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PROPERTIES OF WIENER-WINTNER
DYNAMICAL SYSTEMS

BY I. AssaNi & K. NicoLAou

ABSTRACT. — In this paper we prove the following results. First, we show the exis-
tence of Wiener-Wintner dynamical system with continuous singular spectrum in the
orthocomplement of their respective Kronecker factors. The second result states that

if f € LP, p large enough, is a Wiener-Wintner function then, for all v € (1+ % - g, 1],
n ) e2mine
there exists a set Xy of full measure for which the series > > ; % converges

uniformly with respect to .

RESUME (Propriétés des systémes dynamiques de Wiener- Wintner)

Dans cette note nous démontrons les résultats suivants. Tout d’abord nous montrons
I’existence de systéemes dynamiques ergodiques du type Wiener Wintner ayant un
spectre singulier continu dans I’orthogonal de leur facteurs de Kronecker.Ensuite nous
montrons que si f € LP est une fonction du type Wiener-Wintner alors, pour v €
1+ % - g, 1] on peut trouver un ensemble X; de mesure pleine pour lequel la série

00 f(T"a:)e2"inE

=1 = converge uniformément en €.
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362 ASSANI (I.) & NICOLAOU (K.)

Introduction

Let (X,B,u,T) be an ergodic dynamical system. Throughout this paper
K will denote the Kronecker factor of T, i.e. the closed linear span in L?
of the eigenfunctions for 7. Wiener-Wintner functions and Wiener-Wintner
dynamical systems were introduced and studied in [1] and [2].

DEFINITION 1. — Let (X, B, u,T) be an ergodic dynamical system. A function
f is a Wiener-Wintner function of power type [ in L' if there exist finite
positive constants Cy and B such that

1 & C
sup N Z f(Tnx)e%mna < N_J;
€ n=1 1
for all positive integers N.
DEFINITION 2. — An ergodic dynamical system (X,B,u,T) is a Wiener-

Wintner dynamical system of power type 3 in L' if there exists in K+ a dense
set (for the L? norm) of Wiener-Wintner functions of power type [3 in L.

In this paper whenever we say Wiener-Wintner we mean Wiener-Wintner of
power type 3 in L.

Among other properties these dynamical systems provide simpler proof of
J. Bourgain [3] a.e. double recurrence result which answered a question of
H. Furstenberg [4]. It was shown in [1] that K automorphisms, product of
K automorphism with any other Wiener-Wintner dynamical system, and fac-
tors of Wiener-Wintner dynamical systems are Wiener-Wintner dynamical sys-
tems. Discrete spectrum transformations are trivially Wiener-Wintner dynam-
ical systems. It was also shown that for almost all irrational o (with respect to
Lebesgue measure) the skew products (z,y) — (z+a,y-+2) on the 2-Torus, T?,
are Wiener-Wintner dynamical systems. This showed that there exist nontriv-
ial Wiener-Wintner dynamical systems with zero entropy. All of the dynamical
systems mentioned above have in fact a dense set of L>° Wiener-Wintner func-
tions. Note also that they all have Lebesgue spectrum in the orthocomplement
of the Kronecker factor. This raises the question of finding an example of
Wiener-Wintner dynamical systems with continuous singular spectrum in the
orthocomplement of its Kronecker factor. We will show in this paper that the
skew products (z,y) — (z + o,y + B{z}), o with unbounded partial quotients
and 3 irrational, on T2, provide us with examples of Wiener-Wintner dynam-
ical systems with continuous singular spectrum in the othocomplement of the
Kronecker factor. Hence, the Wiener-Wintner property of a dynamical system
is not characterized by the nature of its spectrum in K+, (singular or Lebesgue).

The first author also showed that if f is a Wiener-Wintner function, then
there exists a set Xy of full measure for which the rotated one sided ergodic
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Ty e27'r1'm—:
Hilbert transform for f, i.e. the series > -, J(I"a)e

Moreover, for x € Xy the map

, converges for all €.

& T 2mine
s Z f(T"x)e
n
n=1

is continuous ([1]). In this paper we will study the convergence of the series
f(Tnx)e%rina

S — for f € LP and 0 < v < 1. To get convergence and
n
continuity in this case we will prove and use the property that
[(N+1)%)
im — ) =0 a.e. P 1<p<
A}Enoon %5] |f|(T"z) =0ae. for fe Ll 1<p<oo,
n=

and for § that depends on p. M. Schwartz showed that when v = 55_1 the result
5

is not true. The averages N51_1 ;11;,15) f(T™z) will not converge a.e. even for

5—1

characteristic functions ([10]). We show that for v > 1+ 11—) —3>1-3:=51

1 (N+1)°
N Z |f1(T"x)
n=N¢

converges to 0. Note that convergence to zero is trivial for f € L*. In the
case of L™ i.i.d random variables it is easy to see that there exist Wiener-
Wintner functions, namely the Rademacher functions, for which the map ¢ —

o f(Tnx)e%rina
Zn:l T

Throughout this paper references about Diophantine approximations can be
found in the classical book of A. Khinchin on continued fractions ([7]) or in [8].

is not continuous if v < 1/2.

1. Existence of Wiener-Wintner dynamical systems with
continuous singular spectrum in K+

Let a be irrational and 3 real. Let T, 5 : T?> — T? be the skew product
defined on the 2-torus by

Top(z,y) = (x+a,y+ B{xr}) modl

where {x} is the fractional part of x. i.e. {x} =2 mod 1.

The case 8 = 1 was studied in [1]. It was shown that for almost all irra-
tional a the system (T?, B(T?), Ta.1,m) is a Wiener-Wintner dynamical system.
These dynamical systems have Lebesgue spectrum in the orthocomplement of
the Kronecker factor.

We will show that for all 3 irrational there exists a set Zg of a with un-
bounded partial quotients of full measure such that for all o in Zg the system
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364 ASSANI (I.) & NICOLAOU (K.)

(T?, B(T?), Ta,5,m) is a Wiener-Wintner dynamical system. In particular, the
functions f, 4(x,y) = e*™PTe?™4¥ g =£ 0, form a dense set in K of Wiener-
Wintner functions. Such systems were shown in [9] to have continuous singular
spectrum in the orthocomplement of the Kronecker factor. The results in [9]
have been extended by A. Iwanik, M. Lemanczyk, and C. Mauduit in [5].

THEOREM 1. — For all B # 0 there exists a set Iz of irrational o of full
measure such that for all o in Ig and for all p,q(q # 0), we can find a constant
Cq,a,3 such that

N
1 2mine anﬂ
Timn < s by
§ :fp,q aﬁ z,y))e S Ns

sup | —
€
n

=1
for some s > 0, for all (z,y) and for all positive integers N.

For the proof of this theorem we will use the following lemmas:

LEMMA 1. — For all integers m, m # 0, and for all real numbers 3, 3 # 0
1
27rzﬁn{moz}d _ 2mifn 1).
/0 © = 5rin® )

The proof of the above lemma is straightforward.

The following lemma can be extracted from the proof of the Proposition
in [1].

LEMMA 2. — Let {f.} be a sequence of uniformly bounded functions. If

1 N
/ONT;MQ) da <

C
<~ for some r > 0,
then for almost every «,

SO

where Cr o 15 a new positive constant that depends on r and o, and p, is a
positive constant less than r that depends on r.

Npr

Proof. — Without loss of generality, we can assume that {f,} is uniformly
bounded by 1.
We will first prove the result for a subsequence, and then for the sequence itself.
Let 0 < s <. Then,
C
— Nrfs :

[l

¥
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Let N = M! for 1 large enough. That is, I(r — s) > 1. This implies that

oo

o) 1 M! C
Z /‘(MZ)SWan(O() da < Z W < o0.
M=1 n=1 M=1
Hence, for a.e. «
Ml
1 Ca
<
Ml nglfn(a) —= (Ml)s
Now, let M! < N < (M + 1)l. Then,
1 N 1 M! 1 (M41)
n=1 n=1 n=M!+1

The first term is less than or equal to C,/(M")* for a.e. a. The second term

(M+1)!

1 M + 1)t — M!
i E | fn(a)] < % since |fn(a)] <1 for all & and for all n
n=M!+1
CM'—1
< — = —.
- M M
Hence, for a.e. «,
N
1 Ca C CO(
_ E < P o
anlfn(a) =ams T S

where v = min{ls,1}. Note that

1 M+1\" 1 1 27
— — <27 < .
M M (M + 1) (M +1)y — N/
Letting p, = v/l we have the desired result. O

LEMMA 3. — Let fp(z) : [0,1) — ' = {z € C: |2] = 1} be the function
defined by
fr(x) = e2rigB({z}+{z+att - +H{z+(h-1)a})

where o is a fived irrational number and § € R\ {0}. Then fi, has bounded
variation, V(fn), and V(fr) = O(h).

Proof. — This follows directly from the inequality V(fg) < V(f)+ V(g) for f

and g such that |f| = |g| = 1. O
LEMMA 4. — There ezists a set Ig of irrational o of full measure such that for
o in Ig we can find a constant Co, and a number s, 0 < s < 1, such that
1 1
/ fu(t)dt| = / e2miaB({t}+{t+a}t+{t+(h—1)a}) gy | < %
0 0 s
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Proof. — It was shown in [9] that

1 2miqghB( ,2miqB _ h
Ce*™I" (e 1) omiaghBilia)  —2miadi
Hdt = E mighB{lja} 2miqBj
/0 Tn(®) 2miqh3 o ¢ ¢

where C' = Hh ' e2miap{mel and {1 — {l;a}}_, is the set of discontinuities of
fn arranged in mcreasmg order with {;, = 0. Hence

1 1 ‘ 1 . -
1 Hdt| < —|= e—27r1qh,8{lja}e—27r1qﬁj )
) |/0fh<>\_wqﬁh;

We will use Van der Corput’s inequality (see [8] for a proof). Recall that this
inequality says the following: If (un)o<n<n—1 is a family of complex numbers
and if H is an integer between 0 and N — 1, then

N—-1 2

Un

Ey

N-1 H N—-h—1
N+ H », 2AN+H)
S NH 1) Z' IR Ty e hz_lHH_h)Re( 2, u”+hu">'

‘We have then

h 2 h—1
1 —2mighpB{lja} —2miqBj h+ K
—_— J < 1
‘hze ‘ _h2(K+1).Z
Jj=1 )
K
2(h+ K)
+ W ; (K+1—-1)-
h—r—1
-Re Z e—27r1q5h{l_7+r+1oz}e—27riqﬁ(j+r+1)e27riqﬁh{l_7+1a}e27riqﬁ(j+1))
j=0
2 2h+K) w—
< K+1—7)-
—K+1+h%K+n2t5 +1-7)
h—r—1
Re |:627riqﬁr Z e27riqﬂh({lj+1a}{lj+r+1a}):|
j=0
K
2 2(h+ K)
K+1—7r)-
K11 h%K+U2Z¥ +1-7)

h—r—1
‘Re [e%iqﬂr Z e2ﬂiqﬂh{(lj+1lj+r+1)a}}
7=0
since {lj_HOé} > {lj+r+10z}.
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Integrating with respect to o and using Lemma 1 we get that

(23
0

2
il Z e—2miaph{l e} —2miqBi| .,

h

j=1

K h—r—1 ;
2 2(h+ K) o e?miabh 1
< 1 TiqBr
SEALIR(K PP D (K —1-r)Re {e 2

ot = 2miqBh
K . .
2 2 K —2miqPr ( ,27iqBh __ 1
< b AR k3| )|
K+1 Rm(K+1)p? 2miqSh
2 2(h+K) K2

<
S K11 K128
By letting K = h — 1 we have

1 h
/0

1 A o

- Z e~ 2miaBh{{l;a}} ,—2migB]
where C depends on ¢ and 5. By Lemma 2, there exists a set I of irrational «
of full measure such that for o in I3 we can find a constant C, and a number
s,0<s<1/2< 1, such that
' h

2

c
da < <
“=7

Jj=1

1 ¢~ 2riadhilyal - 2riadi

h

<

Ca
e

j=1

So, from (1) we can conclude that

[ o] <&

where the constant C, also depends on ¢ and (3. |
Proof of Theorem 1

sup
>4

N
1 n Tin
N Z fr.a(T3 p(, y))e’mine
n=1

N
Z e27rip(a:+noz)e27riq(y+ﬂ{w}+~~~+{a:+(n71)a})e27rin5

‘1
=sup |—
e |N

n=1

N
_ 1 2rigB({z}+---+{z+(n—1)a}) 2mwine
- sgp ‘N T;:l e e

We will use Van Der Corput’s inequality to estimate

N 2
Z 6271'1'(1,8({z}+<--+{m+(n—1)a})eQﬂ'ins

n=1

‘1
sup |—
e |N
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Let fu(x) = e2riad({z}+{r+a}tt{r+(h=1a}) Then,

1 N 2
- ZBQWiqﬁ({a:}+---+{m+(n71)a})627rin£
N

sup
g
N-— H
N+H 2N + H)
(H+1-h
—N2H+1;) N2H 1) Z::l -

_h-1
Z frinr2(2) fria(2)

2 4 &
< H+1-h)-
—H+1+(H+12;( +1-h)
1 N—h—-1
- e2migB({az+(n+1)at+-+{z+(n+h)a})
N
n=0
9 4 H 1 N—h
- H41—h)|~— .
ot e o | X Sl )

h=1

We will focus our attention on ‘% SN fu({z 4+ na})|. By Lemma 3 f;, has
bounded variation. Hence, by Koksma’s inequality ([8], p. 143)

1 & 1
(2) N > f{z +nal) —/O fh(t)dt' < V(fn)Dn({z +na})

where Dy ({z + na}) denotes the discrepancy of the sequence {{x + na}}¥_;
Dy is as defined in [8], p. 88. Namely,

Dy = Dn(z1, -+ ,2nN)

#{n:1<n<N and z, € [a,5)}
- ogcsyli%gl N —(B-a)l.
So, from (2) we have that
N—h—1
(3) ‘ Z n({z + n+1)a})’
B N
S‘Nth{x+noz}‘ ' Z n({z+ n+1)a})'
=N-

<‘A(ﬁ@ﬂ4+VUMDNGx+mﬂ%+%.
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[ nivar] < G

for almost all & and for some 0 < s < 1.

Now, we need an estimate for Dy ({z + na}). We know from Khinchin’s
inequality ([6]), see also [8], that for every positive nondecreasing function g
such that > > | Tln) < oo the discrepancy Dy ({na}) satisfies

NDy({na}) = O((log N)g(loglog N)

for almost all . By letting g(n) = n? we get that Dy({na}) < Cu/N*
for almost all @ and for 0 < s’ < 1. Since discrepancy is translation mod 1
invariant,

By Lemma 4,

Cy
Div({z +no}) < T2
for all z, for almost all o/, and for 0 < s’ < 1.
Going back to (3), we now have
N—-h—1 1 h
_ < i
¥ 3 e 0o nap| < | [0+ VDA )
Co Co h
< — _—
e T V(fh)NS/ +

for all x, for almost all «, and for some positive constants s, s’ < 1. Further-
more, by Lemma 3, V(f3) = O(h) which implies

N—h—1
1 hC’a h
‘ 2 il n+1)a}>‘ + o
Hence,
N 2
- 2migB({z}+--+{z+(n—1)a}) 2wine
su e e
LEpS
9 H | Nohot
<gaIt H+12ZH+1— 'N > iz + (n+1)a})
h=1 n=0
H
2 4 Co hCo h
<2 4= oy a7
- H+1 H;(hs—i_NS/—i_N)
2 4H'—sC, 4HC, 4H
< + — 4+ —
H+1 H Ns N
_ 2 4G, 4HC, 4l
CH+1 Hs N+ N’
By letting H = [N*'/2] we get the desired result. O
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REMARK

(1) It follows easily from the estimates in the above proof that for all 5 # 0
there exists a set Ig of irrational o such that for all a € I3 the transformation
T4, is ergodic.

(2) We can remark that the inequality in Theorem 1 is uniform in (z,y).
This makes f, ; Wiener-Wintner functions of power type in L> ([2]).

By using only Van Der Corput’s inequality we can also get the following;:

THEOREM 2. — If « is of finite type n, then the system (T,B,Tn1,m) is a
Wiener- Wintner dynamical system.

Proof. — We show that the functions f, 4, ¢ # 0, are Wiener-Wintner func-
tions. As in [1]

1 N 2
s |5 3 foa(T2 )
n=1

€

9 4 H | Nohot
< H 1—h)= —2mighna
_H+1+(H+1)2hz::1( * )'N o °
H N N
2 4 1 —2mighna 1 —2mighna
S s uP I DI N 2 ¢
h=1 n=1 n=N-—h
H N
2 4H 4 1 —2mighna
—H+1+N+H;N;e '
Now,
H N H H
iz izef%iqhna _ izl Sln(’ﬂ'tha) < izl 1
H &~ |N e~ H =N sin(rgha) H =N sin(rgha)
4 i 1 1
- H = N sin(w(gha))
Let v be any number less than 1. Then,
oAyl L4 LR
H = N sin(w(gha)) H (hi(ghaToL/N 7} N sin(w(gha))
1 1

4
tH Z N sin(r(gha))
{h:(gha)>1/N"}
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If (¢ha) <1/N7 and N is large enough, then sin(w(gha)) > 5 (ghc). So,

H
4 3 1 1 s L1 1
H {h:(gha)<1/N7} N sin(m(gha)) — H N 7{gha)

It was shown in [8], p. 123, that if « is of finite type n, then

AR |
E —— =O(N" ') forall e > 0.
n{na)

n=1

‘We can conclude that
4 1 1 C.Hn1+e

5 — — < .
5) H Z N sin(m{gha)) — N

{h:(qgha)<1/N7}

If (gha) > 1/N7, then sin(n{(gha)) > sin (n/N7) since (gha) < 1/2. This
implies that

H
1 1 4 1 1 c’ c’
- - <IN - XN =
(6) Z N sin(m{gha)) = H Z Nsin(n/NY) = N N#'

{h:(gha)>1/N"}

T| -

for N large and ' =1 —~ > 0.
From (4),(5), and (6) we now have

H
4 1 1 C.H" 1+ '
T > <

— N sin(r(gha)) — N * Ns'
Hence,
N 2 -
1 , 2 4H  C.H" 't ('
. L Tn 2mine < = - e —_—.
st;p N;fp,q( a1(@,y))e = H+ N + N +NS’

Let H = [N"] for some 0 < 7 < min{1, ———}. Then,

" p—1te
1,1
| s
o Jo e

N
1 -
NE :fp,zz(Ton,l(x,y))ean dxdy
n=1

1 1
[
0 0 €

for some 0 < ¢t < 1. O

2

2a

1 X 4 1/2
¥ 2 bl Taala)ee| oty <
n=1
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2. Convergence of the rotated fractional one sided ergodic
Hilbert transform

The following theorem was proved for the case v =1 and f € L? in [1].

THEOREM 3. — Let (X,B, 1, T) be an ergodic dynamical system. Let f € K+
be a Wiener-Wintner function such that

I_Nﬁ

1 & c
sup | — T" e27rin5 < f
1p ‘ N ;::1 f(T"z) ‘

where Cy, 3 are positive constants with < 1. Let p > max{2,1/5}. If 1 +
= —% <v<1andfeLP, then there exists a set Xy of full measure such that

2p
T 627rin5
for allx € Xy the series Y -, % converges for all €. Furthermore,
the map
o f(Tnx)e%rins
E H— Zl T
e

is continuous for all v € Xjy.
To prove the above theorem, we will use the following proposition.

PROPOSITION 1. — Let f € LP, 1 < p < o0, be a positive function. Let v be
such that 0 <~y <1. Let § > 0 be such that 1 < § < 1/(1+ % — 7). (Note that
0<1/(1—=7)=~y>(0—-1)/d). Then,

[(N+1)°]
A}iinoc N3 z{:é] f(T"z) =0 a.e.
n=[N

Proof. — The result is trivial if p = co. If p # oo, then we proceed as follows:
Let g, = foT" — f o T™ An'/P. Then,

1 [(N+1)°] [(N+1)°] 1 [(N+1)°]
n _ n 1
Ne Mo x)—W Sofa x)/\n/’”‘ﬁ > gal@).
n=[N?] n=[N?9] n=[N?]

First, we will show the a.e. convergence to zero of the second term:

({2 ) > 056 }) < (fo: UL ) = 0))
[(N+1)°]

< 3wl o) > ),

n=[N?]
since T is measure preserving.
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Now,
= Slovy) 6 = () »
> u({e: DI @) > N0} < 303 wlfe: () > )
N=1 N=1 p=[N?]
= ul{z: fP(x) > N})
N=1

o0

<

pl{z: fP(z) > t})dt = || ] < oc.

S—:

Hence, by the Borel-Cantelli Lemma,

u(n]rvn{ Y g(a) > N75a}> —0 foralle.

So, we can conclude that

| v
Jim 5 Y ga(@) =0ae,
n=[N?]

as desired, since g, is positive.
To finish the proof of the proposition, it remains to show that

[(N+1)°]

1 ZfT" Ant/

n=[N9]

approaches 0 a.e. as N — co. But,

1 (N+1)%) 1 (N+1)%)
— Z F(T"z) An 1/pr < w7 Z nl/p
n=[N?] n=[N?]
[(N+1)°]+1
< %/ 2P dy
N’Y n:[N‘s]
o 1 1 Ky %—i—l S1141
_N75<%+1>{([(N+1) ]+1)?" —[N°]» }
<! ( ! ) {((N+1)5+1ﬁ+1 — (NS - 1)%+1}
TNV
N5(1+1) 1
S Cﬁ since § > 1
1
NWJ—J(%H)H -0
since by assumption v — 5(% +1)+1>0. O
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Proof of Theorem 3. — Let

2mine

MN NZf Tn 27mn5, SN—Zan )

Then,
. . M nME(f) — (n— H)ME_(f)
(7) SM<f>—SN<f>=n§+l —
M) & (n—1)ME L (f)
=2 T X
n=N+1 n=N+1
LoaM(f) NS nMS(f)
:n:ZH ny _ZN(n+1)“f
R | 1 MM5(f)  NMg(f)
= 2 MG S G T T
So, we have
M—1
[ sups5,5) = s < ; | [,
37 e M 1], + s s s ]

<Z[n+17—n7} an+ MCy n NCy

n2v nB MYMB '~ NYNB
N+1
Cf n—|—1'y—n7] Cf Cf
< Z n2~/+ﬁ 1 M“H‘ﬁ*]- + N7+ beta—1"
N+1
Hence,
Cy Cy

| sup I3 = sz (1|, < 2 st T

Substituting 2Vt for M and 2V for N we have the following.

2N+1

vl < *
n“{+ﬁ (2ﬂ/+5_1)N

H sup [Son 1 (f
>4

Since + > 7+ /2> 1, SX_, | sup. |52N+1<f> — S5 (s < oo. Hence,
S one1sup, |Ssnea (f) — 2N( )] < oo a.e., ie. there exists a set X of full
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measure such that
S sup| S (£) () — S5 ()(@)] <00 Va € X;.

From this we can conclude that S5y (f) converges a.e. to a continuous function
of e. Furthermore, from (7) we get that
N+l

sup s lS5(0) - SNl < 3 [ - s s g

N N+1 nY n+1)7
IVL<ANHL e e (n+1)

LM%
+2 sup sup ﬁ‘

INCL<ON+1 & Ly
The first term goes to zero a.e. as N — oo since
o 2Nt 0o 2N+l
1 1 . v nCy
S X el < XX s
N=1 2N41 N=1 2N41
N O
= 2 s S
N=1

since v+ 0 > 1.

To finish the proof of the theorem, it only remains to show that the last
term goes to 0 a.e. as N — oo.

|LML

To show that supyny<j<on+1SUp, —(f)| goes to 0 a.e. as N — oo, it

suffices to show that

RL—Sup‘i‘—>an as L — oo.

First, let us look at t he L' norm of Ry.

LML Lc;  Cy
‘H LYLA — [y+8-1

Bzl = || sup| ==

where the inequality follows by assumption.
Let p =~ 4+ 8 — 1 and note that p > 0 sincey >1—-5/2>1— > 0.
Now let L = [N°] where § is such that 1/p < § < 1/(1+ % —7v). Itis
possible to pick such a § since by assumption v > 1 + % — % Also note that
p=(y—1)4+ 8 < <1 implies that 6 > 1. Then,

oo o f
Z HR[NL*}HI < Z W < o0
N=1 N=1

since pd > 1.
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Hence, R[ys; — 0 a.e. That is,

1 [N°]
. Tn 2mine
® s | e 2 1T

— 0 a.e. as N — oo.

Now, let [N°] < L < [(N +1)°]. Then,

L

1 .
H Z f(Tnx)e%mna

n=1

sup
>4

1 (N°]
n 2mine
< S‘ip‘w;f@ z)e

L
1 )
K § f(Tnx)e%mna

n=[N%]+1

-+ sup
>4

The first term goes to zero a.e. by (8). The second term also goes to zero a.e.
since

1 L 1 [(N+1)°]
.\ i n 2mine o n
sup | 7 > f(Tra)e < Iy > (T )
n=[N%]+1 n=[N%]+1
1 [(N+1)°]
< RGE Z |f(T"x)] — 0 a.e.
n=[N%]+1
by the proposition. O
REMARKS
(1) There exist vy € (0, 1) for which the above theorem is not true. In particu-
o Xn 2mine
lar, if { X, } is the Rademacher sequence, then the map e — Y~ | %
n
is not continuous if v < 1/2 since
> X, 2mine |2 1) > X, 2mine |2
sup |3 Kn(w)e™™ |7 / 3 Xn(w)er™™ "
c€l0,1] | 5 ny o |l= ny
_ i [ X5 (w)]
2
n=1 n=
= — =
n=1 n=

As pointed out by the referee this argument can be extended to ergodic sta-
tionary processes in the following way:
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f(Tnx)GQTrins
n1/2

AT

converges uniformly in ¢ for a.e. z, then

27rzn€

f(T"x)
Z 1/2

de

2

) 2mine
< o0

which contradicts the fact that

N
, 1 [f(T")|? / >
1 = .
Noso logN; n |fFdp

(2) In [2], Theorem 3 is used to give a spectral characterization of L
Wiener-Wintner functions of some power type in L2.

(1]
2]
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