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ON A CERTAIN GENERALIZATION OF SPHERICAL TWISTS

BY YUKINOBU ToODA

ABsTrACT. — This note gives a generalization of spherical twists, and describe the
autoequivalences associated to certain non-spherical objects. Typically these are ob-
tained by deforming the structure sheaves of (0, —2)-curves on threefolds, or deforming
P-objects introduced by D. Huybrechts and R. Thomas.

RESUME (Sur une généralisation des twists sphériques). — Cette note donne une
généralisation des twists sphériques et décrit des auto-équivalences associées & certains
objets qui ne sont pas sphériques. Typiquement ces objets sont obtenus par déformation
du faisceau structural d’une (0, 2)-courbe dans une variété de dimension trois ou d’un
P-objet introduit par D. Huybrechts et R. Thomas.

1. Introduction

We introduce a new class of autoequivalences of derived categories of co-
herent sheaves on smooth projective varieties, which generalizes the notion of
spherical twists given in [12]. Such autoequivalences are associated to a certain
class of objects, which are not necessary spherical but are interpreted as “fat"
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version of them. We introduce the notion of R-spherical objects for a noethe-
rian and artinian local C-algebra R, and imitate the construction of spherical
twists to give the associated autoequivalences.

Let X be a smooth complex projective variety, and D(X) be a bounded de-
rived category of coherent sheaves on X. When X is a Calabi-Yau 3-fold, D(X)
is considered to represent the category of D-branes of type B, and should be
equivalent to the derived Fukaya category on a mirror manifold under Homo-
logical mirror symmetry [8]. On the mirror side, there are typical symplectic
automorphisms by taking Dehn twists along Lagrangian spheres [11]. The no-
tions of spherical objects and associated twists were introduced in [12] in order
to realize Dehn twists under mirror symmetry. Recall that £ € D(X) is called
spherical if the following holds [12]:

C ifi=0o0ri=dimlX,

e Exty(E,E) =
X {O otherwise;

e FQuwx 2 E.

Then one can construct the autoequivalence Tg: D(X) — D(X) which fits into
the distinguished triangle [12]:

RHom(E,F)®c E — F — Tg(F),

for F € D(X). The autoequivalence T is called a spherical twist. This is a
particularly important class of autoequivalences, especially when we consider
Ap-configulations on surfaces as indicated in [7]. On the other hand, it has
been observed that there are some autoequivalences which are not described in
terms of spherical twists. This occurs even in the similar situation discussed
in [7] as follows. Let X — Y be a three dimensional flopping contraction which
contracts a rational curve C C X, and XT — Y be its flop. Then one can
construct the autoequivalence [1, 3, 4],
o= @ii‘j&” o cbf{j;f” : D(X) — D(XT) — D(X).

If C C X isnot a (—1,—1)-curve, ® is not written as a spherical twist, and our
motivation comes from describing such autoequivalences. Let R be a noetherian
and artinian local C-algebra. We introduce the notion of R-spherical objects
defined on D(X x Spec R). In the above example, Spec R is taken to be the
moduli space of Oc(—1), and the universal family gives the R-spherical object.
Our main theorem is the following:

THEOREM 1.1. — To any R-spherical object £ € D(X x Spec R), we can asso-
ciate the autoequivalence Tg: D(X) — D(X), which fits into the distinguished
triangle

L
RHomx (7€, F) Qg ml — F — Te(F),
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ON A CERTAIN GENERALIZATION OF SPHERICAL TWISTS 121

for F € D(X). Here m: X x Spec R — X 1is the projection.

Using the notion of R-spherical objects and associated twists, we can also
give the deformations of P-twists in the case which is not treated in [5].

Acknowledgement. — The author thanks Tom Bridgeland for useful discussions
and comments. He is supported by Japan Society for the Promotion of Sciences
Research Fellowships for Young Scientists, No 1611452.

Notations and conventions
e For a variety X, we denote by D(X) its bounded derived category of
coherent sheaves.
e A means the diagonal A C X x X or the diagonal embedding A: X —
X x X.
o For another variety Y and an object P € D(X x Y), denote by ®%
the integral transform with kernel P, i.e.,

O _y (%) i= Rpy.(p (+) ® P): D(X) — D(Y).

Here px, py are projections from X X Y onto corresponding factors.

2. Generalized spherical twists

Let X be a smooth projective variety over C and R be a noetherian and
artinian local C-algebra. We introduce the notion of R-spherical objects defined
on D(X x SpecR). Let m: X x Spec R — X and 7’': X X Spec R — Spec R be
projections and 0 € Spec R be the closed point.

DEFINITION 2.1. — An object £ € D(X x Spec R) is called R-spherical if the
following conditions hold:

e £ is represented by a bounded complex £° with each &£ a coherent
Ox xspec r-module flat over R. In particular we have the bounded de-
rived restriction E := £*|x (0} € D(X).

) C ifi=0o0ri=dmX,
e Ext%\(E,FE) =

e Fuwx 2 FE.

0 otherwise;
REMARK 2.2. — If R = C, then R-spherical objects coincide with usual spher-
ical objects.

We imitate the construction of the spherical twists in the following theorem.
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122 TODA (Y.)

THEOREM 2.3. — To any R-spherical object £ € D(X x Spec R), we can asso-
ciate the autoequivalence Te: D(X) — D(X), which fits into the distinguished
triangle:

L
RHomx (m.&, F) Qp mi& — F — Te(F),

for F € D(X). Here R-module structures on RHomx (7., F) and m.E are
inherited from R-module structure on &.

Proof. — First we construct the kernel of T¢. Let p;; and p; be projections as
in the following diagram

X xSpecR x X
P12 lpl?’ D23

X x Spec R XxX X x SpecR,
™ T
X X

and consider the object

L . L
Q := Rpi3. (p5(7'Ox ® &) ® p35€) € D(X x X).

Here £ means its derived dual. Then for F € D(X), we can calculate ®$_ , (F)
as follows:

L . L L

% _ ((F) = Rpsu (Rp1s. (pia(7'Ox ® &) @ p3s€) @ piF)
L . L L

> Rpo,Rp13. (pio (' Ox ® &) @ pis€ @ piapiF)

L . L L
T Rp23, (o (7' Ox ® €) ® p3s€ @ piym™F)

Il

L . L L
= 71, {€ @ Rpas.pia(mOx ® € @ m*F)}
L 2 / !
&, {€ @ n*Rr,RHom(E, ' F)}
L
>~ 71.£ ®r RHom(7,&, F).

The fifth equality comes from the base change formula for the diagram below:

XxSpecRxX&XxSpecR

,’.023J JTI‘/
!

X x SpecR T 5 Spec R.
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ON A CERTAIN GENERALIZATION OF SPHERICAL TWISTS 123

On the other hand, we have

L. L
Homx x x(Q,0a) = Homx x x (Rp13+ (pl2 (7' Ox ® &) @ p35E),On)

L , L
= Homyx (LA*Rplg* (p’{Q(Tr!OX ® &) ® p33€), Ox)

= HomX( p12(7r Ox ® V) & Py 35)30)()
. L

= Homy (L(A,id)* (p}5 (7' Ox ® &) ® pis€),m'Ox)

= Homx(ﬁ Ox ®5®5 T Ox)

The third equality comes from the base change formula for the diagram below:

(A,id)
X xSpecR—— X x Spec R x X

[

X—— X x X.

Let u: @ — Oa be the morphism which corresponds to the morphism

L . L
idrp, ®ev: T0x ® E®E — 70y,

under the above isomorphisms. Let us take its cone R := Cone(u) € D(X x X).
Then the above calculation for ®$_ . implies the functor T¢: D(X) — D(X)
with kernel R fits into the triangle

L
RHomx (m.&, F) ®p m& — F — Te(F),

for FF € D(X). We check T¢ gives an equivalence. We follow the arguments
of [10, 5]. Define E* to be the subcategory {F € D(X) | RHom(E, F) = 0}.
Then 2 := E U E* is a spanning class in the sense of [2, Def. 2.1]. Let (E) be
the minimum extension closed subcategory of D(X) which contains E. Then
since R is finite dimensional, we have m.£ € (E). Therefore if F € E1, then
R Homy (7€, F) = 0. Hence Tg(F) = F for F € E+. Next since & is R-
spherical, we have the distinguished triangle

L
E — RHomx (m.&, F) ®g m.& — E[—dim X].
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124 TODA (Y.)

Then the following diagram

E
J id
L
RHomx (7.&, E) ®r m.E E ——T¢(E)

| e

E[-dim X] ——— 0

shows Tg(E) = E[1 — dim X|. Therefore T¢ is fully faithful on ©, hence fully
faithful on D(X). (cf. [2, Theorem 2.3]). Finally the assumption £ @ wx = F
implies FQwx € E* for F € E+. Therefore Te|qo commutes with ®wx. Hence
Te gives an equivalence by the argument of [2, Thm 5.4]. O

3. Flops at (0, —2)-curves

We give some examples of autoequivalences associated to R-spherical ob-
jects. Let f: X — Y be a three dimensional flopping contraction which con-
tracts a rational curve C C X. Let fT: XT — Y be its flop, and Ct ¢ X1 be the
flopped curve. Then in [1, 3, 4], the functor ®;: D(X') — D(X) with kernel
Oxxy xt gives an equivalence. ®; satisfies the following (cf. [14, Lemma 5.1]):

o &, takes Opi(—1)[1] to Oc(—1);
e ®; commutes with derived push-forwards, i.e., Rf, o &1 2 R f}: .

Similarly we can construct the equivalence ®5: D(X) — D(X') with kernel
Oxx, xt- Composing these, we obtain the autoequivalence

=, 0Py: D(X) — D(XT) — D(X).

Note that ®(Oc(—1)) = Oc(—1)[-2] and ® commutes with Rf,. If C ¢ X
isa (—1,—1)-curve, then Oc(—1) is a spherical object and ® coincides with the
associated twist T (—1). But if C' is not a (=1, —1)-curve, then O¢(—1) is no
longer spherical, so we have to find some new descriptions of ®. The idea is to
consider the moduli problem of O¢(—1) and use the universal family.

Here we assume C C X is a (0,—2)-curve, i.e., normal bundle is O¢ @
Oc(—2), and give the description of ®. Let M be the connected component of
the moduli space of simple sheaves on X, which contains O¢(—1). We define

R,, 1= C[t]/(t™T1), S := Spec R,y,.

Since Ext (Oc(—1),0c(—1)) = C and C C X is rigid, we can write M as
M =8, for some m € N. Let £ € Coh(X X S,,,) be the universal family.
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ON A CERTAIN GENERALIZATION OF SPHERICAL TWISTS 125

THEOREM 3.1. — & is a R,,-spherical object and the associated functor
Te: D(X) — D(X)
coincides with ®.
Proof. — For n < m, define &, to be
En = mni(Elxxs,) € Coh(X),

where 7,: X X 5, — X is a projection. Since we have the exact sequences of
R,,-modules

0—R, 1—R,—C—0,
0—C—R,— R,.1 —0,
we have the exact sequences in Coh(X):
(1) 0—&_1— & —E—0,
(2) 0—FE—¢E&,—&,_1—0.

Here £ := O¢(—1). Applying Hom(*, E') to the sequence (1), we obtain the
long exact sequence

Hom(E,, E) — Hom(E, 1, E) <% Ext'(E,E) = C
— Ext!(&,, E) — Ext!(€,_1, E) X Ext*(E,E) = C.
On the other hand, the sequence (2) determines the non-zero element
en € Ext*(&,_1, ),

and n,(e,) € Eth(E, E) gives the obstruction to deforming £|x« s, to a coher-
ent sheaf on X x .S, 1 flat over S, 11 (cf. [13, Prop. 3.13]). Therefore n,,(e,) =0
for n < m and 7,,(€,,) # 0. On the other hand, we have the following morphism
of exact sequences

0—— &1 En E 0
o]
0 E & E 0,

where s, is a natural surjection. Hence &,(s,) € Ext'(E, E) corresponds to
the extension &1, which is a non-trivial first order deformation of E. Therefore
&n(sn) # 0 and &, is surjective. Combining these, we have

Ext'(§,_1, F) = Ext' (£, E) 2 C (for n <m), Ext'(£,,E) =0,
Hom(&,—1, E) 2 Hom(&,, E) =2 C.
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Similarly applying Hom(E, ) to the sequence (2), we obtain Ext'(E,&,,) =0
and Hom(E, &,,,) = C. By Serre duality, we can conclude £ is R,,-spherical.
Next let us consider the equivalence

:=Tgod ': D(X) — D(X).

Then ® takes O¢(—1) to Oc(—1), and commutes with Rf,. Therefore ® pre-
serves perverse t-structure “Per(X/Y’) in the sense of [3]. Then the argument
of [14, Thm 6.1] shows ® is isomorphic to the identity functor. O

4. Deformations of P-twists

Review of P-objects and associated twists. — R-spherical twists can also be used
to construct deformations of P-twists. Let us recall the definition of P-objects
and the associated autoequivalences introduced in [5]. Again we assume X is
a smooth projective variety over C.

DEFINITION 4.1 (see [5]). — An object E € D(X) is called P"-object if it sat-
isfies the following;:

o Ext% (F, F) is isomorphic to H*(P™,C) as a graded ring;

e Fuwx 2 FE.

Note that if P"-object exists, then dim X = 2n by Serre duality. D. Huy-
brechts and R.Thomas [5] constructed an equivalence Pg: D(X) — D(X)
associated to E, which is described as follows. Let h € Ext(E, E) be the
degree two generator. First consider the morphism in D(X x X):

H:=hRid—-idX®h: ERE[-2]—EXE.

Let us take its cone H € D(X x X). We can see the composition H with the
trace map tr: E X E — Oa becomes zero. Therefore there exists a (in fact
unique) morphism ¢: H — Oa such that the following diagram commutes [5,
Lemma 2.1]:

ERE[-2 —— ERE—H
t

H .
EX
trl /
Oa
Then define Q¢ to be the cone

Qg := Cone(t: H — Op) € D(X x X).

Then in [5], it is shown that the functor P¢: D(X) — D(X) with kernel Q¢
gives the equivalence.
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ON A CERTAIN GENERALIZATION OF SPHERICAL TWISTS 127

Next let us consider a one parameter deformation of X. Let f: X — C
be a smooth family over a smooth curve C' with a distinguished fibre j: X =
f71(0) — X, 0 € C. Suppose E € D(X) is a P"-object and let be its Atiyah-
class A(E) € Extk (E, E®Qx). Then the obstruction to deforming F sideways
to first order is given by the product

A(E) - k(X) € ExtX(E, E),

where (X) € H'(X, Tx) is the Kodaira-Spencer class of the family f: X — C.
In [5], the case of A(E) - k(X) # 0 is studied. In that case, j.E is a spher-
ical object and the associated equivalence T}, g: D(X) — D(X) fits into the
commutative diagram [5, Prop. 2.7]

D(X) L D(X)

Bl |

D(X) —— D(X).

Our purpose is to treat the case of A(F) - k(X) = 0.

R-spherical objects via deformations of P-objects. — Let f: X — C and FE €
D(X) be as before, and assume A(E)-x(X) = 0. Note that j.F is not spherical.
In fact we have the distinguished triangle

E[l] — Lj*j.E — E “25%) o,

by [5, Prop. 3.1]. Hence we have the decomposition Lj*j.F = E @ E[1], and
for 0 < k < 2n+ 1 we calculate
Ext% (j.E, j,E) = Ext% (Lj*j.E, E)
=~ Ext% (E, E) ® Ext®" ' (E,E) = C.

As in the previous section, we are going to consider deformations of j,E in
X. The moduli theories of complexes were carried out by [6, 9]. Following the
notation used in [6], we consider the functor Splepxy o from the category of
locally noetherian schemes over C to the category of sets,

Splepxy ;o (T)
F* is a bounded complex of coherent sheaves on Xr
:= { F* | such that each F* is flat over T and for any t € T, /N
Extk, (F*(t), F*(t)) = k(t), Exty (F*(t), F*(t)) =0
Here

X=X xc T, f'(t):z F* Q7 k(t),
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and F* ~ F’'* if and only if there exist £ € Pic(T), a bounded complex of
quasi-coherent sheaves G* and quasi-isomorphisms G* — F*, G* — F'* ® L.

Let Splcpx{;ﬁ s be the associated sheaf of Splepxy ¢ in the étale topology.
M. Inaba [6] showed the following:

THEOREM 4.2 (see [6]). — The functor Splcpxig/c is represented by a locally
separated algebraic space M over C.

Let S,, = SpecC[t]/(t™*1) be as before and v: S; < C be an extension of
0 — C. Let r be the restriction,

r: Splepx% /o () — Splepx¥ ¢ (0).

By the assumption A(E) - k(X) = 0, we have r~1(E) # @. Moreover
by [6, Prop.2.3], there is a bijection between r~'(E) and Extl (E,E),
which is zero. Therefore the map Th g — Tc,0 is an isomorphism, hence
dim M <1 at [E] € M. Note that by taking push-forward along the inclusion
X xcT — X x T, we get the morphism of functors:

§: Splcpxgg/c — Splcpxif/so .
We put the following technical assumption:

The morphism § gives an isomorphism between connected com-

(%) ponents of both sides, which contain F and j.FE respectively. Let
[E] € M’ C M be the connected component. We assume M’ is a
zero-dimensional scheme.

Note that we can write M’ = S,,, for some m. Let
X !ZXXCMIZXXCSM

and £ € D(X,,) be the universal family. We use the following notations for
morphism:

/
XmLx Xm$XxSmLSm
AN
smTc, XTX X.

If there is no confusion, we will use the same notations for n < m. We show
the following proposition:

PROPOSITION 4.3. — The object £,.€ € D(X x Sp,) is Ry, -spherical.
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ON A CERTAIN GENERALIZATION OF SPHERICAL TWISTS 129

Proof. — Since m, ¢, = k£ and Li'*Z*S ~ 4.F, we have to calculate
Ext’ (k.€, 7« F). By the assumption (%), we cannot deform £,£ to (m + 1)-th
order. For n < m, let &, := E|x, € D(X,) and &, := k.&, € D(X). We
consider distinguished triangles:

’

(3) Enc1 — En — Ju B = Eua[1],
(4) GoB — En — En_1 =5 jLE[1].

Then by the argument of [13, Prop. 3.13], we can see that the composition
enoel i B — En_1[1] — j.E[2]

gives the obstruction to deforming £.&, to (n + 1)-th order. If E is a sheaf,
this is just [13, Prop. 3.13] and we can generalize this by replacing the exact
sequences in [13, Prop. 3.13] by the exact sequences of representing complexes.
We leave the detail to the reader. Hence e,, o€, # 0 and e, o€, = 0 for n < m.
Applying Hom(*, 5, F) to the triangle (3), we obtain the long exact sequence,

Exty (j.E, j.E) — Ext% (En, j. E)
— Ext%(E,_1,j+E) — Ext%(j.E, j.E) = C.

Then using the above sequence and the same argument as in Theorem 3.1, we
can conclude Ext} (k.E, j. E) = 0.
Next we use the existence of the distinguished triangle [1, Lemma 3.3]:

E[l] — LE*k.E — € — &2
Pulling back to X, we have the triangle
(5) E[l] — Lj*k.£ — E -2 E[2).

Since Ext% (E, E) is one dimensional, § is zero or non-zero multiple of h. As-
sume 0 = 0. Then Lj*k.£E =2 E @ E[1], and

Extly (k.&, j.B) 2 Exty (Lj*k.€, E)
~ Ext% (E, E) @ Hom(E, E) = C,

which is a contradiction. Hence we may assume § = h. Applying Hom(x, E')
to the triangle (5), we obtain the long exact sequence

— Extl (E, E) — BExt% (Lj*k.&, E) — Ext'T (B, E) - Ext{' (B, E) — .
By the definition of P"-object, we obtain
C ifi=0o0ri=2n+1,

Ext’ (k.&, j« E) = Exth (Lj* k., E) =
0  otherwise.
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REMARK 4.4. — Assumption (*) is satisfied if E is a sheaf and dim M’ = 0.
In fact suppose ¢.€ extends to a S,,41-valued point of Splcpx‘;; /So- Then

as in [13, Prop. 3.13], there exists &,41 € Coh(X) such that there exists a
morphism of exact sequences of Oy-modules:

0 Smfl gm ]*E 0
T T }d
0 £~ Emin . E 0.

An easy diagram chase shows &, 11 is a Ox /(t™2)-module for the uniformizing
parameter ¢ € O¢ 9. Moreover we have t - &, 11 = Imv. Therefore the map

Emt1 ®0p(tm+2) (£) — Emr

is a morphism from Em onto Im v = £,,, hence injective. Then [13, Lemma 3.7]
shows &,,41 is flat over Oc,0/(t™2) and gives a S, ; 1-valued point of Splepx§; -

P-twists and R-spherical twists. — By Proposition 4.3, we have the associated
functor Ty, g: D(X) — D(X) under assumption (x). The next purpose is to
show the existence of the diagram as in [5, Prop. 2.7]. We use the following
notations for morphisms:

XxcX XxX, MXxSmxX

\ / d Jex

X x X —5 X X X s X o X s ¥ x X

SRS

X X,
X i k
X XS, xX X X3,

X xS,
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ON A CERTAIN GENERALIZATION OF SPHERICAL TWISTS 131

THEOREM 4.5. — The functor Ty, ¢ fits into the following commutative dia-
gram:

D(X) I, D(X)

PEJ JTe*s

D(X) —— D(X).

Proof. — We try to imitate the argument of [5, Prop. 2.7]. First we construct
the morphism

~ . L
a: k(i€ ® 3€)[-1] — ALOx
in D(X x¢ X). This is constructed by the composition of ks tr,
~ ~ . L ~
katr: k(i€ ® 3E)[—1] — kA Ox, [—1] = ALk, Ox [—1],

with the morphism ALk,Ox [—1] — A,Ox obtained by applying A’ to the
exact sequence,

0 — Ox — Ox(Xy) — k.Ox, — 0.

Let £ := Cone(a) € D(X x¢ X). Applying Chen’s lemma [4], it suffices to
show

. _ L L
1L 22 Cone (Rp13. (05 ® T'Ox) ® p3glil) == AOx), LIL2H.

Here p is the morphism constructed in the proof of Theorem 2.3 and H is the
kernel of Pg. First we check ¢,£ = Cone(u). Note that 'Oy = Oxxs,, and
0EXY.E [—1] by the duality isomorphism. Hence we have

Rpia. (p12(2€ & 7'0x) & piabe€) = Rpug, (pialef & p3abo)[—1]
& Rpya { (¢ x id) 1€ & (id x £),73 Y [~1]
> Rpys. (id x £), {L(id x £)* (€ x id),r€ & r5€}[~1]
~ Rpys,(id x £), (£LLE *ri& é riE)[—1]
& Rppan(id x 0.0 (LE 1 E & LE*r38)[1]
> (g1 & 3€)[-1].
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Here r1, 5 are defined by the fiber squares:

xoxx 2% s wx axx, % s xa

l pul J P&{

XmﬁXxSm, Xm—z>X><Sm

Under the above isomorphism, we can check ¢, = . Hence £, £ = Cone(p).
Next we check L7*L = H. Note that we have

L7*L£ = Cone(Lj*F (¢3€ ® 36)[~1] 5 Lj*ALOx = A Ox),

and there exists the distinguished triangle

Gi€ @ GiE[-2) — ai€ & 65€ — LR R (ai€ © g3€)[-1,
as in [1, Lemma 3.3]. Then applying L7*, we have the triangle

BRE[-2 " ERE — L7 k(@€ ® ¢€)[-1].
We can easily check the following:
Exty, x(EXE,EXE)
= (Ext% (E,E) ® Ext% (E,E)) ® (ExtX (E, E) ® Ext% (E, E)).

Hence we can write u = a(h X id) 4+ b(id X h) for some a,b € C. On the other
hand, we can check that the following diagram commutes:

. . L~ L
ERE[-2] " — ERE — Lj'k. (€2 ¢3€)
X J]LJ (67
Ao Ox.

This is easily checked using the same argument of [5, Prop. 2.7], and leave the
detail to the reader. Therefore tr ou = 0, which implies b = —a. Hence if we
show u # 0, then we can conclude L7*L = H. Assume u = 0. Then we have
the decomposition

T ag L ~ (T -
(6) L7"k(g1€ © :€)[-1] = (EX E) © (EX E)[-1].
Since Homy x x (E X E[—1],A,Ox) = 0, the morphism
~ . L
Lj"a: Lj k. (q1€ ® ¢5€)[~1] — A0.Ox
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is a non-zero multiple of (tr,0) under the decomposition (6). Let S € D(X x X)
be the cone of the trace map:

ERE 5 ApOx — S.
Then we have the decomposition Lj*L = S @ (E X E), and the following

diagram commutes by Chen’s lemma [4]:

Ly*L
D(X) 2X=% D(X)

W

D(X) —— D(X).

In particular we have
]*q)ﬂf(]:»g((E) = Tpe(j«E) = j E[1 — dim X],
which is indecomposable. It follows that
3 ((E)=0 or ®E®E(E)xo0.

Since @f}'%fx (F) 2 RHom(E, E)®c E, the latter is impossible by the definition
of P"-object. Hence ®%;_, (E) must be zero. Since we have the distinguished
triangle:

RHom(E,E)®c E — E — (Pf(_,X(E) =0,
we have RHom(E, E) ®c E & E. But again this is impossible by the definition
of P"-object. O
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