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FOR CONTACT MANIFOLDS
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Abstract. — To any smooth compact manifold M endowed with a contact structure

H and partially integrable almost CR structure J , we prove the existence and unique-

ness, modulo high-order error terms and diffeomorphism action, of an approximately

Einstein ACH (asymptotically complex hyperbolic) metric g on M × (−1, 0).
We consider the asymptotic expansion, in powers of a special defining function, of

the volume of M × (−1, 0) with respect to g and prove that the log term coefficient is

independent of J (and any choice of contact form θ), i.e., is an invariant of the contact

structure H.

The approximately Einstein ACH metric g is a generalisation of, and exhibits sim-

ilar asymptotic boundary behaviour to, Fefferman’s approximately Einstein complete

Kähler metric g+ on strictly pseudoconvex domains. The present work demonstrates

that the CR-invariant log term coefficient in the asymptotic volume expansion of g+

is in fact a contact invariant. We discuss some implications this may have for CR

Q-curvature.

The formal power series method of finding g is obstructed at finite order. We show

that part of this obstruction is given as a one-form on H
∗
. This is a new result peculiar

to the partially integrable setting.

Texte reçu le 9 octobre 2007, accepté le 19 juin 2008

Neil Seshadri, Graduate School of Mathematical Sciences, The University of Tokyo, 3–8–1

Komaba, Meguro-ku, Tokyo 153–8914, Japan.

Current address : Rates Hybrids Quantitative Research, JPMorgan Securities Japan

Co. Ltd., Tokyo Building, 2–7–3 Marunouchi, Chiyoda-ku, Tokyo 100–6432, Japan •
E-mail : neil.seshadri@hotmail.com

2000 Mathematics Subject Classification. — 53D10; 53B05, 53C25.

Key words and phrases. — ACH metric, approximately Einstein metric, volume renormal-

ization, contact manifold, almost CR structure, CR Q-curvature, CR obstruction tensor.

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE 0037-9484/2009/63/$ 5.00
© Société Mathématique de France



64 N. SESHADRI

Résumé (Métriques presque d’Einstein ACH, renormalisation de volume, et un inva-

riant pour les variétés de contact)

Pour toute variété lisse compacte M munie d’une structure de contact H et d’une

structure presque CR partiellement intégrable J , nous démontrons l’existence et l’uni-

cité, à des termes d’erreur de degré supérieur et action de difféomorphisme près, d’une

métrique presque d’Einstein ACH (asymptotiquement complexe hyperbolique) g sur

M × (−1, 0).
Nous considérons le développement asymptotique, en des puissances d’une fonction

définissante spéciale, du volume de M × (−1, 0) par rapport à g. Nous démontrons que

le coefficient du terme logarithmique est indépendant de J (et du choix de la forme de

contact θ) ; par conséquent, c’est un invariant de la structure de contact H.

La métrique presque d’Einstein ACH g est une généralisation de la métrique presque

d’Einstein kählérienne complète g+ de Fefferman sur les domaines strictement pseudo-

convexes. Elle a également un comportement asymptotique similaire au bord. Le pré-

sent travail démontre que le coefficient du terme logarithmique CR-invariant dans le

développement asymptotique du volume de g+ est, en fait, un invariant de contact.

Nous traitons également quelques implications possibles pour la Q-courbure CR.

La méthode de trouver g par le biais de séries formelles comporte une obstruction

d’ordre fini. Nous démontrons que cette obstruction est partiellement donnée par une

1-forme sur H
∗
. Ceci est un résultat nouveau particulier au contexte partiellement

intégrable.

1. Introduction

In a previous paper [29], inspired by Graham [19], we studied volume renor-
malization for Fefferman’s approximately Einstein complete Kähler metric on
a strictly pseudoconvex domain in a complex manifold. We considered the
asymptotic expansion, in powers of a special boundary defining function, for
the volume of this domain and showed that the coefficient L of the log term
in this expansion is an invariant of the boundary CR structure. In complex
dimension two L always vanishes. In higher dimensions, we showed in subse-
quent work [30] that L is moreover invariant under (integrable) deformations
of the CR structure. This led us to speculate that L is in fact an invariant
of the contact structure on the boundary. One of the purposes of the present
paper is to show that this is indeed the case.

To make sense of the last statement, in this paper we first generalise L
to be defined on an aribitrary smooth compact orientable contact manifold
(M,H). We do so by first endowing (M,H) with a partially integrable almost
CR structure J , a generalisation of an integrable CR structure. (Background
material with definitions will follow in the next section.) We then define L in
this generalised setting as the log term coefficient in the volume expansion of
an approximately Einstein ACH (asymptotically complex hyperbolic) metric g
on X := M × (−1, 0). Our definition of ACH is contained is Definition 2.1;
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APPROXIMATELY EINSTEIN ACH METRICS 65

suffice for now to say that such a metric exhibits similar boundary asymptotics
to those of Fefferman’s approximately Einstein complete Kähler metric. The
special defining function ϕ used for the expansion is from Lemma 2.2 and
corresponds to a choice of contact form θ for (M, H). Then we have:

Theorem 4.4. — Define the Einstein tensor by Ein := Ric+2(n+2)g. Then
there exists an ACH metric g on X that solves Ein = O(ϕn) with Ein(W,Z) =
O(ϕn+1) for W ∈ H and Z ∈ TM . Moreover if g� is another such ACH metric
then there exists a diffeomorphism F of X that restricts to the identity on M
with g� = F ∗g + ϕnG, where G is O(1) and G(W,Z) = O(ϕ) for W ∈ H and
Z ∈ TM .

There are two key initial steps in the proof of Theorem 4.4, both reminiscent
of similar steps in the integrable CR setting [29]. The first is to make a special
choice of coframe for TX to allow g to be written in a normal form—see §2.
The second is to write the Levi-Civita connection and curvature of g in terms
of local data associated with (the extension to X of) a canonical connection
adapted to (M,H, J, θ). We use a connection introduced by Tanno [32] and call
it the TWT connection, since it reduces to the more familiar Tanaka–Webster
connection when J is integrable. Details about the TWT connection are in §3.

The remainder of the proof of Theorem 4.4 uses methods from Graham–
Hirachi [20]. We solve the Einstein equation iteratively to determine g up to a
finite order and then use the contracted Bianchi identity to prove that all the
components of Ein vanish to the correct order—see §4.

The main result of this paper is the following:

Main Theorem. — The log term coefficient L in the asymptotic volume ex-
pansion of X with respect to an approximately Einstein ACH metric g is an
invariant of the contact structure H on M .

Since any contact manifold admits a contractible homotopy class of partially
integrable almost CR structures, the proof of the Main Theorem follows from
a deformation argument, similar to that in [20] and [30]—see §5.

Now when the partially integrable almost CR structure J is integrable, so
that (M,H, J) is a CR manifold, the approximately Einstein ACH metric from
Theorem 4.4 does in fact coincide (modulo high order error terms and dif-
feomorphism action) as a Riemannian metric with Fefferman’s approximately
Einstein complete Kähler metric—see §6. The respective special defining func-
tions also coincide, hence the log term coefficients L coming from the two
volume renormalization procedures (i.e., in this paper and [29]) agree.

When M has dimension 3, J is automatically integrable. In this dimension
L always vanishes ([23], [29]). Whether there exist nonzero L in higher dimen-
sions is an open question. Direct calculation using our volume renormalization
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66 N. SESHADRI

techniques seems a computationally infeasible task. In the integrable CR set-
ting the fact that L is a constant multiple of the integral of CR Q-curvature
makes settling the question of its (non)vanishing an even more pertinent task.
The contact-invariance of L proved in this paper could be a useful contribution
to a solution to this problem. We speculate more on this matter and briefly
discuss some other recently disovered contact invariants in the final §7.

Some remarks are in order about the literature on ACH metrics. Our def-
inition of ACH is closest to that of Guillarmou–Sá Barreto [22], which in
turn is based on the formalism of so-called Θ-metrics from Epstein–Melrose–
Mendoza [9]. ACH-like metrics have also been studied by Roth [27], Biquard [2],
Biquard–Herzlich [3] and Biquard–Rollin [5]; these authors also considered Ein-
stein conditions, although with different purposes in mind to ours.

Finally let us make some comments about ACHE (ACH Einstein) metrics,
by which we mean ACH metrics satisfying Ein = O(ϕm), for all m. With
additional smoothness restraints, the existence of such metrics is in general
obstructed by certain tensors. In §4 we define the obstruction tensors (for T
the Reeb field and WA in the contact direction)

B := ϕ−nEin(T, T )|M ,

OA := ϕ−(n+1)Ein(T,WA)|M ,

and prove the following result.

Proposition 4.5. — (i) The obstruction tensors B (a scalar function) and
OA are well-defined independently of the ambiguity in approximately Einstein
ACH metric g.
(ii) Under a change in contact form �θ = e2Υθ, the obstruction tensors satisfy

�B = e−2(n+2)ΥB
and

“OA = e−2(n+2)Υ(OA − 2iϕ−(n+1)Ein(ΥαWα −ΥβW
β
, WA)|M ).

(iii) If (M,H, J) is such that B vanishes then, under a change in contact form
�θ = e2Υθ, the obstruction OA satisfies

“OA = e−2(n+2)ΥOA.

That there exists a secondary obstruction OA given as a one-form in H∗

is a novel feature of this partially integrable setting, since in the integrable
case it is well-known ([11], [24], [18]) that the only obstruction to appear is
a scalar function. Studying further the obstruction tensors and in particular
their relation with the (almost) CR deformation complex should be interesting
(cf. [17] in the setting of conformal geometry).
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APPROXIMATELY EINSTEIN ACH METRICS 67

On the other hand, with no additional smoothness restraints, we expect the
general question of existence of ACHE metrics to be settled by introducing log
terms in the expansion for the metric. The formal theory for ACHE metrics
closely resembles that of the ambient metric in conformal geometry, whose
existence is proved by Fefferman–Graham [13].

Notations and conventions. Lowercase Greek indices run 1, . . . , n. Upper-
case Latin indices in {A, B, . . . , I} run 1, . . . , n, 1, . . . , n while uppercase Latin
indices in {J,K, . . . , Z} run ∞, 0, 1, . . . , n, 1, . . . , n. The letter i will denote the
quantity

√
−1. We observe the summation convention. Smooth for us means

infinitely differentiable.
Acknowledgements. This work was part of my PhD thesis at the University

of Tokyo. I am most grateful to my supervisor Prof. Kengo Hirachi for his
expert guidance. I also thank Prof. Robin Graham for helpful discussions
and for his hospitality during my visit to the University of Washington in the
summer of 2006. This project was commenced during my stay at the National
Center for Theoretical Sciences at National Tsing-Hua University, Taiwan, in
the summer of 2005; I would like to thank that institution for its hospitality and
the organisers of the NCTS Mini-course & Workshop “Conformal Invariants—
Geometric and Analytic Aspects” for the invitation to attend. I am grateful
for the financial support of a Japanese Government (MEXT) Scholarship for
research students. I finally thank the referee for suggestions for improvement
to an earlier draft.

2. Contact manifolds and ACH metrics in normal form

2.1. Contact manifolds. — Let M be a smooth compact orientable manifold of
dimension 2n + 1, endowed with a contact structure H. That is, the smooth
hyperplane distribution H ⊂ TM is given as the kernel of a globally-defined
nonvanishing one-form θ that satisfies the condition of maximal nonintegrability
θ∧(dθ)n �= 0. If θ is such a contact form then so is any smooth positive multiple
of θ.

The Reeb vector field T is characterised by the conditions θ(T ) = 1 and
T� dθ = 0.

Let J ∈ End(H) be a partially integrable almost CR structure. That is,
J2 = −1 and the Levi metric 2dθ(·, J ·) is Hermitian positive definite. (Such
a J is sometimes called a calibrated or compatible almost complex structure.)
Note that the second condition is independent of choice of contact form, as is
the conformal class of Levi metrics, denoted [h], associated to (H,J). Since
H is a symplectic vector bundle, there exists a contractible homotopy class of
such J .
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68 N. SESHADRI

2.2. ACH metrics. — Consider the manifold-with-boundary

X := M × (−1, 0] � (x, ρ).

Extend H,J, θ and T to X by extending trivially in the ρ-direction. Throughout
this paper O(ρk) will denote quantities on X that, when divided by ρk, extend
at least continuously to M = M × {0}.

Definition 2.1. — A smooth Riemannian metric g ∈ S2TX is said to be
ACH (asymptotically complex hyperbolic) if it satisfies:

1. ρg|H = O(1) and on M , ρg|H ∈ [h];
2. ρ2g = O(1) and ρ2g|M is a smooth multiple of θ2|M ;
3. |(dρ)/2ρ|2

g
= O(1) and |(dρ)/2ρ|2

g
|M = 1;

4. g(T,W ) = O(1), for any W ∈ H;
5. g−1(µ, ν) = O(ρ), for any one-forms µ, ν on X;
6. g−1(dρ, µ) = O(ρ2), for any one-form µ on X.

Note that our definition of an ACH metric depends on a choice of J and θ.
Conditions (1), (2) and (3) in the definition are analogous to those used for
asymptotically real hyperbolic metrics, see, e.g., [12]. The motivation behind
the remaining conditions will be apparent below.

2.3. Normal form for ACH metrics. — For the volume renormalization proce-
dure it is convenient to work with g in a normal form. As familiar from [19],
[29] and [22], this involves the choice of a special defining function for the
boundary.

Lemma 2.2. — There exists a unique defining function ϕ for M in X, with
ϕ < 0 in X and M = {ϕ = 0}, such that

(2.1) ϕ2g|M = 4θ2|M ;

����
d(log(−ϕ))

2

����
2

g

= 1.

Proof. — Write ϕ = e2fρ for a function f to be determined. The boundary
value of f is determined from the first condition in (2.1) above and assumption
(2) in Definition 2.1. Next

1 =

����
d(log(−ϕ))

2

����
2

g

=
1

4ρ2
(|dρ|2

g
+ 4ρ�dρ, df�g + 4ρ2|df |2

g
)

is true if and only if
∂f

∂ρ
+

1

|dρ|2 �dρ, dx�g
∂f

∂x
+

2ρ

|dρ|2
∂f

∂x

∂f

∂ρ
�dρ, dx�g

+ ρ

Å
∂f

∂ρ

ã2

+
ρ

|dρ|2
Å

∂f

∂x

ã2

|dx|2 =
ρ

|dρ|2

Ç
1−

����
dρ

2ρ

����
2
å

.
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APPROXIMATELY EINSTEIN ACH METRICS 69

By assumptions (3), (5) and (6) in Definition 2.1, this is a noncharacteristic
PDE with a unique solution f near M .

Define the vector field ‹N as the dual of dϕ/4ϕ2, so that ‹N := g(dϕ, ·)/4ϕ2.
Lemma 2.2 shows that dϕ(‹N) = 1, thus ‹N is transverse to M .

Define a diffeomorphism of X by mapping a point (x, ρ) to the point in
X obtained by following the unit-speed integral curve of ‹N emanating from
x for time ρ. In the sequel, we shall omit from our notation pullbacks or
pushforwards under this diffeomorphism.

Henceforth will shall work exclusively with the complexification of H, and
abuse notation by denoting this as H as well. The partially integrable almost
CR structure J extends to this complexified version, whence H = H1,0 ⊕H0,1

splits into i,−i eigenspaces. We shall work with the ACH metric g naturally
extended in the complexified bundle H. For local computations we let {WA}
be a local frame for H.

Lemma 2.3. — There exists a unique vector field �T on X near M such that
�T ⊥g H; dϕ( �T ) = 0; θ( �T ) = 1.

Proof. — Suppose �T and �T � are two such vector fields. Then �T − �T � ∈ ker θ =
H ⊕ ‹N , implying that �T = �T �, and proving uniqueness.

For existence, set �T = T − aAWA for functions aA to be determined by
g( �T ,WA) = 0, i.e., g( �T ,WA) = g(WA, WB)aB . The matrix on the right-hand
side of this equation is nonsingular; this is by assumption (1) in Definition 2.1.
Thus we may solve for the functions aB , proving local, and hence global, exis-
tence of �T .

Lemma 2.4. — The vector field �T extends to M and �T |M = T |M .

Proof. — Locally write �T = T − aαWα − bβW
β
. Then

0 = g( �T ,W
β
) = g(T − aαWα − bβW

β
, W

β
) = O(1)− aαO(ϕ−1)−O(1),

by assumptions (4) and (1) in Definition 2.1. We conclude that aα = O(ϕ).
Similarly bβ = O(ϕ).

Lemma 2.4 shows that there are functions {�ηA}, continuous up to M , such
that

�T = T − ϕ�ηAWA.

We shall henceforth work with the local frame {‹N, �T ,WA} for TX (near M).
Let {dϕ, θ, �θA} be the dual coframe, for some one-forms {�θA} that annihilate

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



70 N. SESHADRI

‹N, �T . We specify them as follows: take an admissible coframe for H1,0, i.e.,
(1, 0)-forms {θα} satisfying θα(Wβ) = δα

β
, θα(T ) = 0; set θα := θα; finally take

�θA := θA + ϕ�ηAθ.

Write

(2.2) dθ = ih
αβ

θα ∧ θβ ,

for a positive definite Hermitian matrix h
αβ

. This Levi metric will be used to
raise and lower indices.

With respect to our frame, the ACH metric g has the normal form

(2.3) g =

Ö
(2ϕ)−2 0 0

0 ϕ−2s 0

0 0 −ϕ−1�hAB

è

,

for a function s and matrix of functions �hAB . By Lemma 2.2, s|M ≡ 4. We
moreover declare that

(2.4) �h
αβ
|M = h

αβ
,

with the other components of �h vanishing on M ; this is consistent with as-
sumption (1) in Defintion 2.1.

3. Almost pseudohermitian geometry and the TWT connection

Let M be a smooth orientable manifold of dimension 2n + 1, endowed with
a contact structure H, a partially integrable almost CR structure J , and a
choice of contact form θ. Then we call the quadruple (M,H, J, θ) an almost
pseudohermitian manifold. The terminology is inspired by Webster [33]: when
J is integrable, i.e., satisfies [H1,0, H1,0] ⊂ H1,0, he called such objects pseu-
dohermitian manifolds.

Associated to any almost pseudohermitian manifold is a canonical connec-
tion introduced by Tanno [32]. It reduces to the Tanaka–Webster connection
([31], [33]) in the integrable setting. We shall refer to it as the TWT con-
nection (1). The reader may consult [32, Proposition 3.1] for its axiomatic
definition. Tanno chose to preserve Tanaka’s torsion condition [32, Proposition
3.1(iii)] from the integrable setting. The price paid is compatibility with J :
unlike the Tanaka–Webster connection in the integrable case, the TWT con-
nection does not preserve the partially integrable almost CR structure. The

(1)
This connection is sometimes called the “generalised Tanaka–Webster connection” in the

literature. We prefer our terminology since there are other canonical connections that gen-

eralise Tanaka–Webster’s; see §4 and [25].
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extent to which J is not preserved is measured by the Tanno tensor, see Propo-
sition 3.1 below, whose vanishing characterises integrable almost CR structures
([32, Proposition 2.1]).

Blair–Dragomir [6] have further studied the TWT connection and its curva-
ture and obtained many local formulae.

Proposition 3.1 (Tanno [32, §6], Blair–Dragomir [6, §2.1])
(i) Let the connection forms ω B

A
of the TWT connection ∇ be defined by

∇Wα = ω β

α
⊗Wβ + ω β

α
⊗W

β
; ∇T = 0.

Then the following structure equations are satisfied:

dθβ = θα ∧ ω β

α
+ θα ∧ ω β

α
+ Aβ

α
θ ∧ θα; ω

αβ
+ ω

βα
= dh

αβ
,

where the torsion tensor A satisfies

Aαβ = Aβα.

(ii) Let Q(Y,X) = (∇XJ)Y , for X, Y ∈ CTM denote the Tanno tensor.
(Here J is extended to all of CTM by declaring JT = 0). Then

Qβ

αγ
:= θβ(Q(Wα, Wγ)) = 2iω β

α
(Wγ),

Qβ

αγ
:= θβ(Q(Wα, Wγ)) = −2iω β

α
(Wγ),

and all other components of Q vanish. Furthermore,

ω β

α
(Wγ) = ω β

α
(T ) = ω β

α
(Wγ) = ω β

α
(T ) = 0.

Proposition 3.2 (Blair–Dragomir [6, Theorem 3]). — The curvature forms

Ω β

α
= dω β

α
− ω γ

α
∧ ω β

γ
− ω γ

α
∧ ω β

γ

and
Ω β

α
= dω β

α
− ω γ

α
∧ ω β

γ
− ω γ

α
∧ ω β

γ

of the TWT connection are given by

Ω β

α
= R β

α ργ
θρ ∧ θγ + iAβ

γ
θα ∧ θγ − iAαγθγ ∧ θβ

+(A β

αγ,
+

i

2
QγµαAµβ)θγ ∧ θ − (Aβ

γ, α
− i

2
Q β

γµ
Aµ

α
)θγ ∧ θ

− i

4
Q β

λµα,
θλ ∧ θµ − i

4
Q β

λµ , α
θλ ∧ θµ

and

Ω β

α
= (A β

γα ,
−A β

γ , α
)θγ ∧ θ +

i

2
Aγµ(Qµ β

α
−Qµβ

α
)θγ ∧ θ

+
i

2
Qβ

αλ, γ
θλ ∧ θγ − i

2
Qβ

αγ, λ
θλ ∧ θγ ,
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where a comma as a subscript indicates covariant differentiation with respect
to the TWT connection.

Proof. — This is given in [6], with the exception of explicit formulae for the
θγ ∧ θ and θγ ∧ θ terms. However a recipe for the calculation of these terms is
given in the statement of [6, Theorem 3] and from this it is straightforward to
obtain the formulae above.

4. Einstein equation and Bianchi identity

Let us now return to the ACH setup of § 2. Extend the TWT connection of
(M,H, J, θ) to X by first trivially extending it in the ‹N -direction. Introduce the
notation that ∞ as an index will denote the ‹N -direction and 0 as an index will
denote the �T -direction. Also in the interests of simplicity of notation we shall
mainly work with indices A, B, etc., avoiding α, β, α, β, etc. where possible.
We need to keep in mind that certain components of some tensors will formally
vanish. For instance, hAB vanishes unless A = α and B = β or vice versa.
As another example, note that the formal quantity A B

B
(here A is the torsion

tensor from Proposition 3.1 and we have raised an index) also vanishes.

Proposition 4.1. — Define a modified Kronecker symbol εB

A
by

εB

α
:= δB

α

εB

α
:= −δB

α
.

Write the (extended) TWT connection forms as

ω B

A
= ω B

A 0θ + ω B

A C
θC .

Then the Levi-Civita connection matrix ψ K

J
of g with respect to the coframe

{dϕ, θ, �θA} satisfies

ψ ∞
∞ = (−ϕ−1)dϕ;

ψ 0
∞ = (−ϕ−1 + 1

2s−1 ‹Ns)θ

− 1
2ϕs−1�hAB(�ηB + ϕ‹N�ηB)�θA;

ψ A

∞ = 1
2 (�ηA + ϕ‹N�ηA)θ

+ ( 1
2gAB ‹NgBC)�θC ;

ψ ∞
0 = (4ϕ−1s− 2‹Ns)θ
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+ 2ϕ(�hAB(�ηB + ϕ‹N�ηB))�θA;

ψ 0
0 = (−ϕ−1 + 1

2s−1 ‹Ns)dϕ

+ ( 1
2s−1 �Ts)θ

+ ( 1
2s−1WAs)�θA;

ψ A

0 = − 1
2 (�ηA + ϕ‹N�ηA)dϕ

+ sϕ−1(�h−1)AB( 1
2s−1WBs− iεC

B
ϕ�ηC)θ

+ 1
2 (�h−1)AB

� �T�hBC + �hBD(−ω D

C 0 + AD

C
− ϕWC �ηD

+ ϕ�ηEω D

C E
− ϕ�ηEω D

E C
+ iϕ2εF

C
�ηD�ηF )

+ �hCD(−ω D

B 0 + AD

B
− ϕWB�ηD

+ ϕ�ηEω D

B E
− ϕ�ηEω D

E B
+ iϕ2εF

B
�ηD�ηF )

− isϕ−1εD

C
hBD

��θC ;

ψ ∞
A

= 2ϕ�hAB(�ηB + ϕ‹N�ηB)θ

− 2ϕ2 ‹NgAC
�θC ;

ψ 0
A

= − 1
2ϕs−1�hAB(�ηB + ϕ‹N�ηB)dϕ

+ ( 1
2s−1WAs− iϕεB

A
�ηB)θ

+ ϕs−1�hABψ B

0 C
�θC ;

ψ B

A
= 1

2ϕ(�h−1)BC ‹N(ϕ−1�hAC)dϕ

+ (ψ B

0 A
+ ω B

A 0 −AB

A
+ ϕWA�ηB − ϕ�ηCω B

A C
+ ϕ�ηCω B

C A

− iϕ2εC

A
�ηB�ηC)θ

1
2 (�h−1)BD

�
WC

�hAD −WD
�hAC −WA

�hCD − �hAE(ω E

D C
− ω E

C D
)

− �hCE(ω E

D A
− ω E

A D
)− �hDE(ω E

C A
− ω E

A C
)
��θC .

Proof. — Set �θ∞ := dϕ and �θ0 := θ and then simultaneously solve the struc-
ture equations

d�θJ = �θK ∧ ψ J

K

and

ψJK + ψKJ = dgJK ,

using Proposition 3.1 and (2.2). The calculation is straightforward but long so
we omit it.
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We introduce notation to keep track of derivatives in the ‹N -direction. Let
Ξ(k) generically denote a known O(1) tensor on X that contains at most k iter-
ated derivatives in the ‹N -direction. For example, Ξ(2)

AB
could denote the tensor

‹N2�hAB . In general such a tensor will involve tensorial invariants comprised of
(Levi metric contractions of) TWT curvature, torsion and Tanno tensors (R,
A and Q in Proposition 3.2) and their TWT covariant derivatives.

Now we present a result that may be used to simplify many tensorial calcu-
lations. In particular we use it when computing the Ricci tensor of g, modulo
certain Ξ(k) tensors, in Proposition 4.3 below. Moreover the result would be a
useful computational tool if one wanted to calculate explicity the Ξ(k) tensors.

Lemma 4.2. — Near any point x ∈ X, there exists a frame {WA} = {Wα, Wα}
for H with respect to which the part of the TWT connection matrix given by
ω α

β
vanishes at x.

Proof. — Start by choosing any frame {W x

A
} for H at x. If we extend this

frame to a neighbourhood of x by TWT-parallel translation along the geodesics
of the TWT connection ∇, then a standard result from the theory of linear
connections ensures that the resulting frame is smooth near x and the (full)
TWT connection matrix with respect to this frame vanishes at x. The problem
is that, since the TWT connection does not preserve the almost CR structure
J , the resulting frame is not of the form {Wα, Wα} (types are not preserved),
meaning we cannot subsequently use the local almost pseudohermitian formulae
from §3. We get around this problem by instead parallel translating the initial
frame along geodesics with respect to a new connection “∇, defined by

“∇XY =
1

2
(∇XY − J∇XJY ) .

One checks that “∇J = 0 so that frame types are preserved under “∇-parallel
translation. Moreover, writing “∇Wα = �ω β

α
⊗Wβ , one checks that �ω β

α
= ω β

α
.

This proves the lemma.

Remark. — The connection “∇ clearly reduces to ∇ when J is integrable, i.e.,
when∇ is the usual Tanaka–Webster connection preserving J . Thus “∇ provides
an alternative extension of the Tanaka–Webster connection to almost pseudo-
hermitian manifolds. Of course Tanaka’s torsion condition will no longer hold
in general for “∇. If one considers an analogy between almost pseudohermitian
and almost Hermitian manifolds, then the TWT connection could be thought
of as corresponding to the Levi-Civita connection and “∇ to the first canonical
connection of Lichnerowicz (see, e.g., [10], [15]).
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If we work in a special frame given by Lemma 4.2, then we can delete any
TWT connection forms of type ω α

β
and replace ordinary derivatives with TWT

covariant derivatives, plus Tanno tensor correction terms. This is because the
remaining part ω α

β
of the TWT connection matrix may be identified with the

Tanno tensor Q—see Proposition 3.1(ii). An upshot of this is that, for example,
we can delete from calculations terms of the form ω B

A B
, as the reader may

verify by recalling from Proposition 3.1(ii) the form of the Tanno tensor.

Proposition 4.3. — The components of the Ricci tensor of g satisfy

Ric∞∞ = −1

2

Ä
(n + 2)ϕ−2 − (sϕ)−1 ‹Ns + s−1 ‹N2s + (�h−1)AB ‹N2�hAB

ä

+Ξ(1);

Ric∞0 = Ξ(1);

Ric∞A = Ξ(1)
A

;

Ric00 = −2(n + 2)ϕ−2s + 2(n + 1)ϕ−1 ‹Ns− 2‹N2s + Ξ(1);

Ric0A = −4(n + 1)�hAB�ηB − 2(n− 2)ϕ�hAB
‹N�ηB + 2ϕ2�hAB

‹N2�ηB

+Ξ(0)
A

;

RicAB = 2(n + 1)ϕ−1�hAB + s(2ϕ)−1(�h−1)CDhAChDB − 2n‹N�hAB

−(�h−1)CD(‹N�hCD)�hAB − s−1(‹Ns)�hAB + 2ϕ‹N2�hAB

+Ξ(0)
AB

+ ϕΞ(1)
AB

.

Furthermore the terms containing �η in Ξ(0)
A

,Ξ(0)
AB

, and ‹Nη in Ξ(1),Ξ(1)
A

,Ξ(1)
AB

,
are O(ϕ).

Proof. — The Ricci tensor of g satisfies RicJK = gLMRiemJLMK , where Riem
denotes the Riemannian curvature tensor. Using the normal form (2.3) of g we
have

RicJK = ϕ2s−1RiemJ00K − ϕ(�h−1)ABRiemJABK + 4ϕ2RiemJ∞∞K .

Then with

(4.1) Ψ K

J
:= dψ K

J
− ψ L

J
∧ ψ K

L

denoting the Levi-Civita curvature matrix of g,

RicJK = ϕ2s−1gLKΨ L

0 (WJ , �T )− ϕ(�h−1)ABgLKΨ L

B
(WJ , WA)

+ 4ϕ2gLKΨ L

∞ (WJ , ‹N).
(4.2)

We then just compute using Proposition 4.1. By Lemma 4.2 the calculations
may be simplified by working in a frame where the connection forms ω α

β
vanish

at a point. Again we omit the details.
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Theorem 4.4. — Define the Einstein tensor by Ein := Ric+2(n+2)g. Then
there exists an ACH metric g on X that solves Ein = O(ϕn) with Ein(W,Z) =
O(ϕn+1) for W ∈ H and Z ∈ TM . Moreover if g� is another such ACH metric
then there exists a diffeomorphism F of X that restricts to the identity on M
with g� = F ∗g + ϕnG, where G is O(1) and G(W,Z) = O(ϕ) for W ∈ H and
Z ∈ TM .

Remark. — It may be seen that the ambiguity ϕnG coincides with the unde-
termined term in the solution of the Einstein equation by Biquard [2].

Proof. — Our approach is analogous to that of Graham–Hirachi [20, Theorem
2.1]. We prove that the system of equations Ein00 = O(ϕn),Ein0A = O(ϕn+1)
and EinAB = O(ϕn+1) is necessary and sufficient to uniquely determine, mod-
ulo the high-order error terms, the metric g. We then apply the contracted
Bianchi identity to show that for this metric all the remaining components of
Ein vanish to the correct order.

To begin, if the Einstein tensor vanishes then from Proposition 4.3 it follows
that

ϕEin00 = 2(n + 1)‹Ns− 2ϕ‹N2s + ϕΞ(1) = 0;(4.3)

Ein0A = −4(n + 1)�hAB�ηB − 2(n− 2)ϕ�hAB
‹N�ηB(4.4)

+2ϕ2�hAB
‹N2�ηB + Ξ(0)

A
= 0;

ϕEinAB = 2�hAB −
1

2
s(�h−1)CDhAChDB + ϕ

�
2n‹N�hAB(4.5)

+(�h−1)CD(‹N�hCD)�hAB + s−1(‹Ns)�hAB − 2ϕ‹N2�hAB

�

+ϕΞ(0)
AB

+ ϕ2Ξ(1)
AB

= 0.

Observe that this system is tensorial hence the metric g coming from its solution
is well-defined independently of any frame choices.

Applying ‹N to (4.3) (k − 1)-times and evaluating on M gives
(4.6)
2{n + 2− k}‹Nks

���
M

= (terms involving ‹N l�hAB , ‹N ls, ‹N l−1�ηB (l < k) on M).

We have used here the last sentence in Proposition 4.3.
Next applying ‹N to (4.5) k times and evaluating on M gives

2{k2 − (n + 1)k − 2}‹Nk�hAB

���
M

=

Å
k

4
− 1

2

ã
(‹Nks)hAB + khδγ(‹Nk�hδγ)hAB

���
M

+ (terms involving ‹N l�hAB , ‹N ls, ‹N l−1�ηB (l < k) on M).

(4.7)
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Taking the trace of this equation using the Levi metric h gives

{k2 − (2n + 1)k − 2}hαβ ‹Nk�h
αβ

���
M

=

n

4
(k − 2) ‹Nks

���
M

+ (terms involving ‹N l�hAB , ‹N ls, ‹N l−1�ηB (l < k) on M).

(4.8)

Finally applying ‹N to (4.4) k-times and evaluating on M gives

{(k − (n + 1))(k + 2)}h
αβ

‹Nk�ηβ

���
M

=

(terms involving ‹N l�hAB , ‹N ls, ‹N l�ηB (l < k) on M).
(4.9)

Inspection shows that we can now use (4.6), (4.7), (4.8) and (4.9) to itera-
tively determine thedesired Taylor coefficients ‹Nks

���
M

, ‹Nk�hAB

���
M

, up to some
finite order. Obstructions occur when k is such that the contents of one of the
sets of braces in (4.6), (4.7), (4.8) or (4.9) vanish.

The contents of the braces in (4.7) never vanish because they do so if and
only if

k =
n + 1±

�
(n + 1)2 + 8

2
,

and (n + 1)2 + 8 can never be a perfect square. Similarly the contents of the
braces in (4.8) never vanish.

Obstructions do occur when k = n + 1 in (4.9) or k = n + 2 in (4.6). This
means that we can determine the power series for �ηA only up to the Taylor
coefficient of ϕn, and that of s and hαβ�h

αβ
(and hence �h

αβ
itself) only up to

the Taylor coefficient of ϕn+1. In fact �hαβ (and �h
αβ

) and the trace-free part of
�h

αβ
are determined to one order higher. Indeed, setting k = n + 2 in (4.7) and

using (4.8) gives

‹Nn+2�hAB − (2n)−1hδγ(‹Nn+2�hδγ)hAB

���
M

=

+ (terms involving ‹N l�hAB , ‹N ls, ‹N l−1�ηB (l < n + 2) on M),
(4.10)

whence our claim.
At this stage we have shown that Ein00 = O(ϕn),Ein0A = O(ϕn+1) and

EinAB = O(ϕn+1). In order to show that Ein∞J = O(ϕn), we use the con-
tracted Bianchi identity

gJKDLRicJK = 2gJKDJRicKL,

where here D denotes the Levi-Civita connection of g. Since D is compatible
with g we have

(4.11) gJKDLEinJK = 2gJKDJEinKL.
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Introduce the notation that indices Π and Σ will run 0, 1, . . . , n, 1, . . . , n. Set
L = ∞ in (4.11) and convert the expression to a local one involving Levi-Civita
connection forms:

4ϕ‹NEin∞∞ + 2(�h−1)ABΨ ∞
B A

Ein∞∞ − 2ϕs−1Ψ ∞
0 0Ein∞∞ =

ϕs−1(‹NEin00 − 2Ψ Π
0 ∞EinΠ0)

− (�h−1)AB(‹NEinAB −Ψ J

A ∞EinJB −Ψ J

B ∞EinAJ)

+ 2(�h−1)AB(WAEinB∞ −Ψ Π
B A

EinΠ∞)

− 2ϕs−1( �TEin0∞ −Ψ Π
0 0EinΠ∞).

(4.12)

Next taking L = Π in (4.11) leads to

8ϕ‹NEin∞Π + 8Ein∞Π + 8ϕΨ Σ
∞ ΠEinΣ∞

− 2ϕs−1(Ψ ∞
0 0Ein∞Π + Ψ ∞

0 ΠEin∞0)

+ (�h−1)AB(2Ψ ∞
B A

Ein∞Π −Ψ ∞
A ΠEin∞B −Ψ ∞

B ΠEin∞A) =

ϕs−1(WΠEin00 − 2Ψ Σ
0 ΠEinΣ0)

− 2ϕs−1( �TEin0Π −Ψ Σ
0 0EinΣΠ)

+ 2(�h−1)AB(WAEinBΠ −Ψ Σ
B A

EinΣΠ)

− (�h−1)AB(WΠEinAB −Ψ Σ
A ΠEinΣB −Ψ Σ

B ΠEinAΣ)

+ 4ϕWΠEin∞∞.

(4.13)

We now argue by induction, supposing that Ein∞∞ and Ein∞Π vanish to
orders O(ϕt−1) and O(ϕt) respectively, for some integer t. Proposition 4.3 tells
us that this is true when t = 0. Suppose Ein∞∞ = λϕt−1 for a function λ.
Inserting this formula into (4.12), a short calculation using Proposition 4.1 and
the known orders of vanishing of the other components of Ein gives that

(t− 1− 2(n + 1))λ = O(ϕ), for t− 1 < n.

So provided t − 1 < n our induction argument shows that in fact λ = O(ϕ),
i.e., Ein∞∞ is O(ϕt).

On the other hand, suppose Ein∞Π = µΠϕt. Insert this formula into (4.13)
and a short calculation implies that

(t− (n + 2))µ0 = O(ϕ), for t < n,

and
(t− n)µA = O(ϕ), for t < n.

So provided t < n we have that µΠ = O(ϕ), i.e., Ein∞Π is O(ϕt+1). We
conclude that Ein∞∞ and Ein∞Π all vanish to orders O(ϕn), and this finishes
the proof of the first assertion of the theorem.
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Our argument thus far has also shown uniqueness of g, modulo high order
error terms, provided g is of the normal form (2.3). But any ACH metric can
be put into this normal form by using a special defining function (see § 2.3).
And changing defining function is just a diffeomorphism of X that restricts to
the identity on M . This completes the proof of the theorem.

Henceforth we refer to any metric g satisfying the hypotheses of Theorem 4.4
as an approximately Einstein ACH metric.

The proof of Theorem 4.4 shows that in general there are obstructions to the
existence of an ACH metric g on X that solves Ein = O(ϕm), for all m, with
ϕ2g and ϕg|H extending smoothly to M . Indeed if we define the obstruction
tensors

B := ϕ−nEin(T, T )|M
and

OA := ϕ−(n+1)Ein(T,WA)|M ,

then (4.6) and (4.9) imply that the vanishing of the B and OA is a necessary
condition for the existence of a metric g just described. Observe that B is a
scalar function whereas OA is a section of the bundle CT ∗M/�θ�, with �θ� de-
noting the ideal generated by θ. (The bundle CT ∗M/�θ� identifies canonically
with H∗.) Equations (4.6) and (4.9) also show that B and OA are given as
(Levi metric contractions of) TWT curvature, torsion and Tanno tensors and
their TWT covariant derivatives.

The obstructions B and OA, as they are defined, a priori depend on choices of
approximately Einstein ACH metric g and contact form θ. To make sense then
of the necessary condition stated in the last paragraph, we need to confirm that
B and OA are in fact independent of the freedom of choice of approximately
Einstein ACH metric, and also that their vanishing is independent of choice of
contact form.

Proposition 4.5. — (i) The obstruction tensors B and OA are well-defined
independently of the ambiguity in approximately Einstein ACH metric g.
(ii) Under a change in contact form �θ = e2Υθ, the obstruction tensors satisfy

(4.14) �B = e−2(n+2)ΥB
and

(4.15) “OA = e−2(n+2)Υ(OA − 2iϕ−(n+1)Ein(ΥαWα −ΥβW
β
, WA)|M ).

(iii) If (M,H, J) is such that B vanishes then, under a change in contact form
�θ = e2Υθ, the obstruction OA satisfies

(4.16) “OA = e−2(n+2)ΥOA.
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Proof. — To prove (i) we fix a contact form and then consider another approx-
imately Einstein ACH metric g� with Einstein tensor Ein� and obstructions B�
and O�

A
. Writing g� in normal form as

g� =

Ö
(2ϕ)−2 0 0

0 ϕ−2s� 0

0 0 −ϕ−1�h�
AB

è

,

Theorem 4.4 and its proof imply that

(4.17) s� = s + ϕn+2κ

and

(4.18) �h�
AB

= �hAB + ϕn+2λAB ,

where κ and λAB are O(1). Also if we write the modified coframe (recall §2)
for g� as

(�θ�)A = θA + ϕ(�η�)Aθ,

we have that for some µA of order O(1),

(4.19) (�η�)A = �ηA + ϕn+1µA.

Substitute (4.17), (4.18) and (4.19) into (4.3) and (4.4), and then look at (4.6)
and (4.9) to confirm that in fact B� = B and O�

A
= OA as desired.

For (ii), one checks that the Reeb field �T of �θ satisfies

(4.20) �T = e−2Υ(T − 2iΥαWα + 2iΥβW
β
),

while the special defining function �ϕ associated to �θ satisfies

(4.21) �ϕ = e2Υϕ + O(ϕ2).

Substituting (4.20) and (4.21) into the formulae for the obstruction tensors, and
using the orders of vanishing of Ein given by Theorem 4.4, yields the result.

Finally we turn to (iii). First observe that since OA is independent of the
choice of approximately Einstein ACH metric, it suffices to choose one good
such metric so that OA manifestly satisfies the desired property (4.16).

Fix a contact form and let g be any approximately Einstein ACH metric,
given in normal form with tensors s and �hAB , and with Einstein tensor Ein. For
specificity we might as well take s and �hAB to be the finite Taylor polynomials of
degree n+1 given by the proof of Theorem 4.4. Let now g� be the approximately
Einstein ACH metric characterised by having normal form with

(4.22) s� = s + ϕn+2κ

and

(4.23) �h�
AB

= �hAB + ϕn+2λAB ,
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for some prescribed tensors κ and λAB on X smooth up to M . Evidently
prescribing κ determines ‹Nn+2s|M , and by our assumption that B vanishes
there is no contradiction in (4.6).

If we write Ein� for the Einstein tensor of g�, then substituting (4.22) and
(4.23) into (4.5) gives

ϕEin�
AB

= ϕEinAB − 2nϕn+2λAB + (n + 2)ϕn+2hCDλCDhAB

+
n

4
ϕn+2κhAB + O(ϕn+3).

(4.24)

Multiply both sides by ϕ−n−2, set ϕ = 0, and take the trace to yield
(4.25)

hABϕ−n−1Ein�
AB

|M =
�
hABϕ−n−1EinAB + 2n(n + 1)hABλAB +

n2

2
κ
����

M

.

Now fix the trace part of λAB on M by setting

hABλAB

���
M

= − 1

2n(n + 1)

�n2

2
κ + hABϕ−n−1EinAB

����
M

.

Then (4.25) implies that

hABEin�
AB

= O(ϕn+2).

But (4.10) showed that the trace-free part of Ein�
AB

is already of order O(ϕn+2).
Thus Ein�

AB
= O(ϕn+2). Equation (4.15) finishes the proof.

5. Volume renormalization and proof of the Main Theorem

We normalise the volume form dv of g on X by defining it as

dv :=

√
det g√
deth

dϕ ∧ θ ∧ (dθ)n.

Using (2.3),

dv = (−ϕ)−n−2

�
sdet�h

2
√

deth
dϕ ∧ θ ∧ (dθ)n.

From §4 we know the power series expansion of s and �h up to and including
the ϕn+1 term. Thus for some locallydetermined functions v(j) on M we have

dv = ϕ−n−2(v(0) + v(1)ϕ + v(2)ϕ2 + · · ·+ v(n+1)ϕn+1 +

higher order terms in ϕ) dϕ ∧ θ ∧ (dθ)n.

Now pick an ε0 with −1 � ε0 < ε < 0. Then

Vol({ε0 < ϕ < ε}) =

�
ε

ε0

�

M

dv,
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and we have the asymptotic expansion

Vol({ε0 < ϕ < ε}) = c0ε
−n−1 + c1ε

−n + · · ·+ cnε−1 + L log(−ε) + V + o(1).

The constant term V is renormalized volume. The coefficients cj and L are
integrals over M of local TWT invariants (complete contractions of curvature,
torsion, Tanno tensor and their covariant derivatives) of M , with respect to
the volume element θ ∧ (dθ)n.

Proposition 5.1. — The log term coefficient L =
�

M
v(n+1)θ ∧ (dθ)n is in-

dependent of the choice of contact form θ.

Proof. — The argument is familiar from [19] and [29], but we repeat it here
for reference. Let θ and �θ = e2Υθ be two contact forms on M , for Υ a function
on M , with associated (by Lemma 2.2) special defining functions ϕ and �ϕ. So
�ϕ = e2f(x,ϕ)ϕ, for a function f on X near M . We can inductively solve the
equation �ϕ = e2f(x,ϕ)ϕ for ϕ to give ϕ = �ϕb(x, �ϕ), for a uniquely determined
positive function b. Set �ε(x, ε) := εb(x, ε); it follows that {ε0 < �ϕ < ε} is
equivalent to {ε0 < ϕ < �ε(x, ε)}. Then

Vol({ε0 < ϕ < �ε})−Vol({ε0 < ϕ < ε}) =

� �ε

ε

�

M

dv

=

� �ε

ε

�

M

ϕ−n−2(v(0) + v(1)ϕ + · · ·+ v(n+1)ϕn+1)dϕ ∧ θ ∧ (dθ)n + o(1).

In this expression the ϕ−1 term contributes log b(x, ε), so there is no log(−ε)
term as ε → 0.

Theorem 5.2. — The log term coefficient L is independent of the choice of
partially integrable almost CR structure J .

Proof. — The argument parallels that in the proof of [20, Theorem 1.1] and was
given in the integrable CR setting in [30]. We shall consider a line of partially
integrable almost CR structures Jt, each with corresponding (by Theorem 4.4)
approximately Einstein ACH metric tg and log term coefficient Lt. We then
show that (d/dt)|t=0Lt = 0. The first variation (d/dt)|t=0 of various quantities
below will be denoted with a • superscript.

Suppress t-dependence for now and recall from Theorem 4.4 that

Ric∞∞ = −2(n + 2)g∞∞ + O(ϕn);

Ric00 = −2(n + 2)g00 + O(ϕn);

RicAB = −2(n + 2)gAB + O(ϕn+1).

Thus if Scal denotes the scalar curvature of g,

Scal = −4(n + 2)(n + 1) + O(ϕn+2).
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Its first variation is Scal• = O(ϕn+2), so for a small negative ε0, as ε → 0,
�

ε0<ϕ<ε

Scal•dv = O(1).

We shall now work with the fixed coframe {dϕ, θ, �θA} associated with 0g,
the approximately Einstein ACH metric corresponding to a fixed J0. The
standard formula (see, e.g., [1, Theorem 1.174]) for the first variation of the
scalar curvature says that

Scal• = g• JK

JK,
− g• J K

J ,K
− RicJKg•

JK
,

or after using the Einstein condition,

Scal• = g• JK

JK,
− g• J K

J ,K
+ 2(n + 2)gJKg•

JK
+ O(ϕn+2).

Here covariant derivatives are with respect to the Levi-Civita connection of g
and indices are raised and lowered using g. Integrating gives

�

ε0<ϕ<ε

(g• JK

JK,
− g• J K

J ,K
)dv + 4(n + 2)

�

ε0<ϕ<ε

dv• = O(1),

where we have used the standard formula [1, Proposition 1.186] in the second
integral. Applying the divergence theorem to this gives

−4(n + 2)Vol•
g
({ε0 < ϕ < ε}) =

�

{ϕ=ε}
(g• J

JK,
− g• J

J ,K
)νKdσ + O(1),

where ν denotes the unit outward normal to Mε = {ϕ = ε} and dσ denotes the
induced volume element. But ν = 2ε‹N , hence ν∞ = 2ε, ν0 = 0 and νA = 0.
Thus if we set

G := g• J

J∞,
− g• J

J ,∞

we have that

(5.1) Vol•
g
({ε0 < ϕ < ε}) = − ε

2(n + 2)

�

{ϕ=ε}
Gdσ + O(1).

To prove the theorem, it thus suffices to show that there is no log(−ε) term on
the right-hand side of (5.1).

Let us make the t-dependence explicit again and write

(5.2) tg = 0gJK
�θJ ⊙ �θK + tfJK

�θJ ⊙ �θK + O(t2).

Then

G = gJK(fJ∞, K − fJK,∞)

= ϕ2s−1(f0∞,∞ − f00,∞)− ϕ(�h−1)AB(fA∞, B − fAB,∞).
(5.3)
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In order to obtain an expression for the asymptotic expansion in powers of
ϕ of fJK , we notice that we can also write

(5.4) tg =
1

4ϕ2
t�θ∞ ⊙ t�θ∞ +

ts

ϕ2
t�θ0 ⊙ t�θ0 − 1

ϕ
t�hAB

t�θA ⊙ t�θB ,

where {t�θJ}, ts and t�hAB now depend on t.
Write

t�θJ = �θJ + tx J

K
�θK + O(t2),

for some O(1) tensor x,
ts = s + t�s + O(t2),

for some O(1) function �s, and
t�hAB = �hAB + t �fAB + O(t2),

for some matrix of O(1) functions �fAB . If we substitute the above three for-
mulae into (5.4) and compare with (5.2) we obtain an expression for fJK :

f∞∞ =
1

2ϕ2
x ∞
∞ ; f0∞ =

1

2ϕ2
x ∞

0 +
2s

ϕ2
x 0
∞ ; f00 =

1

ϕ2
( �f00 + 2sx 0

0 );

fA∞ =
1

2ϕ2
x ∞

A
− 2

ϕ
�hABx B

∞ ; fAB = − 1

ϕ
( �fAB + 2�hACx C

B
).

(5.5)

Now return to (5.1). The leading log term to appear in dσ is order
O(ε log(−ε)). So a term of order O(ε−2) in G would combine with this to give
a log(−ε) term on the right-hand side of (5.1). On the other hand, if there
were a term in G of the form O(εn log(−ε)), combination with the lowest order
O(ε−n−1) term in dσ would again produce a log(−ε) term. To complete the
proof of the theorem then it suffices to show that the leading term in G is
O(ε−1) and the leading log term in G is O(εn+1 log(−ε)). But this is seen to
be true by examining (5.3) and (5.5) while using the definition of Levi-Civita
covariant differentiation

fA∞, B = WBfA∞ − fJ∞ψ J

A B
− fAJψ J

∞ B
,

together with Proposition 4.1.

Since the partially integrable almost CR structures admitted by (M, H)
form a contactible homotopy class, Theorem 5.2 combined with Proposition 5.1
proves the Main Theorem. Furthermore we have:

Proposition 5.3. — The log term coefficient L is invariant under deforma-
tions of the contact structure H.
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Proof. — This is a standard application of the well-known result of Gray [21]
that there are no nontrivial deformations of contact structures. Precisely, if
{Hτ} is a one-parameter family of contact structures on M through a specified
contact structure H = H0, then there exist a family of diffeomorphisms {Fτ}
of M such that Hτ = (Fτ )∗H. We fix τ and shall show that the values of L
for the contact structures H and Hτ are the same.

By Proposition 5.1 and Theorem 5.2 we may fix a choice of some θ and J
for H. Then for Hτ use θτ := (F−1

τ
)∗θ and Jτ := (F−1

τ
)∗J(Fτ )∗. Let ϕ and ϕτ

be the special defining functions associated respectively to (θ, J) and (θτ , Jτ ).
Then the argument follows that in the proof of Proposition 5.1, replacing �ϕ
there with ϕτ .

6. The integrable case

Suppose that the partially integrable almost CR structure J on M is in fact
integrable, i.e., satisfies [H1,0, H1,0] ⊂ H1,0. Then (M,H, J) is a CR manifold.
If n ≥ 2, so that M has dimension five or greater, it is then a classical result
that M forms the boundary of a strictly pseudoconvex domain in a complex
manifold. Living on a one-sided neighbourhood X of M is the approximately
Einstein complete Kähler metric g+ of Fefferman [11]. Volume renormalization
with respect to g+ was carried out in [29].

If n = 1, M is three-dimensional and J is automatically integrable. On
the other hand, in this dimension, M does not in general admit a global CR
embedding. In the special case where three-dimensional M is embeddable,
Fefferman’s approximately Einstein complete Kähler metric may be used for
volume renormalization in the same way as for higher dimensions ([29]). If
three-dimensional M is not embeddable the methods of [29] do not work. This
general case is instead handled by Herzlich [23]. The relation between our
volume renormalization methods in this paper and those of Herzlich are not
clear. However, let us remark that when n = 1 the log term coefficient L always
vanishes for both approaches by basic invariant theory, see, e.g., the proof of
Theorem 9.1 in [4]. Since the present paper is predominantly concerned with
this log term coefficient, for this section we shall assume n ≥ 2 and investigate
the relation between this paper and our earlier work [29].

Let us briefly recall some basic facts from [29]. For an arbitrary defining
function ϕ for M = M0, each level set Mε := {ϕ = ε} is strictly pseudocon-
vex with the natural CR bundle H1,0

ε
:= T 1,0X ∩ CTMε and contact form

(i/2)(∂ϕ− ∂ϕ)|Mε . Let H1,0 ⊂ CTX denote the bundle whose fibre over each
Mε is H1,0

ε
. The restriction of i∂∂ϕ to H1,0 is positive definite. This means ∂∂ϕ
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has precisely one null direction transverse to H1,0, whence there is a uniquely
defined (1, 0) vector field ξ that satisfies

ξ ⊥
∂∂ϕ

H1,0; ∂ϕ(ξ) = 1.

Let {Wα} be any local frame for H1,0. Since ξ is transverse to H1,0, the
set of vector fields {Wα, ξ} is a local frame for T 1,0X. The dual (1, 0) coframe
is then of the form {ϑα, ∂ϕ} for some (1, 0)-forms {ϑα} that annihilate ξ. We
may write

∂∂ϕ = h
αβ

ϑα ∧ ϑβ + r∂ϕ ∧ ∂ϕ,

for a positive definite Hermitian matrix of functions h
αβ

and a real-valued
function r.

We may identify M × (−1, 0] with X by following the unit-speed integral
curve of Re ξ, emanating from a point x on M , for time ϕ.

Now the Kähler form ω of g+ is given as

ω = ∂∂ log(−1/ρ),

where ρ is an approximate Monge–Ampére defining function (see [11], [29]).
Using this ρ in place of ϕ in the previous discussion, we may write

g+ = −1

ρ
h

αβ
ϑα ⊙ ϑβ +

1− rρ

ρ2
∂ρ⊙ ∂ρ.

One can now verify that g+ is ACH according to Definition 2.1. In fact it was
consideration of this special Kähler case that led us to Definition 2.1 in the
first place.

Moreover the special defining function ϕ, for a contact form θ, used in [29]
is characterised by the existence of (1, 0)-forms {�ϑα}, with �ϑα|M = ϑα|M , such
that

(6.1) g+ = − 1

ϕ
�h

αβ

�ϑα ⊙ �ϑβ +
1

ϕ2
∂ϕ⊙ ∂ϕ,

and
i

2
(∂ϕ− ∂ϕ)|M = θ,

where �h
αβ

is a positive definite Hermitian matrix of functions with �h
αβ
|M =

h
αβ

. Setting ϑ := (i/2)(∂ϕ− ∂ϕ), (6.1) can be rewritten as

g+ = − 1

ϕ
�h

αβ

�ϑα ⊙ �ϑβ +
1

4ϕ2
dϕ⊙ dϕ +

1

ϕ2
ϑ⊙ ϑ.

Replacing ϑ with (1/2)ϑ gives instead

g+ = − 2

ϕ
�h

αβ

�ϑα ⊙ �ϑβ +
1

4ϕ2
dϕ⊙ dϕ +

4

ϕ2
ϑ⊙ ϑ.
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Comparing this expression with (2.3), (2.4) and Lemma 2.2 it is clear that the
special defining function of [29] coincides with that used in the present paper.

Now from [11] and [29] (taking care with conventions for Ricci and Kähler
forms), g+ satisfies the approximately Einstein condition stated in Theorem 4.4.
Thus by the second assertion of that theorem, g+ coincides, as a Riemannian
metric, with an approximately Einstein ACH metric, modulo high-order error
terms and diffeomorphism action. Therefore the asymptotic expansion for the
volume form of g+ produced via the complete Kähler approach in [29] must
coincide with that produced via the ACH methods in this paper. In particular,
the log term coefficients L produced by by the two approaches must agree.

Turning to the obstruction tensors, it is well known that in the integrable
case the obstruction to g+ being an Einstein–Kähler metric (i.e., having Ein-
stein tensor vanishing to all orders), with ϕg+|H extending smoothly to M , is
given purely as a scalar function f . The function f may be identified with the
boundary value of the first log term in the asymptotic expansion, in powers
of Fefferman’s approximate solution ρ, for the solution to a complex Monge–
Ampére equation. It is known to transform according to �f = e−2(n+2)Υf under
a change in contact form �θ = e2Υθ. See [11], [24] and [18] for details. It turns
out that, in this integrable case, f coincides (up to a constant multiple) with
the scalar obstruction B appearing in Theorem 4.4.

7. Concluding remarks

7.1. CR Q-curvature. — As alluded to in the Introduction, one of the moti-
vating factors behind this work was to shed some light on the mysterious CR
Q-curvature. This quantity was introduced by Fefferman–Hirachi [14], as an
analogy of a quantity in conformal geometry. In [29] we gave an alternative
description of QCR and further showed that

�

M

QCR
θ

θ ∧ (dθ)n = const× L,

where L is the log term coefficient in the volume renormalization of Fefferman’s
approximately Einstein complete Kähler metric.

The present work has shown that L may be defined for only partially inte-
grable almost CR structures and that it is moreover a contact invariant. It is
natural to try to generalise CR Q-curvature to this partially integrable setting.
In fact this may be done fairly easily, proceeding analogously to [29, Appendix
A]. Tentatively calling this quantity “contact Q-curvature”, it is also not hard
to show that �

M

Qcontact
θ

θ ∧ (dθ)n = const× L,

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



88 N. SESHADRI

where this time L is the log term coefficient in the volume renormalization of
our approximately Einstein ACH metric.

The difficulty arises in comparing Qcontact defined by this method with a def-
inition analogous to that of QCR in [14]. Since Fefferman–Hirachi’s definition
of QCR uses Fefferman’s conformal structure associated to a CR manifold, one
would need to use a generalisation of that structure to the partially integrable
case. Such a generalisation does exist, see [6], however while in the integrable
case Fefferman’s conformal structure and ambient metric are both intimately
related to Fefferman’s approximately Einstein complete Kähler metric, the rela-
tion between the generalised Fefferman structure and a suitable ambient metric,
and the approximately Einstein ACH metric is not clear.

In dimension three, we know that L, or equivalently
�

M
QCR, always van-

ishes. Hirachi and others have asked the question “Does the integral of CR
Q-curvature always vanish in higher dimensions?”. One would have an affir-
mative answer to this question if it were that L for partially integrable almost
CR structures always vanishes. As we speculate in the next subsection, the
contact-invariance of L could help to settle the question of its vanishing.

7.2. Contact invariants. — In recent years, several invariants of contact struc-
tures have been defined via local differential geometric techniques. Boutet
de Monvel [7] proved that the logarithmic trace of generalised Szëgo projec-
tors is a contact invariant, but later in [8] showed that it always vanishes.
Ponge [26] develops a large class of contact invariants via the noncommutative
residue traces of Heisenberg-pseudodifferential projections. Biquard–Herzlich–
Rumin [4] showed that the residue at zero of an eta function coming from
Rumin’s contact complex is a contact invariant. In [28] we prove that the
regular value at zero of a well-chosen combination of zeta functions coming
from the contact complex is a contact invariant. However, no nonvanishing
examples of these invariants are known. (Incidentally, vanishing of Biquard–
Herzlich–Rumin’s invariant is a necessary and sufficient condition for defining
an eta invariant of the contact complex—see [4, §9].) The interested reader
should read Ponge’s discussion in [26, §4.3] for further information.

It is likely that the invariants just described are of the same form as the
contact invariant L described in this paper, namely, they are the integrals of
local TWT invariants. This reminds us of a result of Gilkey [16], which settles
a famous conjecture of I. M. Singer. Roughly stated it says the following:

Theorem 7.1 (Gilkey [16]). — Suppose there is a scalar Riemannian invari-
ant whose integral is independent of orientation and of the choice of Rieman-
nian metric. Then the smooth topological invariant given by this integral is (a
known constant multiple of) the Euler characteristic.
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In particular there are no orientation-independent topological invariants of
odd dimensional manifolds given by integrating local Riemannian invariants.
We wonder if an analogous result holds for contact manifolds, so we close with
the following:

Question. — If a contact invariant is given as the integral of local TWT
invariants, does it always vanish?
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