L3(π) ∩ L�d/2�+1(π), then Q(·) defines
a regular family of operators when acting on the single space B

∞
: this result is not

true. As already mentioned, it holds under some more restrictive condition of the type
supx∈E

�
|ξ(y)|mQ(x, dy) < +∞.
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422 L. HERVÉ & F. PÈNE

Our method only requires that |ξ|m ≤ C v or |ξ|m+ε ≤ C v, which extends the
well-known condition |ξ|2 ≤ C v used for proving the c.l.t. [61].

Example 3: the iterated random Lipschitz models. — (see e.g [20, 22]). Except
when Harris recurrence and strong mixing hypotheses are assumed, not many
works have been devoted to the refinements of the c.l.t. for the iterative mod-
els. As in [43, 44, 62], the important fact here is that these models are Markov
chains satisfying (K1) on the weighted Lipschitz-type spaces, first introduced
in [57], and slightly modified here according to a definition due to Guibourg.
Applications of our results to this example are detailed in Section 11: by con-
sidering the general weighted-Lipschitz functionals ξ of [22], the limit theorems
are stated under some usual moment and mean contraction conditions, which
extend those of [22] [7] used to prove the c.l.t.. When applied to some clas-
sical random iterative models, these assumptions again reduce to the moment
conditions of the i.i.d case (possibly up to ε > 0).

For instance, consider in Rd the affine iterative model Xn = AXn−1 + θn

where A is a strictly contractive d× d-matrix and X0, θ1, θ2, . . . are Rd-valued
independent r.v.. Then, in the case ξ(x) = x, our limit theorems (except
the multidimensional Berry-Esseen theorem) hold if θ1 ∈ Lm, where m is the
corresponding optimal order of the i.i.d. case (up to ε > 0 as above for the
Edgeworth expansion), whereas the usual spectral method requires exponential
moment conditions for these statements [62].

Extensions. — The operator-type derivation procedure (B) may be also used
to investigate renewal theorems [34] [35], and to study the rate of convergence of
statistical estimators for strongly ergodic Markov chains (thanks to the control
of the constants in (B)), see [48].

Anyway, our method may be employed in other contexts where Fourier op-
erators occur. First, by an easy adaptation of the hypotheses, the present limit
theorems may be extended to the general setting of Markov random walks (ex-
tending the present results to sequence (Xn, Sn)n). Second, these theorems
may be stated for the Birkhoff sums stemming from dynamical systems, by
adapting the hypotheses to the so-called Perron-Frobenius operator (to pass
from Markov chains to dynamical systems, see e.g [43] Chap. XI).

The Nagaev-Guivarc’h method can be also used to prove the convergence
to stable laws. For this study, the standard perturbation theorem sometimes
operates, see [1, 2, 4, 31, 38, 45]. But, since the r.v. which are in the domain
of attraction of a stable law are unbounded, the Keller-Liverani theorem is of
great interest for these questions. This new approach has been introduced in
[6] in the context of the stadium billiard, and it has been recently developed in
[39] for affine random walks and in [32] for Gibbs-Markov maps.
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An important question to get further applications will be to find some others
“good” families of spaces to apply the operator-type derivation procedure (B).
To that effect, an efficient direction is to use interpolation spaces as in [32].

Plan of the present paper. — Section 2 presents a well-known central limit theo-
rem based on Gordin’s method, with further statements concerning the associ-
ated covariance matrix. In Section 3, we summarize the usual spectral method,
and we give an explicit example (belonging to example 2) to which this method
cannot be applied. Section 4 presents the Keller-Liverani perturbation theo-
rem and some first applications concerning the link between the characteristic
function of Sn and the eigen-elements of the Fourier kernels Q(t). These pre-
liminary results are then directly applied to prove a multidimensional local
limit theorem in Section 5, and to recall in Section 6 the Berry-Esseen theo-
rem of [47]. Some useful additional results on the non-arithmeticity condition
are presented in Section 5.2: these results are detailed in Section 12. Section 7
states the derivation statement mentioned in the above procedure (B), and this
statement is then applied to prove a first-order Edgeworth expansion (Section
8) and a multidimensional Berry-Esseen type theorem for the Prohorov metric
(Section 9). Let us mention that all the operator-type assumptions introduced
in the sections 4 and 7, as well as all our limit theorems, will be directly after-
ward investigated and illustrated through the example of the strongly ergodic
Markov chains on L2

(π) (Example 1). The applications to Examples 2-3 are
deferred to Sections 10-11. Finally, mention that the proof of the main result
of Section 7, and the technical computations involving the weighted Lipschitz-
type spaces of Section 11, are relegated to Appendices A-B.

Acknowledgments. — The authors are grateful to the referee for many very
helpful comments which allowed to greatly enhance the content and the pre-
sentation of this paper. The weighted Lipschitz-type spaces used in Section 11.2
have been introduced by Denis Guibourg in a work (in preparation) concerning
the multidimensional Markov renewal theorems. We thank him for accepting
that we use in our work this new definition, which allowed us to divide by 2
the order of the moment conditions for the iterative models.

2. A central limit theorem in the stationary case

As a preliminary to the next limit theorems, we state here a well-known
c.l.t. for (ξ(Xn))n, which is a standard consequence of a theorem due to Gordin
[29]. We shall then deduce a corollary based on Condition (K1). In this section,
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424 L. HERVÉ & F. PÈNE

we only consider the stationary case. Let us observe that, concerning distribu-
tional questions on (ξ(Xn))n, one may without loss of generality assume that
(Xn)n≥0 is the canonical Markov chain associated to Q.

So we consider here the usual probability space (EN, E⊗N, Pπ) for the canon-
ical Markov chain, still denoted by (Xn)n≥0, with transition probability Q and
initial stationary distribution π. Let θ be the shift operator on EN. As usual
we shall say that (Xn)n≥0 is ergodic if the dynamical system (EN, E⊗N, Pπ, θ)
is ergodic.

Theorem (Gordin). — Assume that (Xn)n≥0 is ergodic, and

∀i = 1, . . . , d, ξi ∈ L2
(π) and ξ̆i :=

�

n≥0

Qnξi converges in L2
(π).

Then Sn√
n

D
> N (0,Γ), where Γ is the covariance matrix defined by �Γt, t� =

π(ξ̆2
t )− π((Qξ̆t)

2
), where we set ξ̆t =

�d
i=1 ti ξ̆i.

Corollary 2.1. — Let us suppose that (Xn)n is ergodic, that (K1) holds on
B �→ L2

(π), and ξi ∈ B (i = 1, . . . d). Then the c.l.t. of the previous theorem
holds.

Proof of Corollary. — Since we have (K1) on B, ξi ∈ B and π(ξi) = 0, the
series ξ̆i =

�+∞
n=0 Qnξi converges in B, thus in L2

(π).

For instance, if (Xn)n is strongly ergodic on L2
(π) (see Example 1), then

(Xn)n is ergodic [68], and we find again the well-known fact that the central
limit theorem holds in the stationary case when π(|ξ|22) < +∞. In order to
make easier the use of Corollary 2.1 in other models, let us recall the following
sufficient condition for (Xn)n to be ergodic. This statement, again in relation
with Condition (K1), is established in [43] (Th. IX.2) with the help of standard
arguments based on the monotone class theorem.

Proposition 2.2. — Let us suppose that (K1) holds with B satisfying the
additional following conditions: B generates the σ-algebra E, δx ∈ B� for all
x ∈ E, and B ∩ B

∞
is stable under product. Then (Xn)n is ergodic.

Of course, other methods exist to investigate the c.l.t. for Markov chains,
but Corollary 2.1 is sufficient for our purposes: indeed, it is easily applicable
to our examples, and it enables us to define the asymptotic covariance matrix
Γ which will occur in all the others limit theorems.

The above definition of Γ provides the following classical characterisation of
the case when Γ is degenerate.
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Proposition 2.3. — Under the hypotheses of Corollary 2.1, Γ is non invert-
ible if and only if

∃t ∈ Rd, t �= 0,∃g ∈ B, �t, ξ(X1)� = g(X0)− g(X1) Pπ-a.s.

Let us notice that this equivalence is still true for B = L2
(π) if we know that:

∀t ∈ Rd, sup
n≥1

��n�Γt, t� − Eπ[�t, Sn�2]
�� < +∞.

Proof of Proposition 2.3. — If �t, ξ(X1)� = g(X0) − g(X1) Pπ-a.s., thenÄ
�t,Sn�√

n

ä
n

converges in distribution to the Dirac mass at 0 (which proves
that Γ is non invertible). Indeed, by stationarity, we have �t, ξ(Xn)� =

g(Xn−1) − g(Xn) Pπ-a.s. for all n ≥ 1, so �t, Sn� = g(X0) − g(Xn). Since
we have g ∈ B �→ L2

(π), this implies that limn Eπ[(
�t,Sn�√

n
)
2
] = 0 and hence

the desired statement. Conversely, let us suppose that Γ is not invert-
ible. Then there exists t ∈ Rd, t �= 0, such that �Γt, t� = 0. From the
definition of Γ given in the above theorem and from the obvious equality
Eπ[(ξ̆t(X1)−Qξ̆t(X0))

2
] = π(ξ̆2

t )− π((Qξ̆t)
2
), it follows that

Eπ[(ξ̆t(X1)−Qξ̆t(X0))
2
] = 0.

Thus ξ̆t(X1) − Qξ̆t(X0) = 0 Pπ-a.s. Set ξt(·) = �t, ξ(·)�. By definition of ξ̆t,
we have ξ̆t = ξt + Qξ̆t, so

ξt(X1) + Qξ̆t(X1)−Qξ̆t(X0) = 0 Pπ-a.s.

This yields ξt(X1) = g(X0)− g(X1) Pπ-a.s. with g = Qξ̆t.

The previous proposition can be specified as follows.

Proposition 2.4. — Let t ∈ Rd, t �= 0, and let g be a measurable function on
E such that:

�t, ξ(X1)� = g(X0)− g(X1) Pπ-a.s.
Then there exists a π-full Q-absorbing set A ∈ E such that we have:

∀x ∈ A, �t, ξ(y)� = g(x)− g(y) Q(x, dy)-a.s.

Proof. — For x ∈ E, set Bx = {y ∈ E : �t, ξ(y)� = g(x)−g(y)}. By hypothesis
we have

�
Q(x,Bx)dπ(x) = 1, and since Q(x, Bx) ≤ 1, this gives Q(x,Bx) = 1

π-a.s. Thus there exists a π-full set A0 ∈ E such that Q(x,Bx) = 1 for x ∈ A0.
From π(A0) = 1 and the invariance of π, we also have π(Q1A0) = 1, and
since Q1A0 ≤ Q1E = 1E , this implies that Q(·, A0) = 1 pi-a.s. Again there
exists a π-full set A1 ∈ E such that Q(x, A0) = 1 for x ∈ A1. Repeating this
procedure, one then obtains a family {An, n ≥ 1} of π-full sets satisfying by
construction the condition: ∀n ≥ 1, ∀x ∈ An, Q(x,An−1) = 1. Now the set
A := ∩n≥0An is π-full and, for any a ∈ A, we have Q(a, An−1) = 1 for all
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n ≥ 1, thus Q(a, A) = 1. This proves that A is Q-absorbing, and the desired
equality follows from the inclusion A ⊂ A0.

3. The usual Nagaev-Guivarc’h method

The characteristic function of Sn is linked to the Fourier kernels Q(t)(x, dy) =

ei�t, ξ(y)�Q(x, dy) of (Q, ξ) by the following formula (see e.g [43] p. 23)

(CF) ∀n ≥ 1,∀t ∈ Rd, Eµ[ei�t,Sn�] = µ(Q(t)n
1E),

and the Nagaev-Guivarc’h method consists in applying to Q(t) the standard
perturbation theory [23]. For this to make sense, one must assume that Q
satisfies Condition (K1) (of Section 1) on B, that Q(t) ∈ L(B), and that Q(·)
is m times continuously differentiable from Rd to L(B) (m ∈ N∗). In this
case, Q(t)n, hence Eµ[eitSn ], can be expressed in function of λ(t)n, where λ(t),
the dominating eigenvalue of Q(t), is also m times continuously differentiable.
Then, the classical limit theorems (based on Fourier techniques), requiring
Y1 ∈ Lm for a i.i.d. sequence (Yn)n, extend to (ξ(Xn))n, see for example [13, 16,
37, 43, 56, 70]. Unfortunately, the previous regularity assumption on Q(·) (in
case d = 1 for simplicity) requires that the kernel ξ(y)

mQ(x, dy) continuously
acts on B: this is what we called an operator-moment condition in Section 1,
and we already mentioned that, if ξ is unbounded, this assumption is in general
very restrictive.

Actually Nagaev established in [63] a c.l.t., and a local limit theorem in the
countable case, for the uniformly ergodic Markov chains (see Ex. 1 of Section 1),
and he did not appeal to operator-moment conditions: indeed, Nagaev first ap-
plied the standard perturbation theorem for bounded functionals ξ, and by us-
ing some intricate truncation techniques, he extended his results under the con-
dition π(|ξ|2) < +∞. However afterward, this truncation method has not been
used any more. In particular, the Berry-Esseen theorem in [64] was stated un-
der the operator-moment assumption supx∈E

�
E |ξ(y)|3 Q(x, dy) < +∞, which

is clearly necessary and sufficient for Q(·) to be three times continuously dif-
ferentiable from R to L(B

∞
).

The use of the standard perturbation theory is even more difficult in Ex-
amples 2-3 of Section 1: the typical example below shows that, neither the
operator-moment conditions, nor even the simple assumption �Q(t)−Q�B→ 0,
hold in general when ξ is unbounded.

Counter-example. — Let (Xn)n≥0 be the real-valued autoregressive chain de-
fined by

Xn = aXn−1 + θn(n ∈ N∗),
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where a ∈ (−1, 1), a �= 0, X0 is a real r.v. and (θn)n≥1 is a sequence of i.i.d.r.v.,
independent of X0. Assume that θ1 has a positive density p with finite variance.
It is well-known that (Xn)n≥0 is a Markov chain whose transition probability
is: (Qf)(x) =

�
R f(ax + y) p(y) dy.

Set v(x) = 1 + x2 (x ∈ R). Using the so-called drift condition (see [61],
Section 15.5.2), one can prove that (Xn)n≥0 is v-geometrically ergodic (see
Example 2 in Section 1). Now let us consider the functional ξ(x) = x. We have
for any x ∈ R

Q(ξ2 v)(x) ≥
�

R
(ax + y)

4 p(y) dy.

If
�

R y4 p(y) dy = +∞, then Q(ξ2 v) is not defined. If
�

R y4 p(y) dy < +∞, then
Q(ξ2 v) is a polynomial function of degree 4, so that

sup
x∈E

|Q(ξ2 v)(x)|
1 + x2

= +∞,

that is, Q(ξ2 v) /∈ Bv. Similarly we have Q(|ξ| v) /∈ Bv. Thus nei-
ther ξ(y)Q(x, dy), nor ξ(y)

2Q(x, dy), continuously act on Bv. Actually,
even the continuity condition �Q(t) − Q�Bv

→ 0 is not valid. To see
that, it suffices to establish that, if g(x) = x2, then �Q(t)g − Qg�v =

supx∈R(1 + x2
)
−1 |Q(t)g(x) − Qg(x)| does not converge to 0 when t→ 0. Set

p1(y) = yp(y) and p2(y) = y2p(y), and denote by φ̂(t) =
�

R φ(y)eitydy the
Fourier transform of any integrable function φ on R. Then

Q(t)g(x) =

�

R
eit(ax+y)

(y + ax)
2 p(y) dy = eiatx

[p̂2(t) + 2axp̂1(t) + a2x2 p̂(t)].

So

Q(t)g(x)−Qg(x) =

Å
eiatxp̂2(t)− p̂2(0) + 2ax [eiatxp̂1(t)− p̂1(0)]

ã

+ a2x2
[eiatxp̂(t)− 1].

Using the inequality |eiu − 1| ≤ |u|, we easily see that there exists a constant
C > 0 such that

sup
x∈R

(1 + x2
)
−1

����e
iatxp̂2(t)− p̂2(0) + 2ax [eiatxp̂1(t)− p̂1(0)]

����

≤ C

Å
|t| + |p̂2(t)− p̂2(0)| + |p̂1(t)− p̂1(0)|

ã
.

By continuity of p̂1 and p̂2, the last term converges to 0 as t→ 0. Now set

ψ(x, t) = (1 + x2
)
−1 a2x2 |eiatxp̂(t)− 1|.

We have supx∈R ψ(x, t) ≥ ψ(
π
at , t) =

a2π2

π2+a2t2 |p̂(t) + 1|. Since this last term
converges to 2a2 �= 0 as t→ 0, this clearly implies the desired statement.
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4. The Nagaev-Guivarc’h method via the Keller-Liverani theorem

The next statement is the perturbation theorem of Keller-Liverani, when
applied to the Fourier Kernels Q(t) under Condition (K1) of Section 1. The
present assumptions will be discussed, and illustrated in the case of the strongly
ergodic Markov chains on L2

(π). Finally we shall present a first probabilistic
application to the characteristic function of Sn.

The perturbation operator theorem of Keller-Liverani

Condition (‹K): Q satisfies Condition (K1) (of Section 1) on B, and there
exists a neighbourhood O of 0 in Rd and a Banach space ‹B satisfying B �→
‹B �→ L1

(π), such that we have Q(t) ∈ L(B) ∩ L(
‹B) for each t ∈ O, and:

(›K2) ∀t ∈ O, lim
h→ 0

�Q(t + h)−Q(t)�
B,�B = 0

(›K3) There exists some constants κ1 < 1, and C > 0 such that:

∀n ≥ 1,∀f ∈ B,∀t ∈ O, �Q(t)nf�B ≤ C κn
1 �f�B + C �f��B.

Condition (K): Condition (‹K) with ‹B = L1
(π).

Under Condition (‹K), we denote by κ any real number such that
max{κ0, κ1} < κ < 1, where κ0 is given in Condition (K’1) of Section 1,
and we define the following set

Dκ =

ß
z : z ∈ C, |z| ≥ κ, |z − 1| ≥ 1− κ

2

™
.

Theorem (K-L) ([54, 59], see also [5]). — Let us assume that Condition (‹K)

holds. Then, for all t ∈ O (with possibly O reduced), Q(t) admits a dominat-
ing eigenvalue λ(t) ∈ C, with a corresponding rank-one eigenprojection Π(t)
satisfying Π(t)Q(t) = Q(t)Π(t) = λ(t)Π(t), such that we have the following
properties:

lim
t→ 0

λ(t) = 1, sup

t∈ O
�Q(t)n − λ(t)n

Π(t)�B = O(κn
), lim

t→ 0
�Π(t)−Π�

B,�B = 0,

and finally M := sup
�
�(z −Q(t))−1�B, t ∈ O, z ∈ Dκ

�
< +∞.

Let us moreover mention that λ(t) and Π(t) can be expressed in terms of
(z − Q(t))−1 (see the proof of Corollary 7.2 where the explicit formulas are
given and used).
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Remark. — The conclusions of Theorem (K-L) still hold when Condition
(›K2) is replaced with: limh→ 0 �Q(h) − Q�

B,�B = 0. In fact, Condition (›K2)

provides the following additional property, that will be used in Section 5.1: λ(·)
is continuous on O (see [46]). Anyway, in most of cases, the previous continu-
ity condition at t = 0 implies (›K2) (see for instance Rk. (a) below). Let us also
recall that the neighbourhood O and the bound M of Theorem (K-L) depend on
κ (with κ fixed as above) and on the following quantities (see [54] p. 145):

— the constant H := sup{�(z −Q)
−1�B, z ∈ Dκ}, which is finite by (K1),

— the rate of convergence of �Q(t)−Q�
B,�B to 0 when t→ 0,

— the operator norms �Q�B, �Q��B, and the constants C, κ1 of (›K3).

This remark is relevant since the asymptotic properties of Theorem (K-L)
depend on M.

Some comments on Condition (‹K). — The hypotheses in [54] are stated with the
help of an auxiliary norm on B (which can be easily replaced by a semi-norm).
In practice, this auxiliary norm is the restriction of the norm of a usual Banach
space ‹B �→ L1

(π). It is the reason why Condition (‹K) has been presented
with an auxiliary space. The dominated hypothesis between the norms stated
in [54] is here replaced with our assumption B �→ ‹B. The fact that ‹B is
complete and ‹B �→ L1

(π) is not necessary for the validity of Theorem (K-L),
but these two hypotheses are satisfied in practice. Moreover the assumption
‹B �→ L1

(π) ensures that π ∈ ‹B
�
, which is important for our next probabilistic

applications. Let us also mention that [54] appeals to the following additional
condition on the essential spectral radius of Q(t): ∀t ∈ O, ress(Q(t)) ≤ κ1. As
explained in [59], this assumption is not necessary for Theorem (K-L), thanks
to Condition (K1). It will be assumed in Section 5.1 for applying [54] to Q(t)
for t close to t0 �= 0.

It is worth noticing that the continuity Condition (›K2) is less restrictive
than the condition �Q(t + h)−Q(t)�B→ 0 required in the usual perturbation
theorem. In fact, despite their not very probabilistic appearance, the conditions
(›K2) (›K3) are suited to many examples of strongly ergodic Markov chains: for
instance, they hold for any measurable functional ξ in the case of the strongly
ergodic Markov chains on L2

(π) and of the v-geometrically ergodic Markov
chains (see Prop. 4.1, Lem. 10.1), and they are valid under simple mean con-
traction and moment conditions for iterative Lipschitz models (see Section 11).
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Some comments on Condition (K). — In the special case ‹B = L1
(π), we shall

use repeatedly the next simple remarks.
(a) First observe that we have supt∈Rd �Q(t)�L1(π) < +∞ (use |Q(t)nf | ≤ Qn|f |
and the Q-invariance of π). Besides the following condition

sup
�
π(|ei�t, ξ� − 1| |f |), f ∈ B, �f�B ≤ 1

�
converges to 0 when t→ 0,

which is for instance satisfied if B �→ Lp
(π) for some p > 1 (by Hölder’s

inequality and Lebesgue’s theorem) is a sufficient condition for the continuity
assumption of Condition (K). More precisely, the above property implies that

∀t ∈ Rd, lim
h→ 0

�Q(t + h)−Q(t)�B,L1(π) = 0.

Indeed we have for any f ∈ B

π
�
|Q(t + h)f −Q(t)f |

�
≤ π

�
Q|ei�h, ξ� − 1| |f |

�
= π

�
|ei�h, ξ� − 1| |f |

�
.

(b) Recall that B is a Banach lattice if we have: |f | ≤ |g| ⇒ �f�B ≤ �g�B

for any f, g ∈ B. The examples of Banach lattices in our work are: B = B
∞

,
B = Lp

(π) (used in Ex. 1 of Section 1), and B = Bv (used in Ex. 2). Another
classical example is the space of the bounded continuous functions on E.

Assume that B is a Banach lattice such that: ∀t ∈ Rd,∀f ∈ B, ei�t, ξ� ·f ∈ B.
Then Condition (K1) implies (›K3) with ‹B = L1

(π) and O = Rd.
Indeed, we have |Q(t)nf | ≤ Qn|f |, so �Q(t)nf�B ≤ �Qn|f | �B, and (K1)

then gives for all n ≥ 1, f ∈ B and t ∈ Rd: �Q(t)nf�B ≤ C κn
0 �f�B +

π(|f |) �1E�B.

(c) If (›K3) is fulfilled with ‹B = L1
(π), then it holds for any ‹B �→ L1

(π).

Example. — (the strongly ergodic Markov chains on L2
(π), see Ex. 1 of Sec-

tion 1):

Proposition 4.1. — Assume that (Xn)n≥0 is a strongly ergodic Markov chain
on L2

(π), that ξ is any Rd-valued measurable function, and let 1 ≤ p� < p <

+∞. Then we have (‹K) with O = Rd, B = Lp
(π), and ‹B = Lp�

(π).

Proof. — We know that Q satisfies Condition (K1) of Section 1 on Lp
(π) (see

[68]). From the above remarks (b) (c), we then have (›K3) with O = Rd,
B = Lp

(π), and ‹B = Lp�
(π). Condition (›K2) follows from the next lemma.

Lemma 4.2. — Let 1 ≤ p� < p, and t ∈ Rd. Then we have the following
property: limh→ 0 �Q(t + h)−Q(t)�Lp(π),Lp� (π) = 0.
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Proof. — Let us denote � · �p for � · �Lp(π). Using the inequality |eia − 1| ≤
2 min{1, |a|} (a ∈ R) and the Hölder inequality, one gets for t, h ∈ Rd and
f ∈ Lp

(π),

�Q(t + h)f −Q(t)f�p� ≤
���Q(|ei�h,ξ� − 1| |f |)

���
p�

≤ 2 �min{1, |�h, ξ�|}|f |�p�

≤ 2 �min{1, |�h, ξ�|}� pp�
p−p�

�f�p,

with �min{1, |�h, ξ�|}� pp�
p−p�

→ 0 when h→ 0 by Lebesgue’s theorem.

To end this section, let us return to our general setting and present a first
probabilistic application of Theorem (K-L).

Link between λ(t) and the characteristic function of Sn. — For convenience, let us
repeat the basic formula (CF), already formulated in Section 3. This formula
links the characteristic function of Sn with the Fourier kernels of (Q, ξ): ∀n ≥
1,∀t ∈ Rd, Eµ[ei�t,Sn�] = µ(Q(t)n

1E), where µ is the initial distribution of the
chain. We appeal here to Theorem (K-L), in particular to the dominating
eigenvalue λ(t) of Q(t), t ∈ O, to the associated rank-one eigenprojection Π(t),
and finally to the real number κ for which we just recall that κ < 1.

Lemma 4.3. — Assume (‹K) and µ ∈ ‹B
�
, and set �(t) = µ(Π(t)1E). Then we

have:
lim
t→ 0

�(t) = 1 and sup

t∈ O

��Eµ[ei�t,Sn�]− λ(t)n �(t)
�� = O(κn

).

Proof. — Lemma 4.3 directly follows from Theorem (K-L) and Formula (CF).

5. A multidimensional local limit theorem

The previous lemma constitutes the necessary preliminary to employ Fourier
techniques. However, it is worth noticing that, except limt→ 0 λ(t) = 1, the
perturbation theorem of Keller-Liverani cannot yield anyway the Taylor ex-
pansions needed for λ(t) in Fourier techniques. An abstract operator-type
hypothesis will be presented in Section 7 in order to ensure the existence of m
continuous derivatives for λ(·). But we want before to recall another method,
based on weaker and more simple probabilistic c.l.t.-type assumptions, which
provides second or third-order Taylor expansions of λ(t) near t = 0. As in the
i.i.d. case, these expansions are sufficient to establish a multidimensional local
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limit theorem, this is the goal of the present section, and a one-dimensional
uniform Berry-Esseen theorem which will be presented in Section 6. (2)

Theorem 5.1 below has been established for real-valued functionals in [46]
under slightly different hypotheses. Here we present an easy extension to
the multidimensional case. Section 5.2 states some expected statements on
the Markov non-arithmetic and nonlattice conditions. The application to the
strongly ergodic Markov chains on L2

(π) in Section 5.3 is new.

5.1. A general statement. — To state the local limit theorem, one needs to intro-
duce the two following conditions. The first one is the central limit assumption
stated under Pπ for which one may appeal to Corollary 2.1 for instance. The
second one is a spectral non-arithmeticity condition. Recall that, by hypothe-
sis, we have π(ξ) = 0, so that Eπ[Sn] = 0.
Condition (CLT): Under Pπ, Sn√

n
D

> N (0,Γ), with a non-singular matrix Γ.

Condition (S): For all t ∈ Rd, Q(t) ∈ L(B), and for each compact set K0 in
Rd \ {0}, there exist ρ < 1 and c ≥ 0 such that we have, for all n ≥ 1 and
t ∈ K0, �Q(t)n�

B
≤ c ρn.

Condition (S) constitutes the tailor-made hypothesis to operate in the spec-
tral method the proofs of the i.i.d. limit theorems involving the so-called non-
lattice assumption. Condition (S) will be reduced to more practical hypotheses
in Section 5.2.

We want to prove that, given some fixed positive function f on E and some
fixed real-valued measurable function h on E, we have

(LLT) lim
n

sup

a∈Rd

����
√

det Γ (2πn)
d
2 Eµ[ f(Xn) g(Sn − a) h(X0) ]

− e−
1
2n �Γ

−1a,a� µ(h) π(f)

�

Rd

g(x)dx

���� = 0,

for all compactly supported continuous function g : Rd→R.
The conditions on f , h and µ are specified below.

Theorem 5.1. — Assume that Condition (CLT) holds, that Condition (‹K)

(of Section 4) holds w.r.t. some spaces B, ‹B, and that Condition (S) holds on
B. Finally assume (hµ) ∈ ‹B

�
and f ∈ B, f ≥ 0. Then we have (LLT).

(2) These two limit theorems could also be deduced from respectively Conditions C(2) and
C(3) of Section 7, but in practice, these two conditions are slightly more restrictive than
those of Sections 5-6. For instance, compare C(2) and C(3) for the strongly ergodic Markov
chains on L2(π) (see Prop. 7.3) with the conditions of Coro. 5.5 and 6.3.
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Before going into the proof, let us notice that this result can be easily ex-
tended to any real-valued function f ∈ B such that max(f, 0) and min(f, 0)

belong to B.

Proof of Theorem 5.1. — In order to use Lemma 4.3 and to write out the
Fourier techniques of the i.i.d. case [12], one needs to establish a second-order
Taylor expansion for λ(t).

Lemma 5.2. — Under the conditions (‹K) and (CLT), we have for u ∈ Rd

close to 0:
λ(u) = 1− 1

2
�Γu, u�+ o(�u�2).

Proof (sketch). — For d = 1, the proof of Lemma 5.2 is presented in [46], let us
just recall the main ideas. By hypothesis, we have Sn√

n
D

> N (0, σ2
) under Pπ,

with σ2 > 0. Besides, ‹B �→ L1
(π) implies π ∈ ‹B

�
. So, from Lévy’s theorem

and Lemma 4.3 (applied here with µ = π), it follows that limn λ(
t√
n
)
n

=

e−
σ2

2 t2 , with uniform convergence on any compact set in R. Then the fact that
log λ(

t√
n
)
n

= n log λ(
t√
n
) and log λ(

t√
n
) ∼ λ(

t√
n
)− 1 gives for t �= 0:

(

√
n

t
)
2
�
λ(

t√
n

)− 1
�

+
σ2

2
= o(1) when n→+∞.

Setting u =
t√
n
, it is then not hard to deduce the stated Taylor expansion (see

[46] Lem. 4.2).
These arguments can be readily repeated for d ≥ 2. (To get log λ(

t√
n
)
n

=

n log λ(
t√
n
) in d ≥ 2, proceed as in [46] with ψ(x) = λ(x t√

n
), x ∈ [0, 1]; the

continuity of λ(·) on some neighbourhood of 0, helpful for this part (3), obviously
extends to d ≥ 2).

If f = h = 1E , then (LLT) follows from Lemma 4.3, by writing out the
i.i.d. Fourier techniques of [12]. In particular, Condition (S) plays the same
role as the nonlattice condition of [12]. If f ∈ B, f ≥ 0, and h : E→R is
measurable, one can proceed in the same way by using the following equality,
of which (CF) is a special case (see e.g [43] p. 23),

(CF�) ∀n ≥ 1,∀t ∈ Rd, Eµ[f(Xn) eitSn h(X0)] = (hµ)(Q(t)nf),

and by using an obvious extension of Lemma 4.3.

(3) This continuity property is proved in [46] by applying [54] to the family {Q(t), t ∈ O}
when t goes to any fixed t0 ∈ O. To that effect, notice that, according to theorem (K-L), we
have ress(Q(t)) ≤ κ for all t ∈ O.
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5.2. Study of Condition (S). — When the spectral method is applied with the
standard perturbation theory, it is well-known that Condition (S) can be re-
duced to more practical non-arithmetic or nonlattice assumptions, see e.g [36]
[37] [43]. These reductions are based on some spectral arguments, and on
simple properties of strict convexity. In this section, we generalize these re-
sults under the next Condition (“K), close to (‹K) of Section 4, but involving
the whole family {Q(t), t ∈ Rd} and an additional condition on the essential
spectral radius of Q(t). Condition (“K) will be satisfied in all our examples.
Condition (“K): Q satisfies Condition (K1) (of Section 1) on B, and there
exists a Banach space “B such that B �→ “B, Q(t) ∈ L(B) ∩ L(

“B) for each
t ∈ Rd, and: (4)

(”K2) ∀t ∈ Rd, lim
h→ 0

�Q(t + h)−Q(t)�
B,�B = 0

and, for all compact set K0 in Rd, there exists κ ∈ (0, 1) such that:
(”K3) ∃C > 0,∀n ≥ 1,∀f ∈ B,∀t ∈ K0, �Q(t)nf�B ≤ C κn �f�B + C �f��B
(”K4) ∀t ∈ K0, ress(Q(t)) ≤ κ.
Clearly, if “B �→ L1

(π), then (“K) implies (‹K) of Section 4. Besides, when
“B = L1

(π), the condition introduced in Remark (a) of Section 4 implies (”K2).
We also need the next assumption (fulfilled in practice under Condition (K1),
see Rk. below):
(P) We have, for any λ ∈ C such that |λ| ≥ 1, and for any nonzero element
f ∈ B:

�
∃n0,∀n ≥ n0, |λ|n|f | ≤ Qn|f |

�
⇒

�
|λ| = 1 and |f | ≤ π(|f |)

�
.

The previous inequalities hold, everywhere on E if we have B ⊂ L1
(π), and

π-almost surely on E if we have B ⊂ L1
(π).

If B ⊂ L1
(π), we shall say that w is a bounded element in B if w ∈ B∩L∞(π).

A non-arithmetic condition on ξ.— We shall say that (Q, ξ), or merely ξ, is arith-
metic w.r.t. B (and non-arithmetic w.r.t. B in the opposite case) if there exist
t ∈ Rd, t �= 0, λ ∈ C, |λ| = 1, a π-full Q-absorbing set A ∈ E, and a bounded
element w in B such that |w| is nonzero constant on A, satisfying:

(∗) ∀x ∈ A, ei�t,ξ(y)�w(y) = λw(x) Q(x, dy)-a.s.

Proposition 5.3. — Under the assumptions (“K) and (P), Condition (S)
holds on B if and only if ξ is non-arithmetic w.r.t. B.

(4) As in ( �K), the fact that �B is complete is not necessary, but always satisfied in practice.
Contrary to ( �K), it is not convenient for the next statements to assume �B �→ L1(π) (except
for Proposition 12.4).

tome 138 – 2010 – no 3



THE NAGAEV-GUIVARC’H METHOD VIA THE KELLER-LIVERANI THEOREM 435

In the usual spectral method, this statement is for instance established in [43]
(Prop. V.2) (under some additional conditions on B). The proof of Proposition
5.3, which is an easy extension of that in [43], is presented in Section 12.1.

We now state a lattice-type criterion for (S) which is a natural extension
of the i.i.d. case and a well-known condition in the general context of Markov
random walks.

A nonlattice condition on ξ. — We say that (Q, ξ), or merely ξ, is lattice (and
nonlattice in the opposite case) if there exist a ∈ Rd, a closed subgroup H in Rd,
H �= Rd, a π-full Q-absorbing set A ∈ E, and a bounded measurable function
θ : E→Rd such that

(∗∗) ∀x ∈ A, ξ(y) + θ(y)− θ(x) ∈ a + H Q(x, dy)-a.s.

Proposition 5.4. — Assume that the assumptions (“K) and (P) hold. If ξ is
nonlattice, then (S) holds on B. The converse is true when, for any real-valued
measurable function ψ on E, we have eiψ ∈ B (or Cl(eiψ

) ∈ B).

Proof. — If (S) is not fulfilled, then ξ is arithmetic w.r.t. B, and one may
assume that w ∈ B in (∗) is such that we have |w| = 1 π-a.s., so that we can
write w(x) = eig(x) for some measurable function g : E→[0, 2π]. Therefore,
setting λ = eib, the property (∗) is then equivalent to:

∀x ∈ A, �t, ξ(y)�+ g(y)− g(x)− b ∈ 2πZ Q(x, dy)-a.s.

Now let us set θ(x) = g(x)
t

|t|22
, and a = b t

|t|22
. Then we have (∗∗) with the

group H = (2πZ)
t

|t|22
⊕(R t)⊥, so ξ is lattice. Conversely, if ξ is lattice, then, by

considering (∗∗) and t ∈ H⊥, one can easily prove that (∗) holds with λ = ei�t,a�

and w(x) = ei�t,θ(x)�. Since w ∈ B, (S) is not fulfilled on B (by Proposition
5.3.).

Proposition 5.4 will be specified in Section 12.2, where we shall investigate
the following set: G = {t ∈ Rd

: r(Q(t)) = 1}. We conclude Section 5.2 by
some further remarks.

On Conditions (”K3) (”K4). — If (Xn)n≥0 is strongly ergodic on a Banach
lattice B and if B is such that ei�t, ξ� · f ∈ B for all t ∈ Rd and f ∈ B, then we
have (”K3) with “B = L1

(π) (see Rk. (b) of Section 4). Moreover we have (”K4)
on B according to [67, Cor. 1.6].

The weighted Lipschitz-type spaces used in Section 11 for the iterative mod-
els are not Banach lattices, and in these models, the next remark will be helpful
to prove (”K4). Let us assume that (”K3) is fulfilled with B and “B satisfying the
following property: for each t ∈ Rd, Q(t)( S) is relatively compact in (

“B, �·��B),
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where S is the unit ball of (B, � · �B). Then it follows from [49] [41] that
Condition (”K4) automatically holds on B.

On Condition (P). — Under Assumption (K1), the property (P) is for instance
fulfilled in the following cases:

– B ⊂ L1
(π), B �→ L1

(π), and B is dense in L1
(π). Indeed, since Q is a

contraction on L1
(π), one obtains from (K1) that limn Qn|f | = π(|f |) in

L1
(π) for all f ∈ B, hence (P) (here, f �= 0 means that π(|f |) �= 0). This

case contains Lp
(π), the Sobolev spaces,. . .

– B ⊂ L1
(π), B �→ L1

(π), B is stable under the complex modulus (i.e. f ∈
B ⇒ |f | ∈ B), and δx ∈ B� for all x ∈ E. Indeed, we then have by (K1):
∀x ∈ E, limn(Qn|f |)(x) = π(|f |), hence (P) (here, f �= 0 means that
f(x) �= 0 for some x ∈ E). This case contains B

∞
, the weighted (either

supremum or Lipschitz-type) spaces, the space of bounded continuous
functions, the space of functions of bounded variation (on an interval),. . .

– B is the space of Ck functions (on some nice E) equipped with its usual
norm. Observe that, if f ∈ Ck, then |f | is continuous on E. By using a
density argument (with the supremum norm) and the property (K1) on
Ck, one can easily see that limn Qn|f | = π(|f |) uniformly on E, hence
(P).

A case when A = Supp(π) in (∗) and (∗∗). — If (“K) and (P) hold, if δx ∈ B�

for all x ∈ E, and finally if all the functions of B are continuous on the state
space E (assumed to be locally compact here), then Propositions 5.3-4 (and
Proposition 12.4) apply with A = Supp(π) in (∗) and (∗∗), where Supp(π) is
the support of π. This can be seen by an easy examination of the proof in
Section 12.1.

Condition (S) and invertibility of Γ. — Let us just assume in this remark that
Q(t) ∈ L(B) for all t ∈ Rd. If the conclusion of Proposition 2.4 holds for
some real-valued measurable function g on E, then we clearly have (∗) with
w(·) = ei g(·) and λ = 1. Moreover, Condition (∗∗) is satisfied with a = 0,
θ(x) = 2π{ g(x)

2π } t
|t|22

, and H = (2πZ)
t

|t|22
⊕ (R · t)⊥, where {·} stands for the

fractionary part. Condition (S) on any space B containing w is then false
because, in this case, the above mentioned equality (∗) easily implies that we
have r(Q(t)) ≥ 1, see Lemma 12.2. One can deduce the following facts from
the previous remarks and the results of Section 2.

If the hypotheses of Corollary 2.1 hold on some space B2 and if ei ψ(·) ∈ B
for all ψ ∈ B2, then we have the following implications, in which Γ denotes the
covariance matrix of Section 2 (the above condition on B is unnecessary for
the last implication):
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Condition (S) on B ⇒ Γ is invertible
Non-arithmeticity w.r.t. B ⇒ Γ is invertible
(Q, ξ) is nonlattice ⇒ Γ is invertible.

5.3. (LLT) for the strongly ergodic Markov chains on L2
(π). — Let us suppose

that (Xn)n≥0 is a strongly ergodic Markov chain on L2
(π) (Ex. 1 of Section 1).

If π(|ξ|22) < +∞, then (n−
1
2 Sn)n converges in distribution to a normal distri-

bution N (0,Γ) (see Section 2).

Corollary 5.5. — Let us assume that π(|ξ|22) < +∞, that ξ is nonlattice,
that µ = π, and that h ∈ Lr

(π) for some r > 1. Then we have (LLT) for each
function f in Lp

(π) provided that p > r
r−1 .

Proof. — Let r� =
r

r−1 , and p > r�. From Proposition 4.1 and Lemma 4.2, we
have (”K2) and (”K3) (thus (‹K)) with B = Lp

(π) and “B = Lr�
(π). Note that

“B
�
= Lr

(π). Since B = Lp
(π) is a Banach lattice, we have (”K4) on B = Lp

(π)

by [67, Cor. 1.6]. Finally, from Proposition 5.4, Condition (S) on B = Lp
(π)

is fulfilled under the nonlattice assumption. Corollary 5.5 can be then deduced
from Theorem 5.1.

The property (”K4) on B = Lp
(π) has been above derived from the general

statement [67, Cor. 1.6] which is based on some sophisticated arguments of the
theory of positive operators acting on a Banach lattice. Below, we present a
simpler proof of this fact in the special case of the uniformly ergodic Markov
chains. By repeating some arguments of [42], we are going to see that (”K4) on
B = Lp

(π) then follows from Doeblin’s condition.
Let us assume that (Xn)n≥0 is uniformly ergodic (i.e. we have (K1) on B

∞
).

Then the so-called Doeblin condition holds (use (K1) on B
∞

): there exist � ≥ 1,
η > 0, and ρ < 1 such that

(π(A) ≤ η) ⇒ (∀x ∈ E,Q�
(x,A) ≤ ρ�

).

Proposition 5.6. — Let p ∈ (1,+∞). If ξ is any Rd-valued measurable func-
tion on E, then we have: ∀t ∈ Rd, ress(Q(t)) ≤ ρ

p−1
p .

Proof of Proposition 5.6. — Let � · �p = π(| · |p)
1
p denote the norm on Lp

(π).
We also use the notation � · �p for the operator norm on Lp

(π). Let q be such
that 1

p +
1
q = 1.

Lemma 5.7. — There exist a nonnegative bounded measurable function α on
E × E and a positive kernel S(x, dy), x ∈ E, such that we have Q�

(x, dy) =

α(x, y)dπ(y) + S(x, dy) and �S�p ≤ ρ
�
q .
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Proof. — Let us summarize the beginning of the proof in [42] (Lemma III.4):
using the differentiation of measures, there exist a nonnegative measurable
function α� on E×E and a positive kernel S�(x, dy) such that, for all x ∈ E, we
have Q�

(x, dy) = α�(x, y)dπ(y)+S�(x, dy), with π(Cx) = 0 and S�(x,E\Cx) = 0

for some Cx ∈ E. Set α = α� 1{α�≤η−1 }, and for x ∈ E, let us consider the set
Lx = { y ∈ E : α�(x, y) > η−1 } \ Cx. Then

Q�
(x, dy) = α(x, y)dπ(y) + S(x, dy)

with S(x,A) = Q�
(x,A ∩ (Cx ∪ Lx)). We have

∀x ∈ E, 1 ≥ Q�
(x, Lx) ≥

�

Lx

α�(x, y) dπ(y) ≥ η−1 π(Lx),

thus π(Lx ∪ Cx) = π(Lx) ≤ η, so that Q�
(x, Lx ∪ Cx) ≤ ρ�.

Now let f ∈ Lp
(π). We have Sf(x) =

�
Cx∪Lx

f(y) Q�
(x, dy), and from

Hölder’s inequality w.r.t. the probability measure Q�
(x, dy), we have

�Sf�p
p =

�

E

����
�

E
f(y) 1Cx∪Lx(y) Q�

(x, dy)

����
p

dπ(x)

≤
�

E
Q�|f |p(x)Q�

(x,Cx ∪ Lx)
p
q dπ(x),

hence �Sf�p
p ≤ (ρ�

)
p
q π(Q�|f |p) = (ρ�

)
p
q π(|f |p) which is the stated estimate on

�S�p.

Now let us prove ress(Q(t)) ≤ ρ
1
q for all t ∈ Rd. Since |Q(t)�f | ≤ Q�|f |,

there exists a complex-valued measurable function χt on E × E such that
Q(t)�

(x, dy) = χt(x, y) Q�
(x, dy) with |χt| ≤ 1. So, by Lemma 5.7,

Q(t)�
(x, dy) = χt(x, y) α(x, y)dπ(y) + χt(x, y) S(x, dy)

:= αt(x, y)dπ(y) + St(x, dy),

and, since αt(·, ·) is bounded, the associated kernel operator is compact on
Lp

(π) [23]. Recall that, if T is a bounded operator on a Banach space B, then
ress(T ) = limn(inf �Tn−V �B)

1
n where the infimum is considered over the ideal

of compact operators V on B. This yields ress(Q(t)�
) = ress(St) ≤ r(St) ≤

�St�p ≤ �S�p ≤ ρ
�
q (Lem. 5.7). Hence ress(Q(t)) ≤ ρ

1
q .

6. A one-dimensional uniform Berry-Esseen theorem

Here we assume d = 1 (i.e. ξ is real-valued), we denote by N the distribution
function of N (0, 1), we suppose that Hypothesis (CLT) of Section 5.1 holds with
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Γ = σ2 > 0, and we set:

∀u ∈ R,∆n(u) =

���� Pµ(
Sn

σ
√

n
≤ u)− N (u)

���� , and ∆n = sup
u∈R

∆n(u).

Theorem 6.1 and Proposition 6.2 below have been already presented in [47],
we state them again for completeness. The next application to the Markov
chains with spectral gap on L2

(π) is new. Comparisons with prior works are
presented in [47], they will be partially recalled below and in Sections 10-11.

A general statement. — Let us reinforce Condition (CLT) by the following one:

Condition (CLT �): ∃C > 0,∀t ∈ [−
√

n,
√

n],
��Eπ[eit Sn

σ
√

n ] − e−
t2

2
�� ≤ C

|t|√
n

.

Theorem 6.1. — Assume that (CLT �) holds, and that Condition (‹K) (of
Section 4) holds w.r.t. B, ‹B, with the additional following conditions: we
have (K1) (of Section 1) on ‹B, and �Q(t) − Q�

B,�B = O(|t|). Then we have

∆n = O(n−
1
2 ) for any µ ∈ ‹B

�
.

Proof (sketch). — See [47] for details. The conclusions of Theorem (K-L) are
satisfied. As in Lemma 4.3, let us set �(t) = µ(Π(t)1E). In order to copy the
Fourier techniques used for the i.i.d. Berry-Esseen theorem (see [25] [24]), we
have to improve Lemmas 4.3 and 5.2 as follows:

(a) sup

t∈ O

|�(t)− 1|
|t| < +∞ and sup

t∈ O

1

|t|
��Eµ[eitSn ]− λ(t)n �(t)

�� = O(κn
),

(b) λ(u) = 1− σ2 u2

2 + O(u3
) near u = 0.

Assertion (a) cannot be derived from the Keller-Liverani theorem (even by
using the precise statements of [54]). However one can proceed as follows. As
in the standard perturbation theory [23], the perturbed eigen-projection Π(t)
in Theorem (K-L) can be expressed as the line integral of (z − Q(t))−1 over
a suitable oriented circle centered at λ = 1 (see Section 7.2). By using the
formula

(z −Q(t))−1 − (z −Q)
−1

= (z −Q)
−1

�
Q(t)−Q

�
(z −Q(t))−1,

the last assertion in Theorem (K-L), the assumption �Q(t) −Q�
B,�B = O(|t|),

and finally the fact that (K1) holds on ‹B, we can then conclude that we have
�Π(t) − Π�

B,�B = O(|t|). Hence the desired property for �(t). The second
assertion in (a) can be established similarly by using Formula (CF) of Section
3 and the second line integral given in Section 7.2.

To get (b), one may repeat the short proof of Lemma 5.2 by starting here
from the property λ(

t√
n
)
n − e−

σ2

2 t2
= O(

|t|√
n
) which follows from (CLT�) and
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(a). One then obtains (

√
n
t )

2
(λ(

t√
n
) − 1) +

σ2

2 = O(
|t|√

n
), and setting u =

t√
n
,

this leads to the expansion (b) (see Lem. IV.2 in [47]).

A sufficient condition for (CLT�). — Actually, one of the difficulties in the previ-
ous theorem is to show Hypothesis (CLT�). By the use of martingale techniques
derived from [50], the first named author showed in [47] the next statement.

Proposition 6.2 ([47]). — We have (CLT �) when the two following condi-
tions hold:

(G1) ξ̆ =
�+∞

n=0 Qnξ absolutely converges in L3
(π).

(G2)
�+∞

p=0 Qpψ absolutely converges in L 3
2 , where the function ψ is defined

by ψ = Q(ξ̆2
)− (Qξ̆)2 − (π(ξ̆2

)− π((Qξ̆)2) 1E.

Let us notice that ξ̆ is the solution of the Poisson equation ξ̆ − Qξ̆ = ξ,
already introduced in Gordin’s theorem (Section 2). Also observe that the
above function ψ can be expressed as ψ = Q(ξ̆2

)− (Qξ̆)2 − σ2
1E , where σ2 is

the asymptotic variance of Gordin’s theorem.

About the practical verification of (G1) (G2). — In practice, one often proceeds
as follows to verify the two above conditions. Since π(ξ) = 0, Condition (G1)
holds if Q is strongly ergodic w.r.t. some B �→ L3

(π) and if ξ ∈ B. If moreover
Q is strongly ergodic w.r.t. some B2 �→ L 3

2 (π) containing all the functions
g2 with g ∈ B, then Condition (G2) holds. Indeed, under these hypotheses,
ξ̆ ∈ B, thus ψ ∈ B2, and, since π(ψ) = 0, the series

�+∞
p=0 Qpψ absolutely

converges in B2, thus in L 3
2 (π).

Condition (G2) is the functional version of the projective assumption�
n≥0

��E[Z2
n | F 0]−E[Z2

0 ]
��

L 3
2

< +∞ used for stationary martingale difference
sequences (Zn)n: under this condition, the uniform Berry-Esseen theorem
at rate n−

1
4 is established in [50] (Chap. 3) for such bounded sequences. In

[18, 19], this projective assumption (extended to Lp in [18]) provides the
expected Berry-Esseen theorem in term of Wasserstein’s distances.

Application to the strongly ergodic Markov chains on L2
(π). — Let us assume

that (Xn)n≥0 is a strongly ergodic Markov chain on L2
(π) (Ex. 1 of Sec-

tion 1). In the stationary case (i.e. µ = π), since (Xn)n≥0 is strongly mix-
ing (see [68]), Bolthausen’s theorem [11] yields the estimate ∆n = O(n−

1
2 ) if

π(|ξ|p) < +∞ for some p > 3. In the special case of uniform ergodicity, Na-
gaev’s work [64], and some of its extensions (see e.g [17]), provide the previous
estimate in the non-stationary case, but under the strong moment condition
supx∈E

�
E |ξ(y)|3 Q(x, dy) < +∞. The next statement only requires the ex-

pected third-order moment condition.
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Corollary 6.3. — If π(|ξ|3) < +∞ and µ = φ dπ, with some φ ∈ L3
(π),

then ∆n = O(n−
1
2 ).

Proof. — Set Lp
= Lp

(π). We have (K1) on L3 and L 3
2 , see [68]. So Conditions

(G1) (G2), hence (CLT�), are fulfilled (use the above remark with B2 = L 3
2 ).

Besides, we have (›K3) with B = L3 and ‹B = L 3
2 (Prop. 4.1). Finally we have

�Q(t)−Q�L3,L 3
2

= O(|t|). Indeed, let f ∈ L3. Using |eia − 1| ≤ |a|, one gets

π( |Q(t)f −Qf | 32 ) ≤ π( |Q(|eitξ − 1| |f |)| 32 )

≤ |t| 32 π( Q(|ξ| 32 |f | 32 ) ) = |t| 32 π(|ξ| 32 |f | 32 ),

and the Schwarz inequality yields �Q(t)f − Qf� 3
2
≤ |t| (π(|ξ| 32 |f | 32 ))

2
3 ≤

|t| �ξ�3 �f�3 . We have proved that the hypotheses of Theorem 6.1 are fulfilled
with B = L3 and ‹B = L 3

2 .

7. Regularity of the eigenelements of the Fourier kernels

The goal of this section is to present an abstract operator-type Hypothesis,
called C(m), ensuring that the dominating eigenvalue λ(t) and the associated
eigen-elements of Q(t) have m continuous derivatives on some neighbourhood
O of 0. The usual spectral method already exploited this idea by considering
the action of Q(t) on a single space, but as illustrated in Section 3, the resulting
operator-moment conditions may be very restrictive in practice. The use of a
“chain” of spaces developed here enables to greatly weaken these assumptions.

As a first example we shall see in Section 7.3 that, for the strongly er-
godic Markov chains on L2

(π), Hypothesis C(m) reduces to π(|ξ|α2 ) < +∞
for some α > m. This condition is slightly stronger than the assumption
π(|ξ|m2 ) < +∞ of the i.i.d. case ensuring that the common characteristic func-
tion has m continuous derivatives. But it is much weaker than the condition
supx∈E(Q|ξ|m2 )(x) < +∞ of the usual spectral method (see Section 3). Other
simple reductions of C(m) will be obtained in Sections 10-11 for Examples 2-3
of Section 1.

Roughly speaking one can say that Hypothesis C(m) below (together with
possibly the non-arithmeticity condition) allows to extend to strongly ergodic
Markov chains the classical i.i.d. limit theorems established with Fourier tech-
niques. This will be illustrated in Sections 8-9 by a one-dimensional Edgeworth
expansion and a multidimensional Berry-Esseen type theorem in the sense of
the Prohorov metric. This is also exploited in [35] to prove a multidimensional
renewal theorem.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



442 L. HERVÉ & F. PÈNE

Before dealing with the regularity of the eigen-elements of Q(t), we investi-
gate that of the function t �→ (z − Q(t))−1, where (z − Q(t))−1 is seen as an
element of L(B,‹B) for suitable spaces B and ‹B.

7.1. Regularity of (z − Q(·))−1. — Let O be an open subset of Rd, let X be
a vector normed space. Then, for m ∈ N, we shall say that U ∈ Cm

( O, X)

if U is a function from O to X which admits m continuous derivatives. For
convenience, C �

( O, B1, B2) will stand for C �
( O, L(B1, B2)). In view of the

probabilistic applications of Sections 8-9, Q(t) still denotes the Fourier kernels
defined in Section 1, and the Banach spaces B, ‹B, Bθ considered below satisfy
the conditions stated before (K1) in Section 1. Let B �→ ‹B, and let m ∈ N∗.

Hypothesis C(m). — There exist a subset I of R and a family (Bθ, θ ∈ I) of
spaces containing B, ‹B, such that Bθ �→ ‹B for all θ ∈ I, and there exist two
functions T0 : I → R and T1 : I → R such that, for all θ ∈ I, there exists a
neighbourhood V θ of 0 in Rd such that we have for j = 1, ...,m:

(0) [T0(θ) ∈ I ⇒ Bθ �→ BT0(θ)] and [T1(θ) ∈ I ⇒ Bθ �→ BT1(θ)]

(1) If T0(θ) ∈ I, then Q(·) ∈ C0
( V θ, Bθ, BT0(θ))

(2) If θj := T1(T0T1)
j−1

(θ) ∈ I, then Q(·) ∈ C j
( V θ, Bθ, Bθj )

(3) Q(·) satisfies Hypothesis (K) of Section 4 on Bθ

(4) There exists a ∈
�m

k=0

�
T−1

0 (T0T1)
−k

(I) ∩ (T1T0)
−k

(I)
�
such that we have

B = Ba and ‹B = B(T0T1)mT0(a).
To fix ideas, let us introduce a more restrictive but simpler hypothesis:

Hypothesis C �(m). — There exist A > m and a family of spaces (Bθ, θ ∈ [0, A])

such that B0 = B, BA =
‹B and, for all θ, θ� ∈ [0, A] with 0 ≤ θ < θ� ≤ A, we

have:
(a) Bθ �→ Bθ� �→ ‹B,
(b) there exists a neighbourhood V = V θ,θ� of 0 in Rd such that, for any

j ∈ {0, ...,m} with j < θ� − θ, we have Q ∈ C j
( V , Bθ, Bθ�),

(c) Q(·) satisfies Hypothesis (K) of Section 4 on Bθ.
It is easy to see that Hypothesis C �(m) implies Hypothesis C(m) (by taking

a = 0, T0(x) = x+ε and T1(x) = x+1+ε for some well chosen ε > 0). Actually
Hypothesis C �(m) will be satisfied in all our examples, but Hypothesis C(m)

is more general and, despite its apparent complexity, might be more natural to
establish than hypothesis C �(m) (see the end of Section 7.3).

Let us come back to Hypothesis C(m). The condition on a in (4) means
that a, T0a, T1T0a, T0T1T0a,...,(T0T1)

mT0(a) belong to I, and from (0), it
follows that the corresponding family of Bθ’s is increasing with respect to the
continuous embedding. In particular, θ := T0(a) and θm := T1(T0T1)

m−1
(θ)
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are in I, therefore we have Q(·) ∈ Cm
( V θ, Bθ, Bθm) by (2). It then follows that

Q(·) ∈ Cm�
V θ, B,‹B�

. In practice, we may have Q(·) ∈ Cm�
V θ, B, BT m

1 (a)

�
,

but the introduction of T0 will enable us to get (z − Q(·))−1 ∈ Cm�
O, B,‹B�

for some neighbourhood O of t = 0 and for suitable z ∈ C.

Notation. — Recall that we set Dκ = {z ∈ C : |z| ≥ κ, |z−1| ≥ (1−κ)/2} for
any κ ∈ (0, 1). Under Hypothesis C(m), we have (K) on B, so from Theorem
(K-L) of Section 4, if t belongs to some neighbourhood Ua of 0 in Rd and
if z ∈ Dκa for some κa ∈ (0, 1), then (z − Q(t))−1 is a bounded operator
on B, and we shall set Rz(t) = (z − Q(t))−1. It is worth noticing that we
also have Rz(t) ∈ L(B, ˜B) for all t ∈ Ua and z ∈ Dκa . In the case d ≥ 2,
for t = (t1, . . . , td), R(�)

z (t) will stand for any partial derivative of the form
∂�Rz

∂ti1 · · · ∂ti�

(t).

Proposition 7.1. — Under Hypothesis C(m), there exist a neighbourhood
O ⊂ Ua of 0 in Rd and κ̃ ∈ (κa, 1) such that Rz(·) ∈ Cm

( O, B, ˜B) for all
z ∈ Dκ̃, and

R� := sup{�R(�)
z (t)�

B,�B, z ∈ Dκ̃, t ∈ O } < +∞, � = 0, . . . ,m.

The proof of Proposition 7.1 is presented in Appendix A under a little bit
more abstract setting. It is based on general and elementary derivation argu-
ments. Similar statements concerning the Taylor expansions of (z−Q(·))−1 at
t = 0 are developed in [32, 33, 44].

Remarks. — (a) In hypothesis C(m), the set I can be reduced to the following
finite set: �

a, T0a, T1T0a, T0T1T0a, . . . , (T0T1)
mT0(a)

�
.

This remark will be of no relevance for checking C(m) in our examples, but
it will be important in the proof of Proposition 7.1 in order to define the set
O, the real number κ̃ , and finally the bounds R� (see the remark following
Proposition A in Appendix A).

(b) In our examples, the derivative condition (2) of Hypothesis C(m) can
be investigated by using the partial derivatives ∂jQ

∂tp1 ···∂tpj
(t), defined by means

of the kernel

Q(p1,...,pj)(t)(x, dy) = ij
�

j�

s=1

ξps(y)

�
ei�t,ξ(y)� Q(x, dy).

Actually, in our examples, we shall verify C(m) in the case d = 1 (for the sake
of simplicity), and we shall simply denote by Q(k) the k-th derivative of Q(·)
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occurring in C(m), which is defined for k = 0, . . . ,m by the kernel

Qk(t)(x, dy) = ikξ(y)
keitξ(y) Q(x, dy)

(t ∈ R, x ∈ E).

(c) By C(m), we know that ∂mQ
∂tm

k
(0) ∈ L(B,‹B) ( k = 1, . . . , d), and from

1E ∈ B, π ∈ ‹B
�
, it follows that π(

∂mQ
∂tm

k
(0)1E) = im π(Qξm

k ) = im π(ξm
k ) is

defined. So, in substance, Hypothesis C(m) implies π(|ξ|m2 ) < +∞ (this is
actually true if m is even). However, in our examples, we shall need some
slightly more restrictive moment conditions to be able to prove C(m).

7.2. Regularity of the eigen-elements of Q(·). — Suppose that Hypothesis C(m)

holds for some m ∈ N∗, and as above let us use the notations of Proposi-
tion 7.1 and of Theorem (K-L) of Section 4 for Q(t) acting on B: if t ∈ Ua,
λ(t) is the dominating eigenvalue of Q(t) and Π(t) is the associated rank-one
eigenprojection. Besides let us define in L(B): N(t) = Q(t)− λ(t)Π(t). Since
Π(t)Q(t) = Q(t)Π(t) = λ(t)Π(t), we have

∀n ≥ 1, N(t)n
= Q(t)n − λ(t)n

Π(t).

It follows from Theorem (K-L) that Q(t)n
= λ(t)n

Π(t) + N(t)n, with
�N(t)n�B ≤ Cκn

a .

The operators Q(t), Rz(t), Π(t) and N(t)n are viewed as elements of L(B)

when we appeal to the spectral theory, and as elements of L(B,‹B) for stating
our results of derivation.

Corollary 7.2. — Under Hypothesis C(m), there exists a neighbourhood V
of 0 in Rd such that:

(i) Π(·) ∈ Cm
( V , B,‹B)

(ii) for all n ≥ 1, Nn(·) := N(·)n ∈ Cm
( V , B,‹B), and

∃C > 0,∀n ≥ 1,∀� = 0, . . . ,m : sup

t∈ V
�N (�)

n (t)�
B,�B ≤ Cκ̃n,

where κ̃ ∈ (0, 1) is the real number of Proposition 7.1.
(iii) λ(·) ∈ Cm

( V , C).

Proof. — Let t ∈ O, with O introduced in Proposition 7.1.
(i) As in the standard perturbation theory, the eigenprojection Π(t) is de-

fined in [54] by

Π(t) =
1

2iπ

�

Γ1

Rz(t) dz,
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where this line integral is considered on the oriented circle Γ1 centered at z = 1,
with radius (1 − κ̃)/2 (thus Γ1 ⊂ Dκ̃). Then, by Proposition 7.1, we have
Π(·) ∈ Cm

( O, B,‹B).
(ii) In the same way, one can write

N(t)n
=

1

2iπ

�

Γ0

zn Rz(t) dz,

where Γ0 is here the oriented circle, centered at z = 0, with radius κ̃ (thus
Γ0 ⊂ Dκ̃). According to Proposition 7.1, we have Nn(·) ∈ Cm

( O, B,‹B) with
N (�)

n (t) =
1

2iπ

�
Γ0

zn R(�)
z (t) dz for � = 1, . . . ,m. Hence the stated inequalities.

(iii) Since limt→ 0 π(Π(t)1E) = π(Π1E) = 1 (by Th. (K-L)), there exists a
neighbourhood V of 0 contained in O such that π(Π(t)1E) �= 0 for any t ∈ V .
From Q(t) = λ(t)Π(t) + N(t), it follows that

λ(t) =
π
�
Q(t)1E −N(t)1E

�

π(Π(t)1E)
.

From the remark following the statement of C(m), we have Q(·) ∈ Cm
( V , B,‹B)

(with possibly V reduced). Now, since 1E ∈ B and N(·), Π(·) are in
Cm

( V , B,‹B), the functions Q(·)1E , N(·)1E , Π(·)1E are in Cm
( V ,‹B). Finally,

since π ∈ ‹B
�
, this gives (iii).

7.3. Hypothesis C(m) for the strongly ergodic Markov chains on L2
(π). — Let us

suppose that (Xn)n≥0 is a strongly ergodic Markov chain on L2
(π). Let m ∈ N∗,

and let us investigate Hypothesis C(m) by introducing the following family
{Bθ = Lθ

(π), r ≤ θ ≤ s} for some suitable 1 < r < s.

Proposition 7.3. — If π(|ξ|α2 ) < +∞ with α > m, then C(m) holds with
B = Ls

(π) and ‹B = Lr
(π) for any s > α

α−m and 1 < r < αs
α+ms .

We give the proof for d = 1. The extension to d ≥ 2 is obvious by the use
of partial derivatives.

Proof. — Let us notice that the condition on s implies that αs
α+ms > 1, so

one may choose r as stated, and we have r < s. Let ε > 0 be such that
r =

αs
α+ms+ε(m+1)s . Let us prove C(m) with Bθ = Lθ

(π), I = [r; s], a = s,
and finally T0(θ) =

αθ
α+εθ and T1(θ) =

αθ
α+θ . Since T0T1 = T1T0, one gets

T0
kT1

j
(θ) =

αθ
α+(j+εk)θ , in particular (T0T1)

mT0(s) = r, so the space ‹B in-

troduced in C(m) is ‹B = Lr
(π). Since T0(θ) < θ and T1(θ) < θ, we have

(0), and Lemma 4.2 gives (1) of C(m). To prove (2), let j ∈ {1, . . . ,m},
and let θ ∈ I such that θj := T1(T0T1)

j−1
(θ) ∈ I. We have θj < T j

1 (θ), thus
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LT j
1 (θ)

(π) �→ Lθj (π), so the regularity property in (2) follows from the following
lemma where Qk(t) is the kernel defined in Remark (b) of Section 7.1.

Lemma 7.4. — Let 1 ≤ j ≤ m. Then Q(·) ∈ C j
Ä
R, Lθ

(π), LT j
1 (θ)

(π)

ä
with

Q(k)
= Qk (k = 0, . . . , j).

Proof. — We denote � · �p for � · �Lp(π), and � · �p,q for � · �Lp(π),Lq(π). Let us
first show that Qk(·) ∈ C0

Ä
R, Bθ, BT j

1 (θ)

ä
for any k = 0, . . . , j. The case k = 0

follows from Lemma 4.2. For 1 ≤ k ≤ j, we have for t0, h ∈ R and f ∈ Lθ,

�Qk(t0 + h)f −Qk(t0)f�T1
j(θ) = �Qk(t0 + h)f −Qk(t0)f� αθ

α+jθ

≤ 2

���ξk
min{1, |hξ|}f

���
αθ

α+jθ

≤ 2

���ξk
min{1, |hξ|}

���
α
j

�f�θ

with
��ξk

min{1, |hξ|}
��

α
j
→ 0 when h→ 0 by Lebesgue’s theorem. Now let us

prove Q�
k = Qk+1 in L

�
Bθ, BT1

j(θ)

�
for k = 0, . . . , j − 1. From the inequality

|eia − 1− ia| ≤ 2|a|min{1, |a|}, one gets for t0, h ∈ R and f ∈ Bθ:
����Qk(t0 + h)f −Qk(t0)f − hQk+1(t0)f

����
αθ

α+jθ

≤
���Q

�
|ξ|k |eihξ − 1− ihξ| |f |

����
αθ

α+jθ

≤ 2|h|
���|ξ|(k+1)

min{1, |h| |ξ|}|f |
���

αθ
α+jθ

,

and therefore: �Qk(t0 + h)−Qk(t0)− hQk+1(t0)�θ,T1
j(θ) = o(|h|).

We know that Q satisfies (K) on Lp
(π) for every p ∈]1; +∞[ (Prop. 4.1).

Hence we have (3) of C(m), and (4) is obvious from the definition of T0, T1

and r.

In this example, one can also use Lemma 4.2 and Lemma 7.4 to prove that
Hypothesis C �(m) is satisfied by taking A > m such that r =

αs
α+As and by

setting Bθ := L
αs

α+θs (π).

8. A one-dimensional first-order Edgeworth expansion

In this section we assume that d = 1 (i.e. ξ is a real-valued measurable
function on E). When (Xn)n is Harris recurrent, the regenerative method
provides Edgeworth expansions under some “block” moment conditions [60]
[51]. Here we do not assume Harris recurrence, and we present an alternative
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statement. To that effect, we shall appeal to Hypothesis C(3) of Section 7.1
which ensures (Corollary 7.2) that the dominating eigenvalue λ(t) of Q(t) is
three times continuously differentiable: then one shall be able to repeat the
arguments of the i.i.d. first-order Edgeworth expansion of [25] (Th. 1 p. 506).

We denote by η the density function of N (0, 1) and by N its distribution
function. The next theorem extends the first-order Edgeworth expansion of the
i.i.d. case, with an additional asymptotic bias, namely bµ = limn Eµ[Sn] which
depends on the initial distribution µ. As for i.i.d.r.v., this bias is zero in the
stationary case (i.e. bπ = 0).

Theorem 8.1. — Suppose that π(|ξ|3) < +∞, that Hypothesis C(3) of Section
7.1 holds with B �→ ‹B �→ L1

(π), that the non-arithmeticity condition (S) of
Section 5.1 holds on B, and finally that the initial distribution µ is in ‹B

�
. Then

the real numbers

σ2
= lim

n

1

n
Eµ[S2

n] = lim
n

1

n
Eπ[S2

n], m3 = lim
n

1

n
Eπ[S3

n], bµ = lim
n

Eµ[Sn],

are well-defined, and if σ > 0, the following expansion holds uniformly in u ∈ R

(E) Pµ

Å
Sn

σ
√

n
≤ u

ã
= N (u) +

m3

6σ3
√

n
(1− u2

) η(u)− bµ

σ
√

n
η(u) + o(

1√
n

).

It will be seen in the proof of Lemma 8.4 below that
��σ2 − 1

n
Eµ[S2

n]
�� = O

� 1

n

�

and
��m3 −

1

n
Eπ[S3

n]
�� = O

� 1

n

�
.

Case of the strongly ergodic Markov chains on L2
(π). — In the special case

of uniform ergodicity, the expansion (E) was established in [64] for any ini-
tial distribution, under some hypothesis on the absolute continuous compo-
nent of Q(x, dy) w.r.t. π and under the following restrictive operator-moment
condition: there exists g : R→R such that g(u)→+∞ when |u|→+∞ and
supx∈E

�
E |ξ(y)|3 g(|ξ(y)|) Q(x, dy) < +∞. In [17], this result is slightly im-

proved, more precisely (E) is established under the weaker (but still restrictive)
moment condition supx∈E

�
E |ξ(y)|3 Q(x, dy) < +∞ and under some refine-

ments of the nonlattice condition given in [64]. In the stationary case (i.e. un-
der Pπ), the general asymptotic expansions established in [30] apply to the
uniformly ergodic Markov chains: they yield (E) when π(|ξ|4) < +∞, but un-
der the so-called Cramér condition that is much stronger than the nonlattice
one.
With the help of Theorem 8.1, one obtains here the following improvement
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which is moreover valid for the more general context of the strong ergodicity
on L2

(π).

Corollary 8.2. — Let us suppose that (Xn)n≥0 is a strongly ergodic Markov
chain on L2

(π), that π(|ξ|α) < +∞ with some α > 3, and that ξ is nonlattice
(Prop. 5.4). Then we have (E) for any initial distribution of the form dµ =

φ dπ, where φ ∈ Lr�
(π) for some r� > α

α−3 .

Proof. — Let r� be fixed as above and let r be such that 1
r +

1
r� = 1. Then

1 < r < α
3 , and since αs

α+3s �
α
3 when s→+∞, on can choose s such that

s > α
α−3 and αs

α+3s > r. We have C(3) with B = Ls
(π), ‹B = Lr

(π) (Prop. 7.3),
and (S) on Ls

(π) (see the proof of Cor. 5.5).

Proof of Theorem 8.1. — We shall appeal repeatedly to the notations and the
conclusions of Theorem (K-L) (cf. Section 4) and of Corollary 7.2 (case m = 3).
The existence of σ2, m3 and bµ follows from the two next lemmas.

Lemma 8.3. — We have λ�(0) = 0 and µ(Π
�
(0)1E) = i

�
k≥1 µ(Qkξ) =

i limn Eµ[Sn].

Proof. — By deriving the equality Q(·)Π(·)1E = λ(·) Π(·)1E , one gets

Q�
(0)1E + QΠ

�
(0)1E = λ�(0) 1E + Π

�
(0)1E in ‹B.

Thus π(Q�
(0)1E) + π(Π

�
(0)1E) = λ�(0) + π(Π

�
(0)1E). This gives λ�(0) =

i π(Qξ) = i π(ξ) = 0, and iQ(ξ) + QΠ
�
(0)1E = Π

�
(0)1E in ‹B. Therefore we

have Π
�
(0)1E−π(Π

�
(0)1E) = i

�
k≥1 Qkξ. This series is absolutely convergent

in ‹B since π(Qξ) = 0, Qξ = −iQ�
(0)1E ∈ ‹B and Q is strongly ergodic on

‹B. Moreover, we have π(Π
�
(0)1E) = 0. Indeed, by deriving Π(t)2 = Π(t),

we get 2π(Π
�
(0)1E) = π(Π(0)Π

�
(0)1E + Π

�
(0)Π(0)1E) = π(Π

�
(0)1E). Since

µ ∈ ‹B
�
, this yields the first equality of the second assertion. The second one is

obvious.

Lemma 8.4. — We have limn
1
n Eµ[S2

n] = −λ��(0) and limn
1
nEπ[S3

n] =

iλ(3)
(0).

Proof of Lemma 8.4. — For convenience, let us assume that µ = π and prove
the two equalities of Lemma 8.4 at once (see Rk. below). Since Eπ[ |ξ(Xk)|3 ] =

π(|ξ|3) < +∞, we have Eπ[ |S3
n| ] < +∞, so

Eπ[eitSn ] = 1− Eπ[S2
n]

t2

2
− i Eπ[S3

n]
t3

6
+ on(t3).
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Besides, Formulas (CF) (cf. Section 3) and Q(t)n
= λ(t)n

Π(t) + N(t)n (see
Section 7.2) give

Eπ[eitSn ] = λ(t)n π(Π(t)1E) + π(N(t)n
1E),

and, since λ�(0) = 0 and π(Π
�
(0)1E) = 0 (Lemma 8.3), it follows from Hypoth-

esis C(3) and Corollary 7.2 that

λ(t)n
= 1 + n

λ��(0)

2
t2 + n

λ(3)
(0)

6
t3 + on(t3), π(Π(t)1E) = 1 + ct2 + dt3 + o(t3),

with some c, d ∈ C, and since N(0)1E = 0, we have π(N(t)n
1E) = ent +

fnt2 + gnt3 + on(t3) for all n ≥ 1, with some en, fn, gn ∈ C. Moreover, from
Assertion (ii) in Corollary 7.2, it follows that the sequences (en)n, (fn)n and
(gn)n are bounded. From the previous expansions, one can write another third
order Taylor expansion for Eπ[eitSn ], from which we easily deduce the following
equalities (and so Lemma 8.4):

nλ��(0) + 2c + 2fn = −Eπ[S2
n] and nλ(3)

(0) + 6d + 6gn = −i Eπ[S3
n].

Remark. — By using the above arguments with second-order Taylor expan-
sions, it can be easily proved that the first equality of Lemma 8.4 is valid under
Hypothesis C(2) for any µ ∈ ‹B

�
. To prove Eµ[S2

n] < +∞ under Hypothesis
C(2) and for µ ∈ ‹B

�
, we notice that Q��

(0)1E = −Q(ξ2
) ∈ ‹B, so Qk

(ξ2
) ∈ ‹B

for k ≥ 1, and Eµ[ξ(Xk)
2
] = µ(Qkξ2

) < +∞.

The proof of the Edgeworth expansion (E) is close to that of the i.i.d. case
[25] (XVI.4). For convenience, one may assume, without any loss of generality,
that σ = 1 (of course this reduction also leads to alter the constants m3 and
bµ). Set

Gn(u) = N (u) +
m3

6
√

n
(1− u2

) η(u)− bµ√
n

η(u)(u ∈ R).

Then Gn has a bounded derivative gn on R whose Fourier transform γn is given
by

γn(t) = γ0,n(t) + γµ,n(t), where

γ0,n(t) = e−
1
2 t2

Å
1 +

m3

6
√

n
(it)3

ã
and γµ,n(t) = e−

1
2 t2

Å
i

bµ√
n

t

ã
.

Let us notice that the part γ0,n(t) has the same form as in the i.i.d. context.
Let us set

∀t ∈ R, φn(t) = Eµ[eitSn ].
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The first question is to prove the so-called Berry-Esseen inequality

sup
u∈R

���� Pµ(
Sn√

n
≤ u)−Gn(u)

���� ≤
1

π

� T

−T

����
φn(

t√
n
)− γn(t)

t

���� dt +
24m

πT
,

where m = sup{|G�
n(u)|, n ≥ 1, u ∈ R}. To do this, let us observe that all the

hypotheses of Lemma 2 in Section XVI.3 of [25], which provides this inequality,
are satisfied, except γ�n(0) = 0 because of the additional term γµ,n(t) in γn(t).
However it can be easily seen that the above cited lemma of [25] still holds under
the condition that γn(t)−1

t is continuous at the origin. Indeed the argument in
[25] (p. 511) deriving from the Riemann-Lebesgue theorem then remains valid.
Obviously the previous condition on γn is fulfilled since γµ,n(t)

t = i bµ√
n

e−
1
2 t2 .

Thus we have the desired Berry-Esseen inequality and we can now proceed as
in [25]: let ε > 0, let T = a

√
n with a such that 24m

πa < ε. So 24m
πT ≤ ε√

n
.

Let 0 < δ < a such that [−δ, δ] is contained in the interval O of Theorem (K-L)
applied on B, and let us write

� a
√

n

−a
√

n

����
φn(

t√
n
)− γn(t)

t

���� dt =

�

δ
√

n≤|t|≤a
√

n
+

�

|t|≤δ
√

n
:= An + Bn.

The property (E) then follows from the two next lemmas.

Lemma 8.5. — There exists N0 ∈ N∗ such that An ≤ ε√
n

for all n ≥ N0.

Proof. — From Formula (CF) (cf. Section 3), Condition (S) (cf. Section 5.1) on
B applied with K0 = [−a,−δ]∪ [δ, a], and from µ ∈ ‹B

�
⊂ B�, there exist ρ < 1

and c� ≥ 0 such that we have, for n ≥ 1 and u ∈ K0: |φn(u)| = |µ(Q(u)
n
1E)| ≤

c� ρn. So
�

δ
√

n≤|t|≤a
√

n

|φn(
t√
n
)|

|t| dt =

�

δ≤|u|≤a

|φn(u)|
|u| du ≤ 2a

δ
c� ρn.

Moreover, for n sufficiently large, we have
�

δ
√

n≤|t|≤a
√

n

|γn(t)|
|t| dt ≤

�

|t|≥δ
√

n
|γn(t)|dt.

We easily deduce Lemma 8.5 from the two last estimates.

Lemma 8.6. — There exists N �
0 ∈ N∗ such that Bn ≤ ε√

n
for all n ≥ N �

0.

Proof. — Using γn(t) = γ0,n(t) + γµ,n(t) and the equality

φn(t) = λ(t)n µ(Π(t)1E) + µ(N(t)n
1E)
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which follows from (CF) and from Theorem (K-L), one can write for any t such
that |t| ≤ δ

√
n

φn(
t√
n

)− γn(t) =

Å
λ(

t√
n

)
n − γ0,n(t)

ã
+ λ(

t√
n

)
n

Å
µ(Π(

t√
n

)1E)− 1− i bµ
t√
n

ã

+i bµ
t√
n

Å
λ(

t√
n

)
n − e−

1
2 t2

ã
+ µ(N(

t√
n

)
n
1E)

:= in(t) + jn(t) + kn(t) + �n(t).

So: Bn ≤
�

|t|≤δ
√

n

Å
|in(t)|+ |jn(t)|+ |kn(t)|+ |�n(t)|

ã
dt

|t| := In +Jn +Kn +Ln.

Then Lemma 8.6 follows from the assertions (i)-(l) below for which, as in the
i.i.d. case, we shall repeatedly appeal to the following remark: using the Taylor
expansion λ(t) = 1 − t2

2 + o(t2) near 0 (use Lemmas 8.3-4 and σ2
= 1), one

can choose the real number δ such that |λ(u)| ≤ 1− u2

4 ≤ e−
u2

4 when |u| ≤ δ,

hence we have |λ(
t√
n

)|n ≤ e−
t2

4 for any |t| ≤ δ
√

n.

(i) ∃N1 ∈ N∗,∀n ≥ N1, In ≤ ε√
n
. This can be proved exactly as in the

i.i.d. case [25] since we have λ(t) = 1− t2

2 − i m3
6 t3 + o(t3) (Lemmas 8.3-4).

(j) ∃N2 ∈ N∗,∀n ≥ N2, Jn ≤ ε√
n
. Indeed, since u �→ µ(Π(u)1E) has two

continuous derivatives on [−δ, δ] (Coro. 7.2) and µ(Π
�
(0)1E) = ibµ (Lemma

8.3), there exists C > 0 such that:

Jn ≤
�

|t|≤δ
√

n
e−

t2

4
Ct2

n

dt

|t| ≤
C

n

� +∞

−∞
e−

t2

4 |t| dt.

(k) ∃N3 ∈ N∗,∀n ≥ N3, Kn ≤ ε√
n
. Indeed we have

Kn ≤
|bµ|√

n

�

|t|≤δ
√

n

����λ(
t√
n

)
n − e−

1
2 t2

���� dt,

and from the already mentioned second order Taylor expansion of λ(t) and
Lebesgue’s theorem, it follows that this last integral converges to 0 when
n→+∞.

(l) ∃N4 ∈ N∗,∀n ≥ N4, Ln ≤ ε√
n
. Indeed, the function χn : u �→

µ(N(u)
n
1E) is continuously differentiable on [−δ, δ] and there exists C � > 0

such that we have for all n ≥ 1 and u ∈ [−δ, δ]: |χ�n(u)| ≤ C �κ̃n (Corollary
7.2(ii)). Since N(0)1E = 0, one then obtains |µ(N(u)

n
1E)| ≤ C � κ̃n |u| for

|u| ≤ δ, so

Ln ≤
C �
√

n
κ̃n

2δ
√

n = 2C �δ κ̃n
= o(

1√
n

).
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Remark. — In the i.i.d. case, higher-order Edgeworth expansions can be es-
tablished, see [25] (Th. 2 p. 508), but the non-arithmeticity assumption has to
be replaced with the so-called more restrictive Cramer condition. Notice that,
in our context, this condition can be extended to some operator-type Cramer
condition, and that the present method could be then employed to prove similar
higher-order Edgeworth expansions. However, the main difficulty is to reduce
this operator-type Cramer assumption to some more practical condition.

9. A multidimensional Berry-Esseen theorem

We want to estimate the rate of convergence in the central limit theorem for
a Rd-valued function ξ = (ξ1, . . . , ξd). A natural way to do this is in the sense
of the Prohorov metric. Let us recall the definition of this metric and some
well-known facts about it. We denote by B(Rd

) the Borel σ-algebra of Rd and
by M1(Rd

) the set of probability measures on (Rd, B(Rd
)).

The Prohorov metric. — [9, 21]. For all P,Q in M1(Rd
), we define:

P(P,Q) := inf
�
ε > 0 : ∀B ∈ B(Rd

), (P (B)−Q(Bε
)) ≤ ε

�
,

where Bε is the open ε-neighbourhood of B.

The Ky Fan metric for random variables. — If X and Y are two Rd-valued ran-
dom variables defined on the same probability space (E0, T 0, P0), we define:

K (X,Y ) := inf {ε > 0 : P0 (|X − Y |2 > ε) < ε} .

Let us recall that limn→+∞ K (Xn, Y ) = 0 means that (Xn)n converges in
probability to Y .

Proposition ([21] Corollary 11.6.4). — For all P,Q in M1(Rd
), the quantity

P(P,Q) is the infimum of K (X, Y ) over the couples (X,Y ) of Rd-valued ran-
dom variables defined on the same probability space, whose distributions are
respectively P and Q.

For any n ≥ 1, µ∗
Ä

Sn√
n

ä
stands for the law of Sn√

n
under Pµ, and we denote

by S⊗2
n the random variable with values in the set of d× d matrices given by:

�
Sn

⊗2�
i,j

=

n�

k,�=1

ξi(Xk)ξj(X�).
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Theorem 9.1. — Let us fix m := max (3, �d/2�+ 1). Suppose that Hypothesis
C(m) (of Section 7.1) holds with B �→ ‹B �→ L1

(π), and that µ ∈ ‹B
�
. Then the

following limits exist and are equal:

Γ := lim
n→+∞

1

n
Eπ[Sn

⊗2
] = lim

n→+∞

1

n
Eµ[Sn

⊗2
].

If Γ is invertible, then
Ä

Sn√
n

ä
n

converges in distribution under Pµ to the gaussian
distribution N (0,Γ), and we have

P
Å

µ∗

Å
Sn√

n

ã
, N (0,Γ)

ã
= O(n−1/2

).

In the i.i.d. case, thanks to a smoothing inequality (see Proposition 9.3) and
to an additional truncation argument, the conclusion of Theorem 9.1 holds if the
random variables admit a moment of order 3. For the strongly ergodic Markov
chains on L2

(π), one gets the following statement which is a consequence of
Theorem 9.1 and of Proposition 7.3 (proceed as for Corollary 8.2).

Corollary 9.2. — Let us suppose that (Xn)n≥0 is a strongly ergodic Markov
chain on L2

(π), that π(|ξ|α2 ) < +∞ for some α > m := max(3, �d/2� + 1),
and that the initial distribution satisfies dµ = φdπ with φ ∈ Lr�

(π) for some
r� > α

α−m . Then the conclusion of Theorem 9.1 is true.

Concerning the special case of the uniform ergodicity, notice that [30] pro-
vides a multidimensional uniform Berry-Esseen type estimate when π(|ξ|42) <
+∞. However, the hypothesis µ = π (i.e. (Xn)n is stationary), and the Cramer
condition for ξ(X0), are required in [30], while the (Prohorov) estimate in Corol-
lary 9.2, and more generally in Theorem 9.1, is valid in the non-stationary case
and without any lattice-type condition.

Let us mention that Theorem 9.1 remains true when Γ is non invert-
ible if, for every β ∈ Rd such that �β,Γβ� = 0, we are able to prove that
supn ��β, Sn��∞ < +∞. In this case, up to a linear change of coordinates and
to a possible change of d, we are led to the invertible case (see Section 2.4.2 of
[66]). This remark applies to the Knudsen gas model (see Section 1).

When d = 1, Theorem 9.1 gives the uniform Berry-Esseen result under
Condition C(3) if the asymptotic variance σ2 is nonzero. This is an easy
consequence of the definition of P by taking B = (−∞, x] and B = (x,+∞).
However, as already mentioned, C(3) is in practice a little more restrictive
than the conditions of Section 6; for instance, compare the expected condition
π(|ξ|3) < +∞ of Corollary 6.3 with that of Corollary 9.2 (case d = 1).

The proof of Theorem 9.1 is based on Corollary 7.2, on Lemmas 8.3 and 8.4
and on the following smoothing inequality due to Yurinskii [53]:
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Proposition 9.3. — Let Q be some non degenerate d-dimensional normal
distribution. There exists a real number c0 > 0 such that, for any real number
T > 0 and for any Borel probability measure P admitting moments of order
�d

2�+ 1, we have:

P (P,Q) ≤ c0

ï
1

T
+

Å�

|t|2<T

� d
2 �+1�

k=0

�

{i1,...,ik}∈{1,...,d}k

����
∂k

∂ti1 ...∂tik

Å
P (ei�t,·�

)−Q(ei�t,·�
)

ã����
2

dt

ã 1
2
ò
.

Proof of Theorem 9.1. — The proof uses Corollary 7.2 which is applied here
under Hypothesis C(m) with m defined in Theorem 9.1. In particular we have
m ≥ 3, and we shall use repeatedly the fact that 1E ∈ B and π, µ ∈ ‹B

�
. Since

the proof has common points with the proof given in Section 2.4.1 of [66], we
do not give all the details. We shall refer to [66] for some technical points.

The existence of the asymptotic covariance matrix Γ as defined in Theorem
9.1 follows from the next lemma in which ∇ and Hess denote the gradient and
the Hessian matrix.

Lemma 9.4. — We have ∇λ(0) = 0 and limn
1
n Eµ[S⊗2

n ] = −Hessλ(0).

Proof. — These properties have been proved in the case d = 1 (Lemmas 8.3-
4). We deduce from them the multidimensional version by considering, for any
α ∈ Rd, the function t �→ Q(tα) defined on R.

Without any loss of generality, up to a linear change of variables, we may
suppose that the covariance matrix Γ is the identity matrix.

Let β > 0 be such that the closed ball {u ∈ Rd
: |u|2 ≤ β} is contained in the

set O of Corollary 7.2. In the following, the couple (t, n) (t ∈ Rd, n ≥ 2) will
always satisfy the condition |t|2 < β

√
n. For such a couple, we have: t√

n
∈ O.

For any function F defined on an open set of Rd, F (k) will merely denote any
partial derivative of order k of F (·).

Set Ξn(t) := Eµ[ei�t, Sn√
n
�
]−e−

|t|2
2

2 . According to Proposition 9.3, it is enough
to prove that we have for k = 0, . . . , [d

2 ] + 1

(I)
Ç�

|t|2≤β
√

n
|Ξ(k)

n (t)|2 dt

å 1
2

= O

Å
1√
n

ã
.
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From the decomposition Eµ[ei�u,Sn�] = λ(u)
n µ(Π(u)1E) + µ(N(u)

n
1E) which

is valid for u ∈ O, it follows that

Ξ
(k)
n =

Å
λ(

·√
n

)
n − e−

|·|2
2

2

ã(k)

+

ß
λ(

·√
n

)
n

Å
µ(Π(

·√
n

)1E)− 1

ã™(k)

+

Å
µ(N(

·√
n

)
n
1E)

ã(k)

:= A(k)
n + B(k)

n + C(k)
n

where the functions An, Bn and Cn, defined on the set {t : |t|2 < β
√

n},
are implicitly given by the above equality. In the sequel, we merely use the
notation Fn(t) = O(Gn(t)) to express that |Fn(t)| ≤ C |Gn(t)| for some C ∈ R+

independent of (t, n) such that |t|2 ≤ β
√

n.
Setting Nn(·) = N(·)n, Corollary 7.2(ii) yields

|C(k)
n (t)| = n−

k
2 |µ(N (k)

n (
t√
n

)1E)| = O(n−
k
2 κ̃n

).

So
�

|t|2≤β
√

n
|C(k)

n (t)|2 dt = O(n
d
2−k κ̃2n

) = O(
1√
n

). Now (I) will be clearly

valid provided that we have, for some square Lebesgue-integrable function χ(·)
on Rd:

(II) |A(k)
n (t)| + |B(k)

n (t)| = O

Å
1√
n

χ(t)

ã
.

To prove this estimate for the term A(k)
n , one can proceed as in the i.i.d. case.

Indeed, according to the previous lemma, the function λ(·) then satisfies the
same properties and plays exactly the same role, as the common characteristic
function of the i.i.d. case (see Section 3 of [53] and Lemma 8 of [69] or [66]
pages 2349–2350).

To study B(k)
n (t), set λn(t) = λ(

t√
n
)
n for any (t, n) such that |t|2 ≤ β

√
n

and, for |u|2 ≤ β, set α(u) = µ(Π(u)1E) − 1. With these notations, we have
Bn(t) = λn(t) α(

t√
n
), and any partial derivative B(k)

n (t) is a finite sum of terms
of the form

B(k)
n,p,q(t) := λ(p)

n (t) n−
q
2 α(q)

(
t√
n

) with p + q = k.

Lemma 9.5. — For p = 0, . . . ,m, we have |λ(p)
n (t)| = O

Å
(1 + |t|p2) e−

|t|2
2

4

ã
.

Assume this lemma for the moment. Since we have, by Corollary 7.2(i),
α(

t√
n
) = O(

|t|2√
n
) and α(q)

(
t√
n
) = O(1) for 1 ≤ q ≤ m, this lemma gives for
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q = 0

B(k)
n,k,0(t) = O

Å
(1 + |t|k2) e−

|t|2
2

4

ã
O(

|t|2√
n

) = O

Å
1√
n

(1 + |t|k+1
2 ) e−

|t|2
2

4

ã
,

and for q ≥ 1:

B(k)
n,p,q(t) = O

Å
(1 + |t|p2) e−

|t|2
2

4

ã
O(n−

q
2 ) = O

Å
1√
n

(1 + |t|k+1
2 ) e−

|t|2
2

4

ã
.

So all the B(k)
n,p,q(t)’s are O

�
1√
n

χ(t)
�

with χ(t) = (1+ |t|k+1
2 ) e−

|t|2
2

4 , and this

gives the estimate (II) for B(k)
n (t), and finally the proof of (I) is complete.

Proof of Lemma 9.5. — Recall Γ is by hypothesis the identity matrix, so
λ(u) = 1 − |u|22

2 + o(|u|22) as u goes to 0 (use Lemma 9.4). Hence, for |u|2 ≤ β
with β possibly reduced,

|λ(u)| ≤
����λ(u)− 1 +

|u|22
2

���� +

����1−
|u|22
2

���� ≤
|u|22
4

+ (1− |u|22
2

) ≤ 1− |u|22
4

≤ e−
|u|2

2
4 ,

so |λ(
t√
n
)| ≤ e−

|t|2
2

4n and |λ(
t√
n
)
n| ≤ (e−

|t|2
2

4n )
n

= e−
|t|2

2
4 . This gives the esti-

mate of the lemma for p = 0. Now, in the case p ≥ 1, one can prove by a
straightforward induction that λ(p)

n (t) is a finite sum of terms of the form

γ(t, n) := n(n− 1) · · · (n− j + 1) n−
p
2 λ(s1)(

t√
n

) · · ·λ(sj)(
t√
n

) λ(
t√
n

)
n−j ,

with j ∈ {1, . . . , p}, si ≥ 1, and s1 + · · · + sj = p (for convenience, j, s1, . . . , sj

have been neglected in the above notation γ(t, n)). So we must prove that, given

such fixed j, s1, . . . , sj , we have γ(t, n) = O

Å
(1 + |t|p2) e−

|t|2
2

4

ã
. To that effect,

let us observe that λ(1)
(

t√
n
) = O(

|t|2√
n
) since λ(1)

(0) = 0, and that λ(s)
(

t√
n
) =

O(1) for any s = 2, . . . ,m. This leads to define a = Card{i : si = 1}. Then we
have

γ(t, n) = O

Å
nj− p

2
|t|a2
n

a
2

(e−
|t|2

2
4n )

n−j

ã
= O

Å
e

j
4

�� t√
n

��2
2nj− p

2−
a
2 |t|a2 e−

|t|2
2

4

ã

= O

Å
n

1
2 (2j−p−a)

(1 + |t|p2) e−
|t|2

2
4

ã
.

For the last estimate, we used the fact that
��� t√

n

���
2
≤ β and a ≤ p. Finally

observe that we have p = s1 + · · · + sj ≥ a + 2(j − a) by definition of the
number a, thus 2j − p − a ≤ 0, so that the desired estimate on γ(t, n) follows
from the previous one.
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10. Application to v-geometrically ergodic Markov chains

For the moment, the abstract results of the previous sections have been
only applied to the (somewhat restrictive) strongly ergodic Markov chains on
L2

(π). This section and the next one present applications to other practicable
Markov models, namely the so-called v-geometrically ergodic Markov chains
and the random iterative models (see Examples 2-3 in Section 1). The interest
of these models for statistical applications and for stochastic algorithms is fully
described in [61] [22], and of course, the rate of convergence in the c.l.t. and
the Edgeworth expansions are of great importance in practice, see e.g [62] [8].
For these models, all the previously studied limit theorems will be stated under
general and simple moment conditions.
Throughout this section, we suppose that the σ-field E is countably generated,
that (Xn)n≥0 is aperiodic and ψ-irreducible w.r.t. a certain positive σ-finite
measure ψ on E.
Moreover, given an unbounded function v : E→[1,+∞[, we assume that
(Xn)n≥0 is v-geometrically ergodic, that is π(v) < +∞ and there exist real
numbers κ0 < 1 and C ≥ 0 such that we have, for all n ≥ 1 and x ∈ E,

sup

ß
|Qnf(x)− π(f)| , f : E→C-measurable, |f | ≤ v

™
≤ C κn

0 v(x).

If w is an unbounded function defined on E and taking values in [1,+∞[,
we denote by (Bw, � · �w) the weighted supremum-normed space of measurable
complex-valued functions f on E such that

�f�w = sup
x∈E

|f(x)|
w(x)

< +∞.

Let us observe that µ ∈ B�w if µ(w) < +∞. In particular we have π ∈ B�v by
hypothesis. Clearly, v-geometrical ergodicity means that Q is strongly ergodic
w.r.t. Bv.

Let 0 < θ ≤ 1. For the sake of simplicity, we slightly abuse notation below by
writing Bθ = Bvθ and � · �θ = � · �vθ . In particular B1 = Bv and � · �1 = � · �v.

The next lemma will be repeatedly used below (here ξ is only supposed to
be measurable).

Lemma 10.1. — Condition (“K) of Section 5.2 holds true on B = Bθ, with
“B = L1

(π).

Proof. — The property (K1) of Section 1 on Bθ (i.e. (Xn)n≥0 is vθ-geomet-
rically ergodic) follows from the well-known link between v-geometric ergod-
icity and the so-called drift criterion [61]. More precisely, under the aperi-
odicity and ψ-irreducibility hypotheses, the w-geometric ergodicity for some
w : E→[1,+∞[ is equivalent to the following condition: there exist r < 1,

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



458 L. HERVÉ & F. PÈNE

M ≥ 0 and a petite set C ∈ E such that Qw0 ≤ rw0 + M1C , where w0 is a
function equivalent to w in the sense that c−1 w ≤ w0 ≤ c w for some c ∈ R∗+.
From that and since the function t �→ tθ is concave on R+, v-geometric ergod-
icity implies, by virtue of Jensen’s inequality, that

Q(vθ
0) ≤ (rv0 + M1C)

θ ≤ rθvθ
0 + Mθ

1C ,

where v0 stands for some function equivalent to v. Thus (Xn)n≥0 is vθ-geo-
metrically ergodic.

Besides, since π(|ei�h, ξ�−1| |f |) ≤ �f�θ π(|ei�h, ξ�−1| vθ
) for f ∈ Bθ, we have

(”K2) (use Lebesgue’s theorem and Remark (a) of Section 4). Besides we have
(”K3) by Remark (b) of Section 4. Since Bθ is a Banach lattice, the property
(”K4) w.r.t. Bθ can be deduced from the abstract statement [67, Cor. 1.6] (a
simpler proof based on [42] is presented in [47]).

If |ξ|22 ≤ C v for some C > 0, then (
Sn√

n
)n converges to a normal distribution

N (0,Γ) for any initial distribution. This is a classical result [61] which can be
also deduced, in the stationary case, from the statements of Section 2. Indeed,
the condition |ξ|22 ≤ C v implies that the coordinate functions ξi of ξ belong
to the space B 1

2
. Since π(v) < +∞, we have B 1

2
�→ L2

(π), and the previous
lemma shows that Q is strongly ergodic on B 1

2
. So the desired c.l.t. follows

from Proposition 2.2 and Corollary 2.1 both applied with B = B 1
2
.

Recall that, without additional assumptions, this central limit theorem does
not hold under the weaker condition π(|ξ|22) < +∞ (see [52]). In the same
way, the limit theorems below will hold under moment conditions of the type
|ξ|α2 ≤ C v with some suitable exponent α ≥ 2, and some positive constant C.
So α will measure the order in these moment conditions, and we are going to
see that, except for the multidimensional Berry-Esseen theorem, it is similar
(possibly up to ε > 0) to that of the i.i.d. case.

The hypotheses of Assertions (a)-(d) below will imply that the above cited
c.l.t. holds, and it will be then understood that Γ is non-singular (this means
σ2 > 0 in case d = 1), hence we have (CLT) of Section 5.1. The nonlattice
condition below is that of Proposition 5.4. Finally we suppose that the initial
distribution µ is such that µ(v) < +∞.

Corollary 10.2. — We have the following properties:
(a) If |ξ|22 ≤ C v and ξ is nonlattice, then we have (LLT) of Theorem 5.1

with B = B 1
2

and ˜B = Bv.
(b) (Case d = 1) If |ξ|3 ≤ C v, then the uniform Berry-Esseen estimate

holds:
∆n = O(n−

1
2 ).
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(c) (Case d = 1) If |ξ|α ≤ C v with some α > 3 and ξ is nonlattice, then the
first-order Edgeworth expansion (E) of Theorem 8.1 holds.

(d) If |ξ|α2 ≤ Cv with some α > max (3, �d/2�+ 1), then the (Prohorov)
Berry-Esseen estimate holds: P

Ä
µ∗

Ä
Sn√

n

ä
, N (0,Γ)

ä
= O(n−1/2

).

From the usual spectral method, (a) was established in [71] for bounded
functionals ξ. Assertion (a) extends the result of [46] stated under a kernel
condition on Q. From Bolthausen’s theorem [11], the one-dimensional uniform
Berry-Esseen theorem holds under Pπ (stationary case) if π(|ξ|p) < +∞ for
some p > 3. Assertion (b), already presented in [47], extends this result to
the non-stationary case under an alternative third-order moment condition.
Assertion (c) was established in [55] for bounded functional ξ, and (d) is new
to our knowledge.

Proof of Corollary 10.2. — Set ‹B := B1 = Bv. From Lemma 10.1, we have
on each Bθ: (K1), (›K3) (see Rk. (c) in Sect. 4), and we have (S) if and only if
ξ is nonlattice (Prop. 5.4).

(a) Since g := |ξ|2 ∈ B 1
2
, one gets:

∀f ∈ B 1
2
, |Q(t + h)f −Q(t)f | ≤ Q

�
|ei�h, ξ� − 1| |f |

�
≤ |h|2 �g� 1

2
�f� 1

2
Qv,

and since Qv
v is bounded, this proves (›K2), hence (‹K), with B = B 1

2
. So

Theorem 5.1 applies.
(b) Since (K1) holds on B 1

3
and B 2

3
, and B 1

3
�→ L3

(π), B 2
3

�→ L 3
2 (π), we

have (G1) (G2), so (CLT�) (Section 6). We observe that we have |Q(t)f−Qf | ≤
|t| �ξ� 1

3
�f� 1

3
Qv

2
3 for all f ∈ B 1

3
, and since Qv

2
3

v ≤ Qv
v , one gets �Q(t) −

Q�B 1
3

, B1
= O(|t|). So Theorem 6.1 applies with B = B 1

3
.

Using the next proposition, Assertions (c) and (d) follow from Theorems 8.1
and 9.1.

Proposition 10.3. — If |ξ|α2 ≤ C v with α > m (m ∈ N∗), then C(m) holds
with B = Ba, ‹B = B1, for any a > 0 such that: a +

m
α < 1.

Proof. — For convenience, let us assume that d = 1. The extension to d ≥ 2 is
obvious by the use of partial derivatives. Let ε > 0 such that a+

m+(2m+1)ε
α ≤ 1.

We take I = [a, 1], Bθ (θ ∈ I) as above defined, and we consider T0(θ) = θ+
ε
α ,

T1(θ) = θ +
1+ε
α . Recall that we set: Qk(t)(x, dy) = ikξ(y)

keitξ(y) Q(x, dy)

(k ∈ N, t ∈ R, x ∈ E). With these notations, the proof of C(m) is a consequence
of the two following lemmas.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



460 L. HERVÉ & F. PÈNE

Lemma 10.4. — For any k = 0, . . . ,m and θ, θ� > 0 such that θ +
k
α < θ� ≤ 1,

we have Qk ∈ C0
(R, Bθ, Bθ�).

Proof. — Let 0 < δ ≤ 1 such that θ+
k+δ
α ≤ θ�. Using the inequality |eiu−1| ≤

2|u|δ (u ∈ R), one gets for t, t0 ∈ R and f ∈ Bθ:

|Qk(t)f−Qk(t0)f | ≤ Q
�
|ξ|k |ei(t−t0)ξ−1| |f |

�
≤ 2 C

k+δ
α |t−t0|δ �f�θQ(v

k+δ
α +θ

),

hence �Qk(t)f −Qk(t0)f�θ� ≤ 2 C
k+δ

α |t− t0|δ �f�θ �Q(vθ�
)�θ� .

Lemma 10.5. — For any k = 0, . . . ,m− 1 and θ, θ� > 0 such that θ +
k+1

α <

θ� ≤ 1, we have Qk ∈ C1
(R, Bθ, Bθ�) with Q�

k = Qk+1.

Proof. — Let 0 < δ ≤ 1 such that θ+
k+1+δ

α ≤ θ�. Using |eiu−1−iu| ≤ 2|u|1+δ

and proceeding as above, one gets �Qk(t)f −Qk(t0)f − (t− t0)Qk+1(t0)f�θ� ≤
2 C

k+1+δ
α |t − t0|1+δ�f�θ �Q(vθ�

)�θ� for t0, t ∈ R and f ∈ Bθ. Since we have
Qk+1 ∈ C0

(R, θ, θ�), this yields the desired statement.

Remark. — The above proof shows that Assertion (b) of Corollary 10.2 holds
under the alternative following hypotheses: (Xn)n≥0 is v

2
3 -geometrically er-

godic, µ(v
2
3 ) < +∞, |ξ|3 ≤ C v, and finally π(v) < +∞, in order to have

B 1
3

�→ L3
(π) and B 2

3
�→ L 3

2 (π) (use ‹B = B 2
3
).

11. Applications to iterative Lipschitz models

11.1. Iterative Lipschitz models. — Here (E, d) is a non-compact metric space
in which every closed ball is compact. We endow it with its Borel σ-field E.
Let (G, G) be a measurable space, let (θn)n≥1 be a sequence of i.i.d.r.v. taking
values in G. Let X0 be a E-valued r.v. independent of (θn)n, and finally let
F : E ×G→E be a measurable function. We set

Xn = F (Xn−1, θn), n ≥ 1.

For θ ∈ G, x ∈ E, we set Fθx = F (x, θ) and we suppose that Fθ : E→E is
Lipschitz continuous. Then (Xn)n≥1 is called an iterative Lipschitz model [20]
[22]. It is a Markov chain and its transition probability is:

Qf(x) = E[ f(F (x, θ1)) ].

Let x0 be a fixed point in E. As in [22], we shall appeal to the following r.v:

C = sup

ß
d(Fθ1x, Fθ1y)

d(x, y)
, x, y ∈ E, x �= y

™
and M = 1 + C + d

�
F (x0, θ1), x0

�
.

As a preliminary, let us present a sufficient condition for the existence and the
uniqueness of an invariant distribution. The following proposition is proved in
[44] (Th. I).
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Proposition 11.1. — Let α ∈ (0, 1], η ∈ R+. Under the moment condition
E[Mα(η+1)

] < +∞ and the mean contraction condition E[ Cα
max{ C , 1}αη

] < 1,
there exists a unique stationary distribution, π, and π(d(·, x0)

α(η+1)
) < +∞.

More precise statements can be found in the literature (see e.g [20] [22]).
However, the hypotheses occurring in Proposition 11.1 are convenient in our
context and are similar to those introduced later.

Finally, we shall suppose that ξ satisfies the following condition, with given
S, s ≥ 0:

((L)s) ∀(x, y) ∈ E × E, |ξ(x)− ξ(y)|2 ≤ S d(x, y)
�
1 + d(x, x0) + d(y, x0)

�s
.

For convenience, Condition (L)s has been stated as a weighted-Lipschitz con-
dition w.r.t. the distance d(·, ·) on E. However, by replacing d(·, ·) with the
distance d(·, ·)a (0 < a ≤ 1), Condition (L)s then corresponds to the general
weighted-Hölder condition of [22].

Section 11.2 below will introduce weighted Hölder-type spaces and inves-
tigate all the hypotheses of the previous sections. Using these preliminary
statements, we shall see in Section 11.3 that the limit theorems of the preced-
ing sections then apply to (ξ(Xn))n under some mean contraction and moment
conditions. These conditions will focus on the random variables C , M and will
depend on the real number s of Condition (L)s.

To compare with the i.i.d. case, let us summarize the results obtained in
Section 11.3 in the following special setting: (Xn)n is a Rd-valued iterative
Lipschitz sequence such that C < 1 a.s.. For convenience we also assume that
(Xn)n is stationary, with stationary distribution π, and we consider the random
walk associated to ξ(x) = x− Eπ[X0], that is:

Sn = X1 + · · · + Xn − nEπ[X0].

Finally suppose that E[ M2
] < +∞. Then the sequence (

Sn√
n
)n converges to

N (0,Γ) [7], and we assume that Γ is invertible. Corollaries of Section 11.3 will
then provide the following results:

(i) Local limit theorem:
ξ nonlattice ⇒ (LLT) of Section 5.1 with for instance f = h = 1E ,
(ii) (d = 1) Uniform Berry-Esseen type theorem:
E[M3

] < +∞ ⇒ ∆n = O(n−
1
2 ),

(iii) (d = 1) First-order Edgeworth expansion:
E[M3+ε

] < +∞, ξ nonlattice ⇒ (E) of Section 8,
(iv) multidimensional Berry-Esseen theorem (with Prohorov metric):
E[Mm+ε

] < +∞ with m = max (3, �d/2�+ 1) ⇒ the conclusion of Theorem
9.1 holds.
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More generally, the previous assertions apply to (ξ(Xn))n whenever ξ is a
Lipschitz continuous function on E (i.e. (L)s holds with s = 0).

Example. The autoregressive models. — A simple and typical example is the
autoregressive chain defined in Rd by

Xn = An Xn−1 + θn (n ∈ N∗)
where (An, θn)n≥1 is a i.i.d. sequence of r.v. taking values in Md(R) × Rd,
independent of X0. (Md(R) denotes the set of real d × d-matrices.) Assume
that we have |A1| < 1 a.s., where | · | denotes here both some norm on Rd and
the associated matrix norm. Taking the distance d(x, y) = |x − y| on Rd, we
have C = |A1| and M ≤ 2 + |θ1|. So the above moment conditions in (i)-(iv)
only concern |θ1|.

The special value An = 0 corresponds to the i.i.d. case (Sn = θ1 + · · · +

θn − nE[θ1]), and we can see that the moment conditions in (i)-(iii) are then
optimal for Statements (i) (ii), and optimal up to ε > 0 for Statement (iii).

Let us mention that [39] investigates the convergence to stable laws for the
random walk associated to the above autoregressive model (Xn)n (case d = 1)
and to ξ(x) = x. By using the Keller-Liverani theorem, [39] presents very
precise statements, similar to the i.i.d. case, in function of the "heavy tail"
property of the stationary distribution of (Xn)n.

11.2. Preliminary results. — The weighted Hölder-type spaces, introduced in
[57], have been used by several authors for proving quasi-compactness under
some contracting property [62, 65]. Here we slightly modify the definition of
these spaces by considering two positive parameters β and γ in the weights.
This new definition is due to D. Guibourg.

Let us consider 0 < α ≤ 1 and 0 < β ≤ γ. For x ∈ E, we define p(x) =

1 + d(x, x0), and for (x, y) ∈ E2, we set

∆α,β,γ(x, y) = p(x)
αγ p(y)

αβ
+ p(x)

αβ p(y)
αγ .

Then Bα,β,γ denotes the space of C-valued functions on E satisfying the fol-
lowing condition

mα,β,γ(f) = sup

ß |f(x)− f(y)|
d(x, y)α ∆α,β,γ(x, y)

, x, y ∈ E, x �= y

™
< +∞.

Set |f |α,γ = sup
x∈E

|f(x)|
p(x)α(γ+1)

and �f�α,β,γ = mα,β,γ(f) + |f |α,γ . Then

(Bα,β,γ , � · �α,β,γ) is a Banach space. In the special case γ = β, we shall simply
denote Bα,γ = Bα,β,γ .

The next result which concerns Condition (K1) on Bα,β,γ is established in
[44] [Th. 5.5] in the case β = γ. Since the extension to the case 0 < β ≤ γ is
very easy, we give the following result without proof.
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Proposition 11.2. — If we have

E[Mα(γ+1)
+ Cα Mα(γ+β)

] < +∞, E[ Cα
max{ C , 1}α(γ+β)

] < 1,

then Q is strongly ergodic on Bα,β,γ .

Now we give a sufficient condition for the central limit theorem in the sta-
tionary case. Similar statements are presented in [22], and in [7] when ξ is
Lipschitz continuous (i.e. s = 0 in (L)s).

Proposition 11.3. — If we have

E[ M2s+2
+ C

1
2 M2s+1

] < +∞ and E[ C
1
2 max{ C , 1}2s+ 3

2 ] < 1,

then, under Pπ, (
Sn√

n
)n converges to a normal distribution N (0,Γ).

Proof. — We apply Proposition 11.1 with α =
1
2 and η = 4s + 3. This yields

the existence and the uniqueness of π, and π(d(·, x0)
2s+2

) < +∞. Here we
consider γ = β = 2s+1 and the corresponding space B = B 1

2 ,γ . For f ∈ B, we
have |f | ≤ |f | 1

2 ,2s+1 p(x)
s+1. Thus B �→ L2

(π). Besides, from (L)s, it can be
easily seen that the coordinate functions of ξ belong to B, and by Proposition
11.2, Q is strongly ergodic on B. We conclude by applying Proposition 2.2 and
Corollary 2.1 with B as above defined.

The possibility of considering α < 1 as above is important. To see that,
consider for instance the case s = 0 (i.e. ξ is Lipschitz continuous on E). Then
ξ ∈ B1,γ for any γ > 0, and we could also consider B = B1,γ in the previous
proof, but it is worth noticing that the condition B1,γ �→ L2

(π) would then
require the moment condition π(d(·, x0)

2(1+γ)
) < +∞ which is stronger than

π(d(·, x0)
2
) < +∞ used above. Anyway, we shall often appeal below to the

conditions s + 1 ≤ β ≤ γ and E[Mα(γ+1)
] < +∞. If s = 0 and β = γ = 1, then

the previous moment condition is E[M] < +∞ if α =
1
2 , while it is E[M2

] < +∞
if α = 1.

Now we investigate the action of the Fourier kernels Q(t) on the space Bα,β,γ .
The proofs of Propositions 11.4-8 below present no theoretical problem. How-
ever the presence of Lipschitz coefficients in the definition of Bα,β,γ makes the
computations quite more technical than those seen for the v-geometrically er-
godic Markov chains. For convenience, these proofs are presented in Appendix
B. The arguments will be derived from [44]. However, the next four statements
improve the corresponding ones in [44] (See Remark below).

Proposition 11.4. — Condition (K) of Section 4 holds on Bα,β,γ if we have
s + 1 ≤ β ≤ γ and E

î
Mα(γ+1)

+ Cα Mα(γ+β)
ó

< +∞, E
î

Cα
max{ C , 1}α(γ+β)

ó
< 1.
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Proposition 11.5. — We have �Q(t + h) − Q(t)�
Bα,β,γ , Bα,β,γ�

→ 0

when t→ 0 if the following conditions hold: s + 1 ≤ β ≤ γ < γ� and
E
î

Mα(γ�+1)
+ Cα Mα(γ�+β)

ó
< +∞.

Proposition 11.6. — We have �Q(t)−Q�
Bα,β,γ , Bα,β,γ�

= O(|t|) if the follow-

ing conditions hold: s + 1 ≤ β ≤ γ, γ� ≥ γ +
s+1
α , and

E
î

Mα(γ�+1)
+ Cα Mα(γ�+β)

ó
< +∞.

Proposition 11.7. — We have C(m) of Section 7.1 (m ∈ N∗) with the sets
B = Bα,β,γ and ‹B = Bα,β,γ� if we have s + 1 ≤ β ≤ γ, γ� > γ +

m(s+1)
α , and

E
î

Mα(γ�+1)
+ Cα Mα(γ�+β)

ó
< +∞, E

î
Cα

max{ C , 1}α(γ�+β)
ó

< 1.

Concerning the spectral condition (S) of Section 5.1, we now study the pos-
sibility of applying the results of Section 5.2. Observe that this cannot be done
with the help of Proposition 11.4 because Condition (K) only concerns Q(t) for
t near 0. By considering another auxiliary semi-norm on Bα,β,γ , we shall prove
in Appendix B.5 the following result for which the hypotheses are somewhat
more restrictive than those of Proposition 11.4.

Proposition 11.8. — Assume that we have s+1 < β ≤ γ < γ�, E
�
Mα(γ�+1)

+

Cα Mα(γ�+β)� < +∞ and E
�
Cα

max{ C , 1}α(γ+β)
�

< 1. Then Condition (S)
holds on Bα,β,γ if and only if ξ is non-arithmetic w.r.t. Bα,β,γ . If ξ is nonlat-
tice, the two previous equivalent conditions hold.

Remark. — The possibility of considering the spaces Bα,β,γ with β �= γ is
important, in particular to apply Proposition 11.7. Indeed, let us assume C < 1

a.s. and consider the case s = 0 to simplify. Then the condition for C(m)

is E[Mα( m
α +γ+β)+ε

] < +∞ (for some ε > 0), where β and γ are such that
1 ≤ β ≤ γ. This condition can be rewritten as E[Mm+α(γ+β)+ε

] < +∞.
Consequently, under a moment assumption of the form E[Mm+ε0

] < +∞ for
some ε0 > 0, we can choose α sufficiently small in order to ensure Condition
C(m).

Actually, the condition E[Mα( m
α +γ+β)+ε

] < +∞ is useful for proving (K1) on
the biggest space occurring in C(m). It is worth noticing that, when working
with the weights defined in [44, 62, 65] (which corresponds to our weights in
the special case β = γ), then Condition (K1) must be satisfied on Bα,γ�,γ�

with γ� > γ +
m
α : this then requires the moment condition E[M2α( m

α +γ)+ε
] =

E[M2m+2αγ+ε
] < +∞ (apply Prop. 11.2 on Bα,γ�,γ�), whose order is greater

than 2m. Our parameter β enables us to avoid this drawback.
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11.3. Limit theorems for (ξ(Xn))n. — The hypotheses of Corollaries 11.9-12 be-
low will imply those of Proposition 11.3. Consequently the c.l.t. stated in this
proposition will hold automatically, and it will be understood that Γ is non-
singular.

Concerning the next conditions imposed on the initial distribution µ, it is
worth noticing that, if µ(d(·, x0)

α(1+γ)
) < +∞, then µ ∈ B�α,β,γ . The condi-

tions imposed on µ below will be always satisfied for µ = π or µ = δx (x ∈ E)
(for π it comes from Proposition 11.1).

Local limit theorem (d ≥ 1). — To present a simple application of Theorem 5.1,
let us simply investigate Statement (LLT) of Section 5.1 with f = h = 1E .
We want to prove that, for every compactly supported continuous function
g : Rd→R, we have
((LLT �))

lim
n

sup

a∈Rd

����
√

det Γ (2πn)
d
2 Eµ[ g(Sn − a) ]− e−

1
2n �Γ

−1a,a�
�

R
g(x)dx

���� = 0.

Corollary 11.9. — Suppose that E
�

M2s+2
+ C

1
2 M2s+1+δ� < +∞ for some

δ > 0, that E
�
C

1
2 max{ C , 1}2s+ 3

2

�
< 1, that ξ satisfies (L)s and is nonlattice,

and finally that we have µ(d(·, x0)
2+s+ε0

2 ) < +∞ for some ε0 > 0. Then we
have (LLT �).

Proof. — By using the above preliminary statements, let us prove that the
hypotheses of Theorem 5.1 hold. We have (CLT) (Prop. 11.3). Let α =

1
2 ,

0 < ε ≤ min{ 1
2 , 2δ

3 , ε0
2 }, β = γ = s + 1 + ε, and γ� = γ + ε = s + 1 + 2ε. We

set B = B 1
2 ,γ . We have (S) and (K1) on B (Prop. 11.8, 11.2). Besides, with

‹B = B 1
2 ,β,γ� , we have (›K2) (Prop. 11.5), and (›K3) (use Prop. 11.4, ‹B �→ L1

(π)

and Rk. (c) in Section 4). Hence (‹K) holds. Finally, our assumption on µ

implies µ ∈ ‹B
�
.

According to the previous proof, the property (LLT) may be also investigated
with functions f ∈ B 1

2 ,β,γ (for some suitable s + 1 < β ≤ γ), and the sufficient
nonlattice condition can be replaced by the more precise non-arithmeticity
condition (w.r.t. B 1

2 ,β,γ) of Proposition 5.3. Finally observe that, if s = 0

(i.e. ξ is Lipschitz continuous on E), as for example ξ(x) = �x�, and if we
have C < 1 a.s., then (LLT’) is valid under the expected moment condition
E[M2

] < +∞.
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One-dimensional uniform Berry-Esseen theorem (d = 1)

Corollary 11.10. — Suppose E
�

M3(s+1)
+ C

1
2 M3s+2 �

< +∞ and
E

�
C

1
2 max{ C , 1}3s+ 5

2

�
< 1, that ξ satisfies (L)s, and µ(d(·, x0)

2(s+1)
) < +∞.

Then ∆n = O(n−
1
2 ).

Proof. — To apply Theorem 6.1, we have to prove (CLT�) of Section 6 and to
find some spaces B and ‹B on which (‹K) holds with the additional condition
�Q(t) − Q�

B,�B = O(|t|). To investigate (CLT�), we shall use the procedure
based on conditions (G1)-(G2) (of Section 6). In particular this procedure
requires that ξ ∈ B �→ L3

(π). Since (L)s implies ξ ∈ B 1
2 ,2s+1, let us consider

B = B 1
2 ,2s+1 (so here β = γ = 2s+1). For f ∈ B, we have |f | ≤ |f | 1

2 ,2s+1 ps+1,
and since π(d(·, x0)

3(s+1)
) < +∞ (use Prop. 11.1 with α =

1
2 , η = 6s + 5),

one gets B �→ L3
(π). Now set ‹B = B 1

2 ,β,4s+3. It can be easily seen that
‹B contains all the functions g2 with g ∈ B, and since each f ∈ ‹B satisfies
|f | ≤ |f | 1

2 ,4s+3 p2(s+1), one obtains ‹B �→ L 3
2 (π). We have (K1) on B and

‹B (Prop. 11.2). This gives (G1) (G2), hence (CLT�). Besides we have (›K3)

(use Prop. 11.4, ‹B �→ L1
(π) and Rk. (c) in Section 4), and we have (›K2)

(Prop. 11.5). Hence (‹K). Finally, Proposition 11.6 yields �Q(t) − Q�
B,�B =

O(|t|), and µ(d(·, x0)
2(s+1)

) < +∞ implies that µ ∈ ‹B
�
.

The first-order Edgeworth expansion (d = 1). — For convenience, we investigate
the property (E) of Theorem 8.1 under the hypothesis that C is strictly con-
tractive a.s.

Corollary 11.11. — Suppose that C < 1 a.s., that E[M3(s+1)+ε0
] < +∞ for

some ε0 > 0, that ξ satisfies (L)s and is nonlattice, and µ(d(·, x0)
3(s+1)+ε0) <

+∞. Then we have (E).

Proof. — To check the hypotheses of Theorem 8.1, first observe that the hy-
pothesis C < 1 a.s. implies E[ Cα

max{ C , 1}b
] < 1 for any α ∈ (0, 1] and b ≥ 0.

We have π(d(·, x0)
3(s+1)

) < +∞ (Prop. 11.1). From |ξ(x)| ≤ p(x)
s+1, it fol-

lows that π(|ξ|3) < +∞. Let us prove that C(3) holds w.r.t. B = Bα,β,γ and
‹B = Bα,β,γ� for suitable α, β, γ, γ�. Let δ > 0, β = γ = s + 1 + δ, and let us
choose 0 < α ≤ 1 such that α(γ+2δ+s+1) ≤ ε0. Let γ� = γ+

3(s+1)
α +δ. Then

Proposition 11.7 yields the desired property. To study Condition (S) on Bα,β,γ ,
use Proposition 11.8. Finally, we have α(γ� + 1) = 3(s + 1) + α(γ + δ + 1) ≤
3(s + 1) + ε0, so µ(d(·, x0)

α(γ�+1)
) < +∞. This proves that µ ∈ ‹B

�
.
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Other similar statements may be derived by proceeding as above. For in-
stance, let us consider 0 < α ≤ 1 (fixed here), β = γ = s + 1 + δ, and γ� =

γ +
3(s+1)

α + δ with some small δ > 0, and suppose that we have E[Mα(γ�+1)
+

Cα Mα(γ�+β)
] < +∞, E[ Cα

max{ C , 1}α(γ�+β)
] < 1, and µ(d(·, x0)

α(γ�+1)
) <

+∞. Then we have (E) if ξ is non-arithmetic w.r.t. Bα,β,γ .

The multidimensional Berry-Esseen theorem with the Prohorov distance (d ≥ 1).
— Again we give a statement in the particular case when C < 1 a.s.. From
Theorem 9.1, we get the following.

Corollary 11.12. — Suppose C < 1 a.s. and E[Mm(s+1)+ε0
] < +∞ for

some ε0 > 0 and with m := max (3, �d/2�+ 1), that ξ satisfies (L)s and
µ(d(·, x0)

m(s+1)+ε0) < +∞. Then the conclusion of Theorem 9.1 holds.

Proof. — Set β = γ = 1 + s. Let δ > 0, and 0 < α ≤ 1 be such that
α(γ + δ + s + 1) ≤ ε0, and set γ� =

m(s+1)
α + γ + δ. Then we have C(m) with

B = Bα,β,γ and ‹B = Bα,β,γ� (by Proposition 11.7), and the hypothesis on µ

gives µ ∈ ‹B
�
.

Extension. — Mention that all the previous statements remain valid when, in
the hypotheses, the r.v. C is replaced with the following one:

C (n0)
= sup

ß
d(Fθ1 · · ·Fθn0

x , Fθ1 · · ·Fθn0
y)

d(x, y)
, x, y ∈ E, x �= y

™
(n0 ∈ N∗).

The proofs of the preliminary statements of Section 11.2 are then similar.

12. More on non-arithmeticity and nonlattice conditions

This section presents some complements on the spectral condition (S) of
Section 5.1, in particular we prove Proposition 5.3 and specify Proposition 5.4.

Proof of Proposition 5.3. — We assume that the assumptions (“K) and (P) of
Section 5.2 hold. Recall that Condition (S) on B states that, for each compact
set K0 in Rd \ {0}, there exist ρ < 1 and c ≥ 0 such that we have, for all n ≥ 1

and t ∈ K0, �Q(t)n�
B
≤ c ρn.

We have to prove that (S) is not true if and only if there exist t ∈ Rd, t �= 0,
λ ∈ C, |λ| = 1, a π-full Q-absorbing set A ∈ E, and a bounded element w in B
such that |w| is nonzero constant on A, satisfying:

(∗) ∀x ∈ A, ei�t,ξ(y)�w(y) = λw(x) Q(x, dy)-a.s..
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Lemma 12.1. — Let t ∈ Rd such that r(Q(t)) ≥ 1. Then
(i) r(Q(t)) = 1 and Q(t) is quasi-compact.
(ii) We have (∗) with λ, A and w as above stated.

Proof of Assertion (i). — By (”K4), we have ress(Q(t)) < 1 ≤ r(Q(t)), thus
Q(t) is quasi-compact on B. Now let λ be any eigenvalue of modulus r(Q(t)),
and let f �= 0 be an associated eigenfunction in B. Then |λ|n|f | = |Q(t)nf | ≤
Qn|f |, and (P) yields |λ| ≤ 1.

By (i), there exist λ ∈ C, |λ| = 1 and w ∈ B, w �= 0, such that Q(t)w = λw.
From Q(t)nw = λnw, one gets |w| ≤ Qn|w|, and (P) then implies that |w| ≤
π(|w|), either everywhere on E, or π-a.s. on E, according that B ⊂ L1

(π)

or B ⊂ L1
(π). From now, if B ⊂ L1

(π), w is replaced with any measurable
function of its class, and for convenience, this function is still denoted by w.
Since v = π(|w|) − |w| ≥ 0 and π(v) = 0, we have |w| = π(|w|) π-a.s. Let us
define the set

A0 = {z ∈ E : |w(z)| = π(|w|)}.
Then we have π(A0) = 1 (i.e. A0 is π-full).

Remark. — In the special case when δx ∈ B� for all x ∈ E (and when B is
stable under complex modulus), the proof of (ii) is presented in [43] (Prop. V.2),
with the more precise conclusion: we have (∗) with w ∈ B ∩ B

∞
and A = A0.

Let us briefly recall the main arguments. From (K1), one can here deduce from
the inequality |w| ≤ Qn|w| that |w| ≤ π(|w|) everywhere on E. Thus w ∈ B

∞
.

Besides, the equality Q(t)w(x) =
�

E ei�t,ξ(y)�w(y) Q(x, dy) = λw(x) is valid for
all x ∈ E. Let x ∈ A0. Then this equality and the previous inequality give (∗).
Finally (∗) shows that A0 is Q-absorbing.

If Q(t)w = λ w almost surely, the previous arguments must be slightly mod-
ified as follows.

Proof of (ii). — First, by proceeding as in the proof of Proposition 2.4, one
can easily get a π-full Q-absorbing set B ⊂ A0. Besides the following set is
clearly π-full:

C = {z ∈ E : ∀n ≥ 1, Q(t)nw(z) = λnw(z)}.
So the set A = B ∩ C is also π-full. Let x ∈ A. We have

Q(t)w(x) =

�

E
ei�t,ξ(y)�w(y) Q(x, dy) = λw(x).

Since Q(x,B) = 1 (B is Q-absorbing), one can replace E by B in the previous
integral, and since |λ−1w(x)

−1 ei�t,ξ(y)�w(y)| = 1 for all y ∈ B, we then obtain
the equality (∗). It remains to prove that A is Q-absorbing. To that effect,
we must just prove that Q(x, C) = 1 for any x ∈ A. Let us define the set
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Dx = {y ∈ E : ei�t,ξ(y)�w(y) = λw(x)}. We know that Q(x,Dx) = 1, and from
λn+1w(x) =

�
Dx

ei�t,ξ(y)�Q(t)nw(y) Q(x, dy) (n ≥ 1), we deduce that

λn
=

�

Dx

w(y)
−1 Q(t)nw(y) Q(x, dy).

Since Q(x,B) = 1, this equality holds also with B instead of Dx. Besides, for
any y ∈ B, we have |Q(t)nw(y)| ≤ Qn|w|(y) =

�
B |w(z)|Qn

(y, dz) = π(|w|), so
that |w(y)

−1 Q(t)nw(y)| ≤ 1. So, for some Dx,n ∈ E such that Q(x,Dx,n) = 1,
we have Q(t)nw(y) = λn w(y) for each y ∈ Dx,n. From ∩n≥1Dx,n ⊂ C, one
gets Q(x,C) = 1 as claimed.

Lemma 12.2. — Let t ∈ Rd. If the equality (∗) holds with λ, A and w as
stated at the beginning of this section, then we have r(Q(t)) ≥ 1.

Proof. — By integrating (∗), one gets Q(t)w = λw on A, and since A is Q-ab-
sorbing, this gives Q(t)nw = λnw on A for all n ≥ 1. Suppose r(Q(t)) < 1.
Then limn Q(t)nw = 0 in B. Since B �→ L1

(π), we have limn π(|Q(t)nw|) = 0,
but this is impossible because |Q(t)nw| = |w| on A, and by hypothesis |w| is a
nonzero constant on A and π(A) = 1.

The previous lemmas show that, for any fixed t ∈ Rd, we have r(Q(t)) ≥ 1

iff the equality (∗) holds for some λ, A and w as stated at the beginning of this
section. Consequently, in order to prove the equivalence of Proposition 5.3, it
remains to establish the following lemma whose proof is based on the use of
the spectral results of [54].

Lemma 12.3. — We have: (S) ⇔ ∀t ∈ Rd, t �= 0, r(Q(t)) < 1.

Proof. — The direct implication is obvious. For the converse, let us consider
a compact set K0 in Rd \ {0}. Let us first prove that

rK0 = sup{r(Q(t)), t ∈ K0} < 1.

For that, let us assume that rK0 = 1. Then there exists a subsequence (τk)k

in K0 such that we have limk r(Q(τk)) = 1. For k ≥ 1, let λk be a spectral
value of Q(τk) such that |λk| = r(Q(τk)). By compactness, one may assume
that the sequences (τk)k and (λk)k converge. Let τ = limk τk and λ = limk λk;
observe that τ ∈ K0, thus τ �= 0, and |λ| = 1. Besides, by (”K2) (”K3) (”K4),
the Q(t)’s satisfy the conditions of [54] near τ . From [54] (p. 145), it follows
that λ is a spectral value of Q(τ), but this is impossible since, by hypothesis,
r(Q(τ)) < 1. This shows the claimed statement.

Let ρ ∈ (rK0 , 1). By applying [54] to Q(·) near t0 ∈ K0, there exists a
neighbourhood Ot0 of t0 such that sup{�(z − Q(t))−1�B, t ∈ Ot0 , |z| = ρ} <
+∞. Since K0 is compact, one gets sup{�(z − Q(t))−1�B, t ∈ K0, |z| = ρ} <
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+∞. Finally let Γ be the oriented circle defined by {|z| = ρ}. Then the
inequality stated in (S) follows from the following usual spectral formula

∀t ∈ K0, Q(t)n
=

1

2iπ

�

Γ
zn

(z −Q(t))−1dz.

12.1. Study of the set G =
�
t ∈ Rd

: r(Q(t)) = 1
�

. — Here we still assume
that Conditions (“K) and (P) of Section 5.2 are fulfilled. We then know that
(S) is equivalent to G = {0} (Lem. 12.3). We assume moreover that the set of
bounded elements of B is stable under complex conjugation and under product.
The next proposition specifies the statements of Proposition 5.4.

Proposition 12.4. — The set G =
�
t ∈ Rd

: r(Q(t)) = 1
�

is a closed sub-
group of (Rd,+).

Moreover, if the space “B of (“K) verifies “B �→ L1
(π) and if Condition (CLT)

of Section 5.1 holds, then G is discrete, and we have then the following prop-
erties.

(i) If G �= {0}, then there exist a point a ∈ Rd, a closed subgroup H in Rd

of the form H = (vect G)
⊥ ⊕∆, where ∆ is a discrete subgroup of Rd, a π-full

Q-absorbing set A ∈ E, and a bounded measurable function θ : E→Rd such
that

(∗∗) ∀x ∈ A, ξ(y) + θ(y)− θ(x) ∈ a + H Q(x, dy)-a.s.

(ii) If (∗∗) holds with a π-full Q-absorbing set A ∈ E, a subgroup H �= Rd,
and a measurable function θ : E→Rd such that ei�t,θ� ∈ B for all t ∈ Rd, then
G �= {0}.

Proof. — Let g1, g2 ∈ G, and for k = 1, 2, using Lemma 12.1, let λk, Ak,
and wk be the elements associated with gk in (∗). Then A = A1 ∩ A2 is a
π-full Q-absorbing set, and g1 − g2 satisfies (∗) with A, λ = λ1λ2, and with
w = w1w2 ∈ B. Thus g1 − g2 ∈ G by Lemmas 12.1-2. Besides 0 ∈ G
since Q1E = 1E . So G is a subgroup of (Rd,+). To prove that G is closed,
let us consider any sequence (tn)n ∈ GN such that lim tn = t in Rd. By
quasi-compactness (Lemma 12.1), each Q(tn) admits an eigenvalue, say λn,
of modulus one. Now let λ be a limit point of the sequence (λn)n. Then
|λ| = 1, and from [54] (p. 145), it follows that λ is a spectral value of Q(t), so
r(Q(t)) ≥ 1, and t ∈ G by Lemma 12.1.

Now we assume that “B �→ L1
(π) (so (‹K) of Sect. 4 is fulfilled) and that (CLT)

holds.
G is discrete. From Lemma 5.2, we have λ(t) = 1− 1

2 �Γt, t�+ o(�t�2) for t
near 0, where λ(t) denotes the dominating eigenvalue of Q(t). Hence we have
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r(Q(t)) = |λ(t)| < 1 for t near 0, t �= 0. This proves that 0 is an isolated point
in G, hence G is discrete.

Proof of (i). — Set G = Za1 ⊕ · · · ⊕ Zap with p ≤ d, and let λk, Ak, and
wk be the elements associated with ak in (∗). Then A = ∩p

k=1Ak is a π-full
Q-absorbing set, and if x ∈ A and g = n1a1 + · · · + npap is any element of G,
we deduce from (∗) applied to each ak, and by product that:

∀x ∈ A, ei�g,ξ(y)�
p�

k=1

wk(y)
nk =

p�

k=1

λnk
k

p�

k=1

wk(x)
nk Q(x, dy)-a.s.

Since |wk| is a nonzero constant function on A, one may assume without loss
of generality that |wk|A| = 1A, so that there exists a measurable function
αk : E→[0, 2π[ such that we have, for all z ∈ A: wk(z) = eiαk(z). For z ∈
A, we set V (z) = (α1(z), . . . , αp(z)) in Rp. Since the linear map χ : h �→
(�a1, h�, . . . , �ap, h�) is clearly bijective from vect(G) into Rp, one can define
the element χ−1

(V (z)) which satisfies �ak, χ−1
(V (z)� = αk(z) for each k =

1, . . . , p. Finally let θ : E→Rd be a bounded measurable function such that
θ(z) = χ−1

(V (z)) for all z ∈ A. Then we have wk(z) = ei�ak,θ(z)� for any z ∈ A
and k = 1, . . . , p. Consequently one gets

�p
k=1 wk(z)

nk = ei�g,θ(z)� for z ∈ A,
and the above equality becomes, by setting λg =

�p
k=1 λnk

k ,

∀x ∈ A, ei�g,ξ(y)+θ(y)−θ(x)�
= λg Q(x, dy)-a.s.

For any g ∈ G, let us define βg ∈ R such that λg = eiβg , and for x ∈ Rd, set
Tg(x) = �g, x�. The previous property yields

∀x ∈ A, ξ(y) + θ(y)− θ(x) ∈ ∩g∈G T−1
g (βg + 2πZ) Q(x, dy)-a.s.

Now let us define H = ∩g∈G T−1
g (2πZ). Then H is a subgroup of Rd, and the

elements of ∩g∈G (T−1
g (βg + 2πZ)) are in the same class modulo H. That is:

∃a ∈ Rd,∩g∈G (T−1
g (βg + 2πZ)) ⊂ a + H.

This proves (∗∗), and it remains to establish that H has the stated form.
Actually, since H is closed, H is of the form H = F ⊕∆, where F and ∆ are
respectively a subspace and a discrete subgroup in Rd. So we have to prove
that F = (vect G)

⊥.
Let x ∈ (vect G)

⊥. Since (vect G)
⊥

= ∩g∈G T−1
g ({0}) ⊂ H, we have x =

f + d for some f ∈ F , d ∈ ∆, and for α ∈ R, the fact that αx ∈ (vect G)
⊥ ⊂ H

yields αx = fα+dα with some fα ∈ F and dα ∈ ∆. But we also have the unique
decomposition αx = αf + αd in F ⊕ vect ∆. Hence we have αd = dα ∈ ∆,
and since ∆ is discrete and α can take any real value, we have necessary d = 0.
That is, x ∈ F .

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



472 L. HERVÉ & F. PÈNE

Conversely, let f ∈ F and let g ∈ G. Since F ⊂ H, we have �g, f� ∈ 2πZ.
Now let α be any fixed nonzero irrational number. Since αf ∈ F ⊂ H, we have
α �g, f� = �g, αf� ∈ 2πZ. Hence �g, f� = 0. This gives f ∈ (vect G)

⊥.

Proof of (ii). — Let t ∈ H⊥, t �= 0. Then, for every x ∈ A, we have �t, ξ(y)�+
�t, θ(y)� − �t, θ(x)� = �t, a� Q(x, dy)-a.s. Setting w(·) = ei�t,θ(·)� and λ =

ei�t,a�, this yields for all x ∈ A

ei�t,ξ(y)�w(y) = λw(x) Q(x, dy)-a.s.

Since w ∈ B by hypothesis, this gives (∗), and Lemmas 12.1-2 implies that
t ∈ G.

Appendix A

Proof of Proposition 7.1

Proposition 7.1 will follow from the slightly more general Proposition below.
The derivative arguments are presented here in the case d = 1, but the extension
to d ≥ 2 is obvious by the use of the partial derivatives.

Let I be any subset of R, let T0 : I → R and T1 : I → R, let (Bθ, θ ∈ I) be
a family of general Banach spaces. We shall write � · �θ,θ� for � · �Bθ, Bθ�

and
� · �θ for � · �Bθ

. Recall that we set Dκ = {z ∈ C : |z| ≥ κ, |z − 1| ≥ (1− κ)/2}
for any κ ∈ (0, 1). The notation Bθ �→ Bθ� means that Bθ ⊂ Bθ� and that the
identity map from Bθ into Bθ� is continuous.
Let B and ‹B be some spaces of the previous family, and assume that Bθ �→ ‹B
for all θ ∈ I. Finally let U be an open neighbourhood of 0 in Rd, and let
(Q(t), t ∈ U) be any family of operators in L(

‹B) such that Q(t)|Bθ
∈ L(Bθ)

for all t ∈ U and θ ∈ I. Let us introduce the following hypothesis.

Hypothesis D(m) (m ∈ N∗). — For all θ ∈ I there exists a neighbourhood
V θ ⊂ U of 0 in Rd such that, for all j = 1, ...,m, we have:

(0) [T0(θ) ∈ I ⇒ Bθ �→ BT0(θ)] and [T1(θ) ∈ I ⇒ Bθ �→ BT1(θ)]

(1) T0(θ) ∈ I implies that Q(·) ∈ C0
( V θ, Bθ, BT0(θ))

(2) θj := T1(T0T1)
j−1

(θ) ∈ I implies that Q(·) ∈ C j
( V θ, Bθ, Bθj )

(3�) There exists κθ ∈ (0, 1) such that, for all κ ∈ [κθ, 1), there exists a
neighbourhood V θ,κ ⊆ V θ of 0 in Rd such that Rz(t) := (z −Q(t))−1 ∈ L(Bθ)

for all z ∈ Dκ and all t ∈ V θ,κ, and we have

Mθ,κ := sup
�
�Rz(t)�θ, t ∈ V θ,κ, z ∈ Dκ

�
< +∞

(4) There exists a ∈
�m

k=0

�
T−1

0 (T0T1)
−k

(I) ∩ (T1T0)
−k

(I)
�

such that we
have B = Ba and ‹B = B(T0T1)mT0(a).
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When applied to the Fourier kernels, the above conditions (0) (1) (2) and (4)
are exactly those of Hypothesis C(m) in Section 7.1, and according to Theorem
(K-L) of Section 4, Condition (3’) of D(m) is implied by (3) of C(m). Hence
C(m) implies that the Fourier kernels satisfy D(m), so Proposition 7.1 follows
from the next proposition. Let us notice that, from (4), we have

Θa = {a, T0a, T1T0a, T0T1T0a, . . . , (T0T1)
mT0(a)} ⊂ I.

Let us define κ̃ = maxθ∈Θa κθ ∈ (0, 1), and �O =
�

θ∈Θa
V θ,κ̃.

Proposition A.1. — Under Hypothesis D(m), we have Rz(·) ∈ Cm
(
�O, B, ˜B)

for all z ∈ Dκ̃, and for any compact subset O of �O, we have for every � =

0, . . . ,m: R� := sup{�R(�)
z (t)�

B,�B, z ∈ Dκ̃, t ∈ O } < +∞.

Remark. — Let O be a compact subset of �O. By Conditions (1) (2), we have
for any θ ∈ Θa:

T0(θ) ∈ Θa ⇒ Q0,θ := sup

t∈ O
�Q(t)�Bθ, BT0(θ)

< +∞

and for every j = 1, . . . ,m:

θj = T1(T0T1)
j−1

(θ) ∈ Θa ⇒ Qj,θ := sup

t∈ O
�Q(j)

(t)�Bθ, Bθj
< +∞

The proof below shows that R� in Proposition A can be bounded by a polyno-
mial expression involving the (finite) constants M := maxθ∈Θa Mθ,κ̃ and Qj :=

maxθ∈Θa∩τ−1
j (Θa) Qj,θ (j = 0, . . . , �), with τ0 := T0, and τj := T1(T0T1)

j−1 if
j ≥ 1.

The proof below involves the derivatives of some operator-valued maps de-
fined as the composition of Q(t) (or its derivatives) and Rz(t) (or its deriva-
tives obtained by induction), where these operators are seen as elements of
L(Bθ1 , Bθ2) and L(Bθ2 , Bθ3) for suitable θi ∈ I. To that effect, it will be
convenient to use the next notations.

Notation. — Let θ1, θ�1 ∈ I. An element of L(θ1, θ�1) is a family f = (fz(t))z,t

of elements of L(Bθ1 , Bθ�1
) indexed by (z, t) ∈ J (for some J ⊆ C × Rd)

satisfying the following condition: there exists κ̂0 ∈ (0, 1) such that, for all
κ ∈ [κ̂0, 1), there exists a neighbourhood ‹Uκ of 0 in Rd such that Dκ×‹Uκ ⊆ J .

Let θ, θ�, θ�� ∈ I. Given V = (Vz(t))(z,t)∈JU
∈ L(θ, θ�) and U =

(Uz(t))(z,t)∈JV
∈ L(θ�, θ��), we define UV = (Uz(t)Vz(t))(z,t)∈JU∩JV

∈ L(θ, θ��).
Let � ∈ N, let θ and θ1 in I be such that Bθ �→ Bθ1 , and let θ� and θ�1 be in I.

An element f = (fz(t))z,t of L(θ1, θ�1) is said to be in C �
(θ, θ�) if the following

condition holds: there exists κ̂ ∈ (κ̂0, 1) such that, for all κ ∈ [κ̂, 1), there exists
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a neighbourhood Uκ ⊆ ‹Uκ of 0 in Rd such that, for all z ∈ Dκ and all t ∈ Uκ,
we have fz(t)(Bθ) ⊆ Bθ� , fz(·)|Bθ

∈ C �
(Uκ, Bθ, Bθ�) and

sup

z∈ Dκ,t∈ Uκ,j=0,...,�
�f (j)

z (t)�θ,θ� < +∞.

When f = (fz(t))z,t ∈ C �
(θ, θ�), we set f (�)

= (f (�)
z (t))z,t.

Let us observe that (2) in D(m) implies that Q := (Q(t))z,t ∈ C j
(θ, θj) when

we have θ ∈ I and θj := T1(T0T1)
j−1

(θ) ∈ I. Now, we are in a position to state
the next obvious (but important) facts (I)-(III), which will be repeatedly used
in the proof of Proposition A. Let θ1, θ2, θ3 and θ4 be in I.

(I) Assume that Bθ1 �→ Bθ2 , that Bθ3 �→ Bθ4 and that V ∈ L(θ2, θ3). If
V ∈ Ck

(θ2, θ3), then V is in Ck
(θ2, θ4), in Ck

(θ1, θ3) and in Ck
(θ1, θ4).

(II) Assume that V ∈ L(θ1, θ2) and U ∈ L(θ2, θ3). If V ∈ C0
(θ1, θ2) and

U ∈ C0
(θ2, θ3), then UV ∈ C0

(θ1, θ3).
(III) Let U ∈ L(θ3, θ4) and V ∈ L(θ1, θ2). Assume that Bθ1 �→ Bθ2 �→

Bθ3 �→ Bθ4 , that V ∈ C0
(θ1, θ2) ∩ C1

(θ1, θ3) and that U ∈ C1
(θ2, θ4) ∩

C0
(θ3, θ4). Then UV is defined in L(θ1, θ4), and we have UV ∈ C1

(θ1, θ4)

and (UV )
�
= U �V + UV �.

Proof of Proposition A. — Lemmas A.1-2 below will be our basic statements.

Lemma A.2. — If θ, T0(θ) ∈ I, then (Rz(t))z,t ∈ C0
(θ, T0(θ)).

Proof. — Let κ ∈ [max(κθ, κT0(θ)), 1). Let U(0)
θ,κ = V θ,κ ∩ V T0(θ),κ. From the

usual operator formula Id −Wn+1
=

�n
k=0 W k

(Id −W ), one easily deduces
the following equality, which is valid for any bounded linear operators S and
T on a Banach space such that S and S − T are invertible:

(∗) (S − T )
−1

=

n�

k=0

(S−1T )
kS−1

+ (S−1T )
n+1

(S − T )
−1.

With n = 0, S = z−Q(t0), T = Q(t)−Q(t0), thus S − T = z−Q(t), Formula
(∗) yields

∀z ∈ Dκ,∀t ∈ U(0)
θ,κ, Rz(t)−Rz(t0) = Rz(t0) (Q(t)−Q(t0)) Rz(t).

Using the constants Mθ,κ and MT0(θ),κ, Condition (1) in D(m) gives the desired
property.

Lemma A.3. — If θ, T0(θ), T1T0(θ), T0T1T0(θ) ∈ I, then we have the proper-
ties: (Rz(t))z,t ∈ C1�θ, T0T1T0(θ)

�
and R�

= R Q� R.
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Proof. — Let us define θ1 = T0(θ), θ2 = T1T0(θ), θ3 = T0T1T0(θ) and κ(1)
θ =

max(κθ, κθ1 , κθ2 , κθ3). Let us consider a real number κ ∈ [κ(1)
θ , 1). We define

U(1)
θ,κ = U(0)

θ,κ ∩ U(0)
θ2,κ. Let t0, t ∈ U(1)

θ,κ and z ∈ Dκ. Formula (∗) with n = 1,
S = z −Q(t0), T = Q(t)−Q(t0) gives

Rz(t) = Rz(t0) + Rz(t0) [Q(t)−Q(t0)]Rz(t0) + ϑz(t),

with ϑz(t) := Rz(t0) [Q(t)−Q(t0)]Rz(t0) [Q(t)−Q(t0)]Rz(t). But we have:

�ϑz(t)�θ,θ3

|t− t0|
≤ �Rz(t0)�θ3�Q(t)−Q(t0)�θ2,θ3�Rz(t0)�θ2

�Q(t)−Q(t0)�θ1,θ2

|t− t0|
�Rz(t)�θ,θ1

which goes to 0 as t goes to t0, uniformly in z ∈ Dκ (according to condition
(2) and with the use of Mθ3,κ, Mθ2,κ and Mθ,κ). In the same way, we have:
�Rz(t0)(Q(t)−Q(t0))Rz(t0)− (t− t0)Rz(t0)Q�

(t0)Rz(t0)�θ,θ3

≤ Mθ2,κ�Q(t)−Q(t0)− (t− t0)Q
�
(t0)�θ1,θ2Mθ,κ = o(t− t0).

This shows that R�
z(t0) = Rz(t0)Q�

(t0)Rz(t0) in L(Bθ, Bθ3). Moreover,
(Rz(t))z,t ∈ C0

(θ, θ1), (Q�
(t))z,t ∈ C0

(θ1, θ2), and (Rz(t))z,t ∈ C0
(θ2, θ3),

therefore (R�
z(t))z,t ∈ C0

(θ, θ3).

By Lemma A.1, the following assertion holds:
(H0) If θ ∈ I and if T0(θ) ∈ I, then R = (Rz(t))z,t ∈ C0

(θ, T0(θ)).

For � = 1, . . . ,m, let us set

E� =
�
(i, j, k) ∈ Z3

: i ≥ 0, j ≥ 0, k ≥ 0, i + j + k = �− 1
�
,

and let us denote by (H�) the following assertion:

(H�) If θ ∈
��

k=0

�
T−1

0 (T0T1)
−k

(I) ∩ (T1T0)
−k

(I)
�
, then R = (Rz(t))z,t is in

C � �
θ, (T0T1)

�T0(θ)
�

and R(�)
=

�

(i,j,k)∈ E�

R(i)Q(1+j)R(k).

We want to prove (Hm) by induction. By Lemma A.2, (H1) holds.

Lemma A.4. — Let 1 ≤ � ≤ m−1. If (H0), (H1), . . . , (H�) hold, then we have
(H�+1).

Proof. — Let θ ∈
��+1

k=0

�
T0
−1

(T0T1)
−k

(I) ∩ (T1T0)
−k

(I)
�
.

From B(T0T1)�T0(θ) �→ B(T0T1)�+1T0(θ) and (H�), we have

R = (Rz(t))z,t ∈ C � �
θ, (T0T1)

�+1T0(θ)
�

and R(�)
=

�

(i,j,k)∈ E�

R(i)Q(1+j)R(k).
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Let (i, j, k) ∈ E�. We have to prove that R(i)Q(1+j)R(k) ∈ C1 �
θ, (T0T1)

�+1T0(θ)
�

and that:
Ä
R(i)Q(1+j)R(k)

ä�
= R(i+1)Q(1+j)R(k)

+ R(i)Q(2+j)R(k)
+ R(i)Q(1+j)R(k+1).

Since 1 ≤ k + 1 ≤ � and by induction hypothesis, we have:

R(k) ∈ C1
Ä
θ, (T0T1)

(k+1)T0(θ)
ä

and R(k) ∈ C0 �
θ, (T0T1)

kT0(θ)
�
.

Moreover, since 2 + j ≤ � + 1 ≤ m and according to D(m), we have:

Q(1+j) ∈ C0
Ä
(T0T1)

(k+1)T0(θ), T1(T0T1)
(k+j+1)T0(θ)

ä

and Q(1+j) ∈ C1 �
(T0T1)

kT0(θ), T1(T0T1)
k+j+1T0(θ)

�
.

From Property (III), we then deduce that we have

Q(1+j)R(k) ∈ C1 �
θ, T1(T0T1)

k+j+1T0(θ)
�

and (Q(1+j)R(k)
)
�
= Q(2+j)R(k)

+ Q(1+j)R(k+1).
Analogously we obtain that Q(1+j)R(k) ∈ C0 �

θ, T1(T0T1)
k+j T0(θ)

�
, and,

since i + 1 ≤ �, we get:

R(i) ∈ C0 �
T1(T0T1)

k+j+1 T0(θ), (T0T1)
k+j+i+2 T0(θ)

�

and R(i) ∈ C1 �
T1(T0T1)

k+j T0(θ), (T0T1)
k+j+i+2 T0(θ)

�
.

Since k + j + i + 2 = � + 1, this gives the desired property.

Since, by hypothesis, a ∈
�m

k=0

�
T−1

0 (T0T1)
−k

(I) ∩ (T1T0)
−k

(I)
�
, the prop-

erties (H0), . . . , (Hm) show that the conclusions of Proposition A are valid.
More exactly, the previous induction proves that the neighbourhood �O of t = 0

and the real number κ̃ may be defined as stated before Proposition A, and that
for any compact subset O ⊂ �O, the constants R� are bounded as indicated in
the remark following Proposition A.

Appendix B

Proof of Propositions 11.4-8

B.0. Notations. — For convenience we present the proofs of Propositions 11.4-
8 in the case d = 1. The extension to d ≥ 2 is straightforward for Proposition
11.4,5,6,8 (just replace the inequality |tξ(x)| ≤ |t| |ξ(x)| with the Schwarz in-
equality |�t, ξ(x)�| ≤ �t� �ξ(x)�). It is easy for Proposition 11.7 by considering
partial derivatives.
We set Θx = F (x, θ1). So Θ is a random Lipschitz transformation on E, and
the transition probability Q can be expressed as: Qf(x) = E[f(Θx)].
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For any λ ∈ (0, 1], we set pλ(x) = 1+λ d(x, x0). For any 0 < α ≤ 1, 0 < β ≤ γ,
and (x, y) ∈ E2, let us set

∆
(λ)
α,β,γ(x, y) = pλ(x)

αγpλ(y)
αβ

+ pλ(x)
αβpλ(y)

αγ .

Then the space Bα,β,γ defined in Section 11 is unchanged when mα,β,γ(f) is
replaced with

m(λ)
α,β,γ(f) = sup

ß |f(x)− f(y)|
d(x, y)α ∆

(λ)
α,β,γ(x, y)

, x, y ∈ E, x �= y

™
,

and for any f ∈ Bα,β,γ , the following quantity

|f |(λ)
α,γ = sup

x∈E

|f(x)|
pλ(x)α(γ+1)

,

is finite. The resulting new norm �f�(λ)
α,β,γ = m(λ)

α,β,γ(f) + |f |(λ)
α,γ is equivalent

to the norm � · �α,β,γ defined in Section 11. Consequently, for (α, β, γ) fixed
as above, Propositions 11.4-8 can be established by considering on Bα,β,γ the
norm �f�(λ)

α,β,γ (for some value λ ∈ (0, 1]). In most of the next estimates, we
shall assume λ = 1; the possibility of choosing suitable small λ will occur in
the proof of the Doeblin-Fortet inequalities (in Prop. 11.4 and Prop. 11.8).
Anyway, this already appears in the proof of Proposition 11.2, see [44].

Let Cλ = max{ C , 1} + λ d(Θx0, x0). In the sequel, we shall use repeatedly
the fact that pλ(·) and p(·) are equivalent functions, and that (see [44] p. 1945)

sup
x∈E

pλ(Θx)

pλ(x)
≤ Cλ ≤ M,

from which we deduce that

∆
(λ)
α,β,γ(Θx, Θy) ≤ Cα(γ+β)

λ ∆
(λ)
α,β,γ(x, y).

We shall also use the fact that

d(y, x0) ≤ d(x, x0) ⇒ ∆
(λ)
α,β,γ(x, y) ≤ 2 pλ(x)

αγpλ(y)
αβ .

Indeed, if d(y, x0) ≤ d(x, x0), then we have pλ(y) ≤ pλ(x), so that

pλ(x)
αβpλ(y)

αγ
= pλ(x)

αβ pλ(y)
α(γ−β) pλ(y)

αβ ≤ pλ(x)
αβ pλ(x)

α(γ−β) pλ(y)
αβ ,

thus pλ(x)
αβpλ(y)

αγ ≤ pλ(x)
αγpλ(y)

αβ .
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B.1. A preliminary lemma. — The proofs of Propositions 11.4-8 are based on
the following lemma.

Lemma B.1. — Let q : E→C measurable, Kf(x) = E[q(Θx) f(Θx) ], and let
λ ∈ (0, 1]. Suppose that there exist constants a, A, b, B such that we have for
all x, y ∈ E satisfying d(y, x0) ≤ d(x, x0)

|q(x)| ≤ A pλ(x)
a,(i)

|q(x)− q(y)| ≤ B d(x, y)
α pλ(x)

b.(ii)

Then we have for f ∈ Bα,β,γ and x, y as above stated

|Kf(x)| ≤ A |f |(λ)
α,γ pλ(x)

a+α(γ+1) E[Ma+α(γ+1)
]

|Kf(x)−Kf(y)| ≤ A m(λ)
α,β,γ(f) d(x, y)

α pλ(x)
a
∆

(λ)
α,β,γ(x, y) E[ Cα Ca+α(γ+β)

λ ]

+B |f |(λ)
α,γ d(x, y)

α pλ(x)
b pλ(y)

α(γ+1) E[ Cα Mb+α(γ+1)
].

Proof. — We have

|Kf(x)| ≤ E[|q(Θx) f(Θx)|] ≤ A |f |(λ)
α,γ E[ pλ(Θx)

a pλ(Θx)
α(γ+1)

]

≤ A |f |(λ)
α,γ pλ(x)

a+α(γ+1)E[Ma+α(γ+1)
].

Moreover, for x, y ∈ E satisfying d(y, x0) ≤ d(x, x0) (thus pλ(y) ≤ pλ(x)), we
have

|Kf(x)−Kf(y)| ≤ E
ï
|q(Θx)| |f(Θx)− f(Θy)|

ò
+ E

ï
|f(Θy)| |q(Θx)− q(Θy)|

ò

≤ A m(λ)
α,β,γ(f) E

ï
pλ(Θx)

a d(Θx,Θy)
α

∆
(λ)
α,β,γ(Θx,Θy)

ò

+|f |(λ)
α,γ B E

ï
p(Θy)

α(γ+1) d(Θx,Θy)
α pλ(Θx)

b

ò

≤ A m(λ)
α,β,γ(f) d(x, y)

α pλ(x)
a
∆

(λ)
α,β,γ(x, y) E

ï
Cα Ca+α(γ+β)

λ

ò

+B |f |(λ)
α,γ d(x, y)

α pλ(x)
b pλ(y)

α(γ+1) E
ï
Cα Mb+α(γ+1)

ò
.

Lemma B.1 is then proved.

For the use of Lemma B.1, it is worth noticing that the supremum bound
defining the Hölder constants mα,β,γ(f) or m(λ)

α,β,γ(f) can be obviously com-
puted over the elements x, y ∈ E such that d(y, x0) ≤ d(x, x0). Lemma B.1
will be applied below with q(·) depending on the function ξ. Remember that ξ
verifies the following hypothesis:

(L)s ∀(x, y) ∈ E × E, |ξ(x)− ξ(y)| ≤ S d(x, y) [1 + d(x, x0) + d(y, x0)]
s.
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From (L)s, it follows that there exists C > 0 such that we have for x ∈ E

|ξ(x)| ≤ C p(x)
s+1,

and for x, y ∈ E satisfying d(y, x0) ≤ d(x, x0):

|ξ(x)− ξ(y)| ≤ C d(x, y) p(x)
s and |ξ(x)− ξ(y)| ≤ C d(x, y)

α p(x)
s+1−α.

B.2. Proof of Proposition 11.4. — This proposition states that (K) of Section 4
holds w.r.t. the space Bα,β,γ if we have s + 1 ≤ β ≤ γ and

I = E[ Mα(γ+1)
+ Cα Mα(γ+β)

] < +∞ and E[ Cα
max{ C , 1}α(γ+β)

] < 1.

The strong ergodicity condition (K1) of Section 1 holds by Proposition 11.2.
Besides we have for f ∈ Bα,β,γ

π
�
|ei�t, ξ� − 1| |f |

�
≤ |f |α,γ π

�
|ei�t, ξ� − 1| pα(γ+1)

�
.

Since π(pα(γ+1)
) < +∞ (Prop. 11.1), the continuity condition of (K) is satisfied:

in fact, from Lebesgue’s theorem and Remark (a) of Section 4, we have (”K2)
of Section 5.2. To study the Doeblin-Fortet inequalities of (K), notice that
Q(t) = K where K is associated to q(x) = eitξ(x) with the notations of Lemma
B.1. By using (L)s and the inequality |eiT − 1| ≤ 2|T |α, one easily gets (i)-(ii)
in Lemma B.1 with A = 1, a = 0 and B = Dλ |t|α, b = αs, where Dλ is a
positive constant resulting from (L)s and the equivalence between pλ(·) and
p(·). Then, from Lemma B.1, we have for any f ∈ Bα,β,γ

|Q(t)f |(λ)
α,γ ≤ E[ Mα(γ+1)

] |f |(λ)
α,γ ≤ I |f |(λ)

α,γ

and for x, y ∈ E such that d(y, x0) ≤ d(x, x0)

|Q(t)f(x)−Q(t)f(y)| ≤ m(λ)
α,β,γ(f) d(x, y)

α
∆

(λ)
α,β,γ(x, y) E[ Cα Cα(γ+β)

λ ]

+ Dλ |t|α |f |(λ)
α,γ d(x, y)

α pλ(x)
αs pλ(y)

α(γ+1) E[ Cα Mα(γ+s+1)
].

Since pλ(x)
αs pλ(y)

α(γ+1) ≤ pλ(x)
α(s+1) pλ(y)

αγ ≤ pλ(x)
αβ pλ(y)

αγ ≤
∆

(λ)
α,β,γ(x, y), the previous inequalities prove that Q(t) continuously acts

on Bα,β,γ , and setting Eλ = I Dλ, that

m(λ)
α,β,γ(Q(t)f) ≤ E[ Cα Cα(γ+β)

λ ]m(λ)
α,β,γ(f) + Eλ |t|α |f |(λ)

α,γ .

Now, using the fact that the norms �f�(λ)
α,β,γ and �f� = m(λ)

α,β,γ(f) + π(|f |) are
equivalent (see [44] Prop. 5.2), one obtains with some new constant E�

λ:

m(λ)
α,β,γ(Q(t)f) ≤ E[ Cα Cα(γ+β)

λ ]m(λ)
α,β,γ(f) + E�

λ |t|α
Å

m(λ)
α,β,γ(f) + π(|f |)

ã

≤
Å

E[ Cα Cα(γ+β)
λ ] + E�

λ |t|α
ã

m(λ)
α,β,γ(f) + E�

λ |t|α π(|f |).
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Since Cλ ≤ M and Cλ→max{ C , 1} when λ→ 0, it follows from Lebesgue
theorem that one can choose λ such that E[ Cα Cα(γ+β)

λ ] < 1. Now let τ > 0

such that
κ := E[ Cα Cα(γ+β)

λ ] + E�
λ τα < 1.

Then, if |t| ≤ τ , we have

m(λ)
α,β,γ(Q(t)f) ≤ κ m(λ)

α,β,γ(f) + E�
λ τα π(|f |).

Since π(|Q(t)f |) ≤ π(|Qf |) = π(|f |), this gives �Q(t)f� ≤ κ �f� + (1 +

E�
λ τα

) π(|f |), and this easily leads to the Doeblin-Fortet inequalities of (K),
with O = (−τ, τ).
In the next proofs, except for Proposition 11.8, the technical parameter λ used
above will be neglected, namely we shall assume λ = 1, and the effective com-
putation of the constants occurring in the proofs will be of no relevance. So,
to simplify the next estimates, we shall still denote by C the constant in the
above inequalities resulting from (L)s, even if it is slightly altered through the
computations (the effective constants will actually depend on parameters as α,
t0 ∈ R fixed, k ∈ N fixed, s, S ...).

Proposition 11.5 will follow from Lemma B.4 with k = 0.

B.3. Proof of Proposition 11.6. — Actually let us prove that

�Q(t)−Q�
Bα,β,γ , Bα,β,γ�

= O(|t|) if 0 < β ≤ γ, γ� ≥ γ +
s + 1

α
,

and
I = E

î
Ms+1+α(γ+1)

+ Cα Ms+1+α(γ+β)
ó

< +∞.

Let K = Q(t) − Q(0). Then K is associated to q(x) = eitξ(x) − 1. Using
(L)s and the inequality |eiT − 1| ≤ |T |, one easily gets (i)-(ii) in Lemma B.1
with A = C |t|, a = s + 1, and B = C |t| and b = s + 1− α. So

|Kf(x)| ≤ C |t| |f |α,γ p(x)
s+1+α(γ+1) E[ Ms+1+α(γ+1)

] ≤ I C |t| |f |α,γ p(x)
α(γ�+1),

and, by using the fact that p(y) ≤ p(x) (thus ∆α,β,γ(x, y) ≤ 2 p(x)
αγp(y)

αβ)

|Kf(x)−Kf(y)|

≤ C |t|mα,β,γ(f) d(x, y)
α p(x)

s+1
2 p(x)

αγp(y)
αβ E[ Cα C s+1+α(γ+β)

λ ]

+ C |t| |f |α,γ d(x, y)
α p(x)

s+1−α p(y)
α(γ+1) E[ Cα Ms+1−α+α(γ+1)

].

Since p(x)
s+1+αγp(y)

αβ ≤ p(x)
αγ�p(y)

αβ ≤ ∆α,β,γ�(x, y) and

p(x)
s+1−α p(y)

α(γ+1) ≤ p(x)
s+1+αγ ≤ p(x)

αγ� ≤ ∆α,β,γ�(x, y)

it follows that |Kf(x)−Kf(y)| ≤ 2 I C |t| �f�α,β,γ d(x, y)
α

∆α,β,γ�(x, y).
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B.4. Proof of Proposition 11.7. — This proposition states that C(m) (m ∈ N∗)
holds with B = Bα,β,γ and ‹B = Bα,β,γ� if we have s + 1 ≤ β ≤ γ, γ� >

γ +
m(s+1)

α , and

E[ Mα(γ�+1)
+ Cα Mα(γ�+β)

] < +∞ E[ Cα
max{ C , 1}α(γ�+β)

] < 1.

Let k ∈ N. Let us recall that we set Qk(t)(x, dy) = ikξ(y)
keitξ(y) Q(x, dy)

(x ∈ E, t ∈ R). For u ∈ R, we set eiuξ(·)
= eu(·).

Lemma B.2. — For k ∈ N, we have Qk ∈ C0
(R, Bα,β,γ , Bα,β,γ�) under the

following conditions: s + 1 ≤ β ≤ γ, γ� > γ +
(s+1)k

α , and I = E[ Mα(γ�+1)
+

Cα Mα(γ�+β)
] < +∞.

Proof. — Let t, t0 ∈ R, h = t − t0. We suppose that |h| ≤ 1. Let K =

Qk(t)−Qk(t0). Then K is associated to q(x) = (iξ(x))
k
�
et(x)− et0(x)

�
. Let

0 < ε < α. Using the inequality |eiT − 1| ≤ 2|T |ε, one gets (i) in Lemma B.1
with A = C |h|ε and a = (s + 1)(k + ε). Using also |eiT − 1| ≤ 2|T |α, we have
for k ≥ 1 and for x, y ∈ E such that d(y, x0) ≤ d(x, x0) (thus p(y) ≤ p(x)):

|q(x)− q(y)|

≤ |ξ(x)
k − ξ(y)

k| |et(x)− et0(x)|

+ |ξ(y)|k
�� �

et(x)− et0(x)
�
−

�
et(y)− et0(y)

� ��

≤ C |ξ(x)− ξ(y)| p(x)
(s+1)(k−1) |h|ε p(x)

(s+1)ε

+ C p(x)
(s+1)k

Å
|eh(x)− eh(y)| + |eh(y)− 1| |et0(x)− et0(y)|

ã

≤ C |h|ε d(x, y)
α p(x)

s+1−α p(x)
(s+1)(k−1+ε)

+C p(x)
(s+1)k

Å
|h|α d(x, y)

α p(x)
αs

+ |h|εp(x)
(s+1)ε |t0|α d(x, y)

α p(x)
αs

ã

≤ C |h|ε d(x, y)
α p(x)

(s+1)(k+ε)−α
+ C |h|ε d(x, y)

α p(x)
(s+1)(k+ε)+αs.

Hence (ii) in Lemma B.1 holds with B = C |h|ε and b = (s + 1)(k + ε) + αs. If
k = 0, the previous computation, which starts from |q(x) − q(y)| ≤ | (et(x) −
et0(x))− (et(y)− et0(y)) |, yields the same conclusion.
By hypothesis, one can choose ε such that γ� ≥ γ +

(s+1)(k+ε)
α , and Lemma B.1

yields for f ∈ Bα,β,γ

|Kf(x)| ≤ C |h|ε |f |α,γ p(x)
(s+1)(k+ε)+α(γ+1) E[M(s+1)(k+ε)+α(γ+1)

]

≤ I C |h|ε |f |α,γ p(x)
α(γ�+1).
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Next, using s + 1 ≤ β and d(y, x0) ≤ d(x, x0) (thus ∆α,β,γ(x, y) ≤
2 p(x)

αγp(y)
αβ) gives

|Kf(x)−Kf(y)|

≤ C |h|ε mα,β,γ(f) d(x, y)
α p(x)

(s+1)(k+ε)
2 p(x)

αγ p(y)
αβ E[ Cα Cα(γ�+β)

λ ]

+ C |h|ε |f |α,γ d(x, y)
α p(x)

(s+1)(k+ε)+αs p(y)
α(γ+1) E[ Cα Mα(γ�+s+1)

]

≤ 2 I C |h|ε �f�α,β,γ d(x, y)
α p(x)

αγ� p(y)
αβ

+ IC |h|ε �f�α,β,γ d(x, y)
α p(x)

(s+1)(k+ε)+αs p(y)
α(γ+1−β) p(y)

αβ

≤ 2 I C |h|ε �f�α,β,γ d(x, y)
α

∆α,β,γ�(x, y)

+ IC |h|ε �f�α,β,γ d(x, y)
α p(x)

αγ�+α(s+1−β) p(y)
αβ ,

and we have p(x)
αγ�+α(s+1−β) p(y)

αβ ≤ p(x)
αγ� p(y)

αβ ≤ ∆α,β,γ�(x, y) because
s + 1 ≤ β.

Lemma B.4
�. — For k ∈ N, we have Qk ∈ C1

(R, Bα,β,γ , Bα,β,γ�) with Q�
k =

Qk+1 under the conditions: s + 1 ≤ β ≤ γ, γ� > γ +
(s+1)(k+1)

α , and I =

E[ Mα(γ�+1)
+ Cα Mα(γ�+β)

] < +∞.

Proof. — Let t, t0 ∈ R, h = t − t0, and assume |h| ≤ 1. Let K = Qk(t) −
Qk(t0)− h Qk+1(t0), and q(x) = (iξ(x))

k
�
et(x)− et0(x)− i h ξ(x) et0(x)

�
. For

u ∈ R, we set φ(u) = eiu − 1 − iu. Let 0 < ε < α. We shall use the following
usual inequalities

|φ(u)| ≤ 2 |u|1+ε, |φ(u)− φ(v)| ≤ 2 |u− v| (|u|ε + |v|ε).

Writing q(x) = (iξ(x))
k et0(x)φ

�
hξ(x)

�
, one easily gets (i) in Lemma B.1 with

A = C |h|1+ε and a = (s + 1)(k + 1 + ε). Proceeding as in the previous proof,
one obtains for x, y ∈ E such that d(y, x0) ≤ d(x, x0)

|q(x)− q(y)|

≤ |ξ(x)
k − ξ(y)

k| |φ(hξ(x))| + |ξ(y)|k
����et0(x)φ(hξ(x))− et0(y)φ(hξ(y))

����

≤ C d(x, y)
α p(x)

s+1−α p(x)
(s+1)(k−1) |h|1+ε p(x)

(s+1)(1+ε)

+ C p(x)
(s+1)k

Å
|φ(hξ(x))− φ(hξ(y))| + |φ(hξ(y))| |et0(x)− et0(y)|

ã
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≤ C |h|1+ε d(x, y)
α p(x)

s+1−α+(s+1)(k+ε)
+ C |h|1+ε p(x)

(s+1)k

×
Å
|ξ(x)− ξ(y)| p(x)

(s+1)ε
+ p(x)

(s+1)(1+ε) |t0|α d(x, y)
α p(x)

αs

ã

≤ C |h|1+ε d(x, y)
α p(x)

s+1−α+(s+1)(k+ε)

+ C |h|1+ε d(x, y)
α p(x)

(s+1)k

Å
p(x)

s+1−α+(s+1)ε
+ p(x)

(s+1)(1+ε)+αs

ã
.

We have s+1−α+(s+1)(k+ε) = (s+1)(k+1+ε)−α ≤ (s+1)(k+1+ε)+αs,
and finally one gets (ii) in Lemma B.1 with B = C |h|1+ε and b = (s + 1)(k +

1 + ε) + αs. To prove that Qk ∈ C1
(R, Bα,β,γ , Bα,β,γ�), one can then apply

Lemma B.1 by proceeding exactly as in the previous proof (replace |h|ε with
|h|1+ε, and k with k + 1, with ε such that αγ� ≥ αγ + (s + 1)(k + 1 + ε)).

Now one can prove Proposition 11.7. Let us assume that s + 1 ≤ β ≤ γ and
γ� > γ +

m(s+1)
α , and let ε > 0 be such that γ +

m(s+1)
α + (2m + 1)ε ≤ γ�. Let

I = [γ, γ�], and for θ ∈ I, set Bθ := Bα,β,θ, T0(θ) = θ+ε and T1(θ) = θ+
s+1
α +ε.

With these choices, the conditions (0) (4) of C(m) are obvious, the regularity
conditions (1) (2) of C(m) follow from Lemmas B.4-4�, and finally Condition
(3) follows from Proposition 11.4.

B.5. Proof of Proposition 11.8. — This proposition states that, if s + 1 < β ≤
γ < γ�, I = E[Mα(γ�+1)

+ Cα Mα(γ�+β)
] < +∞ and E[ Cα

max{ C , 1}α(γ+β)
] <

1, then Condition (S) holds on Bα,β,γ if and only if ξ is non-arithmetic
w.r.t. Bα,β,γ . If ξ is nonlattice, the two previous equivalent conditions hold.

This is a direct consequence of Propositions 5.3-4 and of the following lemma
(for Condition (P), see Rk. at the end of Section 5.2). Notice that one may
suppose that γ� is fixed such that s + 1 + (γ� − γ) ≤ β. Let (

“B, | · |α,γ�) be
the Banach space of all complex-valued functions f on E such that |f |α,γ� =

supx∈E
|f(x)|

p(x)α(γ�+1) < +∞.

Lemma B.3. — Under the above hypotheses, Condition (“K) of Section 5.2 is
fulfilled with B = Bα,β,γ and “B as above defined.

Proof. — Condition (K1) holds by Proposition 11.2. Since | · |α,γ� ≤ � · �α,β,γ� ,
we have (”K2) by Lemma B.4 (case k = 0). To prove (”K3) and (”K4), let us
observe that the norms �·�α,β,γ and |·|α,γ� may be replaced with any equivalent
norms ; of course (”K2) then remains valid. Given a real parameter λ ∈ (0, 1]

on which conditions will be imposed later, let us consider on Bα,β,γ the norm

�f�(λ)
α,β,γ,γ� = m(λ)

α,β,γ(f) + |f |(λ)
α,γ�
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with m(λ)
α,β,γ(f) defined in Section B.0, and |f |(λ)

α,γ� := supx∈E
|f(x)|

pλ(x)α(γ�+1) . It

can be easily shown that the norms � · �α,β,γ and � · �(λ)
α,β,γ,γ� are equivalent on

Bα,β,γ (see [44] Prop. 5.2), and that the norms | · |α,γ� and | · |(λ)
α,γ� are equivalent

on “B. We have to establish that, if λ ∈ (0, 1] is suitably chosen, then for any
compact set K0 in R, there exist κ < 1 and C > 0 such that:

• ∀n ≥ 1,∀f ∈ Bα,β,γ ,∀t ∈ K0, �Q(t)nf�(λ)
α,β,γ,γ� ≤ C κn �f�(λ)

α,β,γ,γ� + C |f |(λ)
α,γ�

• ∀t ∈ K0, ress(Q(t)) ≤ κ.

We have Q(t) = K with q(x) = eitξ(x) satisfying Conditions (i)-(ii) of Lemma
B.1 with A = 1, a = 0, B = Dλ |t|α (Dλ > 0) and b = αs. Let f ∈ Bα,β,γ .
Because of the presence of γ� in the above norm, Lemma B.1 cannot be directly
applied here. However one can follow the proof of lemma B.1 and see that

|Q(t)f |(λ)
α,γ� ≤ E[Mα(γ�+1)

] |f |(λ)
α,γ� ≤ I |f |(λ)

α,γ�

and that for x, y ∈ E such that d(y, x0) ≤ d(x, x0), we have by using in partic-
ular the fact that γ� has been chosen such that s + 1 + γ� − β ≤ γ:

|Q(t)f(x)−Q(t)f(y)|

≤ m(λ)
α,β,γ(f) d(x, y)

α
∆

(λ)
α,β,γ(x, y) E[ Cα Cα(γ+β)

λ ]

+ D�
λ |t|α |f |(λ)

α,γ� d(x, y)
α pλ(x)

αs pλ(y)
α(γ�+1) E[ Cα Mα(γ�+s+1)

]

≤ m(λ)
α,β,γ(f) d(x, y)

α
∆

(λ)
α,β,γ(x, y) E[ Cα Cα(γ+β)

λ ]

+ I D�
λ |t|α |f |(λ)

α,γ� d(x, y)
α pλ(x)

αs pλ(y)
α(γ�+1−β) pλ(y)

αβ ,

with pλ(x)
αs pλ(y)

α(γ�+1−β) ≤ pλ(x)
α(s+1+γ�−β) ≤ pλ(x)

αγ . Thus

|Q(t)f(x)−Q(t)f(y)|
d(x, y)α ∆

(λ)
α,β,γ(x, y)

≤ m(λ)
α,β,γ(f) E[ Cα Cα(γ+β)

λ ] + I D�
λ |t|α |f |(λ)

α,γ� .

Besides, by Lebesgue’s theorem, we have κ := E[ Cα Cα(γ+β)
λ ] < 1 for suffi-

ciently small λ. The previous estimate then easily gives the desired Doeblin-
Fortet inequalities.

Since the canonical embedding from Bα,β,γ into “B is compact (this easily
follows from Ascoli’s theorem, see [44] Lemma 5.4), the property ress(Q(t)) ≤ κ
is then a consequence of [41].
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