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Abstract. — Using the flatification by blow-up result of Raynaud and Gruson, we
obtain new results for submersive and subtrusive morphisms. We show that universally
subtrusive morphisms, and in particular universally open morphisms, are morphisms
of effective descent for the fibered category of étale morphisms. Our results extend and
supplement previous treatments on submersive morphisms by Grothendieck, Picavet
and Voevodsky. Applications include the universality of geometric quotients and the
elimination of noetherian hypotheses in many instances.

Résumé (Submersion et descente effective de morphismes étales)
On applique le théorème de « platification » de Raynaud et Gruson aux morphismes

subtrusifs et obtient le théorème de structure suivant: Tout morphisme universellement
subtrusif de présentation finie a un raffinement se factorisant en un recouvrement ou-
vert suivi d’un morphisme propre. La première application de ce théorème de structure
est un théorème de descente effective. On montre que tout morphisme universellement
subtrusif est un morphisme de descente effective pour la catégorie fibrée des mor-
phismes étales. Ce résultat réduit l’écart entres schémas et espaces algébriques. Par
exemple, on peut montrer que des quotients géométriques sont universels dans la caté-
gorie des espaces algébriques. La deuxième application concerne les limites projectives
de schémas. On démontre que tout morphisme universellement subtrusif de présenta-
tion finie est la limite de morphismes universellement submersifs entre schémas noe-
thériens. Il en découle que la classe de morphismes subtrusifs, introduite par Picavet,
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182 D. RYDH

est une extension naturelle de la classe de morphismes submersifs entre schémas noe-
thériens. Avec des méthodes semblables on montre aussi un énoncé analogue pour les
morphismes universellement ouverts. De plus, on généralise aux espaces algébriques
les propriétés fondamentales des topologies h et qfh introduites par Voevodsky.

Introduction

Submersive morphisms, that is, morphisms inducing the quotient topology
on the target, appear naturally in many situations such as when studying quo-
tients, homology, descent and the fundamental group of schemes. Somewhat
unexpected, they are also closely related to the integral closure of ideals. Ques-
tions related to submersive morphisms of schemes can often be resolved by
topological methods using the description of schemes as locally ringed spaces.
Corresponding questions for algebraic spaces are significantly harder as an al-
gebraic space is not fully described as a ringed space. The main result of this
paper is an effective descent result which bridges this gap between schemes and
algebraic spaces.

The first proper treatment of submersive morphisms seems to be due to
Grothendieck [19, Exp. IX] with applications to the fundamental group of a
scheme. He shows that submersive morphisms are morphisms of descent for
the fibered category of étale morphism. He then proves effectiveness for the
fibered category of quasi-compact and separated étale morphisms in some spe-
cial cases, e.g., for finite morphisms and universally open morphisms of finite
type between noetherian schemes. Our main result consists of several very
general effectiveness results extending those of Grothendieck significantly. For
example, we show that any universal submersion of noetherian schemes is a
morphism of effective descent for quasi-compact étale morphisms. As an appli-
cation, these effectiveness results imply that strongly geometric quotients are
categorical in the category of algebraic spaces [35].

Later on Picavet singled out a subclass of submersive morphisms in [32].
He termed these morphisms subtrusive and undertook a careful study of their
main properties. The class of subtrusive morphisms is natural in many re-
spects. For example, over a locally noetherian scheme, every submersive mor-
phism is subtrusive. Picavet has also given an example showing that a finitely
presented universally submersive morphism is not necessarily subtrusive. In
particular, not every finitely presented universally submersive morphism is a
limit of finitely presented submersive morphisms of noetherian schemes. We
will show that every finitely presented universally subtrusive morphism is a
limit of finitely presented submersive morphisms of noetherian schemes. This
is a key result missing in [32] allowing us to eliminate noetherian hypotheses

tome 138 – 2010 – no 2



SUBMERSIONS AND EFFECTIVE DESCENT OF ÉTALE MORPHISMS 183

in questions about universal subtrusions of finite presentation. It also shows
that the class of subtrusive morphisms is indeed an important and very natural
extension of submersive morphisms of noetherian schemes.

A general observation is that in the noetherian setting it is often useful to de-
scribe submersive morphisms using the subtrusive property. For example, there
is a valuative criterion for submersions of noetherian schemes [25, Prop. 3.7]
which rather describes the essence of the subtrusiveness.

Structure theorem. — An important tool in this article is the structure theorems
for universally subtrusive morphisms given in §3: Let f : X → Y be a uni-
versally subtrusive morphism of finite presentation. Then there is a morphism
g : X ′ → X and a factorization of f ◦ g

X ′
f1
// Y ′

f2
// Y

where f1 is fppf and f2 is proper, surjective and of finite presentation, cf.
Theorem 3.10. This is shown using the flatification result of Raynaud and
Gruson [34].

We also show that if f is in addition quasi-finite, then there is a similar
factorization as above such that f1 is an open covering and f2 is finite, surjective
and of finite presentation, cf. Theorem 3.11. Combining these results, we show
that every universally subtrusive morphism of finite presentation f : X → Y

has a refinement X ′ → Y which factors into an open covering f1 followed by a
surjective and proper morphism of finite presentation f2.

This structure theorem is a generalization to the non-noetherian case of a
result of Voevodsky [43, Thm. 3.1.9]. The proof is somewhat technical and the
reader without any interest in non-noetherian questions may prefer to read the
proof given by Voevodsky which has a more geometric flavor. Nevertheless,
our extension is crucial for the elimination of noetherian hypotheses referred
to above.

As a first application, we show in Section 4 that universally subtrusive mor-
phisms of finite presentation are morphisms of effective descent for locally closed
subsets. This result is not true for universally submersive morphisms despite
its topological nature.

Effective descent of étale morphisms. — In Section 5 we use the structure theo-
rems of §3 and the proper base change theorem in étale cohomology to prove
that

– Quasi-compact universally subtrusive morphisms are morphisms of effec-
tive descent for quasi-compact étale morphisms. (Theorem 5.17).

– Universally open and surjective morphisms are morphisms of effective
descent for étale morphisms. (Theorem 5.19)
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In particular, universal submersions between noetherian schemes are mor-
phisms of effective descent for quasi-compact étale morphisms.

Applications. — The effective descent results of §5 have several applications.
One is the study of the algebraic fundamental group using morphisms of effec-
tive descent for finite étale covers, cf. [19, Exp. IX, §5]. Another application,
also the origin of this paper, is in the theory of quotients of schemes by groups.
The effective descent results show that strongly geometric quotients are cate-
gorical in the category of algebraic spaces [35]. This result is obvious in the
category of schemes but requires the results of §5 for the extension to alge-
braic spaces. The third application in mind is similar to the second. Using
the effective descent results we can extend some basic results on the h- and
qfh-topologies defined by Voevodsky [43] to the category of algebraic spaces.
This is done in §§7–8. The h-topology has been used in singular homology [37],
motivic homology theories [44] and when studying families of cycles [38]. The
h-topology is also related to the integral closure of ideals [9].

Elimination of noetherian hypotheses. — Let S be an inverse limit of affine
schemes Sλ. The situation in mind is as follows. Every ring A is the fil-
tered direct limit of its subrings Aλ which are of finite type over Z. The
scheme S = Spec(A) is the inverse limit of the excellent noetherian schemes
Sλ = Spec(Aλ).

Let X → S be a finitely presented morphism. Then X → S descends to a
finitely presented morphism Xλ → Sλ for sufficiently large λ [17, Thm. 8.8.2].
By this, we mean that X → S is the base change of Xλ → Sλ along S → Sλ.
If X → S is proper (resp. flat, étale, smooth, etc.) then so is Xλ → Sλ for
sufficiently large λ, cf. [17, Thm. 8.10.5, Thm. 11.2.6, Prop. 17.7.8]. Note that
the corresponding result for universally open is missing in [17]. As we have
mentioned earlier, the analogous result for universally submersive is false.

In Theorem 6.4 we show that if X → S is universally subtrusive then so is
Xλ → Sλ for sufficiently large λ. We also show the corresponding result for
X → S universally open. An easy application of this result is the elimination
of noetherian hypotheses in [17, §§14–15]. In particular, every universally open
morphism locally of finite presentation has a locally quasi-finite quasi-section,
cf. [17, Prop. 14.5.10].

Appendices. — Some auxiliary results are collected in two appendices. In the
first appendix we recall the henselian properties of a scheme which is proper
over a complete or henselian local ring. These properties follow from the Stein
factorization and Grothendieck’s existence theorem and constitute a part of
the proper base change theorem in étale cohomology. With algebraic spaces
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we can express these henselian properties in an appealing form which is used
when proving the effective descent results in Section 5.

In the second appendix, we briefly recall the weak subintegral closure of
rings and weakly normal extensions. We also introduce the absolute weak nor-
malization which we have not found elsewhere. When X is an integral scheme,
the absolute weak normalization is the weak subintegral closure in the perfect
closure of the function field of X. The absolute weak normalization is used to
describe the sheafification of a representable functor in the h-topology.

Terminology and assumptions. — A morphism of schemes or algebraic spaces
is called a nil-immersion if it is a surjective immersion. Equivalently, it is a
closed immersion given by an ideal sheaf which is a nil-ideal, i.e., every section
of the ideal sheaf is locally nilpotent.

Given a covering f : X → Y we say that f ′ : X ′ → Y is a refinement of f
if f ′ is covering and factors through f . For general terminology and properties
of algebraic spaces, see Knutson [23]. As in [23] we assume that all algebraic
spaces are quasi-separated.

Acknowledgment. — The author would like to thank the referee for a very
careful reading and for several suggestions which improved the paper.

1. Topologies

In addition to the Zariski topology, we will have use of two additional topolo-
gies which we recall in this section. The first is the constructible topology,
cf. [18, §7.2], which also is known as the patch topology. The second topology
is the S-topology where S stands for specialization. We then define submer-
sive morphisms and give examples of morphisms which are submersive in the
constructible topology.

The closed (resp. open) subsets of the constructible topology are the pro-
constructible (resp. ind-constructible) subsets. A subset is pro-constructible
(resp. ind-constructible) if it locally is an intersection (resp. union) of con-
structible sets. An important characterization of pro-constructible subsets is
given by the following proposition.

Proposition 1.1 ([18, Prop. 7.2.1]). — Let X be a quasi-compact and quasi-
separated scheme. A subset E ⊆ X is pro-constructible if and only if there is
an affine scheme X ′ and a morphism f : X ′ → X such that E = f(X ′).
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If X is a scheme, then we denote by |X| its underlying topological space
with the Zariski topology and |X|cons its underlying topological space with the
constructible topology. If f : X → Y is a morphism of schemes then we let
f cons be the underlying map in the constructible topology.

Proposition 1.2 ([18, Prop. 7.2.12]). — Let X be a scheme.
(i) If f : X → Y is a morphism of schemes, then f cons is continuous.
(ii) If f : X → Y is quasi-compact, then f cons is closed.
(iii) If f : X → Y is locally of finite presentation, then f cons is open.
(iv) If Z ↪→ X is closed, then |X|cons

|Z = |Z|cons.
(v) If U ⊆ X is open, then |X|cons

|U = |U |cons.
(vi) If W is a locally closed subscheme of X, then |X|cons

|W = |W |cons.

Proof. — (i)–(iii) are [18, Prop. 7.2.12 (iii)–(v)]. Statements (iv) and (v)
are consequences of (ii) and (iii) respectively, as closed immersions are quasi-
compact and open immersions are locally of finite presentation. Finally (vi)
follows immediately from (iv) and (v).

The Zariski topology induces a partial ordering on the underlying set of
points [18, 2.1.1]. We let x ≤ x′ if x ∈ {x′}, i.e., if x is a specialization of
x′, or equivalently if {x} ⊆ {x′}. The S-topology is the topology associated
to this ordering. A subset is thus closed (resp. open) if and only if it is stable
under specialization (resp. generization). We denote by S(E) the closure of E
in the S-topology. By E we will always mean the closure of E in the Zariski
topology. A morphism of schemes f : X → Y is generizing (resp. specializing)
if it is open (resp. closed) in the S-topology [18, §3.9]. An open (resp. closed)
morphism of schemes is generizing (resp. specializing) [18, Prop. 3.9.3].

Remark 1.3. — For an affine scheme Spec(A) the partial ordering described
above corresponds to reverse inclusion of prime ideals and a maximal point
corresponds to a minimal ideal. In commutative algebra, it is common to take
the ordering on the spectrum corresponding to inclusion of prime ideals, but
this is less natural from a geometric viewpoint.

Proposition 1.4 ([18, Thm. 7.3.1]). — Let X be a scheme. If E ⊆ X is
an ind-constructible subset then x ∈ int(E) if and only if Spec( OX,x) ⊆ E.
Equivalently, we have that the interior of E in the Zariski topology coincides
with the interior of E in the S-topology. If F ⊆ X is a pro-constructible subset
then F = S(F ).

Corollary 1.5. — Let X be a scheme. A subset E ⊆ X is open (resp. closed)
in the Zariski topology if and only if E is open (resp. closed) in both the con-
structible topology and the S-topology.
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Proof. — As a closed (resp. open) immersion is quasi-compact (resp. locally
of finite presentation), it follows that the constructible topology is finer than
the Zariski topology. That the S-topology is finer than the Zariski topology
is obvious. This shows the “only if” part. The “if” part follows from Proposi-
tion 1.4.

A map of topological spaces f : X → Y is submersive or a submersion if f is
surjective and Y has the quotient topology, i.e., E ⊆ Y is open (resp. closed) if
and only if f−1(E) is open (resp. closed). We say that a morphism of schemes
f : X → Y is submersive if the underlying morphism of topological spaces is
submersive. We say that f is universally submersive if f ′ : X ×Y Y ′ → Y ′ is
submersive for every morphism of schemes Y ′ → Y .

The composition of two submersive morphisms is submersive and if the com-
position g◦f of two morphisms is a submersive morphism then so is g. It follows
immediately from Corollary 1.5 that if f is submersive in both the constructible
and the S-topology, then f is submersive in the Zariski topology.

Proposition 1.6. — Let f : X → Y be a surjective morphism of schemes.
Then f cons is submersive in the following cases:

(i) f is quasi-compact.
(ii) f is locally of finite presentation.
(iii) f is open.

Proof. — If f is quasi-compact (resp. locally of finite presentation) then f cons

is closed (resp. open) by Proposition 1.2 and it follows that f cons is submersive.

Assume that f is open. Taking an open covering, we can assume that Y is
affine. As f is open there is then a quasi-compact open subset U ⊆ X such that
f |U is surjective. As f |U is quasi-compact it follows by part (i) that f cons|U is
submersive. In particular, we have that f cons is submersive.

Proposition 1.7. — Let f : X → Y and g : Y ′ → Y be morphisms of
schemes and let f ′ : X ′ → Y ′ be the pull-back of f along g.

(i) Assume that g is submersive. If f ′ is open (resp. closed, resp. submersive)
then so is f .

(ii) Assume that g is universally submersive. Then f has one of the prop-
erties: universally open, universally closed, universally submersive, sep-
arated; if and only if f ′ has the same property.

(iii) Assume that gcons is submersive. Then f is quasi-compact if and only if
f ′ is quasi-compact.
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Proof. — (i) Assume that f ′ is open (resp. closed) and let Z ⊆ X be an open
(resp. closed) subset. Then g−1(f(Z)) = f ′(g′−1(Z)) is open (resp. closed) and
thus so is f(Z) if g is submersive. If f ′ is submersive then so is g ◦ f ′ = f ◦ g′
which shows that f is submersive. The first three properties of (ii) follow easily
from (i) and if f is separated then so is f ′. If f ′ is separated, then ∆X′/Y ′ is
universally closed and it follows that ∆X/Y is universally closed and hence a
closed immersion [17, Cor. 18.12.6].

(iii) If f is quasi-compact then f ′ is quasi-compact. Assume that f ′ is quasi-
compact and that gcons is submersive. Then f ′cons is closed by Proposition 1.2
and it follows as in (i) that f cons is closed. Moreover, the fibers of f are quasi-
compact as the fibers of f ′ are quasi-compact. If y ∈ Y then (Xy)cons is quasi-
compact [18, Prop. 7.2.13 (i)] and so is the image (Xcons)y of (Xy)cons → Xcons.
Thus f cons is proper since it is closed with quasi-compact fibers, and it follows
that f is quasi-compact by [18, Prop. 7.2.13 (v)].

Remark 1.8. — Let us indicate how to extend the results of this section from
schemes to algebraic spaces. Recall that associated to every algebraic space
X is an underlying topological space |X| and that a morphism f of algebraic
spaces induces a continuous map |f | on the underlying spaces [23, II.6]. By
definition, a morphism of algebraic spaces f : X → Y is submersive if |f | is
submersive. If U is a scheme and f : U → X is étale and surjective, then
|f | is submersive. A morphism of algebraic spaces f : X → Y is universally
submersive if f ′ : X ×Y Y ′ → Y ′ is submersive for every morphism Y ′ → Y

of algebraic spaces. For f to be universally submersive it is sufficient that f ′

is submersive for every (affine) scheme Y ′.

The constructible topology (resp. S-topology) on the set |X| is the quotient
topology of the corresponding topology on |U | for an étale presentation U → X.
This definition is readily seen to be independent on the choice of presentation.
The results 1.1–1.7 then follow by taking étale presentations.

It is also possible to define the constructible topology and the S-topology
for a (quasi-separated) algebraic space intrinsically. In fact, the notions of
specializations, constructible, pro-constructible and ind-constructible sets are
meaningful for any topological space. To see that these two definitions agree, it
is enough to show that if U is a scheme and f : U → X is an étale presentation,
then f is submersive in both the constructible topology and the S-topology.
That f is submersive in the S-topology follows from [26, Cor. 5.7.1]. That f is
submersive in the constructible topology follows from Chevalley’s Theorem [26,
Thm. 5.9.4] but its proof in loc. cit. uses [26, Cor. 5.9.2] which appears to have
an incorrect proof as only locally closed subsets and not finite unions of such
are considered. We now give a different proof:
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As the question is local, we can assume that X is quasi-compact (and quasi-
separated). Then X has a finite stratification into locally closed constructible
subspaces Xi such that the Xi’s are quasi-compact and quasi-separated
schemes [34, Prop. 5.7.6]. The induced morphism

∐
iXi → X is a universal

homeomorphism in the constructible topology and it follows that f cons is
submersive from the usual result for schemes.

2. Subtrusive morphisms

In this section, we define and give examples of subtrusive morphisms. We
then give two valuative criteria and show that for noetherian schemes every
universally submersive morphism is universally subtrusive.

Proposition 2.1. — Let f : X → Y be a morphism of schemes. The follow-
ing are equivalent.

(i) Every ordered pair y ≤ y′ of points in Y lifts to an ordered pair of points
x ≤ x′ in X.

(ii) For every point y ∈ Y we have that f(S(f−1(y))) = S(y).
(iii) For every subset Z ⊆ Y we have that f(S(f−1(Z))) = S(Z).
(iv) For every pro-constructible subset Z ⊆ Y we have that f

Ä
f−1(Z)

ä
= Z.

Under these equivalent conditions f is submersive in the S-topology.

Proof. — It is clear that (i)⇐⇒ (ii). As specialization commutes with unions,
it is clear that (ii) ⇐⇒ (iii). By Proposition 1.4 it follows that (iii) =⇒ (iv).
As every point of Y is pro-constructible we have that (iv) =⇒ (ii). Finally it
is clear that f is submersive in the S-topology when (iii) is satisfied.

Definition 2.2. — We call a morphism of schemes S-subtrusive if the equiv-
alent conditions of Proposition 2.1 are satisfied. We say that a morphism is
subtrusive if it is S-subtrusive and submersive in the constructible topology.
We say that f : X → Y is universally subtrusive if f ′ : X ×Y Y ′ → Y ′ is
subtrusive for every morphism Y ′ → Y .

Remark 2.3. — Picavet only considers spectral spaces and spectral mor-
phisms, i.e., topological spaces that are the spectra of affine rings and
quasi-compact morphisms of such spaces [20]. Surjective spectral morphisms
are submersive in the constructible topology. Taking this into account,
Picavet’s definition of subtrusive morphisms [32, Déf. 2] agrees with Defini-
tion 2.2. Instead of “S-subtrusive” Picavet uses either “strongly subtrusive in
the S-topology” or “strongly submersive of the first order in the S-topology”.
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Note that the non-trivial results in this paper deal with quasi-compact sub-
trusive morphism. Nevertheless, we have chosen to give the general definition
of subtrusive morphisms as this clarifies the usage of the constructible topology.

Every subtrusive morphism is submersive by Corollary 1.5. It is furthermore
clear that the composition of two subtrusive morphisms is subtrusive and that
if the composition g ◦ f of two morphisms is subtrusive then so is g.

Proposition 2.4. — Let f : X → Y be a morphism of schemes.
(i) f is submersive (resp. subtrusive) if and only if fred is submersive (resp.

subtrusive).
(ii) Let Y =

⋃
Yi be an open covering. Then f is submersive (resp. subtru-

sive) if and only if f |Yi is submersive (resp. subtrusive) for every i.
(iii) Let W be a locally closed subscheme of Y . If f is submersive (resp.

subtrusive) then so is f |W .

Proof. — It is enough to verify the corresponding statements for: f submer-
sive, f cons submersive and f S-subtrusive. This follows easily from the topo-
logical definition of submersive, Proposition 1.2 and the characterization of
S-subtrusive given in (i) of Proposition 2.1.

Remark 2.5. — Let f : X → Y be a surjective morphism of schemes. Then
f is universally subtrusive in the following cases:
(1) f is universally specializing and f cons is universally submersive.
(1a) f is proper.
(1b) f is integral.
(1c) f is essentially proper, i.e., universally specializing, separated and locally

of finite presentation (defined in [17, Rem. 18.10.20] for Y locally noethe-
rian).

(2) f is universally generizing and f cons is universally submersive.
(2a) f is fpqc (faithfully flat and quasi-compact).
(2b) f is fppf (faithfully flat and locally of finite presentation).
(2c) f is universally open.
Recall that quasi-compact morphisms, morphisms locally of finite presentation
and universally open morphisms are universally submersive in the constructible
topology, cf. Proposition 1.6. Thus (1a)–(1c) are special cases of (1) and as flat
and open morphisms are generizing it is clear that (2a)–(2c) are special cases
of (2). That f is universally subtrusive in (1) and (2) is obvious.

Remark 2.6. — Let V be a valuation ring. Then every finitely generated
ideal in V is principal and a V -module is flat if and only if it is torsion free [8,
Ch. VI, §3, No. 6, Lem. 1]. In particular, if B is a V -algebra and an integral
domain, then B is flat if and only if V → B is injective.
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Proposition 2.7 ([34, Part II, Prop. 1.3.1], [32, Prop. 16])
Let V be a valuation ring and f : X → Spec(V ) a morphism of schemes.

The following are equivalent:

(i) f is universally subtrusive.
(ii) f is subtrusive.
(iii) f is S-subtrusive.
(iv) The closure of the generic fiber X ×V Spec(K) in X surjects onto V .
(v) The pair m ≤ (0) in Spec(V ) lifts to x ≤ x′ in X.
(vi) There is a valuation ring W and a morphism Spec(W ) → X such that

the composition Spec(W )→ X → Spec(V ) is surjective.
(vii) Any chain of points in Spec(V ) lifts to a chain of points in X.
(viii) There is a closed subscheme Z ↪→ X such that f |Z is faithfully flat.

If V is a discrete valuation ring, then the above conditions are equivalent with
the following:

(ix) f is submersive.

Proof. — It is clear that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv) =⇒ (v) and that
(vi) =⇒ (vii) =⇒ (v). We will now show that (v) implies (vi) and (viii). We let
Z = {x′} which is an integral closed subscheme of X dominating Spec(V ). We
let W be a valuation ring dominating OZ,x. Then both Spec(W ) → Spec(V )

and Z → Spec(V ) are flat by Remark 2.6. As the images in Spec(V ) of Spec(W )

and Z contain the closed point, we have that Spec(W ) → Spec(V ) and Z →
Spec(V ) are surjective.

If (viii) is satisfied then we let x ∈ Z be a point over the closed point of
Spec(V ). The morphism Spec( OZ,x) → Z ↪→ X → Spec(V ) is faithfully flat
and quasi-compact and hence universally subtrusive by case (2a) in Remark 2.5.
In particular, we have that X → Spec(V ) is universally subtrusive.

Finally (ii) always implies (ix) and if V is a discrete valuation ring, then (ix)
implies (iv).

In the proof of the following theorem we use Corollary 6.3. This corollary
is independent of Theorem 2.8 as the results of §§6.1–6.3 only uses the basic
properties §§2.1–2.4 of subtrusive morphisms.

Theorem 2.8 ([32, Thm. 29, Thm. 37]). — Let f : X → Y be a morphism
such that f cons is universally submersive (e.g. f quasi-compact).

(i) f is universally subtrusive if and only if, for any valuation ring V and
morphism Y ′ → Y with Y ′ = Spec(V ), the pull-back f ′ : X ′ → Y ′ is
subtrusive.
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(ii) f is universally submersive if and only if, for any valuation ring V and
morphism Y ′ → Y with Y ′ = Spec(V ), the pull-back f ′ : X ′ → Y ′ is
submersive.

If Y is locally noetherian then it is enough to consider discrete valuation rings
in (i) and (ii), and f is universally subtrusive if and only if f is universally
submersive.

Proof. — The necessity of the conditions is clear. To prove the sufficiency
of (i), take any base change Y ′ → Y and let y ≤ y′ be an ordered pair in
Y ′. We have to show that y ≤ y′ can be lifted to X ′. There is a valuation
ring V and a morphism Spec(V )→ Y ′ such that the pair m ≤ (0) in Spec(V )

lifts y ≤ y′, cf. [8, Ch. VI, §1, No. 2, Cor.]. As X ′ ×Y ′ Spec(V ) → Spec(V )

is subtrusive by assumption we can then lift m ≤ (0) to an ordered pair in
X ′ ×Y ′ Spec(V ) which after projection onto X ′ gives a lifting of y ≤ y′.

To prove the sufficiency of (ii), assume that f ′ is submersive whenever Y ′ is
the spectrum of a valuation ring. It is then enough to show that f is submersive.
LetW ⊆ Y be a subset such that f−1(W ) is closed. Then as f cons is submersive
it follows thatW is pro-constructible. We will now show thatW is closed under
specialization. ThenW is closed and it follows that f is submersive. Let y ≤ y′
be an ordered pair in Y with y′ ∈ W and choose a valuation ring V with a
morphism Y ′ = Spec(V )→ Y such that the pair m ≤ (0) in Y ′ lifts y ≤ y′. Let
W ′ be the inverse image of W along Y ′ → Y . As f ′ : X ′ → Y ′ is submersive
by assumption, we have that W ′ is closed. As (0) ∈W ′ it follows that m ∈W ′
and thus y ∈W .

When Y is locally noetherian, it is enough to consider locally noetherian
base changes Y ′ → Y in (i) by Corollary 6.3. As every ordered pair in a
noetherian scheme can be lifted to a discrete valuation ring [15, Prop. 7.1.7],
it is thus enough to consider discrete valuation rings in (i). Every universally
subtrusive morphism is universally submersive. To show the remaining state-
ments, it is thus enough to show that the valuative criteria in (i) and (ii) are
equivalent over discrete valuation rings. This is the equivalence of (ii) and (ix)
in Proposition 2.7.

Corollary 2.9. — Let f : X → Y be a morphism such that f cons is univer-
sally submersive (e.g. f quasi-compact). Then the following are equivalent:

(i) f is universally subtrusive.
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(ii) For every valuation ring V and diagram of solid arrows

Spec(V ′) //

��

X

��

Spec(V ) // Y

there is a valuation ring V ′ and morphisms such that the diagram becomes
commutative and such that the left vertical morphism is surjective.

Proof. — Follows immediately from Proposition 2.7 and Theorem 2.8.

Corollary 2.10 ([25, Prop. 3.7], [19, Exp. IX, Rem. 2.6])
Let Y be locally noetherian and let f : X → Y be a morphism locally of

finite type. Then the following are equivalent

(i) f is universally submersive.
(ii) f is universally subtrusive.
(iii) For every discrete valuation ring D and diagram of solid arrows

Spec(D′) //

��

X

��

Spec(D) // Y

there is a discrete valuation ring D′ and morphisms making the diagram com-
mutative and such that the left vertical morphism is surjective.

Proof. — Note that each of (i), (ii) and (iii) implies that f is surjective. As
f is locally of finite presentation, it is thus universally submersive in the con-
structible topology by Proposition 1.6 under any of these conditions.

The equivalence of (i) and (ii) follows from Theorem 2.8. If (ii) is satisfied
and D is a discrete valuation ring with a morphism to Y then X×Y Spec(D)→
Spec(D) is subtrusive. We can thus find an ordered pair x ≤ x′ inX×Y Spec(D)

above m ≤ (0) in Spec(D). As f is locally of finite type we have that X is
locally noetherian and we can find a discrete valuation ring D′ with a morphism
Spec(D′) → X ×Y Spec(D) with image {x, x′}. This shows that (ii) implies
(iii).

Finally, assume that we have a diagram as in (iii). Then the morphism
Spec(D′)→ Spec(D) is submersive and hence so is X×Y Spec(D)→ Spec(D).
Thus (iii) implies (ii) by Theorem 2.8.

For completeness we mention the following result which is an immediate
consequence of Proposition 2.7 and a result of Kang and Oh [22].
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Proposition 2.11 ([11, Thm. 3.26]). — Let f : X → Y be a universally sub-
trusive morphism and let {yα} be a chain of points in Y . Assume that {yα}
has a lower bound in Y or equivalently that {yα} is contained in an affine open
subset of Y . There is then a chain {xα} of points in X which lifts the chain in
Y , i.e., such that f(xα) = yα for every α.

Proof. — We can assume that Y is affine. The closure in the Zariski topology
of the chain {yα} is irreducible so we can also assume that Y is integral. By [22]
there exists a valuation ring V , a morphism Spec(V )→ Y and a lifting of the
chain {yα} to a chain {vα} in Spec(V ). By Proposition 2.7 there is then a
lifting of the chain {vα} to a chain in X ×Y Spec(V ). The projection of this
chain onto X gives a lifting of the chain {yα}.

The results of this section, except possibly Proposition 2.11, readily gener-
alize to algebraic spaces. Proposition 2.11 is at least valid for finite chains as
such lift over étale surjective morphisms.

3. Structure theorem for finitely presented subtrusions

In this section, we give a structure theorem for finitely presented universally
subtrusive morphisms. This result is an extension of [43, Thm. 3.1.9] to the non-
noetherian case. If f : X → Y is universally subtrusive of finite presentation,
then we will show the existence of a refinement X ′ → X → Y of f such
that there is a factorization X ′ → Y ′ → Y where the first morphism is an
open covering and the second is a surjective, proper and finitely presented
morphism. If in addition f is quasi-finite then there is a similar refinement
with a factorization in which the second morphism is finite.

Notation 3.1. — Let X be a scheme. We denote by Xgen the set of maximal
points of X, i.e., the generic points of the irreducible components of X.

The main tools we will use are the “flatification by blowup”-result of Raynaud
and Gruson [34] and the following lemma:

Lemma 3.2. — Let f : X → Y be a morphism of schemes and let U ⊆ Y

be any subset containing Ygen. Let V = f−1(U) be the closure in the Zariski
topology. If f is S-subtrusive then f |V is surjective.

Proof. — Let y ∈ Y and choose a generization y′ ∈ U . As f is S-subtrusive, the
pair y ≤ y′ lifts to a pair x ≤ x′. We have that x ∈ S(f−1(U)) ⊆ f−1(U).
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Definition 3.3. — We say that a morphism p : S̃ → S is a blow-up, if
there is a closed subscheme Z ↪→ S given by a finitely generated ideal sheaf,
such that S̃ is the blow-up of S in Z. Then p is proper and an isomorphism
over the retrocompact open subset U = S \ Z. Let f : X → S be another
morphism. The strict transform ‹X of X under p is the schematic closure of
f−1(U) in X ×S S̃. The strict transform f̃ of f under p is the composition
f̃ : ‹X ↪→ X ×S S̃ → S̃.

Remark 3.4. — Let f : X → Y be universally subtrusive and let p : ‹Y → Y

be a blow-up. By Lemma 3.2 it follows that the strict transform f̃ of f is
surjective.

To begin with, we will need the technical condition that Ygen is quasi-
compact. Note that if Y is quasi-separated then Ygen is always Hausdorff,
cf. [27, Ch. I, Lem. 2.8]. Rings A such that Min(A) = Spec(A)gen is compact
are studied in [30, Ch. II].

Lemma 3.5. — Let Y be a reduced quasi-compact and quasi-separated scheme
such that Ygen is quasi-compact, e.g., Y is reduced and noetherian. Let f :

X → Y be a finitely presented morphism. There is then an open dense quasi-
compact subset U ⊆ Y such that f is flat over U .

Proof. — As Y is reduced f is flat over Ygen and hence flat over an open subset
V ⊆ Y containing Ygen, cf. [17, Cor. 11.3.2]. As Ygen is quasi-compact, there is
an open quasi-compact subset U ⊆ V containing Ygen.

Proposition 3.6. — Let Y be a reduced quasi-compact and quasi-separated
scheme such that Ygen is quasi-compact, e.g., Y noetherian. Let f : X → Y

be a universally subtrusive morphism of finite presentation. Then there is a
surjective blow-up ‹Y → Y of finite type such that the strict transform f̃ : ‹X →‹Y is faithfully flat of finite presentation.

Proof. — By Lemma 3.5 there is an open quasi-compact dense subset U over
which f is flat. By [34, Thm. 5.2.2], there is a blow-up p : ‹Y → Y such that
p is an isomorphism over U and such that the strict transform f̃ is flat and
finitely presented. By Remark 3.4 the morphism f̃ is surjective.

Proposition 3.7. — Let Y be affine and such that Ygen is quasi-compact, e.g.,
Y irreducible. Let f : X → Y be a universally subtrusive morphism of finite
presentation. Then there is a refinement f ′ : X ′ → Y of f and a factorization
of f ′ into a faithfully flat morphism X ′ → Y ′ of finite presentation followed
by a proper surjective morphism Y ′ → Y of finite presentation. If in addition
f is universally open, then we may choose f ′ such that X ′ → X ×Y Y ′ is a
nil-immersion.
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Proof. — Write Y as an inverse limit of noetherian affine schemes Yλ. By
Lemma 3.5 there is an open quasi-compact dense subset U such that f is flat
over Ured. By [17, Cor. 8.2.11] there is an index λ and an open subset Uλ ⊆ Yλ
such that U = Uλ ×Yλ Y . Increasing λ, we may then assume that there is a
finitely presented morphism fλ : Xλ → Yλ such that X ∼= Xλ ×Yλ Y and such
that fλ is flat over (Uλ)red [17, Thm. 11.2.6]. By [34, Thm. 5.2.2], there is a
blow-up p : Ỹλ → (Yλ)red such that p is an isomorphism over (Uλ)red and such
that the strict transform f̃ ′λ : ›Xλ → Ỹλ of f ′λ : Xλ×Yλ (Yλ)red → (Yλ)red along
p is flat. Note that f̃ ′λ is not necessarily surjective.

Let f1 : X ′ → Y ′ (resp. f2 : Y ′ → Y ) be the pull-back of f̃ ′λ : ›Xλ → Ỹλ

(resp. Ỹλ → (Yλ)red ↪→ Yλ) along Y → Yλ. Then f1 is flat and of finite
presentation, and f2 is proper, surjective and of finite presentation. We will
now show that f1 is surjective. Note that f2 is an isomorphism over Ured and
that X ′ ↪→ X ×Y Y ′ is an isomorphism over X ×Y (Ured).

Let ‹X be the closure of X ×Y (Ured) in X ×Y Y ′. We then have a canonical
factorization ‹X ↪→ X ′ ↪→ X ×Y Y ′. As f is universally subtrusive ‹X → Y ′

is surjective by Lemma 3.2. Thus X ′ → Y ′ is surjective. If in addition f is
universally open, then ‹X ↪→ X ×Y Y ′ is a nil-immersion and it follows that
X ′ ↪→ X ×Y Y ′ is a nil-immersion.

To treat the case where Ygen is not compact, we use the total integral closure.

Definition 3.8. — A scheme X is said to be totally integrally closed or TIC
if:

(i) X is reduced.
(ii) For every x ∈ X, the closed subscheme {x} is normal and has an alge-

braically closed field of fractions.
(iii) The underlying topological space of X is extremal [21, §2].

Properties 3.9. — We briefly list the basic properties of TIC schemes.

(i) X is TIC if and only if X is TIC on an open covering.
(ii) An affine TIC scheme is the spectrum of a totally integrally closed

ring [21, Thm. 1].
(iii) If X is TIC, quasi-compact and quasi-separated then Xgen is compact [21,

Prop. 5].
(iv) IfX is TIC then for every x ∈ X, the local ring OX,x is a strictly henselian

normal domain [21, Prop. 7], [6, Prop. 1.4].
(v) If f : X ′ → X is an affine morphism and X ′ is TIC then the integral

closure of X relative to X ′ is TIC.
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(vi) Every reduced ring A has an injective and integral homomorphism into a
totally integrally closed ring TIC(A), cf. [21, p. 769]. IfX = Spec(A) then
we denote the corresponding TIC scheme with TIC(X) = Spec(TIC(A)).
For an arbitrary affine scheme X we let TIC(X) = TIC(Xred).

(vii) If X has a finite number of irreducible components, e.g., if X is noethe-
rian, then there is a surjective and integral morphism TIC(X)→ X such
that TIC(X) is totally integrally closed. Concretely, if x1, x2, . . . , xn are
the generic points of X then TIC(X) is the integral closure of Xred in
Spec

(∏
i k(xi)

)
. This is the absolute integral closure of X introduced by

Artin [6, §1].
(viii) Every monic polynomial with coefficients in a TIC ring factors completely

into monic linear factors [21, p. 769].
(ix) If X is an affine TIC scheme and Z → X is a finite morphism of schemes

then there is a finite and finitely presented surjective morphism Z ′ → Z

such that Z ′ is a disjoint union of closed subschemes Zi ↪→ X. This
follows from (viii).

Note that, as with the algebraic closure of a field, TIC(A) is only unique up
to non-unique isomorphism and thus this construction does not immediately
extend to arbitrary schemes. It is possible to show that if X is a quasi-compact
and quasi-separated scheme, then there is a TIC scheme X ′ together with a
surjective integral morphism X ′ → X. However, this construction is slightly
awkward and does not yield a unique X ′.

Theorem 3.10. — Let Y be an affine or noetherian scheme. Let f : X →
Y be a universally subtrusive morphism of finite presentation. Then there is
a refinement f ′ : X ′ → Y of f and a factorization of f ′ into a faithfully
flat morphism X ′ → Y ′ of finite presentation followed by a proper surjective
morphism Y ′ → Y of finite presentation. If in addition f is universally open,
then we may choose f ′ such that X ′ → X ×Y Y ′ is a nil-immersion.

Proof. — If Y is noetherian, the theorem follows from Proposition 3.6. If Y
is affine, then we have a surjective integral morphism TIC(Y ) → Y from a
TIC scheme. As TIC(Y )gen is quasi-compact, we can by Proposition 3.7 find
a refinement X ′′ → X ×Y TIC(Y ) → TIC(Y ) such that there is a factoriza-
tion X ′′ → Y ′′ → TIC(Y ) where the first morphism is faithfully flat of finite
presentation and the second is proper, surjective and finitely presented. If f is
universally open, we may also assume that X ′′ → X ×Y Y ′′ is a nil-immersion.

As the integral morphism TIC(Y ) → Y is the inverse limit of finite and
finitely presented Y -schemes Yλ [17, Lem. 11.5.5.1], it follows that there is an
index λ and morphisms X ′′λ → Y ′′λ → Yλ, X ′′λ → X with the same properties as
X ′′ → Y ′′ → TIC(Y ) [17, Thm. 8.10.5 (xii) and Thm. 11.2.6]. If in addition
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f is universally open, it follows from [17, Thm. 8.10.5 (ii) and (vi)] that after
increasing λ, we can assume that X ′′λ → X ×Y Y ′′λ is a nil-immersion. Putting
X ′ = X ′′λ and Y ′ = Y ′′λ gives a refinement with the required factorization.

Theorem 3.11. — Let Y be an affine or noetherian scheme. Let f : X → Y

be a quasi-finite universally subtrusive morphism of finite presentation. Then
there is a refinement X ′ → Y of f which is the composition of an open covering
X ′ → Y ′ of finite presentation and a finite surjective morphism Y ′ → Y of
finite presentation.

Proof. — Replacing X with an open covering, we can assume that f is sepa-
rated. By Zariski’s Main Theorem [17, Thm. 8.12.6] there is then a factorization
X → Y ′ → Y where f1 : X → Y ′ is an open immersion and f2 : Y ′ → Y

is finite. If Y is noetherian then f2 is of finite presentation. If Y is affine
then by [17, Rem. 8.12.7] we can find a factorization such that f2 is of finite
presentation.

If we can obtain a refinement X ′ → TIC(Y ) of X ×Y TIC(Y ) → TIC(Y )

with a factorization of the specified form, then by a limit argument there is
a similar refinement X ′λ → Yλ of X ×Y Yλ → Yλ for some finitely presented
finite morphism Yλ → Y . The refinement X ′λ → Yλ → Y of X → Y then has a
factorization of the requested form. We can thus assume that Y = TIC(Y ) is
totally integrally closed.

We will now show that f = f2 ◦ f1 : X → Y ′ → Y has a refinement
X ′ → Y which is an open covering. To show this, we can replace Y with
an open covering and assume that Y is affine. Now as Y is totally integrally
closed and affine, there is a finite and finitely presented surjective morphism
Y ′′ → Y ′ such that Y ′′ is a finite disjoint union of closed subschemes Yi ↪→ Y ,
cf. Properties 3.9 (ix). Let Xi = X ×Y ′ Yi. Then Xi → Y is the composition
of an open quasi-compact immersion Xi → Yi and a closed immersion Yi → Y

of finite presentation. We can replace X with
∐
iXi and Y ′ with

∐
i Yi.

Let X ′ = f−1(Ygen) ↪→ X with the reduced structure. Then X ′ → Y is
surjective by Lemma 3.2. We will now show that X ′ =

∐
i int(Xi) so that

X ′ → Y is an open covering. The key observation is that the immersion
Xi → Yi → Y is of finite presentation and hence constructible. Since every
local ring of Y is irreducible, it thus follows from Proposition 1.4 that the
interior of Xi coincides with the closure of Ygen ∩Xi in Xi.

The following theorem is [43, Thm. 3.1.9] except that we do not require that
Y is an excellent noetherian scheme:

Theorem 3.12. — Let Y be an affine or noetherian scheme. Let f : X → Y

be a universally subtrusive morphism of finite presentation. Then there is a
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refinement X ′ → Y of f which factors as a quasi-compact open covering X ′ →
Y ′ followed by a proper surjective morphism Y ′ → Y of finite presentation.

Proof. — By Theorem 3.10 we have a refinement X ′ → Y of f together with
a factorization X ′ → Y ′ → Y where X ′ → Y ′ is fppf and Y ′ → Y is proper.
Taking a quasi-section [17, Cor. 17.16.2] we can in addition assume that X ′ →
Y ′ is quasi-finite. If Y is not noetherian but affine, we can write Y as a
limit of noetherian schemes and consequently we can assume that Y and Y ′

are noetherian. By Theorem 3.11 we can now refine X ′ → Y ′ into an open
covering followed by a finite morphism.

Remark 3.13. — Using the limit methods of Thomason and Trobaugh [41,
App. C], we can replace the condition that Y is affine or noetherian in Theo-
rems 3.10–3.12 with the condition that Y is quasi-compact and quasi-separated.

Remark 3.14. — If Y is quasi-compact and quasi-separated and f : X → Y

is a quasi-separated morphism of finite type, then there is a finitely presented
morphism f ′ : X ′ → Y and a closed immersion X ↪→ X ′ of Y -schemes. This
follows from similar limit methods as in [41, App. C], cf. [10, Thm. 4.3]. Using
this fact, analogues of Theorems 3.10–3.12 for universally subtrusive morphisms
of finite type can be proved, at least if the base scheme has a finite number of
irreducible components. In these analogues, the flat and open coverings are of
finite presentation but the proper and the finite morphisms need not be. For
example, Proposition 3.6 for f : X → Y of finite type and Y with a finite
number of components follows from [34, Thm. 3.4.6].

4. Descent of locally closed subsets

Recall that a subset E ⊆ X is locally closed if every point x ∈ E admits an
open neighborhood U such that E ∩ U is closed in U . Equivalently, E is the
intersection of an open subset and a closed subset. Recall that a locally closed
subset E ⊆ X is retrocompact if and only if E is pro-constructible and if and
only if E → X is quasi-compact.

Let f : S′ → S be a faithfully flat and quasi-compact morphism of schemes
and let E ⊆ S be a subset. Then E is locally closed and retrocompact, if
and only if f−1(E) ⊆ S′ is locally closed and retrocompact [18, Prop. 7.3.7].
In this section, we give generalizations of this result for universally subtrusive
morphisms. The proof of Theorem 4.1 only requires the results of §2 whereas
Theorem 4.2 depends upon a structure theorem in §3.
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Theorem 4.1. — Let f : S′ → S be a universally subtrusive morphism of
schemes and let E ⊆ S be a subset. Then E is locally closed and constructible
if and only if f−1(E) is locally closed and constructible. If f is also quasi-
compact, then E is locally closed and retrocompact if and only if f−1(E) is
locally closed and retrocompact.

Proof. — If E is locally closed and constructible (resp. retrocompact) then
so is f−1(E). Assume that E′ = f−1(E) is locally closed and constructible
(resp. retrocompact). Then E is constructible (resp. pro-constructible) since
f is submersive in the constructible topology, and we have that E = S(E) by
Proposition 1.4. The theorem follows if we show that Z = E \E = S(E) \E is
closed. By Corollary 1.5 it is enough to show that Z is pro-constructible and
stable under specialization.

If f is quasi-compact, then f |E′ : E′ → E is quasi-compact and surjective
since f is S-subtrusive. In particular, we have that f |E′ is submersive in
the constructible topology. It follows that E is ind-constructible in E since
f−1(E) = E′ is open in E′. Thus, in both cases E is constructible as a subset
of E and so is its complement Z.

Let z ∈ Z and let s ∈ S be a specialization of Z. Then there exists a
generization e ∈ E of z and we obtain the ordered triple s ≤ z ≤ e in E. As f
is universally subtrusive, there exists by Proposition 2.11 a lifting s′ ≤ z′ ≤ e′
of this chain to S′ where e′ ∈ E′ and z′ /∈ E′. As E′ is locally closed it follows
that s′ /∈ E′ and hence s ∈ Z = E \ E.

Theorem 4.2. — Let f : S′ → S be a morphism of algebraic spaces which is
either

(i) open and surjective,
(ii) closed and surjective,
(iii) universally subtrusive of finite presentation.

Then a subset E ⊆ S is locally closed if and only if f−1(E) ⊆ S′ is locally
closed.

Proof. — The condition is clearly necessary and the sufficiency when f is as in
(i) or (ii) is an easy exercise left to the reader. Let f be as in (iii) and assume
that f−1(E) is locally closed. According to (i) the question is local in the étale
topology so we can assume that S and S′ are affine schemes. By Theorem 3.10
there is a refinement S′′ → S of f which factors as an open surjective morphism
followed by a closed surjective morphism. It follows that E is locally closed
from the cases (i) and (ii).

The following example shows that neither theorem is true if we replace uni-
versally subtrusive with universally submersive.
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Example 4.3. — Let S be the spectrum of a valuation ring V of dimension
two. Then Spec(S) = {x0 ≤ x1 ≤ x2}. Let s, t ∈ V be elements such that
Spec(V/s) = {x0, x1} and Spec(Vt) = {x1, x2}. Let S′ = Spec(V/s × Vt)

with the natural morphism f : S′ → S. Then f is a universally submersive
morphism of finite presentation, cf. [32, Cor. 33]. Let E = {x0, x2} ⊂ S be the
subset consisting of the minimal and the maximal point. Then E is not locally
closed but f−1(E) is locally closed and constructible.

5. Effective descent of étale morphisms

In this section, we will show that quasi-compact universally subtrusive mor-
phisms are morphisms of effective descent for the fibered category of quasi-
compact and separated étale schemes. We will also show that this holds for the
fibered category of quasi-compact, but not necessarily separated, étale algebraic
spaces.

There is no need to include algebraic spaces when considering separated étale
morphisms as any separated locally quasi-finite morphism of algebraic spaces
is representable by schemes. On the other hand, starting with a non-separated
étale scheme equipped with a descent datum, this can descend to an algebraic
space which is not a scheme. We therefore need to extend the basic results
about étale morphisms to algebraic spaces and this is done in Appendix A.
The methods and results of this section are similar to and extend those of [19,
Exp. IX].

Notation 5.1. — Let Sch be the category of quasi-separated schemes. Let
E be the following fibered category over Sch: The objects of E are étale mor-
phisms X → S where X is an algebraic space. The morphisms of E are
commutative squares (X ′, S′) → (X,S). The structure functor E → Sch is
the forgetful functor taking an object X → S to its target S and a morphism
(X ′, S′)→ (X,S) to the morphism S′ → S. We will also consider the following
fibered full subcategories of E where the objects are:

Esep = {étale and separated morphisms}
Eqc = {étale and quasi-compact morphisms}

Esep,qc = {étale, separated and quasi-compact morphisms}
Efin = {étale and finite morphisms}.

It follows from Proposition A.1 that the objects of Efin ⊆ Esep,qc ⊆ Esep are
morphisms of schemes.
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Remark 5.2. — We have chosen to use Sch as the base category for con-
venience. We could instead have used the category of affine schemes or the
category of algebraic spaces and all results would have remained valid as can
be seen from Proposition 5.11. Note that as algebraic spaces are assumed to
be quasi-separated, the objects of Eqc are of finite presentation. In particular,
the category Eqc/S is equivalent to the category of constructible sheaves on S,
cf. proof of Proposition A.7.

Proposition 5.3 ([19, Exp. IX, Cor. 3.3]). — Let f : S′ → S be a univer-
sally submersive morphism of schemes. Then f is a morphism of E-descent.
This means that for étale morphisms X → S and Y → S the sequence

HomS(X,Y ) // HomS′(X
′, Y ′) //

// HomS′′(X
′′, Y ′′)

is exact, where X ′ and Y ′ are the pull-backs of X and Y along S′ → S, and
X ′′ and Y ′′ are the pull-backs of X and Y along S′′ = S′ ×S S′ → S.

Proof. — Follows easily from Corollary A.3.

Proposition 5.4. — Let f : S′ → S be a universally subtrusive morphism
of schemes. Let X → S be an étale morphism. If X ×S S′ has one of the
properties: universally closed, separated, quasi-compact; then so has X → S.
In particular, if X ×S S′ → S′ lies in one of the categories: Esep, Eqc, Esep,qc,
Efin; then so does X → S.

Proof. — This follows immediately from Proposition 1.7. For the last state-
ment, recall that the étale morphism X → S is finite if and only if it is sepa-
rated, quasi-compact and universally closed [17, Thm. 8.11.1].

5.5 (Descent data). — Let S′ → S be any morphism and let S′′ = S′ ×S S′
and S′′′ = S′ ×S S′ ×S S′. Let X → S be an étale morphism, X ′ = X ×S S′
and X ′′ = X ×S S′′. Then X ′′ is canonically S′′-isomorphic with π∗1X ′ and
π∗2X

′ where π1, π2 : S′′ → S′ are the two projections. In particular we have
an S′′-isomorphism ϕ : π∗1X

′ → π∗2X
′ satisfying the cocycle condition, i.e., if

πij : S′′′ → S′′ denotes the projection on the ith and jth factors then

π∗12π
∗
2X
′ can

∼=
// π∗23π

∗
1X
′

π∗23(ϕ)

!!

π∗12π
∗
1X
′

π∗12(ϕ)
==

◦ π∗23π
∗
2X
′

can

∼=
}}

π∗31π
∗
2X
′

can

∼=

aa

π∗31π
∗
1X
′π∗31(ϕ)

oo

commutes.
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Conversely, given an étale morphism X ′ → S′ we say that an S′′-
isomorphism ϕ : π∗1X

′ → π∗2X
′ satisfying the cocycle condition is a descent

datum for X ′ → S′. We say that (X ′ → S′, ϕ) is effective if it is isomorphic
to the canonical descent datum associated with an étale morphism X → S as
above. If S′ → S is a morphism of E-descent, e.g., universally submersive,
then there is at most one morphism X → S which descends (X ′ → S′, ϕ).

We say that S′ → S is a morphism of effective E-descent if every object
(X ′ → S′) ∈ E/S′ equipped with a descent datum is effective. We say that
S′ → S is a morphism of universal E-descent (resp. universal effective E-
descent) if S′×S T → T is a morphism of E-descent (resp. effective E-descent)
for any base change T → S.

We briefly state some useful reduction results.

Proposition 5.6 ([13, Prop. 10.10, Prop. 10.11]). — Let F be a category
fibered over Sch. Let f : X → Y and g : Y → S be morphisms of schemes.
If f and g are morphisms of universal effective F-descent, then so is g ◦ f . If
g ◦ f is a morphism of universal effective F-descent, then so is g.

Proposition 5.7 ([13, Thm. 10.8 (ii)]). — Let F be a category fibered over
Sch. Let f : S′ → S be a morphism of universal F-descent and g : T → S be
a morphism of universal effective F-descent. Let f ′ : T ′ → T be the pull-back
of f along g. Let x′ ∈ F/S′ be an object equipped with a descent datum ϕ. Let
y′ ∈ F/T ′ and ϕT be the pull-back of x′ and ϕ along g. If (y′, ϕT ) is effective,
then so is (x′, ϕ). In particular, if f ′ and g are morphisms of universal effective
F-descent, then so is f .

Proposition 5.8. — Let F ⊆ Eqc be a category fibered over Sch. Let S =

Spec(A) be affine and S′ = lim←−λ S
′
λ an inverse limit of affine S-schemes such

that S′ → S is universally submersive. Then S′ → S is a morphism of universal
effective F-descent if and only if S′λ → S is a morphism of universal effective
F-descent for every λ.

Proof. — The necessity follows from Proposition 5.6. For sufficiency, we only
need to show effectiveness by Proposition 5.3. Effectiveness follows easily from
the fact that any object X ′ → S′ in F/S′ is of finite presentation. In fact,
there is an index λ and a étale morphism X ′λ → S′λ such that X ′ = X ′λ×S′λ S

′,
cf. [17, Thm. 8.8.2, Prop. 17.7.8]. If X ′ → S′ is equipped with a descent datum,
i.e., an S′ ×S S′-isomorphism ϕ : X ′ ×S S′ → S′ ×S X ′, then there is λ′ ≥ λ

such that Xλ′ = Xλ×Sλ Sλ′ has a descent datum ϕλ′ which coincides with the
descent datum ϕ after the pull-back along S′ ×S S′ → S′λ ×S S′λ. This follows
from [17, Cor. 8.8.2.5].
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Proposition 5.9. — Let F ⊆ Eqc be a category fibered over Sch. Let S =

Spec(A) be affine and T = lim←−λ Tλ an inverse limit of affine S-schemes. Let
S′ → S be a morphism of universal F-descent and let X ′ → S′ be an element
of F together with a descent datum ϕ. We let X ′Tλ → T ′λ = Tλ×SS′ be the pull-
back of X ′ → S′ along Tλ → S and ϕTλ the corresponding descent datum. We
define X ′T and ϕT in the obvious way. If (X ′T , ϕT ) is effective, then (X ′Tλ , ϕTλ)

is effective for some index λ.

Proof. — As (X ′T , ϕT ) is effective there is an étale and quasi-compact mor-
phism XT → T together with an isomorphism XT ×T T ′ ∼= X ′T compatible
with the descent datum. As XT → T is of finite presentation, there is an index
λ and an étale and quasi-compact scheme XTλ → Tλ. After increasing λ, we
can assume that there is an isomorphism XTλ ×Tλ T ′λ ∼= X ′Tλ and that this is
compatible with the descent datum ϕTλ .

The following proposition is an immediate consequence of effective fpqc-
descent for quasi-affine schemes [19, Exp. VIII, Cor. 7.9] as separated, quasi-
compact and étale morphisms are quasi-affine by Zariski’s main theorem [17,
Thm. 8.12.6].

Proposition 5.10 ([19, Exp. IX, Prop. 4.1]). — Let f : S′ → S be faithfully
flat and quasi-compact. Then f is a morphism of universal effective Esep,qc-
descent.

Proposition 5.11. — Let f : S′ → S be faithfully flat and locally of finite
presentation. Then f is a morphism of universal effective E-descent.

Proof. — This follows from [26, Cor. 10.4.2].

Proposition 5.12. — Let f : S′ → S be a universally submersive morphism
and let X ′ → S′ be an object in Eqc equipped with a descent datum ϕ. For any
morphism T → S we let X ′T → T ′ = T ×S S′ be the pull-back of X ′ → S′ and
ϕT the corresponding descent datum. The following are equivalent:

(i) (X ′, ϕ) is effective.
(ii) (X ′T , ϕT ) is effective for every T such that T = Spec( OS,s) for some

s ∈ S.
(iii) (X ′T , ϕT ) is effective for every T such that T = Spec(sh OS,s) is the strict

henselization of S at some point s ∈ S.
If in addition S is locally noetherian and X ′ → S′ is in Eqc,sep then these
statements are equivalent to the following:

(iv) (X ′T , ϕT ) is effective for every T such that T = Spec(‘OS,s) is the comple-
tion of S at some point s ∈ S.
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Proof. — It is clear that (i) =⇒ (ii) =⇒ (iii) =⇒ (iv). Assume that (ii)
holds, then it follows from Proposition 5.9 that (X ′, ϕ) is effective in an open
neighborhood of any point. In particular, there is an open covering T → S such
that (X ′T , ϕT ) is effective. By Proposition 5.11 and Proposition 5.7 it follows
that (X ′, ϕ) is effective. Similarly, if (iii) holds, there is an étale covering over
which (X ′, ϕ) is effective and we can again conclude that (X ′, ϕ) is effective by
Proposition 5.11. Finally (iv) =⇒ (iii) by Proposition 5.10.

Remark 5.13. — If S is excellent, then ‘OS,s is a direct limit of smooth OS,s-
algebras by Popescu’s theorem [36, 40]. It thus follows from Propositions 5.9
and 5.11 that (iv) implies (i) also for the fibered category Eqc when S is excel-
lent. We will not use this fact.

Proposition 5.14 ([19, Exp. IX, Thm. 4.12]). — Proper surjective mor-
phisms of finite presentation are morphisms of effective Efin-descent.

Proof. — Let f : S′ → S be a proper and surjective morphism of finite pre-
sentation. To show that f is a morphism of effective descent, we can assume
that S is affine by Proposition 5.12. As S′ → S and the morphisms of Efin are
of finite presentation, we can by a limit argument reduce to the case where S is
noetherian. By Proposition 5.12 we can further assume that S is the spectrum
of a complete noetherian local ring.

Let S0 be the closed point of S and let S′0, S′′0 and S′′′0 be the fibers of S′,
S′′ and S′′′ over S0. By Theorem A.6, the morphisms S0 ↪→ S, S′0 ↪→ S′, etc.,
induce equivalences between the category of finite étale covers over the source
and the category of finite étale covers over the target. Thus f : S′ → S is a
morphism of effective descent for Efin if and only if f0 : S′0 → S0 is of effective
descent. But f0 is flat and hence of effective descent by Proposition 5.10.

Corollary 5.15. — Proper and surjective morphisms of finite presentation
are morphisms of effective descent for Esep,qc.

Proof. — Let f : S′ → S be a proper and surjective morphism of finite pre-
sentation. To show that f is a morphism of effective descent, we can as in the
proof of Proposition 5.14 assume that S is the spectrum of a noetherian local
ring. In particular, we can assume that S is noetherian and of finite dimension.
We will now prove effectiveness using induction on the dimension of S.

Let n = dim(S) and assume that every proper surjective morphism of finite
presentation T ′ → T such that dim(T ) < n is a morphism of effective descent.
If n < 0 then it is clear that f is effective. By Proposition 5.12, it is enough
to show effectiveness for the completion of every local ring of S. We can thus
assume that S is a complete local noetherian ring of dimension at most n.
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Let X ′ → S′ be a quasi-compact and separated étale morphism. Let S0 be
the closed point of S. Let S′0 and X ′0 be the inverse images of S0. As S′0 → S0

is fpqc, there exists X0 → S0 such that X ′0 → S′0 is the pull-back. Clearly
X0 → S0 is finite and hence X ′0 → S′0 is finite. Thus X ′0 → S0, X ′′0 → S0 and
X ′′′0 → S0 are proper.

By [16, Cor. 5.5.2] there are thus canonical decompositions into open disjoint
subsets X ′ = Z ′ q U ′, X ′′ = Z ′′ q U ′′ and X ′′′ = Z ′′′ q U ′′′ such that Z ′, Z ′′

and Z ′′′ are proper over S and contain X ′0, X ′′0 and X ′′′0 respectively. Replacing
X ′ with Z ′ or U ′ we can thus assume that either X ′ is finite over S′ or that X ′0
is empty. In the first case it follows that f is effective from Proposition 5.14.
In the second case we can replace S with S \ S0 which has dimension at most
n− 1. It then follows from the induction hypothesis that f is effective.

The proof of the following generalization is similar to and independent of
Corollary 5.15. As the methods are less standard and involve algebraic spaces,
we have chosen to not state Corollary 5.15 as a corollary of 5.16.

Corollary 5.16. — Proper and surjective morphisms of finite presentation
are morphisms of effective descent for Eqc.

Proof. — Let f : S′ → S be a proper and surjective morphism of finite pre-
sentation. As in the proof of Corollary 5.15 we can reduce to S noetherian and
of finite dimension and we proceed by induction on the dimension of S.

Let n = dim(S) and assume that every proper surjective morphism of finite
presentation T ′ → T such that dim(T ) < n is a morphism of effective descent.
If n < 0 then it is clear that f is effective. By Proposition 5.12, it is enough to
show effectiveness for the strict henselization of every local ring of S. We can
thus assume that S is a strictly local noetherian ring of dimension at most n.

Let X ′ → S′ be a quasi-compact étale morphism. Let S0 be the closed point
of S. Let S′0 and X ′0 be the inverse images of S0. As S′0 → S0 is fppf, there
exists X0 → S0 such that X ′0 → S′0 is the pull-back. As S0 is the spectrum of
a separably closed field, we have that X0 is a disjoint union of m copies of S0.
Let s1, s2, . . . , sm be the corresponding sections of X0/S0 and let s′i, s′′i , s′′′i be
the corresponding sections of X ′0/S′0 etc.

As (S′, S′0) (resp. (S′′, S′′0 ) etc.) are 0-henselian pairs by Proposition A.12,
the sections s′i, (resp. s′′i etc.) uniquely lift to sections of X ′/S′ (resp. X ′′/S′′

etc.) by Proposition A.7. Let Z ′ = S′qm and U ′ = X ′ ×S′ S′ \ S′0 and
similarly for Z ′′, U ′′ etc. From the sections we obtain canonical open coverings
Z ′ q U ′ → X ′ (resp. Z ′′ q U ′′ → X ′′ etc.). By the induction hypothesis it
follows that f is a morphism of effective descent for U ′ and U ′ ∩ Z ′. That f
is a morphism of effective descent for Z ′ follows from Proposition 5.14. We
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thus obtain algebraic spaces U and Z together with gluing data on U ∩Z. The
gluing of U and Z along U ∩Z is an algebraic space X which descends X ′.

Theorem 5.17. — Quasi-compact universally subtrusive morphisms are mor-
phisms of effective Eqc-descent.

Proof. — Let f : S′ → S be a universally subtrusive quasi-compact mor-
phism. To show that f is effective we can, replacing S and S′ by open covers,
assume that S and S′ are affine. Proposition 5.8 shows that it is enough to show
effectiveness for finitely presented f . Such an f has a refinement which is a com-
position of a flat morphism followed by a proper morphism by Theorem 3.10.
The theorem thus follows from Propositions 5.6, 5.11 and Corollary 5.16.

As a corollary we answer a question posed by Grothendieck [19, Exp. IX,
Comment after Cor. 3.3] affirmatively.

Corollary 5.18. — Universal submersions between noetherian schemes are
morphisms of effective descent for Efin, Esep,qc and Eqc.

As another corollary we have the following result:

Theorem 5.19. — The following classes of morphisms are classes of effective
E-descent.

(i) Universally open and surjective morphisms.
(ii) Universally closed and surjective morphisms of finite presentation.
(iii) Universally subtrusive morphisms of finite presentation.

Proof. — First note that the morphisms in the first two classes are universally
subtrusive, cf. Remark 2.5. Moreover by Theorem 3.12, a morphism in the
third class has a refinement which is the composition of a morphism in the
first class and a morphism in the second class. Thus, it is enough to prove the
effectiveness of the first two classes by Proposition 5.6.

Let f : S′ → S be either a universally open morphism or a universally
closed morphism of finite presentation. Let X ′ → S′ be an étale morphism
equipped with a descent datum. By Proposition 5.12, we can assume that S is
affine. If f is universally open, there is then an open quasi-compact subset U
of S′ such that f |U is surjective. Replacing S′ with U we can assume that f is
quasi-compact.

Let x′ ∈ X ′. If f is universally open, let V ⊆ X ′ be an open quasi-compact
neighborhood of x′ and let R(V ) = π2(π−1

1 (V )) be the saturation of V with
respect to the equivalence relation R = (π1, π2) : X ′′ → X ′×S X ′. As the πi’s
are quasi-compact and open, we have that U = R(V ) is an open quasi-compact
R-stable neighborhood of x′.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



208 D. RYDH

If f is universally closed and finitely presented, let R(x′) = π2(π−1
1 (x′)) ⊆ X ′

be the saturation of x′. As πi is quasi-compact, the subset R(x′) is quasi-
compact. Let V be an open quasi-compact neighborhood of R(x′). As X ′

is quasi-separated, we have that V ⊆ X ′ is retrocompact and thus pro-
constructible. In particular the complement X ′ \ V is ind-constructible.
As πi is closed and finitely presented, the saturation R(X ′ \ V ) is a closed
ind-constructible subset of X ′ disjoint from R(x′). Thus U = X ′ \ R(X ′ \ V )

is an open R-stable pro-constructible neighborhood of x′ contained in V . In
particular U ⊆ V is retrocompact and hence U is quasi-compact.

In both cases, we thus have an open covering
∐
Ux′ → X ′, stable under the

descent datum, such that each Ux′ is quasi-compact. By Theorem 5.17 every
space Ux′ descends to an étale quasi-compact space Ux over S. As Ux′ → Ux
is submersive, the intersection Ux′1 ∩ Ux′2 descends to an open subset of both
Ux1

and Ux2
. Finally as S′ → S is a morphism of E-descent, the gluing datum

of the Ux′ ’s descends to a gluing datum of the Ux’s. Thus the Ux’s glue to an
algebraic space X étale over S which descends X ′ → S′.

Recall that a morphism of algebraic spaces f : X → Y is a universal
homeomorphism if f ′ : X ×Y Y ′ → Y ′ is a homeomorphism (of topological
spaces) for every morphism Y ′ → Y of algebraic spaces. As usual, it is enough
to consider base changes such that Y ′ is a scheme or even an affine scheme.

The diagonal of a universally injective morphism is surjective. Thus, any
homeomorphism of schemes is separated. It then follows from Zariski’s main
theorem that a finite type morphism of schemes is a universal homeomorphism
if and only if it is universally injective, surjective and finite. More generally, a
morphism of schemes f : X → Y is a universal homeomorphism if and only if
f is universally injective, surjective and integral [17, Cor. 18.12.11].

The diagonal of a universal homeomorphism of algebraic spaces is a surjective
monomorphism but not necessarily an immersion. In particular, not every
homeomorphism of algebraic spaces is separated. This is demonstrated by the
following classical example of an algebraic space which is not locally separated,
i.e., its diagonal is not an immersion.

Example 5.20 ([23, Ex. 1, p. 9]). — Let U be the union of two secant affine
lines and let R be the equivalence relation on U which identifies the two lines
except at the singular point. Then the quotient X = U/R is an algebraic space
whose underlying topological space is the affine line. In fact, there is a universal
homeomorphism X → A1 such that U → X → A1 induces the identity on the
two components. The corresponding two sections A1 → X are bijective but
not universally closed. The space X looks like the affine line except at a special
point where it has two different tangent directions.
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The following theorem generalizes [19, Exp. IX, Thm. 4.10]:

Theorem 5.21. — Let S′ → S be a separated universal homeomorphism of
algebraic spaces. Then the functor E/S → E/S′

{étale spaces over S} // {étale spaces over S′}
X � // X ×S S′

is an equivalence of categories. In particular, we have induced equivalences of
categories F/S → F/S′ where F is one of the fibered categories Efin, Esep,qc,
Eqc, Esep.

Proof. — As S′ → S is a separated universal homeomorphism S′ ↪→ S′ ×S S′
is a nil-immersion. The functor from étale algebraic spaces over S′ ×S S′ to
étale algebraic spaces over S′ is therefore an equivalence by Proposition A.4.
In particular, every étale algebraic space over S′ comes with a unique descent
datum. This shows that the functor in the theorem is fully faithful.

Essential surjectivity for F = Eqc follows from Theorem 5.17. For an object
X ′ in the category E/S′ we first choose an open covering {U ′α} of X ′ such that
the U ′α’s are quasi-compact spaces. These U ′α’s come with unique descent data
and can be descended to S. As in the last part of the proof of Theorem 5.19
we can glue the descended spaces to an algebraic space which descends X ′.

Corollary 5.22. — A separated universal homeomorphism of algebraic spac-
es is representable by schemes and is integral.

Proof. — Let S′ → S be a separated universal homeomorphism and choose an
étale presentation U ′ → S′ such that U ′ is a scheme. Then by Theorem 5.21
this induces an étale morphism U → S such that U ′ = U ×S S′. As U ′ → U is
a representable universal homeomorphism it is integral by [17, Cor. 18.12.11].
In particular U ′ → U is affine and it follows by étale descent that S′ → S is
representable and integral.

Remark 5.23. — The proof of Corollary 5.22 shows that Theorem 5.21 is
false for non-separated universal homeomorphisms.

Example 5.24 (Push-outs). — Let Z ↪→ X be a closed immersion of affine
schemes and let Z → Y be any morphism of affine schemes. Then the push-
out X qZ Y exists in the category of schemes and is affine [12, Thm. 5.1].
Furthermore Z = X ×XqZY Y and f : X q Y → X qZ Y is universally
submersive [12, Thm. 7.1 A)]. Let E → X q Y be an affine étale morphism
equipped with a descent datum with respect to f . The descent datum gives in
particular an isomorphism E|X×XZ → E|Y ×Y Z. We can then form the push-
out E|X qE|Z E|Y which is affine and étale over X qZ Y and descends E [12,
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Thm. 2.2 (iv)]. Thus, f is a morphism of effective descent for the category of
affine and étale morphisms.

In general, f : X qY → X qZ Y is not subtrusive. For example, let Z → Y

be the open immersion A1
x \ {x = 0} ⊆ A1

x, let X = A2
x,y \ {x = 0} and let

Z ↪→ X be the hyperplane defined by y = 0. Then Y ↪→ X qZ Y is a closed
immersion, X → X qZ Y is an open immersion and X and Y intersect along
the locally closed subset Z. The ordered pair {x = y = 0} < ξ of points on
X qZ Y , where ξ is the generic point on Y , cannot be lifted to X q Y .

This example motivates the following question:

Question 5.25. — Are quasi-compact universally submersive morphisms of
effective Eqc-descent?

6. Passage to the limit

In this section, we first show that subtrusive morphisms are stable under
inverse limits. This result follows from basic properties of subtrusive morphisms
(2.1–2.4). The corresponding stability result for universally open morphisms
is proved in [17, Prop. 8.10.1]. We then show that subtrusive morphisms and
universally open morphisms descend under inverse limits. The proofs of these
results are much more difficult and use the structure theorems of Section 3.

Notation 6.1. — We use the following notation, cf. [17, §8]: Let S0 be a
scheme and let Sλ be a filtered inverse system of schemes, affine over S0. Let
S = lim←−λ Sλ be the inverse limit which is a scheme affine over S0. Let α be an
index and let fα : Xα → Yα be a morphism of Sα-schemes. For every λ ≥ α we
let fλ : Xλ → Yλ be the pull-back of fα along Sλ → Sα and we let f : X → Y

be the pull-back of fα along S → Sα. Let uλ : X → Xλ and vλ : Y → Yλ be
the canonical morphisms.

Proposition 6.2 ([32, Part II, Prop. 3]). — Let f and fλ be morphisms as
in Notation 6.1 and assume that f cons is submersive. If there exists λ such
that fµ is subtrusive (resp. universally subtrusive) for every µ ≥ λ, then f is
subtrusive (resp. universally subtrusive).

Proof. — If fλ is universally subtrusive then it follows from the definition that
the pull-back f is universally subtrusive. Assume that there is λ such that fµ
is subtrusive for µ ≥ λ. To prove that f is subtrusive, it is enough to show
that if Z ⊆ Y is pro-constructible, then Z = f(f−1(Z)) by Proposition 2.1.
Let Zµ = vµ(Z) which is pro-constructible as vµ is quasi-compact. Then

Z =
⋂
µ≥λ

v−1
µ (Zµ)
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and as Y = lim←−µ Yµ as topological spaces, it follows that

Z =
⋂
µ≥λ

v−1
µ

(
Zµ
)
.

Similarly
f−1(Z) =

⋂
µ≥λ

u−1
µ

Ä
f−1
µ (Zµ)

ä
.

As fµ is subtrusive we have that Zµ = fµ(f−1
µ (Zµ)). It thus follows that

Z =
⋂
µ≥λ

v−1
µ

Ä
fµ

Ä
f−1
µ (Zµ)

ää
=
⋂
µ≥λ

f
Ä
u−1
µ

Ä
f−1
µ (Zµ)

ää
= f

Ä
f−1(Z)

ä
as the intersections are filtered.

Corollary 6.3. — Let f : X → Y be a morphism of schemes. Then f is
universally subtrusive if and only if f cons is universally submersive and fn :

X ×Z AnZ → Y ×Z AnZ is subtrusive for every positive integer n.

Proof. — The condition is necessary by the definition of universally subtrusive.
For the sufficiency, assume that fn is subtrusive for all n. As subtrusiveness is
Zariski-local on the base by Proposition 2.4, we can assume that Y is affine.
It is also enough to check that f ′ : X ′ → Y ′ is subtrusive for base changes
Y ′ → Y such that Y ′ is affine. First assume that Y ′ → Y is of finite type.
Then we can factor Y ′ → Y through a closed immersion Y ′ ↪→ Y × An and
it follows by the assumptions on fn and Proposition 2.4 that f ′ is subtrusive.
For arbitrary affine Y ′ → Y , we write Y ′ as a limit of finite type schemes and
invoke Proposition 6.2.

Theorem 6.4. — Assume that S0 is quasi-compact and fα : Xα → Yα is of
finite presentation with notation as in 6.1. Then f : X → Y is universally
subtrusive if and only if fλ is universally subtrusive for some λ ≥ α.

Proof. — The condition is sufficient by definition. To prove the necessity we
assume that f is universally subtrusive. As S0 is quasi-compact there is a finite
affine covering of S0. As subtrusiveness is local on the base by Proposition 2.4
we can therefore assume that S0 is affine. We can then by Theorem 3.10 find
a refinement f ′ : X ′ → Y of f : X → Y such that f ′ has a factoriza-
tion into a finitely presented flat surjective morphism X ′ → Y ′ followed by a
finitely presented proper surjective morphism Y ′ → Y . By [17, Thm. 8.10.5
and Thm. 11.2.6] the morphism f ′ descends to a morphism f ′λ : X ′λ → Yλ with
a similar factorization. In particular f ′λ is universally subtrusive and it follows
that fλ is universally subtrusive as well.
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Corollary 6.5. — Let S = Spec(A) be an affine scheme and let f : X → S

be a morphism of finite presentation. Then the following are equivalent:
(i) f is universally subtrusive.
(ii) There exists an affine noetherian scheme S0 = Spec(A0), a morphism

f0 : X0 → S0 of finite presentation and a morphism S → S0 such that
X = X0 ×S0

S and f0 is universally submersive.
(iii) There exists a scheme S0 and a morphism f0 as in (ii) such that in

addition A0 is a sub-Z-algebra of A of finite type.

Picavet gives an example [32, Cor. 33] showing that the corresponding result
for universally submersive is false. That is, there exists a universally submersive
morphism of finite presentation which is not universally subtrusive.

Theorem 6.6. — Assume that S0 is quasi-compact and fα : Xα → Yα is of
finite presentation with notation as in 6.1. Then f : X → Y is universally
open if and only if fλ is universally open for some λ ≥ α.

Proof. — As the condition is clearly sufficient, we assume that f is universally
open. As S0 is quasi-compact we can easily reduce to the case where Yα is affine.
Using [17, Thm. 8.10.5 and Thm. 11.2.6] we can then descend the refinement
of f given by Theorem 3.10. There is thus an index λ, a proper surjective
morphism Y ′λ → Yλ, a faithfully flat morphism of finite presentation X ′λ → Y ′λ
and a nil-immersion X ′λ ↪→ Xλ ×Yλ Y ′λ. As X ′λ → Y ′λ is universally open, so
is Xλ ×Yλ Y ′λ → Y ′λ. As Y ′λ → Yλ is universally submersive it follows that
Xλ → Yλ is universally open.

7. Weakly normal descent

Let f : S′ → S be faithfully flat and quasi-compact. Then f is a morphism
of descent for the fibered category of all morphisms of algebraic spaces, that is,
for any algebraic space X we have that

Hom(S,X) // Hom(S′, X) //
// Hom(S′ ×S S′, X)

is exact [26, Thm. A.4]. In this section, we give a similar descent result for
weakly normal universally submersive morphisms.

7.1 (Schematic image). — Let f : X → Y be a morphism of algebraic spaces.
If there exists a smallest closed subspace Y ′ ↪→ Y such that f factors through
Y ′ ↪→ Y , then we say that Y ′ is the schematic image of f [18, 6.10]. If X is
reduced, then f(X) with its reduced structure is the schematic image.

Let f : X → Y be a quasi-compact and quasi-separated morphism of alge-
braic spaces. Then f∗ OX is a quasi-coherent sheaf ([23, Prop. II.4.6] holds for
non-separated morphisms) and the schematic image of f is the closed subspace
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of Y defined by the ideal ker( OY → f∗ OX). The underlying topological space
of the image is f(X), as can be checked on an étale presentation.

A morphism f : X → Y of algebraic spaces is schematically dominant if
OY → f∗ OX is injective (in the small étale site). This agrees with the usual
definition for schemes [17, Déf. 11.10.2, Thm. 11.10.5 (ii)]. If f : X → Y is
schematically dominant, then the schematic image of f exists and equals Y .
Conversely, if f is quasi-compact and quasi-separated or X is reduced, then f
is schematically dominant if and only if the schematic image of f equals Y .

Proposition 7.2. — Let p : S′ → S be a schematically dominant universally
submersive morphism of algebraic spaces. Then p is an epimorphism in the
category of algebraic spaces, i.e., Hom(S,X) → Hom(S′, X) is injective for
every algebraic space X.

Proof. — First assume that X is separated and let f : S → X be a morphism.
Then the schematic image of Γf ◦ p = (p, f ◦ p) : S′ → S×X exists and equals
the graph Γf [18, Prop. 6.10.3]. We can thus recover f from f ◦ p.

For general X, let f1, f2 : S → X be two morphisms such that f1◦p = f2◦p.
Let U → X be an étale surjective morphism such that U is a separated scheme.
As p is universally submersive, it is a morphism of descent for étale morphisms
by Proposition 5.3. Thus, the canonical S′-isomorphism V ′ := p∗f∗1U

∼= p∗f∗2U

descends to an S-isomorphism V := f∗1U
∼= f∗2U . To conclude, we have a

diagram

V ′
q
//

��

V
g1
//

g2
//

��

U

��

S′
p
// S

f1
//

f2

// X

where the vertical morphisms are étale, the natural squares are cartesian and
g1 ◦ q = g2 ◦ q. Note that q is schematically dominant as p is schematically
dominant and V → S is étale. We apply the special case of the proposition to
deduce that g1 = g2 and it follows that f1 = f2.

7.3 (Weak normalization). — Let f : S′ → S be a dominant, quasi-compact
and quasi-separated morphism. A wn-factorization of f is a factorization
f = f2 ◦ f1 such that f1 is schematically dominant and f2 is a separated uni-
versal homeomorphism. A wn-factorization is trivial if f2 is an isomorphism.
We say that f is weakly normal (or weakly subintegrally closed) if any wn-
factorization of f is trivial. The weak normalization (or weak subintegral clo-
sure) of S in S′, denoted SS

′/wn, is the maximal separated universal homeomor-
phism SS

′/wn → S such that there exists a wn-factorization S′ → SS
′/wn → S
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of f . There exists a unique weak normalization and it fits into a unique wn-
factorization. For more details on weakly normal morphisms and the weak
normalization, see Appendix B.

Theorem 7.4. — Let π : X → S be a morphism of algebraic spaces and let
p : T ′ → T be a quasi-compact, quasi-separated, universally submersive and
weakly normal morphism of algebraic spaces over S. Assume either that X → S

is locally separated (this is the case if X is a scheme) or that p is universally
subtrusive. Then:

HomS(T,X) // HomS(T ′, X) //
// HomS((T ′ ×T T ′)red, X)

is exact.

Proof. — As p is weakly normal, p is schematically dominant and it follows
from Proposition 7.2 that HomS(T,X)→ HomS(T ′, X) is injective.

Let T ′′ = (T ′×T T ′)red and let π1, π2 : T ′′ → T ′ denote the two projections.
To show exactness in the middle, let f ′ : T ′ → X be a morphism such that
f ′′ := f ′◦π1 = f ′◦π2. Let s′ = (f ′, idT ′) : T ′ → X×ST ′ and s′′ = (f ′′, idT ′′) :

T ′′ → X ×S T ′′ be the induced sections. Denote the set-theoretical images by
Γ′ = s′(T ′) and Γ′′ = s′′(T ′′). As f ′′ = f ′ ◦ πi, we have that s′′ is the pull-back
of s′ along either of the two projections idX × πi, i = 1, 2. In particular, we
have that Γ′′ = (idX × πi)−1(Γ′). Let pX = idX × p : X ×S T ′ → X ×S T
denote the pull-back of p. Let Γ := pX(Γ′) so that p−1

X (Γ) = Γ′.
First assume that s′ is a closed immersion so that Γ′ and Γ′′ are closed.

Then Γ is also closed since pX is submersive. We let T1 be the schematic image
of the map (f ′, p) = pX ◦ s′ : T ′ → X ×S T so that the underlying set of
T1 is Γ. Let q : T ′ → T1 be the induced morphism. Then q is surjective
and the graph of q is a nil-immersion T ′ → T1 ×T T ′ since both source and
target are closed subspaces of X ×S T ′ with underlying set Γ′. In particular,
it follows that T1 ×T T ′ → T ′ is a separated universal homeomorphism. We
now apply Proposition 1.7 to T1 → T and p : T ′ → T and deduce that
T1 → T is universally closed, separated, universally injective and surjective,
i.e., a separated universal homeomorphism. Since p : T ′ → T1 → T is weakly
normal, we have that T1 → T is an isomorphism and the morphism f : T =

T1 ↪→ X ×S T → X lifts f ′.
Instead assume that X → S is locally separated, i.e., that the diagonal

morphism ∆X/S : X → X ×S X is an immersion. Then the sections s′ and s′′

are also immersions. The image of an immersion of algebraic spaces is locally
closed. Indeed, this follows from taking an étale presentation and Theorem 4.2.
Thus ∆X/S(X), Γ′ and Γ′′ are locally closed subsets. We will now show that Γ

is locally closed. If pX is universally subtrusive this follows from Theorem 4.1.
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Let V ⊆ X ×S X be an open neighborhood of ∆(X) such that ∆(X) ⊆ V

is closed. Consider the morphism (f ′ × idX) : T ′ ×S X → X ×S X. The
composition with either of the two morphism πi × idX is f ′′ × idX . Let U ′ =

(f ′× idX)−1(V ) and U ′′ = (f ′′× idX)−1(V ) so that if we let U = pX(U ′) then
U ′ = p−1

X (U). The subset U ⊆ X ×S T is open since pX is submersive. Note
that the pull-back of ∆X/S along (f ′ × idX) is s′. Therefore Γ′ ⊆ U ′ is closed
and f ′ factors through U . After replacing X and S with U and T , the section
s′ becomes a closed immersion so that the previous case applies.

Now, let X be arbitrary and assume that p is universally subtrusive. As the
question is local on T , we may assume that T is quasi-compact. After replacing
X with a quasi-compact open U ⊆ X through which f ′ factors, we can also
assume that X is quasi-compact. Let U → X be an étale presentation such
that U is a quasi-compact scheme. Let V ′ = f ′−1(U) and V ′′r = f ′′−1(U). By
Proposition A.4 there is a unique étale T ′ ×T T ′-scheme V ′′ which restricts
to V ′′r on T ′′. By Theorem 5.17 the étale morphism V ′ → T ′ descends to an
étale morphism V → T . As the weak normalization commutes with étale base
change, cf. Proposition B.6, we have that V ′ → V is weakly normal.

We now apply the first case of the theorem to V ′ → V and V ′ → U and
obtain a morphism V → U → X lifting V ′ → X. Similarly, we obtain a lifting
V ×T V → U ×X U → X of V ′×T ′ V ′ → U ×X U → X. Finally, we obtain the
morphism f : T → X by étale descent.

Remark 7.5. — Suppose that we remove the assumption that T ′ → T is
weakly normal in the theorem. If X → S is locally separated, then the proof of
the theorem shows that there exists a minimal wn-factorization T ′ → T1 → T

such that f ′ : T ′ → X lifts to T1. If X/S is locally of finite type, then T1 → T

is of finite type. It can be shown that such a minimal wn-factorization also
exists if X → S is arbitrary and T ′ → T is universally subtrusive.

We obtain the following generalization of Lemma B.5:

Corollary 7.6. — Let p : S′ → S be a quasi-compact and quasi-separated
universally submersive morphism. Let q : (S′ ×S S′)red → S be the structure
morphism of the reduced fiber product. Then the sequence

OSS′/wn
� � // p∗ OS′ //

// q∗ O(S′×SS′)red .

is exact. In particular, we have that p is weakly normal if and only if

OS // p∗ OS′ //
// q∗ O(S′×SS′)red

is exact.

Proof. — This follows from the fact that (S′ ×S S′)red = (S′ ×SS′/wn S′)red

together with Theorem 7.4 applied to X = A1.
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8. The h-topology

In this section, we look at the h- and qfh-topologies. An easy description
of the coverings in these topologies is obtained from the structure theorems of
Section 3. In contrast to the Grothendieck topologies usually applied, the h-
and qfh-topologies are not sub-canonical, i.e., not every representable functor
is a sheaf. It is therefore important to give a description of the associated sheaf
to a representable functor [9, 43].

Let X be an algebraic space of finite presentation over a base scheme S.
The main result of this section is that the associated sheaf to the functor
HomS(−, X) coincides with the functor T 7→ HomS(T wn, X) where T wn is the
absolute weak normalization of T . This has been proved by Voevodsky [43]
when S and X are excellent noetherian schemes. When S is non-noetherian,
it is natural to replace submersive morphisms with subtrusive morphisms. To
treat the case when X is a general algebraic space, we use the effective descent
results of Section 5 via Theorem 7.4.

Let S be any scheme and let Sch/S be the category of schemes over S. The
following definitions of the h- and qfh-topologies generalize [43, Def. 3.1.2]
which is restricted to the category of noetherian schemes.

Definition 8.1. — The h-topology is the minimal Grothendieck topology on
Sch/S such that the following families are coverings
(i) Open coverings, i.e., families of open immersions {pi : Ui → T} such

that T =
⋃
pi(Ui).

(ii) Finite families {pi : Ui → T} such that
∐
pi :

∐
Ui → T is universally

subtrusive and of finite presentation.
The qfh-topology is the topology generated by the same types of coverings
except that all morphisms should be locally quasi-finite.

Remark 8.2. — Restricted to the category of quasi-compact and quasi-
separated schemes, the h-topology (resp. qfh-topology) is the Grothendieck
topology associated to the pre-topology whose coverings are of the form (ii).

Remark 8.3. — Consider the following types of morphisms:
(i) Finite surjective morphisms of finite presentation.
(ii) Faithfully flat morphisms, locally of finite presentation.
(iii) Proper surjective morphisms of finite presentation.
(i) and (ii) are coverings in the qfh-topology and (i)–(iii) are coverings in
the h-topology. Indeed, morphisms of type (ii) have quasi-finite flat quasi-
sections [17, Cor. 17.16.2].

The following theorem generalizes [43, Thm. 3.1.9].
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Theorem 8.4. — Every h-covering (resp. qfh-covering) {Ui → T} has a re-
finement of the form {Wjk →Wj → Vj → T} such that

– {Vj → T} is an open covering,
– Wj → Vj is a proper (resp. finite) surjective morphism of finite presen-
tation for every j,

– {Wjk →Wj} is an open quasi-compact covering for every j.
In particular, the h-topology (resp. qfh-topology) is the minimal Grothendieck
topology such that the following families are coverings:
(i) Families of open immersions {pi : Ui → T} such that T =

⋃
pi(Ui).

(ii) Families {p : U → T} consisting of a single proper (resp. finite) surjective
morphism of finite presentation.

Proof. — By [1, Exp. IV, Prop. 6.2.1] it follows that there is a refinement of the
form {W ′j → Vj → T} where W ′j → Vj are h-coverings (resp. qfh-coverings) of
affine schemes and {Vj → T} is an open covering. Theorems 3.11 and 3.12 then
show that these coverings have a further refinement as in the theorem.

We will now review the contents of [43, §3.2] and extend the results to
algebraic spaces and non-noetherian schemes. We begin by recalling the con-
struction of the sheaf associated to a presheaf, cf. [29, Ch. II, Thm. 2.11].

Definition 8.5. — Let F be a presheaf on Sch/S and equip Sch/S with a
Grothendieck topology T . For any V ∈ Sch/S we define an equivalence relation
∼ on F (V ) where f ∼ g if there exist a covering {pi : Ui → V } ∈ T such that
p∗i (f) = p∗i (g) for every i. We let F ′ be the quotient of F by this equivalence
relation. Furthermore we let ‹F = lim−→

U

Ȟ0( U, F ′)

where the limit is taken over all coverings U = {pi : Ui → V } ∈ T and

Ȟ0( U, F ′) = ker
(∏

i F ′(Ui) //
//
∏
i,j F ′(Ui ×V Uj)

)
is the Čech cohomology.

Remark 8.6. — It is easily seen that F ′ is a separated presheaf. By [4,
Lem. II.1.4 (ii)] it then follows that ‹F is the sheafification of F . Moreover, we
have that F ′ is the image presheaf of F by the canonical morphism F → ‹F .
Definition 8.7. — Let X be an algebraic space over S and let hX =

HomS(−, X) be the corresponding presheaf on Sch/S . Let L′(X) = (hX)′

and L(X) = ›hX be the separated presheaf and sheaf associated to hX in
the h-topology. We denote the corresponding notions in the qfh-topology by
L′qfh(X) and Lqfh(X).
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Lemma 8.8 ([43, Lem. 3.2.2]). — Let X be an algebraic space over S and let
T be a reduced S-scheme. Then L′(X)(T ) = L′qfh(X)(T ) = HomS(T,X).

Proof. — Let {Ui → T} be an h-covering. Then
∐
i Ui → T is univer-

sally submersive and schematically dominant. It follows that HomS(T,X) →∏
i HomS(Ui, X) is injective by Proposition 7.2

Lemma 8.9. — Let X be an algebraic space locally of finite type over S and
let T ∈ Sch/S. Then L′(X)(T ) = L′qfh(X)(T ) coincides with the image of

HomS(T,X)→ HomS(Tred, X).

If T ′ → T is universally submersive, then L(X)(T )→ L(X)(T ′) is injective.

Proof. — If two morphisms f, g : T → X coincide after the composition with
an h-covering {Ui → T}, then they coincide after composing with Tred → T .
Indeed, we have that

∐
i(Ui)red → Tred is an epimorphism by Proposition 7.2.

Conversely, we will show that if f and g coincide on Tred then they coincide on
a qfh-covering T ′ → T .

Taking an open covering, we can assume that T is affine. Let N be the sheaf
of nilpotent elements of OT , i.e., the ideal sheaf defining Tred. Then N is the
direct limit of its subsheaves of finite type. Thus Tred is the inverse limit of
finitely presented nil-immersions Tλ ↪→ T . As X → S is locally of finite type
lim−→λ

HomS(Tλ, X) → HomS(Tred, X) is injective, cf. [17, Thm. 8.8.2]. Thus f
and g coincide on Tλ for some λ.

To show the last statement, it is enough to show that L′(X)(T )→ L′(X)(T ′)

is injective when T ′ → T is universally submersive. From the first part of the
lemma, it is thus enough to show that HomS(Tred, X) → HomS(T ′red, X) is
injective and this is Proposition 7.2.

Remark 8.10. — Voevodsky claims that L′(X)(T ) = HomS(Tred, X) in the
text following [43, Lem. 3.2.2]. This is not true in general as HomS(T,X) →
HomS(Tred, X) need not be surjective. In fact, a counter-example is given by
X = Tred for any scheme T such that Tred ↪→ T does not have a retraction.

Proposition 8.11. — Let X be an algebraic space locally of finite type over
S, and let T ∈ Sch/S. Then L(X)(T ) (resp. Lqfh(X)(T )) is the filtered direct
limit of

ker
(∏

iX(Ui)
//
//
∏
i,j X

(
(Ui ×T Uj)red

))
where the limit is taken over all h-coverings (resp. qfh-coverings) {Ui → T}.

Proof. — It is clear from the definitions of L and L′ that L(X)(T ) is the limit
of

ker
(∏

iX(Ui)
//
//
∏
i,j L

′(X)
(
Ui ×T Uj

))
.

The proposition thus follows from Lemma 8.9.
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In the remainder of this section, we can work in either the h-topology or
the qfh-topology, i.e., all instances of L and L′ can be replaced with Lqfh and
L′qfh respectively.

Definition 8.12. — Let X be an algebraic space over S, and let T ∈ Sch/S .
Let f ∈ L(X)(T ) be a section and let {pi : Ui → T} be a covering, i.e., a set
of morphisms such that T =

⋃
i pi(Ui) but not necessarily an h-covering. We

say that f is realized on the covering {pi} if there are morphisms {fi ∈ X(Ui)}
such that p∗i (f) = fi in L(X)(Ui) for every i.

Let {pi : Ui → T} be a covering and let π1, π2 denote the projections of
(Ui ×T Uj)red. If f ∈ L(X)(T ) is realized on {pi} by {fi : Ui → X} then
fi ◦ π1 = fj ◦ π2 by Lemma 8.8. Conversely, if X/S is locally of finite type and
{pi} is an h-covering, then morphisms {fi ∈ X(Ui)} such that fi ◦π1 = fj ◦π2,
determines an element in L(X)(T ) by Proposition 8.11.

Lemma 8.13 ([43, Lem. 3.2.6]). — Let X be an algebraic space over S, and
let T ∈ Sch/S. Let f ∈ L(X)(T ) and assume that f is realized on an étale
covering {pi : Ui → T}. Then f is realized on Tred.

Proof. — Let fi : Ui → X be a realization of f on the covering {pi}. Then fi
and fj coincide on (Ui ×T Uj)red = (Ui ×T Uj)×T Tred. The {fi} thus glue to
a morphism Tred → X which realizes f .

Proposition 8.14. — Let X be an algebraic space locally of finite type over
S and let T be an S-scheme. Let f ∈ L(X)(T ) be a section. Then f is realized
on the absolute weak normalization T wn.

Proof. — We can replace T with T wn and assume that T is weakly normal.
The section f is realized on an h-covering of the form {Wj → Vj → T} where
theWj → Vj are quasi-compact h-coverings and {Vj → T} is an open covering.
By Theorem 7.4, applied to the weakly normal morphism (Wj)red → Vj , and
Lemma 8.9, we have that f is realized on the covering {Vj → T}. Lemma 8.13
then shows that f is realized on T .

Corollary 8.15. — Let X be an algebraic space locally of finite presentation
over S, and let T be a quasi-compact and quasi-separated S-scheme. Let f ∈
L(X)(T ) be a section. Then f is realized on a universal homeomorphism U →
T of finite presentation.

Proof. — By Proposition 8.14 the section f is realized on T wn. A limit argu-
ment shows that there is a finitely presented universal homeomorphism U → T

which realizes f .
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Theorem 8.16. — Let X be an algebraic space locally of finite presentation
over S, and let T ∈ Sch/S be quasi-compact and quasi-separated. Then
L(X)(T ) = lim−→λ

HomS(Tλ, X) = HomS(T wn, X) where the limit is taken over
all finitely presented universal homeomorphisms Tλ → T .

Proof. — If Tλ → T is a universal homeomorphism then (Tλ ×T Tλ)red =

(Tλ)red. Thus, by Proposition 8.11 we obtain a canonical map

lim−→
λ

HomS(Tλ, X)→ L(X)(T ).

The surjectivity of this map follows from Corollary 8.15. To show injectivity,
let f1, f2 : Tλ → X be two maps coinciding in L(X)(T ). Then f1 and f2

coincide on (Tλ)red and hence also on Tµ for a finitely presented nil-immersion
Tµ ↪→ Tλ. Finally, we have that

HomS(T wn, X) = lim−→
λ

HomS ((Tλ)red, X) = lim−→
λ

HomS (Tλ, X) .

Remark 8.17. — In the non-noetherian case, it may be useful to change the
h-topology (resp. qfh-topology) to only require the coverings to be of finite
type instead of finite presentation. In particular Xred → X would always be
an h-covering. Then Lemma 8.9 holds without any assumptions on X and we
can drop the assumption that X/S is locally of finite type in 8.11–8.14. The
main results 8.15–8.16 remain valid for this topology. It is also likely that for
this topology Theorem 8.4 holds if we let Wj → Vj be any proper (resp. finite)
surjective morphism, cf. Remark 3.14.

Appendix A

Étale morphisms and henselian pairs

In this section, we first recall some facts about étale morphisms which we
state in the category of algebraic spaces. We then consider schemes which are
proper over a local henselian scheme. Let S be a henselian local ring with
closed point S0, let S′ → S be a proper morphism and let S′0 = S′×S S0. Then
(S′, S′0) is 0-henselian (i.e., a henselian couple) and 1-henselian (i.e., induces an
equivalence between finite étale covers). This is the key fact in the proof of the
proper base change theorem in étale cohomology for degrees 0 and 1, cf. The-
orem A.13. We interpret these henselian properties using algebraic spaces in
Proposition A.7. These results are the core of the proof that proper morphisms
are morphisms of effective descent for étale morphisms, cf. Proposition 5.14 and
Corollary 5.16.

The results A.2–A.4 are well-known for schemes. We indicate how to extend
these results to algebraic spaces:
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Proposition A.1 ([23, Cor. II.6.17]). — An étale and separated morphism of
algebraic spaces is representable.

Proposition A.2. — Let f : X → Y be an étale morphism of algebraic
spaces. Then:
(i) ∆f is an open immersion.
(ii) Any section of f is an open immersion.
(iii) If f is universally injective, then f is an open immersion.

Proof. — (i) follows easily from the case where X and Y are schemes. (ii)
follows from (i) as any section of f is a pull-back of ∆f . For (iii) we note that
if f is universally injective then ∆f is surjective. It follows by (i) that f is
separated and by Proposition A.1 that f is representable. We can thus assume
that X and Y are schemes.

Corollary A.3. — Let X and Y be algebraic spaces over S such that Y → S

is étale. There is then a one-to-one correspondence between morphisms f :

X → Y and open subspaces Γ of X ×S Y such that Γ → X is universally
injective and surjective. This correspondence is given by mapping f to its graph
Γf .

Proof. — This follows immediately from (ii) and (iii) of Proposition A.2.

Proposition A.4 ([17, Thm. 18.1.2]). — Let S0 ↪→ S be a nil-immersion of
schemes, i.e., a surjective closed immersion. Then the functor X 7→ X ×S S0

from the category of étale S-spaces (resp. S-schemes) to the category of étale
S0-spaces (resp. S0-schemes) is an equivalence of categories.

Proof. — That the functor is fully faithful follows from Corollary A.3. Let us
prove essential surjectivity. For the category of schemes, this follows from [17,
Thm. 18.1.2]. Let X0 → S0 be an étale morphism of algebraic spaces. Let
U0 → X0 be an étale presentation with a scheme U0. Then R0 = U0 ×X0

U0

is also a scheme. We thus obtain S-schemes R and U and an étale equivalence
relation R //

// U which restricts to the equivalence relation given by R0 and
U0. The quotient X of this equivalence relation restricts to X0.

We recall two fundamental results for schemes which are proper over a com-
plete local ring.

Proposition A.5. — Let S be the spectrum of a noetherian complete local
ring with closed point S0. Let S′ → S be a proper morphism and S′0 = S′×SS0.
The map W ′ 7→ W ′ ∩ S′0 is a bijection between the open and closed subsets of
S′ and the open and closed subsets of S′0.

Proof. — This is a special case of [16, Prop. 5.5.1].
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Theorem A.6 ([17, Thm. 18.3.4]). — Let S be the spectrum of a noetherian
complete local ring with closed point S0. Let S′ → S be a proper morphism
and S′0 = S′ ×S S0. The functor X ′ 7→ X ′ ×S′ S′0 from the category of étale
and finite S′-schemes to étale and finite S′0-schemes is then an equivalence of
categories.

Proof. — Let Ŝ and “S′ be the completions of S and S′ along S0 and S′0
respectively. Grothendieck’s existence theorem [16, Thm. 5.1.4] shows that
X ′ 7→ X ′ ×S′ “S′ is an equivalence between the categories of finite étale covers
of S′ and “S′ respectively. Proposition A.4 then shows that X̂ ′ 7→ X̂ ′ ×“S′ S′0
is an equivalence between covers of “S′ and covers of S′0. For details see [17,
Thm. 18.3.4].

Using étale cohomology, we get a nice interpretation of the above two results:

Proposition A.7. — Let S be a quasi-compact and quasi-separated scheme.
Let S0 ↪→ S be a closed subscheme. If F is a sheaf on the small étale site on
S, then we let F0 denote the pull-back of F to S0. Then

(i) The following conditions are equivalent:
(a) For any sheaf of sets F on the small étale site on S, the canonical

map
H0

ét(S, F )→ H0
ét(S0, F0)

is bijective.
(a′) For any constructible sheaf of sets F on the small étale site on S,

the canonical map

H0
ét(S, F )→ H0

ét(S0, F0)

is bijective.
(b) For any finite morphism S′ → S, the map W ′ 7→ W ′ ∩ (S′ ×S S0)

from open and closed subsets of S′ to open and closed subsets of
S′ ×S S0 is bijective.

(c) For any étale morphism of algebraic spaces X → S the canonical
map

Γ(X/S)→ Γ(X ×S S0/S0)

is bijective.
(c′) For any étale finitely presented morphism of algebraic spaces X →

S the canonical map

Γ(X/S)→ Γ(X ×S S0/S0)

is bijective.
(ii) The following conditions are equivalent:
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(a) For any sheaf F of ind-finite groups on S, the canonical map

Hi
ét(S, F )→ Hi

ét(S0, F0)

is bijective for i = 0, 1.
(b) The functor X 7→ X ×S S0 from the category of étale and finite

S-schemes to étale and finite S0-schemes is an equivalence of cat-
egories.

Proof. — Every sheaf of sets is the filtered direct limit of constructible sheaves
by [3, Exp. IX, Cor. 2.7.2]. As H0

ét commutes with filtered direct limits [3,
Exp. VII, Rem. 5.14], the equivalence between (a) and (a′) follows. The equiv-
alence between (a) and (b) in (i) and (ii) is a special case of [3, Exp. XII,
Prop. 6.5]. For the equivalence between (a) and (c) in (i) we recall that there
is an equivalence between the category of sheaves on the small étale site on S
with the category of algebraic spaces X étale over S, cf. [29, Ch. V, Thm. 1.5]
or [7, Ch. VII, §1]. This takes a sheaf to its “espace étalé” and conversely an
algebraic space to its sheaf of sections. Furthermore, a sheaf is constructible if
and only if its espace étalé is of finite presentation [3, Exp. IX, Cor. 2.7.1].

If X → S is an étale morphism corresponding to the sheaf F , then
H0

ét(S, F ) = Γ(X/S). For any morphism g : S′ → S, the pull-back g∗F is
represented by X ×S S′. This shows that (a) and (c) as well as (a′) and (c′)
are equivalent.

Remark A.8. — If S is not locally noetherian, then an espace étalé need
not be quasi-separated. However, do note that any étale morphism is locally
separated by Proposition A.2 and that finitely presented morphisms are quasi-
separated.

Remark A.9. — Part (i) of Proposition A.7 is a generalization of [17,
Prop. 18.5.4] which only shows that (b) implies (c) for the category of sepa-
rated étale morphisms X → S. An example of Artin [3, Exp. XII, Rem. 6.13]
shows that condition (c) restricted to morphisms of schemes does not always
imply (a) and (b). It does suffice when S is affine though, cf. [33, Ch. XI,
Thm. 1].

Definition A.10. — Let S be a quasi-compact and quasi-separated scheme
and S0 ↪→ S a closed subscheme. We say that the pair (S, S0) is 0-henselian
or henselian (resp. 1-henselian) if (S, S0) satisfies the equivalent conditions of
(i) (resp. (ii)) of Proposition A.7.

We can now rephrase Proposition A.5 and Theorem A.6 as follows:
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Theorem A.11. — Let S be the spectrum of a noetherian complete local ring
with closed point S0. Let S′ → S be a proper morphism and S′0 = S′ ×S S0.
Then (S′, S′0) is 0-henselian and 1-henselian.

Proposition A.5 is easily extended to noetherian henselian local rings using
the connectedness properties of the Stein factorization:

Proposition A.12 ([17, Prop. 18.5.19]). — Let S be the spectrum of a
noetherian henselian local ring with closed point S0. Let S′ → S be a proper
morphism and S′0 = S′ ×S S0. Then (S′, S′0) is 0-henselian.

It is more difficult to show that (S′, S′0) is 1-henselian under the assumptions
of Proposition A.12 (and we will not need this). One possibility is to use Artin’s
approximation theorem. This is done in [5, Thm. 3.1]. Another possibility is to
use Popescu’s theorem [36, 40]. As these powerful results were not available at
the time, Artin gave an independent proof in [3, Exp. XII]. This result is also
slightly more general as it does not require the proper morphism to be finitely
presented:

Theorem A.13 ([3, Exp. XII, Cor. 5.5]). — Let S be the spectrum of a
henselian local ring with closed point S0. Let S′ → S be a proper morphism
and S′0 = S′ ×S S0. Then the pair (S′, S′0) is 0-henselian and 1-henselian.

Theorem A.13 is only part of the full proper base change theorem in étale
cohomology [3, Exp. XII, Thm. 5.1, Cor. 5.5]. A slightly less general but easier
proof of this theorem utilizing Artin’s approximation theorem and algebraic
spaces can be found in [7, Ch. VII].

Appendix B

Absolute weak normalization

In this section, we introduce the absolute weak normalization. This is an
extension of the weak normalization, cf. [2, 28, 45]. The weak normalization
(resp. absolute weak normalization) is dominated by the normalization (resp.
total integral closure). Recall that a separated universal homeomorphismX ′ →
X of algebraic spaces is the same thing as an integral, universally injective and
surjective morphism, cf. Corollary 5.22 and [17, Cor. 18.12.11].

Definition B.1. — A scheme or algebraic space X is absolutely weakly nor-
mal if
(i) X is reduced.
(ii) If π : X ′ → X is a separated universal homeomorphism and X ′ is re-

duced, then π is an isomorphism.
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If X ′ → X is a separated universal homeomorphism such that X ′ is absolutely
weakly normal, then we say that X ′ is an absolute weak normalization of X.

Properties B.2. — We briefly list some basic properties of absolutely weakly
normal schemes.

(i) If Y ′ → Y is a separated universal homeomorphism and X is absolutely
weakly normal, then any morphism X → Y factors uniquely through Y ′.
In fact, (X ×Y Y ′)red → X is an isomorphism. In particular, an absolute
weak normalization is unique if it exists.

(ii) The spectrum of a perfect field is absolutely weakly normal.
(iii) A TIC scheme, cf. Definition 3.8, is absolutely weakly normal.
(iv) An absolutely flat scheme with perfect residue fields is absolutely weakly

normal. Every scheme X has a canonical affine universally bijective
morphism T−∞(X) → X where T−∞(X) is absolutely flat with perfect
residue fields [31].

We first establish the existence of the absolute weak normalization in the
affine case and then show that it localizes.

Definition B.3. — A ring extension A ↪→ A′ is called weakly subintegral if
Spec(A′)→ Spec(A) is a universal homeomorphism. For an arbitrary extension
A ↪→ B, the weak subintegral closure ∗BA of A in B is the largest sub-extension
A ↪→ ∗

BA which is weakly subintegral. A ring A is absolutely weakly normal if
its spectrum is absolutely weakly normal. If Spec(A′)→ Spec(A) is an absolute
weak normalization then we say that A′ is the absolute weak normalization of
A and denote A′ with ∗A.

Some comments on the existence of ∗BA are due. If A ↪→ A′1 and A ↪→ A′2
are two weakly subintegral sub-extensions of A ↪→ B, then the union A′1∪A′2 =

im(A′1 ⊗A A′2 → B) is a weakly subintegral sub-extension of A ↪→ B. If (A′i)

is a filtered union of weakly subintegral extension, then A′ =
⋃
iA
′
i is weakly

subintegral [17, Cor. 8.2.10]. The existence of ∗BA then follows from Zorn’s
lemma.

Properties B.4. — The following properties are readily verified:

(i) The weak subintegral closure is inside the integral closure [17, Cor. 18.12.11].
(ii) If A ↪→ B is an extension and B is absolutely weakly normal then ∗BA is

absolutely weakly normal.
(iii) If A is an integral domain then the weak subintegral closure of A in a

perfect closure of its fraction field is the absolute weak normalization.
(iv) If A is any ring then the weak subintegral closure of Ared in TIC(Ared)

(or T−∞(Ared)) is the absolute weak normalization ∗A.
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We have furthermore the following characterization of the weak subintegral
closure:

Lemma B.5 ([28, Thm. (I.6)]). — Let A ↪→ B be an integral extension. Then
b ∈ B is in the weak subintegral closure ∗BA if and only if b ⊗ 1 = 1 ⊗ b in
(B ⊗A B)red.

Proof. — Let A′ = A[b] ⊆ B. Then Spec(B) → Spec(A′) is surjective and it
follows that (A′⊗AA′)red → (B⊗AB)red is injective. Thus b⊗1 = 1⊗b in (B⊗A
B)red if and only if (A′ ⊗A A′)red → A′red is an isomorphism. Equivalently, the
diagonal ∆Spec(A′)/Spec(A) is surjective which by [18, Prop. 3.7.1] is equivalent
to Spec(A′)→ Spec(A) being universally injective. As Spec(A′)→ Spec(A) is
finite and surjective, Spec(A′)→ Spec(A) is universally injective if and only if
Spec(A′)→ Spec(A) is a universal homeomorphism. Thus A ↪→ A[b] is weakly
subintegral if and only if b⊗ 1 = 1⊗ b.

Proposition B.6. — Let A ↪→ B be an extension and let A→ A′ be a homo-
morphism. Assume that A→ A′ is a localization or is étale. Let B′ = B⊗AA′.
Then:

(i) The weak subintegral closure ∗BA of A in B commutes with the base change
A→ A′, i.e., ∗B′A

′ = ( ∗BA)⊗A A′.
(ii) The absolute weak normalization ∗A of A commutes with the base change

A→ A′, i.e., ∗A′ = ( ∗A)⊗A A′.

Proof. — As the integral closure commutes with étale base change [17,
Prop. 18.12.15] and localizations, we can assume that A ↪→ B is integral. By
Lemma B.5, the sequence

∗
BA
� � // B //

// (B ⊗A B)red

is exact. As exactness is preserved by flat morphisms and reduced rings are
preserved by localization and étale base change, cf. [17, Prop. 17.5.7], it follows
that ∗B′A

′ = ( ∗BA)⊗A A′.
For the second part, let B = TIC(A) (or B = T−∞(A)). Then ∗A = ∗

BA and
in order to show that ∗A′ = ( ∗A)⊗AA′ it is enough to show thatB′ is absolutely
weakly normal as ( ∗A)⊗AA′ = ∗

B′A
′ by the first part. Furthermore, it suffices

to show that B′p′ is absolutely weakly normal for every prime p′ ∈ Spec(B′).
Let p be the image of p′ by Spec(B′)→ Spec(B). Then Bp → B′p′ is essentially
étale. But Bp is strictly henselian, cf. Properties 3.9, and thus Bp → B′p′ is an
isomorphism. As Bp is a TIC ring it is absolutely weakly normal. If we instead
use B = T−∞(A) the last part of the demonstration becomes trivial as Bp and
B′p′ are perfect fields.
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Let S be a scheme or algebraic space. The proposition implies that given
an extension of quasi-coherent algebras A ↪→ B on S, there is a unique quasi-
coherent sub-algebra ∗B A which restricts to the weak subintegral closure on
any affine covering. If ϕ : A → B is not injective but Spec( B) → Spec( A) is
dominant, then we let ∗B A be the weak subintegral closure of A/ ker(ϕ) in B.
Furthermore, there is a quasi-coherent sheaf of algebras ∗ OS = ∗ OSred

and
the spectrum of this algebra is the absolute weak normalization of S. In the
geometric case we adhere to the notation in [24, Ch. I, 7.2]:

Definition B.7. — Let S be a scheme or algebraic space. The weak normal-
ization of S with respect to a quasi-compact and quasi-separated dominant
morphism f : X → S is the spectrum of the weak subintegral closure of OS in
f∗ OX and is denoted SX/wn. The absolute weak normalization of S is denoted
S wn.

Remark B.8. — An integral domain is said to be weakly normal if it is weakly
normal in its fraction field. Similarly, a reduced ring with a finite number of ir-
reducible components is weakly normal if it is weakly normal in its total fraction
ring [28, 46]. If A is an excellent noetherian ring, then its weak normalization
is finite over A and thus noetherian. The absolute weak normalization on the
other hand, need not be finite and may well reside outside the category of
noetherian rings.

There is also the notions of subintegral closure and semi-normality [14, 39,
42] which coincide with weak subintegral closure and weak normality in char-
acteristic zero. The difference in positive characteristic is that A ↪→ B is
subintegral if Spec(B) → Spec(A) is a universal homeomorphism with trivial
residue field extensions, while weakly subintegral morphisms may have purely
inseparable field extensions. If A is an excellent noetherian ring then its semi-
normalization is finite over A. In particular, if A is an excellent noetherian
ring of characteristic zero, then the absolute weak normalization, being equal
to the semi-normalization, is finite over A.
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