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POSITIVITY OF QUADRATIC BASE CHANGE
L-FUNCTIONS

by Hervé Jacquet & Chen Nan

Abstract. — We show that certain quadratic base change L-functions for Gl(2) are
non-negative at their center of symmetry.

Résumé (Positivité des fonctions L du changement de base quadratique)
On montre que certaines des fonctions L de Gl(2) obtenues par changement de base

quadratique sont positives en leur centre de symétrie.
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34 JACQUET (H.) & CHEN (N.)

1. The main theorem

Let E/F be a quadratic extension of number fields and ηE/F or simply η
the quadratic character of F attached to E, {1, τ} the Galois group of E/F .
We will often write

τ(z) = z.

We will denote by U1 the unitary group in one variable, that is, the group
of elements of norm 1 in E×. Suppose that π is an automorphic cuspidal
representation of Gl(2, FA) whose central character ω is trivial on the group of
norms. In other words ω = 1 or ω = η. We assume that π is not dihedral
with respect to E so that the base change representation Π of π to Gl(2, E) is
still automorphic and cuspidal. Let Ω be an idele class character of E whose
restriction to F×

A
is equal to ω. Our main result is the following theorem:

Theorem 1. — With the previous notations: L
(
1
2 ,Π⊗ Ω−1) ≥ 0.

If ω = 1 and Ω = 1 then L(s,Π) = L(s, π)L(s, π⊗η) and the result has been
established by Guo (see [G1], under some restrictions on E/F ). As a matter
of fact, by using results on averages of L-functions (see [FH]), Guo is able to
prove that L(12 , π) ≥ 0, which then implies our result for ω = 1, Ω = 1, without
restriction on E/F . At any rate, Baruch and Mao [BM] have independently
established that L(12 , π) ≥ 0 if ω = 1. However, the present result–where Ω
needs not be trivial–is more general, even in the case ω = 1.

Results on the positivity of Gl(2) L-functions have been considered by many
mathematicians (see, for instance, [BFH], [Gr], [K], [Kk], [KS], [KZ], [S], [R],
[S], [W3], [Ya]). Specially, the positivity of the twisted L-function at hand has
been investigated (for holomorphic forms) in [GZ].

We note that Ωτ = Ω−1 and Π is self-contragredient: Π̃ = Π. Thus

L(s,Π⊗ Ω−1) = L
(
s,Πτ ⊗ (Ω−1)τ

)
= L(s,Π⊗ Ω) = L(s, Π̃⊗ Ω).

Likewise,

ε(s,Π⊗ Ω−1)ε(1− s,Π⊗ Ω−1) = ε(s,Π⊗ Ω−1)ε(1− s, Π̃⊗ Ω) = 1.

In particular ε(12 ,Π⊗ Ω−1) = ±1. Thus, despite the fact that Π⊗ Ω−1 is not
necessarily self-contragredient, the L-function L(s,Π⊗ Ω−1) is symmetric:

L(s,Π⊗ Ω−1) = ε(s,Π⊗ Ω−1)L(1− s,Π⊗ Ω−1).

The following lemma is easily verified:

Lemma 1. — Let v0 be a place of F . If v0 is inert and v is the corresponding
place of E then:

L
(
1
2 ,Πv ⊗ Ω−1

v

)
> 0.

If v0 splits into v1 and v2 then:

L
(
1
2 ,Πv1 ⊗ Ω−1

v1

)
L

(
1
2 ,Πv2 ⊗ Ω−1

v2

)
> 0.
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POSITIVITY OF QUADRATIC BASE CHANGE L-FUNCTIONS 35

Let S0 be a finite set of places of F and S the corresponding set of places
of E. Set

LS(s,Π⊗ Ω−1) =
∏
v �∈S

L(s,Πv ⊗ Ω−1
v ).

In view of the lemma, the statement of the theorem is equivalent to the posi-
tivity of LS(12 ,Π⊗ Ω−1).

If Π is dihedral with respect to E, then Π is associated with an idele class
character Ξ of E whose restriction to F×

A
is ωη. Thus Ξτ = Ξ−1 and

L(s,Π⊗ Ω−1) = L(s,ΞΩ−1)L(s,ΞτΩ−1) = L(s,ΞΩ−1)L(s,Ξ−1Ω−1).

If Ω is trivial or even quadratic this is ≥ 0. At any rate, in general, ΞΩ−1

and Ξ−1Ω−1 have η for restriction to F×
A
. Thus there are cuspidal representa-

tions π1 and π2 of Gl(2, F×
A
) with trivial central character such that:

L(s,ΞΩ−1) = L(s, π1), L(s,Ξ−1Ω−1) = L(s, π2)

and by the results already quoted each factor is ≥ 0 at s = 1
2 . We will not

discuss this case but remark that, by considering the discrete but non-cuspidal
terms in our trace formula, we could probably handle this case as well.

The proof of the theorem is based on a careful analysis of the relative trace
formula of [J2] (In the case Ω = 1 we could, like Guo, use the simpler trace for-
mula of [J1].) Namely, we consider an inner form G of Gl(2, F ) which con-
tains a torus T isomorphic to E×. There is then an ε ∈ F×, uniquely de-
termined modulo Norm(E×), such that the pair (G, T ) is isomorphic to the
pair (Gε , T ) defined as follows. We denote by Hε the semi-simple algebra of
matrices g ∈M(2, E) of the form

(1) g =
( a εb

b a

)
and by Gε its multiplicative group. Then

T =
{
t =

( a 0
0 a

)}
.

We let Z be the center of Gε . We regard Ω as a character of T (FA): t �→ Ω(a).
Suppose that f is a smooth function of compact support on Gε(FA). We form
as usual a kernel

Kf (x, y) :=
∫
Z(FA)/F×

∑
ξ∈Gε(F )

f(x−1z ξy)ω(z)dz

and a distribution

Jε(f) :=
∫
(Z(FA)T (F )\T (FA))2

Kf(t1, t2)Ω(t1)−1dt1Ω(t2)dt2.
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36 JACQUET (H.) & CHEN (N.)

We have a spectral decomposition of the kernel:

Kf =
∑
σ

Kf,σ +Kf,cont ;

the sum on the right is over all irreducible (cuspidal) automorphic representa-
tions σ ofGε : ifGε is not split, by cuspidal we mean an irreducible automorphic
representation which is not one-dimensional. The term Kf,cont represents the
contribution of the one dimensional representations and the continuous spec-
trum which is present only if Gε is split, that is, ε is a norm. For every σ the
kernel Kf,σ is defined by

Kf,σ(x, y) =
∑
φ

ρ(f)φ(x)φ(y),

the sum over an orthonormal basis of the space of σ. We define then:

Jσ(f) :=
∫
(Z(FA)T (F )\T (FA))2

Kf,σ(t1, t2)Ω(t1)−1dt1Ω(t2)dt2.

This is a distribution of positive type: if f = f1 ∗ f∗
1 where f∗

1 (g) := f1(g−1)
then

Jσ(f) =
∑

ν
(
ρ(f1)φ

)
ν
(
ρ(f1)φ

)
,

where we have set

(2) ν(φ) :=
∫
Z(FA)T (F )\T (FA)

φ(t)Ω(t)−1dt;

thus Jσ(f) ≥ 0. Moreover, if ν is not identically zero on the space of σ, or
as we shall say, if σ is distinguished by (T,Ω), then every local component
σv0 is distinguished by (Tv0 ,Ωv0), that is, admits a non-zero continuous linear
form νv0 such that νv0(πv0(t)u) = Ωv0(t)νv0(u) for all t ∈ Tv0 and all smooth
vectors u. The dimension of the space of such linear forms is one. One can
then define a local distribution

Jσv0
(fv0) =

∑
νv0

(
ρ(fv0)u

)
νv0 (u),

the sum over an orthonormal basis. The distribution Jσv0
is defined within a

positive factor. It is of positive type. Normalizing in an appropriate way we get

(3) Jσ(f) = C(σ)
∏
v0

Jv0(fv0),

where the constant C(σ) is positive. Assuming that L(12 ,Π ⊗ Ω−1) �= 0 we
can find an ε such that there is an automorphic representation σ of Gε corre-
sponding to π and distinguished by (T,Ω) (see [J2], [W4]). Another goal of the
paper is to obtain an explicit decomposition of the above form, with a specific
normalization (Theorem 2). The crux of the matter is then to show that C(σ)
is essentially equal to L(12 ,Π⊗Ω−1) which gives the positivity result. Possibly,
this can be used to provide lower bounds for L(12 ,Π⊗ Ω−1).
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POSITIVITY OF QUADRATIC BASE CHANGE L-FUNCTIONS 37

We note that if ε exists then it is unique. Indeed, this follows at once from
the following local fact: if v0 is inert, ε not a norm at v0, π is a square integrable
representation of Gl(2, Fv0), and σ the representation of Gε(Fv0) corresponding
to π then π and σ cannot be both distinguished by (Tv0 ,Ωv0) (see [W4]).

We stress that there is no direct way to compute the constant C(σ) because
there is no direct relation between the global linear form ν and the local linear
forms νv0 . The situation at hand (a globally defined distribution of positive type
decomposed as a product over all places of F of local distributions of positive
type, times the appropriate special values of L-functions) is, conjecturally, quite
general. In this situation, the positivity of the special value of the L-function
follows. One can view this question as a generalization of the problem of
computing the Tamagawa number. This is our motivation for investigating in
detail the present situation.

We proceed as follows. We introduce the matrices

(4) w =
( 0 1
1 0

)
, wε =

( 0 ε
1 0

)
.

It will be more convenient to consider instead the distributions

θε(f) :=
∫
(Z(FA)T (F )\T (FA))2

Kf (t1, t2)Ω(t1t2)−1dt1dt2,

and, for σ an automorphic representation of Gε ,

θσ(f) :=
∫
(Z(FA)T (F )\T (FA)2

Kf,σ(t1, t2)Ω(t1t2)−1dt1dt2.

Thus
Jσ(f) = θσ

(
ρ(wε)f

)
and likewise for Jε . We will decompose explicitly θσ into a product over all
places v0 of F of local distributions θσv0

.
To that end, we compute the geometric expression for θε(f). A set of rep-

resentatives for the double cosets of T (F ) in Gε(F ) is given by the matrices:

12,
( 0 ε
1 0

)
,

( 1 ε β

β 1

)
, β ∈ E×/U1(F ).

We define orbital integrals. For ξ �= 1 in Norm(E×)ε we write ξ = ββε and
set:

(5) H(ξ ; f) =
∫∫

f
[
t1

( β−1 ε

1 β−1

)
t2

]
Ω(t1t−12 )dt1dt2.

Note that the right hand side of the integral depends only on ββε, which
justifies the notations. In addition, we define

(6) H(∞; f) :=
∫

f
[
t1

( 0 ε
1 0

)]
Ω(t1)dt1,
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38 JACQUET (H.) & CHEN (N.)

and, if Ω2 is trivial,

(7) H(0; f) :=
∫

f(t1)Ω(t1)dt1.

It will be useful to observe that the condition Ω2 = 1 is equivalent to Ωτ = Ω
or Ω U1(FA) = 1. The integrals are for t1 ∈ T (FA) and t2 ∈ T (FA)/Z(FA).
An idele class character χ of E is normalized if it is trivial on the subgroup
E+

∞ of ideles with all finite components trivial and all infinite components
equal to some common positive number. For such a character we set δ(χ) = 1
if χ = 1 and δ(χ) = 0 otherwise. All idele class characters will be assumed to
be normalized. We have then

θε(f) =
∑

ξ∈Norm(E×)ε−{1}
H(ξ ; f)(8)

+
(
δ(Ω2)H(0; f) +H(∞; f)

)
vol

(
T (FA)/T (F )Z(FA)

)
.

In what follows we denote by G the group Gl(2), by A the group of diagonal
matrices, by Z the group of scalar matrices, by P the group of upper triangular
matrices, by P1 the subgroup of matrices with (0, 1) for second row and byN the
subgroup of triangular matrices with unit diagonal. Depending on the context
these groups are regarded as algebraic groups over F or E. We now view the
group G as an algebraic group defined over E and we let H0 be the unitary
group for the matrix w. We denote by H the corresponding similitude group
and by κ the similitude ratio. It is a result of [HLR] that Π is distinguished
by (H, ηω), in the sense that there is a vector φ in the space of Π such that

P(φ) :=
∫
H(F )Z(EA)\H(FA)

φ(h)η ω
(
κ(h)

)
dh �= 0.

This condition characterizes representations which are base change of represen-
tations of Gl(2, FA) with central character ω (loc. cit.).

We may regard Ω as a character of A(EA) trivial on Z(EA):

Ω
[
(diag(a1, a2)

]
= Ω(a1a−12 ).

Then L(12 ,Π⊗ Ω−1) �= 0 if and only if there is φ in the space of Π such that

(9) λ(φ) :=
∫
Z(EA)A(E)\A(EA)

φ(a)Ω−1(a)da �= 0.

These facts suggest the following construction. Let f be a smooth function of
compact support on G(EA). Define a kernel

Kf(x, y) =
∫
Z(EA)/Z(E)

∑
ξ∈G(E)

f(x−1z ξy)d×z,
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POSITIVITY OF QUADRATIC BASE CHANGE L-FUNCTIONS 39

and a distribution:

(10) Θ(f) :=
∫
Z(EA)A(E)\A(EA)

∫
Z(EA)H(F )\H(FA)

Kf (a, h)Ω−1(a)ηω
(
κ(h)

)
dhd×a.

The outer integral is not convergent and must be regularized. If Π is a
cuspidal automorphic representation of G(EA) with trivial central character
then we define similarly the distribution ΘΠ. This distribution is non-zero
if and only if Π is distinguished by (H,ωη) and L(12 ,Π ⊗ Ω−1) �= 0. It can
decomposed explicitly into a product of local distributions.

The distribution Θ can be computed in terms of orbital integrals in the
following way. We let S be the space of invertible Hermitian matrices and Ss
the space of split Hermitian matrices. The group Gl(2, E) operates on S by
s �→ gs tg . We let Φf or simply Φ be the function on the space S(FA) such
that

Φf (gw tg) =
∫
H0(FA)

f(gh0)dh0

and Φf vanishes outside Ss(FA). We have∫
Kf

[(
a−1 0
0 1

)
, h

]
ηω

(
κ(h)

)
dh

=
∫ ∑

ξ∈S(F )
Φ

[( a 0
0 1

)
ξ
( a 0
0 1

)
z
]
ωη(z)d×z.

This leads us to introduce the action of E×× F× defined by:

s � (α,ζ)−−−→
( α 0
0 1

)
s
( α 0
0 1

)( ζ 0
0 ζ

)
.

A system of representatives for the orbits of E×× F× on S(F ) is constituted
of the following matrices:(

ξ−1 1
1 1

)
, ξ ∈ F×− 1,

(
ε−1 0
0 1

)
, ε ∈ F×/Norm(E×),(11) ( 0 1

1 0

)
,(12) ( 0 1

1 1

)
,
( 1 1
1 0

)
.(13)

For ξ ∈ F×− {1}, we set

U(ξ ; Φ) :=
∫
E×

A

∫
F×

A

Φ
[( z 0

0 z

)( y 0
0 1

)(
ξ−1 1
1 1

)( y 0
0 1

)]
× η ω(z)d×zΩ(y)d×y.
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40 JACQUET (H.) & CHEN (N.)

If Ω is trivial on U1 we define

U
[(

ε−1 0
0 1

)
; Φ

]
:=

∫
F×

A

∫
E×

A
/U1(FA)

Φ
[(

ε−1yyz 0
0 z

)]
ωη(z)Ω(y)d×yd×z.

The stabilizer of (12) in E×
A
×F×

A
is the set of pairs (y, z) with yz = 1. However,

because of our assumptions, the character (y, z) �→ Ω(y)ωη(z) is non-trivial on
that subgroup and so the element (12) does not contribute to the sum below.
We also introduce two unipotent orbital integrals

U
[( 0 1

1 1

)
; Φ

]
:=

∫∫
Φ

[( 0 y
y z

)]
Ω(y)d×y η(z)d×z,

U
[( 1 1

1 0

)
; Φ

]
:=

∫∫
Φ

[( z y
y 0

)]
Ω(y)d×y η(z)d×z.

These integrals are improper integrals. For the first one, for instance, we
remark that the function φ defined by:

φ(z) :=
∫

Φ
[( 0 y

y z

)]
Ω(y)d×y

is a Schwartz-Bruhat function on FA. The unipotent integral is then the ana-
lytic continuation to the point s = 0 of the Tate integral:∫

F×
A

φ(z)η(z)|z|sd×z.

We have then

Θ(f) =
∑

ξ∈F×−{1}
U(ξ ; Φ) + δ(Ω2) vol

(
U1(FA)/U1(F )

)
(14)

×
∑

ε∈F×/Norm(E×)

U
[( ε−1 0

0 1

)
; Φ

]
+ U

[( 0 1
1 1

)
; Φ

]
+ U

[( 1 1
1 0

)
; Φ

]
.

We say that f and a family of functions (fε), ε ∈ F×/Norm(E×), havematching
orbital integrals if

U(ξ ; Φ) = H(ξ ; fε),

for ξ ∈ εNorm(E×) − {1}. Implicit in this definition is the fact that fε = 0
for almost all ε. We show that for any f there is a family (fε) with matching
orbital integrals. Note that the converse is not true: to have a converse one
would need to consider all unitary groups. When f and the family (fε) have
matching orbital integrals, we have then

Θ(f) =
∑
ε

θε(fε),

that is, the terms corresponding to all orbitals integrals match (see [J2]).
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POSITIVITY OF QUADRATIC BASE CHANGE L-FUNCTIONS 41

Now we apply standard arguments: by identifying the contribution of the
continuous (and residual) spectrum on both sides we arrive at the identity

ΘΠ(f) =
∑

θσε (fε).

In a precise way, the representation Π is the base change of π and π ⊗ η. The
sum on the right is over all representations σε which correspond to π or π⊗ η.
As noted above, the sum on the right reduces to two terms, that is, there is a
unique ε and a representation σε of Gε(FA) which corresponds to π such that

ΘΠ(f) = θσε (fε) + θσε⊗η(fε).

The distribution ΘΠ can be decomposed explicitly into a product; the above
identity allows us to decompose θσε and, finally, prove the theorem.

The method is quite general and should apply to many situations. For in-
stance, the work of [G2] suggests a possible direct generalization of the present
set-up to Gl(2n), the group T being replaced by the group Gl(n,E) embedded
in Gl(2n, F ) and some inner forms of it. [G2] is concerned with the generaliza-
tion of the simpler trace formula in [J1].

We remark that it would be interesting to compare our explicit result with
the results of [W4].

The paper is arranged as follows. In sections 2 and 3 we review the results
of [J2] on the matching of orbital integrals, reformulating the results in terms of
symmetric spaces; we carefully normalize the various Haar measures. In section
4 we decompose the distribution ΘΠ explicitly into a product of local distribu-
tions. This is mainly a review of the material in [HLR]. The heart of the paper
is section 5 where we compare the local distributions at hand.

The proof of the main theorem is given in section 6, with some additional
comments in section 7. The paper concludes with sections 8 and 9, an appendix
where we discuss the absolute convergence of the term coming from the con-
tinuous spectrum in the trace formulas at hand. Unfortunately, reference [J2]
(also [J1]) is somewhat deficient on this point: the main point is that [J2] omits
infinite sums on idele class characters unramified at all places. To make the
argument rigorous we introduce, in the case at hand, a new form of truncation
which may be more appropriate than the standard truncation operator for the
investigation of period integrals (cf. [JLRo]) and a new device (special to Gl(2)
or closely related groups) to estimate some period integrals. Note that [G1]
which is based on [J1] is also deficient and so is [BM]. Thus we take care at
once of a gap in several papers.

Finally, we would like to thank the referee for a careful and thorough reading
of the manuscript.
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42 JACQUET (H.) & CHEN (N.)

2. Choice of measures and local matching

We review the results of [J2] on local matching. It will be essential to keep
track of the choice of the various Haar measures.

2.1. Inert case. — We consider a local quadratic extension E/F . We choose
an additive character ψF of F and set

ψE(z) = ψF (z + z).

On the additive groups F and E we consider the self-dual Haar measures. In
particular, if we write E = F [

√
δ ] and z = a+ b

√
δ then dz = dadb |2|F |δ|1/2F .

The multiplicative Tamagawa measures on F× and E× are respectively:

d×x = L(1, 1F )
dx
|x|F

, d×z = L(1, 1E)
dz
|z|E

·

The following integration formula will be used below:

Lemma 2. — One has∫
E×

φ(z)
dz
|zz |F

=
∫
Norm(E×)

φ̃(x)
dx
|x|F

,

where φ̃(x) is the function on Norm(E×) defined by

φ̃(x) :=
∫
E×/F×

φ
(
z
u

u

)
d0u, x = z z,

and the measure d0u is the quotient of dz/|z|E by dx/|x|F .

Since T (F ) is isomorphic to E× via the map diag(a, a) �→ a, we obtain the
Tamagawa measure on T (F ). Likewise the center Z of Gl(2) is isomorphic
to Gl(1) and so we have the Tamagawa measure on Z(F ) and Z(E).

On the group Gl(2, F ) we have the Tamagawa measure

d×g = L(1, 1F )
dpdqdrds
| det g|2F

, g =
( p q
r s

)
.

Using the Iwasawa decomposition we can write

d×g = d×ad×bdxdk,

if

g =
(
a 0
0 b

)( 1 x
0 1

)
k,

where dk is a Haar measure on the standard maximal compact subgroup KF

of Gl(2, F ). Let Φ be a Schwartz-Bruhat function on F 2. The following lemma
is easily verified:
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POSITIVITY OF QUADRATIC BASE CHANGE L-FUNCTIONS 43

Lemma 3. — One has∫∫
Φ(x, y)dxdy =

∫∫
Φ

[
(0, t)k

]
· |t|2d×tdk.

In particular, in the unramified situation, we can take for Φ the characteristic
function of the setO2

F and obtain vol(KF ) = L(2, 1F )−1. On the group Gl(2, E)
we also have the Tamagawa measure

d×g = L(1, 1E)
dg

| det g|2E
, dg = dpdqdrds

if

g =
( p q
r s

)
.

On the group Gε we take for the Tamagawa measure the measure:

d×g = L(1, 1F )|ε|F
dadb

|aa − εbb|2F
,

if

g =
( a εb

b a

)
.

If ε is a norm the group Gε(F ) is isomorphic to Gl(2, F ) and the isomorphism
takes the above measure to the Tamagawa measure on Gl(2, F ). From Lemma 2
we get the following integration formula:∫

Gε

F (g)d×g(15)

=
1

L(1, η)2

∫
x=εaa

{∫∫
F

[
t1

( a−1 ε
1 a−1

)
t2

]
dt1dt2

} dx
|1− x|2F

with t1 ∈ T (F ), t2 ∈ T (F )/Z(F ).
In view of the isomorphism

Gl(2, F )Z(E)/Z(E) � Gl(2, F )/Z(F )

we give to Gl(2, F )Z(E) the measure defined by

dg = L(1, 1E)
da
|a|F

db
|b|E

dxdy

if

g =
( ab 0

0 b

)( 1 0
y 1

)( 1 x
0 1

)
.

On the group H isomorphic to Gl(2, F )Z(E) the corresponding measure is
given by

L(1, 1E)
da
|a|F

db
|b|E

dx1dy1
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44 JACQUET (H.) & CHEN (N.)

for

g =
(
ab 0
0 b

)( 1 0
y 1

)( 1 x
0 1

)
,

with a ∈ F×, b ∈ E×, x = x1
√
δ, y = y1

√
δ
−1

, x1, y1 ∈ F . Of course, this
measure does not depend on the choice of δ. Using the exact sequence

1→ H0 −→ H
κ−−−→ F×→ 1,

we get the Tamagawa measure on H0:

dh0 = L(1, η)
db
|b|E

dx1dy1

if

h0 =
( b 0
0 b

−1
)( 1 0

y 1

)( 1 x
0 1

)
.

We need the following integration formula:

Lemma 4. — The quotient of the Tamagawa measure on Gl(2, E) by the
Tamagawa measure on H0 is the following measure on the symmetric space Ss:

ds = L(1, 1F )
dxdydz
|xy − zz |2F

, s =
( x z
z y

)
.

For f a smooth function of compact support on Gε(F ) we define

H(x; f) :=
∫
T (F )/Z(F )

∫
T (F )

f
[
t1

( b−1 ε

1 b
−1

)
t2

]
Ω(t1t−12 )dt1dt2(16)

if x = εbb, x �= 1. The integrand is a smooth function of b depending only on
bbε which justifies the notation. Next we define the orbital integrals for the
space S(F ) of invertible Hermitian matrices. As in the global case, the group
E×× F× operates. Relative to this action we have the local orbital integrals
of a function Φ ∈ C∞0 (S(F )):

U(x; Φ) :=
∫
E×

∫
F×

Φ
[(

z 0
0 z

)(
y 0
0 1

)(
x−1 1
1 1

)(
y 0
0 1

)]
× η ω(z)d×zΩ(y)d×y.

Now let {ε1, ε2} be a system of representatives for the classes of Norm(E×)
in F×, where ε1 is a norm. Let Φ ∈ C∞0 (S(F )) and fεi , i = 1, 2, be functions
in C∞0 (Gεi

(F )). We say that Φ and the pair (fε1 , fε2) have matching orbital
integrals if

U(x; Φ) = H(x; fεi
) for x ∈ εiNorm(E×).

Proposition 1. — Given Φ there is a pair (fε1 , fε2) with matching orbital
integrals.
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POSITIVITY OF QUADRATIC BASE CHANGE L-FUNCTIONS 45

To prove the result one needs to consider the behavior at infinity of the
orbital integrals defined above as well as the other orbital integrals. This is
done in [J2]. We will use this result in the following way: f will be a smooth
function of compact support on Gl(2, E) and we will set

Φf (s) =
∫
H0(F )

f(gh0)dh0, s = g w tg,

Φf (s) = 0, s �∈ Ss(F ).

If the pair (fε1 , fε2) has matching orbital integrals with Φf we shall say that
it has matching orbital integrals with f .

Consider now the unramified situation: the residual characteristic is odd,
the extension E/F is unramified, the conductor of ψF is OF , ε1 is a unit,
Ω is unramified. Then KE := Gl(2,OE) has volume L(2, 1E)−1 and KF :=
Gl(2,OF ) has volume L(2, 1F )−1. Likewise, the group

K0 := Gl(2,OE) ∩H0(F )

is a maximal compact subgroup of H0(F ) with volume L(2, 1F )−1 and

Kε := Gl(2,OE) ∩Gε(F )

is a maximal compact subgroup of Gε with volume L(2, 1F )−1. The unramified
Tamagawa measures are obtained by multiplying the Tamagawa measures by
the inverse of those volumes. Using the Cartan decomposition and the methods
of [J1, pp. 199–204], one can prove the following proposition:

Proposition 2. — Suppose the situation is unramified. Let q be the cardinal-
ity of the residual field of F . For n ≥ 0 let Φ2n be the characteristic function
of the set of matrices s ∈ S(F ), with integral entries such that | det s|F = q−2n.
Let f2n be the characteristic function of the set of matrices g ∈ Gε1(F ) with
integral entries such that | det g|F = q−2n. Then Φ2n and the pair (f2n, 0) have
matching orbital integrals.

Finally, we recall the fundamental lemma for the unramified situation. Since
ε1 is a norm, there is an isomorphism of Gε1(F ) onto G(F ) taking Kε1 to KF

and the Hecke algebra H(Gε1(F ),Kε1) to the Hecke algebra H(Gl(2, F ),KF ).
We have thus a base change homomorphism b from H(Gl(2, E),KE) to
H(Gε1(F ),Kε1).

Proposition 3. — For f ∈ H(K) the function Φf and the pair (b(f), 0) have
matching orbital integrals.

Proof. — This is really a reformulation of the corresponding result of [J2].
It can derived more directly from the previous proposition by using the methods
of [JLR, pp. 318–322].
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2.2. Split case. — Mutatis mutandis, the above discussion applies to the
split case where the quadratic extension is replaced by the algebra E = F ⊕ F
with F embedded diagonally in E and Galois action τ(x, y) = (y, x). If we
write z = (x, y) then ψE(z) = ψ(x+ y) and so the self dual Haar measure on E
is dz = dxdy. To obtain the Tamagawa measure on Gl(2, E) we must divide
the self-dual additive measure dg = dg1dg2 by | det g1g2|F and then multiply
by L(1, 1F )2. So the isomorphism Gl(2, E) � Gl(2, F )×Gl(2, F ) preserves the
Tamagawa measures.

Likewise, the group H0 becomes the group of pairs (h1, h2) with h2 =
w th−11 w. Choosing the first factor in the decomposition E = F⊕F , we have an
isomorphism H0(F ) � Gl(2, F ) which is also compatible with the Tamagawa
measures.

The group Gε(F ) is the group of invertible matrices of the form( a εb

b a

)
,

with a, b in E. We consider the measure

|ε|F L(1, 1F )
dadb

|aa − εbb|2F
·

Thus Gε(F ) is the group of pairs

(g1, g2)

with g2 = wεgw
−1
ε . Again (g1, g2) �→ g1 defines an isomorphism Gε(F ) �

Gl(2, F ) which takes the above measure to the Tamagawa measure.
The manifold S(F ) is the submanifold of pairs

S(F ) =
{
(s1, s2) | s2 = ts1

}
and is again isomorphic to G(F ) via (s1, s2) �→ s1.

The torus T (F ) is the subgroup of pairs:

t =
((

a1 0
0 a2

)
,
(
a2 0
o a1

))
.

A character Ω of T (F ) trivial on Z(F ) has the form

Ω(t) = Ω1(a1)Ω2(a2)

with Ω1Ω2 = 1.
In particular, if f1 ⊗ f2 is a product function on G(E) then

Φf1⊗f2(s1, s2) =
∫

f1(g1h1)f2(g2h2)dh0

becomes

Φf1⊗f2(g) =
∫

f1(gwh)f2(w th−1w)dh = f1 ∗ f̃2(gw)
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where we have set
f̃2(g) = f2(w tgw).

With this identification, the orbital integrals for Φ ∈ C∞0 (S(F )) become:

U(x; Φ) =
∫∫∫

Φ
[( z 0

0 z

)( a 0
0 1

)( x−1 1
1 1

)( b 0
0 1

)]
× Ω1(a)Ω2(b)d×ad×bd×z.

Similarly, for fε ∈ C∞0 (Gε(F )), the orbital integrals take the form:

H(x; fε) =
∫∫∫

fε

[( a 0
0 b

)( u−11 ε
1 u−12

)( c 0
0 1

)]
× Ω1(a)Ω2(b)d×ad×bΩ1(c)−1d×c,

with x = u1u2ε. The condition of matching U(x; Φ) = H(x; fε) is trivially
verified with

fε(g) = Φ
[
g
(
ε 0
0 1

)]
.

If Φ = Φf1⊗f2 this becomes the condition of matching for the split case:

(17) fε(g) = f1 ∗ f̃2(gwε).

If F is non-Archimedean, Ω1 unramified, the functions fi bi-invariant under
KF = Gl(2,OF ), and the Haar measure of KF is 1, then f̃2 = f2, wε ∈ KF

and
f = Φ = f1 ∗ f2.

3. Global matching

We now consider an extension E/F of number fields.

3.1. Global Haar measures. — On the group F×
A

we consider the Tama-
gawa measure d×x which is the (convergent) product of the local Tamagawa
measures. We let F 1 be the group of ideles of norm 1 and use the exact sequence

1→ F 1 −→ F×
A
→ R×

+

to define a measure on F 1 for which

vol(F 1/F×) = ress=1 L(s, 1F ).

Likewise for E.
We also consider a finite set places S0 of F and the let S be the corresponding

set of places of E. We assume that S0 contains all the places at infinity, the
places of even residual characteristic, the finite places which ramify in E, and
all the places where the character ψ is ramified (that is, the conductor is not the
ring of integers). We also assume that Ω is unramified outside S. We enlarge
S0 as the need arises.
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On the group Gl(2, FA) we consider the Tamagawa measure d×g which is
the convergent product of the local Tamagawa measures and multiply it by the
factor LS0(2, 1F ) :=

∏
v0 �∈S0

L(2, 1Fv0
). In other words, the measure we are

considering is the product of the Tamagawa measures d×gv0 for v0 ∈ S0 times
the measures dgv0 , v0 �∈ S0, for which the measure of Gl(2,Ov0) is one. Using
the Iwasawa decomposition

g = diag(a, b)
( 1 x
0 1

)
k

we obtain a measure on the standard maximal compact K:

dg = d×ad×bdxdk.

We have then the following identity for a Schwartz-Bruhat function Φ in two
variables: ∫∫

Φ(x, y)dxdy =
∫∫

Φ
[
(0, t)k

]
· |t|2d×t dk 1

LS0(2, 1F )
·

If Φ =
∏

Φv0 with Φv0 the characteristic function of O2
v0

outside S0 we get
then: ∫∫

Φ(x, y)dxdy =
∫
KS0

∫
F×

S

ΦS0

[
(0, t)k

]
· |t|2d×t dk.

We use the similar measure on Gl(2, EA). Likewise for H0(FA) and H(FA) we
multiply the Tamagawa measure by LS0(2, 1F ).

3.2. Matching. — As explained in the introduction, we consider a smooth
function of compact support f on G(EA) and the corresponding function Φ =
Φf on S(FA). The function f is a product of local functions fv. For v �∈ S
the function fv is bi-invariant under Kv := Gl(2,Ov). We choose a set of
representative {ε} for F×/Norm(E×). For each ε we choose a smooth function
of compact support fε on Gε(FA). It is a product of local functions that we
choose as follows. For a place v0 inert in F and the corresponding place v
of E we demand that fε,v0 and Φv0 have matching orbital integrals, that is,
H(x; fε,v0) = U(x; Φv0) for x ∈ ε Norm(E×

v ). If v0 �∈ S0 and ε is not a norm at
the place v0, we have seen that H(x; Φv0) = 0 for x ∈ εNorm(E×

v ) and so we
take fε,v0 = 0. Thus we have fε = 0 unless ε is a norm at all places not in S0.
Thus there is only a finite set Ξ of ε such that fε �= 0. There is a finite set
S′
0 ⊇ S0 of places of F such that the ε ∈ Ξ are unit at all places not in S′

0. We
let S′ be the set of places of E above a place in S′

0.
For v0 inert not in S′

0 we may and do assume that fε,v0 = b(fv) where v is
the corresponding place of E and b is the base change homomorphism. For v0
split into v1 and v2 in E we assume that

fε,v0(g) = Φv0

[
g
(
ε 0
0 1

)]
.
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In particular, for ε ∈ Ξ and v0 �∈ S′
0 this means that (with the usual identifi-

cations) fε,v0 = f1 ∗ f2. This being so, we change our notations and now take
the set S0 to be the set S′

0.

We compare the geometric terms in the two relative trace formulas. As usual
we set

eH(g) = |a1a−12 |
if g = nak, a = diag(a1, a2).

As in [J2], we consider a compact truncation along the diagonal. Namely,
if φ is a function on A(EA) invariant under A(E) and Z(E+

∞), we set:

ΛT
c φ(a) = φ(a) if − T < H(a) < T,(18)

ΛT
c φ(a) = 0 otherwise.(19)

We define then

ΘT (f) :=
∫∫

Z(EA)H(F )\H(FA)

ΛT
c Kf (a, h)Ω−1(a)daωη

(
κ(h)

)
dh.

The outer integral is over A(EA)/A(E)Z(EA). This integral is absolutely con-
vergent and equal to:∫

e−T ≤|a|≤eT

∫
F×

A
/F×

∑
ξ∈S(F )

Φ
[(

a 0
0 1

)
ξ
(
a 0
0 1

)
z
]
Ω−1(a)ωη(z)d×z.

In [J2] it is shown that as T → +∞ this tends to the right hand side of (14).
Thus we define

Θ(f) =: lim
T−→+∞

ΘT (f),

and we arrive at (14). Comparing with (8) we get:

Θ(f) =
∑
ε∈Ξ

θ(fε).

Indeed given ξ ∈ F×− {1} we have ξ ∈ εNorm(E×) for a unique ε and

U(ξ ; Φ) = H(ξ ; fε).

The matching of the other terms is explained in [J2].

4. Factorization of ΘΠ over E

Most of the material of this section is a review of [HLR] (see also [A], [F2],
[FZ]).

We now consider the Epstein Eisenstein series associated to a Schwartz-
Bruhat function Φ on F 2

A
; we assume that Φ is a product, the local component
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Φv0 being the characteristic function of O2
v0

for all v0 �∈ S0:

E(g,Φ, s) =
∫
F×

A
/F×

∑
ξ∈F 2−{(0,0)}

Φ[ξtg] · | det t|2sd×t | det g|s.

It is meromorphic, with simple pole at s = 1 and residue:

1
2
vol

( F 1

F×

) ∫∫
Φ(x, y)dxdy =

1
2

( F 1

F×

) ∫
KS0

∫
F×

S0

ΦS0

[
(0, t)k

]
· |t|2d×tdk.

Let Π be the base change of a representation π with central character η and φ
a cusp form in the space of Π which is invariant under translations by the
compact subgroup KS :=

∏
v �∈S KEv . Let us compute the integral:

Ψ(s, φ,Φ) :=
∫
G(F )Z(FA)\G(FA)

E(g,Φ, s)φ(g)dg.

It is a meromorphic function of s, with simple pole at s = 1 and residue:

(20)
1
2
vol

( F 1

F×

)∫
KS0

∫
F×

S0

ΦS0

[
(0, t)k

]
· |t|2d×tdk

∫
φ(g)dg.

On the other hand, for Re s� 0,

Ψ(s, φ,Φ) = Ψ(s,W,Φ)

where we have set:

W (g) :=
∫
EA

φ
[( 1 x

0 1

)
g
]
ψE(−x)dx

and, writing E = F [
√
δ ],

Ψ(s,W,Φ) :=
∫
N(FA)\Gl(2,FA)

W
[(√

δ −1 0
0 1

)
g
]
Φ

[
(0, 1)g

]
· | det g|sd×g.

We assume that W is a product

W (g) =
∏
v

Wv(gv)

over all places of E, with Wv KEv
= 1 outside S. The local component is an

element of the local Whittaker modelW(Πv, ψv). If v0 is a place of F we write
Ev0 = E ⊗ Fv0 . If v0 is inert in E we also write Wv0 for Wv. If v0 splits
into v1, v2 we write Wv0 for Wv1 ⊗Wv2 , a function on Gl(2, Ev0). We can then
set in all cases:

Ψ(s,Wv0 ,Φv0) =
∫
N(Fv0)\Gl(2,Fv0 )

Wv0

[(√
δ −1 0
0 1

)
g
]
Φv0

[
(0, 1)g

]
· | det g|sd×g.
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Explicitly, if v0 splits, that is, δ is the square of two elements ε1 and ε2 of Fv0 ,
the above integral is in fact equal to:∫

Wv1

[(
ε−11 0
0 1

)
g
]
Wv2

[(
ε−12 0
0 1

)
g
]
Φv0

[
(0, 1)g

]
· | det g|sd×g.

We recall that S0 is so large that all the data is unramified outside S0 (or S).
We introduce the partial Asai L-function attached to Π noted LS0(s,Π,Asai)

(see [HLR]). For every place v0 �∈ S0 the integral Ψ(s,Wv0 ,Φv0) is equal to the
corresponding local L-factor of the Asai L-function. Thus

Ψ(s, φ,Φ) = LS0(s,Π,Asai)
∏

v0∈S0

Ψ(s,Wv0 ,Φv0).

Taking the residue at s = 1 we obtain that (20) is equal to:

ress=1 LS0(s,Π,Asai)
∏

v0∈S0

Ψ(1,Wv0 ,Φv0).

This equality implies that, as a linear form in Wv0 , Ψ(1,Wv0 ,Φv0) is invariant
under right shifts by Gl(2, Fv0). As a linear form in Φv0 , it is proportional to∫

Kv0

∫
F×

v0

Φv0 [(0, t)k] · |t|2d×tdk.

Now let us set:

Pv0(Wv0 ) :=
∫
F×

v0

Wv0

(√
δ −1a 0
0 1

)
d×a.

This is a linear form invariant under Gl(2, Fv0). Moreover, in the Archimedean
case, it is continuous for the topology of the smooth vectors. The invariance
is well known for v0 split (see also [B]) and is established in [H] for v0 inert.
At any rate, it follows from the above considerations. Then

Ψ(1,Wv0 ,Φv0) = Pv0(Wv0 )
∫
Kv0

∫
F×

v0

Φv0

[
(0, t)k

]
· |t|2d×tdk.

The above residue becomes:

ress=1 LS0(s,Π,Asai)
∏
S0

Pv0(Wv0 )
∫
KS0

∫
F×

S0

ΦS0

[
(0, t)k

]
· |t|2d×tdk.

Comparing with the previous residue computation, we get:

(21)
∫

φ(g)dg =
∏

v0∈S0

Pv0(Wv0)
2 ress=1 LS0(s,Π,Asai)

vol(F 1/F×)
·

The identity is to be interpreted as the statement that the period integral
of φ is non-zero if and only the Asai L-function has a pole at s = 1 and each of
the local integral Pv0 does not vanish on Wv0 .
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Remark. — The convergence of the integral defining Pv0 follows from the
local analog of the integral representation for Whittaker functions given below
in (44). Formula (21) implies that the linear form Pv0 is continuous for the
topology of smooth vectors, since the left hand side is.

Recall that we write E = F [
√
δ ]. Then

(22)
(√

δ 0
0 1

)
H(F )

(√
δ −1 0
0 1

)
= Z(E)Gl(2, F ).

Accordingly:∫
H(F )Z(EA)\H(FA)

φ(h)dh =
∫
Z(FA) Gl(2,F )\Gl(2,FA)

φ
[
g
(√

δ 0
0 1

)]
dg

or

(23)
∫
H(F )Z(EA)\H(FA)

φ(h)dh =
∏
S0

Pv0(Wv0)
2 ress=1 LS0(s,Π,Asai)

vol(F 1/F×)

where here we have set:

Pv0(Wv0) =
∫
F×

v0

Wv0

[( a 0
0 1

)]
d×a.

We also denote by LS0(s,Π,Asai; 1) the previous Asai L-function and by
L(s,Π,Asai; η) the function L(s,Π⊗ µ,Asai; 1) where µ is an idele class char-
acter of E whose restriction to F is η. Suppose that now Π is the base change
of π with trivial central character. Then:∫

H(F )Z(EA)\H(FA)

φ(h)η
(
κ(h)

)
dh(24)

=
∏
S0

Pv0(Wv0)
2 ress=1 LS0(s,Π,Asai; η)

vol(F 1/F×)

where here we have set:

Pv0(Wv0 ) =
∫
F×

v0

Wv0

[( a 0
0 1

)]
η(a)d×a.

From now on we consider both cases at once, that is, Π is the base change of π
with central character ω = 1 or ω = η.

A similar discussion applies to the computation of the scalar product of
two forms φ1, φ2. As usual we assume that the corresponding functions Wi are
product and the data is unramified outside S. We introduce a scalar product Bv

on W(Πv, ψv) for any place v ∈ S:

Bv(W1,W2) :=
∫
E×

v

W1

(
a1 0
0 1

)
W2

(
a1 0
0 1

)
d×a1.
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Then: ∫
φ1(g)φ2(g)dg =

∏
v∈S

Bv

(
(W1)v, (W2)v

)2 ress=1 LS(s,Π× Π̃)
vol(E1/E×)

·

We set:

λ(φ) :=
∫
E×

A
/E×

φ
[(

a 0
0 1

)]
Ω−1(a)d×a.

At a place v ∈ S, we define

λv(Wv) :=
∫
E×

v

Wv

[( a 0
0 1

)]
Ω−1(a)d×a.

Then
λ(φ) =

∏
v∈S

λv(Wv)LS
(
1
2 ,Π⊗ Ω−1).

We consider the global distribution

ΘΠ(f) :=
∑
φ

λ
(
Π(f)φ

)∫
φ(h)ωη

(
κ(h)

)
dh,

where the sum is over an orthonormal basis. Likewise, for a place v0 inert in E
with corresponding place v of E we define

ΘΠ,v0(fv) :=
∑
W

λv
(
Πv(fv)W

)
Pv(W ),

the sum over an orthonormal basis for the scalar product Bv. Whenever con-
venient, we write fv0 for fv

Similarly, at a place v0 which splits into v1, v2 we define

ΘΠ,v0(fv1 ⊗ fv2) :=
∑

W1,W2

λv1

(
Πv1(fv1)W1)

)
λv2

(
Πv2(fv2)W2)

)
Pv0(Wv1 ⊗Wv2 ).

We again write fv0 for fv1 ⊗ fv2 .
Now we assume that the function f is a product with fS the characteristic

function of KS . Then:

ΘΠ(f)

=
∏

v0∈S0

ΘΠ,v0(fv0)
vol(E1/E×) ress=1 LS0(s,Π,Asai;ωη)LS(12 ,Π⊗ Ω−1)

vol(F 1/F×) ress=1 LS(s,Π× Π̃)
·

Recall that here Π̃ = Π = Πτ and Π is the base change of π with central
character ω. We have the relation

LS(s,Π×Πτ ) = LS0(s, π × π)L(s, π × π ⊗ η).

If ω = 1 we have the relation

LS0(s,Π,Asai; η) =
LS0(s, π × π ⊗ η)LS0(s, 1F )

LS0(s, η)
·
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Moreover since π is self contragredient then

LS0(s, π × π) = LS0(s, 1F )LS0(s, π; Ad).

where the last factor on the right is the partial adjoint L-function. Thus

LS0(s,Π,Asai; η)

LS(s,Π× Π̃)
=

1
LS0(s, η)LS0(s, π,Ad)

·

If ω = η then

LS0(s,Π,Asai; 1) =
LS0(s, π × π)LS0(s, 1F )

LS0(s, η)
·

On the other hand

LS0(s, π × π ⊗ η) = LS0(s, π × π̃) = LS0(s, 1F )LS0(s, π,Ad).

Thus
LS0(s,Π,Asai; 1)

LS(s,Π× Π̃)
=

1
LS0(s, η)LS0(s, π,Ad)

·

Also

vol(E1/E×) = L(1, η) vol(F 1/F×).

We can thus simplify our ratio of L-functions to obtain the following result:

Proposition 4. — One has

ΘΠ(f) =
∏

v0∈S0

ΘΠ,v0(fv0)
LS0(1, η)LS(12 ,Π⊗ Ω−1)

LS0(1, π,Ad)
·

5. Local comparisons

As explained in the introduction, when f and the family (fε) match we have
a spectral identity, with a single ε on the right, which is uniquely determined
by Π:

ΘΠ(f) = θσε (fε) + θσε⊗η(fε).

We recall the expression for θσε :

θσε (fε) =
∑
φ

∫
σε(fε)φ(t)Ω(t)−1dt

∫
φ(t)Ω(t)dt.

Let us write σ for σε .
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5.1. Local comparison: inert case. — Now consider a place v0 of F , inert
in E. Let v be the corresponding place of E. If the distribution θσ is not
identically 0, then σv0 admits non-zero linear forms transforming under the
characters Ωv and Ω−1

v of Tv0 , a group compact modulo the center. Thus there
are smooth unit vectors eT and e′T such that

σv0 (t)eT = Ω(t)−1eT , σv0 (t)e
′
T = Ω(t)e′T .

We may assume that
e′T = σv0(wε)(eT ).

We define a local distribution:

θσv0
(fv0) =

∑
ui

〈
σv0(fv0)ui, e

′
T

〉
〈ui, eT 〉,

the sum over an orthonormal basis. This can also be written as∫
f(g)ωσv0

(g)dg,

where we have set

(25) ωσv0
(g) =

〈
σv0(g)eT , e

′
T

〉
.

Note that ωσv0
(wε) = 1. There is a similar distribution θσv0⊗ηv0

defined by:

θσv0⊗ηv0
(fv0) =

∑
ui

〈
σv0 ⊗ ηv0(fv0)ui, e

′′
T

〉
〈ui, eT 〉,

as well as a function

(26) ωσv0⊗ηv0
(g) =

〈
σv0 ⊗ ηv0(g)eT , e

′′
T

〉
,

where we have set:

e′′T = σv0 ⊗ ηv0(wε)(eT ) = ηv0(−ε)e′T .
Thus

(27) ωσv0⊗ηv0
(g) = ηv0(det g)ηv0(−ε)ωv0(g).

In particular, if det g ∈ −εNorm(E×) then ωσv0
(g) = ωσv0⊗ηv0

(g).
The global distribution θσ decomposes into a tensor product

θσ(fv0
ε ⊗ fε,v0) = θv0(fv0

ε )θσv0
(fε,v0).

Likewise, we have obtained a decomposition of the global distribution ΘΠ into
a tensor product Θv ⊗ ΘΠσv

. The global spectral identity gives then a linear
relation of the form:

ΘΠσv
(fv) = C1θσv0

(fε,v0) + C2θσv0⊗ηv0
(fε,v0).

To analyze the situation conveniently, let us go back to a local situation.
That is, let E/F be a local quadratic extension and Π an irreducible unitary
representation of G(E) with trivial central character. We assume that Π is the
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base change of a representation π of G(F ) with central character ω, and ω = 1
or ω = ηE/F . We assume that ε is such that the representation σ of Gε(F )
corresponding to π has a vector transforming under Ω and Ω−1 with Ω F× = ω.
We assume that we have a relation of the form:

ΘΠ(f) = C1θσ(fε) + C2θσ⊗η(fε)

for any pair of functions (f, fε) with matching orbital integrals; that is, f
correspond to a function Φ on Ss and U(x; Φ) = H(x; fε) for x ∈ εNorm(E×).
In particular, if fε is supported on the set of g ∈ Gε such that det(g) ∈
−εNorm(E×) then this simplifies to

(28) ΘΠ(f) = C

∫
Gε(F )

ωσ(g)fε(g)dg, C = C1 + C2.

Our goal in this section is to compute the constant C.

Proposition 5. — Suppose that f and fε have matching orbital integrals and
fε is supported on the set {g ∈ Gε(F ) | det(g) ∈ −εNorm(E×)}. Then

ΘΠ(f) = ε(1, η, ψF )2η(−ε)L(0, η)θσ(fε).

Moreover, we can choose the pair in such a way that both sides are non-zero.

5.2. Computation of ΘΠ. — To prove the proposition, we first consider
a sequence of functions (fj) on G(E) which tends to δe. That is, fj ≥ 0,∫
fjdg = 1 and suppfj → e. We let Φj be the associated function on S.

It tends to δw on S(F ). Note that we can start with an approximation Φj

of δw on S and then choose for the functions fj an approximation of δe. We
also choose a function φ ∈ C∞

0 (E) of small support. We set

(29) f j(g) =
∫
E

φ(x)fj
[( 1 x

0 1

)
g
]
dx

and we denote by Φj the corresponding function on S(F ).

We first compute ΘΠ(f j). Recall that the scalar product is given by:

〈W1,W2〉 =
∫

W1W 2

[
diag(a, 1)

]
d×a.

and

ΘΠ(f) =
∑

λ
(
Π(f)Wi

)
P(Wi),
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where Wi is an orthonormal basis. We have:

λ
(
Π(f j)Wi

)
=

∫∫
Wi

[( a 0
0 1

)
g
]
Ω−1(a)f j(g)d×adg

=
∫∫∫

Wi

[(
a 0
0 1

)( 1 −x
0 1

)
g
]
Ω−1(a)fj(g)φ(x)d×adxdg

=
∫∫

φ̂(a)Wi

[( a 0
0 1

)
g
]
Ω−1(a)fj(g)d×adg

where φ̂ denotes the Fourier transform of φ.
For now we assume that E is non-Archimedean. We choose φ in such a way

that φ̂(0) = 0. Then there is an element W 0 ∈ W(Π, ψ) such that

W 0
[(

a 0
0 1

)]
= φ̂(a)Ω−1(a).

Then the above expression is〈
Π(fj)Wi,W

0
〉
=

〈
Wi,Π(f∗

j )W
0
〉
.

Since
Π(f∗

j )W
0 =

∑
i

〈
Π(f∗

j )W
0,Wi

〉
Wi

we see that:
ΘΠ(f j) = P

(
Π(f∗

j )W 0
)
.

Since fj is an approximation of δe, for j large enough, Π(f∗
j )W

0 = W 0 and

ΘΠ(f j) = P(W 0) =
∫

W 0
[(

b 0
0 1

)]
ωη(b)d×b =

∫
F×

φ̂(b)η(b)d×b.

Clearly, we can choose φ with φ̂(0) = 0 in such a way that this is non-zero.
We pass to the Archimedean case. We first explain how to choose the func-

tion φ. We assume, as we may, that ψF (x) = exp(2iπx). Let φ0 be a smooth
function of compact support on F with

∫
φ0(x)dx �= 0. Then the function

φ1 = φ0 ∗φ∗
0 is smooth of compact support. Its Fourier transform is φ̂1 = |φ̂0|2

and is thus ≥ 0. Moreover, φ̂1(0) = |φ̂0(0)|2 > 0. Now consider the function
on E defined by:

φ2(x+ iy) = φ1(x)φ1(y).
The Fourier transform on E of this function is given by

φ̂2(x + iy) = 2φ̂1(2x)φ̂1(−2y).
Let Q > 0 be an integer. There is a smooth function of compact support φ
on E, whose Fourier transform is given by:

φ̂(z) = 22Q+1(zz)Qzφ̂1(2x)φ̂1(−2y), z = x+ iy.
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Then ∫
F×

φ̂(x)η(x)d×x = φ̂1(0)
∫
|x|2Q+1F φ̂1(x)d×x > 0.

This function, which will be also denoted by φQ to stress the dependence on Q,
will have the required properties, provided the integer Q is sufficiently large.

To continue we recall that the unitary representation Π can be realized in
the Hilbert space H of square integrable functions on E×. Let P1 be the group
of matrices with last row (0, 1). The representation of P1(E) on H is the
representation induced by the generic character of N(E) determined by ψE . It
is (topologically) irreducible. The subspace V of smooth vectors may be viewed
as a certain space of smooth functions on E× (Kirilov model). If W is in the
Whittaker model of Π then the function Φ defined by

Φ(a) = W
[( a 0

0 1

)]
is in V and determines W . Let V ′ be the topological dual of V (space of
generalized vectors). We have the inclusions: V ⊂ H ⊂ V ′. We extend the
scalar product 〈• , •〉 on H to V ×V ′ and V ′×V . The group and its enveloping
algebra operate on V and V ′. For instance, the Whittaker linear fromW is the
element of V ′ such that, for Φ ∈ V :

〈Φ,W〉 = Φ(e).

Likewise, λ and P are elements of V ′ such that

〈Π, λ〉 =
∫
E×

Φ(a)Ω−1(a)d×a, 〈Φ,P〉 =
∫
F×

Φ(b)ωη(b)d×b,

and
ΘΠ(f) =

〈
Π(f)P , λ

〉
=

〈
P ,Π(f∗)λ

〉
.

We have already remarked that the convergence of these integrals follows at any
rate from the local analog of the integral representation for Whittaker functions
given below (see (44)). Moreover, the continuity follows for instance from the
global theory (since we assume anyway that Π is a component of a cuspidal
representation). The continuity of P means that there is M such that, if (Xα),
1 ≤ α ≤ N , is a basis of the space of elements of the enveloping algebra with
(filtration) degree ≤M , then, for suitable constants cα > 0,∣∣〈Φ,P〉∣∣ ≤ ∑

α

cα
∥∥Π(Xα)Φ

∥∥.
In this sum X1 = 1. Let HN be the Hilbert sum of N copies of H and V0 the
(non-closed) subspace of N−tuples of the form v = (Π(Xα)φ), with φ ∈ V .
Let P0 be the linear form on V0 defined by P0(v) = 〈φ,P〉. This linear form
is continuous for the topology induced by the topology of HN , thus extends
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to the closure of V0 in HN and is therefore given by the scalar product with a
vector (Φα) ∈ HN . In other words,

(30) 〈Φ,P〉 =
∑
α

〈
Π(Xα)Φ,Φα

〉
with Φα ∈ H.

Now the scalar product 〈Φ,P〉 is defined if Φ is a vector of class CM . We
will prove the following assertion:

Lemma 5. — If Q is sufficiently large, then the function Φ0 defined

Φ0(z) = φ̂Q(z)Ω(z)−1

is square integrable and is, in fact, a vector of class CM in the representation.
Moreover:

P(Φ0) =
∫
F×

Φ0(x)ωη(x)d×x =
∫
F×

φ̂Q(x)η(x)d×x.

We prove the lemma in the case where ω = η. Then the restriction of Ω
to F× is η. Thus Ω has the form:

Ω(z) =
zm

(zz)m/2
,

wherem is an odd integer. Taking a large enoughQ, we see that the function Φ0

of the above lemma has in turn the form

Φ0(z) = (zz)
1
2 (zz)PΨ(z)

where P is another integer which tends to infinity with Q. The function Ψ
(which depends on Q) is in S(E), the space of Schwartz functions on E. Let
us denote by V(P ) the space of functions of the above form, with Ψ ∈ S(E).
It is contained in H. It will suffice to prove the following general lemma:

Lemma 6. — If P is large enough the space V(P ) is contained in the space of
vectors of class CM and, for Φ ∈ V(P ),

P(Φ) =
∫
F×

Φ(x)ωη(x)d×x.

Proof. — To prove the lemma we study the action of the enveloping algebra of
Gl(2, E) (viewed as a real Lie group) on V . We regard the space M(2 × 2,C)
of 2× 2 matrices with complex entries as a real vector space and identify it to
the Lie algebra of Gl(2, E) as a real Lie group. Entries of such a matrix are
written in the form a+ b

√
−1 with a, b real. We define the following elements

of M(2× 2,C)⊗ C:

X+ =
1
2

{( 0 1
0 0

)
− i

( 0
√
−1

0 0

)}
, X− =

1
2

{( 0 0
1 0

)
− i

( 0 0√
−1 0

)}
,
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H =
1
2

{( 1 0
0 −1

)
− i

(√−1 0
0 −

√
−1

)}
, T =

1
2

{( 1 0
0 0

)
− i

(√−1 0
0 0

)}
.

We define similarly conjugate elements X+ and so on, by replacing i by −i in
the above formulas. They commute to the previous ones. The Casimir element

Ω = X+X− +X−X+
1
2
H2

is in the center of the enveloping algebra and T − 1
2H in the center of the

Lie algebra. Thus X+X− can be expressed in terms of T and elements of the
center of the enveloping algebra. As a consequence,

Π(X+)Π(X−) = R
(
Π(T )

)
,

where R is a polynomial (of degree 2). We have then, for Φ ∈ V ,

Π(X+)Φ(z) = 2iπzΦ(z), Π(T )Φ(z) = z
∂Φ(z)
∂z

,

2iπzΠ(X−)Φ(z) = Π(X+)Π(X−)Φ(z) = R
(
Π(T )

)
Φ(z).

In other words (after a change of notations) we see that there is a polynomial R
such that

Π(X−)Φ(z) = z−1R
(
z
∂

∂z

)
Φ(z).

Similarly, there is a polynomial R′ such that

Π(X−)Φ(z) = z−1R′
(
z
∂

∂z

)
Φ(z).

Now the space V(P ) is invariant under the operators of multiplication by z, z
and the differential operators z∂/∂z, z∂/∂z . This implies that in fact V(P ) is
contained in the space of smooth vectors for the group P1(E). Now multipli-
cation by z−1 sends V(P ) to V(P − 1). It follows that if P is sufficiently large
and Φ ∈ V(P ) the vector Π(X−)Φ which, a priori, is only a vector in V ′ is
in fact in H, more precisely, in V(P − 1). Moreover, it is given by the same
formula as above. Likewise for Π(X−)Φ. The first assertion of the lemma fol-
lows. To prove the second assertion, we let V0 be the subspace of Φ in V(P )
for which the function Ψ is flat at 0 ∈ E, that is, all its derivatives vanish
at 0. From the above analysis, it follows that such a vector is in V . Then
P(Φ) is given by the integral over F×. Now recall the decomposition (30).
From the above computation, there exist (non commutative) polynomials Pα

in (z−1, z−1, z∂/∂z, z∂/∂z) such that

P(Φ) =
∑
α

∫
(PαΦ)(z)Φα(z)d×z.
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This applies in particular to a Φ ∈ V(P ) for P large enough. Thus we have to
show that the difference∫

F×
|x|2P+1Ψ(x)d×x−

∑
α

∫
E×

(
Pα

(
(zz)

1
2+PΨ(z)

))
Φα(z)d×z

vanishes for all Ψ ∈ S(E), if P is large enough. At any rate, this is true for Ψ
flat at 0. Since the difference is a distribution (linear form in Ψ), the difference
is at most a linear combination of derivatives of Ψ at 0. Thus it will vanish if
Ψ vanishes at sufficiently high order at 0. Thus it might not vanish on V(P )
but it will vanish on the smaller space V(P1) for P1 � P . We are done.

In summary then, we have found a smooth function of small support φ on E
and an element Φ0 ∈ H of class CM such that

λ
( ∫

N(E)

φ(z)Π(n−1)dnΦ
)
= 〈Φ,Φ0〉, n =

( 1 z
0 1

)
, Φ ∈ V ,

P(Φ0) =
∫
F×

φ̂(b)η(b)d×b �= 0.

Suppose that fj is a smooth approximation of δe. From (30) we get:

P
(
Π(fj)Φ0

)
=

∑
α

∫ 〈
Π(Xα)Π(g)Φ0,Φα

〉
fj(g)dg

If we write
Ad g−1Xα =

∑
β

λα,β(g)Xβ

this becomes ∑
α,β

∫
λα,β(g)

〈
Π(Xβ)Φ0,Π(g)−1Φα

〉
fj(g)dg.

As j → +∞ this tends to∑
α,β

λα,β(e)
〈
Π(Xβ)Φ0,Φα

〉
=

∑
α

〈
Π(Xα)Φ0,Φα

〉
= P(Φ0).

We thus consider an approximation Φj of δw on S. We can choose an
approximation fj of δe on G(E) such that Φj is the function associated to fj .
Just as in the p−adic case, we define f j in terms of φ and Φj . Then

λ
(
Π(f j)Φ

)
= λ

( ∫
N(E)

φ(z)Π(n−1)dnΠ(fj)Φ
)
=

〈
Φ(fj)Φ,Φ0

〉
,

or
Π(f j,∗)λ = Π(f∗

j )Φ0.

Then
ΘΠ(f) =

〈
P ,Π(f j,∗)λ

〉
=

〈
P ,Π(f∗

j )Φ0

〉
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which tends to 〈P ,Φ0〉 = P(Φ0). Thus we find again

lim
j→+∞

ΘΠ(f j) =
∫
F×

φ̂(b)η(b)d×b.

We introduce the following function on F :

(31) φ1(x) =
∫

φ
(
x+ y

√
δ
)
|2|F · |δ|

1
2
F dy.

Then, denoting by F the Fourier transform for a function on F , we get for
x ∈ F :

φ̂(x) = F(φ1)(2x).
Thus, in all cases,

(32) lim
j→+∞

ΘΠ(f j) = η(2)
∫
F×
F(φ1)(x)η(x)d×x.

5.3. Computation on Gε . — We now compute the orbital integral of Φj .
After a change of variables, we get

U(x; Φj) =
∫∫

Φj
[( yyz−1x−1 y

y z

)]
Ω(y)η(z)d×yd×z.

From (29) we get

Φj(s) =
∫

Φj

[( 1 t
0 1

)
s
( 1 0
t 1

)]
φ(t)dt.

After changing t to −t we find that the orbital integral of Φj is equal to∫∫∫
Φj

[( yyz−1x−1 − ty − ty + ttz y − tz
y − tz z

)]
φ(−t)Ω(y)η(z)dtd×yd×z.

Recall φ has compact support and the support of Φj tends to w. Thus there
is a sequence {cj} of positive real numbers such that limj→+∞ cj = +∞ and
the non-vanishing of U(x; Φj) implies |x| > cj . Now we choose a function f j

ε

which matches f j (or Φj). For x ∈ εNorm(E×) we write x = εaa and then

U(x; Φj) = H(x; f j
ε ) =

∫∫
f j
ε

[
t1

(
a−1 ε
1 a−1

)
t2

]
Ω(t1t−12 )dt1dt2.

Suppose the integral is non-zero. Then |x| > cj . If j is large enough, then in the
integrand, the determinant of the matrix g = t1(∗)t2 belongs to −εNorm(E×).
Thus we may and will assume that f j

ε is supported on the set {g | det g ∈
−εNorm(E×)}. From (15) we get∫

ωσ(g)f j
ε (g)d

×g =
1

L(1, η)2

∫
x=εaa

ωσ

[(
a−1 ε
1 a−1

)]
U(x; Φj)

dx
|1− x|2 ·
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Now we define a function ω on εNorm(E×)− {1} by

ω(x) := ωσ

[( a−1 ε
1 a−1

)]
, for x = εaa.

One can check that indeed the right hand side depends only on x. The function
ω(x−1) extends to a smooth function near 0 on ε Norm(E), whose value at 0 is

ωσ

[( 0 ε
1 0

)]
= 1.

We denote by ω̃ a smooth function on F , supported on a neighborhood of 0,
and equal to ω(x−1)|1−x|−2 for x near 0 in εNorm(E). In particular ω̃(0) = 1.
Thus, for large enough j,∫

ωσ(g)f j
ε (g)dg =

1
L(1, η)2

∫
ε Norm(E×)

U(x; Φj)
ω(x)dx
|1− x|2

=
1

L(1, η)2

∫
ε Norm(E×)

U(x−1; Φj)ω̃(x)dx.

Equivalently,

(33)
∫

ωσ(g)f j
ε (g)dg =

1
2L(1, η)2

[
I1 + η(ε)Iη

]
where we have set

I{1
η

} :=
∫
E

U(x−1; Φj)
{ 1
η(x)

}
ω̃(x)dx

=
∫

Φj

[(
yyz−1x− ty − ty + t tz y − tz

y − tz z

)]

× φ(−t)ω̃(x)Ω(y)η(z)
{ 1
η(x)

}
dtd×yd×zdx.

To compute this, we first change x to xz/yy :

=
∫

Φj

[( x− ty − ty + ttz y − tz
y − tz z

)]
φ(−t)ω̃

(xz
yy

)

× Ω(y)
{ η(z)
η(x)

}
dt|y|−1E d×y|z|F d×zdx.

Next we change y to y + tz to get:∫
Φj

[(
x− ty − ty − ttz y

y z

)]
φ(−t)ω̃

( xz

(y + tz)(y + tz)

)

× Ω(y + tz)
{ η(z)
η(x)

}
dt|y + tz|−2E |y|Ed×y|z|F d×zdx.
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Now we change t to t/y to get:∫
Φj

[( x− (t+ t+ ttz/yy) y
y z

)]
φ
(−t
y

)
ω̃
( xz

(y + tz/y)(y + tz/y)

)

× Ω
(
y +

tz

y

){ η(z)
η(x)

}
dt

∣∣y + tz/y
∣∣−2
E

d×y|z|F d×zdx.

We finally change z to zyy:

(34) I{ 1η } =
∫

Φj

[( x− (t+ t+ ttz) y
y zyy

)]
φ
(−t
y

)
ω̃
( xz

(1 + tz)(1 + tz)

)

×Ω(y)Ω(1 + tz)
|1 + tz|2E

{ η(z)
η(x)

}
dt|y|−1E d×y|z|F d×zdx.

To evaluate the limit of the integrals we remind ourselves that Φj is an
approximation of δw on Ss. In particular (see Lemma 4)

L(1, 1F )
∫

Φj

[(
x y
y z

)] dxdzdy
|xz − yy |2F

= 1,

with x, z ∈ F and y ∈ E. If we change z to zyy and take into account the
relations L(1, 1E) = L(1, 1F )L(1, η) and d×y = L(1, 1E)dy |y|−1E we get:

(35)
∫

Φj

[(
x y
y zyy

)] dxdzd×y
|1− xz|2F

= L(1, η).

We are going to see that the limit of the integral I1 corresponding to the
factor η(z) in (34) is 0. We prove this in the Archimedean case, leaving the
easier non-Archimedean case to the reader. We change x to x + (t + t + ttz)
to arrive (up to a multiplicative constant) at∫

Ψj(x, z, y)A(x, z, y)η(z)dxdzd×y

where we have set

A(x, z, y) =
∣∣1− xz

∣∣2
F
· Ω(y)|y|−1E

∫
φ
(−t
y

)

× ω̃
(xz + (1 + tz)(1 + tz)− 1

(1 + tz)(1 + tz)

)Ω(1 + tz)
|1 + tz|2F

dt,

and

Ψj(x, z, y) = Φj

[( x y
y zyy

)] 1
|1− xz|2F

·

Recall that Φj is an arbitrary smooth approximation of δw. Equivalently, Ψj

is an arbitrary approximation of L(1, η)δ(0,0,1) on the space F × F ×E for the
measure dxdzd×y. Thus, there is no harm in assuming that our approximation
of δ satisfies:

Ψj(x, z, y) = Ψj(x,−z, y).
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For φ with small support, A is continuous near (0, 0, 1) on F ×F ×E. We can
write A = A++A− where A±(x,−z, y) = ±A±(x, z, y). In view of our assump-
tion on Ψj the integral of A+(x, z, y)η(z) against Ψj is 0. Now A−(x, z, y)η(z)
is continuous and vanishes at (0, 0, 1). We are integrating on F ×F ×E against
an approximation of a multiple of δ(0,0,1). The limit of the integral is thus 0,
as claimed.

To compute the integral Iη corresponding to the factor η(x) in (34), we first
replace t by a new variable s such that:

s+ s = t+ t+ ttz, s− s = t− t.

Explicitly, for φ of small support:

t = p+ q
√
δ, s = p1 + q1

√
δ, q = q1,

p =
−1 +

√
1 + 2p1z + q21δz

2

z
=

2p1 + q21δz

1 +
√
1 + 2p1z + q21δz

2
dt

= ds|1 + 2p1z + q21δz
2|−

1
2

F .

Then the integral becomes:

Iη =
∫

Φj

[(
x− 2p1 y

y zyy

)]
φ
(−t
y

)

× ω̃
( xz

(1 + tz)(1 + tz)

)
Ω(y)|y|−1E

Ω(1 + tz)
|1 + tz|2E

× η(x)|1 + 2p1z + q21δz
2|−

1
2

F dsd×y|z|F d×zdx,
where now

t =
−1 +

√
1 + 2p1z + q21δz

2

z
+ q1

√
δ.

We change p1 to p1 + 1
2x and then p1 to − 1

2p1:∫
Φj

[( p1 y
y zyy

)]
φ
(−t
y

)
ω̃
( xz

(1 + tz)(1 + tz)

)

× Ω(y)|y|−1E

Ω(1 + tz)
|1 + tz|2E

η(x) · |1− p1z + xz + q21δz
2|−

1
2

F

× dp1dq1|δ|
1
2
F d×y|z|F d×zdx,

where

t =
−1 +

√
1− p1z + zx+ q21δz

2

z
+ q1

√
δ

=
−p1 + x+ q21δz

1 +
√
1− p1z + zx+ q21δz

2
+ q1

√
δ.
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Since |z|F d×zdx = dz|x|F d×x, this can be written as∫
Φj

[(
p1 y
y zyy

)]
A(p1, z, y)

dp1dzd×y
|1− p1z|2F

with

A(p1, z, y) := |1− p1z|2F
∫

φ
(−t
y

)
ω̃
( xz

(1 + tz)(1 + tz)

)

× |1− p1z + xz + q21δz
2|−

1
2

F Ω(y)|y|−1E

× Ω(1 + tz)
|1 + tz|2E

η(x)|x|F d×x|δ|
1
2
F dq1.

For φ of small support, A is continuous on F × F × E near (0, 0, 1) with

A(0, 0, 1) =
∫∫

φ
(
− 1

2x− q1
√
δ
)
η(x)|x|d×x|δ|

1
2
F dq1

= η(−2)
∫

φ1(x)η(x)|x|F d×x,

the last equation by definition of φ1 (see (31)). Thus (see (35))

lim
j→+∞

Iη = L(1, η)η(−2)
∫

φ1(x)η(x)|x|F d×x

and we find from (33)

(36) lim
j→+∞

∫
ωσ(g)f j

ε (g)dg =
η(2ε)

2L(1, η)

∫
φ1(x)η(x)|x|F d×x.

We compare this with (32):

lim
j−→+∞

ΘΠ(f j) = η(2)
∫
F(φ1)(x)η(x)d×x,

which, by the Tate functional equation, is equal to:

= η(2)ε(1, η, ψF )
L(0, η)
L(1, η)

∫
φ1(x)|x|F η(x)d×x

= ε(1, η, ψF )2η(−ε)L(0, η) lim
j→+∞

∫
ωσ(g)f j

ε (g)dg.

Proposition 5 follows.

5.4. Local comparison: split case. — We now consider the similar de-
composition at a split place v0. The isomorphism of (2.2) takes Gε(Fv0) to
Gl(2, Fv0), Tv0 to the group of Av0 diagonal matrices and the character Ω
to the character diag(a1, a2) �→ Ωv1(a1a

−1
2 ). We may realize the representation

σv0 in its Whittaker model. Then we have again a decomposition

θσ(fv0 ⊗ fv0) = θv0(fv0)θσv0
(fv0),
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where the local distribution at the place v0 is now given by

θσv0
(fv0) =

∑
W

∫
σv0(fε,v0)W (a)Ωv1(a)

−1d×a
∫

W (aw−1
ε )Ωv1(a)−1d×a.

On the other hand, recall the distribution

ΘΠ,v0(fv1 ⊗ fv2) =
∑

W1,W2

λv1

(
Πv1(fv1)W1)

)
λv2

(
Πv2(fv2)W2)

)
Pv0(W1 ⊗W2).

Proposition 6. — If fv1 ⊗ fv2 and fε,v0 match then

ΘΠv0
(fv1 ⊗ fv2) = θσv0

(fεv0).

The distribution ΘΠv0
can be simplified as follows. Let us identify Ev1 , Ev2

and Fv0 . The representations Πv1 and Πv2 are in fact identical. The Hermitian
form Pv0(W1 ⊗W2) is invariant under the unitary group at v0. It follows that

ΘΠ,v0(fv1 ⊗ fv2) =
∑

W1,W2

λv1

(
Πv1(fv1 ∗ f̃v2)W1))λv2 (W2)

)
Pv0(W1 ⊗W2)

where we have set
f̃(g) = f(w tgw).

Since Πv1 is unitary and self contragredient, for W ∈ W(Πv1 , ψv0) the function
g �→ W (diag(−1, 1)g) is still in the same space. Thus we can choose the func-
tions W1 in some orthonormal basis and choose then for the functions W2 the
functions of the form

g �−→W 1

(
diag(−1, 1)g diag(−1, 1)

)
.

Since Ωv2Ωv1 = 1 our distribution reads then

∑
W1,W2

∫
Πv1(fv1 ∗ f̃v2)W1(a1)Ω−1

v1
(a1)d×a1

∫
W2(a2)Ω−1

v1 (a2)d×a2

×
∫
F×

v0

W1W 2

(
b 0
0 1

)
d×b,

where W1,W2 vary independently in the same orthonormal basis. The orthog-
onality relations give:

∑
W

∫
Πv1(fv1 ∗ f̃v2)W (a1)Ω−1

v1
(a1)d×a1

∫
W (a2)Ω−1

v1 (a2)d×a2.

Recall that the matching condition (17) amounts to:

fv1 ∗ f̃v2(g) = fε,v0(gw
−1
ε ).
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68 JACQUET (H.) & CHEN (N.)

Using the fact that we can change the orthonormal basis, we see that the above
expression becomes, after a change of variables,∑

W

∫
Πv1(fε,v0)W (a1)Ω−1

v1
(a1)d×a1

∫
W (a2w−1

ε )Ω−1
v1 (a2)d×a2

which is equal to θσε ,v0(fv0).

6. Global comparison

We go back to the global relation:

ΘΠ(f) = θσ(fε) + θσ⊗η(fε).

We assume f is a product with fS the characteristic function of KS . For v0
inert not in S0 the function fε,v0 is the characteristic function of Gl(2,OE) ∩
Gε(F ) and in particular supported on the set of g with det g ∈ −εNorm(E×

v ).
Let us make the assumption that for any v0 inert in S0 the function fε,v0 is
also supported on the set of g with det g ∈ −εNorm(E×

v ). Then the function
ρ(wε)−1fε is supported on the set of g with det g ∈ Norm(E×

A
) so that the

distributions Jσ and Jσ⊗η take the same value on that function. Equivalently,
θσ(fε) = θσ⊗η(fε) so that

θε(fε) =
1
2
ΘΠ(f).

At a split place v0 ∈ S0, we have

ΘΠv0
(fv0) = θσv0

(fv0).

At a place v0 ∈ S0 inert in E, we have (Proposition 5)

ΘΠv (fv) = ε(1, ηv0 , ψv0) 2ηv0(−ε)L(0, ηv0) θσv0
(fε,v0).

Then

θσ(fε) =
1
2
ΘΠ(f) =

1
2

∏
v0∈S0,
inert

ε(1, ηv0 , ψv0)2ηv0(−ε)L(0, ηv0)

×
LS0(1, η)LS(12 ,Π⊗ Ω−1)

LS0(1, π,Ad)

∏
v0∈S0

θσv0
(fv0).

At this point we go back to distributions of positive type:

Jσ(f) := θσ
(
ρ(wε)f

)
, J̃σv0

(f) := θσv0

(
ρ(wε)f

)
.

Explicitly:

Jσ(f) =
∑∫

σ(f)φ(t)Ω(t)−1dt
∫

φ(t)Ω−1(t)dt.
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For v0 inert:

J̃σv0
(fv0) =

∫
Gεv0

fv0(g)
〈
σv0(g)e

′
T , e

′
T

〉
dg.

For v0 split:

J̃σv0
(f) =

∑
W

∫
ρ(f)W (a)Ω−1

v1
(a)da

∫
W (a)Ω−1

v1 (a)da.

Because S0 is large enough the product of the factors ηv0(−ε) is one.

Theorem 2. — For any smooth function f =
∏

v0∈S0
fv0f

S0 of compact sup-
port:

Jσ(f) =
∏

v0∈S0

J̃σv0
(fv0)×

1
2

( ∏
v0∈S0,
inert

ε(1, ηv0 , ψv0)2L(0, ηv0)
)

×
LS0(1, η)LS(12 ,Π⊗ Ω−1)

LS0(1, π,Ad)
·

Indeed, we know in advance that the left-hand side decomposes into a
product C

∏
v0∈S0

J̃σv0
(fv0) for a suitable constant C. To evaluate C we choose

the data as above. The result follows. Moreover, since the factors of C other
than the one we are interested in are > 0, we conclude that LS(12 ,Π⊗Ω−1) > 0,
as was claimed.

7. Concluding remarks

The distributions J̃σv0
have the following property. We let fj be an approx-

imation of δ on Gε,v0 .
If v0 is split, we choose a Schwartz-Bruhat function φ on Fv0 such that

φ̂(0) = 0. We also choose also an isomorphism of Gε(Fv0) with Gl(2, Fv0)
and set:

f j(g) =
∫

fj

[( 1 −x
0 1

)
g
]
φ(x)dx

We have then

lim
j→+∞

J̃σv0
(f j) =

∫
φ̂(x)d×x.

Now the Tate functional equation gives:∫
φ̂(x)d×x = ε(1, 1v0 , ψv0)L(1− s, 1v0)

∫
φ(x)|x|s−1dx

s=1
.

To have our local distribution independent of the choice of the additive char-
acter it is reasonable to set

J̃σv0
(f) = ε(1, 1v0 , ψv0)Jσv0

(f).
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This new distribution is still of positive type and now:

lim
j→+∞

Jσv0
(f j) = L(s, 1v0)

∫
φ(x)|x|sdx

s=0
.

Note that the last expression is a multiple of
∫
φ(x) log(|x|)dx. For instance

in the non-Archimedean case, the expression is −
∫
φ(x)ν(x)dx where ν is the

valuation. In the p-adic case there is an asymptotic theory of spherical charac-
ters (see [RR]). This is worked in [F4] for the case of the space Gl(2, F )/A(F ).
Let us assume for simplicity that Ω = 1. The result is then that a spheri-
cal character like Jσv0

can be represented, near the origin, as a unique linear
combination

c1

∫
f
[( 1 u

v 1

)
a
]
dadudv − c2

∫
f
[( 1 u

v 1

)
a
]
daν(uv)dudv.

For the distribution Jσv0
we have just defined, the above assertion amounts to

saying that the constant c2 is 1.

On the other hand, if v0 is inert, then J̃σv0
is a smooth function and we have

simply: limj→+∞ J̃σv0
(fj) = 1.

Finally, the reader can check that the left hand side of the formula in the
theorem does not depend on the choice of the Haar measure on the group
Gε(FA), and the formulas for a finite set of places S0 and a larger set S′

0 are
compatible.

8. Appendix: Continuous spectrum over E

8.1. A diagonal truncation operator. — To prepare for the computation
of the integral of the spectral kernel, we introduce another diagonal truncation
operator for functions φ on G(EA) invariant under Z(EA)G(E):

ΛT
d φ(a) := φ(a)−

∑
γ∈A(E)\Norm(A)

φN (γa)τ̂P
(
H(γa)− T

)
.

Here τ̂P (x) = 1 if x > 0 and equal 0 otherwise. The sum is over the normalizer
of A(E) in G(E) modulo A(E), thus, has only two elements, that we can take
to be e and w. The result of the truncation is a function on A(EA) invariant
under A(E)Z(EA). It is useful to remember the following facts:

(i) τ̂P (H(a)− T ) = 1⇐⇒ |a1/a2| > eT ;

(ii) for any function f invariant under Z(EA), f(a) = f(wa−1w);
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(iii) H(wa) = H(a−1) = −H(a). Thus we can write more explicitly

ΛT
d φ(a) = φ(a) − φN (a)τ̂P (H(a)− T )

− φN (a−1w)τ̂P (−H(a)− T ),

ΛT
d φ(a) = φ(a) if − T < H(a) < T,

ΛT
d φ(a) = φ(a) − φN (a) if H(a) ≥ T,

ΛT
d φ(a) = φ(a−1w) − φN (a−1w) if H(a) ≤ −T.

If φ is of slow increase (as well as all its derivatives) then the function a �→
ΛT
d φ(diag(a, 1)) is rapidly decreasing for |a| large and |a| small. Furthermore,

if ΛT
c denotes the compact truncation operator introduced in (18), then

lim
T→+∞

∫
(ΛT

d − ΛT
c )φ(a)Ω

−1(a)d×a = 0.

Consider again a smooth function of compact support f on Gl(2, EA). We
have a standard majorization [Ar, Lemma 4.3]:

(37)
∣∣ρ1(X1)ρ2(X2)Kf (x, y)

∣∣ ≤ C(f)‖x‖.
Here X1 and X2 are elements of the enveloping algebra of G∞ acting as left
invariant differential operators on the first and second variables respectively.
For given X1 and X2 the scalar C(f) is bounded for f in a bounded set. Thus
the function

g �−→
∫

Kf (g, h)ωη
(
κ(h)

)
dh

is of slow increase as well as all its derivatives. Thus we arrive at the following
lemma:

Lemma 7. — One has

Θ(f) = lim
T→+∞

∫∫
ΛT
1,dKf (a, h)Ω−1(a)daωκ(h)dh.

In [JL] and [JLRo] we have introduced a mixed truncation operator ΛT
m for

the group Gl(2, F ). It satisfies the following easy lemma:

Lemma 8. — Suppose that φ is a smooth function on Gl(2, EA) invariant un-
der the center, uniformly bounded with derivatives of slow increase. Then∫

Z(FA)Gl(2,F )\Gl(2,FA)

φ(h)dh = lim
T→+∞

∫
ΛT
mφ(h)dh.

Proof. — Since φ is integrable over the quotient we may write∫
ΛT
mφ(h)dh =

∫
φ(h)dh−

∫ ∑
γ∈P (F )\Gl(2,F )

φN (γh)τ̂P (γh− T )dh.
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In this expression the second term can be computed as∫
P (F )Z(FA)\Gl(2,FA)

φN (h)τ̂P (h− T )dh.

Since φN is also uniformly bounded this is majorized by a constant multiple of∫
P (F )Z(FA)\Gl(2,FA)

τ̂P (h− T )dh

itself a multiple of e−T . The lemma follows.

Using (22) we may define a mixed truncation operator ΛT
m for the group

H(F ) which also satisfies the above lemma. It is easy to conclude from (37)
that

Kf(g, h) = lim
T2→+∞

ΛT2
2,mKf (g, h),

uniformly for g and h in compact sets. Since the computation of ΛT2
d φ(a)

depends only on the values of φ on a compact set (depending on a) we get also

ΛT1
1,dKf(a, h) = lim

T2→+∞
ΛT1
1,dΛ

T2
2,mKf (a, h),

uniformly for a and h in compact sets. Our next task is the following lemma:

Lemma 9. — Given T1:∫∫
ΛT1
1,dKf (a, h)Ω−1(a)daωη

(
κ(h)

)
dh

= lim
T2→+∞

∫∫
ΛT1
1,dΛ

T2
2,mKf (a, h)Ω−1(a)daωη

(
κ(h)

)
dh.

For the proof of the lemma we use again (37) to show that |ΛT1
1,dKf (a, g)|

is bounded by C|a|−N for H(a) ≥ T1 and H(a) ≤ −T1 and by a constant
for −T1 < H(a) < T1. The derivatives with respect to the second variable
satisfy similar majorizations. It follows that the function defined by

m(g) =
∫

ΛT1
1,dKf(a, g)Ω−1(a)da

satisfy the conditions of the previous lemma. Moreover:

ΛT2
mm(g) =

∫
ΛT1
1,dΛ

T2
2,mKf(a, g)Ω−1(a)da.

Thus the lemma follows from the previous one. In conclusion:

Lemma 10. — Set

ΘT1,T2(f) =
∫∫

ΛT1
1,dΛ

T2
2,mKf(a, h)Ω−1(a)daωη

(
κ(h)

)
dh.

Then:
Θ(f) = lim

T1→+∞
lim

T2→+∞
ΘT1,T2(f).
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8.2. The continuous kernel over E. — We let f be a smooth function of
compact support on G(EA) which, for now, isK-finite, whereK is the standard
maximal compact subgroup. Then Kf has a spectral expression

Kf =
∑
Π

Kf,Π,

where the sum is over all classes Π of cuspidal data for the parabolic sub-
groups P of G. We set

ΘΠ,T1,T2(f) =
∫∫

ΛT1
1,dΛ

T2
2,mKf,Π(a, h)Ω−1(a)daωη

(
κ(h)

)
dh.

Standard estimates [Ar, Lemma 4.4] allow us to write

ΘT1,T2(f) =
∑
Π

ΘΠ,T1,T2(f).

If P = G, then Π is a cuspidal automorphic representation with trivial
central character and we have simply ΘΠ,T1,T2(f) = ΘΠ(f).

If P is the minimal parabolic subgroup, then Π is an equivalence class of
pairs of (normalized ) characters (Π1,Π2) of E×

A
/E×; the equivalence relation

is (Π1,Π2) � (Π2,Π1). Here we need only consider pairs such that Π1Π2 = 1.
The expression for Kf,Π is [Ar, p. 935]

Kf,Π(x, y) =
1
2

∑
(Π1,Π2)∈Π

∫ ∑
φ

E(x, Iλ,Π1,Π2(f)φ;λ,Π1,Π2)

E(y, φ;λ,Π1,Π2)dλ+ · · ·
where the dots represent residual terms. Thus the outer sum has either two
terms for (Π1,Π2), (Π2,Π1) (the terms being in fact equal) or just one term
(Π1,Π1) (where Π2

1 = 1).
It is a little simpler to sum over all pairs Π = (Π1,Π2) with Π2 = Π−1

1 and
for such a pair define Kf,Π by

Kf,Π(x, y) =
1
2

∫ ∑
φ

E(x, Iλ,Π(f)φ;λ,Π)E(y, φ;λ,Π)dλ

+
δ(Π1Π−1

2 )
vol(G(E)\G1)

∫
f(g)Π1(det g)dgΠ1(xy−1).

We are using standard notations. We use the same notation Π for the repre-
sentation induced by the pair Π. In particular

E(g, φ;λ,Π) =
∑

P (E)\G(E)
φ(γg)e〈λ+ρ,H(γg)〉.

The variable λ is identified to a complex number:

e〈λ+ρ,H(γg)〉 = |a1a−12 |
λ+ 1

2
E .
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We often drop Π from the notation.
Then, apart from a residual term, ΘΠ,T1,T2(f) is given by:

1
2

∑
Π

∫ ∑
φ

(∫
ΛT1
d E

(
a, Iλ(f)φ;λ

)
Ω−1(a)da

)

×
(∫

ΛT2
mE(h, φ;λ)ωη

(
κ(h)

)
dh

)
dλ.

From now on, we will assume that f is a convolution product of three K-
finite functions: f = f1 ∗f∗

2 , f1 = f11 ∗f21 . Later, we will assume that f2 is itself
a convolution product of sufficiently many K-finite functions. Then this is:

1
2

∫ ∑
φ,φ′

〈Iλ(f21 )φ, φ′〉
( ∫

ΛT1
d E

(
a, Iλ(f11 )φ

′;λ
)
Ω−1(a)d×a

)

×
(∫

ΛT2
mE

(
h, Iλ(f2)φ;λ

)
ωη

(
κ(h)

)
dh

)
dλ.

Our goal is now to obtain an absolutely convergent expression for the spectral
terms.

We will establish convergence in the case ω = η. Then, by hypothesis, the re-
striction of Ω to F×

A
is η. The case ω = 1 is similar. Also, to establish the conver-

gence, it will be more convenient to replace the unitary similitude group by the
group Gl(2, F ). Then the above expression is (with h ∈ Z(FA)G(F )\G(FA)):

1
2

∑
Π

∫
dλ

∑
φ,φ′

〈Iλ(f21 )φ, φ′〉(38)

×
(∫

ΛT1
d E

(
a, Iλ(f11 )φ

′;λ
)
Ω−1(a)d×a

)
(39)

×
(∫

ΛT2
mE

(
h, Iλ(f2)φ;λ

)
dh

)
dλ.(40)

In this part of the paper, we do not pay much attention to the normalization
of the Haar measures.

8.3. Period integral over A. — Let (Π1,Π2) be a pairs of idele class char-
acters with Π2 = Π−1

1 . We set

ν =
( 1 1
0 1

)
.

Then, in the domain of convergence we get:

E(g, φ;λ) =
∑

α∈Z(E)\A(E)
φ(wναg)e〈λ+ρ,H(wναg)〉

+ φ(g)e〈λ+ρ,H(g)〉 + φ(wg)e〈λ+ρ,H(wg)〉.

On the other hand:

EN (g, φ;λ) = φ(g)e〈λ+ρ,H(g〉) +M(w, λ)φ(g)e〈−λ+ρ,H(g)〉 .
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Then:

ΛT
dE(a, φ;λ) =

∑
α

φ(wναa)e〈λ+ρ,H(wναa)〉

+ φ(a)e〈λ+ρ,H(a)〉(1− τ̂P (H(a)− T )
)

+ φ(wa)e〈λ+ρ,H(wa)〉(1− τ̂P(H(wa)− T)
)

−M(w, λ)φ(a)e〈λ+ρ,H(a)〉((τ̂P (H(a)− T )
)

−M(w, λ)φ(wa)e〈−λ+ρ,H(wa)〉(τ̂P (H(wa) − T )
)
.

A simple computation gives

(41)
∫

ΛT
dE(a, φ, λ,Π)Ω−1(a)d×a = µ(φ;λ,Π1,Π2)

+
(
δ(Π1Ω−1)φ(e) + δ(Π2Ω−1)φ(w)

) eT ( 1
2+λ)

1
2 + λ

+
(
δ(Π2Ω−1)M(w, λ)φ(e) + δ(Π1Ω−1)M(w, λ)φ(w)

) eT ( 1
2−λ)

1
2 − λ

where we have set a = diag(a1, 1) and

µ(φ;λ,Π1,Π2) =
∫
E×

A

φ(wνa)Ω−1(a1)e〈λ+ρ,H(wνa)〉d×a1.

This formula gives the analytic continuation of µ. However, we will need to
have more information on µ(Iλ,Π(f)φ;λ,Π) where f is a smooth function of
compact support on G(EA). We write f = fSf

S where fS is a smooth func-
tion of compact support on G(ES) and fS is the characteristic function of
KS :=

∏
v �∈S Kv and Kv = Gl(2,Ov). We may then assume that φ is invariant

under KS . We have, for g ∈ GS ,

Iλ,Π(f)φ(g)e〈λ+ρ,H(g)〉 =
∫
GS

φ(gx)e〈λ+ρ,H(gx)〉f0(x−1)dx

where we have set f0 = f̌ . This can be written as∫
GS

φ(x)e〈λ+ρ,H(x)〉f0(x−1g)dx

or ∫
f1

[
n
(
a1 0
0 a2

)
g
]
dn |a2|λ+

1
2Π2(a2)−1|a1|−λ− 1

2Π1(a1)−1d×a1,

where we have set

f1(g) =
∫
K

φ(k)f0(k−1g)dk.

At this point we introduce new functions on GS :

f1(g;λ,Π1) := f1(g)Π1(det g)−1| det g|−λ− 1
2 ,
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φS [g;λ,Π1] :=
∫
E×

S

∫
NS

f1

[
n
(
a1 0
0 1

)
g;λ,Π1

]
dnd×a1.

We let P1 be the group of matrices with second row (0, 1). Clearly φS is
invariant on the left under P1(ES). Thus there is a Schwartz-Bruhat function
ΦS [(x, y);λ,Π1] on ES × ES such that, for g ∈ GS ,

ΦS [(0, 1)g;λ,Π1] = φS [g;λ,Π1].

The support of ΦS is contained in a compact set of E2
S − {(0, 0)} which is

independent of λ. We have then for g ∈ GS :

Iλ,Π(f)φ(g)e〈λ+ρ,H(g)〉

=
∫
E×

S

ΦS [(0, t)g;λ,Π1]|t|2λ+1Π1Π−1
2 (t)d×tΠ1(g) | det g|λ+

1
2 .

To obtain a formula valid for all g we introduce

Φ
[
(x, y);λ,Π1

]
:= ΦS

[
(xS , yS);λ,Π1

] ∏
v �∈S

Φv(xv, yv),

where Φv, v �∈ S, is the characteristic function of O2
v. Then, for g ∈ G(EA),

(42) Iλ,Π(f)φ(g)e〈λ+ρ,H(g)〉

=
Π1(g) | det g|λ+

1
2

LS(2λ+ 1,Π1Π−1
2 )

∫
E×

A

Φ
[
(0, t)g;λ,Π1

]
· |t|2λ+1Π1Π−1

2 (t)d×t.

After a change of variables we find:

(43) µ(Iλ,Π(f)φ;λ,Π) =
1

LS(2λ+ 1,Π1Π−1
2 )

×
∫∫

Φ
[
(a1, a2);λ,Π1

]
Ω−1Π1(a1)|a1|λ+

1
2

× d×a1ΩΠ−1
2 (a2)|a2|λ+

1
2 d×a2.

The computations are justified for Reλ � 0. For a given Π, a given φ and a
given f , this expression gives the analytic continuation of µ as a meromorphic
function of λ, which has no singularity on the line Reλ = 0. It has a zero at
λ = 0 if Π1 = Π2, that is, if Π2

1 = 1. Moreover, this function of λ is at most
of polynomial increase on the line Reλ = 0. All its derivatives have the same
property.

However, for our purposes, we will need to have uniform estimates. We pro-
ceed as follows. First we take f in a fixed bounded set B of the space of smooth
functions of compact support. This means that f = fSf

S as before, with S
fixed; the function fS has support in a fixed set Ξ, open and relatively compact;
we may as well assume KSΞ = ΞKS = Ξ; the function is invariant on the right
and the left under a compact open normal subgroup K ′ of

∏
v∈S,finiteKv (and
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thus under the subgroup K ′′ = K ′KS of K∞). For each element X of the
enveloping algebra of G∞ there is a constant CX such that

sup
∣∣ρ(X)f

∣∣ ≤ CX .

Consider the function:

f1(g) =
∫

φ(k)f0(k−1g)φ(k)dk.

The integral does not change if we replace φ by φ1 defined by

φ1(k) = vol(K ′′)−1
∫

φ(kk′′)dk′′.

Then φ1 is invariant on the right and therefore on the left under K ′′. Thus the
same is true of f1. Moreover f1 = f1,Sf

S . For any X ,

sup
∣∣ρ(X)f1

∣∣ ≤ ‖φ‖CX .

Finally, the support of f1,S is still contained in Ξ. If Iλ,Π(f) �= 0 for a f ∈ B,
then Π1 is unramified outside S and, for each finite v ∈ S, Π1,v O×

v
belongs

to a finite set. We now consider the function f1(g;λ,Π1). It has a support
contained in Ξ. It is invariant under a compact subgroup K ′

0 of
∏

v∈S,finiteKv

(depending only onK ′). Suppose λ is in a strip a ≤ Reλ ≤ b. Then, for any X ,
there is a polynomial PX(Π1, λ) such that

sup
∣∣ρ(X)f1(• ;λ,Π1)

∣∣ ≤ ‖φ‖PX(Π1, λ).

By a polynomial we means a function P (Π1, λ) of the following form. We may
identify the enveloping algebra of E×

∞ to the space of distributions with sup-
port {e}. Thus if f is a smooth function on E×

∞ or E×
A
and X in the enveloping

algebra we can define 〈X, f〉. Then a polynomial is a function of the form
P (Π1, λ) = 〈X, f〉 where f(a) = Π1(a)|a|λ and X is in the enveloping algebra.
Note that such a function depends only on λ and the infinite components of Π1.
In fact, if we write, for v real,

Π1,v(x) = |x|iuv
v

( x

|x|

)εv

, εv = 0, 1, dv = 1,

and, for v complex,

Π1,v(z) = (zz)iuv
znv

(zz)nv/2
, nv ∈ Z, dv = 2,

with
∑

v∈∞ dvuv = 0, then a polynomial P (Π1, λ) is just a polynomial in the
variables (nv, uv) and λ. To allow for the case where λ is complex, we will say
that any linear combination of products P (Π1, λ)Q(Π1, λ), where P and Q are
polynomials, is also a polynomial. For instance, for any integerN , (1+λλ)N is a
polynomial in that sense. It will be understood that all polynomials considered
are positive.
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This being so, all derivatives of f1(• ;λ,Π1) have the same properties (with
different polynomials). A similar assertion is valid for the function φS(• ;λ,Π1)
except that its support is contained in a fixed set, compact modulo P1(ES).

The Schwartz-Bruhat function ΦS(• ;λ,Π1) is compactly supported: its sup-
port is contained in a fixed open set of E2

S − 0, relatively compact in E2
S − 0.

It is invariant on the right under K ′
0. Thus its support is a compact set of E2

S

and it is invariant under translation by a compact open subgroup of ESfinite .
Take λ in a strip. Then ΦS [• ;λ,Π1] is bounded by a bound for φS(• ;λ,Π1).
Since G∞ operates on E2

∞ every element X of the enveloping algebra defines a
differential operator Xa on E2

∞ (with non constant coefficients). We have

(XaΦS)
[
(0, 1)g;λ,Π1

]
=

(
ρ(X)φS

)
(g;λ,Π1).

Consider a differential operator ξ on E2
∞ with constant coefficients. On the

complement of (0, 0) we can write ξ =
∑

i ciXi,a where the Xi are elements of
the enveloping algebra and the functions ci are smooth functions on E2

∞−(0, 0).
Using the majorization for the functions ρ(Xi)φS we conclude that∣∣ξΦS [(x, y);λ,Π1]

∣∣ ≤ ‖φ‖Pξ(Π1, λ).

Thus the functions ΦS [(x, y);λ,Π1] remain in a bounded set of C∞c (E2
S) and

a fortiori of the Schwartz-Bruhat space S(E2
S). Note that the functions

ξΦS

[
(x, y);λ,Π1

]
are continuous in (x, y, λ) and holomorphic in λ. In (43) the analytic continu-
ation of the Tate integral is obtained by using the Poisson summation formula.
Thus in a strip, say − 1

4 ≤ Reλ ≤ 1
4 , we have then a uniform estimate:∣∣∣ ∫∫

Φ
[
(a1, a2);λ,Π1

]
Ω−1Π1(a1)|a1|λ+

1
2 d×a1ΩΠ−1

2 (a1)|a1|λ+
1
2 d×a1

∣∣∣
≤ ‖φ‖P (Π1, λ).

We have similar estimates for the derivatives by Cauchy integral formula.
We stress that we need only consider characters Π1 such that Iλ,Π(f) �= 0

for f ∈ B. Thus for v �∈ S the character Π1,v is unramified and for v finite in S
the restriction of Π1,v to O×

v belongs to a finite set. If furthermore Π2
1 = 1 this

forces Π1 to belong to a finite set. There is then a polynomial P (Π1, λ) such
that, on the line Reλ = 0, for characters Π1 of the above type,∣∣∣ 1

LS(2λ+ 1,Π2
1)

∣∣∣
is bounded by P (Π1, λ). Combining with the previous inequality, we get:

Lemma 11. — Suppose f is in a bounded set B. Then there is a polynomial
P (Π1, λ) such that, for Reλ = 0, and all characters Π1:∣∣µ(Iλ,(Π1,Π

−1
1 )(f)φ;λ, Π1,Π−1

1 )
∣∣ ≤ P (Π1, λ)‖φ‖.
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On the other hand, we can obtain similar estimates for the functions

LS(2λ+ 1,Π2
1)

in a strip (with modification for a pole at λ = 0 if Π2
1 = 1), hence also for

their derivatives. Thus we have also similar estimates for the derivative of the
expression in the proposition on the line Reλ = 0. We can use the notations
of generalized vectors (dual to the smooth vectors). There is a generalized
vector µλ,Π such that

µ
(
Iλ,Π(f)φ;λ,Π

)
=

〈
φ, Iλ,Π(f∗)µλ,Π

〉
and our estimate amounts to∥∥Iλ,Π(f∗)µλ,Π

∥∥ ≤ P (Π1, λ).

Remark. — We define the Whittaker linear form W on the space of Iλ,Π by
analytic continuation of the integral

W(φ;λ,Π) =
∫
EA

φ(wn)e〈λ+ρ,H(wn)〉ψE(−x)dx, n =
( 1 x
0 1

)
.

After a change of variables, we easily find

(44) W
[
Iλ,Π

(
a 0
0 1

)
Iλ,Π(f)φ

]

=
Π1(a) |a|λ+

1
2

LS(2λ+ 1,Π1Π−1
2 )

∫
E×

A

Φ̃
[
(at, t−1;λ,Π1

]
· |t|2λΠ1Π−1

2 (t)d×t

where Φ̃ denotes the Fourier transform with respect to the second variable. This
integral is absolutely convergent and gives the analytic continuation of W .

8.4. Intertwining period and intertwining operator. — We need to
consider only pairs Π = (Π1,Π2) (with Π2 = Π−1

1 ) such that the integral of a
truncated Eisenstein series over Gl(2, FA) is non-zero. Then (see [JL], [HLRo])
either Π1 (and Π2) have a trivial restriction to F×

A
or Πτ

2 = Π−1
1 (or, what

amounts to the same, Π1 = Πτ
1). Of course the two conditions can be both

satisfied.

In this section, we assume that Πτ
1 = Π1. Then we can define an intertwining

period as follows (see [JL] and [JLRo]):

P(φ;λ,Π) :=
∫
T (FA)\G(FA)

φ(ηh)e〈λ+ρ,H(ηh)〉dh.

Here η ∈ G(E) is an element such that η η−1 = w and T is the torus such that

T (F ) = η−1A(E)η ∩Gl(2, F ).
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The integral converges for Reλ� 0 and can be analytically continued. Recall
the formula (42). We let Φη[m;λ,Π1] be the Schwartz-Bruhat function on
M(2× 2, FA) defined by

Φη[m;λ,Π1] := Φ[(0, 1)ηm;λ,Π1].

Then we get:

P(Iλ,Π(f)φ;λ,Π)

=
1

LS(2λ+ 1,Π2
1)
×

∫
Gl(2,FA)

Φη[m;λ,Π1] Π1(detm)| detm|2λ+1F dm.

The integral is a Tate integral for the group Gl(2, F ). Using the Iwasawa
decomposition we see that the Tate integral is an entire multiple of

L
(
2λ+ 1,Π1 F×

A

)
L

(
2λ,Π1 F×

A

)
.

In particular, it has no pole on the line Reλ = 0 except at λ = 0 when
Π1 F×

A

= 1. Because we assume that Πτ
1 = Π−1

2 = Π1 this implies that Π2
1 = 1.

Then the above ratio is an entire multiple of

LS0(2λ+ 1, 1F )L(2λ, 1F )
LS0(2λ+ 1, η)

·

These observations combined with standard estimates for L-functions can be
used to prove the following lemma.

Lemma 12. — Let B be a bounded set. Then there is a polynomial P (Π1, λ)
such that, for all Π1 with Πτ

1 = Π1 and Π1 F×
A

�= 1, all λ with Reλ = 0, and
all f ∈ B: ∣∣P(Iλ,Π(f)φ;λ,Π)∣∣ ≤ P (Π1, λ)‖φ‖.

This can expressed again in terms of generalized vectors. There is a gener-
alized vector Pλ,Π such that

P
(
Iλ,Π(f)φ;λ,Π

)
=

〈
φ, Iλ,Π(f∗)Pλ,Π

〉
.

Then: ∥∥Iλ,Π(f∗)Pλ,Π

∥∥ ≤ P (Π1, λ).

Combining with the results of the previous subsection, we arrive at the
following result.

Proposition 7. — Let B be a bounded set of the space of smooth functions of
compact support. Then there is a polynomial P (Π1, λ) > 0 such that, for any
function f of the form f = f1 ∗ f2 ∗ f3 with f1, f3 ∈ B, any Π1 with Πτ

1 = Π1,
any λ with Reλ = 0:∣∣〈Iλ,Π(f)Pλ,Π, µλ,Π〉

∣∣ ≤ P (Π1, λ)
∥∥Iλ,Π(f2)∥∥.
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For the proof we remark that the expression in the proposition has the form〈
Iλ,Π(f2)Iλ,Π(f3)Pλ,Π, Iλ,Π(f∗

1 )µλ,Π

〉
so that our assertion follows from the previous lemmas, for the characters Π1

whose restriction to F×
A
is non-trivial. On the other hand, if this restriction is

trivial then Π2
1 = 1. We need only consider those Π1 such that Iλ,Π1(f1) �= 0

for f1 ∈ B. There are only finitely many such Π1. So we do not need to have
estimates uniform in this case. We have written

µλ,Π(Iλ,Π(f)φ) = LS(2λ+ 1, 1E)−1µ̃λ,Π

(
Iλ,Π(f)φ

)
where µ̃(•) has no singularity on Reλ = 0. Since PΠ1,λ(Iλ,Π(f)φ)) has a
pole at λ = 0 in this case, we need to modify the previous lemma and replace
PΠ1,λ(Iλ,Π(f)φ) by its product with LS(2λ+1, 1E)−1 which has a zero at λ = 0.
The product has then no singularity at λ = 0. It is then easy to obtain the
required estimates in this case.

Using similar arguments, we can obtain estimates for the intertwining oper-
ator, more precisely, for expressions of the form〈

M(w, λ)Iλ,Π(f)(φ), φ′〉.
8.5. Continuous contribution. — We study the terms corresponding to
pairs Π with Πτ

2 = Π−1
1 , that is, Πτ

1 = Π1. Each such term will ultimately
contribute an integral. We first consider the terms with Π1 �= Ω, (a condition
equivalent to Π2 �= Ω since Ωτ = Ω−1) and Π1 F×

A
�= 1. Then in fact∫

ΛT1
d E(a, φ, λ)Ω−1(a)da,

∫
ΛT2
mE(h1, φ, λ)dh1

are independent of T1 and T2, being equal respectively, to µ(φ;λ,Π) and
P(φ;λ,Π). Thus:

ΘΠ,T1,T2(f) =
1
2

∫ ∑
φ,φ′

〈
Iλ(f22 )φ, φ

′〉µ(Iλ(f11 )φ′, λ)P(Iλ(f2)φ, λ)dλ.

Note that if Π1 = Π2 then the expression for Kf,Π(x, y) contains a residual
term:

∫
Π1(det g)f(g)dgΠ1(det x)Π1(det y). However, since Ω �= Π1, the inte-

gral of the truncation of this term over A against Ω−1 contains as a factor the
integral of Π1Ω−1 over the quotient of the ideles of absolute value 1 and is thus
0. With the notation of generalized vectors, the above integral becomes:∫ 〈

Iλ(f)Pλ,Π, µλ,Π

〉
dλ.

For f = f11 ∗ f21 ∗ f∗
2 :〈

Iλ(f)Pλ,Π, µλ,Π

〉
=

〈
Iλ(f21 )Iλ(f

∗
2 )Pλ,Π, Iλ(f1∗1 )µλ,Π

〉
.
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By Proposition 7, there is then a polynomial P (Π1, λ) such that∣∣〈Iλ(f)Pλ,Π, µλ,Π〉
∣∣ ≤ P (Π1, λ)

∥∥Iλ,Π(f21 )∥∥.
In fact, this is true for f11 , f

∗
2 smooth in a bounded set and any smooth func-

tion f21 .

We will make repeated use of the following lemma:

Lemma 13. — Suppose that B is a bounded set of the space of smooth functions
of compact support and P (Π1, λ) a polynomial. Then there is a constant C > 0
such that, for any f ∈ B,∑

Π1

∫
P (Π1, λ)

∥∥Iλ,Π1,Π
−1
1
(f)

∥∥dλ < C,

the sum over all (normalized) idele class characters of E.

Proof of the Lemma. — The operator Iλ,Π1,Π
−1
1
(f) is represented by the fol-

lowing kernel function on K ×K:

Hf,λ,Π(k1, k2) :=
∫

f
[
k−11

(
a 0
0 1

)(
b 0
0 b

)( 1 x
0 1

)
k2

]
Π1(a)|a|

λ+ 1
2

E d×ad×bdx.

Thus its operator norm is bounded by the supremum over K ×K of∣∣∣ ∫ φ(a : k1 : k2)Π1(a)|a|λEd×a
∣∣∣

where

φ(a : k1 : k2) :=
∫

f
[
k−11

( a 0
0 1

)( b 0
0 b

)( 1 x
0 1

)
k2

]
|a|

1
2
Ed×bdx.

For f ∈ B, ki ∈ K, the function a �→ φ(a : k1 : k2) remains in a bounded set B0
of the space of smooth functions of compact support on E×

A
. Thus it will suffice

to show there is C such that, for φ ∈ B0,∑
Π1

∫
P (Π1, λ)

∣∣∣ ∫
φ(a)Π1(a)|a|λEd×a

∣∣∣dλ < C.

This is clear if P = 1. In general

P (Π1, λ)
∣∣∣ ∫

φ(a)Π1(a)|a|λEd×a
∣∣∣ = ∣∣∣P (Π1, λ)

∫
φ(a)Π1(a)|a|λEd×a

∣∣∣
=

∣∣∣ ∫ φ1(a)Π1(a)|a|λEd×a
∣∣∣

where φ1 = ρ(X)φ for a suitable element X of the enveloping algebra of E×
∞.

Since φ1 remains in another bounded set, our assertion follows.

tome 129 – 2001 – n
o
1



POSITIVITY OF QUADRATIC BASE CHANGE L-FUNCTIONS 83

From our observations on the independence of the integrals on the truncation
parameters, we see that we can sum over all Π1 of the above type and get

lim
T1→+∞

lim
T2→+∞

∑
Π

ΘΠ,T1,T2(f) =
∑
Π1

1
2

∫ 〈
Iλ,Π(f)Pλ,Π, µλ,Π

〉
dλ,

with ∑
Π1

∫ ∣∣〈Iλ,Π(f)Pλ,Π, µλ,Π〉
∣∣dλ < +∞.

Moreover, if B is a bounded set, there is C > 0 such that, for f of the form
f = f1 ∗ f2 ∗ f3, with each fi in B, then∑

Π1

∫ ∣∣〈Iλ,Π(f)Pλ,Π, µλ,Π〉
∣∣dλ < C.

Next, we discuss the contribution of the term Π1 = Ω, if any. Since we
are assuming that Ωτ = Ω−1 in any case and for now we are assuming that
Πτ
1 = Π−1

2 this implies that Π2 = Π1 = Ω so that Ω is a quadratic character
satisfying Ω F×

A

= η. Moreover Π1 F×
A

is then non-trivial. The expression
for KΠ contains again a residual term; however its truncated integral over
Gl(2, FA) is zero. Indeed, it contains as a factor:∫

Z(FA)G(F )\G(FA)

η(det h)dh−
∫
Z(FA)A(F )N(FA)\G(FA)

η(det h)τ̂P
(
H(h)− T

)
dh

which is zero. Then
∫
ΛT2
mE(h1, φ, λ)dh1 is again independent of T2 but∫

ΛT1
d E(a, φ, λ)Ω−1(a)da

does depend on T1. We have then for f = f11 ∗ f21 ∗ f∗
2 , all K-finite functions:

ΘΠ,T1,T2(f) =
1
2

∫
〈Iλ(f)Pλ,Π, µλ,Π〉dλ

+ 1
2

∫ ∑
φ

(
Iλ(f11 ∗ f21 )φ(e) + Iλ(f11 ∗ f21 )φ(w)

)
× eT1(

1
2+λ)

1
2 + λ

P(Iλ(f2)φ, λ)dλ

+ 1
2

∫ ∑
φ

(
(I−λ(f11 ∗ f21 )M(w, λ)φ(e) + I−λ(f11 ∗ f21 )M(w, λ)φ(w)

)
× eT1(

1
2−λ)

1
2 − λ

P(I−λ(f2)M(w, λ)φ,−λ)dλ

where for the last expression we have used the functional equation of the pe-
riod P (inherited from the functional equation of the Eisenstein series, see
[JLRo]) to insert an intertwining operator. In the last expression, the sum over
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φ does not depend on the choice of the basis. Thus we can ignore the inter-
twining operator. In the second expression, we can also change λ to −λ; we
see that the second expression is equal to the third. That is:

ΘΠ,T1,T2(f) =
1
2

∫ 〈
Iλ(f)Pλ,Π, µλ,Π

〉
dλ

+
∫ ∑

φ

{(
I−λ(f11 ∗ f21 )φ(e)+ I−λ(f11 ∗ f21 )φ(w)

) eT1(
1
2−λ)

1
2 − λ

P(Iλ̄(f2)φ, λ )
}
dλ.

We will move the integral to the line Reλ = 1 rather than to the line Reλ = 1
2

as we did in [J2] (a similar contour integration for Gl(2) is done in [F3]). The
term P(∗, λ ) is the product of a Tate integral which is entire, hence bounded
in vertical strips and the factor (LS(2λ + 1, 1E))−1. Thus this moving of the
contour of integration is legitimate. In doing so we pick up a residue at λ = 1

2 .
The integral on the line Reλ = 1 tends to 0 as T1 tends to infinity. So we are
left with

lim
T1→+∞

lim
T2→+∞

ΘΠ,T1,T2(f) =
1
2

∫ 〈
Iλ(f)Pλ,Π, µλ,Π

〉
dλ

+
∑
φ

(
I− 1

2
(f11 ∗ f21 )φ(e) + I− 1

2
(f11 ∗ f21 )φ(w)

)
P(I 1

2
(f2)φ, 12 ).

We view again P as a generalized vector in the (non-unitary) representa-
tion I− 1

2 ,Ω,Ω. Then I− 1
2 ,Ω,Ω(f)P is a smooth vector in this representation and

the second term is the sum I− 1
2 ,Ω,Ω(f)P(e) + I− 1

2 ,Ω,Ω(f)P(w).
Finally, we study the contribution of the terms where Πτ

1 = Π1 and Π1 F×
A
=1.

Then Π1 �= Ω. Also Π2
1 = 1. Thus, for a given f , or even f in a given bounded

set, there are only finitely many such Π1 with Iλ,Π1,Π2(f) �= 0. Thus the sum∑
ΘΠ,T1,T2(f) is finite, and in the sum, each term is itself written as a finite

sum of terms. The kernel Kf,Π has once more a residual component whose
truncated integral over the diagonal is 0. This time

∫
ΛT1
d E(a, φ, λ)Ω−1(a)da

is independent of T1 but

(45)
∫

ΛT2
mE(h1, φ, λ)dh1 =

eλT2

λ

∫
K∩H1

φ(k)dk

+
e−λT2

−λ

∫
K∩H1

M(w, λ)φ(k)dk + P(φ, λ,Π).

Since Π1 = Π2 we have M(w, 0) = −1 and the two first terms have the same
residue at λ = 0. The last term has also a simple pole at λ = 0. However the
factor (39) reduces to µ(Iλ(f11 )φ, λ,Π) which has a zero at λ = 0 because in (43)
the reciprocal of the L-factor does. Thus the poles of the terms in (40) are
compensated by the zero of (39). As T2 tends to infinity the terms containing
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e±λT2 tend to 0 and we find the contribution of those finitely many terms to
be the same as before (see Proposition 7).

8.6. Discrete terms. — Finally, we discuss the terms whose contributions
will be purely discrete. We consider those Π such that Π1 F×

A
= 1 but Πτ

1 �= Π1.
This condition amounts to Π2

1 �= 1. We also have then Π1 �= Ω and the integral∫
ΛT1
d E(a, φ, λ)Ω−1(a)da does not depend on T1. However, we have then, in

the sense of analytic continuation,

(46)




∫
ΛT2
mE(h1, φ, λ)dh1 =

eλT2

λ
Pc(φ) +

e−λT2

−λ Pc

(
M(λ,w)φ

)
,

Pc(φ) =
∫
KF

φ(k)dk,

whereKF denotes the standard maximal compact subgroup of Gl(2, FA). Since
the left hand side is holomorphic at λ = 0 we get (See also [JL, Lemma 7], for
a computational proof.)

(47) Pc(φ) = Pc

(
M(0, w)φ

)
.

It follows that

ΘΠ,T1,T2(f) =
1
2

∑
φ

∫
µ
(
Iλ(f)φ

)( eλT2

λ
Pc(φ) +

e−λT2

−λ Pc

(
M(λ,w)φ

))
dλ.

Again, in terms of generalized vectors, this can be written in the form:

1
2

∫ (〈
Iλ,Π(f)Pc, µλ,Π

〉 e−λT2

−λ +
〈
Iλ,Π(f)M(w, λ)∗Pc, µλ,Π

〉 eλT2

λ

)
dλ.

Consider then the functions:

Φ1(λ) :=
∑
Π

〈
Iλ,Π(f)Pc, µλ,Π

〉
, Φ2(λ) :=

∑
Π

〈
Iλ,Π(f)M(w, λ)∗Pc, µλ,Π

〉
,

the sums over all the Π of the above type.

Lemma 14. — The above series converge absolutely, uniformly on compact
sets, and define continuous functions on the line Reλ = 0. Moreover Φ1(0) =
Φ2(0). If f2 is the convolution of sufficiently many K-finite functions, the
functions are differentiable on the line Reλ = 0.

Indeed, for the first assertion, we write as before f11 ∗ f21 ∗ f∗
2 . Then〈

Iλ,Π(f)Pc, µλ,Π

〉
=

〈
Iλ,Π(f21 )Iλ,Π(f

∗
2 )Pc, Iλ,Π(f1∗1 )µλ,Π

〉
.

As before, there is a polynomial P (Π1, λ) such that∥∥Iλ,Π(f1∗1 )µλ,Π

∥∥ ≤ P (Π1, λ).

It is easy to see that ∥∥Iλ,Π(f∗
2 )Pc

∥∥ ≤ C
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where C is a constant. Hence∥∥〈Iλ,Π(f)Pc, µλ,Π〉
∥∥ ≤ CP (Π1, λ)

∥∥Iλ,Π(f21 )∥∥.
Since ∑

Π1

P (Π1, λ)
∥∥Iλ,Π(f21 )∥∥ < +∞

the first assertion follows for Φ1 (with uniform convergence on compact sets,
even for f21 , f

2
1 , f2 smooth in a bounded set). Since the intertwining operator

is unitary, the argument for Φ2 is similar. For the differentiability, we proceed
as follows. We do assume that the functions are K-finite. Then we need only
consider those Π such that the corresponding operators are non-zero. This
means that the restriction of Π1 to the maximal compact subgroup of E×

A
takes

only finitely values. For the purpose of convergence, we may as well fix this
restriction. Then all the representations Iλ,Π operate on the same Hilbert of
functions on the maximal compact subgroup K. Thus it suffices to show that∑

φ,φ′

∑
Π

〈
Iλ,Π(f21 )φ, φ

′〉µ(
Iλ,Π(f11 )φ

′, λ,Π
)
Pc(Iλ,Π(f2)φ)

is differentiable, the sum over φ, φ′ being finite. We may as well fix φ and φ′. At
this point, we do assume that f2 = f12 ∗ f22 where the functions f i

2, i = 1, 2, are
K-finite. Then the terms 〈Iλ,Π(f21 )φ, φ′〉 and Pc(Iλ,Π(f2))φ) are bounded by
constant multiples of ‖Iλ,Π(f21 )‖ and ‖Iλ,Π(f12 )‖, respectively. Their respective
derivatives are bounded, uniformly in (Π1, λ). As for µ(Iλ,Π(f11 )φ

′, λ,Π) it is
bounded as well as its derivatives by a polynomial in (Π1, λ). Our assertion
follows for Φ1. For Φ2, we observe that∑

Π1

〈Iλ,Π(f21 )φ, φ′〉µ(Iλ,Π(f11 )φ′, λ,Π)Pc(Iλ,Π(f2)M(w, λ)φ)

=
∑
φ′′

∑
Π1

〈
Iλ,Π(f11 )φ, φ

′〉µ(
Iλ,Π(f21 )φ

′, λ,Π
)

× Pc(Iλ,Π(f12 ))φ′′) ·
〈
Iλ,Π(f22 )M(w, λ)φ, φ′′

〉
with a finite sum over φ′′. We proceed as before, this time assuming that, in
turn, f12 is the convolution of two K-finite functions.

We have then, at least if f2 is the convolution of sufficiently many K-finite
functions,

∑
Π

ΘΠ,T1,T2(f) =
∫ (

Φ1(λ)
e−λT2

−λ + Φ2(λ)
eλT2

λ

)
dλ.

This expression is independent of T1. So we only need to take the limit as
T2 → +∞. It is of the form cΦ1(0).
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8.7. Conclusion. — We are now ready to state the main result of this sec-
tion:

Theorem 3. — For any smooth function of compact support f :

Θ(f) =
∑

Πcuspidal

ΘΠ(f) +
∑

Πτ
1=Π1

1
2

∑
Π

∫ 〈
Iλ,Π(f)Pλ,Π, µλ,Π

〉
dλ

+ c
∑

Π1|F×
A
=1

Πτ
1 �=Π1

〈
I0,Π(f)Pc, µ0,Π

〉

+ c1
{(
I− 1

2 ,Ω,Ω(f)P
)
(e) +

(
I− 1

2 ,Ω,Ω(f)
)
P(w)

}
.

The expression is absolutely convergent:
∑

Πτ
1=Π1

∫ ∣∣∣〈Iλ,Π(f)Pλ,Π, µλ,Π

〉∣∣∣dλ < +∞,

∑
Π1|F×

A
=1

Πτ
1 �=Π1

∣∣〈I0,Π(f)Pc, µ0,Π〉
∣∣ < +∞.

By [DM], every smooth function of compact support can be written as a
finite sum of triple convolution products. Thus it suffices to prove our assertion
when f = f1 ∗ f2 ∗ f3. If each fi remains in a bounded set both sides are well
defined and bounded. Since the space of smooth functions of compact support
is a bornological space, each side may be regarded as a distribution on the
product of three copies of the group. We have shown both sides agree when
each fi is K-finite and f3 is itself the convolution of sufficiently many K-finite
functions. Thus they agree for arbitrary fi and our assertion follows. Note
that the right hand side is in fact a distribution, as follows for instance from
the kernel theorem.

9. Appendix: Continuous spectrum over F

We pass to the much easier discussion of the convergence of the spectral
expression for Gε . For simplicity we only consider the case ω = 1, Ω = 1.
The only difficult case is the case where ε is a norm. Of course, no truncation
is needed. We then identify Gε with Gl(2, F ). Consider a pair of characters
π = (π1, π2) with π1π2 = 1. Since Gl(2, F ) = P (F )T (F ) we have:∫

E(t, φ;π, λ)dt = ν(φ;λ, π)
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where

ν(φ;π, λ) :=
∫
T (F )Z(FA))\T (FA)

φ(t)e〈λ+ρ,H(t)〉dt.

Using again the notation of generalized vectors, what we have to show is that∑ ∫ 〈
Iλ,π(f)νλ,π , νλ,π

〉
dλ

is absolutely convergent. This can be seen directly when f is K-finite. For
our purposes this is not quite enough since we want to use smooth functions of
compact support. We use again an integral representation of the form (42):

(48) Iλ,Π(f)φ(g) =
π1(g) | det g|λ+

1
2

LS0(2λ+ 1, π1π−1
2 )

×
∫
E×

A

Φ
[
(0, t)g;λ, π1

]
· |t|2λ+1π1π−1

2 (t)d×t.

Let us introduce the Schwartz-Bruhat function

φ[t;λ, π1] := Φ
[
(0, 1)t;λ, π1

]
on the simple algebra of which T is the multiplicative group. Then

ν(Iλ,π(f)φ) =
1

LS0(2λ+ 1, π1π−1
2 )

∫
φ(t)π1(det t) | det t|F dt.

The integral is then a Tate integral for E. In particular, it is a holomorphic
multiple of L(λ+ 1

2 , π1 ◦Norm). We can then finish the proof as before.
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Zyklen auf Hilbert–Blumenthal-Flächen, J. reine angew. Math., t. 366
(1986), pp. 53–120.

[J1] Jacquet (H.) – Sur un résultat de Waldspurger, Ann. Scient. École
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