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Abstract. — The properties of topological dynamical systems (X, T ) which are
disjoint from all minimal systems of zero entropy, M0, are investigated. Unlike the
measurable case, it is known that topological K-systems make up a proper subset
of the systems which are disjoint from M0. We show that (X, T ) has an invariant
measure with full support, and if in addition (X, T ) is transitive, then (X, T ) is weakly
mixing. A transitive diagonal system with only one minimal point is constructed. As a
consequence, there exists a thickly syndetic subset of Z+, which contains a subset of Z+

arising from a positive entropy minimal system, but does not contain any subset of Z+

arising from a zero entropy minimal system. Moreover we study the properties of
topological dynamical systems (X, T ) which are disjoint from larger classes of zero
entropy systems.
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Résumé (Disjonction topologique des systèmes d’entropie nulle)
Nous étudions les propriétés des systèmes topologiques dynamiques (X, T ) qui sont

disjoints de tout système minimal d’entropie nulle M0. Contrairement au cas me-
surable, il est connu que les K-systèmes topologiques constituent un sous-ensemble
propre des systèmes disjoints de M0. Nous montrons que (X, T ) a une mesure inva-
riante à support plein, et que si, de plus, (X, T ) est transitif alors il est faiblement
mélangeant. Nous construisons un système diagonal transitif avec un seul point mi-
nimal. Par conséquent, il existe un sous-ensemble grassement syndétique de Z+, qui
contient un sous-ensemble de Z+, provenant d’un système minimal d’entropie positive,
mais qui ne contienne aucun sous-ensemble de Z+ provenant d’un système minimal
d’entropie nulle. D’autre part, nous étudions les propriétés des systèmes topologiques
dynamiques (X, T ) qui sont disjoints de classes plus larges de systèmes à entropie nulle.

1. Introduction

By a topological dynamical system (TDS for short) (X,T ), we mean a com-
pact metric space X with a continuous surjective map T from X to itself.
A measurable system is defined to be K-mixing or a K-system if and only if ev-
ery nontrivial partition has positive entropy. Equivalently a system is K-mixing
if and only if it has no nontrivial entropy zero factor. It is well known that if a
system is K-mixing, then it is strongly mixing. Entropy pairs, uniformly posi-
tive entropy systems (u.p.e.) and completely positive entropy systems (c.p.e.)
have been introduced by Blanchard [1], [2] in search for the topological defini-
tion of a K-system. We define a system is topologically K if and only if every
nontrivial finite open cover (each element is not dense) has positive entropy.
It is known [11] that if a system is topologically K and minimal, then it is
topologically strongly mixing (it is still an open question that minimality and
u.p.e. imply strongly mixing property).

In [5] the notion of disjointness was defined both in topological and measure-
theoretical settings. If (X,T ) and (Y, S) are two TDS we say J ⊂ X × Y is a
joining of X and Y if J is a non-empty closed invariant set and is projected
onto X and Y respectively. If there is only one obvious joining J = X × Y , we
then say that (X,T ) and (Y, S) are disjoint or (X,T ) ⊥ (Y, S). LetM be the
collection of all minimal systems. As the disjointness of two TDS implies one
of them is minimal, thus this naturally leads us to a question to characterize
M⊥ (Question E in [5]). It is known [5] that a weakly mixing system with a
dense set of periodic points is in M⊥. Recently, the authors [13] have shown
that there are transitive systems inM⊥ with no periodic points. Moreover, it
is proved that if (X,T ) ∈ M⊥ then (X,T ) must have a dense set of minimal
points, and if in addition (X,T ) is transitive it must be weakly mixing.
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TOPOLOGICAL DISJOINTNESS FROM ENTROPY ZERO SYSTEMS 261

In ergodic theory, a measurable dynamical system (MDS, for short) is a K-
system if and only if it is disjoint from any MDS of zero entropy. One of the
motivations of the paper is to see if the above result can be extended to TDS.
Note that if two non-trivial TDS are disjoint then one of them is minimal [5]
and the other one has a dense set of recurrent points [13]. Hence when we
consider disjointness from zero entropy systems, we assume the class of zero
entropy systems is either minimal or transitive. In this paper we consider both
cases.

When the class consists of minimal zero entropy systems (denoted byM0),
we prove that if (X,T ) ⊥ M0, then (X,T ) has an invariant measure with
full support, and if in addition (X,T ) is transitive, (X,T ) is weakly mixing.
Note that it has been proved that transitive diagonal systems which include
u.p.e. systems are inM⊥0 [2]. When the class consists of transitive zero entropy
systems with invariant measures of full support (denoted by E0), we prove that
if (X,T ) ⊥ E0, then (X,T ) is minimal and has c.p.e. We remark that systems
which are disjoint from all transitive zero entropy systems are the trivial ones.
If we restrict ourselves to a subclass M0 (transitive zero entropy TDS with
a dense set of minimal points) of E0, we can show that all minimal diagonal
systems are in M⊥0 . It is an open question if there is a TDS in M⊥0 \ E⊥0 .

We construct a transitive diagonal system with only one minimal point.
One consequence is that there is a TDS in M⊥0 \M⊥. Another consequence
is that there exists a thickly syndetic subset of Z+, which contains a subset
of Z+ arising from a positive entropy minimal system, but does not contain
any subset of Z+ arising from a zero entropy minimal system.

Now we recall some of the definitions.
— We say that (X,T ) is transitive if for each pair of non-empty open subsets

U and V , N(U, V ) = {n ∈ Z+ : T−nV ∩U 6= ∅} is infinite, where Z+ = {0}∪N.
— (X,T ) is weakly mixing if (X ×X,T × T ) is transitive.
— We say that x ∈ X is a transitive point if its orbit orb(x, T ) =

{x, T (x), . . .} is dense in X. It is well known that if (X,T ) is transitive
then the set of transitive points is a dense Gδ set (denoted by TranT ) and if
TranT = X we say that (X,T ) is minimal.

— For a TDS (X,T ), we call x ∈ X a minimal point if (cl(orb(x, T )), T ) is
a minimal subsystem of (X,T ). It is well known that x is a minimal point of
(X,T ) if and only if for any neighborhood U of x,

N(x, U) :=
{
n ∈ Z+ : Tnx ∈ U

}
is syndetic, i.e. with bounded gaps.

We would like thank the referee for the helpful remarks which made the
paper much easier to follow.
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2. TDS with an invariant measure of full support

In this section, we study the properties of (X,T ) which is disjoint from the
class E0. Recall that a TDS (X,T ) is an E-system if it is transitive and has
an invariant measure µ with full support, i.e., supp(µ) = X; it is an M -system
if it is transitive and the set of minimal points is dense; and it is topologically
ergodic (TE, for short) if (X,T ) is transitive and for each pair of non-empty
open subsets U, V of X, N(U, V ) is syndetic. It is known that a minimal
system is an E-system, and an E-system is TE [9]. However there exist a TE-
system which is not an E-system, and an E-system which is not minimal. Two
TDS are weakly disjoint if their product is transitive. Note that if both (X,T )

and (Y, S) are transitive and (X,T ) ⊥ (Y, S), then they are weakly disjoint.

Since we need some of the results in [13], we summarize them in the following
proposition.

Proposition 2.1. — Let (X,T ) be a TDS.
1. If (X,T ) ⊥ (Y, S) with (Y, S) minimal and non-trivial, then R(T ) is a

dense Gδ set of X, where

R(T ) =
{
x ∈ X : there is ni → +∞ with Tnix→ x

}
is the set of all recurrent points of (X,T ).

2. Let T be invertible, V be a non-empty open set of X and

Y = cl

(⋃
i∈Z

T iV

)
.

If (X,T ) ⊥M, then (Y, T ) ⊥M.
3. If there are transitive sub-systems (Xi, T ) of (X,T ) satisfying that ∪iXi

is dense in X and (Xi, T ) ⊥M for each i ∈ N. Then (X,T ) ⊥M.
4. Let (X,T ) be an equicontinuous system. If (X,T ) ∈M⊥ then each point

of X is a fixed point. Consequently, if (Y, S) is TDS with (Y, S) ∈ M⊥,
then the maximal equicontinuous factor of (Y, S) consists of fixed points.

5. If (X,T ) ∈ M⊥, then (X,T ) has dense minimal points. If in addition,
(X,T ) is transitive, then (X,T ) is weakly mixing.

According to Proposition 2.1 1), when considering our question of disjoint-
ness from entropy zero systems, it is natural to restrict our attention to TDS
with dense sets of recurrent points and having zero entropy. The following
proposition tells us that this class is too large. Before we go on to prove the
proposition, let us recall some more definitions. Let S be a subset of Z+.
The upper Banach density of S is

BD∗(S) = lim sup
|I|→+∞

|S ∩ I|
|I|

,

tome 135 – 2007 – no 2
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where I ranges over intervals of Z+, while the upper density of S is

D∗(S) = lim sup
n−→∞

|S ∩ [1, n]|
n

·

Lower Banach density is defined analogously and it is easy to see that the
lower Banach density of S is one if for each a < 1 there is N such that for any
subinterval I of Z+ with |I| ≥ N we have |S ∩ I| ≥ a|I|. Denote the set of
subsets of Z+ with lower Banach density one by Flbd1.

A subset of N is an IP-set if it is equal to some

FS({pi}∞i=1) =
{
pi1 + pi2 + · · ·+ pik : k ∈ N, 1 ≤ i1 < i2 < · · · < ik

}
,

where pi ∈ N. A subset of N is called an IP∗-set, if it has no-empty intersection
with any IP-set.

For any S ⊂ Z+ let 1S denote the indicator function from Z+ to {0, 1}, i.e.
1S(s) = 1 if s ∈ S and 1S(s) = 0 if s 6∈ S. Let Σ2 = {0, 1}Z+ , σ be the shift
and [1] = {x ∈ Σ2 : x(0) = 1}.

Note that the topological entropy of a TDS (X,T ) is denoted by htop(X,T ).
The main reason why the following proposition holds is that each IP -set con-
tains an IP -subset with zero upper Banach density.

Proposition 2.2. — If (X,T ) is disjoint from all transitive zero entropy sys-
tems that do not have invariant measures with full support (TZNE for short),
then (X,T ) is trivial.

Proof. — It is not hard to show that there exists a non-minimal weakly mixing
TDS with a unique ergodic measure whose support is a singleton [10]. We note
that this example is a non-minimal transitive zero entropy system without an
invariant measure of full support. Hence (X,T ) is minimal. Let x ∈ X and U
be an open neighborhood of x. Assume (Y, S) ∈ TZNE, y is a transitive point
and V is a non-empty open subset of Y . It is easy to see that

J = cl ((orb(x, y), T × S)

is a joining of (X,T ) and (Y, S). Thus J = X × Y , since X ⊥ Y . Particularly,
N(x, U) ∩N(y, V ) 6= ∅. We have:

Claim. — N(x, U) is an IP∗-set.

Proof of claim. — Let A be an IP-set generated by p1, p2, . . . Take 0 = i0 <

i1 < i2 < · · · such that q1 > 2 and

qj+1 >
(
(j + 1)2j+1 + 1

) j∑
k=1

qk

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE
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for j = 1, 2, . . . , where qj =
∑ij
k=ij−1+1 pk, j = 1, 2, . . . Put

A′ =
{
qj1 + qj2 + · · ·+ qjk : 1 ≤ j1 < j2 < · · · < jk, k ∈ N

}
.

Then A′ ⊂ A and A′ is also an IP-set. Now we show that

BD∗(A′) = lim sup
|I|→+∞

|A′ ∩ I|
|I|

= 0.

For this purpose, we take ak < bk with limk→+∞ bk − ak = +∞ and

lim
k→+∞

|A′ ∩ [ak, bk − 1]|
bk − ak

= BD∗(A′).

Without loss of generality, we assume that |A′∩ [ak, bk−1]| ≥ 2 for each k ∈ N.
For k ∈ N, set

mk = min{A′ ∩ [ak, bk − 1]} and Mk = max
{
A′ ∩ [ak, bk − 1]

}
.

As mk,Mk ∈ A′, we can assume mk = qi1 + · · · + qiu + (qs1 + · · · + qsw ) and
Mk = qj1 + · · ·+ qjv + (qs1 + · · ·+ qsw

), where 0 ≤ i1 < i2 < · · · < iu < s1 <

· · · < sw, 0 < j1 < j2 < · · · < jv < s1 < · · · < sw and jv > iu (we put q0 = 0).
It is easy to see that for any a ∈ A′ ∩ [ak, bk − 1],

a = qk1 + · · · qkw
+ (qs1 + · · ·+ qsw

),

where 0 ≤ k1 < k2 < · · · < kw ≤ jv. Hence∣∣A′ ∩ [ak, bk − 1]
∣∣ ≤ 2jv+1.(1)

As q1 > 2 and qj+1 > ((j + 1)2j+1 + 1)(
∑j
k=1 qk) for j = 1, 2, . . . , we get

qjv −
jv−1∑
l=1

q` ≥ jv2jv .

Moreover bk − ak ≥ qjv −
∑jv−1
`=1 q` ≥ jv2

jv . Combining this fact and (1), we
have

|A′ ∩ [ak, bk − 1]|
bk − ak

≤ min
{ 2jv+1

bk − ak
, 2

jv

}
.

Since limk→+∞ bk − ak = +∞,

BD∗(A′) ≤ lim
k→+∞

min
{ 2jv+1

bk − ak
, 2

jv

}
= 0.

Since A′ is an IP-set, 1A′ ∈ Σ2 is a recurrent point under the shift σ. Let

Y = cl(orb(1A′ , σ)) .

Then (Y, σ) is a transitive system and Y 6= {(0, 0, . . . )}. As BD∗(A′) = 0, (Y, σ)

has a unique σ-invariant measure δ(0,0,0,... ). Hence htop(Y, σ) = 0 and (Y, σ)

does not have an invariant measure with full support.
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By the assumption, (X,T ) ⊥ (Y, σ). Moreover, one has

N(x, U) ∩N(1A′ , [1]) 6= ∅.

Since N(1A′ , [1]) = A′, we get that N(x, U) ∩ A ⊃ N(x, U) ∩ A′ 6= ∅. As A is
arbitrary, N(x, U) is an IP∗-set. This ends the proof of the claim.

According to the claim, N(x, U) is an IP∗-set for any open neighborhood
of x. Thus, by [6, Thm. 9.11], x is a distal point. As each point of (X,T ) is
distal, (X,T ) is distal, and so (X,T ) has zero entropy (see [14]). Let (Y ′, S′)

be a weakly mixing zero entropy system which is in TZNE and Y ′′ = Y ′ ×X.
Then Y ′′ is in TZNE, and thus X ⊥ Y ′′. This implies that X ⊥ X, i.e.,
X is trivial.

Thus when we consider disjointness with respect to zero entropy systems, we
restrict our attention to systems admitting invariant measures with full support.
The following lemma tells us that it is enough to restrict our attention to E-
systems having zero entropy. We state the lemma in the case of zero entropy,
although the proof is irrelevant of the entropy.

Lemma 2.3. — If (X,T ) is a zero entropy TDS admitting an invariant mea-
sure with full support, then there are countably many transitive subsystems {Xi}
in E0 such that their union is dense in X. Moreover, for a TDS (Y, S)

if Xi ⊥ Y for each i, then X ⊥ Y .

Proof. — Let {Ui} be a countable bases of the topological space X and µ

in M(X,T ) with supp(µ) = X. Let

µ =

∫
Ω

θdm(θ)

be the ergodic decomposition of µ. Since
∫

Ω
θ(Ui)dm(θ) = µ(Ui) > 0, for

each i, there is an ergodic measure θi ∈ Ω with θi(Ui) > 0. Let G(θi) be the
set of generic points of θi. It is well known that θi(G(θi)) = 1. This implies
that θi(G(θi) ∩ Ui) > 0. Thus there is xi ∈ G(θi) ∩ Ui which is a transitive
point of (supp(θi), T ). Set Xi = cl(orb(xi, T )). Then Xi is an E-system and
their union is dense in X. It is easy to see that the entropy of (Xi, T ) is zero.

Furthermore, the last statement of the lemma is easy to prove.

Remark 2.4. — For a TDS (X,T ) we can speak about maximal transitive
subsystems. By the method in the proof of [13, Thm. 4.5] one can show that
if (X,T ) ⊥ (Y, S), where (Y, S) is a TDS with an invariant measure with
full support and with zero entropy, then there exist countably many maximal
transitive subsystems {Yi} in E0 such that their union is dense in Y and X ⊥ Yi
for each i.
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The following theorem describes some sufficient conditions and some neces-
sary conditions for a system in E⊥0 . Recall that a TDS (X,T ) has c.p.e. if each
nontrivial factor of (X,T ) has positive entropy. Note that we use M(X,T ) to
denote the set of all Borel invariant probability measures of (X,T ).

Theorem 2.5. — If X ⊥ E0, then X is minimal and has c.p.e. If X is
minimal and for each µ ∈ M(X,T ), (X,BX , µ, T ) is a measurable K-system,
then X ⊥ E0.

Proof. — Assume that X ⊥ E0. Then it is clear that X is minimal since there
is a non-minimal system in E0. Let X ′ be the maximal zero entropy factor of X
(see [4]). Then X ′ ⊥ E0 since disjointness is preserved by a factor. Particularly,
X ′ ⊥ X ′ since X ′ ∈ E0. This implies that X ′ is trivial, i.e. X has c.p.e.

Now let X be a minimal system such that for each µ ∈ M(X,T ),
(X,BX , µ, T ) is a measurable K-system, and let (Y, S) be in E0. Assume
that J is a joining of (X,T ) and (Y, S). Let ν ∈ M(J, T × S) have the
property that πY (ν) = ν′ has full support. We note that this is always possible
because (Y, S) is a factor of (J, T ×S). Since a measurable K-system is disjoint
from any zero entropy MDS (see [5]) and (Y,BY , ν′, S) has zero measurable
entropy, ν′ ⊥ πX(ν). That is ν = πX(ν) × ν′. Since any invariant measure
of a minimal system has full support, we have supp(πX(ν)) = X, and thus
J ⊇ supp(ν) = supp(πX(ν))× supp(ν′) = X×Y . This implies that J = X×Y
and hence X ⊥ Y .

Remark 2.6. — It is well known that each ergodic measure-preserving system
has a topological model which is strictly ergodic, i.e., for any ergodic system
(Y,D, ν, S) there is a TDS (X,T ) with a unique invariant measure µ satisfying
supp(µ) = X and (X,BX , µ, T ) is isomorphic to (Y,D, ν, S). Now by Theo-
rem 2.5 for any measurable K-system, its topological model which is strictly
ergodic is disjoint from all elements of E0.

LetM be the class ofM -systems,M0 be the zero entropy class ofM -systems
andM0 be the class of minimal systems with zero entropy. To end the section
we consider the properties of TDS in M⊥0 .

Recall that for a TDS (X,T ) a pair (x1, x2) ∈ X × X is an entropy
pair if x1 6= x2 and for each closed disjoint neighborhood Ui of xi, the open
cover {U c1 , U c2} has positive entropy. Let E2(X,T ) denote the set of all entropy
pairs. Then E2(X,T ) 6= ∅ iff (X,T ) has positive topological entropy; and
that unless a factor map φ : (X,T ) → (Y, S) collapses an entropy pair (x, y),
the image pair (φ(x), φ(y)) is an entropy pair of (Y, S) when φ(x) 6= φ(y).
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Moreover, it is proved in [7], Theorem 3, 5), that when (X,T ) and (Y, S) are
two TDS with htop(S) > 0 and µ ∈M(X,T ),

E2(X × Y, T × S) ⊇
{

((x, y1), (x, y2)) : x ∈ supp(µ), (y1, y2) ∈ E2(Y, S)
}
.

We say that a TDS (X,T ) has u.p.e. if

E2(X,T ) = X ×X \
{

(x, x) : x ∈ X
}
.

And a diagonal system is the one such that E2(X,T ) contains

∆1 =
{

(y, Ty) : y ∈ X, y 6= Ty
}
.

Note that u.p.e. implies diagonality and a transitive diagonal system has c.p.e.
It is shown in [2] that a diagonal system is disjoint from all minimal systems
with zero entropy.

Theorem 2.7. — If X is a minimal diagonal system, then X ∈ M⊥0 . Also if
X ∈M⊥0 , then X is minimal and has c.p.e.

Proof. — First assume that (X,T ) is a minimal diagonal system. As (X,T )

is disjoint from all minimal systems with zero entropy [2], it is easy to see
that X ∈M⊥0 , since by the definition, an M -system has a dense set of minimal
subsystems.

Now let (X,T ) ∈M⊥0 . Since there exists a non-minimal zero entropy system
with dense set of minimal points, (X,T ) is minimal. Let (X ′, R) be the maximal
zero entropy factor of (X,T ). We have (X ′, R) ∈ M⊥0 ∩M0 and this implies
that X ′ is trivial. Thus X is minimal and has c.p.e.

We remark that there is an example which is minimal with c.p.e. but without
u.p.e. [15]. To end the section we ask two natural questions:

1) Is there a minimal c.p.e. but not a diagonal system?
2) Is there a system inM⊥0 \E⊥0 ? In particular, is a minimal diagonal system

in E⊥0 ?

3. TDS disjoint fromM0, the transitive case

In this section, we consider the properties of systems which are in M⊥0 .
A totally transitive TDS with a dense set of periodic points and zero entropy
is described in [16], which is inM⊥0 by [5]. Thus unlike in the measurable case,
there are transitive TDS with zero entropy inM⊥0 .

According to [13] and [1], a totally transitive TDS with a dense set of regular
minimal points and a transitive diagonal system are in M⊥0 . In this section
we consider the necessary conditions. To answer our question, we transfer the
problem to a problems of integers. That is, which subsets of Z+ contain a
subset that arises from a minimal system with zero entropy?

BULLETIN DE LA SOCIÉTÉ MATHÉMATIQUE DE FRANCE



268 HUANG (W.), PARK (K. K.) & YE (X.)

Now we introduce the notion of a zm-set which plays an important role in
solving our question.

Definition 3.1. — A subset A of Z+ is called an zm-set, if there exist a
minimal zero entropy system (Y, S), y ∈ Y and a non-empty open subset V
of Y such that A ⊇ N(y, V ).

For a transitive system whether it is inM0
⊥ can be checked via zm-sets as

the following theorem shows.

Theorem 3.2. — Let (X,T ) be a transitive system and x ∈ TransT . Then
(X,T ) ∈M⊥0 if and only if N(x, U)∩A 6= ∅ for any neighborhood U of x and
any zm-set A.

Proof. — Let (X,T ) ∈ M0
⊥. For any zm-set A, there exist a minimal zero

entropy system (Y, S), y ∈ Y and a non-empty open subset V of Y such
that A⊇ N(y, V ).

Let J = cl(orb((x, y), T ×S)), then J is a joining of (X,T ) and (Y, S). Since
(X,T ) ⊥ (Y, S), J = X × Y . Hence for any neighborhood U of x one has
N((x, y), U × V ) 6= ∅. This implies N(x, U) ∩A 6= ∅.

Conversely, let (Y, S) be a minimal zero entropy system and J be a joining
of (X,T ) and (Y, S). It is clear that, there is y ∈ Y with (x, y) ∈ J . For
any neighborhood U of x and any non-empty open subset V of Y , one has
N(x, U) ∩N(y, V ) 6= ∅ since N(y, V ) is a zm-set. This implies

cl (orb((x, y), T × S)) ∩ (U × V ) 6= ∅.

Since cl(orb((x, y), T × S)) is T × S-invariant and closed, one has

cl (orb((x, y), T × S)) = X × Y.

Thus J = X × Y .

Let P be the collection of all subsets of Z+. A subset F of P is a family,
if it is hereditary upwards. That is, F1 ⊂ F2 and F1 ∈ F imply F2 ∈ F . Any
subset A of P can generate a family [A] = {F ∈ P : F ⊃ A for some A ∈ A}.

Clearly, all zm-sets form a family, we call it the family of zm-sets. For any
S ⊂ Z+ let 1S be the indicator function from Z+ to {0, 1}. Now, we have

Proposition 3.3. — The family of zm-sets is the family generated by

F ′m =
{
S ⊂ Z+ : 1Sis a minimal point of (Σ2, σ) and

cl(orb(1S , σ)) has zero entropy
}
.

tome 135 – 2007 – no 2



TOPOLOGICAL DISJOINTNESS FROM ENTROPY ZERO SYSTEMS 269

Proof. — Let Fm denote the family generated by F ′m. Clearly, if 1F is the
indicator function of F then F = N(1F , [1]). Hence Fm is contained in the
family of zm-sets.

Now let A be a zm-set. Then there exist a minimal zero entropy system
(Z,R), z0 ∈ Z and a non-empty open subset W of Z such that A ⊃ N(z0,W ).
It is well known that there exists a zero-dimensional, minimal and zero entropy
system (X,T ) which is an extension of (Z,R) (See for example [8, Prop. 2.4]).
Let π : (X,T )→ (Z,R) be the extension.

Take x0 ∈ π−1(z0) and let V ′ = π−1(W ). It is easy to see that A ⊃
N(z0,W ) ⊃ N(x0, V

′) ⊃ N(x0, V ), where V is a clopen subset of V ′.
Then we do the classical lifting trick. Let

Y =
{

(x, t) ∈ X × Σ2 : t(i) = 1 implies T ix ∈ V and
t(i) = 0 implies T ix ∈ X \ V

}
.

Then Y is a T×σ-invariant closed subset of X×Σ2. Let φ : (Y, T×σ)→ (X,T )

be the projection. Then |φ−1(x)| = 1 for x ∈ X. That is, φ is an isomorphism,
hence (Y, T × σ) is minimal and of zero entropy.

For x0, there is a unique t0 ∈ Σ2 such that (x0, t0) ∈ Y and t0 is the indicator
function of N(x0, V ). Projecting Y to Σ2 we see that t0 is a minimal point of
(Σ2, σ), and the closure of the orbit of t0 has zero entropy. Hence A ∈ Fm as
A ⊃ N(x0, V ) and t0 = 1N(x0,V ).

We will show that any subset of Z+ in Flbd1 contains a zm-set, where Flbd1

denote the collection of subsets of Z+ with lower Banach density one. To do so
we need the following lemma. Note that if Ω is a finite symbolic set, y ∈ ΩZ+

and k ∈ N, then we let y[i; i + k − 1] = (y(i), y(i + 1), . . . , y(i + k − 1)) ∈ Ωk

and let

Nk(y) = #
{
u ∈ Ωk : ∃i ∈ Z+ such that u = y[ik; ik + k − 1]

}
,

Bk(y) = #
{
u ∈ Ωk : ∃i ∈ Z+ such that u = y[i; i+ k − 1]

}
.

Lemma 3.4. — For a ∈ Ω and y ∈ ΩZ+ let F (y, a) = {i ∈ Z+ : y(i) = a}.
If F (y, a) ∈ Flbd1, then for any ε > 0 there exists N > 0 such that Nk(y) < 2εk

for k ≥ N .

Proof. — Let σ be the shift map on ΩZ+ and put Y = cl(orb(y, σ)). Since
F (y, a) belongs to Flbd1, (Y, σ) has a unique σ-invariant measure δ(a,a,a,... ).
Hence htop(Y, σ) = 0. Fix ε > 0. As

lim sup
k→+∞

logNk(y)

k
≤ lim
k→+∞

logBk(y)

k
= htop(Y, σ) = 0,

there exists N > 0 such that Nk(y) < 2εk for k ≥ N .
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For a finite word A ∈ Ωk, |A| = k denotes the length of A. The following
theorem is crucial for this section.

Theorem 3.5. — If F ∈ Flbd1, then F contains a zm-set.

Proof. — Let F ∈ Flbd1. For each n, we will construct yn = 1Fn
∈ Σ2 for some

subset Fn ⊂ F such that y = lim yn = 1A is a minimal point of ({0, 1}Z+ , σ).
Let Y = cl(orb(y, σ)) and [1] = {x ∈ Y : x(0) = 1}. We will show that
htop(Y, σ) = 0. As A ⊂ F and A = N(y, [1]) the theorem follows.

To obtain such a sequence {yn} we will construct a sequence {An} of finite
words on {0, 1} with the following properties:

1. yn begins with An for each n ∈ N;
2. Ai appears in yn syndetically with gaps bounded by `i for each i ≤ n;
3. An+1 begins with An and
4. Nki

(yn) < 2ki/i for each 1 ≤ i ≤ n, where ki = |Ai|.
The reason we can do this is that F ∈ Flbd1. More precisely we do as follows.

Step 1. — We will construct A1(k1 = |A1|) and F1 ⊂ F such that A1 appears
in y1 = 1F1

with gaps bounded by `1, y1 begins with A1 and Nk1(y1) < 2k1 .
Since F ∈ Flbd1, there exists K1 > 0 such that Nk(1F ) < 2k for k ≥ K1

by Lemma 3.4. Put k1 = max{K1,minF + 1} and A1 = 1F [0; k1 − 1]. Then
Nk1(1F ) < 2k1 . Set

W1 =
{
i ∈ Z+ : [ik1; ik1 + k1 − 1] ⊂ F

}
.

Choose y1 ∈ {0, 1}Z+ such that

y1[0; k1 − 1] = A1, y1[ik1; ik1 + k1 − 1] = A1, i ∈W1,

y1[jk1; jk1 + k1 − 1] = 1F [jk1; jk1 + k1 − 1] if j 6∈W1.

Since F ∈ Flbd1, we have W1 ∈ Flbd1. Hence W1 is syndetic with gaps
bounded by some `′1. Put `1 = `′1 · k1. Then A1 appears in y1 with gaps
bounded by `1 , F1 ⊂ F and Nk1(y1) ≤ Nk1(1F ) < 2k1 , where 1F1

= y1.

Step 2. — Assume that A1, . . . , Am have been constructed and we will con-
struct Am+1 and Fm+1 ⊂ F such that

a) Am+1 has the form of AmVmAm and if km+1 = |Am+1| then Am+1 =

ym[0; km+1 − 1];
b) ym+1[0; km+1−1] = Am+1 and Ai appears in ym+1 syndetically with gaps

bounded by `i for each 1 ≤ i ≤ m+ 1;
c) Fm+1 = {i ∈ Z+ : ym+1(i) = 1} ⊂ F ;
d) Nki

(ym+1) < 2ki/i for each 1 ≤ i ≤ m+ 1.
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SinceWm ∈ Flbd1 and Am appears in ym at places km·Wm in ym, there exists
Km+1 > 0 such that Nk·km

(ym) < 2k/(m+1)·km for k ≥ Km+1 by Lemma 3.4.
Let k′m+1 ≥ Km+1 with k′m+1 ∈ Wm. Set km+1 = k′m+1 · km and let

Am+1 = ym[0; km+1 − 1]. Then Am+1 has the form of AmVmAm and
Nkm+1

(ym) < 2km+1/m+1.
Set Wm+1 =

{
i ∈ Z+ : [ikm+1; ikm+1 + km+1 − 1] ⊂ F

}
.

Choose ym+1 ∈ {0, 1}Z+ such that
ym+1[0; km+1 − 1] = Am+1,
ym+1[ikm+1; ikm+1 + km+1 − 1] = Am+1, i ∈Wm+1 and
ym+1[ikm+1; ikm+1 + km+1 − 1] = ym[ikm+1; ikm+1 + km+1 − 1], i 6∈Wm+1.

As ym+1 and ym differ possibly only at [ikm+1; ikm+1+km+1−1], i ∈Wm+1,
thus

Fm+1 = {i ∈ Z+ : ym+1(i) = 1
}
⊂ Fm ∪

⋃
i∈Wm+1

[ikm+1; ikm+1 + km+1 − 1] ⊂ F.

As F ∈ Flbd1, we have Wm+1 ∈ Flbd1. Hence Wm+1 is syndetic with gaps
bounded by some `′m+1. Put `m+1 = `′m+1 · km+1. Then Ai appears in
ym+1 with gaps bounded by `i and Nki(y

m+1) ≤ Nki(y
m) < 2ki/i for each

1 ≤ i ≤ m+ 1 by the construction.
In such a way for each m ∈ N we have defined a finite word Am and ym ∈ Σ2

satisfying 1)− 4). Let y = limAm = lim ym. By the construction, Am appears
in y with gaps bounded by `m for each m ∈ N. That is, y is a minimal point for
the shift. It is obvious that y 6= (0, 0, . . . ). Let Y = cl(orb(y, σ)) and U = [1].
Then

∅ 6= N(y, U) =
∞⋃
i=1

{
i ∈ Z+ : An(i) = 1, 0 ≤ i ≤ kn − 1

}
⊂
∞⋃
i=1

Fn ⊂ F.

As Nki
(ym) < 2ki/i for m ∈ N, i = 1, 2, · · · ,m, one has Nki

(y) ≤ 2ki/i, i ∈ N.
For each u ∈ Bk(y), there are u1, u2 ∈ Nk(y) such that u < u1u2. Thus

Bk(y) ≤ kNk(y)
2 for any k ∈ N and hence

htop(Y, σ) = lim
i→+∞

1

ki
logBki(y)

≤ lim
i→+∞

1

ki
log

Ä
kiNki(y)

2
ä
≤ lim
i→+∞

1

ki
log(ki · 22ki/i) = 0.

Thus F contains the zm-set N(y, U).

To prove the main result of the section we need the following result.

Lemma 3.6. — Let (X,T ) be a transitive system and x ∈ TranT . Then (X,T )

is an E-system if and only if for each neighborhood U of x, N(x, U) has positive
upper Banach density.
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Proof. — Suppose (X,T ) is an E-system. For each neighborhood U of x, there
exists an ergodic measure µ ∈M(X,T ) with µ(U) > 0. Take a generic point y
for µ, then N(y, U) has positive upper density. Moreover, N(x, U) has positive
upper Banach density as x ∈ TranT .

Now we assume that for each neighborhood U of x, N(x, U) has positive
upper Banach density. As x ∈ TranT , one has BD∗(N(x, V )) > 0 for each
non-empty open subset V of x.

Let {Vj}+∞j=1 be a countable basis of the topological spaceX. Put Uj = cl(Vj).
As BD∗(N(x, Uj)) > 0, there exist ak < bk such that

lim
k→+∞

(bk − ak) = +∞, lim
k→+∞

1

bk − ak
∣∣N(x, Uj) ∩ {ak, ak + 1, . . . , bk − 1}

∣∣ > 0.

Now, set µk = 1/(bk − ak)
∑bk−1
i=ak

δT ix. Let µj = limi→+∞ µki be a limit
point of {µk}+∞k=1 in the weak?-topology. Clearly, µj is an invariant measure
of (X,T ) and

µj(Uj) ≥ lim
i→+∞

µki
(Uj) = lim

i→+∞

1

bk − ak

bk−1∑
i=ak

δT ix(Uj)

= lim
i→+∞

|N(x, Uj) ∩ {ak, ak + 1, . . . , bk − 1}|
bki − aki

> 0.

Let µ =
∑+∞
j=1 µ

j/2j . Then µ is an invariant measure of (X,T ) and
Supp(µ) = X. It follows from the transitivity of (X,T ) that (X,T ) is an
E-system.

Now we are ready to show the main result of the section. Note that if
(X,T ) ⊥M, then (X,T ) is a weakly mixing system with dense set of minimal
points (see [13]).

Theorem 3.7. — Let (X,T ) be a transitive TDS. If (X,T ) ⊥ M0, then
(X,T ) is a weakly mixing E-system.

Proof. — Let x ∈ TranT and let U be a non-empty neighborhood of x. By
Theorem 3.2, N(x, U)∩A 6= ∅ for any zm-set A. This implies that N(x, U) has
non-empty intersection with any set whose lower Banach density is one, by The-
orem 3.5. Thus N(x, U) has positive upper Banach density. By Lemma 3.6,
(X,T ) is an E-system.

Since M0 contains all minimal equicontinuous systems, (X,T ) is disjoint
from all minimal equicontinuous systems. Moreover transitivity of (X,T ) im-
plies weak disjointness from all minimal equicontinuous systems, which is the
definition of weakly scattering property [12]. Since it is shown in [12] that a
weakly scattering E-system is weakly mixing, (X,T ) is weakly mixing.
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4. A transitive diagonal TDS with only one minimal point

We have shown that any transitive diagonal TDS is inM⊥0 , and it is known
that [12] if (X,T ) is inM⊥, then (X,T ) has a dense set of minimal points. In
this section we will construct a transitive diagonal TDS with only one minimal
point. Thus, the system is in M⊥0 \M⊥. To start our construction we need
some notations.

For p ≥ 2 let Λp = {0, 1, . . . , p − 1} with the discrete topology, Σp = Λ
Z+
p

with the product topology and σ : Σp → Σp be the shift. For n ≥ 2 and
a = (a(1), a(2), . . . , a(n)) ∈ Λnp (a block of length n), let |a| = n, σ(a) =

(a(2), . . . , a(n)). We say a appears in x = (x(1), x(2), . . . ) ∈ Σp or x ∈ Λmp with
m ≥ n if there is j ∈ N with a = (x(j), x(j + 1), . . . , x(j + n− 1)) (write a < x

for short) and we use ti to denote t . . . t (i times). For b = (b(1), . . . , b(m)) ∈
Λmp , let ab = (a(1), . . . , a(n), b(1), . . . , b(m)) ∈ Λn+m

p . Denote (ii . . . ) by i,
0 ≤ i ≤ p − 1. Recall that a subset S of Z+ is thick, if for each n ∈ N there
is sn ∈ S such that S ⊃ {sn, sn + 1, . . . , sn + n}, and S is piecewise syndetic,
if it is the intersection of a thick set and a syndetic set. First we need the
following lemma.

Lemma 4.1. — There is an E-system (Y, σ) contained in (Σ3, σ) with a unique
minimal point 0 such that htop(σ, {U c1 , U c2}) > 0, where Ui = [i]Y , i = 1, 2.

Proof. — Choose a subset A ⊂ Z+ with positive upper Banach density but
being not piecewise syndetic. Let Z ′1 = cl(orb(1A, σ)) ⊆ Σ2. Then as A has
positive upper Banach density there is some σ-invariant ergodic measure µ
on Σ2 with µ([1]) > 0. Let Z1 = supp(µ) and R1 = σ. Then (Z1, R1) is a
nontrivial E-system. Since A is not piecewise syndetic, (Z1, R1) has 0 as its
only minimal point.

Consider the space Z2 = Z1 × Σ2. It is clear that W = {0} × Σ2 is a
closed invariant subset of Z2, and contains the set of minimal points of R1×σ.
Collapsing W to a point p we get a factor Z3 of Z2, and let π : (Z2, R1 × σ)→
(Z3, H) be the factor map. It is easy to see that Z3 is a zero dimensional
transitive system and has a unique minimal point p. Take z1 ∈ Z1 \ {0}. Since
z1 ∈ supp(µ), by [7]

E2(Z2, R1 × σ) ⊇
{

((z1, y1), (z1, y2)) : (y1, y2) ∈ E2(Σ2, σ)
}
.

Let w1 = π(z1,0) and w2 = π(z1,1). Since any pair of two different points
of Σ2 is an entropy pair, we get (w1, w2) ∈ E2(Z3, H). It is obvious that
w1, w2 6= p. Take clopen neighborhoods Vi of wi such that V1 ∩ V2 = ∅ and
p 6∈ V1 ∪ V2. Let V0 = Z3 \ (V1 ∪ V2), then V0 is also a clopen set and p ∈ V0.
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Now we construct a map ϕ : Z3 → Σ3 with ϕ(z)(i) = j if Hi(z) ∈ Vj . Let
Y = ϕ(Z). Then ϕ : (Z3, H) → (Y, σ) is a factor map, and hence (Y, σ) is an
E-system with a unique minimal point ϕ(p) = 0.

Since (ϕ(w1), ϕ(w2)) ∈ ϕ× ϕ(E2(Z3, H)) and ϕ(w1) 6= ϕ(w2),

(ϕ(w1), ϕ(w2)) ∈ E2(Y, σ).

It implies that htop(σ, {U c1 , U c2}) > 0, since ϕ(wi) ∈ Ui, where Ui = [i]Y ,
i = 1, 2.

With the help of (Y, σ), now we start our construction.

Theorem 4.2. — There is a non-trivial diagonal transitive system having only
one minimal point.

Proof. — The main idea of the example is that we construct a recurrent point
x ∈ Σ2 with the following two properties:

I) (x, σ(x)) ∈ E2(X,σ), where X = cl(orb(x, σ));
II) for each n ∈ N, 0n appears in x syndetically.
It is clear that (X,σ) is a diagonal transitive system having a unique minimal

point 0. First we give the detailed construction of the recurrent point x.
Let φ : N −→ N such that (φ(1), φ(2), . . . ) = (1, 1, 2, 1, 2, 3, 1, 2, 3, 4, . . . ).

Hence for each k ∈ N, φ−1(k) is infinite and φ(k) ≤ k for each k ∈ N.
Set A1 = (10), n1 = |A1| = 2. Let

C1
0 = 02n1 , C1

1 = A10n1 and C1
2 = σ(A1)00n1 .

Let (Y, σ) be the system constructed in Lemma 4.1 and y = (y(0), y(1), . . . )

be a transitive point of (Y, σ). Since (Y, σ) has a unique minimal point 0, there
is `1 ∈ N such that 0n1 appears in y with gaps bounded by `1. Let b1 = 2`1n1.

Set

A2 = A10n1C1
y(0) · · ·C

1
y(b1−1)0

2n1 , n2 = |A2|,

C2
0 = 02n2 , C2

1 = A20n2 , C2
2 = σ(A2)00n2 .

If A1, . . . , Ak, C
j
i , i = 0, 1, 2, 1 ≤ j ≤ k and b1, . . . , bk−1 are defined, we

define inductively Ak+1, Ck+1
0 , Ck+1

1 , Ck+1
2 and bk.

Since (Y, σ) has a unique minimal point 0, there is `k ∈ N such that 0nk

appears in y with gaps bounded by `k. Let bk = 2`knk.
Set

Ak+1 = Ak0nkC
φ(k)
y(0) C

φ(k)
y(1) · · ·C

φ(k)
y(bk−1)0

2nk , nk+1 = |Ak+1|,

Ck+1
0 = 02nk+1 , Ck+1

1 = Ak+10nk+1 , Ck+1
2 = σ(Ak+1)00nk+1 .

It is clear that nk+1 = (4 + 2`knφ(k))nk.
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Let x = limk→∞Ak and X = cl(orb(x, σ)) ⊂ Σ2. It is clear that x is a
recurrent point of σ. We claim that x satisfies I) and II).

I). — First we show (x, σ(x)) ∈ E2(X,T ). Suppose that V ′1 and V ′2 are
neighborhoods of x and σ(x) respectively. Then there is k ∈ N such that
V1 = [Ak] ⊂ V ′1 and V2 = [σ(Ak)0] ⊂ V ′2 . Note that V1 ∩ V2 = ∅, and
consequently V1 ⊂ V c2 and V2 ⊂ V c1 .

There are infinitely many j such that φ(j) = k. Thus, for those j

Aj+1 = Aj0
njCky(0)C

k
y(1) · · ·C

k
y(bj−1)0

2nj .

Let V = {V c1 , V c2 } and Nk = 2nk.
For ` ∈ N, let r` = N(

∨`−1
i=0 σ

−iNk{V c1 , V c2 }) and {s1, . . . , sr`
} ⊆ {1, 2}` such

that
r⋃̀
m=1

(
`−1⋂
i=0

σ−iNkV csm(i)

)
= X.(2)

Now we claim
⋃r`
m=1(

⋂`−1
i=0 σ

−iU csm(i)) = Y , where Ui, i = 1, 2 were intro-
duced in Lemma 4.1. If this were not true, then there is

ω ∈ Y \
r⋃̀
m=1

(
`−1⋂
i=0

σ−iU csm(i)

)
.

Let z ∈ [Ckω(0)C
k
ω(1) · · ·C

k
ω(`−1)]. Since ω 6∈

⋂`−1
i=0 σ

−iU csm(i) for each m ∈
{1, . . . , r`}, there is im ∈ {0, 1, 2, . . . , `− 1} such that ω(im) = sm(im) ∈ {1, 2}.
Hence σimNkz ∈ [Ckω(im)] ⊆ Vsm(im) and thus σimNkz 6∈ V csm(im). That is,
z is not in

⋂`−1
i=0 σ

−iNkV csm(i) for each m ∈ {1, 2, . . . , r`}. This implies that
z 6∈

⋃r`
m=1(

⋂`−1
i=0 σ

−iNkV csm(i)) which contradicts (2). Thus, by the claim we
have

N

(
`−1∨
i=0

σ−i{U c1 , U c2}

)
≤ r` = N

(
`−1∨
i=0

σ−iNk{V c1 , V c2 }

)
.

So, we have

htop(σ,V) = lim
n→+∞

1

n
logN

(
n−1∨
i=0

σ−iV

)

≥ lim
`→+∞

1

`Nk
logN

(
`−1∨
i=0

σ−iNkV

)
≥ 1

Nk
lim

`→+∞

1

`
logN

(
`−1∨
i=0

σ−iNkV

)

≥ 1

Nk
lim

`→+∞

1

`
logN

(
`−1∨
i=0

σ−i{U c1 , U c2}

)
=

1

Nk
htop (σ, {U c1 , U c2}) > 0.

This implies that (x, σ(x)) ∈ E2(X,σ).
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II). — We now show that for each n ∈ N, 0n appears in x syndetically. It is
suffices to prove that for each k ∈ N, 0nk appears in x syndetically with gaps
bounded by 2bk.

Fix k ∈ N. By the construction

Ak+1 = Ak0nkC
φ(k)
y(0) C

φ(k)
y(1) · · ·C

φ(k)
y(bk−1)0

2nk .

As 0nk appears in y with gaps bounded by `k, 0nk appears in

C
φ(k)
y(0) C

φ(k)
y(1) · · ·C

φ(k)
y(bk−1)

with gaps bounded by 2nφ(k)`k ≤ 2nk`k = bk. Thus 0nk appears in Ak+1 with
gaps bounded by bk + nk ≤ 2bk.

Assume that for ` ≥ k + 1, 0nk appears in Ai, k + 1 ≤ i ≤ `, with gaps
bounded by 2bk. Now we are going to prove that this is also true for ` + 1.
First note that

A`+1 = A`0
n`C

φ(`)
y(0)C

φ(`)
y(1) · · ·C

φ(`)
y(b`−1)0

2n` .

If φ(`) ≥ k, then by the induction assumption and the construction of Cφ(`)
y(i)

we know that 0nk appears in A`+1 with gaps bounded by 2bk. If φ(`) < k,
then by the induction assumption and the discussion similar to the case when
` = k + 1, we know that 0nk appears in A`+1 with gaps bounded by 2bk.
Hence 0nk appears in x syndetically with gaps bounded by 2bk since x =

limm→+∞Am.

A direct consequence of Theorem 4.2 is

Corollary 4.3. — There exists a TDS which is inM⊥0 but not inM⊥.

Proof. — Let (X,T ) be the TDS constructed in Theorem 4.2. Then (X,T ) be-
long toM⊥0 by [2]. As each TDS inM⊥ has a dense set of minimal points [13],
we have that (X,T ) ∈M⊥0 \M⊥.

To state another consequence of Theorem 4.2 we need some notions. Recall
that a subset S of Z+ is thickly syndetic, if for each n ∈ N there is a syndetic set
{s1
n < s2

n < · · · } such that S ⊃
⋃∞
n=1

⋃∞
j=1{sjn, sjn+1, . . . , sjn+n}; S is thick if it

contains arbitrarily long intervals of natural numbers; S is piece-wise syndetic
if it is the intersection of a syndetic set with a thick set; and S is an m-set
if there are a minimal TDS (X,T ), x ∈ X and a non-empty open subset U
of X such that S ⊃ N(x, U). In [13] it is shown that each thickly syndetic set
contains an m-set.

Corollary 4.4. — There is a thickly syndetic set which does not contain any
zm-set.
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Proof. — Let (X,T ) be a non-trivial diagonal transitive system having only
one minimal point and x ∈ TransT . Then (X,T ) ∈M⊥0 by [2]. If each thickly
syndetic set contains a zm-set, then by Theorem 3.2, N(x, U) is piecewise
syndetic for any neighborhood U of x. Hence (X,T ) has a dense set of minimal
points by Lemma 2.1, 1) in [13], which is a contradiction.

5. TDS disjoint fromM0, the general case

In the previous sections we have discussed the problems assuming the tran-
sitivity. Now we study the properties of TDS disjoint from M0 without the
assumption. We will show that if a TDS (X,T ) is in M0

⊥, then there exists
an invariant measure µ with Supp(µ) = X.

We start with the following notation. Let Ω be a set of finite symbols,
{yn}n∈N ∈ ΩZ+ and k ∈ N. Let

Nk({yn}n∈N) = #
{
u ∈ Ωk : ∃n ∈ N, i ∈ Z+ s.t. u = yn[ik; ik + k − 1]

}
,

Bk({yn}n∈N) = #
{
u ∈ Ωk : ∃n ∈ N, j ∈ Z+ s.t. u = yn[j; j + k − 1]

}
.

To study the problem in the general case we need to consider a sequence of
Flbd1-subsets.

Definition 5.1. — A sequence {Fn}∞1 of Flbd1-subsets of Z+ is uniform, if
for any ε > 0 there exists Lε ∈ N such that for every integer interval I with
|I| ≥ Lε and every n ∈ N we have |I ∩ Fn|/|I| ≥ 1− ε.

Let a ∈ Ω and {yn}n∈N ∈ ΩZ+ . Denote the set {z ∈ ΩZ+ : z(0) = a} by [a].
For a uniform sequence of Flbd1-subsets we have

Lemma 5.2. — Let Fn = {i ∈ Z+ : yn(i) = a}. If {Fn}+∞n=1 is a uniform
sequence ofFlbd1–subsets of Z+, then for ε > 0 there exists N > 0 such that
Nk({yn}n∈N) < 2εk for k ≥ N .

Proof. — Let σ be the shift map on ΩZ+ . Put

Y = cl

(⋃
n∈N

orb(yn, σ)

)
.

We have:

Claim. — (Y, σ) has a unique σ-invariant measure δ(a,a,a,... ).

Proof of Claim. — If the claim is not true, then there exists an ergodic mea-
sure µ of (Y, σ) with µ 6= δ(a,a,a,... ). Take a generic point y ∈ Y of µ, then
y 6= (a, a, a, . . . ). Thus, there exists b ∈ Ω with b 6= a and y ∈ [b].
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Since y is a generic point, D∗(N(y, [b])) > 0. Let ε = 1
3D
∗(N(y, [b])). Since

{Fn}+∞n=1 is a uniform sequence of Flbd1-subsets of Z+, there exists Lε ∈ N
such that for every integer interval I with |I| ≥ Lε and every n ∈ N we
have |I ∩ Fn|/|I| ≥ 1− ε.

Take K ≥ Lε with
|N(y, [b]) ∩ [0,K − 1]|

K
≥ 2ε.(3)

As y ∈ cl(
⋃
n∈N orb(yn, σ)), we can find n ∈ N and ` ∈ Z+ such that

y[0,K − 1] = (σ`yn)[0,K − 1].

We let I` = [`, `+K−1], then |I`| ≥ Lε and |I` ∩ Fn|/|I`| ≥ 1− ε. This implies
that |{i ∈ Z+ : yn(i) = a, ` ≤ i ≤ `+K − 1}|/K ≥ 1− ε. Thus
|N(y, [b]) ∩ [0,K − 1]|

K
≤ 1− |{i ∈ Z+ : yn(i) = a, ` ≤ i ≤ `+K − 1}|

K
≤ ε,

a contradiction to (3).

Hence we have htop(Y, σ) = 0 by the claim. Fix ε > 0. As in Lemma 3.4
there exists N > 0 such that Nk({yn}n∈N) < 2εk for k ≥ N .

To prove the main result of the section we need to strengthen our Theo-
rem 3.5.

Theorem 5.3. — Let {Gn}+∞n=1 be a uniform sequence of Flbd1-subsets of Z+.
Then there is a minimal zero entropy system (Y, σ) ⊂ (Σ2, σ) such that for each
n ∈ N there exists yn ∈ Y with N(yn, [1]) ⊂ Gn.

Proof. — We will modify the construction in Theorem 3.5. Let f : N→ N be a
map such that for each i ∈ N, f−1(i) is infinite. Let Fn = Gf(n) for each n ∈ N.
Then {Fn} is a uniform Flbd1-sets.

Step 1. — We will construct A1(k1 = |A1|) and F 1
n ⊂ Fn such that A1 appears

in y1
n = 1F 1

n
with gaps bounded by `1 and the first place where A1 appears in

y1
n is less than l1

2 for each n ∈ N and Nk1({y1
n}n∈N) < 2k1 .

Since {Fn} is a uniform sequence of Flbd1-sets, there exists K1 > 0 such that
Nk({1Fn

}n∈N) < 2k for k ≥ K1 by Lemma 5.2. Let k1 = max{K1,minF1 + 1}
and A1 = 1F1

[0; k1 − 1]. Then Nk1({1Fn
}n∈N) < 2k1 . Set

W 1
n =

{
i ∈ Z+ : [ik1; ik1 + k1 − 1] ⊂ Fn

}
.

Choose y1
n ∈ Σ2 such that

y1
n[ik1; ik1 + k1 − 1] = A1, i ∈W 1

n and

y1
n[jk1; jk1 + k1 − 1] = 1Fn

[jk1; jk1 + k1 − 1] if j 6∈W 1
n .
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Since {Fn} is a uniform sequence of Flbd1-sets, so is {W 1
n}. Hence we can

find `′1 ∈ N such that W 1
n is syndetic with gaps bounded by `′1 for all n ∈ N.

Put `1 = 2`′1 · k1. Then Nk1({y1
n}n∈N) ≤ Nk1({1Fn

}n∈N) < 2k1 , A1 appears
in y1

n with gaps bounded by `1 and the first place which A1 appears in y1
n is

less than 1
2`1 for each n ∈ N. If F 1

n ⊂ Z+ satisfies 1F 1
n

= y1
n, then F 1

n ⊆ Fn.

Step 2. — We will construct Am+1 and ym+1
n ∈ Σ2 such that

a) Am+1 has the form of Amymm [0, amkm − 1]Am.
b) Ai appear in ym+1

n syndetically with gaps bounded by `i and the first
place which Ai appears in ym+1

n is less than 1
2`i for each 1 ≤ i ≤ m + 1

and n ∈ N.
c) Fm+1

n = {i ∈ Z+ : ym+1
n (i) = 1} ⊂ Fn for each n ∈ N.

d) Nki
({ym+1

n }n∈N) < 2
1
i ki for each 1 ≤ i ≤ m+ 1, where km+1 = |Am+1|.

Since {Wm
n } is a uniform sequence of Flbd1-sets and Am appears at places

km ·Wm
n in ymn , there existsKm+1 > 0 such that Nk·km

({ymn }n∈N) < 2k·km/m+1

for k ≥ Km+1 by Lemma 5.2.

Let am ≥ max{Km+1, `1, `2, . . . , `m} with am ∈Wm
m . Set

Am+1 = Amy
m
m [0; amkm − 1]Am and km+1 = |Am+1|.

Then km | km+1 and Nkm+1({ymn }n∈N) < 2km+1/m+1. Set

Wm+1
n =

{
i ∈ Z+ : [ikm+1; ikm+1 + km+1 − 1] ⊂ Fn

}
Choose ym+1

n ∈ Σ2 such that

ym+1
n [ikm+1; ikm+1 + km+1 − 1] = Am+1 for i ∈Wm+1

n and

ym+1
n [ikm+1; ikm+1 + km+1 − 1] = ymn [ikm+1; ikm+1 + km+1 − 1], i 6∈Wm+1

n .

As ym+1
n and ymn differ possibly only at [ikm+1; ikm+1+km+1−1], i ∈Wm+1

n ,
we get

Fm+1
n =

{
i ∈ Z+ : ym+1

n (i) = 1
}
⊂ Fmn ∪

⋃
i∈Wm+1

n

[ikm+1; ikm+1 +km+1− 1] ⊂ Fn.

As {Fn} is a uniform sequence of Flbd1-sets, so is {Wm+1
n }. Hence there

is `′m+1 ∈ N such that Wm+1
n is syndetic with gaps bounded by `′m+1 for

each n ∈ N. Let `m+1 = 2`′m+1km+1. Then Ai appears in ym+1
n with gaps

bounded by `i and the first place where Ai appears in ym+1
n is less than 1

2`i for
each 1 ≤ i ≤ m + 1 and n ∈ N by the construction. It is also easy to see that
Nki

({ym+1
n }n∈N) ≤ Nki

({ymn }n∈N) < 2ki/i for each 1 ≤ i ≤ m+ 1.
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Let y = limAm. By the construction, Am appears in y with gaps bounded
by `m for each m ∈ N. That is, y is a minimal point for the shift. Hence (Y, σ)

is minimal, where Y = cl(orb(y, σ)). As for each i ∈ N

Nki(y) = lim
m→+∞

Nki(Am) ≤ lim sup
m→+∞

Nki ({ymn }n∈N) < 2ki/i,

one has limi→+∞ ki
−1 logNki

(y) = 0.

For each u ∈ Bk(y), there are u1, u2 ∈ Nk(y) such that u < u1u2. Thus
Bk(y) ≤ kNk(y)

2 for any k ∈ N and hence

htop(Y, σ) = lim
i→+∞

1

ki
logBki

(y) ≤ lim
i→+∞

1

ki
log(kiNki

(y)
2
) = 0.

Thus (Y, σ) is a minimal system with zero entropy.

For each n ∈ N let yn be a limit point of {yii [0; aiki − 1]}f(i)=n. Let

[1] =
{
z ∈ Y : z(0) = 1

}
.

Then we have

N(yn, [1]) ⊆
⋃

f(i)=n

{
j : yii(j) = 1, 0 ≤ j ≤ aiki − 1

}
⊆
⋃

f(i)=n

F ii ⊆
⋃

f(i)=n

Fi = F ′n.

With the help of Theorem 5.3 we now prove the main result of the section.

Theorem 5.4. — Let (X,T ) be a TDS inM0
⊥, then there exists an invariant

measure µ with Supp(µ) = X.

Proof. — First assume that T is a homeomorphism and that there exists no
invariant measure µ with Supp(µ) = X. Set M = cl(

⋃
ν∈M(X,T ) Supp(ν)), and

it is clear M 6= X. Hence there are a non-empty open set U of X and an open
neighborhood V of M with U ∩ V = ∅.

By Proposition 2.1(1), R(T ) is dense in U . We may take a sequence of
recurrent points {xn}+∞n=1 ⊂ U which is dense in U . Let Fn = N(xn, U

c) ⊃
N(xn, V ), n = 1, 2, . . .

Claim. — {Fn}+∞n=1 is a uniform sequence of Flbd1-subsets of Z+.

Proof of claim. Assume {Fn}+∞n=1 is not a uniform sequence of Flbd1-subsets
of Z+. Then there exists ε > 0 such that for any k ∈ N we can find an
integer interval Ik and nk ∈ N with |Ik| ≥ k and |Fnk

∩ Ik|/|Ik| < 1 − ε,
i.e., |N(xnk

, U) ∩ Ik|/|Ik| ≥ ε.
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Let µk = 1
|Ik|
∑
i∈Ik

δT ixnk
, and µ = limi→+∞ µki be a limit point of {µk}+∞k=1

in the weak?-topology. Clearly, µ is an invariant measure of (X,T ) and

µ(V c) ≥ lim
i→+∞

µki(V
c) = lim

i→+∞

1

|Iki
|
∑
j∈Ik

δT jxnki
(V c)

≥ lim
i→+∞

|N(xnki
, U) ∩ Iki

|
|Iki
|

≥ ε.

On the other hand, we have µ(V c) ≤ µ(M c) = 0 by the definition of M , which
leads to a contradiction. This ends the proof of the claim.

By the above claim and Theorem 5.3, there is a minimal system (Y, σ) ⊂
(Σ2, σ) such that for each n ∈ N there exists yn ∈ Y with N(yn, [1]) ⊂ Fn. Let

J = cl

(
+∞⋃
i=0

+∞⋃
n=1

(T × σ)
i
(xn, yn)

)⋃(
X \

+∞⋃
i=−∞

T iU

)
× Y.

As {xn : n ∈ N} is dense in U and each xn is recurrent, we have
+∞⋃
i=−∞

T iU ⊂ cl

(
+∞⋃
i=0

+∞⋃
n=1

T ixn

)
.

Thus J is a joining of X and Y , and hence J = X × Y .
It is easy to see that cl(

⋃+∞
i=0

⋃+∞
n=1 (T × σ)

i
(xn, yn)) ⊃ U × [1]. As U × [1]

is open, we have (
+∞⋃
i=0

+∞⋃
n=1

(T × σ)
i
(xn, yn)

)
∩ (U × [1]) 6= ∅.

Therefore, there exist i and n with (T ixn, σ
iyn) ∈ U × [1], i.e., N(xn, U) ∩

N(yn, [1]) 6= ∅, which contradicts the fact that N(yn, [1]) ⊂ Fn = N(xn, U
c).

If T is not a homeomorphism, we pass to the natural extension and observe
that an invariant measure with full support are mapped to an invariant measure
with full support by factor maps.
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