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PROPERTIES OF WIENER-WINTNER
DYNAMICAL SYSTEMS

by I. Assani & K. Nicolaou

Abstract. — In this paper we prove the following results. First, we show the exis-
tence of Wiener-Wintner dynamical system with continuous singular spectrum in the
orthocomplement of their respective Kronecker factors. The second result states that
if f ∈ Lp, p large enough, is a Wiener-Wintner function then, for all γ ∈ (1+ 1

2p − β
2 , 1],

there exists a set Xf of full measure for which the series ∞
n=1

f(Tnx)e2πinε

nγ converges
uniformly with respect to ε.

Résumé (Propriétés des systèmes dynamiques de Wiener-Wintner)
Dans cette note nous démontrons les résultats suivants. Tout d’abord nous montrons

l’existence de systèmes dynamiques ergodiques du type Wiener Wintner ayant un
spectre singulier continu dans l’orthogonal de leur facteurs de Kronecker.Ensuite nous
montrons que si f ∈ Lp est une fonction du type Wiener-Wintner alors, pour γ ∈
(1 + 1

2p − β
2 , 1] on peut trouver un ensemble Xf de mesure pleine pour lequel la série

∞
n=1

f(Tnx)e2πinε

nγ converge uniformément en ε.
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362 ASSANI (I.) & NICOLAOU (K.)

Introduction

Let (X,B, µ, T ) be an ergodic dynamical system. Throughout this paper
K will denote the Kronecker factor of T , i.e. the closed linear span in L2

of the eigenfunctions for T . Wiener-Wintner functions and Wiener-Wintner
dynamical systems were introduced and studied in [1] and [2].

Definition 1. — Let (X,B, µ, T ) be an ergodic dynamical system. A function
f is a Wiener-Wintner function of power type β in L1 if there exist finite
positive constants Cf and β such that

∥

∥

∥

∥

∥

sup
ε

∣

∣

∣

∣

∣

1
N

N
∑

n=1

f(T nx)e2πinε

∣

∣

∣

∣

∣

∥

∥

∥

∥

∥

1

≤ Cf

Nβ

for all positive integers N.

Definition 2. — An ergodic dynamical system (X,B, µ, T ) is a Wiener-
Wintner dynamical system of power type β in L1 if there exists in K⊥ a dense
set (for the L2 norm) of Wiener-Wintner functions of power type β in L1.

In this paper whenever we say Wiener-Wintner we mean Wiener-Wintner of
power type β in L1.

Among other properties these dynamical systems provide simpler proof of
J. Bourgain [3] a.e. double recurrence result which answered a question of
H. Furstenberg [4]. It was shown in [1] that K automorphisms, product of
K automorphism with any other Wiener-Wintner dynamical system, and fac-
tors of Wiener-Wintner dynamical systems are Wiener-Wintner dynamical sys-
tems. Discrete spectrum transformations are trivially Wiener-Wintner dynam-
ical systems. It was also shown that for almost all irrational α (with respect to
Lebesgue measure) the skew products (x, y) → (x+α, y+x) on the 2-Torus, T2,
are Wiener-Wintner dynamical systems. This showed that there exist nontriv-
ial Wiener-Wintner dynamical systems with zero entropy. All of the dynamical
systems mentioned above have in fact a dense set of L∞ Wiener-Wintner func-
tions. Note also that they all have Lebesgue spectrum in the orthocomplement
of the Kronecker factor. This raises the question of finding an example of
Wiener-Wintner dynamical systems with continuous singular spectrum in the
orthocomplement of its Kronecker factor. We will show in this paper that the
skew products (x, y) → (x + α, y + β{x}), α with unbounded partial quotients
and β irrational, on T2, provide us with examples of Wiener-Wintner dynam-
ical systems with continuous singular spectrum in the othocomplement of the
Kronecker factor. Hence, the Wiener-Wintner property of a dynamical system
is not characterized by the nature of its spectrum in K⊥, (singular or Lebesgue).

The first author also showed that if f is a Wiener-Wintner function, then
there exists a set Xf of full measure for which the rotated one sided ergodic
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Hilbert transform for f , i.e. the series
∑∞

n=1

f(T nx)e2πinε

n
, converges for all ε.

Moreover, for x ∈ Xf the map

ε $−→
∞
∑

n=1

f(T nx)e2πinε

n

is continuous ([1]). In this paper we will study the convergence of the series
∑∞

n=1

f(T nx)e2πinε

nγ
for f ∈ Lp and 0 < γ < 1. To get convergence and

continuity in this case we will prove and use the property that

lim
N→∞

1
Nγδ

[(N+1)δ ]
∑

n=[Nδ ]

|f |(T nx) = 0 a.e. for f ∈ Lp, 1 ≤ p ≤ ∞,

and for δ that depends on p. M. Schwartz showed that when γ = δ−1
δ the result

is not true. The averages 1
Nδ−1

∑(N+1)δ

n=Nδ f(T nx) will not converge a.e. even for
characteristic functions ([10]). We show that for γ > 1 + 1

p − 1
δ > 1− 1

δ = δ−1
δ ,

1
Nγδ

(N+1)δ

∑

n=Nδ

|f |(T nx)

converges to 0. Note that convergence to zero is trivial for f ∈ L∞. In the
case of L∞ i.i.d random variables it is easy to see that there exist Wiener-
Wintner functions, namely the Rademacher functions, for which the map ε $→
∑∞

n=1

f(T nx)e2πinε

nγ
is not continuous if γ ≤ 1/2.

Throughout this paper references about Diophantine approximations can be
found in the classical book of A. Khinchin on continued fractions ([7]) or in [8].

1. Existence of Wiener-Wintner dynamical systems with
continuous singular spectrum in K⊥

Let α be irrational and β real. Let Tα,β : T2 → T2 be the skew product
defined on the 2-torus by

Tα,β(x, y) = (x + α, y + β{x}) mod 1

where {x} is the fractional part of x. i.e. {x} = x mod 1.
The case β = 1 was studied in [1]. It was shown that for almost all irra-

tional α the system (T2,B(T2), Tα,1, m) is a Wiener-Wintner dynamical system.
These dynamical systems have Lebesgue spectrum in the orthocomplement of
the Kronecker factor.

We will show that for all β irrational there exists a set Iβ of α with un-
bounded partial quotients of full measure such that for all α in Iβ the system
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364 ASSANI (I.) & NICOLAOU (K.)

(T2,B(T2), Tα,β, m) is a Wiener-Wintner dynamical system. In particular, the
functions fp,q(x, y) = e2πipxe2πiqy , q '= 0, form a dense set in K⊥ of Wiener-
Wintner functions. Such systems were shown in [9] to have continuous singular
spectrum in the orthocomplement of the Kronecker factor. The results in [9]
have been extended by A. Iwanik, M. Lemanczyk, and C. Mauduit in [5].

Theorem 1. — For all β '= 0 there exists a set Iβ of irrational α of full
measure such that for all α in Iβ and for all p, q(q '= 0), we can find a constant
Cq,α,β such that

sup
ε

∣

∣

∣

∣

∣

1
N

N
∑

n=1

fp,q(T n
α,β(x, y))e2πinε

∣

∣

∣

∣

∣

≤ Cq,α,β

Ns

for some s > 0, for all (x, y) and for all positive integers N.

For the proof of this theorem we will use the following lemmas:

Lemma 1. — For all integers m, m '= 0, and for all real numbers β, β '= 0
∫ 1

0
e2πiβn{mα}dα =

1
2πiβn

(e2πiβn − 1).

The proof of the above lemma is straightforward.

The following lemma can be extracted from the proof of the Proposition
in [1].

Lemma 2. — Let {fn} be a sequence of uniformly bounded functions. If
∫ 1

0

∣

∣

∣

∣

∣

1
N

N
∑

n=1

fn(α)

∣

∣

∣

∣

∣

dα ≤ C

N r
for some r > 0,

then for almost every α,
∣

∣

∣

∣

∣

1
N

N
∑

n=1

fn(α)

∣

∣

∣

∣

∣

≤ Cr,α

Nρr
,

where Cr,α is a new positive constant that depends on r and α, and ρr is a
positive constant less than r that depends on r.

Proof. — Without loss of generality, we can assume that {fn} is uniformly
bounded by 1.
We will first prove the result for a subsequence, and then for the sequence itself.
Let 0 < s < r. Then,

∫ 1

0

[

Ns

∣

∣

∣

∣

∣

1
N

N
∑

n=1

fn(α)

∣

∣

∣

∣

∣

]

dα ≤ C

N r−s
.
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Let N = M l for l large enough. That is, l(r − s) > 1. This implies that
∞
∑

M=1

∫
∣

∣

∣

∣

(M l)s 1
M l

Ml
∑

n=1

fn(α)
∣

∣

∣

∣

dα ≤
∞
∑

M=1

C

M l(r−s)
< ∞.

Hence, for a.e. α
∣

∣

∣

∣

∣

∣

1
M l

Ml
∑

n=1

fn(α)

∣

∣

∣

∣

∣

∣

≤ Cα

(M l)s
.

Now, let M l ≤ N ≤ (M + 1)l. Then,
∣

∣

∣

∣

∣

1
N

N
∑

n=1

fn(α)

∣

∣

∣

∣

∣

≤

∣

∣

∣

∣

∣

∣

1
M l

Ml
∑

n=1

fn(α)

∣

∣

∣

∣

∣

∣

+
1

M l

(M+1)l

∑

n=Ml+1

|fn(α)|.

The first term is less than or equal to Cα/(M l)s for a.e. α. The second term

1
M l

(M+1)l

∑

n=Ml+1

|fn(α)| ≤ (M + 1)l − M l

M l
since |fn(α)| ≤ 1 for all α and for all n

≤ CM l−1

M l
=

C

M
.

Hence, for a.e. α,
∣

∣

∣

∣

∣

1
N

N
∑

n=1

fn(α)

∣

∣

∣

∣

∣

≤ Cα

M ls
+

C

M
≤ Cα

Mγ
,

where γ = min{ls, 1}. Note that

1
Mγ

=
(

M + 1
M

)γ 1
(M + 1)γ

≤ 2γ
1

(M + 1)γ
≤ 2γ

Nγ/l
.

Letting ρr = γ/l we have the desired result.

Lemma 3. — Let fh(x) : [0, 1) → S1 = {z ∈ C : |z| = 1} be the function
defined by

fh(x) = e2πiqβ({x}+{x+α}+···+{x+(h−1)α})

where α is a fixed irrational number and β ∈ R \ {0}. Then fh has bounded
variation, V (fh), and V (fh) = O(h).

Proof. — This follows directly from the inequality V (fg) ≤ V (f) + V (g) for f
and g such that |f | ≡ |g| ≡ 1.

Lemma 4. — There exists a set Iβ of irrational α of full measure such that for
α in Iβ we can find a constant Cα and a number s, 0 < s < 1, such that

∣

∣

∣

∣

∫ 1

0
fh(t)dt

∣

∣

∣

∣

=
∣

∣

∣

∣

∫ 1

0
e2πiqβ({t}+{t+α}+···+{t+(h−1)α})dt

∣

∣

∣

∣

≤ Cα

hs
.
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Proof. — It was shown in [9] that
∫ 1

0
fh(t)dt =

Ce2πiqhβ(e2πiqβ − 1)
2πiqhβ

h
∑

j=1

e−2πiqhβ{ljα}e−2πiqβj

where C =
∏h−1

m=0 e2πiqβ{mα} and {1−{ljα}}h
j=1 is the set of discontinuities of

fh arranged in increasing order with lh = 0. Hence,
∣

∣

∣

∣

∫ 1

0
fh(t)dt

∣

∣

∣

∣

≤ 1
πqβ

∣

∣

∣

∣

1
h

h
∑

j=1

e−2πiqhβ{ljα}e−2πiqβj

∣

∣

∣

∣

.(1)

We will use Van der Corput’s inequality (see [8] for a proof). Recall that this
inequality says the following: If (un)0≤n≤N−1 is a family of complex numbers
and if H is an integer between 0 and N − 1, then

∣

∣

∣

∣

1
N

N−1
∑

n=0

un

∣

∣

∣

∣

2

≤ N + H

N2(H + 1)

N−1
∑

n=0

|un|2 +
2(N + H)

N2(H + 1)2

H
∑

h=1

(H +1−h)Re
( N−h−1

∑

n=0

un+hun

)

.

We have then
∣

∣

∣

∣

1
h

h
∑

j=1

e−2πiqhβ{ljα}e−2πiqβj

∣

∣

∣

∣

2

≤ h + K

h2(K + 1)

h−1
∑

j=0

1

+
2(h + K)

h2(K + 1)2

K
∑

r=1

(K + 1 − r) ·

· Re
( h−r−1

∑

j=0

e−2πiqβh{lj+r+1α}e−2πiqβ(j+r+1)e2πiqβh{lj+1α}e2πiqβ(j+1)

)

≤ 2
K + 1

+
2(h + K)

h2(K + 1)2

K
∑

r=1

(K + 1 − r) ·

· Re
[

e−2πiqβr
h−r−1
∑

j=0

e2πiqβh({lj+1α}−{lj+r+1α})
]

=
2

K + 1
+

2(h + K)
h2(K + 1)2

K
∑

r=1

(K + 1 − r) ·

· Re
[

e−2πiqβr
h−r−1
∑

j=0

e2πiqβh{(lj+1−lj+r+1)α}
]

since {lj+1α} > {lj+r+1α}.

tome 129 – 2001 – no 3



PROPERTIES OF WIENER-WINTNER DYNAMICAL SYSTEMS 367

Integrating with respect to α and using Lemma 1 we get that
∫ 1

0

∣

∣

∣

∣

1
h

h
∑

j=1

e−2πiqβh{ljα}e−2πiqβj

∣

∣

∣

∣

2

dα

≤ 2
K + 1

+
2(h + K)

h2(K + 1)2

K
∑

r=1

(K − 1 − r)Re
[

e−2πiqβr
h−r−1
∑

j=0

e2πiqβh − 1
2πiqβh

]

≤ 2
K + 1

+
2(h + K)

h2(K + 1)2
K

K
∑

r=1

∣

∣

∣
(h − r)

e−2πiqβr(e2πiqβh − 1)
2πiqβh

∣

∣

∣

≤ 2
K + 1

+
2(h + K)

h2(K + 1)2
K2

πqβ
.

By letting K = h − 1 we have
∫ 1

0

∣

∣

∣

∣

1
h

h
∑

j=1

e−2πiqβh{{ljα}}e−2πiqβj

∣

∣

∣

∣

2

dα ≤ C

h

where C depends on q and β. By Lemma 2, there exists a set Iβ of irrational α
of full measure such that for α in Iβ we can find a constant Cα and a number
s, 0 < s < 1/2 < 1, such that

∣

∣

∣

∣

1
h

h
∑

j=1

e−2πiqβh{ljα}e−2πiqβj

∣

∣

∣

∣

≤ Cα

hs
.

So, from (1) we can conclude that
∣

∣

∣

∫ 1

0
fh(t)dt

∣

∣

∣
≤ Cα

hs

where the constant Cα also depends on q and β.

Proof of Theorem 1

sup
ε

∣

∣

∣

∣

1
N

N
∑

n=1

fp,q(T n
α,β(x, y))e2πinε

∣

∣

∣

∣

= sup
ε

∣

∣

∣

∣

1
N

N
∑

n=1

e2πip(x+nα)e2πiq(y+β{x}+···+{x+(n−1)α})e2πinε

∣

∣

∣

∣

= sup
ε

∣

∣

∣

∣

1
N

N
∑

n=1

e2πiqβ({x}+···+{x+(n−1)α})e2πinε

∣

∣

∣

∣

.

We will use Van Der Corput’s inequality to estimate

sup
ε

∣

∣

∣

∣

1
N

N
∑

n=1

e2πiqβ({x}+···+{x+(n−1)α})e2πinε

∣

∣

∣

∣

2
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Let fh(x) = e2πiqβ({x}+{x+α}+···+{x+(h−1)α}). Then,

sup
ε

∣

∣

∣

∣

1
N

N
∑

n=1

e2πiqβ({x}+···+{x+(n−1)α})e2πinε

∣

∣

∣

∣

2

≤ N + H

N2(H + 1)

N−1
∑

n=0

1 +
2(N + H)

N2(H + 1)2

H
∑

h=1

(H + 1 − h) ·

·
∣

∣

∣

∣

N−h−1
∑

n=0

fn+h+2(x)fn+1(x)
∣

∣

∣

∣

≤ 2
H + 1

+
4

(H + 1)2

H
∑

h=1

(H + 1 − h) ·

·
∣

∣

∣

∣

1
N

N−h−1
∑

n=0

e2πiqβ({x+(n+1)α}+···+{x+(n+h)α})
∣

∣

∣

∣

=
2

H + 1
+

4
(H + 1)2

H
∑

h=1

(H + 1 − h)
∣

∣

∣

∣

1
N

N−h
∑

n=1

fh({x + nα})
∣

∣

∣

∣

.

We will focus our attention on
∣

∣

∣

1
N

∑N−h
n=1 fh({x + nα})

∣

∣

∣
. By Lemma 3 fh has

bounded variation. Hence, by Koksma’s inequality ([8], p. 143)
∣

∣

∣

∣

1
N

N
∑

n=1

fh({x + nα}) −
∫ 1

0
fh(t)dt

∣

∣

∣

∣

≤ V (fh)DN ({x + nα})(2)

where DN ({x + nα}) denotes the discrepancy of the sequence {{x + nα}}N
n=1.

DN is as defined in [8], p. 88. Namely,

DN = DN (x1, · · · , xN )

= sup
0≤α<β≤1

∣

∣

∣

∣

#{n : 1 ≤ n ≤ N and xn ∈ [α, β)}
N

− (β − α)
∣

∣

∣

∣

.

So, from (2) we have that
∣

∣

∣

∣

1
N

N−h−1
∑

n=0

fh({x + (n + 1)α})
∣

∣

∣

∣

(3)

≤
∣

∣

∣

∣

1
N

N
∑

n=1

fh({x + nα})
∣

∣

∣

∣

+
∣

∣

∣

∣

1
N

N
∑

n=N−h

fh({x + (n + 1)α})
∣

∣

∣

∣

≤
∣

∣

∣

∫ 1

0
fh(t)dt

∣

∣

∣
+ V (fh)DN ({x + nα}) +

h

N
.
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By Lemma 4,
∣

∣

∣

∫ 1

0
fh(t)dt

∣

∣

∣
≤ Cα

hs

for almost all α and for some 0 < s < 1.
Now, we need an estimate for DN ({x + nα}). We know from Khinchin’s

inequality ([6]), see also [8], that for every positive nondecreasing function g
such that

∑∞
n=1

1
g(n) < ∞ the discrepancy DN ({nα}) satisfies

NDN ({nα}) = O((log N)g(log log N))

for almost all α. By letting g(n) = n2 we get that DN ({nα}) ≤ Cα′/Ns′

for almost all α′ and for 0 < s′ < 1. Since discrepancy is translation mod 1
invariant,

DN ({x + nα}) ≤ Cα′

Ns′

for all x, for almost all α′, and for 0 < s′ < 1.
Going back to (3), we now have

∣

∣

∣

∣

1
N

N−h−1
∑

n=0

fh({x + (n + 1)α})
∣

∣

∣

∣

≤
∣

∣

∣

∫ 1

0
fh(t)dt

∣

∣

∣
+ V (fh)DN ({x + nα}) +

h

N

≤ Cα

hs
+ V (fh)

Cα

Ns′ +
h

N

for all x, for almost all α, and for some positive constants s, s′ < 1. Further-
more, by Lemma 3, V (fh) = O(h) which implies

∣

∣

∣

∣

1
N

N−h−1
∑

n=0

fh({x + (n + 1)α})
∣

∣

∣

∣

≤ Cα

hs
+

hCα

Ns′ +
h

N
.

Hence,

sup
ε

∣

∣

∣

∣

1
N

N
∑

n=1

e2πiqβ({x}+···+{x+(n−1)α})e2πinε

∣

∣

∣

∣

2

≤ 2
H + 1

+
4

(H + 1)2

H
∑

h=1

(H + 1 − h)
∣

∣

∣

∣

1
N

N−h−1
∑

n=0

fh({x + (n + 1)α})
∣

∣

∣

∣

≤ 2
H + 1

+
4
H

H
∑

h=1

(Cα

hs
+

hCα

Ns′ +
h

N

)

≤ 2
H + 1

+
4H1−sCα

H
+

4HCα

Ns′ +
4H

N

=
2

H + 1
+

4Cα

Hs
+

4HCα

Ns′ +
4H

N
.

By letting H = [Ns′/2] we get the desired result.
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Remark
(1) It follows easily from the estimates in the above proof that for all β '= 0

there exists a set Iβ of irrational α such that for all α ∈ Iβ the transformation
Tα,β is ergodic.

(2) We can remark that the inequality in Theorem 1 is uniform in (x, y).
This makes fp,q Wiener-Wintner functions of power type in L∞ ([2]).

By using only Van Der Corput’s inequality we can also get the following:

Theorem 2. — If α is of finite type η, then the system (T,B, Tα,1, m) is a
Wiener-Wintner dynamical system.

Proof. — We show that the functions fp,q, q '= 0, are Wiener-Wintner func-
tions. As in [1]

sup
ε

∣

∣

∣

∣

1
N

N
∑

n=1

fp,q(T n
α,1(x, y))e2πinε

∣

∣

∣

∣

2

≤ 2
H + 1

+
4

(H + 1)2

H
∑

h=1

(H + 1 − h)
∣

∣

∣

∣

1
N

N−h−1
∑

n=1

e−2πiqhnα

∣

∣

∣

∣

≤ 2
H + 1

+
4

H + 1

H
∑

h=1

∣

∣

∣

∣

1
N

N
∑

n=1

e−2πiqhnα − 1
N

N
∑

n=N−h

e−2πiqhnα

∣

∣

∣

∣

≤ 2
H + 1

+
4H

N
+

4
H

H
∑

h=1

∣

∣

∣

∣

1
N

N
∑

n=1

e−2πiqhnα

∣

∣

∣

∣

.

Now,

4
H

H
∑

h=1

∣

∣

∣

∣

1
N

N
∑

n=1

e−2πiqhnα

∣

∣

∣

∣

=
4
H

H
∑

h=1

1
N

∣

∣

∣

∣

sin(πqhNα)
sin(πqhα)

∣

∣

∣

∣

≤ 4
H

H
∑

h=1

1
N

∣

∣

∣

∣

1
sin(πqhα)

∣

∣

∣

∣

=
4
H

H
∑

h=1

1
N

1
sin(π〈qhα〉) .

Let γ be any number less than 1. Then,

(4)
4
H

H
∑

h=1

1
N

1
sin(π〈qhα〉) =

4
H

∑

{h:〈qhα〉≤1/Nγ}

1
N

1
sin(π〈qhα〉)

+
4
H

∑

{h:〈qhα〉>1/Nγ}

1
N

1
sin(π〈qhα〉) .
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If 〈qhα〉 ≤ 1/Nγ and N is large enough, then sin(π〈qhα〉) ≥ π
2 〈qhα〉. So,

4
H

∑

{h:〈qhα〉≤1/Nγ}

1
N

1
sin(π〈qhα〉) ≤ 8

H

H
∑

h=1

1
N

1
π〈qhα〉

≤ 8q

Nπ

H
∑

h=1

1
qh〈qhα〉 .

It was shown in [8], p. 123, that if α is of finite type η, then

N
∑

n=1

1
n〈nα〉 = O(Nη−1+ε) for all ε > 0.

We can conclude that

4
H

∑

{h:〈qhα〉≤1/Nγ}

1
N

1
sin(π〈qhα〉) ≤ CεHη−1+ε

N
.(5)

If 〈qhα〉 > 1/Nγ , then sin(π〈qhα〉) > sin (π/Nγ) since 〈qhα〉 < 1/2. This
implies that

(6)
4
H

∑

{h:〈qhα〉>1/Nγ}

1
N

1
sin(π〈qhα〉) ≤ 4

H

H
∑

h=1

1
N

1
sin (π/Nγ)

≤ C′

N
Nγ =

C′

Ns′

for N large and s′ = 1 − γ > 0.
From (4),(5), and (6) we now have

4
H

H
∑

h=1

1
N

1
sin(π〈qhα〉) ≤ CεHη−1+ε

N
+

C′

Ns′ .

Hence,

sup
ε

∣

∣

∣

∣

1
N

N
∑

n=1

fp,q(T n
α,1(x, y))e2πinε

∣

∣

∣

∣

2

≤ 2
H

+
4H

N
+

CεHη−1+ε

N
+

C′

Ns′ .

Let H = [N r] for some 0 < r < min{1, 1
η−1+ε}. Then,

∫ 1

0

∫ 1

0
sup
ε

∣

∣

∣

∣

1
N

N
∑

n=1

fp,q(T n
α,1(x, y))e2πinε

∣

∣

∣

∣

dxdy

≤
[

∫ 1

0

∫ 1

0
sup
ε

∣

∣

∣

∣

1
N

N
∑

n=1

fp,q(T n
α,1(x, y))e2πinε

∣

∣

∣

∣

2

dxdy

]1/2

≤ C

N t
,

for some 0 < t < 1.
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2. Convergence of the rotated fractional one sided ergodic
Hilbert transform

The following theorem was proved for the case γ = 1 and f ∈ L2 in [1].

Theorem 3. — Let (X,B, µ, T ) be an ergodic dynamical system. Let f ∈ K⊥

be a Wiener-Wintner function such that
∥

∥

∥

∥

sup
ε

∣

∣

∣

∣

1
N

N
∑

n=1

f(T nx)e2πinε

∣

∣

∣

∣

∥

∥

∥

∥

1

≤ Cf

Nβ

where Cf , β are positive constants with β < 1. Let p ≥ max{2, 1/β}. If 1 +
1
2p −

β
2 < γ ≤ 1 and f ∈ Lp, then there exists a set Xf of full measure such that

for all x ∈ Xf the series
∑∞

n=1

f(T nx)e2πinε

nγ
converges for all ε. Furthermore,

the map

ε $−→
∞
∑

n=1

f(T nx)e2πinε

nγ

is continuous for all x ∈ Xf .

To prove the above theorem, we will use the following proposition.

Proposition 1. — Let f ∈ Lp, 1 ≤ p ≤ ∞, be a positive function. Let γ be
such that 0 < γ ≤ 1. Let δ > 0 be such that 1 < δ < 1/(1 + 1

p − γ). (Note that
δ < 1/(1 − γ) ⇒ γ > (δ − 1)/δ). Then,

lim
N→∞

1
Nγδ

[(N+1)δ]
∑

n=[Nδ]

f(T nx) = 0 a.e.

Proof. — The result is trivial if p = ∞. If p '= ∞, then we proceed as follows:
Let gn = f ◦ T n − f ◦ T n ∧ n1/p. Then,

1
Nγδ

[(N+1)δ]
∑

n=[Nδ]

f(T nx) =
1

Nγδ

[(N+1)δ]
∑

n=[Nδ]

f(T nx) ∧ n1/p +
1

Nγδ

[(N+1)δ]
∑

n=[Nδ]

gn(x).

First, we will show the a.e. convergence to zero of the second term:

µ
({

x :
∑[(N+1)δ ]

n=[Nδ ] gn(x) > Nγδε
})

≤ µ
({

x :
⋃[(N+1)δ ]

n=[Nδ ] gn(x) > 0
})

≤
[(N+1)δ]

∑

n=[Nδ]

µ({x : fp(x) > n}),

since T is measure preserving.
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Now,

∞
∑

N=1

µ
({

x :
∑[(N+1)δ ]

n=[Nδ ] gn(x) > Nγδε
})

≤
∞
∑

N=1

[(N+1)δ]
∑

n=[Nδ]

µ({x : fp(x) > n})

=
∞
∑

N=1

µ({x : fp(x) > N})

≤
∫ ∞

0
µ({x : fp(x) > t})dt = ‖f‖p

p < ∞.

Hence, by the Borel-Cantelli Lemma,

µ
(

lim
N

{

x :
∑[(N+1)δ]

n=[Nδ] gn(x) > Nγδε
})

= 0 for all ε.

So, we can conclude that

lim
N→∞

1
Nγδ

[(N+1)δ]
∑

n=[Nδ]

gn(x) = 0 a.e.,

as desired, since gn is positive.
To finish the proof of the proposition, it remains to show that

1
Nγδ

[(N+1)δ]
∑

n=[Nδ]

f(T nx) ∧ n1/p

approaches 0 a.e. as N → ∞. But,

1
Nγδ

[(N+1)δ]
∑

n=[Nδ]

f(T nx) ∧ n1/p ≤ 1
Nγδ

[(N+1)δ]
∑

n=[Nδ]

n1/p

≤ 1
Nγδ

∫ [(N+1)δ]+1

n=[Nδ]
x1/pdx

=
1

Nγδ

( 1
1
p + 1

) {

(

[(N + 1)δ] + 1
)

1
p +1 − [N δ]

1
p +1

}

≤ 1
Nγδ

( 1
1
p + 1

) {

(

(N + 1)δ + 1
)

1
p +1 − (N δ − 1)

1
p +1

}

≤ C
N δ( 1

p +1)−1

Nγδ
since δ > 1

= C
1

Nγδ−δ( 1
p +1)+1

→ 0

since by assumption γδ − δ( 1
p + 1) + 1 > 0.
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Proof of Theorem 3. — Let

M ε
N (f) =

1
N

N
∑

n=1

f(T nx)e2πinε, Sε
N =

N
∑

n=1

f(T nx)e2πinε

nγ
.

Then,

Sε
M (f)−Sε

N(f) =
M
∑

n=N+1

nM ε
n(f) − (n − 1)M ε

n−1(f)
nγ

(7)

=
M
∑

n=N+1

nM ε
n(f)

nγ
−

M
∑

n=N+1

(n − 1)M ε
n−1(f)

nγ

=
M
∑

n=N+1

nM ε
n(f)

nγ
−

M−1
∑

n=N

nM ε
n(f)

(n + 1)γ

=
M−1
∑

n=N+1

nM ε
n(f)(

1
nγ

− 1
(n + 1)γ

) +
MM ε

M (f)
Mγ

− NM ε
N(f)

(N + 1)γ
.

So, we have

∥

∥

∥
sup
ε

|Sε
M (f) − Sε

N (f)|
∥

∥

∥

1
≤

M−1
∑

N+1

[

1
nγ

− 1
(n + 1)γ

]

∥

∥

∥
sup
ε

|nM ε
n(f)|

∥

∥

∥

1

+
M

Mγ

∥

∥

∥
sup
ε

|M ε
M (f)|

∥

∥

∥

1
+

N

(N + 1)γ
∥

∥

∥
sup
ε

|M ε
N (f)|

∥

∥

∥

1

≤
M
∑

N+1

[

(n + 1)γ − nγ

n2γ

]

nCf

nβ
+

MCf

MγMβ
+

NCf

NγNβ

≤
M
∑

N+1

Cf [(n + 1)γ − nγ ]
n2γ+β−1

+
Cf

Mγ+β−1
+

Cf

Nγ+ beta−1
.

Hence,
∥

∥

∥
sup
ε

|Sε
M (f) − Sε

N (f)|
∥

∥

∥

1
≤

M
∑

N+1

Cf

nγ+β
+

Cf

Nγ+β−1
.

Substituting 2N+1 for M and 2N for N we have the following.

∥

∥

∥
sup
ε

|Sε
2N+1(f) − Sε

2N (f)|
∥

∥

∥

1
≤

2N+1
∑

2N +1

Cf

nγ+β
+

Cf

(2γ+β−1)N .

Since γ + β > γ + β/2 > 1,
∑∞

N=1 ‖ supε |Sε
2N+1(f) − Sε

2N (f)|‖1 < ∞. Hence,
∑∞

N=1 supε |Sε
2N+1(f) − Sε

2N (f)| < ∞ a.e., i.e. there exists a set Xf of full
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measure such that
∞
∑

N=1

sup
ε

|Sε
2N+1(f)(x) − Sε

2N (f)(x)| < ∞ ∀x ∈ Xf .

From this we can conclude that Sε
2N (f) converges a.e. to a continuous function

of ε. Furthermore, from (7) we get that

sup
2N≤L≤2N+1

sup
ε

|Sε
L(f) − Sε

2N (f)| ≤
2N+1−1

∑

2N +1

[

1
nγ

− 1
(n + 1)γ

]

sup
ε

|nM ε
n(f)|

+ 2 sup
2N≤L≤2N+1

sup
ε

∣

∣

∣

LM ε
L(f)

Lγ

∣

∣

∣
.

The first term goes to zero a.e. as N → ∞ since

∞
∑

N=1

∥

∥

∥

2N+1−1
∑

2N +1

[ 1
nγ

− 1
(n + 1)γ

]

sup
ε

|nM ε
n(f)|

∥

∥

∥

1
≤

∞
∑

N=1

2N+1−1
∑

2N+1

γ

n2γn1−γ

nCf

nβ

=
∞
∑

N=1

Cf

nγ+β
< ∞

since γ + β > 1.
To finish the proof of the theorem, it only remains to show that the last

term goes to 0 a.e. as N → ∞.

To show that sup2N≤L≤2N+1 supε |
LMε

L(f)
Lγ | goes to 0 a.e. as N → ∞, it

suffices to show that

RL = sup
ε

∣

∣

∣

LM ε
L(f)

Lγ

∣

∣

∣
−→ 0 a.e. as L −→ ∞.

First, let us look at t he L1 norm of RL.

‖RL‖1 =
∥

∥

∥
sup
ε

∣

∣

∣

LM ε
L(f)

Lγ

∣

∣

∣

∥

∥

∥

1
≤ LCf

LγLβ
=

Cf

Lγ+β−1
,

where the inequality follows by assumption.
Let ρ = γ + β − 1 and note that ρ > 0 since γ > 1 − β/2 > 1 − β > 0.
Now let L = [N δ] where δ is such that 1/ρ < δ < 1/(1 + 1

p − γ). It is
possible to pick such a δ since by assumption γ > 1 + 1

2p − β
2 . Also note that

ρ = (γ − 1) + β < β < 1 implies that δ > 1. Then,
∞
∑

N=1

‖R[Nδ]‖1 ≤
∞
∑

N=1

Cf

[N δ]ρ
< ∞,

since ρδ > 1.
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Hence, R[Nδ] → 0 a.e. That is,

(8) sup
ε

∣

∣

∣

∣

1
[N δ]γ

[Nδ ]
∑

n=1

f(T nx)e2πinε

∣

∣

∣

∣

−→ 0 a.e. as N → ∞.

Now, let [N δ] ≤ L ≤ [(N + 1)δ]. Then,

sup
ε

∣

∣

∣

∣

1
Lγ

L
∑

n=1

f(T nx)e2πinε

∣

∣

∣

∣

≤ sup
ε

∣

∣

∣

∣

1
[N δ]γ

[Nδ ]
∑

n=1

f(T nx)e2πinε

∣

∣

∣

∣

+ sup
ε

∣

∣

∣

∣

1
Lγ

L
∑

n=[Nδ ]+1

f(T nx)e2πinε

∣

∣

∣

∣

.

The first term goes to zero a.e. by (8). The second term also goes to zero a.e.
since

sup
ε

∣

∣

∣

∣

1
Lγ

L
∑

n=[Nδ]+1

f(T nx)e2πinε

∣

∣

∣

∣

≤ 1
Lγ

[(N+1)δ ]
∑

n=[Nδ ]+1

|f(T nx)|

≤ 1
[N δ]γ

[(N+1)δ]
∑

n=[Nδ]+1

|f(T nx)| −→ 0 a.e.

by the proposition.

Remarks
(1) There exist γ ∈ (0, 1) for which the above theorem is not true. In particu-

lar, if {Xn} is the Rademacher sequence, then the map ε $→
∑∞

n=1

Xn(ω)e2πinε

nγ

is not continuous if γ ≤ 1/2 since

sup
ε∈[0,1]

∣

∣

∣

∣

∞
∑

n=1

Xn(ω)e2πinε

nγ

∣

∣

∣

∣

2

≥
∫ 1

0

∣

∣

∣

∣

∞
∑

n=1

Xn(ω)e2πinε

nγ

∣

∣

∣

∣

2

dε

=
∞
∑

n=1

|Xn(ω)|2

n2γ

=
∞
∑

n=1

1
n2γ

= ∞.

As pointed out by the referee this argument can be extended to ergodic sta-
tionary processes in the following way:
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If the series
∑∞

n=1

f(T nx)e2πinε

n1/2
converges uniformly in ε for a.e. x, then

∞
∑

n=1

|f(T nx)|2

n
=

∫ 1

0

∣

∣

∣

∣

∞
∑

n=1

f(T nx)e2πinε

n1/2

∣

∣

∣

∣

2

dε

≤ sup
ε∈[0,1]

∣

∣

∣

∣

∞
∑

n=1

f(T nx)e2πinε

n1/2

∣

∣

∣

∣

2

< ∞

which contradicts the fact that

lim
N→∞

1
log N

N
∑

n=1

|f(T nx)|2

n
=

∫

|f |2dµ.

(2) In [2], Theorem 3 is used to give a spectral characterization of L∞

Wiener-Wintner functions of some power type in L2.
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