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ENTROPY MAXIMISATION PROBLEM FOR
QUANTUM RELATIVISTIC PARTICLES

BY MIGUEL ESCOBEDO, STEPHANE MISCHLER & MANUEL A. VALLE

ABSTRACT. — The entropy of an ideal gas, both in the case of classical and quantum
particles, is maximised when the number particle density, linear momentum and energy
are fixed. The dispersion law energy to momentum is chosen as linear or quadratic,
corresponding to non-relativistic or relativistic behaviour.

RESUME (Mazimisation d’entropie pour particules relativistes quantiques)

L’entropie d’un gaz idéal de particules, classiques ou quantiques, est maximisée
lorsque la densité du nombre de particules, 'impulsion et ’énergie sont fixées. La loi
de dispersion qui relie I'impulsion et ’énergie est linéaire ou quadratique, selon que le
comportement des particules est non relativiste ou relativiste.
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1. Introduction

We are interested in the maximisation problem for the quantum or non-
quantum entropy functional

(1.1)  H(g):= /R3 h(g(p))dp, h(g)=7""(1+7g)In(1+7g) —glng,

where 7 € R, under the relativistic or non-relativistic moments constraint

N(g) 1 N
(1.2) (P(g)> :=/ < p )g(p)dpz <P>,
E(g) BS \ £(p) E

where N > 0 is the total number (or mass) of particles, P € R? is the mean
momentum and E > 0 is the total energy. Depending of whether particles
are considered to be relativistic or not the energy £(p) of a particle having
momentum p € R? is defined by

(13 () = Eun(p) = 122

2m
for a non-relativistic particle, and by

(1.4) E(p) = £ (p) = yme®, v = /14 42

for a relativistic particle. The entropy H corresponds to the classical Boltz-
mann-Maxwell entropy (of non quantum particles) when 7 = 0, it corresponds
to the Bose-Einstein entropy (of quantum particles of Bose type) when 7 > 0
(and for the sake of simplicity we will restrict ourself to 7 = 1, in the sequel)
and it corresonds to the Fermi-Dirac entropy (of quantum particles of Fermi
type) when 7 < 0 (and again, we only consider the case 7 = —1).

Considering one of the above entropies H and one of the above energies £
we are therefore looking for a density function G > 0 satisfying the moments
constraint (1.2) and
(1.5) H(G) = max H(g)

g satisfying (1.2)

The above entropy maximisation problem is a very fundamental problem of
statistical physic since its solution G corresponds to the microscopic momentum
distribution of a gas of particles at the rest whose macroscopic observable mass,
momentum and energy are N, P and F. The density distribution G is called
the thermal equilibrium state. Out of rest, the evolution of the momentum
gas distribution is usually discribed by a Boltzmann equation. The equilibrium
state G is then (at least formally) a steady state to the associated Boltzmann
equation. Moreover, any solution to the Boltzmann equation associated to an
initial datum of macroscopic mass N, momentum P and energy F is expected
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ENTROPY MAXIMISATION PROBLEM 89

to converge to the corresponding equilibrium state G in the large time asymp-
totic. For more details on this huge and difficult subject, we refer to [4], [22] and
the many references therein for the classical Boltzmann equation, to [7], [18],
[19] for the Fermi-Boltzmann equation, to [17], [11] for the Boltzmann equation
associated to a gas of Bose particles and to [14], [8], [15], [1] for the relativistic
Boltzmann equation. We also refer to [12] for a general mathematical presen-
tation of the Boltzmann equation in a quantum and relativistic framework. A
classical physical reference is [16].

A first simple and heuristic remark is that if g solves the entropy maximi-
sation problem with constraint (1.2), there exists Lagrange multipliers p € R,
% € R and 3 € R3 such that

(VH(g), ) = /Rs W(@)edp = (B°E(p) = B-p— 1)
for all ¢, which implies
In(1+7g) —Ing = 3°E(p) — B-p— 1,
and in turn leads to
1

(1.6) p) = Zr— with v(p):=p"m) = F-p—p.

The function g is called a Mazwellian when T = 0, a Bose-Finstein distribution
when 7 = 1 and a Fermi-Dirac distribution when 7 = —1.

Let us consider for a moment the case 7 = 0, i.e. the classic (non-quantum
non-relativistic) maximisation problem. In that case, the following result is
known (and is almost trivial).

THEOREM 1. — For any measurable function G > 0 on R3 such that
Py .
R3 2

for some N,E >0, P € R3, the following assertions are equivalent:
(i) G is the Mazwellian

My pg=Mp,u,0] =

P ep (_ p — UIQ)
(270)3/2 20

where (p,u,O) is uniquely determined by
N=p, P=pu, E= g(|u|2+3@);
(ii) G is the solution of the mazimisation problem
H(G) = max{H/(g) ;g satisfies the moments constraint (1.2)},
where H(g) = — fRS glog g dp stands for the classical entropy.
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Our main result is the extension of Theorem 1 to the quantum non-
relativistic and quantum relativistic framework, or in other words, we solve
the maximisation problem (1.1)-(1.5) in the most general case. Before stating
it, we would like to make some elementary remarks to convince the reader how
different are the non quantum, the Bose and the Fermi cases.

On the one hand, the natural functional spaces to look for the density f
are the spaces of distribution f > 0 such that the “physical” quantities are
bounded:

/Rsf(l—i-é'(p))dp<oo and  H(f) < oo.

In the Fermi case where 7 = —1, h(f) = 400 if f ¢ [0,1] and so H(f) < o0
provides a strong L bound on f. While in the Bose case, i.e. for 7 =1, one
has h(f) ~In f when f — oo, so that the entropy bound does not give any
additional information than the moments bound. This provides very different
conditions since we obtain:

LN LlogL in non quantum case, relativistic or not,
fe LinL> in the Fermi case, relativistic or not,
L! in the Bose case, relativistic or not,
where

rh= {1 e L' ®): [ (14 o) )] db < oo}

and s = 2 in the non relativistic case, s = 1 in the relativistic case.

On the other hand, it was already observed by Bose and Einstein (see [2],
[9], [10]) that for systems of Bose particles in thermal equilibrium a careful
analysis of the statistical physics of the problem leads to enlarge the class of
steady distributions to include also the solutions containing a Dirac mass. More
precisely, the class of Bose distributions g given by (1.6) has to be enlarged to
the class of generalized Bose-Einstein relativistic distributions B defined by
(1.8) B(p) = b+ adp L

— 3
A{C_m aZO,pMCER.

+ adp

Mc’

Moreover, and still concerning the Bose case, considering any fixed vec-
tor a € R? and any approximation of the identity (¢,) centered in a, it is
shown in [3], see also Lemma 2.0, that for any f € L} the quantity H(f + ¢,)
is well defined and

Im N(f+ap,) =N(f)+a and lmH(f +¢,) =H(f) as n— oo.

This indicates that the entropy H may be extended to nonnegative measures
and that, moreover, the singular part of the measure does not contributes to
the entropy. We will come back to this question in Section 3 below.

In the Fermi case, the strong uniform bound entailed by the entropy on the
Fermi distributions leads to include in the family of Fermi steady states the so
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called-degenerate states. Therefore, one has to enlarge the class of Fermi-Dirac
states given by (1.6) to the class of distributions (see for instance [21])

1
(1.9) F(p) = v + 1

Our main result reads as follows.

and  x(p) = Ligog(p)—pp<i}-

THEOREM 2. — For every possible choice of (N, P, E) such that the set
K ={9; Jps9(1,p,E(p))dp = (N, P, E)},

is non empty, there exists a unique solution G to the entropy mazimisation
problem

GeK, HG) =max{H(g); g€ K}.
Moreover, G is the unique thermal equilibrium, i.e. G = g given by (1.6) in the
nonquantum case, G = B given (1.8) in the Bose case, and G = F given (1.9)
in the Fermi case, satisfying the moments constraint (1.2).

We refer to Theorems 2.1, 3.2 and 4.1 for more precise statements. It is
of course looked as an evidence, in the physicist community, that equilibrium
states (1.6), (1.8) and (1.9) are the solution to the associated entropy maximi-
sation problem. Nevertheless, in the quantum case, we were not able to find
a convincing proof of this fact. Indeed, it is not clear at all how to obtain an
explicit expression of the thermal equilibrium G (i.e. values of 8%, 3, u,...)
as a function of the macropic quantities NV, P, E. Our aim is to give here a
rigorous and detailed proof of it.

The paper is organized as follows. In Section 2 we treat the relativistic
non quantum case. In fact, this case was completely solved by R. Glassey and
W.A. Strauss in [14], see also R. Glassey in [13] and [5]. However, we present
here another proof, which uses in a crucial way, the Lorentz invariance and may
be adapted to the quantum relativistic case.

We then deal with the Bose-Enstein gas in Section 3 and with the case of
a Fermi-Dirac gas in Section 4. For each of these two kinds of gases, we first
consider in detail the relativistic case and then briefly the non relativistic case,
which is simplest since, by Galilean invariance, it can be reduced to P = 0.

Acknowledgments. — We would like to thank A. Chambolle for useful discus-
sions on maximisation problems and J.J.L. Velazquez for his encouragement
and helpful comments during the elaboration of this work.

2. Relativistic non-quantum gas

In this section, we consider the Maxwell-Boltzmann entropy
(2.1) H(g) = —/3 gIngdp,
R.
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of a non quantum gas. From the heuristic argument presented in the intro-
duction, the solution to (1.2)—(1.5) is expected to be a relativistic Maxwellian
distribution, which means that it is expected to be of the form

(2.2) M(p) = e~ ##"+00m,
where we introduce the notation
pO — g(p) —=c 02m2 + |p|2’ D c R3'

Our result is the following.

THEOREM 2.1. — (i) Given E,N > 0, P € R3, there exists a least one func-
tion g > 0 which realizes the moments equation (1.2), (1.4) if, and only if,
(2.3) m?c®N? + |P|? < B~

When (2.3) holds we will say that (N, P, E) is admissible.

(il) For any admissible (N, P,E) there exists at least one relativistic
Mazwellian distribution M given by (2.2) corresponding to these moments, i.e.
satisfying (1.2).

(iii) Let M be a relativistic Mazwellian distribution. For any function g > 0
with the same moments, i.e. satisfying

1 1
(2.4) /Rg <]§)>g(p)dp = /}Rs (;)M(p)dp,

one has
(25)  H(g)— HM) = H(g| M) = /R [gm L — g+ ] ap.

Moreover, H(g| M) <0 and vanishes if, and only if, g = M.

(iv) As a conclusion, for any admissible (N, P, E), the entropy problem
(1.2)—(1.5), (2.3)—(2.1) has a unique solution, and this one is the relativistic
Mazwellian constructed just above.

REMARK 2.2. — The relativistic Maxwell distribution M belongs to L!(R?)
if, and only if, 3° > 0 and || < B°. In this case, all the moments of M are
well defined and M takes its maximum at the point p,,. such that

Duic B me(
Z = —, and thus p,. = ———"
i P T VBE-aP

We do not prove this claim, since we do not need it in the sequel and its
proof is the same as that of Lemma 3.1 that we present in the next subsection.

We split the proof of Theorem 2.1 in three parts corresponding to the three
first intermediary results (assertions (i), (ii), (iii) of Theorem 2.1). The last and
main result (assertions (iv) of Theorem 2.1) is then an immediate consequence
of the preceding ones.

TOME 133 — 2005 — N© 1



ENTROPY MAXIMISATION PROBLEM 93

Proof of Theorem 2.1, (i). — Since F(p)/N dp is a probability measure whose
support is not a single point, and because the function r — C(r) = vVm?2¢? + r?
is strictly convex, the Jensen inequality (which is therefore a strict inequality)

implies
P2 F(p) F(p) _E
2.2 4 |2 |7 = £\ fv)_ £ 0
\ e +‘N‘ ( Rgdep) </Rgc(p)Ndp N

Proof of Theorem 2.1, (ii). — Given (N, P, E) admissible, we look for a rel-
ativistic Maxwellian M (which means that we look for 8° > 0, 3 € R?
and p € R) such that

(2.6) N(M)=N, PM)=P, EM)=E.

By symmetry the second equation implies that § must be collinear to P. There-
fore, in all the sequel, P will denote the norm |P| instead of a vector, so that
the second equation as to be understood as a scalar equation.

The idea is now to reduce the system of three scalar equations (2.6) to a
system of equations with less unknowns. A first way is to eliminate the pu
dependence since the term e * can be factorised. This is the most classic way,
which is used for instance by Glassey [13], but we do not follow it, since we do
not know how to generalize it to the quantum case.

We begin introducing two new unknowns (3, u) with 3 > 0, u € R3, |u| < ¢,
which correspond to the 4-vector (5%, 3) € R* with |3| < 8°, by the following
bijection

@.7) wim ﬁ—ﬂ B = (82 - |82,

and thus
0_.3 g_1Bu v
P =aB, B=T where yim ey

From the results recalled in the Appendix, we know that there is a Lorentz
transformation A, associated to the velocity u such that

BY_ A\ (B
()=o)
In the initial frame, the identities (A.12), (A.13), (A.14) written for M give

N(M) = All\/Ba _
(2.8) E(M) = Ay + A3(7f)?,
P(M) = A3(vB)(vBu/c),
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= d P(¢) = dp,

/Rsﬂﬁp’ (9) /quﬁpp
g e [,

B0) = [ aap. Glo)=mie [ o7

and where A; are invariant by change of frame under a Lorentz transform, see
Lemma A.5.
Let us now introduce the Maxwellian M in the rest frame, i.e. we define

where

(2.9) M(p) = e P7°—n,

In the rest frame, identities (A.12), (A.13), (A.15) written for M are
(-/\7) - 1ﬂ7 )

(2.10) E(M) = As + A3f37,

Inverting the two systems, we get

{Aﬁ:N(M)/% {A15=N(/\Z),
Ay = E(M) — P(M)c/u, and { Ax=—-H(M),
Ay + A3F° = E(M) — P(M)u/c

where we have defined
2
(2.11) 1) = 3 (B@) - 6@) = [ o L5ap

Therefore, the fundamental relation between the relativistic Maxwellian M
in the initial frame and the reduced relativistic Maxwellian M in the rest
frame is

N(M) = N(M)y(u),
(2.12) P(M)c/u — E(M) = H(M),
E(M) = P(M)u/c = E(M).

To find M such that (2.6) holds is therefore equivalent to find 3 > 0, u € R
and u > 0 such that

_ {E:E(B,uHPu/C (=268, 1),
' N = N3, p)y(u) (=: 3N (B, 1),

where v is given by

2.14 =u(B,p) = P

(2.14) R o 773

and where we have defined
LB, 1) = LIM) = L(e P")er
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for L =N,E,G,H
Existence of a solution to (2.13), (2.14) is given by the following result which
we state below and prove at the end of the section.

LEMMA 2.3. — 1) For all n € R the function (., 1) : R% — R is continuous,
decreasing and such that

lim Xg(B, 1) = +oo and  lim Xg(3,u) =0.
B—0 B—+o0

Therefore, there exists a unique 3 = B(u) > 0 such that Xp(3,u) = E for
any p.
2) The function B : R — R is continuous, decreasing,

lim B(u) =+4+oc0 and lim B(u) =0.
J——00 p— 400

3) The function S : R — R, Sn(u) := Sn(B(p), 1) is continuous and
decreasing. Moreover,

lim Yy(p) =V E2—P2/me and lirf Y (p) =0.
p——00 H—T 00
In pa_rtz'cular, under the admissible condition (2.3), there exists u* € R such
that X(u*) = N.
As a conclusion, setting p = p*, 8 = B(p*), v = w(B(p*), u*), we have
constructed a solution (3, u,w) to (2.13) and (2.14).
Assertion 3) of Lemma 2.3 states precisely that there exists a relativistic

Maxwellian M satisfying (2.6), and this concludes the proof of assertion (ii)
of Theorem 2.1. O

Proof of Theorem 2.1, (iii). — Since In M = —3%" + 3. p — pu and using the
moments equation (2.4), we get

H(g| M) :—/Rgglngdp—l—/RSglnMdp—i—/RS(M—g)dp

:—/ glngdp+/ MInMdp = H(g) — HM).
RS RS

Furthermore, the function hs(t) := ¢In(t/s) + s — t satisfies h,(t) = In(t/s)
and hY(t) = 1/t so that hs is strictly concave and hs(t) < hs(s) = 0 for
any t # s. O
Proof of Lemma 2.3, (1). — For L = N,E,G, H the function L: R — R,
B+ L(B) is C!, decreasing, lim L(3) = +oo when 3 — 0 and lim L(3) = 0
when 3 — +oo. Then, u(f3, ) : R%* x R — R is continuous, increasing with

respect to the two variables, lim u(B, ) =0 when § — 0 £for fixed p) and when
pu — —oo (for fixed ), limu(f, ) = ¢cP/E (< ¢) when 8 — +oo (for fixed p)
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and when p — +oo (for fixed 3). Last, y(3, p) == v(u(B,p)) : R x R — R is
continuous, increasing with respect to the two variables, lim (3, ) = 1 when
B — 0 (for fixed p) and when p — —oo (for fixed 3), lim (8, u) = v(cP/E)
(< +00) when 3 — +oo (for fixed i) and when p — +oo (for fixed 3).

We come now to the study of the function Xz. We clearly have X : R% X
R — R is C! and the derivate ¥, with respect to the variables B or p satisfies

(215) Sp(Fp) = ol (B ) + /(B0

— 5 —Pc M B
- cf P)(E+H(5,u))2+E(67M) _
- (MY e + G (5 + L) - 5)] <0

since E/P > 1, E'(B,p) < 0 and G'(B,p) < 0. This implies that Yg is
decreasing in both # and p. Moreover lim Xg(3, u) = +0o when 3 — 0 (for
fixed ;1) or when p — —oo (for fixed 3), lim X5 (3, ) = P?/E when § — 400
(for fixed 1) or when p — +oo (for fixed 3). Since E > P and then E > P?/E,
for any p € R there exists a unique 3 = 3(u) such that Xg(5,u) = E. O

Proof of Lemma 2.5, (2). — By the implicit function theorem, we know that
p— B(u) is C* and moreover

=/ o _82)5*/8#

)

so that 3 is decreasing. Assume by contradiction, that there is 3, > 0 such that
B(u) = B, for any pu € R. Then L(B(u), u) < L(B,,p) — 0 when p — +00
and therefore lim Xz (3 (i), u) = P?/E < E which is in contradiction with the
definition of 3(u). Therefore lim 3(u) = 0 when pu — +oo. Next, assume by
contradiction that there is B* < +oo0 such that B(u) < B* for any p € R.
Then Sg(3(1), 1) > E(B(u), 1) > E(B", 1) — 400 when pu — —oo which is
again in contradiction with the definition of 3(u). Therefore lim B(u) = +oo
when p — —oo. O

Proof of Lemma 2.3, (3). — 1t is clear that ¥ is continuous as a composition
of continuous functions. Since |p| < p® < |p| + me, we have the estimates

_ _ —p
N(B,p) < e’“/ e APl dp = Oy s
R3 I) ~
S

_ F1 e
E(B,p) > e‘“/ [ple=PUpITme) qp = Cp———f—,
R3 1)
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where Cy = [ps e7*ldz and Cp = [y, |z|e~1*Idz. Then, using E > E(3(n), p)
for any p, it yields

e #* rcP Cn - Fme (P
EN(H)SON?V(E)SEC—EW#)G 7(5)—’0
when p — oo (and thus lim 3(u) = 0).

We now claim that, there is > 0 and a sequence (p,,) such that p,, — —oo
and

(216) Mn(p) = efa(ﬂn)pgfﬂn 30[50

n—-+o00

in the sense of measures, and in fact, most precisely (M,,,¢) — a¢(0) for
any ¢ € C(R3) such that (1 + |[p|=™)p(p) — 0 when p — oo for some m > 0.
Indeed, on one hand if for some p € R*\{0} we have M,,(2p) > 6 > 0 for
any n > 0, then for any p € B(0, |p|) we have

M, (p) = M(gp)eﬁ(unx&ﬁ)o—po) > 9P ((20)°—P") __, 4 o

so that lim E(8(pn), tn) = “+oo which is in contradiction with the bound
E(B(ptn), pn) < E. Therefore, lim M, (p) = 0 when n — +oo for any
p € R®\{0}. On the other hand, fix p € R3\{0}. We have already proved
that there is some © such that M, (p) < © for any n > 0. Therefore, for
any p € R3 such that |p| > |p| we have
M (p) = M(p)e P "= < @o=("=7),
Combining this with the bound E(B(pn), ftn) < E, we get (2.14) and in par-
ticular
th(B(,Un)a ,Un) =a, hmH(B(,un)v,un) =0, hmE(B(,Un)a ,Un) = mcea.

Now, passing to the limit in (2.11)—(2.12) we get E = mca + P?/E so that

(E) _E?-p? 1 _ VE?2—P?
" mcE ,/1_(P/E)2_ me

O

lim Yy(u) =ay

pu——00 E
3. Bose gas

We consider in this section the case of Bose particles. Let us start with the
proof of the following remark, already stated in the introduction.

LEMMA 3.0. — Let a € R? be any fived vector and (©n)nen an approzvimation
of the identity:

(©n)nen is a non negative sequence of D(R?) such that ¢, — 84 in D'(R3).
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For any f € L} and any n € N, the quantity H(f + ) is well defined by (1.1),
and

ImH(f +¢n) =H(f) as n— 0.

Proof of Lemma 3.0. — Suppose indeed, for the sake of simplicity that ¢, =0
if |p — a| > 2/n. Therefore:

H(f‘f’@n) :/ .y h(f(pvt);p)dp
! lp—al<2/ h((f(p:t) + en(p). p) dp.

Since |(1 4 2)In(1 4 2) — zInz| < ¢/,

/ [P (f(p,t) + on ()| dp
lp—a|<2/n 2 12
= (F.1) + eulp)) dp) 0,
|p— a|<2/n
Finally,
’/h(f(p,t),p)dp - h(f(p,t)m)dp‘
R3 lp—al>2/n
< |h(f(p,t),p)|dp — O,
lp—al<2/n
which ends the proof. O

Lemma 3.0 thus indicates that the expression of H given in (1.1) may be
extended to nonnegative measures and that, moreover, the singular part of the
measure does not contributes to the entropy. We refer to [6] and [11] for a
detailed proof of this claim. More precisely, for any non negative measure F' of
the form F' = gdp + G, where g > 0 is an integrable function = and G > 0 is
singular with respect to the Lebesgue measure dp, we define the Bose-Einstein
entropy of F' by

(3.1) H(F) = H(g) = [ [(1+9)1n(1 +9) — glng] dp

On the other hand, the heuristic argument presented in the introduction has
shown that the regular solution to the maximum entropy problem should be
Bose relativistic distributions

(32) W)= with v() = 8% Bp

The following result explains simply where the Dirac masses have now to be
placed.
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LEMMA 3.1. — The Bose relatwistic distribution b is non negative and belongs
to LY(R3) if, and only if, B° > 0, |B| < B° and p > ng with pg == —mep,

B >0 and 52 = (B°)2—|BJ2. In this case, all the moments of b are well defined.
Finally,

me(
(3.3) v(p) > Vpye) =0, VP # Puyo i= —mm .
VB2 — |8l
Proof of Lemma 3.1. — First, a necessary and sufficient condition for b to be

non negative is that v(p) > 0 for any p € R3. Taking p = te, where e € S,
B = |Ble we see that limv(te)/t = 3° — || when t — oo, and therefore |3| < 3°.
We want now to prove that b € L*(R?) implies that 8° > 0 and |3| < 8°. The
fact 80 > 0 is obvious: in the contrary, 3 = 3° = 0 and b(p) is a positive
constant, and thus do not belongs to L*(R?).

Let first assume, by contradiction, that
(3.4) B=p3%, ecS? and [’mc+pu=0.

Performing a spherical change of coordinates with e-axes, i.e. writing p =
ercosf + - - -, we obtain

dp orn r?sinfdfdr
N(b) B /]RS» eﬁo(pofp'e)JFN —1 - 27T/0 /0 eﬁo(f(’r)frcose)JrM -1
> 9 ot r?drdt > 9 > 2 r?drds
Z aT o )1 eBl(metr—tr)+pu _ 1 — i A oP0rs oB0metpn _ |

- /TO/SO r2drds
> o S
o Jo 28%s

choosing sy and rg small enough. Since the last expression is +oco, we see
that (3.4) can not hold.

Now assume, again by contradiction, that
(3.5) B=p%, eecS? and [mc+p>0.
Writing p = te + ¢ with ¢ € R3, |¢g| <1 and ¢ L e we compute

dp dg
N(b) = > | dt
(b) /R3 eB(P°—pe)+tp 1 —/]R /}1@2 B (mety/t2+al2—t)+u _

= dt .- +oo dt
= e P VET D ometn 1 O f, eBmerm/z Z ]

choosing ¢ large enough. Once again the last expression is 400, so that (3.5)
does not hold. Finally, since 3°mc+p = v(0) > 0, we must have |3] < 8°. From
the preceding computations, we deduce that limv(p) = +oco when |p| — +o0
and therefore v(p) reaches its minimum at a point p,,., which satisfies

vpy(pMc) = ﬁo Duc - p=0.

Vm2e? +[py 2
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The unique solution of this equation is p,,. given in (3.3). As a conclu-
sion, we get v(p) > v(p,.) for any p # p,,. and the condition v(p,,.) > 0
implies p > —mcp. O

We define now the generalized Bose-Einstein relativistic distribution B by

(3.6) Blp) =btady,. = a7 T e
with
(3.7) Vp#pye, vp)=p8"0—B-p+p>vip,.) >0

and the condition av(p,,.) = 0.

For the Bose case, our main result reads as follows.

THEOREM 3.2. — 1) Given E,N > 0, P € R3, there exists at least one mea-
sure F' > 0 which realizes the moments equation (1.2) if, and only if,
(3.8) m?c?N? + |P|? < E2.

When (3.8) holds we will say that (N, P, E) is admissible.
2) For any admissible (N, P, E) there exists at least one relativistic Bose-
FEinstein distribution B corresponding to these moments, i.e. satisfying (1.2).
3) Let B be a relativistic Bose-Finstein distribution. For any measure F' > 0
satisfying

1 1
(3.9) /R 3 < 50) dF(p) = /R 3 ( 50) dB(p),

one has
(3.10) H(F)—H(B) = Hi(g|b) + H2(G | b)
where

o n1+g_ 09
. (g|v)= [ (09t —gn?)d

1
Hy(Glb) = — / v(p) dG(p).

R3
Moreover, H(F|B) < 0 and vanishes if, and only if, F = B. In particular,
H(F)< H(B) if F £ B.
4) As a conclusion, for any admissible (N, P, E), the entropy problem (1.5),
(3.1), (1.4) has a unique solution, and this one is the relativistic Bose-Finstein
distribution constructed just before.

The proof of part 1) of Theorem 3.2 is the same as the proof of (i) in
Theorem 2.1 except that the Jensen inequality may be not strict since we deal
with measures which can be concentrated at a single point. We present the
proof of parts 2) and 3) pointing out the main differences with respect to
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the proof of (ii) and (iii) of Theorem 2.1. Then point 4) is an immediate
consequence of the previous steps.

Proof of Theorem 3.2, 2). — We use the same notations as in the proof of part
(ii) in Theorem 2.1. Given (N, P, E)) admissible, we look for B = b+ adp,
such that

N = N(B) = N(b) + o,
(3.12) E =E(B)=E(b)+ ap?n’c,
P = P(B) = P(b) + ap,.

We introduce again the variables (3,u) and the Bose-Einstein distribution in
the rest frame

- 1
b(p) = ——
() ePr+u — 1

We easily verify that

Do = MU, p?mc = mey.
By (2.8), with M replaced by b and M replaced by b, to find B such that (3.12)
holds is equivalent to find (8, u, u, ) which satisfies

N = N3, u)y +a,

E — Pu/c—amc/y = E(3, u),
where now L(f3, jt) stands for L(b). Setting

= cP

u=u(B,p) = B HG )

the system (3.13) is equivalent to

1) =E(B,p) + P/eu(B, 1),

Y8, 1) =~ (u(B, 1)),

(3.14) {

(B, 0) = ame/v(B) + E(B) + P/cu(B)
15 Ty (,0) = N@N(B) + o,

with the notation L(3) := L(B,uz), pz = —mcf as in Lemma 3.1, for any
L = N,E,G,H. The properties of I'p, ¥ and Xy are then summarized in
the following Lemma.
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LEMMA 3.3. — 1) There is a continuous function

B, :[0,N] — (0,+00), &+ B,(a),

such that for any a € [0, N, I'g(B,(a),a) =E , and 3, = B,(a) is the unique
solution of T'g(B,,a) = E.

2) We set pu.:= g (o) = —mef3,(0). There is a continuous function

B: [M*,—I—OO) - (07+OO)7 n— B(N)v

such that Xg(B(n),pn) = E for any p > ., and 8 = B_(u) is the unique
solution _of the equation X g (8, 1) = E. Moreover, the map 3 is not increasing
and lim B(p) = 0 when u — +oo. Last, the function

p— En(p) == SN (B(w), 1)

is continuous on [fi., +00) and im Xy (u) = 0 when p — +oo.

Let us use Lemma 3.3 to conclude the proof of part 2) of Theorem 3.2.
Its proof is postponed to the end of the proof of Theorem 3.2.

End of the proof of part 2) of Theorem 3.2. — In order to obtain the solution
(B, u, p, ) to (3.13) we consider the two cases:

N >Tn(3,(0),0) and N <TIn(3,(0),0).

o If N >T'x(5,(0),0), we remark that
Ly (B, (N), N) = N(B,(N)¥(B.(N)) + N > N.

Therefore, by the intermediary value Theorem there exists a* € ]0, N[ such
that 'y (5, (a*),a*) = N. Therefore, we define

—%

po= B*(a*)v u* = U(ﬁ )7 IU* = 0.

o If N < I'y(B,(0),0), we remark that Yy (1) = I'n(5,(0),0) > N and
lim Xy () = 0 when p — 400, and by the intermediate value Theorem there
exists p* € [fx, +00) such that X (pu*) = N. We define now

B"i=Bph), w=u@,u) o =0

In both cases (6%, p*,u*, ") is a solution of (3.13), and the associated rela-
tivistic Bose state is a solution of (3.12). O
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Proof of part 3) of Theorem 3.2. — Using the conditions on the moments, we
compute

140

H(b):/ n(1+b)dp+ [ bln dp:/ (1 +0)dp+ [ bu(p)dp
R3 R3 R3

R3

= / In(1+b)dp + / (9+G—abd,, )vip)dp
RS RS

1+0b
:/]R?’ln(l—l—b)dp—i—/ﬂ{sgln 5 dp—|—/Rg(G—oz5pMc)1/(p)dp
:/ ((1—|—g)1n(1—|—b)—g1nb)dp—|—/ v(p)dG(p),
R3 R3

from where we deduce (3.10),(3.11). On the other hand, for any y > 0, the
function x — h(z | y) defined for any = > 0 by

z+1
h = DIn—— —zln—,
(e]y) = (@ + 1) 72 —n

satisfies A/ (z |y) = 0 if, and only if, z = y, 1(y|y) = 0 and h(z|y) < O for
any  # y. Thus, H(g|B) <0and H(g|B) = 0if and only if, g = b. Moreover,
from (3.7), we obviously have H(G |B) < 0 and H(G | B) = 0 if, and only if,
G =ady  witha=0if 4> 0and a=m— M(b) if p > 0. O

Proof of Lemma 3.3. — Let us prove point 1) of Lemma 3.3. To this end, con-
sider the function I'g (5, ). Notice first that for L = N, E, G, H the function

L(f3) is nothing but L(P5) where Pj is the distribution
1
P -
B eﬁ(PO*mc) -1

Moreover, the maps L = N, E, G, H are defined on the set

O={(B,n);B>0,p>pz}={Bp;peR, B >p,=max0,—p/me)}.
Since,
L'(B) = dL(_ﬁ) 8—% - mca—I_Ja
dg op op
we obtain that the maps 8 +— L(3) are C', decreasing, lim L(3) = +oco when
B — Bu and lim L(B) = 0 when 3 — +o0c. Moreover for any fixed «

og(B,a) _ [famce’ . Eu' _

A straightforward computation gives

B3)+ D) = 5 - me (1~ LMD 4 (DY Ga e
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and

ameY!'  amu® _
{7(5)} - pcz(m“(ﬂ)(Ha—mcHu) <0,

We deduce that, for any fixed a € [0, N|, the map 3 + I'g(3, a) is C!, decreas-
ing, limI'g(3, a) = +00 when 3 — Bu and

_ P2 _
lIimTg(8,a) =« % + 5ol when [ — 4o00.

On the other hand, for any « € [0, N], the admissibility condition (3.8) on

(N, P, E) gives

(a%f < (ch 1- (P/E)z)2

P\2 P2Z\2
<o (5)) - (5 5.
Therefore, we get imI'g(3,a) < E when 3 — +oo. Using once more the
intermediate value Theorem, there exists a unique 3, = 3, (a) > 8 . such that
E = T'g(B,(a),a). Finally, the function a + [, (a) is continuous (by the
implicit function Theorem, for instance).

Let us prove now part 2). Here the proof is the same as that of Lemma 2.1.
The only difference is that the maps L are only defined on the set

O={(B,n);B>0,p>pz}={Bn); ek, 3> p,=max0,-p/me)}.

Actually, we are only interested by

O, ={(B, W) n>ps, B>5,}.

We prove without any difficulty that for any p > u. and any function L =
E,N,G and H, the functions L(.,pu) : (3,,+00) — (0,400), B — L(3,p)
are C', decreasing, lim L(3, 1) = 0 when § — +oco and lim L(8, u) = 400
when f — Bu' We deduce Xg(.,pn) : (BM,—i—oo) — (0,+00) is C!, decreasing,
lim¥p(8,14) = 400 when 3 — B, and limXg(8,u) = P?/E < E when
B — +00. As a consequence, for any u > u,, there exists a unique 3 = ((u)
such that £ = Xg(8, (1), 1)

On the other hand, one can also verify that for any 3 > 0 and any
L = E,N,G and H, L($,.) : (jtx, +00) — (0,4+00) is C', decreasing and
lim L(B, 4) = 0 when y — +o0o . Therefore, as in Lemma 2.3, (i), one checks
that Yz (3, ) is C' and decreasing in both variables. We deduce that the
function p — [(p) is decreasing and lim 3(p) = 0 when 3 — 4o0. Finally,
Y is continuous and satisfies lim ¥ (1) = 0 when p — +oo0. O
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Nonrelativistic Bose particles. — For non relativistic particles the energy
is £(p) = |p|?/2m. By Galilean invariance the problem (1.2) is then equivalent
to the following simpler one: given three quantities N > 0, £ > 0, P € R3
find F(p) such that

1 N
(3.16) / ( p— P/N )F(p)dp: ( 0 >
B\ |p— P/N|?/2m E —|P|*/2mN

It is rather simple, using elementary calculus, to prove that for any E, N > 0,
P € R? there exists a distribution of the from

1

(3.17) F(p) = calp—P/NIZ1b+ _ | - bi&P/N
with a € R, b € R, v € R, bt = max(b,0), b~ = —max(—b,0) which satis-
fies (3.16).

Once such a solution (3.17) of (3.16) is obtained, the following Bose-Einstein
distribution
1 5 2a L alP]?
(3.18)  B(p) = g + by, 1) =alpl? — T+ (5 +T-)
solves (1.2).
This shows that for non relativistic particles Theorem 3.2 remains valid
under the unique following change: points 1) and 2) have to be replaced by

1') For every E,N > 0, P € R?, there exists one relativistic Bose Einstein
distribution defined by (3.17) corresponding to these moments, i.e. satisfy-
ing (1.2).

Points 3) and 4) of Theorem 3.2 remain unchanged.

It is particularly simple to observe in this case that, for £ > 0 and P € R?
fixed, there is no regular Bose Einstein state for particle numbers N larger than
a critical value N*. This easily follows from the fact that by (3.18),

pl? lq? [P
> _ =
Sl S T ) B
1 pl? s
= — 7(1 P —
@ Jo e 1PN
1 p? 2 3/2 dp 17t
T ab/? Jps elpl? — 1dp—|— |1Pl"a [ g3 elpl® — 1] '

In particular,

1 lp[® 2/5
> | [ 22 —.
a*[E/RgeWQ—ldp} : ao,
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and therefore

dp dg
= < = *
N /R3 ealp—P/N|+b+t _ 1 — /RS eaolql* _ 1 N

4. Fermi-Dirac gas

In this section we are interested in a Fermi-Dirac gas, which means that we
consider the maximum entropy problem for the Fermi-Dirac entropy

(a.1) Hep(f)i= = [ (1= )= 1)+ f1uf) dp.
R.
In particular, this implies the constraint 0 < f <1 on the density f of the gas.

From the heuristics argument presented in the introduction, we know = that

the solution F of (1.2)—(2.3), (4.1) is the Fermi-Dirac distribution
— 1 : _ 30,0
(4.2) Fp) = o1 with  v(p) =8"p" =B -p+p.

We also introduce the “saturated” Fermi-Dirac (SFD) density
(4.3) X(p) = xp0,8(p) = Lypopo—=pp<1y = le
with & = {8%° — 8-p< 1}, B €R? and 5° > |3].
Our main result is the following.
THEOREM 4.1. — 1) For any P and E such that |P| < E there exists an
unique SFD state x = xp,p such that P(x) = P and E(x) = E. This one

realizes the mazimum of particles number for given energy E and mean mo-
mentum P. More precisely, for any f such that 0 < f <1 one has

(4.4) P(f)=P, E(f)=E implies N(f) < N(xrz).

As a consequence, given (N, P, E) there exists g satisfying the moments equa-
tion (1.2) if, and only if, E > |P| and 0 < N < N(xp,g). In this case, we say
that (N, P, E) is admissible.

2) For any (N,P,E) admissible there exists a Fermi-Dirac state F
(“saturated” or not) which realizes the moments equation (1.2).

3) Let F be a Fermi-Dirac state. For any [ such that 0 < f <1 and

1 1
IR <§)> = [ Fo) <ppo> .
one has

(45) HFD(f)_HFD(}—) :HFD(f|-7:) 2:/

R3

((l—f)lng—flné)dp.
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4) As a conclusion, for any admissible (N, P, E) the entropy problem (1.5),
(1.2), (4.1), (1.4) has a unique solution, and this one is the relativistic Fermi-
Dirac distribution constructed just above.

The new difficulty with respect to the classic or Bose case is to manage with
the constraint 0 < f < 1. Before proving Theorem 4.1 we present several
auxiliary results.

PROPOSITION 4.2. — 1) For any P € R3 and E > 0 such that |P| < E there
exists a unique SFD state x = xpr such that P(x) = P and E(x) = E.
Moreover, for fivred P € R3, the map E +— N(xp.g) is increasing.

2) For any N > 0 and P € R® there exists an unique SFD state X = Xn,p
such that N(X) = N and P(X) = P. Moreover, for fited P € R3, the map
N — E(Xn.p) is increasing.

Proof. — We start with part 1). From (2.8) we know that for any SFD state
x of the form (4.3) we have

(4.6) P(x)c/u—E(x) =H(B), E(x)-P(x)u/c=EB), N(x)=N(B)y,
where L(3) = L(X), X(p) = 1z, & = {Bp° < 1} and (B,u) is associated to
(8, B) thanks to (2.7).

On the other hand, from the two first equations in (4.6), to find x such that,
for given P € R® and E > |P|?, P(x) = P and E(x) = FE is equivalent to
find (3, u) such that 3 satisfies

=(A3 . 3 pe
(4.7) E=Z(8,F):=EQ)+ 7
and we recover u by
U = u(B) S
a  E+H (3)

We have already done the analysis of such a function = in Lemma 2.1. It is
easy to verify that E(3) and H(3) are smooth, decreasing for 8 € (0,1/mc),
limE(f) = limH(B) = 0 when 8 — 1/mc, imE(f) = limH(8) = o
when f — 0 and

o= _ P2 _

—(B,E)=E'(B) - = H'(B) <0.

op (E+ H(B))?
Moreover, limZ(3,E) = oo when 3 — 0 (since Z(3,E) > E(B)) and
lim=(3, E) = P?/E when § — 1/me. This implies that there is a unique
B € (0,1/me) such that (4.7) holds (when |P|?> < E), we note 3 = ((E).
Finally,

ON(xp) _ AN(B(E))
OF dFE
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since N’(3) < 0 and d3/dE < 0, and therefore E — N(xp g) is inceassing
(for fixed P € R3).

Let us prove now part 2). We eliminate the energy F(x) in (4.6) to get
1 c — — —
?P(X)E =E@)+H(B), Nk)=N(B).

Therefore, for given N > 0 and P € R3, find x such that N(x) = N and
P(x) = P is equivalent to find (3, u) such that 5 satisfies

N = N(3)7(u(B))
where u is defined by
— cP N2%(3
E(B)+H(B)
In order to simplify the computations in what follow we introduce the vari-

able a = 1/ and we define L(a) = L(1/3). We make the elementary compu-
tations

N(a) = %(az 1)3/2 N’(a) = dan(a® — m2c?)'/?,
E(a) > 1(a® = 1)2, E'(a) = 4ma® = (a® — m2c?)Y/2,
H(a) >0, G/ (a) = 4m(a® — m2c2)Y/2.

We look now for a solution a € (1,00) to
(4.10) N =Z(a,N) := N(a)y(i(a)),
where the dependency of = with respect to N comes from the dependence

of @i(a) on N in (4.9). For fixed N > 0, the function a — N(a) is continuous
and the same holds for the functions a +— @(a) and a — ~(@(a)). Moreover,

lim N(a)v(ﬂ(a)) < 7(a(2)) lim N(a) =0,
lim N(a)y(i(a >v(a 2) hm N(a) = 4.

Therefore, for any N > 0 the equation (4.10 ) has a solution a € (0,00). This
provides a solution (1/a,u(1/a)) for (4.9) and thus a SFD distribution X such
that N(x) = N and P(x) = P.

In order to show that the map N — E(xn,p) is increasing, we argue as
follows. First, we notice that the map N — a(N) with a(N) such that
N = E(a(N),N) is continuous and thus the map E(X._p) is also continu-
ous. Moreover, this map is injective. Indeed, if N, N’ > 0 are such that
E(xnp) = E(Xn',p) =t E, then using the uniqueness proved in part 1)
(or also Lemma 4.3 below), we obtain Xy p = Xn’,p = Xp,E, and then N = N'.
This implies that E(x. p) is a monotonous function of R;. Since

E(xn,p) > mcN — oo when N — oo,
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it follows that it may only be increasing. O

LEMMA 4.3. — For any SFD state x = 1g, € = {3°p" — 3-p < 1} and any
Borel set B, we have

(4.11) N(1p) = N(x), P(15) = P(x) implies E(1p) = E(X)
where the inequality is strict if B # £ a.e., and
(412)  P(1p) = P(\),BE(1p) = B(x) implies N(1s) < N(x),

and the inequality is strict if B # £ a.e.

REMARK 4.4. — As a consequence of Lemma 4.3, we recover that for any
given N > 0 and P € R? there exists at most one SFD state y such that
N(x) = N and P(x) = P and that for any given P € R? and E > 0 there
exists at most one SFD state x such that P(x) = P and E(x) = E. Indeed, for
example for the first claim, if y = 1¢ and x’ = 1g are two SFD distributions
such that N(x) = N(x') and P(x) = P(x’), we have, using twice Lemma 4.3,
E(x) = E(X') and therefore £ = £’ a.e., so that x = /.

Proof of Lemma 4.3. — We only prove (4.11) since the proof of (4.12) is ex-
actly the same. Given a SFD x = 1¢ and a Borel set B satisfying N(1p) =
N(x), P(1g) = P(x) , we just compute

E(1p)— E(x) =/p0dp—/p0dp=/ podp—/ p’dp

2o [ 0re - [ avs )
1

> Sl [a+spa- [a+s pa]-o
L £
and the inequality is strict if B # £ a.e. O
LEMMA 4.5. — Let consider € : R? — R a radial and increasing (with respect

to the radius) function. For any 0 < g € L*(R?) define p > 0 and 0 < g*,
g* € L'(R?) by

(4.13) mp? = /RQ 9@, 9" =1qpi<pp

and for any 0 < ¢ € LL(R?) = LY(R?; (1 +<(p))dp’) also define
(4.14) n(¢) := g o) dp’,  e(g) = . o(p') e(p)dp’.
Then, for any g € LL there holds

(4.15) n(g*) =n(g) and e(g") <e(g).

Proof. — 1t is done is several steps.
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e Step 1). Assume that g(p') = M a<|p|<py With 0 < A < 1, and define

90 (P') = M1 {a<)pr<b,)

with by = b—t and A defined by the condition n(gy,) = n(g) for all ¢ > 0. This
condition implies that

d d by by
3 o)) = E[At/ Tdr} = A;/ rdr + A\biby = 0,

and thus \} f:t rdr = \b;. Then, we compute

d d b , )
&[e(gh)] I [)\t/ s(r)rdr] = )\t/ e(r)rdr + Aee(be)beby
A b a bt a
= fbttriir /a (e(r) —e(by))rdr <0,

and therefore, in particular, the function g1 = 1{4<|p|<c}, uniquely defined
by n(g1) = n(g), satisfies e(g1) < e(g).
e Step 2). Assume now that g(p') = 1a<|p|<p} and let define

gt(p/) = 1{at§|p’|§bt}

with a; = a —t and b; defined by the condition n(gt) = n(g) for all ¢ > 0. This
condition implies

d drp [ 1
=[] = < [/ rdr] = 50} — aual) =0,
so that b;b; = —a;. Then, we compute

by
% [e(gt)} = %/ e(r)rdr = —ay (s(bt) — g(at)) <0,

and therefore, for any ¢ > 0, we have n(g*) = n(g), e(g") < e(g).

e Step 3). Assume now that g is a step function, of the form
K

(4.16) 9(0') = Mlia,<ppi<hiy
k=1

with 0 < Ay <1l and a; < by <ag <by <---<ag < bg. Using Step 1) we
construct g; of the form

K
n1(0) =D La<pi<ers
k

=1
with a1 < ¢1 < a2 < ¢ < -+ < axg < ck, such that n(g1) = n(g)
and e(g1) <e(g). By induction on k£ = 1,...,K, using Step 2) on each
function 14, <|pr|<c,} We obtain that (4.15) holds for any step function g.
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e Step 4). For a radial function g we argue by density. We consider a
sequence (g,) of step functions of the form (4.16) and such that limg, = ¢
in L1(R?), in particular limn(g,) = n(g) and lime(g,) = e(g). This implies
that lim p, = p, where p and (p,) are defined by (4.12), and therefore that
gn = Lpi<pnr — 95 = L{pi<p in LE(R?). By Step 3), we already know
that (4.13) holds for the sequence (g,,) and we can pass to the limit: (4.13) is
proved for any radial function.

e Step 5) Finally, for a general function g we define the radial function

a(p') = % /51 9(|p'|w) dw.

Since ¢ is radial we get n(g) = n(g) and e(g§) = e(g). We then apply Step 4) to
conclude. (|

PROPOSITION 4.6. — For any SFD state x and any f such that 0 < f < 1,
we have

N(f)=N(x), P(f)=P(x) implies E(f)> E(x).

Proof. — Let introduce e; € S? such that P = |Ple; and let us write p =
(p1,p") :=p1e1 +p’ with p’ L e;. We have

(4.17) N(f)=/Rn(f(pl,-))dp1, P(f) = [epin(f(p1,.))dpr,
B = [ e(for.).mm) .

where for any ¢ > 0 measurable, n(¢) is defined by (4.12) and
@.m) = [ o)mP@ P P
For a.e. p1 € R we define p(p1) by
w0 = [ Fes) £ 0) = Lo @) = 1.

where B is the set B := {p € R3 p; € R, p’ € B(0,p(p1))}. Of course,
N(f*) = N(f)and P(f*) = P(f). Therefore thanks to Lemma 4.5, we obtain
that 1p satisfies

N(1p) = N(f), PQp)=P(f), E(p)<E(f),

and we conclude thanks to Lemma 4.3. O

Proof of part 1) of Theorem 4.1. — From Proposition 4.2 we already know
that for any P € R® and E > |P| there exists a unique SFD state yp g such
that P(xpr) = P and E(xp,r) = E. Consider now f such that 0 < f <1
and define

N :=N(f), P:=P(f), FE:=E(f).
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We have just to prove that
N(f) < N(xpEe)-

Thanks to Proposition 4.2 we know that there exists a unique SFD state xp g
such that P(xp,r) = P, E(xp,r) = E, and there also exists a unique SDF state
Xn.p such that N(xn,p) = N and P(Xn,p) = P. Moreover, from Proposition
4.6

E(xpp) = E(f) 2 E(Xn,P)-
But since from Proposition 4.2 the map N — E(Xn p) is increasing this implies
that

N(xp,e) 2 N(Xn,p) = N(f),
and this conclude the proof. O

Proof of part 2) of Theorem 4.1. — We only need to prove that for any P € R?
and any E > 0 such that |P| < E and for any N € ]0, N(xp,g)| there exists F
a Fermi-Dirac distribution such that
(4.18) N(F)=N, P(F)=P, E(F)=E.
It is straightforward to check that F realizes the moments equations (4.18) if,
and only if

_ P _ _
where

_ — 1
L = L = = - ="
(6;”) (-7:)7 F }-,B,O,u eﬁPOJFH +1

We then define,

= P
(4.20) u=u(f,p) i= ———x—
E+H(G, )
and reduce the system (4.19) to
P2

o) Ye(B,u) = E(B,p) + E+HG.) =

SN (B, 1) = N(B, )y (u(B, 1)) =

We conclude thanks to the following result.

E,

LEMMA 2.13. — 1) For any fized pu the function (., n) : R%L — R is contin-
uous, decreasing,

lim (8, 1) = 400 and _lim Xg(F,u) =0.
B—0 B——o0

Therefore, there exists a unique 3 = [B(n) > 0 such that Xg(B,u) = E for
any p.
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2) The function B : R — R is continuous and decreasing,

MEIEIOOB(M) = +o00 = MEIEIOOB(M) +p =400 and MEI:IFIOOB(M) =0.

3) The function ¥ : R — R, ¥(u) := Sn(B(u), p) is continuous, decreasing,
lim N(F)= N(xpr) and lim X(u)=0.
JH——00 H—400

Proof of Lemma 2.13. — The proofs of the two first points are very similar to
those of the same points in Lemma 2.3 and Lemma 3.3. We therefore do not
repeat them. The only new point is the third, and more precisely the behavior
of ¥y for ¢ — —oo. In order to prove it, let (u,) be a decreasing sequence
such that p,, — —oc and set 3,, = 3(pn)-

e Step 1). We write
0

0<E—PsE(B,u>:/ P

= — dp.
r3 eB@°—1+B+n 4 1 P

When y — —oo we have B = B(u) — 400, and this implies that § + p — —oc.
In particular, we have 5 + p < 0 so that
(4.22) s

Bk

 Step 2). Since

/ I dzz/ I dzz/ g, —.op >0,
s olBmetal(2-1) 4 1 B, elBmetul(z-1) 1 1 5, 2

we deduce

3 i
E>FE > ——d
2 E(B.n) 2 /R3 oBlplmotn 11 7
_ (Iﬁmc_+ ul)‘*/ Al 4 > (I5m0_+ “')4013.
I¢] r3 elBmetpl(lzl-1) 4 1 8

Therefore
fin fin B4
‘_— gmc—l—‘mc—i—_— g(—) + mc,

B Ce
and there exists a € R and a subsequence (n’) such that lim p1,,//3,, = —a, and

by (4.22) a > 1.

e Step 3). We remark now that if n is large enough 3,, > 1 and |u,|/8n < 2a,
from where we deduce that

0< o —Tmioy 11

1
|

< 1p0S2a + 1;0022!1 € Ll(Rg)

Moreover, for a.e. p € R? we have
_ 1
- eﬁn(PD*WnVBn) +1

Fn — 1{p0§a}.
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We conclude by dominated convergence Lebesgue Theorem that
LB, tin') = L(Fnr) — L(a) := L(1po<qay) for L=N,E, G, H.
» Step 4). Passing to the limit in (4.20) and (4.21) we obtain

=E(a @7 ﬁazip
B=Ea)+ P (@) E + H(a)

and lim Sy (1) = N(a)y(@(a)) when g — —oo. By (4.6) this means precisely
that the SFD state associated to (3,u) = (1/a,u(1/a)) satisfies

Jim Sx(p) =N(), PO =P E()=E.
Therefore, x = xp.r and Xy () = N(F) — N(xp.g)- O
Nonrelativistic Fermi-Dirac particles. — Here again, since the energy is

E(p) = |p?|/2m the problem (1.2) is equivalent to (3.16): given three quantities
N >0, E >0, PcR?find f(p) such that 0 < f <1 and satisfying (3.16).

On the other hand, given N > 0 and P € R®, we have

1 2
in - d
min o~ /}R? Ip|~f(p)dp

0<f<1
Jfdp=N
Jpf(p)dp=P . 1 P‘Q (p)d
= min — B ,
0<g<1 2m Rgp N 9\p)<cp
Jgdp=N

J (p—P/N)g(p) dp=0
and this minimum is reached for a distribution of the form g(p) = 1;,—p/n|<c},
for some ¢ > 0 and for a distribution of the form f(p) = 1y|<c}. Since
c3 9 cd
L{jpl<cydp = w25 and P (pi<cy dp = w2
R3 3 R3 5
we deduce that the problem (1.2) has a solution f satisfying 0 < f <1 only if
- 35/3(4;7T)2/3 N5/3'

(4.23) E

On the other hand, it is simple, using elementary calculus, to prove that for
any E, N > 0, P € R? such that (4.21) holds, there exists a distribution of the
from

5/3 (41)2/3
1 . if E> %NW{
ealp—P/N]| +b+ 1 5
(4.24) F(p) = 5/3 2/3
. 3%/ (4m) 5/3
L{jp-p/Ni<e} if B=—7py"N

with @ € R, b € R and ¢ € R such that wyc3/3 = N satisfying (3.16).
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Then, for every E,N > 0 and P € R3 satisfying (4.23), the Fermi Dirac
distribution

1 2 2a a|PJ?
D T 1 v(p) = alp| —NP-p—i—(b—F N2 )
5/3(470)2/3
(4.25) F(p) = if E> %NW,
) 35/3 A7 2/3
L{p—p/N|<c} if = %NS/B

solves (1.2).

This shows that for non relativistic particles Theorem 4.1 remains valid
under the unique following change: points 1) and 2) have to be replaced by

1") For every E,N > 0, P € R3, satisfying (4.23) there exists a non rela-
tivistic fermi Dirac state, saturated or not, defined by (4.25) corresponding to
these moments, i.e. satisfying (1.2).

Points 3) and 4) of Theorem 4.1 remain unchanged.

Appendix. Minkowsky space and Lorentz transform

For the convenience of the reader, we sumarize some of well-known facts on
Minkowsky space and Lorentz transform that we have systematically used in
the construction of the equilibrium states with prescribed moments. We refer
to [20] for a more detailed exposition on the subject.

Let us denote P = (P p) € R* with P’ € R, p € R? or indifferently
P = (P*). We define the Lorentz metric as follows:

(A1) (P,Q)=P°Q° —p-q, YP,QcR".

We also write

4
(P,Q)=P'Qu=P Q=Y nuP'Q",

w,v=0
with @, = 1,,Q", where
10"
(A.2) =)= (o _1,)

is the Minkowsky matrix. The inner product (,) on R* is symmetric, non
degenerated but not positive.

DEFINITION A.1. — A Lorentz transform is a linear operator A : R* — R4
such that
(A.3) (AP,AQ) = (P,Q), VP,QecR"
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EXAMPLE 1: ROTATIONS. — For any rotation R of R?* (R € SO(3)),

107
(A-4) A=(o r)
is a Lorentz transform.
EXAMPLE 2: BOOSTS. — For any v € R? such that v := |v| < 1,
T
v v 1

A5 A= ( ) =
(4.5) v I+ (y—=1)/v% vl 7 V1—10?
is a Lorentz transform.
REMARK A.2. — Any Lorentz transform is the composition of a boost and a
rotation.

For (8°,8) € R* with 8° > |3| we define 3 > 0 and u € R? by

2 U I6)
A6 = (802 — |82, - =L
(4.6) R
Then, setting v := (1 — (u/c)?)~'/? we have
i

(A7) (8") = (8" 8) = (18,48 ).

For such a 4-vector (8%, 3) we define the boost transform A = A(gr) associated
to v :=u/c. It satisfies

gy _ (8°
(A.8) A(O)_(ﬂ).
LEMMA A.3. — Any Lorentz transform A satisfies det A = £1.
Proof. — Define

=4 _dcTT) for A:(Zb;)

with @ € R, b,c € R? and d € M (R3). We easily verify that
(AP,Q) = (P,A*Q) for any P,Q € R*.
In particular, by definition of a Lorentz transform, one has
(A*AP,Q) = (AP,AQ) = (P,Q) for any P,Q € R*,
so that A*A = Id4. Since det A* = det A, we get (det A)? = 1. O
DEFINITION A.4. — For s € R we define the hyperboloid
(A.9) M3 :={PeR*'; (P,P)=s, P’'>0}={(Vs+pPp);peR.

We write A € ﬁl, if A is a Lorentz transform such that det A = +1 and
(AP)° > 0 for any P € M3, with s > 0.
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The boost A associated to (3%, 3) belongs to Ll since detA = 1 and

1 1

(AP)? =~4p° +yu-p= 3 (B +B-p) > =(B°p| — 18| - p|]) >0

iy

for any P € M§ with s > 0.

LEMMA A.5. — Let f : R — R and (8*) = (8%, 3) € R* such that 52 =
92 — |82 > 0. We define F : R® — R by

F(p) = f(8"p") = f(3°p° = B p)
with p° == \/s + |p|?, s > 0. There is some constants A; = A;(f,3) such that

(A.10) -
R3 Y
JI % dp nz 1%
(A.11) »'p Fp—o = Aot + A3t pY.
R3
In particular, one has
(A.12) N(F):= ) Fdp = A,8°,
R
(A.13) P(F):= ) Fpdp = A36°83,
R
(A.14) E(F):= [ Fp’dp= Ay + A3(6°)?,
R dp —2
(A.15) G(F) :=s PS5 =442+ A
R3

Before proving this result, let us recall and prove the following elementary
distributionnal lemma.

LEMMA A.6. — For any a,b € R, a # b, one has

1
(A.16) de-a)w=0) = o

Proof. — Let (pe) be a sequence of L!(R) such that p. — 6 in D’(R). Then
(O@-a)@-t),9) = lim(pe((@ — a)(z = b)), 6)

(5$7a + 5$7a)-

= lir% pe((x — a)(z — b)) pda = lirr(l)(IE—i-Ja),
e—0 Jp e

with
(a+d)/2 [e%S)

I. = / pa((x_a)(x_b)) =¢dr, Je= / pa((x_a)(x_b))¢dx~
—00 (a+b)/2

Without loss of generality we may assume that a < b. Set y = (v —a)(xz —b) =
2?— (a+b)z+ab. The function  — y(z) is monotonous for any z < 1 (a+b) so
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that it is an allowed change of variable. We compute 2z = a+b++/4y + (a — b)?
and dy = [22 — (a+ b)]dz = £1/4y + (@ — b)?2dz, and hence

1. :/00 Ps(yw(a;—bi\/y‘f'(%(a—b))Q)%

—(b—a)?/4

1 ¢(a+b—|a—b|)_ ¢(a)

N =
|b — al 2 |b — al
Similarly, we prove lim J. = ¢(a)/|b — al. O

Proof of Lemma A.5. — Using Lemma A.6 we have, denoting by H the Heav-
side function,

1
0y __ —
dp2_ H(P") = (5(p0)2_51p0>0 =3 FERpE 6P07 TR

Therefore, we get the fundamental identity

1
A4F(P) Spay H(p*)dP = RS{/RF(P)W - 5P0_\/Wpo}dp
S RGO

For A € El we get

/RSF(A(pO,p))% = F(AP)6p2y H(p®)dP

R4
0 0, dp
= | F(Q)dg=sH(q")dQ = | F(p’.p)—"
R4 R3 p
Now we choose as A the boost associated to (8*) and using (A.8) we have,
setting P = AQ, we get

1/1/@_ o) —1 O@
|y S = [ rraatee

p
e [ ar@ = an(Ph),
with A; := _fR3q (Bq°) 4 o, since

/ q'f(Bq )—3 =
R3

for i = 1,2,3 by rotation symmetry. This proves (A.10). Similarly,
17 g, 0 d v v d
L s SE = s [ 0 Fe) S = N
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with

3 0y ¢ 3 0y ¢
o= [ @GS ar=az=as= [ (@16
R3 q R3 q
Just compute
AZ — (272 -1 29%7 )
272 T+ 27200’
2

=042y rufouger) = O

Ay = (717/6) - %

Therefore
/3p“p f(B7p )p_o = alAZ’Au’ + (g — a1)AFAG
R
+
= i (A*)"™ + (g — ar)AG AL = —an™” + QT M _201 o6,

and (A.11) is proved. The points (A.12), (A.13) and (A.14) follow. Finally, we
compute, thanks to (A.11),

d
/ nuup“p”fp—g = A" + A28" BN,
RS
so that
d _
/]R (07 - |p|2)fp—§ =441+ A [(8°) = [B°] = 441 + A25”,

and (A.15) follows, remarking that (p°)? — |p|? = s. O
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