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GRADED LAGRANGIAN SUBMANIFOLDS
BY Paul SEIDEL (*)

ABSTRACT. — Symplectic Floer cohomology is a graded abelian group but only in a relative
sense. The notion of graded Lagrangian submanifold serves to fix this ambiguity. We explain
the theory in detail and give several applications.

RESUME. — SOUS-VARIETES LAGRANGIENNES GRADUEES. — La cohomologie de Floer
symplectique est un groupe abélien gradué, mais seulement dans un sens relatif. La notion
de sous-variété Lagrangienne graduée sert a lever cette ambiguité. On expose cette notion en
détails, avec plusieurs applications.

1. Introduction

Floer theory assigns, in favourable circumstances, an abelian group HF(Lg, L)
to a pair (Lo, L1) of Lagrangian submanifolds of a symplectic manifold (M,w).
This group is a qualitative invariant, which remains unchanged under suitable
deformations of Ly or L;. Following Floer [7] one can equip HF (Lo, L) with a
canonical relative Z/N-grading, where 1 < N < oo is a number which depends
on (M,w), Lg and Ly (for N = oo we set Z/N = Z). Relative mostly means that
the grading is unique up to an overall shift, although there are also cases with
more complicated behaviour.

In this paper we take a different approach to the grading: we consider
Lagrangian submanifolds equipped with certain extra structure (these are what
we call graded Lagrangian submanifolds). This extra structure removes the
ambiguity and defines an absolute Z/N-grading on Floer cohomology. There
is also a parallel notion of graded symplectic automorphism, which bears the
same relation to the corresponding version of Floer theory. Both concepts were
first discovered by Kontsevich, at least for N = oo; see [13, p. 134]. Somewhat
later, the present author came upon them independently.
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104 P. SEIDEL

One way to approach the definition of graded Lagrangian submanifold is to
start with the case N = 2. It is well-known that orientations of Ly and L;
determine an absolute Z/2-grading

HF(Lgy,Ly) = HF°(Lo, L1) @ HF*(Ly, Ly).

One can reformulate this as follows: consider the natural fibre bundles £ — M
(resp. L7 — M) whose fibres are the unoriented (resp. oriented) Lagrangian
Grassmannians of the tangent spaces TM,. Any Lagrangian submanifold L
comes with a canonical section sz: L — L|, and an orientation of L is the same
as a lift of this section to £°". Hence the right objects for a Floer theory with
an absolute Z/2-grading are pairs (L, L) consisting of a Lagrangian submanifold
and a lift L: L — £°F of SL-

In order to define the absolute Z/N-grading one proceeds in the same way,
only that £°7 must be replaced by a Z/N-covering of £ of a certain kind. Such
coverings, which we call Maslov coverings, need not exist in general, and they
are also not unique. In fact, choosing an N-fold Maslov covering is equivalent
to lifting the structure group of TM from Sp(2n) to a certain finite extension
Sp™¥(2n); and the particularly simple situation for N = 2 is due to the fact that

Sp?(2n) = Sp(2n) x Z/2.

In itself this “graded symplectic geometry” is not particularly deep, but it
does make Floer cohomology into a more powerful invr riant. To put it bluntly,
the advantage of the new framework is this: in passing to graded Lagrangian
submanifolds there is a choice of Z/N for any Lagrangian submanifold L (the
choice of the lift of sy ). In comparison, if one uses only the relative grading, there
is a Z/N-ambiguity for any pair of Lagrangian submanifolds, and this greater
amount of choice entails a loss of information. We illustrate this through three
applications, which form the main part of this paper.

(a) Lagrangian submanifolds of CP™. — We prove that any Lagrangian
submanifold L ¢ CP™ must satisfy H'(L;Z/(2n + 2)) # 0 (the actual result
is slightly sharper, see Theorem 3.1).

(b) Symplectically knotted Lagrangian spheres. — The paper [30] provides
examples of compact symplectic four-manifolds (with boundary) M with the
following property: there is a family of embedded Lagrangian two-spheres
LY c M, k € Z, such that any two of them are isotopic as smooth submanifolds,
but no two are isotopic as Lagrangian submanifolds. In such a situation we
say that M contains infinitely many symplectically knotted Lagrangian two-
spheres. The examples in [30] were constructed using a special class of symplectic
automorphisms, called generalized Dehn twists, and the main step in the proof
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GRADED LAGRANGIAN SUBMANIFOLDS 105

was a Floer cohomology computation using Pozniak’s [24] Morse-Bott type
spectral sequence. Both the construction and the proof can be generalized to
produce Lagrangian n-spheres with the same property for all even n.

Here, using the method of graded Lagrangian submanifolds, we will first
reprove the result from [30] and its generalization in a considerably simpler
way. Then, by a more complicated construction, we produce similar examples of
Lagrangian n-spheres for all odd n > 5. The reason why the remaining case n = 3
cannot be settled in the same way is topological, and seems to have nothing to
do with Floer theory.

We can also improve on [30] in a different direction, by showing that sui-
table K3 and Enriques surfaces contain infinitely many symplectically knotted
Lagrangian two-spheres. These are the first known examples of closed symplec-
tic manifolds with this property. As a by-product one obtains that for these
manifolds the map

mo (Aut(M,w)) — mo (Diff (M))

has infinite kernel, sharpening a result of [28]. Unfortunately, at the present state
of development in Floer theory, it is impossible for technical reasons to carry out
a similar argument in dimensions > 4.

(c) Weighted homogeneous singularities. — Let p € Clzg,...,z,], n > 1, be a
weighted homogeneous polynomial with an isolated critical point at the origin.
One can introduce the Milnor fibre of p, which is a compact symplectic manifold
(M?™,w) with boundary, and the symplectic monodromy f € Aut(M,0M,w)
of the Milnor fibration. This refines the usual notion of geometric monodromy
by taking into account the symplectic geometry of the situation. We will show
that [f] € mo(Aut(M, OM,w)) has infinite order whenever the sum of the weights
is # 1. It is not known whether the condition on the weights is really necessary.

It should be mentioned (although this will not be used later on) that this
application and the previous one are related. In fact, generalized Dehn twists
are maps modelled on the monodromy of the quadratic singularity

p(z) =23+ + a2,

and the construction of odd-dimensional knotted Lagrangian spheres is inspired
by the monodromy of the singularity
p(z) =af + - +an g+

of type (Asz).

The importance of “graded symplectic geometry” for these applications varies.
For (a) and (c) its role is that of a convenient language. In fact one could replace
it by monodromy considerations in the style of [29] without changing the essence
of the argument. For (a) there is also a more algebraic argument, based on the

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



106 P. SEIDEL

fact that HF(L, L) is a module over the quantum cohomology QH*(CP™). The
situation in (b) is different, since the “graded” framework allows us to state a
basic geometric property of generalized Dehn twists (Lemma 5.7) which it seems
hard to encode in any other way.

Notation and conventions. — All manifolds are usually assumed to be connec-
ted. The automorphism group of a symplectic manifold (M, w) will be denoted by
Aut(M,w). If M is compact, we equip this group with the C*°-topology. If M is
a symplectic manifold with nonempty boundary, Aut(M,0M,w) C Aut(M,w)
is the subgroup of automorphisms ¢ which are equal to the identity on some
neighbourhood (depending on ¢) of the boundary. Lagrangian submanifolds are
always assumed to be compact; if the symplectic manifold has a boundary, any
Lagrangian submanifold is assumed to lie in the interior. Lag(M,w) stands for
the space of Lagrangian submanifolds of M, with the C*-topology. S* will often
be identified with R/Z. Ordinary (co)homology groups have Z-coefficients unless
otherwise stated.

Acknowledgements. — This paper is an offshoot of my joint work with Mikhail
Khovanov; several of the ideas presented here arose in conversations with him.
I am indebted to Maxim Kontsevich for explaining his joint work with Fukaya
to me. The idea of considering symplectic manifolds with a circle action on the
boundary, which is the subject of Section 4, was suggested to me by Leonid
Polterovich and Yakov Eliashberg. This paper was written while I was staying
at the Max Planck Institute (Bonn) and ETH Ziirich, and I would like to thank
both institutions for their hospitality. I am indebted t) the referee for several
helpful suggestions.

2. Basic notions

2.a. Linear algebra. — By a Z/N-covering (1 < N < o00) of a space X we
mean a covering XV with covering group Z/N. Such coverings are classified up to
isomorphism by H'(X;Z/N). For connected X, this correspondence associates
to a homomorphism 7: 7, (X) — Z/N the covering

XN =X x, Z/N,
where X is the universal cover. If X is a connected Lie group, all Z/N-coverings

of it (even the non-connected ones) have canonical Lie group structures.

o Let (V2" 3) be a symplectic vector space, Sp(V, 3) the linear symplectic
group, and L(V, ) the Lagrangian Grassmannian, which parametrizes linear
Lagrangian subspaces of V. Both Sp(V, 8) and L(V, 3) are connected with infinite
cyclic fundamental group. Moreover, there are preferred generators

§(V,3) € H'(Sp(V,8)) and C(V,B) € H'(L(V,5))
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GRADED LAGRANGIAN SUBMANIFOLDS 107

(the second one is called the Maslov class) so that one can canonically identify
the fundamental groups with Z. Sp(V, 8) acts transitively on £(V,3), and any
orbit is a map Sp(V, 8) — L(V, ) which takes C(V, 8) to 26(V, B).

e For 1 < N < oo, let LY(V,3) be the Z/N-covering of L£(V,[3) which
corresponds to the image of C(V, 3) in H*(L(V, 3);Z/N).

e The Z/N-action on £V (V,3) will be denoted by p.

« Define Sp™ (V, 3) to be the group of pairs (P, ®) consisting of ® € Sp(V, 8)
and a Z/N-equivariant diffeomorphism & of LN (V, B), which is a lift of the action
of ® on £(V,3). This is a Lie group and fits into an exact sequence

1 —Z/N — Sp™¥(V,8) — Sp(V, B) — 1,

where Z/N is the central subgroup of pairs (®,®) = (id, p(k)). It follows that
Sp™¥(V, 8) must be isomorphic to some Z/N-covering of Sp(V, (). The next
Lemma identifies that covering.

LeEmMA 2.1. — Sp™(V,8) is isomorphic (as a Lie group) to the Z/N -covering
of Sp(V,B) associated to the image of 26(V,3) in H'(Sp(V,B);Z/N).

Proof. — Let é{)(V, B) be the universal cover of Sp(V,f). Take a loop
9:10;1] — Sp(V,B) with ¢(0) = ¢(1) = id and (5(V,3),[¢]) = 1, and let
#(1) € Sp(V, B) be the endpoint of the lift ¢ of ¢ with ¢(0) = id. The action of
Sp(V,B) on L(V, 3) can be lifted uniquely to an action of /S\I/)(V, B) on LN (V, 3).
This action commutes with the Z/N-action p, and ¢(1) acts in the same way

as p(2). Therefore one obtains a homomorphism
Sp(V, 8) xx /N — Sp™ (V. §),

where 7: 71 (Sp(V, 8)) = Z — Z/N is multiplication by two. It is not difficult to
see that this is an isomorphism, which proves the desired result. []

As an example consider the case N = 2. One can identify £2(V,3) with the
oriented Lagrangian Grassmannian £°'(V, ). Since Sp(V, ) acts naturally on
L£°7(V, B) one has

Sp*(V, B) = /2 x Sp(V, B).

More generally, one can try to compare SpN (V, B) with the more obvious covering
SpN(V, B3)" of Sp(V, B) obtained from the mod N reduction of §(V, ). One finds
that Sp™¥ (V, 8)" 2 Sp™¥(V, B) if N is finite and odd, and that

(2.1) Sp*™(V, B) = Sp™N(V, B) xz/n Z/2N.

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



108 P. SEIDEL

In particular, SpN (V,B) is connected iff N is finite and odd, and has two
connected components otherwise.

Let J be a (-compatible complex structure on V, and g the corresponding
inner product. Recall that the unitary group U(V, J, g) C Sp(V, B) is a deforma-
tion retract, and that §(V, 3) is represented by the determinant

U(v,J,g) — S*.

Let UN(V, J,g) be the Z/N-covering of U(V,.J,g) determined by the mod N
reduction of 26(V, ). These coverings are clearly deformation retracts of
Sp™¥(V, ), and they are explicitly given by

{(®,9) €UV, J,g) x S| det(®)? =¢"}

for N
(22) UN(V,Jg) = or s
{(®,t) e U(V,J, g) x R | det(®)? = e?™*}
for N = oco.

In future we will abbreviate £(R?"™, wgen) by L£(2n).
Similarly we will write C'(2n), £N(2n), Sp(2n), Sp™ (2n), and U™ (n).

2.b. Graded symplectic geometry. — Let (M?" w) be a symplectic
manifold, possibly with boundary. Let P — M be the principal Sp(2n)-bundle
associated to the symplectic vector bundle (T'M,w), and £ — M the natural
fibre bundle whose fibres are the Lagrangian Grassmannians £, = L(TM,,w,).
One can identify

L=P XSp(2n) E(Qn)

(a) An Sp™(2n)-structure (1 < N < 00) on M is a principal Sp” (2n)-bundle
PN — M together with an isomorphism

P xgun (an) SP(2n) = P.

(b) An N-fold Maslov covering is a Z/N-covering LY — L whose restriction
to L, = L(TM,,w,), for any x € M, is isomorphic to LN (T M,,w,). The Z/N-
action on £V will always be denoted by p.

(c) A global Maslov class mod N is a class CN € H'(L;Z/N) whose
restriction to any fibre is the mod N reduction of the ordinary Maslov class.

There are canonical bijections between (isomorphism classes of) these three
kinds of objects. If PV is an Sp~ (2n)-structure then the associated fibre bundle
with fibre £V (2n) is an N-fold Maslov covering. Conversely, in the presence of a

TOME 128 — 2000 — ~° 1



GRADED LAGRANGIAN SUBMANIFOLDS 109

Maslov covering £V, the transition maps of any system of local trivializations of
(TM,w) have canonical lifts from Sp(2n) to Sp™ (2n) which satisfy the cocycle
condition, hence define an Sp” (2n)-structure. The connection between Maslov
coverings and global Maslov classes is obvious. Now assume that we have chosen
an w-compatible almost complex structure J on M, and consider the line bundle
A = A" (TM,J)®2,

(d) An N-th root of A (1 < N < o0) is a complex line bundle Z together
with an isomorphism r: Z®N — A. Two pairs (Z,r), (Z',r') are called equivalent
if there is an isomorphism j: Z — Z’ such that /j®N = r. In addition, we define
an oo-th root to be a trivialization of A, and two of them are called equivalent
iff they are homotopic.

There is a canonical bijection between SpN (2n)-structures and equivalence
classes of N-th roots of A; it is defined as follows.

Let Py be the principal U(n)-bundle associated to (TM,w,J). A UN(n)-
structure on M is a principal U™ (n)-bundle together with an isomorphism of the
associated U(n)-bundle with Py. Because UN (n) C Sp”™(2n) is a deformation
retract, there is a canonical bijection between UN (n)-structures and Sp® (2n)-
structures. On the other hand, by looking at (2.2) one sees that a UM (n)-
structure is just a choice of N-th root of A.

Among the equivalent notions (a)-(d) we will most frequently work with
Maslov coverings, since that is convenient for dealing with Lagrangian subma-
nifolds.

LEMMA 2.2. — (M?",w) admits an N-fold Maslov covering iff 2c1(M,w) goes
to zero in H*(M;Z/N). The isomorphism classes of such coverings (provided
that any exist) form an affine space over H*(M;Z/N).

Proof. — This is immediate if one uses an almost complex structure and the
description (d). Alternatively one can use (a) and an argument based on the
exact sequence

0 — H'(M;Z/N) — H"(M;Sp™ (2n))
— H'(M;Sp(2n)) — H*(M;Z/N)

of non-abelian cohomology groups, just as in the classification of spin structures
in [15, Appendix A]. []

Let LN be an N-fold Maslov covering on (M,w). For every Lagrangian
submanifold L C M there is a natural section

sp:L— Ly, sp(x) =TLy € L(TMy,wy).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



110 P. SEIDEL

An LN -grading of L is a lift L:L — £V of s;. The pair (L, L) is called an
LV -graded Lagrangian submanifold. We write
Lag® (M, w; L")

for the set of such pairs, and equip it with the topology which comes from the
space of compact submanifolds of £V (by considering the image of L). This
topology defines the notion of an isotopy of graded Lagrangian submanifolds.
Clearly, if L is an LV -grading of L then so is p(k) o L for any k € Z/N. This
defines a free Z/N-action on Lag® (M,w;LY).

LEMMA 2.3. — The forgetful map Lag® (M ,w;LN) — Lag(M ,w) is a Z/N-
covering of its image. The image itself consists of those L such that sZ(C’N) €
HY(L;Z/N) is zero, where CV is the global Maslov class corresponding to L.
In particular, a Lagrangian submanifold with H*(L;Z/N) = 0 always admits
an LN -grading.

Proof. — By definition, L admits an £V-grading iff s} (£LV) — L is a trivial
covering, which is equivalent to s (CN) = 0. The rest is obvious. ]

Let £V be an N-fold Maslov covering on (M, w) and ¢ a symplectic automor-
phism. There is a natural map

¢~ L — L, ¢“(A) = Dg(A),
which covers ¢. An LN -grading of ¢ is a Z/N-equivariant diffeomorphism é
of £V which is a lift of ¢~.
The pair (¢, q~5) is called an LV -graded symplectic automorphism.

Such pairs form a group which we denote by Aut® (M,w;LN).

If M is compact, we equip this group with the topology induced from
embedding it into Diff(LY)%/N. The pairs (¢,¢) = (id, p(k)) form a central
subgroup Z/N C Aut® (M,w;L"N). LN-graded symplectic automorphisms act
naturally on £N-graded Lagrangian submanifolds by

(¢a é)(L’E) = (¢(L)’ (5 ° Z o ¢_1)’

LEMMA 2.4. — Let LN be an N-fold Maslov covering. The forgetful homomor-
phism Aut® (M ,w; LN) — Aut(M,w) fits into an eract sequence

1 — Z/N — Aut® (M ,w; V) — Aut(M,w) - H*(M;Z/N).

Here 0 is not a group homomorphism, but it satisfies

A(¢y) = ¥*9(¢) +0(¢),

so that its kernel is a subgroup of Aut(M,w). If M is compact then this is a
sequence of topological groups, with Z/N and H*(M;Z/N) discrete.
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GRADED LAGRANGIAN SUBMANIFOLDS 111

Proof. — By definition, a symplectic automorphism ¢ admits an £V-grading
iff the two Maslov coverings (¢<)*(LY) and £V are isomorphic. By Lemma 2.2
the difference between these two coverings can be measured by a class in

HY(M;Z/N). We define 8(¢) to be this class. The rest is easy. []

REMARK 2.5. — Assume that M has nonempty boundary. Then one can
consider the subgroup Aut® (M, dM,w;LN) C Aut® (M,w;L") consisting of
pairs with ¢ € Aut(M,0M,w) and where ¢~ = id for any x € OM (here cy
is the part of £V which lies over £,). The central elements (id, p(k)), k # 0,
do not lie in Aut® (M,0M,w;L"N). In fact one has an exact sequence (with 0
defined in a similar way as before)

1 — Awt® (M, 0M,w;LN) — Aut(M,dM,w) - H'(M,0M;Z/N).

The minimal Chern number Njs of (M,w) is defined to be the positive
generator of the group (c;(M), Ho(M)) C Z.

Similarly, the relative minimal Chern number Ny, of a Lagrangian submanifold
L C M is the positive generator of the group (2¢; (M, L), Hy(M, L)), where now
2¢1(M, L) € H?(M, L) is the relative first Chern class.

These numbers, or variants of them, are familiar from the definition of
the relative grading on Floer cohomology. Their relationship to the concepts
introduced here, at least in the case H; (M) =0, is as follows.

LEMMA 2.6.— A symplectic manifold (M, w) with H1 (M) = 0 admits a Maslov
covering LV of order N iff N divides 2Ny;. Moreover, this covering is unique up
to isomorphism. A Lagrangian submanifold L C M admits an LN -grading iff N
divides Ny,.

Proof.—Because H1(M) = 0, it follows from the universal coefficient sequence
that 2¢; (M) goes to zero in H2(M;Z/N) iff (2¢i(M),z) is a multiple of N for
any ¢ € Ho(M). In view of Lemma 2.2, this proves the first part.

Take a compact oriented surface ¥ and a map w:(X,0%) — (M, L). The
number (2¢;(M, L), [w]) € Z can be computed as follows: choose a trivialization
of the pullback w*L, that is to say, a fibre bundle map

One has 77! o0 sz, 0 (w|0X)(x) = (A\(z),z) for some map \:0% — L(2n), and
(2¢1(M, L), [w]) = (C(2n), A\,[0%]).
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Let £V be the unique Maslov covering of some order N on (M,w) and CV
its global Maslov class. The pullback 7*(CV) € H'(L(2n) x £;Z/N) is of the
form C(2n) + y for some y € H(X;Z/N). Hence in Z/N one has

(s1(CN), w,[0%]) = (O, (51, 0 w)5)[0%])
= <7'*(CN)a (17" 0 s, 0 wax)«[0%])

(C(2n), \[0%]) + (y,[0%]) = (2c1 (M, L), [w]).

If N | Ny then (2¢(M, L), [w]) is always a multiple of N. Since one can choose
w in such a way that w,.[0X] is an arbitrary class of H;(L), it follows that
8% (CN) = 0, which means that L admits an £V-grading. The converse is equally
simple. []

In future we will use the following notation.

« Instead of (¢, $) and (L, L) we will often write only ¢ and L.

o The action of Aut® (M,w;LN) on Lag® (M,w;£N) will be written as ¢(L).

« We will denote (id, p(—k)) € Aut® (M,w;LN) by [k] and call it the k-fold
shift operator.

« The graded Lagrangian submanifold p(—k) o L, which is obtained from L
by the action of [k], will be denoted by L[k].

The similarity with homological algebra is intentional, and the sign in the
definition of [k] has been introduced with that in mind.

2.c. Examples. — We will now complement the basic definitions by several
examples and remarks, some of which will be used later on.

ExAMPLE 2.7. — Since
Sp?(2n) = Sp(2n) x Z/2,

an Sp?(2n)-structure is just the choice of a real line bundle & on M. The
corresponding two-fold Maslov covering, which we denote by £°7¢, is the space of
pairs (A, 0), where A € L is a Lagrangian subspace of T M, and o is an orientation
of the vector space A ®g &,. An L°"¢-grading of a Lagrangian submanifold
L C M is the same as an orientation of TL ® (§). An L£o%¢-grading of a
symplectic automorphism ¢ is the same as a bundle isomorphism ¢*(§) — &.
In particular, the trivial line bundle yields a two-fold Maslov covering £°* for
which a grading of a Lagrangian submanifold is just an orientation, and such
that Aut® (M, w;L£°") = Aut(M,w) x Z/2.
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GRADED LAGRANGIAN SUBMANIFOLDS 113

ExaMPLE 2.8. — One can associate to any spin structure on M an Sp4(2n)-
structure. The reason, in the notation of (2.1), is that the restriction of the
universal cover of GL*(2n) to the subgroup Sp(2n) is again a nontrivial double
cover, hence isomorphic to Sp2(2n)’ , and that

Sp*(2n) = Sp?(2n)’ xz/2 Z/4.
Note that not all Sp*(2n)-structures arise in this way.

ExamMpLE 2.9. — The following discussion relates our point of view to
another one (which is also originally due to Kontsevich). Let (V, ) be a 2n-
dimensional symplectic vector space, J a compatible complex structure, and g
the corresponding inner product. Set

AV, J) = A™(V, J)®2,

and let SA(V, J) C A(V, J) be the unit circle (with respect to the metric induced
by g). One can define a fibration with simply-connected fibres

det®: L(V, 8) — SA(V,J), det*(A) = (e1 A...Aen)%2,

where (e;) is any orthonormal basis of (A,g|s). After choosing an element
© € A(V,J)* of unit length one can identify SA(V,J) with S!. In this way
one obtains a map
detd : L(V,3) — St

The Maslov class C(V, () is equal to the pullback of the standard generator [S1].
Hence £>°(V, 8) is isomorphic to the pullback of the standard covering R — S*.

Now let (M,w) be a symplectic manifold and J a compatible almost complex
structure. Assume that 2¢;(M,w) = 0, which means that A = A™(TM, J)®? is
trivial. Choose a section © of A* (in other words, a quadratic complex n-form)
which has length one everywhere. As before this determines a map det29 L — St
and one can define an oo-fold Maslov covering by

(2.3) £ = {(At) € L xR | detd(A) = 2™},
An L*-grading of a Lagrangian submanifold L is just a lift to R of the map
det? osy: L — S*.

This approach is particularly useful in complex geometry: let (M,w,J) be a
Calabi-Yau manifold, take a covariantly constant holomorphic n-form 6 of unit
length, and set © = §®2. A Lagrangian submanifold L C M is called special
if (im ), = 0. This condition is equivalent to detg os;, = 1 € S'. It follows
that special Lagrangian submanifolds have a canonical £*-grading.
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ExampLE 2.10. — Let (M,w) be a symplectic manifold which admits a
Lagrangian distribution S C TM. Then one can define an oo-fold Maslov
covering £ simply by putting together the universal covers of L(TM,,w,) with
base point S, for all z. The global Maslov class of this covering is represented
by the fibrewise Maslov cycle

I=|J{AeL.|ANS, #0}
zeM

with its canonical co-orientation. Any Lagrangian submanifold which is either
tangent or transverse to S admits an L£>-grading (there is even a preferred
one). Typical examples are cotangent bundles M = T* X with either the vertical
distribution (tangent spaces along the fibres) or the horizontal one (with respect
to some Riemannian metric on X).

ExampPLE 2.11. — Let M be an oriented closed surface of genus g > 2, and w
a volume form on it. Using Lemma 2.2 one can see that (M,w) admits many
different Maslov coverings of any order which divides 4g — 4. However, in a sense
there is no really good choice of covering:

PROPOSITION 2.12. — For every Maslov covering LY of order N > 2 on M,
there is an automorphism ¢ € Aut(M,w) which does not admit an LN -grading.

Proof. — Choose a Maslov covering £V and let CV be the corresponding
global Maslov class. One can associate to any oriented embedded curve L C M
a rotation number

R(LN,L) = (s} (CN),[L]) € Z/N.
L admits an £N-grading iff it has zero rotation number, and a symplectic auto-

morphism ¢ € Aut(M,w) admits an £N-grading iff R(LN, L) = R(LN, (L))
for all curves L. We need two more facts, whose proofs we leave to the reader:

(a) if ¥ C M is a surface whose boundary is formed by the curves Lq,..., Ly
then 3" R(LN,L;) = 2x(X) mod N.
J

(b) If ¢1, is the positive Dehn twist along a curve L, then for any L’
R(LN t (L)) = R(LN, L) — (L] - [L) R(LN, L).
Now consider the curves Ly shown in Fig. 1.
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Figure 1

By (a) we have
R(LN, L)+ R(LN, Ly) + R(LN, L3) = —2.

Hence there is a v € {1,2,3} such that R(L"N,L,) # 0. Take a curve L’ with
[L'] - [L,] = £1. Property (b) shows that

R(LN,tr, (L)) # R(LN, L),

which means that ¢z, does not admit an £V-grading. This is for g = 2, but one
sees immediately that the argument generalizes to all g > 2. []

In contrast, for M = T? there is exactly one oo-fold Maslov covering £
(namely, the one coming from the standard trivialization of TM) with the
property that any ¢ € Aut(M,w) admits an £>*°-grading.

2.d. Two kinds of index.
Let (V,3) be a 2n-dimensional symplectic vector space.
o The Maslov index for paths [31], [25] assigns a half-integer (Ao, A1) € 3Z

to any pair of paths Ao, A\1:[a;0] — L(V, 3). u(Xo, A1) is an integer if and only if
dim()\o(a) n )\1(0,)) = dlm(Ao(b) N /\1(b)) mod 2.

We will now adapt this invariant to our situation. Fix some 1 < N < oo.
Let Ag,A; € LN(V,3) be a pair of points whose images in L(V, () intersect
transversely. Choose two paths Ao, A;:[0;1] — LN (V, 8) with \o(0) = A;(0) and
5\0(1) = 1~\0, 5\1(1) = A;. Let Ao, A1 be the projections of these paths to L(V, 3).

o The absolute Maslov index of (/~\0,1~\1) is defined by
fi(Ro, A1) = $n— p(Xo, A1) € Z/N.

One can easily show that this is independent of all choices. From the standard
properties of u (see [25]) one derives the following facts:
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1) Let Ao, Ar:[asb] — L(V,8) be two paths such that Ag(a) N A1(a) =
Ao(b) N A (b) = 0. Lift them to paths Ao, A; in £N(V, 8). Then

E(Ao(0), A1(8)) = E(o(a), (@) = —p(Aos Ar)-

(1) 7(p(k)Ao, p(£)Ar) = Fi(Ro, Ar) — k + L.
(iii) For any (®,®) € Sp™¥(V, 8) one has ﬁ(‘i)(/N\O),&)(/N\l)) = (Ao, Ay).
) fi(Ar, Ko) = n — i(Ao, Ay).

(v) Let A,A* C V be two complementary Lagrangian subspaces. Let B
be a nondegenerate quadratic form on A, and A:A — AL the unique linear
map such that B(v) = B(v, Av). Take the path A:[0;1] — L(V,() given by
A(t) = graph(tA), and lift it to a path X in £V (V, 8). Then f(A(1), A(0)) is the
Morse index of B (mod N).

(vi) For N = 2, if one identifies £2(V,3) = L£°(V,() then (— )“ agrees

with the intersection number of oriented Lagrangian subspaces up to a constant
(_1)n(n+1)/2.

(iv

The application to graded symplectic geometry is as follows. Let (M,w) be a
symplectic manifold with an N-fold Maslov covering £V, and (Lo, L), (L1, L1) a
pair of £LN-graded Lagrangian submanifolds which intersect transversally. Then
one can associate to any point x € Lo N Ly an absolute index mod N,

I(Lo, Ly;z) &L i(Lo(x), L (z)).
o The Conley-Zehnder indez associates to any path ¢:[a;b] — Sp(V, B) a half-
integer
¢(¢) € 32
It can be reduced to the Maslov index for paths as follows: take
(V/v/@/) = (V7 _6) 2] (Va ﬂ)

and consider the two paths in L£(V',5’) given by Ao(t) = graph(é(t)) and
A1(t) = A (the diagonal). Then

<(¢) = :U/(/\Oa /\1)

(here we are following [25, Remark 5.4]; it seems that the definition in [27] has
the opposite sign).
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Now let (®, ®) € Sp™V(V, B) be a point such that det(1 — ®) # 0. Choose a
path ¢:[0;1] — Sp™(V, B) from (id, p(k)) € Sp™(V,B), for some k € Z/N, to
(®,®), and project it to a path ¢ in Sp(V, 3).

o The absolute Conley-Zehnder index is
((®,®) =n—((¢) -k €Z/N.
This is independent of all choices and has the following properties:
(i) It is invariant under conjugation.

(it) C(®,P 0 p(6)) = (B, P) — ¢.

(i) (@1, &) = 2n — ((®, D).

(iv) Let B be a nondegenerate quadratic form on V, and A:V — V the linear
map given by w(x, Ar) = B(z). Take the path ¢(t) = exp(tA) in Sp(V, ) and

lift it to a path ¢ in Sp™(V, 8) with ¢(0) = (id,id). Then C($(t), d(t)) is equal
to the Morse index of B (mod N) for sufficiently small ¢ > 0.

Given a symplectic manifold (M,w), an N-fold Maslov covering £V, and
an LV-graded symplectic automorphism (1, ) which has nondegenerate fixed
points, one can associate to any fixed point x an absolute index

Z(Wix) = (D, ¥(x)) € Z/N.
2.e. Lagrangian surgery.

We will now discuss an example which shows that the absolute Maslov index
appears even in elementary questions about graded Lagrangian submanifolds.

Take an embedding v: R — C with

t fort<—3,
v(t) =

it fort> 3,

and y(R) N —y(R) = (. Then

H=|J~t)s" ' ccr
teR

is a Lagrangian submanifold with respect to the standard symplectic form.
Outside the unit ball B2™ C C™ one has

HN(C"\ B*) = (R" UiR") \ B*".

H is called a Lagrangian handle.
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It is used in the following way: let (M?",w) be a symplectic manifold and
Ly, Ly C M a pair of Lagrangian submanifolds which intersect transversely in a
single point {x¢} = L1 N Ly. There is always an embedding j: B>* — M with

§j(0) =xz0, jH L) =R"NB*, j7Y(Ly)=1iR"N B>,

and j*w = ewcn for some ¢ > 0. Then one can form the embedded connected
sum

Li#Ly = (Ly \im(j)) U (L2 \ im(j)) U j(H N B**)

which is again a Lagrangian submanifold. This process, which is independent of
all choices up to Lagrangian isotopy, is usually called Lagrangian surgery. It has
been studied by Polterovich [23] and others. Our conventions are those of [30,
Appendix] and differ from Polterovich’s.

Note that Lagrangian surgery is not symmetric: Ly#Ly and Lo# L, are the
two possibilities of resolving the self-intersection of Ly U Lo (this can be seen
clearly already in the case n = 1).

Take the co-fold Maslov covering £°° on C” induced by the quadratic complex
n-form

O = (dz; A... A dz,)®?

as in (2.3). An £*-grading of a Lagrangian submanifold L C C" is the same as
amap L: L — R such that e?™L(®) = detj(TL,) for all z. For L; = R™ and
Lo = iR™ we choose the gradings fl =0, ZQ =1- %n Then the absolute index
at the origin is I(L, L2;0) = 1.

LemMmA 2.13. — There is an L% -grading H of the Lagrangian handle H which
agrees with Ly on R™\ B®" and with Ly on iR™\ B?".

Proof. — Take yo € S"~!, and let y3 C R" be its orthogonal complement.
The tangent space of H at a point y = (t)yo is TH, = Ry (t)yo ® v(t)yg-
Therefore

v (t)*y(t)* 2
Iy ()2 (t)>" 2|

As t goes from —oo to oo, Y(t)%/|y(t)|?> makes half a turn clockwise from 1
to —1, and +'(t)2/|7/(t)|? makes half a turn counterclockwise from 1 to —1.

It follows that one can find a map a € C®°(R,R) with a(t) = 0 for ¢t < —%

and at) = 1 - %n for t > %, such that e*™*(®) equals the r.h.s. of (2.4).
Then H(e'tyy) = a(t) is a grading of H with the desired property. []

(2.4) det}(TH,) = €St

From these local considerations one immediately obtains the following graded
version of Lagrangian surgery.
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LemMa 2.14. — Let (M,w) be a symplectic manifold with an oo-fold
Maslov covering L. Let (Li,L) and (La,Ly) be two L£®-graded Lagran-
gian submanifolds which intersect transversely and in a single point g € M.
If I(L1 Lg,xo) =1 then the surgery ¥ = L1#Lo has an L-grading ¥ which
agrees with L1 on XN Ly, and with L2 on XN Ly []

2.f. Floer cohomology.

We can now introduce the absolute grading on Floer cohomology. The exposi-
tion in this section is formal, in the sense that the conditions which are necessary
to make Floer cohomology well-defined will be suppressed. Our justification is
that there is no relation between these conditions and the problem of grading.
Concretely, this means that if the ordinary Floer cohomology HF(Lg,L1) of
two Lagrangian submanifolds is defined, and Lo, L1 admit gradings fo, Zl, then
the graded version HF*(Ly, L) is also defined. The discussion of the properties
of HF*(Ly, L1) should be understood in the same way: they hold in the same
generality as their ungraded analogues.

Let Lo, L1 be a pair of transversely intersecting Lagrangian submanifolds in
a symplectic manifold (M?",w), and

J = (Jp)o<t<1
a smooth family of w-compatible almost complex structures. For any two points
T_,x4 € LoN Ly, let B(z_, x4 ) be the set of smooth maps u:R x [0;1] — M with
w(R x {j}) € L; for j = 0,1, and lims_, 4o u(s,-) = 4. Consider the subspace
M(ili_,:L‘.‘.;J) C B(x_,m+)
of maps which satisfy Floer’s equation
Bsu + Jt(u)atu =0

It has a natural action of R by translation in the first variable. For generic choice
of J, M(z_,z4;J) has a natural structure of a smooth manifold, with connected
components of different dimensions.

Let Mg(z_,z4;J) be the k-dimensional part of M(z_,z4;J).

In the simplest situation, such as in the original work of Floer and in
that of Oh [20], suitable assumptions on (M,w) and Lg,L; ensure that the
quotients My (z_,z4;J)/R are finite sets. Then, writing n(z_,z4;J) € Z/2
for the number of points mod 2 in M;y(z_,z4;J)/R, one defines a chain
group (CF(Lo,L1),05) as follows:

o CF(Lg, Ly) is the Z/2-vector space freely generated by the points of LoNLq,
and

e Oy{zy) =Y n(z_,z4;J){z_).

T —
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One finds that (9?, = 0, and the Floer cohomology is HF(Lg,Ly;J) =
ker 9y/im dy (this is Floer cohomology because we have exchanged the usual
roles of z_ and z, in the definition of dy).

Let £N be an N-fold Maslov covering on M, and assume that Lo, L; admit
LN -gradings Lo, L,. For i € Z/N, let

CF'(Ly,L1) C CF(Lg, L1)

be the subspace generated by elements (z) where I(Lo, fl;x) = 4. This defines a
Z/N-grading on CF(Lyg, L;). Floer’s index theorem [7] together with property (i)
of the absolute Maslov index implies that 0y has degree one. Hence there is an
induced grading on Floer cohomology.

We will refer to the Z/N-graded group HF*(Lg,L1;J) as graded Floer
cohomology.

Let L = (Li)o<t<1 be an exact isotopy of Lagrangian submanifolds (exact
means that it can be embedded in a Hamiltonian isotopy of M) and L a
Lagrangian submanifold which intersects both Ly and L transversely. For any
almost complex structures J~, J* such that HF'(L, Lo;J~) and HF (L, Ly;J ™)
are defined, there is a canonical isomorphism

(2.5) @(L,J~,JY):HF (L, Lo;J ™) — HF (L, Ly;J").

Now assume that we have a Maslov covering £V, and that Lo and L admit
LN -gradings Lo, L. Then the isotopy (L) can be lifted to an isotopy (L) of £N-
graded Lagrangian submanifolds, and the map (2.5) has degree zero with respect
to the gradings of HF*(L, Lo;J~) and HF*(L, Ly;J V).

To complete the construction of graded Floer cohomology one follows the
usual strategy: first, using the isomorphisms (2.5) for constant isotopies, one
shows that graded Floer cohomology is independent of the choice of almost
complex structure (we will therefore omit J from the notation from now on).
Secondly, using again (2.5) but this time for C'-small isotopies, one extends the
definition of graded Floer cohomology to Lagrangian submanifolds which do not
intersect transversally.

Clearly, this extended definition is still invariant under exact isotopies of
graded Lagrangian submanifolds (in both variables). Some other properties of
graded Floer cohomology are:

o the shifting formula
HFj (EO[k]vf’l[é]) = HFj_k+e(zO?zl)?
o invariance under graded symplectic automorphisms,

HF ($(Lo), (L1)) = HF? (Lo, Ly),
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« and Poincaré duality:
HFI(Ly,Lo) & HF™" (Lo, Ly)".

These follow immediately from the properties of i listed in Section 2.d.

We also need to mention the isomorphism between HF' (L, L) and the ordinary
cohomology H*(L;Z/2). This isomorphism holds in Floer’s original setup [8], but
it can fail in more general situations, see [21]. Whenever it holds, so does the
graded version

HF'(L,L) = @ HN(L;2/2).
i€Z

The other version of Floer cohomology, that for symplectic automorphisms,
will not be used in this paper. Nevertheless, it seems appropriate to outline briefly
the parallel story about the grading. Let ¢ be an automorphism of (M, w) which
has non-degenerate fixed points. One considers a chain group CF(¢) which has
one basis element () for any fixed point x € M of ¢, and a boundary operator
0y defined as before, but this time using the space of maps u:R? — M which
satisfy

{ Osu + J(u)fpu =0
u(s, t) = d(u(s, t + 1)),

where J = (Ji)ter is a family of compatible almost complex structures satisfying
a suitable periodicity condition. If (M,w) has a Maslov covering EN and ¢
an LN-grading ¢ then, using the absolute Conley-Zehnder index C , one can
define a Z/N-grading on CF(¢). The Index Theorem of [27, Section 4] implies
that 0y has degree one. Therefore one obtains a Z/N-graded Floer cohomology
group HF™(¢). These groups are invariant under Hamiltonian isotopies and
satisfy

HF*(po[k]) = HF**(¢), HF*($~')= HF*""*(¢)¥, HF*(id) = H*(M).

For the special case of monotone symplectic manifolds, a more extensive account
of this kind of Floer theory (without mention of the absolute grading) can be
found in [5].

3. Lagrangian submanifolds of CP™

In this section we use graded Floer cohomology to obtain some restrictions
on the topology of Lagrangian submanifolds of CP™. Note that, by starting with
the familiar embeddings of RP™ and T™ and applying Lagrangian surgery, one
can construct many different Lagrangian submanifolds of CP".
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THEOREM 3.1. — Any Lagrangian submanifold L C CP™ satisfies

(a) H'(L;Z/(2n+2)) £0,

(b) HY(L;Z/(2n +2)) # (Z/2) for any g > 2,

(c) if HY(L;Z/(2n + 2)) 2 Z/2 then H'(L;Z/2) 2 Z/2 for alli =0, ... ,n.

By Lemma 2.6, CP™ admits a unique Maslov covering £V of any order N
which divides 2Ny, = 2n + 2. Consider the Hamiltonian circle action given by

o(t) = diag(e*™™,1,...,1) € U(n +1).

One can lift o uniquely to a map 5:[0;1] — Aut® (M,w;LN) with (0) = id.
By looking at any fixed point one sees that o(1) = [-2]. It follows that every
LN -graded Lagrangian submanifold Lis graded Lagrangian isotopic to Z[—2], by
an isotopy which is also exact. This implies that HF*(E, f,), whenever defined,
is periodic with period two. From this fact we will derive Theorem 3.1.

Before explaining the proof in detail, we need to recall the Floer cohomology
for monotone Lagrangian submanifolds as developed by Oh. The basic refe-
rences are [20] and [21]. Technical issues are discussed further in [22] and [14];
see also [16].

We will present the theory in a slightly simplified form. Let (M?",w) be a
closed symplectic manifold which is monotone, that is, [w] = Ac1(M,w) for
some A > 0. For any Lagrangian submanifold L C M, let N;, > 1 be the number
defined in Section 2.b. Oh shows that HF(Lg, L1) is well-defined, and invariant
under Lagrangian isotopy, for all pairs (Lo, L1) such that Np,, N, > 3 and
H(Lo;R) = H'(Ly;R) = 0. Moreover one has

THEOREM 3.2 (Oh, [21, Theorem 5.1)). — Let L C M be a Lagrangian sub-
manifold with H'(L;R) = 0 and N, > 3.

(a) If Np > n+2 then HF(L,L) = @ H'(L;Z/2).

(b) If N, = n+1 then HF(L,L) is either @ H*(L;Z/2) or @ HY(L;Z/2).
i 1#0,n
The proof of this goes as follow [21, p. 332]. Let H be a Morse function on
L, and L’ a small Lagrangian perturbation of L constructed using H and a
Darboux chart. We may assume that H has only one local minimum z_ and
local maximum z_,. The intersection points of L and L’ are the critical points
of H. One can write the boundary operator on CF(L,L') as 9y = 0y + 01 + - - -,
where 0, takes critical points of Morse index i to those of Morse index i+1—kN7,.
Floer [8] proved that, for a suitable choice of J, dy can be identified with
the boundary operator in a Morse cohomology complex for H. Therefore
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the homology of (CF(L,L’),8y), which is sometimes called the local Floer
cohomology of L, is always isomorphic to H*(L;Z/2). If N, > n + 2 then for
dimension reasons 0 = 0 for all k¥ > 0, which proves (a).

If Np =n+1then 0y =0 for k > 2, 01(x) =0 for all z # z,, and 01 {(z4)
can be either zero or (x_). This leads to the two possibilities in (b).

Now let £V be a Maslov covering of order N > 3 on M. Lemma 2.6 shows
that any £V-graded Lagrangian submanifold (L, L) automatically satisfies Ny, >
N > 3. Hence the graded Floer cohomology groups HF*(Lg, L) are well-defined
for £V-graded Lagrangian submanifolds with zero first Betti number. Moreover,
as a look at the proof shows, the obvious graded analogue of Theorem 3.2 holds.

Proof of Theorem 3.1.

(a). — Assume that L C CP™ (n > 2) is a Lagrangian submanifold with
HY(L;Z/(2n+2)) = 0. This implies that H'(L;R) = 0. By Lemma 2.3, L admits
a grading L with respect to the unique Maslov covering L£27+2 of order 2n + 2.
Hence the graded Floer cohomology HF* (L, L) is well-defined. Lemma 2.6 shows
that Ny, > 2n + 2, and by applying Theorem 3.2 (a) one finds that

HY(L;Z/2) if0<i<mn,

(3.1) HFY(L,L) = {
0 ifn+1<i<2n+1.

As discussed above, the circle action o on CP™ provides a graded Lagrangian
isotopy between L and L[—2], which implies that

HF*(L,L) = HF*(L,L[-2]) = HF*~*(L, L).
This is a contradiction, since (3.1) is not two-periodic.

(b) and (c). — Let L C CP™ (n > 2) be a Lagrangian submanifold with
HY(L;Z/(2n + 2)) = (Z/2)9 for some g > 1. This implies that H!(L;R) = 0,
that H(L;Z/2) = (Z/2)9, and that the homomorphism

p:HY(L;Z/(2n +2)) — H'(L;Z/(n + 1))

induced by the projection Z/(2n + 2) — Z/(n + 1) is zero.

Let C?"*2 ¢ HY(L;Z/(2n + 2)) and C™*! € HY(L;Z/(n + 1)) be the global
Maslov classes of the Maslov coverings £2"+2, £"*1 on CP". Clearly C"*! is
obtained from C?"*2 by reducing mod (n + 1). We conclude that

sp(C™H) = p(sL(C*+?)) =0,

which means that L admits an £"*!-grading L. The same argument as before
shows that the Z/(n + 1)-graded Floer cohomology HF*(L, L) is two-periodic.
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Lemma 2.6 says that N, > n+ 1. By Theorem 3.2 (b) there are two possibilities
for the Floer cohomology. One is that HF*(L,L) = H*(L;Z/2). In this case it
follows that H*(L;Z/2), with the grading reduced mod n + 1, is two-periodic.
Since H°(L;Z/2) = Z/2 and H™(L;Z/2) = Z/2, the periodicity leads to
H'(L;Z/2) = 7,2 for all i, which proves both (b) and (c). It remains to consider
the other possibility, which is

H{(L;Z/2) if0<i<n,

HF'(L,L) = { .
0 if i =0, n.

This contradicts the two-periodicity, because HF'(L, L) = H(L;Z/2) = (Z/2)*
while HF~'(L, L) = 0. Hence this possibility cannot occur. []

4. A class of symplectic automorphisms

4.a. The basic result.

Let (M,w, ) be a compact symplectic manifold with contact type boundary,
and (¢X) an S'-action on M which preserves . This means that the symplectic
form w € Q2(M) and the contact one-form a € Q!(0M) are related by

da = wjsnr,
and that the Reeb vector field R of « satisfies w(IN, R) > 0, where N is any
vector field pointing outwards along OM; in addition, we are given a vector field
K on OM with Lga = 0 and whose flow (¢X) is one-periodic. One can always
find a collar j:(—¢€;0] x OM — M, for some € > 0, such that
Jfw = d(e"a).
Choose a function H € C*°(M,R) with
H(j(r,z)) = € (ixa)(z) forall 7> -3
Then the Hamiltonian flow (¢f7) satisfies
Qb{{ (j('l‘, :L')) = j(Ta ¢tK(x)) )
and in particular ¢X, (r,z) = (r,z), for all r > —%e. Set

(4.1) xx = ¢, € Aut(M,0M,w).
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It is easy to see that the class [xx] € mo(Aut(M,0M,w)) is independent of the
choice of H and j. Note that by taking a suitable choice, one can achieve that x
is the identity outside an arbitrarily small neighbourhood of M. The question
we are interested in is:

When is [x k] nontrivial, and more generally,
what is its order in wo(Aut(M,OM,w))?

Answering this can be easy or difficult, depending on the specific situation.
We list a few easy cases:

ExXAMPLES 4.1.

(a) [xx] is trivial whenever (¢X) can be extended to a Hamiltonian circle
action on M. The simplest example is when M is the unit ball in C" and (¢f)
is any C-linear circle action on S?*1.

(b) Take M to be a compact surface with (9M, o) = (S, dt). Consider the
standard circle action on OM. Then y g is a positive Dehn twist along a curve
parallel to OM. [xk] is trivial if M is a disc; in all other cases, a topological
argument shows that it has infinite order.

(c) Any continuous map f:M — M which satisfies f|5p; = id induces a
variation homomorphism var(f): H*(M) — H*(M,dM). For simplicity, consider
a smooth map f and cohomology with real coefficients; then the variation is
defined by var(f)0 = 6 — f*6 for a differential form 6. The variation of f = x'%
has a particularly simple expression in the case when the circle action (¢f)
is free:

(4.2) / var(xg)(a)Ub=m p(a) Up(b) for a,b € H*(M;R).
M aM/St

Here p is the map H*(M;R) — H*(OM;R) — H*~1(0M/S;R). Note that if
var(f) is nonzero, f cannot be homotoped to the identity rel OM. It follows
that [xx] has infinite order whenever there are classes a,b € H*(M;R) with

faM/51 p(a) Up(b) # 0.

As an application consider CP™ with the Fubini-study form wpgg. Let
@ C CP™ be a smooth complex hypersurface of degree d, with normal bundle L.
A choice of unitary connection A on L with curvature (i/2nd)F4 = wpg deter-
mines a symplectic form wy on a neighbourhood U = {£ € L; |¢| < €}
of the zero-section. If € is sufficiently small, there is a symplectic embedding
of (U,wy) into CP™ which forms a tubular neighbourhood of @. The comple-
ment M = CP" \ j(U), with w = wrg|p, has a natural structure of symplec-
tic manifold with contact type boundary. Moreover, the circle action (¢&) on
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OM coming from the obvious circle action on L preserves the contact form.
This is a standard construction; see [17, Lemma 2.6] for details. Under Poin-
caré duality, the map p: H*(M;R) — H*~1(OM/S';R) defined above corres-
ponds to the boundary operator 0: H.(CP",Q;R) — H._1(Q;R). Using (4.2)
one concludes that [x k] has infinite order whenever there are middle-dimensional
homology classes a,b € H,_1(Q;R) which satisfy a -b # 0 and, if n is odd, also
(WD @) = (W72 BY = 0. Such classes exist for all d > 3, and also for
d = 2 when n is odd. For d = 1 one gets the unit ball with the standard circle
action, so that [xx] is trivial by (a). We will show later, using Floer cohomo-
logy and graded Lagrangian submanifolds, that [xx] has infinite order in the
remaining case (d = 2 and n even).

From now on assume that OM is connected, H}(M) = 0, and that
2¢1(M,w) = 0. Then there is a unique co-fold Maslov covering £ on M. There
are two ways to choose an £>*-grading for xx. One way is to use Remark 2.5
which says that there is a unique grading Xx € Aut® (M, OM,w;L>). Alter-
natively one can lift (¢ )—1<t<o to an isotopy of L£L-graded symplectic auto-
morphisms (¢f) with ¢ = id. Then ¢, is again a grading of xx. However,
this grading does not necessarily lie in Aut® (M, dM,w;L£>). In other words the
action of &Hl on L, where z is any point in M, may be a nonzero shift. This
explains that the two approaches may lead to different gradings. Let ox € Z be
the difference, that is to say

(4.3) XK = ¢fll o [ok].

LemMmA 4.2. — Let L be a Lagrangian submanifold of M which admits an
L -grading L. If the class [x] € mo(Aut(M,0M ,w)) is trivial for some m > 1,

then L is isotopic to L[moK] as an L>®-graded Lagrangian submanifold.

Proof. — Since the statement is independent of the choices made in the
definition of x g, we can assume that the embedding j satisfies L N im(j) =
This means that ¢/ (L) = L for all . Since ¢0 id, it follows that ¢ (L) =

for all t. Because of (4.3) one has X7(L) = Llmok]. By assumption there is
an isotopy (¢:) in Aut(M,IM,w) from ¢y = id to 1 = x’%. One can lift this
to an isotopy (Jt) of £%°-graded symplectic automorphisms with 9, = id. This
isotopy will remain inside Aut® (M, OM,w;L>®), which implies that 1;1 = X%
Hence Jt(i) is an isotopy of L*-graded Lagrangian submanifolds from L
to X@(L) = Limok]. []

THEOREM 4.3. — Let (M ,w,a) be a compact symplectic manifold with contact
type boundary, and (¢pK) a circle action on OM which preserves a.. Assume that
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OM is connected, that H' (M) = 0, that 2¢;(M,w) = 0, and that [w] € H*(M;R)
is zero. Furthermore, assume that M contains a Lagrangian submanifold L with
HY(L) = 0. Let xx be the automorphism of M defined in (4.1), and o the
number from (4.3). If ox # 0 then [xk| € mo(Aut(M,0M ,w)) is an element of
infinite order.

Proof. — Assumption [w] = 0 implies that the Floer cohomology HF(Lg, L)
of any pair of Lagrangian submanifolds Lo, L; with H*(Lg) = H(L;) = 0 is
well-defined and invariant under Lagrangian isotopy. For Lo = L; one has

HF (Lo, L1) = H*(Lo;Z/2).

Of course, the same properties are true for graded Floer cohomology. Choose an
L>-grading L of L. If [xk] was trivial then by Lemma 4.2 L would be graded
Lagrangian isotopic to Lok], and hence

HF*(L,L) = HF*(L, Llok)) = HF**"% (L, L).

Because HF*(L, L) is nonzero and concentrated in finitely many degrees, this
implies that o must be zero. Conversely, if o # 0 then [xx] must be nontrivial.
Since the same argument works for the iterates x%, it also follows that [x k| has
infinite order. []

Let C® € H'(L) be the global Maslov class of £>°. Take a point z € OM
and a Lagrangian subspace A € L, and define A\:S' — £ by A(t) = D¢ (A).
One can easily show that

(4.4) ox = —(C*,[A).

This formula is useful for determining og, which is important in applications
of Theorem 4.3.

REMARKS 4.4.

(a) The conditions in Theorem 4.3 were chosen for their simplicity, and are
not the most general ones. For instance, an inspection of the proof shows that
the assumption H!(M) = 0 can be omitted (however, for H!(M) # 0 the shift
ok may depend on the choice of Maslov covering). The condition [w] = 0 is there
to ensure that there is a well-behaved Floer theory, and can also be weakened
considerably. In contrast, the existence of the Lagrangian submanifold L, and
the assumption that 2¢; (M,w) = 0, are both essential parts of our argument.

(b) There is an alternative approach which dispenses with Lagrangian sub-
manifolds altogether, and uses instead the Floer cohomology of the auto-
morphism yg. This approach is more difficult to carry out than the one used
here, but it is possibly more general.
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4.b. Manifolds with periodic geodesic flow.

Let (N™,g) be a Riemannian manifold such that any geodesic of length one
is closed. Take
M=TiN={(e€T*N; ¢, <1}

with the standard symplectic form w € Q2(M) and contact form a € Q}(0M).
The flow of the Reeb vector field R of a is just the geodesic flow on N,
and our assumption is that ¢ = id. Hence one can define an automorphism
Xr € Aut(M,0M,w). Extend (¢F) radially to a Hamiltonian circle action o on
M\ N (the moment map of o is u(¢) = |€]). Choose a function r € C*°([0;1],R)
with r(¢) =0 for ¢ < %, r(t) =—1fort > % Then a possible choice for xg is

Cn(6) = {or(lgn(i) if £ ¢ N,

(45) 13 if ¢ € N.

M admits a Lagrangian distribution S C T M, formed by the tangent spaces
along the fibres of the projection M — N. As indicated in Example 2.10, one
can use S to define an oo-fold Maslov covering £%°. In order to satisfy the
conditions of Theorem 4.3, we will assume that H!(N) is zero, so that there is
only one oo-fold Maslov covering. The global Maslov class C*° is represented by
the fibrewise Maslov cycle I = [J{A € L¢ | AN S¢ # 0}, and one can write (4.4)
as E
or =—]-[A

By definition A(t) = Do(A) for some A € L¢, £ € OM. It is convenient to
choose A in the following way: split "M, into its horizontal and vertical parts,

both of which are naturally isomorphic to T'N,, where x € N is the base point
of £. Then take

A = {(n,n2) € TNy x TNy | m = g(&,m2)€}.

This has the consequence that A(t) € I iff ¢(t) and ¢(0) are conjugate points. It
is a familiar result, see [6, Section 4] or [26, Section 6], that the local intersection
number at a point A(t) € I is equal to the multiplicity m.(t) > 0 of c(t) as a
conjugate point of ¢(0). Therefore

(4.6) ORp = — Z me(t),

where the sum is over all conjugate points ¢ € S'. Since m.(0) = n — 1,
oR is always negative (N = S! is impossible because we have assumed that
H'(N) = 0). M always contains a Lagrangian submanifold (the zero-section)
with zero first Betti number. Moreover, [w] = 0. By applying Theorem 4.3 one
obtains
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CororLLARY 4.5. — Let (N,g) be a closed Riemannian manifold with
HY(N) =0 such that any geodesic of length one is closed. Then, for M = TY N
and the Reeb vector field R, [xr] € mo(Aut(M,0M ,w)) has infinite order. []

The main examples of manifolds with periodic geodesic flow are compact
globally symmetric spaces of rank 1 (see [2]). These spaces are two-point
homogeneous, which means that the isometry group Iso(lV, g) acts transitively
on OM. Hence all geodesics have the same minimal period. Symmetric spaces
also have the property that any geodesic path ¢:[0;7] — N with ¢(T) = ¢(0) is
a closed geodesic [12, p. 144]. Tt follows that the energy functional on the based
loop space QN is a Morse-Bott function. Its critical point set consists of one
point (the constant path) and infinitely many copies of S?~1. The Morse index
of the point is zero. The Morse indices of the (n — 1)-spheres can be computed
by comparing (4.6) with Morse’s index theorem: they are

—or—n+1, —20p—-n+1, etc.

This means that for n > 3, QN has a CW-decomposition with one cell of
dimension —or — n + 1 and other cells of dimension > —or — n + 3. It follows
that QN is precisely (—o g —n)-connected, and that N is precisely (—og —n+1)-
connected. This approach, complemented by explicit computations for RP?
and S2, yields the following values for og:

N| sm | RP™| CP™| HP™ | Fy/Spin |
or| 2-2m| 1-m| —2m| —4m+2| -22 |

Here F4/Sping is the exceptional symmetric space diffeomorphic to the Cayley
plane (which is 16-dimensional and 7-connected). For N = §2m+1 or RP?"+! the
result of Corollary 4.5 can be obtained more easily, without using any symplectic
geometry, by computing the variation var(xr). For N = RP?™ the space M can
be identified with the complement of a neighbourhood of a quadric hypersurface
Q C CP?™, thus settling the remaining case in Example 4.1 (c). The most
interesting example is that of CP™, since there we can show that the non-
vanishing of [xg] is a genuinely symplectic phenomenon:

ProposITION 4.6. — Let M = Ty¥CP™, m > 1. Then xr can be deformed
to the identity in the group Diff(M,0M) of diffeomorphisms which act trivially
on OM.

LEMMA 4.7.— Let M = T} CP™. Then there is a smooth family 0°,0 < s < 1,
of circle actions on OM with 0¥ = ¢F, and such that o' extends to a circle action
on the whole of M.
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Proof. — Since CP™ = §?m+1/gl  T*CP™ is a symplectic quotient
T*S§2m+1 // 81, Explicitly

M = {(u,v) € C™ x C™ 5 |u| =1, |v| <1, (u,v)¢ =0}/S,

where S acts by t - (u,v) = (e?™*u, e*"y). The diagonal SU(2)-action on
C™+! x C™*! descends to an action of PU(2) = SU(2)/+1 on M, which we
will denote by p. Assume that we have rescaled the standard symplectic form to
make the Reeb flow one-periodic, that is,

w= gy (dv; A di; + do; A duy).

J
Then the Reeb flow is ¢F = p(exp(tA)) with A = <2 —07r
o® of circle actions is defined by of = p(exp(tA®)), where (A®) is any path in
su(2) from A° = A to A' = diag(mi, —7i) such that exp(A4°®) = —1 for all s.
Because OM is a quotient one can write o} (u,v) = (u, e"2"v), and this shows
that o! extends to a circle action on all of M. []

) € sug. The family

Proof of Proposition 4.6. — Clearly, using the family o° of circle actions one
can deform xpg inside Diff(M,0M) to xz(§) = a}(lgl)(g). To deform this to the

identity one uses the isotopy 1s(£) = a(ll—s)r(|§|)—s(§)' []

REMARK 4.8. — It seems likely that the maps xr on T7CP™ are not only
differentiably isotopic to the identity but also “fragile” in the sense of [28].
We have not checked the details.

4.c. Weighted homogeneous polynomials.

A polynomial p € Clzo,...,zn|, n > 1, is called weighted homogeneous if there
are integers (g, ..., On, 0 > 0 such that

p(zPxq, ..., 2P xn) = 2Pp(xo, ..., zn).

The numbers w; = 3;/0 are called the weights of p.

Throughout this section p(z) will be a weighted homogeneous polynomial
with an isolated critical point at x = 0; because of the homogeneity, this implies
that p has no other critical points.

By definition, the link of the singular point is L = p~1(0) N §2n+1.

This is in fact a contact submanifold of $?**+! with respect to the standard
contact form

1 Z _ _
g2nt1 = Z’L Zdej —Z]‘ dz]'.
J
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Let B2"*2 C C™*! be the closed unit ball. Fix a cutoff function v with 1 (t?) = 1
for t < & and ¢(t?) =0 for t > 3. For z € C\ {0} set

F, = {z € B> | p(x) = y(|z*)z}.

LemMmA 4.9. — There is an € > 0 such that for all 0 < |z| < ¢, F, is a
symplectic submanifold of B*"*2 with boundary OF, = L.

Proof. — The Zariski tangent space of F, is (T'F,), = ker L(x, ) with
L(z,2):C™*' = C, L(z,2)¢ = dp(x)§ — 229 (2?) (z,€).

Clearly L(z,z) is onto in the following three cases: (1) 2 = 0 and = # 0,
(2) 0 < |z] < %, (3) |z| > % On the other hand, the set of those (z,z) for
which L(z,z) is onto must be open. This implies that L(z,z) is onto for all
(z,2) € F,, provided that z # 0 is sufficiently small. An argument of the same

kind shows that (T'F,), is a symplectic subspace of C**! for all small z # 0. []

We fix a zp with 0 < |z9| < € and call M = F,, the Milnor fibre of the
singular point 0 € p~%(0). Clearly (M,w = weent2|M,a = agent1]L) is a
compact symplectic manifold with contact type boundary. The choice of zy is
not really important since one can prove (by a standard argument using Moser’s
technique) that any two choices give symplectically isomorphic Milnor fibres.
During the following discussion, we will repeatedly make use of our right to pass
to a smaller zg.

The next lemma shows that M is diffeomorphic to what is traditionally called
the Milnor fibre.

LemMMA 4.10. — There is an € > 0 such that for all 0 < |2| < €, F, is
diffeomorphic to p~1(z) N B?"+2,

Proof. — For (z,t) € (C\ {0}) x [0;1] consider
Gz = {z € B | p(z) = ty(|z[*)z + (1 — t)z}.

Using the same argument as before, one can prove that these are smooth
manifolds for all sufficiently small 2. If we fix such a 2, the G(,; form a
differentiable fibre bundle over [0;1]. Hence G(,1) = F;, and G(, o) = p ()N
B?"+2 are diffeomorphic. (]

CoRrOLLARY 4.11. — M is (n—1)-connected. In fact, it is homotopy equivalent
to a nontrivial wedge of n-spheres.

This follows from Lemma 4.10 and a classical result of Milnor [18, Thm. 6.5].
Denote by
A={zeM|2<z/<1}
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the part of M on which it agrees with p=1(0). Let fcn+1 be the complex n-form
on C"*! given by

(Ocni1)z(v1, ... vn) = dete(dpe Avi A ... Avy).

LEMMA 4.12. — There is an w-compatible almost complex structure J on M,
and a nowhere vanishing J-complex n-form 6, which have the following proper-
ties: the restriction of J to A agrees with the standard complex structure on
A Cp~H0), and )4 = Ocn+1| 4.

Proof. — Consider the 2n-dimensional complex vector bundle K — M with
fibres K, = ker(dpy). Ocn+1 defines a complex n-form on every fibre of K, and
these n-forms are easily seen to be nonzero. Both K and T'M are subbundles of
the trivial bundle C"*! x M. The proof of Lemma 4.9 shows that, by choosing 2
sufficiently small, one can make these two subbundles arbitrarily close. This
means that the orthogonal projection Pg:TM — K is a bundle isomorphism,
and that the pullback of the complex structure on K is an almost complex
structure J’ on T'M which is w-tame.

The pullback 6/ = Py (0cn+1]K) is a J'-complex n-form on M which is
nowhere zero. Since Pk is the identity over A, J' and €’ have all the properties
required in the Lemma, except that J' may not be w-compatible. However,
one can easily find an w-compatible almost complex structure J which agrees
with J’ on A. Moreover, J and J’ can be deformed into each other through
almost complex structures, and the deformation can be chosen constant on A.
This implies that there is a bundle automorphism Q:TM — TM such that
Q*(J") = J, and which is the identity on A. Now set 0 = Q*(0'). []

COROLLARY 4.13. — ¢; (M ,w) = 0.
This is clear, since there is a nowhere vanishing complex n-form.
LEmMA 4.14. — (M ,w) always contains an embedded Lagrangian n-sphere.

Sketch of proof. — The method which produces such spheres is to deform p by
adding a linear term A, such that p + A has only nondegenerate critical points.
The Lagrangian spheres appear as vanishing cycles associated to these critical
points. We will now explain one version of this argument; for variations on this
theme see [28, Section 1.4]. Choose some small § > 0, and let

D = {(2,A) € C x (C"1)*; [2] < 6, || < 6}.
For (z,\) € D define
Fio ) = {z € B"*? | p(x) + A(z) = ¥(ja[*)2}.

TOME 128 — 2000 — ~° 1



GRADED LAGRANGIAN SUBMANIFOLDS 133

If 6 is sufficiently small, there are two possibilities for each (z, A): either (1) f'(z, A)
is a smooth symplectic submanifold of B2"*2, or (2) the complex hypersurface
p(z)+A(x) = 2z has a singular point z with |z| < % The subset A C D where (2)
occurs is a complex hypersurface. Hence D \ A is connected. By an application
of Moser’s technique, it follows that all the symplectic manifolds F, (2,x) occurring
in case (1) are isomorphic to the Milnor fibre M = ﬁ(zo,O)'

Take a generic small A. Then p + A has only nondegenerate (Morse-type)
critical points. These critical points lie close to the origin, and there is always
at least one of them (this is a well-known fact, which follows from considering
the Milnor number p of the singularity). Choose a critical point  of p+ A, such
that |z] < i, and set z = p(z) + A(z). Since x is non-degenerate, one can write

(p+ AN(z +y) =2+ Q(y) + (higher order terms in y)

where @ is a nondegenerate complex quadratic form.
A careful application of Moser’s technique shows that for all 0 < €3 < €1 < |A|,
one can embed

U={yeC"; |y <e, Q) = €2}

symplectically into ﬁ(z+52, »)- Now U is symplectically isomorphic to a neigh-
bourhood of the zero-section in T*S™, hence contains a Lagrangian n-sphere.
It follows that F{,., ), and hence the Milnor fibre, contain a Lagrangian n-
sphere. []

The Milnor fibration associated to the singular point 0 € p~!(0) is obtained
by putting together the manifolds F, for all |z| = |z0]:

p: F= U F, x {2z} — |2|S*.

|z|=lzol

The proof of Lemma 4.9 shows that this is a smooth and proper fibration.
Moreover, if we pull back wen+1 to F' via the obvious projection, we obtain a
closed two-form € whose restriction to any fibre is a symplectic form. Such a two-
form defines a connection TF" C TF, given by the Q-orthogonal complements
of the tangent spaces along the fibres:

TF, ) = {X € TF.) | «X,Y) =0 for all Y such that Dp(Y) = 0}.

The fact that Q is closed implies that the parallel transport maps of this
connection are symplectic isomorphisms between the fibres. In our case, since the
fibres are manifolds with boundary, one has to check that the parallel transport
maps exist. But this it clear because near the boundary 0F = |, OF, x {2z} one
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has a natural trivialization Ax |zo| S' C F, and the connection is compatible with
this trivialization. This also implies that if we go once around the base |z|S?,
the parallel transport yields a map f € Aut(M,0M,w).

We call f the symplectic monodromy of our singularity.

One can show that the class [f] € mo(Aut(M, M, w)) is, in a suitable sense,
independent of the choices of ¥ and zj.

Up to now, the fact that p is weighted homogeneous has not been of any
importance. We will now begin to exploit this particular feature of our situation.
Let o be the complex circle action on C**! with multiplicities 3y, . .., O, and K
the vector field generating it. 0| is a circle action preserving «. Hence one can
construct the associated automorphism xx € Aut(M, OM,w) of the Milnor fibre.
We will use a particular choice which is xx = ¢, where H € C*°(M,R) is
given by H(z) = 73 filz[*.

1
From now on assume that n > 2.

Since H'(M) is zero (Corollary 4.11), OM is connected (this follows from
Corollary 4.11 by a Poincaré duality consideration), and 2¢;(M,w) = 0 (Corol-
lary 4.13), one can define the shift ox of x k.

LEMMA 4.15. — o = 2([3 - Z,B])
J

Proof. — Let J, 6 be as in Lemma 4.12. As explained in Example 2.9,

692
0= —
012
defines an oco-fold Maslov covering on M, whose global Maslov class is represen-
ted by the map det29 :L — S'. Together with (4.4) this means that —o is the
degree of the map
c: St — SY, c(t) = detd (Do (A))

for some A € L, x € OM C A. The restriction of ¢ to A is simply the circle
action o, and 0| 4 agrees with fcn+1. An explicit computation shows that

oF (Ognir) = e2mit(Bot +hn=B)g . .\,
Therefore ¢ has the form ¢(t) = e* B+ +6n=B)¢(0). []

LEMMA 4.16. — xx 1is equal to the B-th iterate f? of the symplectic mono-
dromy.
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Proof. — Let X € C>®(TE") be the unique horizontal lift of the vector
field X (z) = 2miz on |2|S*. Its flow (u;) maps F, to Fezrit, symplectically.
By definition, the symplectic monodromy is f = p| Fuyr Now let p be the
circle action on F' given by p;(z,2) = (oy(x), €>™Pz). We denote the Killing
vector field of p by Y. Since p preserves (), the connection TE" is p-invariant.
It follows that p; commutes with p for any ¢. Therefore n; = p_; o g is the
flow on F' generated by ﬁ)? — Y. Note that n; maps any fibre F, to itself
symplectically. Let H be the function which we have used to define yg. Clearly
d(H|F,,) = —iyQ|F,,. Since i3 vanishes on each fibre F one also has

d(=HF,) = (=izz_yDIF.,

This means that (7 on) is the Hamiltonian flow of —H| Fuyr Hence by definition
XK = M|F,, On the other hand, by the definition of 7, f? = M| Fey- (]

We can now prove our main result about symplectic monodromy.

THEOREM 4.17.— Let p € Clzo, . .. ,x,] be a weighted homogeneous polynomial
with an isolated critical point at 0. Assume that n > 2 and that the sum of the
weights w; is not one. Then the symplectic monodromy f defines a class of
infinite order in mo(Aut(M,0M ,w)).

Proof — Since f8 = xk, it is sufficient to prove that [xx] has infinite order.
Lemma 4.15 shows that ox = 26(1 — >, w;) # 0. Therefore one only needs to
apply Theorem 4.3. The necessary assumptions about M have all been proved
above except for [w] = 0, which is obvious from the definition. []

ExampLES AND COMMENTS 4.18.

(a) Let p € Clzo,z1,x2] be one of the standard models for the du Val (or
simple) singularities [1]. These models are weighted homogeneous, and the sum
of the weights is > 1. For example, if

p(z) = 2§ + 23 + 2123

is the singularity of type (E7) then

2 _ 19,
95~ 18

W=

wo+w1+w2=%+

Hence Theorem 4.17 applies, showing that [f] € mo(Aut(M,dM,w)) has infinite
order. In contrast, it follows from Brieskorn’s simultaneous resolution [3] that
the class of f in mo(Diff (M, 0M)) has finite order.. Hence, at least in these cases,
Theorem 4.17 expresses a genuinely symplectic phenomenon.
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(b) It is possible that the assumption ) . w; # 1 might be removed. In fact,
there are many cases when ), w; = 1 and in which the monodromy has infinite
order for topological reasons, for example p(zo, 21, T2, T3) = Td + 2} + =5 + 3.

(¢) Let p € Clzg, 1] be a weighted homogeneous polynomial with an isolated
critical point. Then M is a connected surface and not a disc. The iterate f&
of the monodromy can be written as a composition of positive Dehn twists
along the connected components of M. Using this one can show easily that
[f] € mo(Diff (M, 0M)) is always of infinite order. This means that Theorem 4.17
holds also for n = 1.

5. Knotted Lagrangian spheres

5.a. Generalized Dehn twists.

This section contains the basic definitions and some facts, both topological
and symplectic, which are used later on. Throughout (M,w) will be a compact
symplectic manifold of dimension 2n.

By a Lagrangian sphere in M we will mean a Lagrangian embedding S™ «— M.

Such embeddings will be denoted by the letters ¢, £, 5, ... and their images
by L, Ll, L2, ceee

An (Ay)-configuration, k > 2, is a collection of Lagrangian spheres (¢1,. .., ¢x)
which are pairwise transverse, such that

LiﬂLj=@ for ll—]|22, and lLi’]Lz‘jﬂl:l.

The name comes from the relationship with singularity theory. In fact the Milnor
fibre of the (Ay)-singularity, which is the hypersurface

(5.1) M={zcC |z +a? 4. 422 =¢ |z|<1}

for sufficiently small € # 0, contains such a configuration. This was proved
in [30, Prop. 8.1] for n = 2, and the general case can be treated in the same
way (here we have used the classical form of the Milnor fibre, rather than the
definition adopted in Section 4.c; this does not really matter, since the Milnor
fibre as defined there also contains an (Ay)-configuration).

Consider
U=TyS"={¢eT*S"; ¢ <1}

with its standard symplectic structure wy. The complement of the zero-section
S™ C U carries a Hamiltonian circle action 0 whose moment map is the length |£|.
In the coordinates

U= {(u,v) e R"" x R"; || =1, |u| <1, (u,0) =0}
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with wy =) duj A dv; one has
J
o¢(u,v) = (cos(2mt)u — sin(2nt)v|ul, cos(2rt)v + sin(2mt)u/|ul).

Note that oy /5(u,v) = (—u, —v) extends smoothly over the zero-section. There-
fore one can define a diffeomorphism 7 of U by setting

(&) = oy (e (§)s

where 9 is a function with 1 (t) = % fort < % and ¢(t) =0 for t > % T is equal
to the identity near OU, and it acts on the zero-section as the antipodal map.
An explicit computation shows that 7 is symplectic.

We call it a model generalized Dehn twist.

Now let ¢ be any Lagrangian sphere in (M,w). One can always find an
embedding j:U — M such that jjs» = ¢ and j*w = d wy for some § > 0.

By extending jrj~! trivially over M \ im(j) one defines a symplectic auto-
morphism 7, of M, which we call a generalized Dehn twist along £.

It is not difficult to see that the class [74] in mo(Aut(M,w)) (or if M has a
boundary in mo(Aut(M,dM,w))) is independent of the choice of j and . For
this reason, we will often speak of 7, as the generalized Dehn twist along £.

For n = 1 these maps are just the ordinary (positive) Dehn twists along curves
on a surface.

REMARK 5.1. — It is an open question whether [r¢] depends only on the
image L. If £ and ¢ are two embeddings with the same image, and such that
¢~'ot is isotopic to the identity in Diff (S™), one can easily prove that [r¢] = [7¢].
Moreover, the same holds if =10/’ is an element of O(n+1) (this shows that, just
as in the case n = 1, the choice of orientation of L is not important). For n < 3 it
is known that mo(Diff ¥ (S™)) = 1 (see [19], [4]) which implies that [7,] does indeed
depend only on L, but in higher dimensions my(Diff*(S™)) is often nonzero.

We will first look at generalized Dehn twists from a topological point of
view. Since these maps are a symplectic form of the classical Picard-Lefschetz
transformations, their action on homology is given by the familiar formula

(5.2) (Te)u(e) = e = (=)™ D2 (e - [L]) L),

Using the fact that [L] - [L] = (=1)"("=1/2x(L) for any n-dimensional Lagran-
gian submanifold, one obtains the following
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LEMMA 5.2.

(a) If n is even then (1¢)« has order 2. If n is odd then (7;). has infinite
order iff [L] is not a torsion class (otherwise (1¢). = id).

(b) Assume that n is odd, and that £1,05 are two Lagrangian spheres with
[L1]-[L2] = 1. Set g = (1,70, )%. Then g2 induces the identity on homology. |[]

For n = 2 it is known [30, Lemma 6.3] that TZQ is actually isotopic to the
identity in Diff(M). It seems natural to ask whether this holds for other even n;
there is also the analogous problem for the map g2 defined in (b). In both cases
the answer is unknown to the author. However, there are some weaker topological
results which are easier to obtain, and which are sufficient for our purpose.

LEMMA 5.3.
(a) Assume thatn is even, and that there is an (Ay)-configuration of Lagran-

gian spheres (£1,03) in M. Then ei’“) = Tff o ¢y is isotopic to €1 through smooth
embeddings S™ — M for any k € Z.

(b) Assume that n is odd and > 5, and that there is an (As)-configuration of
Lagrangian spheres (¢1,¢2,¢3) in M. Then €(lk) = g%k o 4y, where g = (T4,74,)°,
is isotopic to £1 through smooth embeddings S™ — M for any k € Z.

Proof. — (a) If n = 2 then 77, is isotopic to the identity in Diff(M), which
implies our result. Hence we can assume that n > 4. let W C M be a regular
neighbourhood of Ly U La. Since W retracts onto Ly U L», it is (n — 1)-connected
with H,, (W) = Z(L1) ® Z{L2). We can assume that 7,, 1as been chosen in such
a way that it preserves W. Lemma 5.2 (a) shows that all the embeddings Z(lk)
represent the same homology class in W. Hence, by Hurewicz’s theorem, they are
homotopic as continuous maps S™ — W. The proof is completed by applying a
result of Haefliger [9] which shows that any two homotopic embeddings S™ — W
are differentiably isotopic.

(b) is proved in the same way. The condition n > 5 is necessary in order
to use Haefliger’s result. The result is easily seen to be false for n = 1, but the
author was unable to decide the remaining case n = 3. In that dimension, there
are obstructions for two homotopic embeddings S® — W to be differentiably
isotopic. These obstructions are completely understood in principle, see [10,
Corollary B], but not so easy to compute in practice. []

Now consider an (As)-configuration (¢1,¢2) of Lagrangian spheres in M.
From (5.2) it follows that, in any dimension, [r,(L1)] = :t[T[ll(Lg)] € Hp(M).
In fact the following stronger result is true:

LEMMA 5.4. — 74, (L2) and Tél(Ll) are isotopic as (unoriented) Lagrangian
submanifolds of (M,w). In fact, both of them are Lagrangian isotopic to the
surgery Li# Lo.
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This was proved in [30, Appendix] for n = 2, and the argument given there
carries over to arbitrary n. For future use we need to recall one aspect of the
proof: both 7, (L) and Li#Ly agree with Ly away from a neighbourhood
of Ly which, by an appropriate choice of 7, and of the surgery, can be made
arbitrarily small. The Lagrangian isotopy constructed in [30] between them
remains constant outside this neighbourhood. Similarly, the isotopy between
L1#Ls and 7'[21(L1) is constant outside a neighbourhood of L.

LEMMA 5.5. — Assume that (¢1,€2) form an (Asg)-configuration of Lagrangian
spheres in M, and set g = (1¢,70,)%. Then g(L1) is Lagrangian isotopic to L1,
and g(L2) s Lagrangian isotopic to Ls.

Proof. — Using Lemma 5.4 and the obvious fact that 7o(L) = L for any ¢, one
sees that

(Tf1752)3(L2) = (7—51752)27-2_21(-[’1) =TT T (Ll) = TllTZ_ll(LQ) = Lo,

where ~ stands for Lagrangian isotopy. The proof for L is similar. []

5.b. The graded point of view. ; o

From now on we assume that (M,w) satisfies 2¢;(M,w) = 0 and that its
dimension 2n is at least four (the case of classical Dehn twists, n = 1, is more
complicated because T*S! admits infinitely many different Maslov coverings).
Choose an oo-fold Maslov covering £ on M. Lemma 2.3 implies that any
Lagrangian submanifold L ¢ M with H'(L) = 0 admits an £>-grading. Let ¢
be a Lagrangian sphere in M and 7, the generalized Dehn twist along it defined
using some embedding j:U — M. By definition 74 is the identity outside im(j).

LEMMA 5.6. — There is a unique L -grading 7, of T¢ which acts trivially on
the part of L™ which lies over M \ im(j).

Proof. — The uniqueness is obvious. To prove the existence, consider the
local model U = T7}S™. Since ¢1(U,wy) = 0 and HY(U) = 0, U admits a
unique oo-fold Maslov covering £7F. Remark 2.5 says that the model generalized
Dehn twist 7 has a unique L£gF-grading 7 which acts trivially on the part of L
which lies over OU. Now, for an arbitrary Lagrangian sphere £ in M and Maslov
covering £, one can identify £%;,(;) with L£{7 and then extend 7 by the
identity to an £°°-grading 7, of 7.

We emphasize that this preferred grading 7, does not depend on the choice
of a grading for L.

LemMA 5.7. — The preferred £L>°-grading 7, satisfies T¢(L) = L[1 —n] for any
L -grading L of L.
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Proof. — Clearly it is enough to prove the corresponding fact for the local
model 7. We find it convenient to use complex coordinates

U={£eC™; |reg| < 1,|imé| =1, (re&,im&)g =0}.
The tangent spaces are
TU; = {n e C"*"; (im&,imn)g =0, wenr1(€,n) =0}.

Hence if A is a Lagrangian subspace of TU¢, A @ R¢ is a Lagrangian subspace
of C™*1. This stabilization defines a map r: £ — £(2n + 2) whose restriction to
any fibre £¢ induces an isomorphism of the fundamental groups. It follows that
as our Maslov covering L3P, we can take the pullback r*(L£>(2n + 2)) of the
universal cover of £(2n + 2)

72 is the time-one map of the Hamiltonian flow

?¢(€) = ori2p(eh-1)(€)-

Lift (¢:) to an isotopy (¢:) of LgP-graded symplectic automorphisms, starting
with ¢o = id. By definition, ¢; is equal to the identity in a neighbourhood of
the zero-section S™ C U for any t. This implies that ¢;(S") = S™ for any ¢
and any LgF-grading 5™ of S™. On the other hand, ¢, acts as some shift (K]
on the part of £°° which lies over OU. Using the fact that L£g is defined as a
pullback, it is not difficult to see that k can be computed as follows: choose a
point £ € OU and a Lagrangian subspace A C TUg. Then A(t) = r(D¢:(A)) is a
loop in £(2n + 2), and one has

k= —(C(2n+2),[\).

To determine k it is convenient to take A tangent to OU, because ¢;|0U agrees
with the inverse of the standard diagonal circle action on C**!. Then

)\(t) — e—QwitA o) e27rit(R£_)’
which means that k = 2n—2. We now know that ¢; o[2—2n] is an L7 -grading of
72 which acts trivially on the boundary of U. Therefore it must be the square 72
of the preferred grading 7. Hence
72(S™) = ¢1(S™[2 — 2n]) = S"[2 — 2n]
which proves that 7(S™) = S"[1 —n]. []
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The next two results are graded analogues of Lemma 5.4 and Lemma 5.5.

LeEMMA 5.8. — Assume that (¢1,03) form an (Asz)-configuration in M. Choose
L -gradings Ll, Ly such that the index at the only intersection point {xg} =
LiNLsy is I(Ll,Lg,xo) =1. Then Tel(Lg) and 7, (Ll) are 1sotopic as L™ -graded
Lagrangian submanifolds.

Proof. — Let ¥ = Li# Ly be the Lagrangian surgery, and S the L>-grading
from Lemma 2.14. Recall that 7, (L2) and ¥ agree outside a neighbourhood
of L;. The gradings 7o, (Ez) and ¥ also agree there: this follows from the fact
that 7o, is trivial away from L, and that the grading b agrees with Ly on
¥ N Ly. In the proof of Lemma 5.4 we have used an isotopy from 74, (L3) to X
which is concentrated near L;. By considering a point which remains fixed, one
sees that when one lifts this to an isotopy of graded Lagrangian submanifolds,
it connects Ty, (Lg) with 3. The same kind of argument shows that ¥ is isotopic

to 7'22 (Ll) D

LEmMA 5.9. — Assume that (£1,¢2) is an (As)-configuration in M, and define
G = (74,7,)®. Then for any L>-gradings L1, Ly one has

G(L1) ~ar L1[4 = 3n),  §(L2) ~g Lof4 — 3n],

where ~,, stands for isotopy of L -graded Lagrangian submanifolds.
g

Proof. — Clearly, if the result holds for some grading of L;, Ly then it holds
for all gradings. Hence we can assume that the absolute index I(Ly, Ly;zo) at
{20} = L1 N Ly is 1. Lemma 5.8 says that 7, (Ly) ~ ~or Ty, Y(Ly). Applying the
same result to Ly and Zl[n — 2|, which satisfy

j(ZQ,Zl[n_ 2];1‘()) = I~( [TL 2] LQ,CC())

yields 7, (L) ~ o Ty, Y(Ly)[2—n). Using these two equations and Lemma 5.6 one
computes

(7:517:@2) (LQ) = ( )27:51 (‘Z?)[l - n] ~gr (7:1/17:l2)27:(_21(~ )[1 - ’I’L]
= T, 7, (Ll [2 2"] —gr 7~'€17~'g_1 (LQ [4 371] Z2[4 — 3n].

The result for Ly is proved in the same way. []
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5.c. Symplectically knotted Lagrangian spheres.

After these preparations, we can now apply the “graded” techniques to the
construction of symplectically knotted Lagrangian spheres. The two parallel
results obtained in this way (for even-dimensional and odd-dimensional spheres,
respectively) are

THEOREM 5.10. — Let (M?",w) be a compact symplectic manifold with
contact type boundary, with n even, which satisfies [w] = 0 and 2¢;(M,w) = 0.
Assume that M contains an (As)-configuration (€y,¢1,42) of Lagrangian spheres.
Then M contains infinitely many symplectically knotted Lagrangian spheres.
More precisely, if one defines Lik) = Tezzk(Ll) for k € Z, then all the Lgk)
are isotopic as smooth submanifolds of M, but no two of them are isotopic as
Lagrangian submanifolds.

THEOREM 5.11. — Let (M*™,w) be a compact symplectic manifold with contact
type boundary, with n > 5 odd, which satisfies [w] = 0 and 2¢;(M,w) = 0.
Assume that M contains an (A4)-configuration (£y,¢1,42,¢3) of Lagrangian
spheres. Then M contains infinitely many symplectically knotted Lagrangian
spheres. More precisely, if one defines Lgk) = g**(Ly) for k € Z, where
g = (Te,7e,)3, then all the L(lk) are isotopic as smooth submanifolds of M, but
no two of them are isotopic as Lagrangian submanifolds.

Examples of manifolds satisfying these conditions are the Milnor fibres (5.1)
Together these two theorems prove the existence of infinitely many knotted
Lagrangian m-spheres in any dimension n # 1,3. As mentioned in the Intro-
duction, the case n = 2 has been proved before in [30], and the proof given there
would work in all even dimensions. Nevertheless, our new proof is substantially
simpler.

Proof of Theorem 5.10. — Let {zo} = Lo N Ly and {z1} = Ly N Ly. Choose
an oo-fold Maslov covering £*° on M, and L£*°-gradings EO,El,Zz in such a
way that f(fo,zl;xo) = f(fl, Zg;xl) = 0. Set Eg’“) = %gj(Zl). The assumptions
on M imply that Floer cohomology (and its graded version) are well-defined for
all (graded) Lagrangian submanifolds of M with vanishing first Betti number.
Because LoN L; and Ly N Ly intersect in a single point, which has index zero, it
follows from the definition of graded Floer cohomology that

HF*(Lo,Ly) =229, HF*(Ly, Ly) = 7/2[°.

Here Z/2%] stands for the Z-graded group which is Z/2 in degree k and zero in
other degrees. Since Lo N Ly = (), one can choose 7, in such a way that it acts
trivially in a neighbourhood of Lgy. This implies that

LonL¥ = Lon Ly = {zo}.
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Because the preferred grading 7, also acts trivially near Ly, one has
f(Zo, Z(lk);:vo) = f(fo,zl;zo) =0
and hence (for any k)
(5.3) HF*(Lo, L) = 7,209,

On the other hand, using the invariance of graded Floer cohomology under
graded symplectic automorphisms together with Lemma 5.6, one finds that

(54)  HP'(LY,Ly) = HF* (L1, 7,%(Lo))
= HF* (f,l, Lo[2k(n — 1)) = 7,/2L2k0-m)],

Now assume that for some L(lk), for some k, is Lagrangian isotopic to L;. This
implies that Lgk) is graded Lagrangian isotopic to Lj[r] for some r € Z. Using
the isotopy invariance property of Floer cohomology one obtains

HF*(Lo, L{¥) = HF* (Lo, Li[r]) = 2/27 and  HF*(L®M, L) =~ z/2l").

Comparing the first part of this equation with (5.3) yields r = 0. Comparing
the second part with (5.4) yields r = 2k(1 — n) = 0 and hence & = 0. This

k)

means that L(1 is not Lagrangian isotopic to L; unless k¥ = 0. Because of the

way in which the Lgk) are defined, it follows that no two of them are Lagrangian
isotopic. The topological part of the theorem follows from Lemma 5.3 (a). []

Proof of Theorem 5.11. — Since this is very similar to the proof of Theo-
rem 5.10, we will be more brief. Take an oo-fold Maslov covering £°° and gradings
Lo, Ly, Ly such that HF*(Lg, L) = HF*(Ly, Ly) = Z/2). Define § = (7,7, )3
and L(lk) = §2*(Ly). One can choose 74,,7¢, in such a way that g and § act
trivially near Lg. This implies that HF *(fo,f(lk)) = 7./2!% for any k. Using
Lemma 5.9 one computes

HF*(Egk),Eg) HE™ (Ll, —2k )
= HF*(Ly, Lo[2k(3n — 4)]) = Z,/22k@-3n)],
The assumption that Egk), for some k # 0, is graded Lagrangian isotopic to Zl [r],

for some r € Z, leads to the contradiction 0 = r = 2k(4 — 3n). The topological
part of the theorem is Lemma 5.3 (b). []
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5.d. K3 and Enriques surfaces.

Let (M,w) be a closed symplectic four-manifold such that ¢;(M) is a torsion
class. We want to consider Lagrangian spheres in M. This is a borderline case
for Floer cohomology, where the conventional methods do not yield a completely
satisfactory theory. The problems appear when one tries to prove that the Floer
group is independent of the choice of almost complex structure. We will now
explain what parts of Floer’s construction can be salvaged from this breakdown.

Throughout the whole of this section, all Lagrangian submanifolds are assu-
med to be two-spheres.

For such an L C M, let J™8(L) be the set of w-compatible almost complex
structures J such that there are no non-constant J-holomorphic maps CP! — M
or (D?,80D?) — (M, L).

LEMMA 5.12. — J"™8(L) 4s a dense subset of the space of all w-compatible
almost complex structures.

Proof. — The virtual dimension of the space of J-holomorphic spheres in a
homology class A is
44 2{cy (M), Ay — 6 = —2.

Similarly, the virtual dimension of the space of J-holomorphic discs representing
B € Hy(M, L) is
24 (2¢1(M,L),B) -3 =—1.

Here 2¢,(M, L) € H?(M, L) is the relative first Chern class, and we have used
the assumption that H'(L) = 0 to conclude that ¢;(M, L) is a torsion class.
Standard transversality results say that for generic J there are no simple J-
holomorphic spheres and no somewhere injective J-holomorphic discs. The first
result implies that there are no non-constant J-spheres at all, because any such
sphere covers a simple one. Similarly, the second result implies that there are
no J-holomorphic discs. However, this time the argument is more complicated:

it relies on the structure theorem of Kwon-Oh [14] or on the simpler form given
by Lazzarini [16]. []

Let Lg,L; C M be two Lagrangian submanifolds which intersect transver-
sally. Fix Jy € J*8(Ly), J1 € J"8(L1). We define J*¢(Ly, Jo, L1, J1) to be the
space of smooth families

J = (Jt)o<t<1
of compatible almost complex structures, connecting the given Jy,J;, which
satisfy the following conditions:

(a) there are no non-constant J;-holomorphic maps CP! — M for any ¢;

(b) any solution of Floer’s equation, u € M(z_,x;J) for x_,xy € LyN Ly,
is regular.
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LeMMA 5.13. — J*8(Lg,Jo,L1,J1) is a dense subset of of the space of all
families J which connect Jy with J;.

The proof is again a combination of standard transversality arguments. For
J € Jre&(Ly, Jy, L1, J1) one can define the Floer cohomology

HF (Lo, Jo, L1, J1;J)

in the familiar way, using a suitable Novikov ring A as coefficient ring. The next
step in the construction is

LemmMa 5.14.— HF(Lg,Jo,L1,J1;J) is independent of J € J*8(Lg,Jo,L1,J1)
up to canonical isomorphism.

The proof uses the continuation equation Osu + T t(u)ou = 0 for a two-
parameter family J = (Js ¢) of almost complex structures such that Js o0=4Jo
and Js 1 = Jp for all s € R. There will be JS ¢+-holomorphic spheres (for isolated
values of s,t) even if J is generic, but these can be dealt with as in [11].

Following the usual custom, we will from now on omit J from the notation
of Floer homology.

The problematic issue mentioned above is whether HF(Jy, Lo, J1,L1) is
independent of Jy,J;. We will use only a special case, in which the result is
obvious:

LEMMA 5.15. — Assume that Lg,Ly C M intersect transversally in a single
point. Then HF (Lg,Jo,L1,J1) = A for all Jo € J™8(Ly), J1 € J™8(Ly). []

By definition, Floer cohomology is invariant under symplectic automorphisms,
in the sense that HF(¢(L0), d)*(Jo), (Z)(Ll), ¢*(J1)) = HF(LQ, J(), Ll, Jl) The
next result is a weak form of isotopy invariance.

LEMMA 5.16. — Assume that Lo,L, are transverse and choose Jo € J**8(Ly),
J1 € J*8(Ly). Let ¢ € Aut(M,w) be a map which is Hamiltonian isotopic to
the identity, and such that ¢p(Ly) intersects Ly transversally. Then ¢.(J1) is an
element of J*8(¢(L1)) and

HF(LOaJO)¢(L1)7¢*(J1)) = HF(L()?J()’LI,JI)'
Outline of the proof. — Take a function H € C*([0;1] x M,R) with H, =0

for t < 1 ort > %, such that the Hamiltonian isotopy (¢f7) generated by

it satisfies ¢ = ¢~!. Let X; be the Hamiltonian vector field of H;, and
¥ € C®(R,R) a cutoff function with ¢(s) = 0 for s < 0 and ¥(s) = 1 for
s > 1. One considers finite energy solutions u:R X [0;1] — M of the equation

{ Bsu + Ty 0 () (Byu — b(5) X4 () = 0,
u(s,0) € Ly, wu(s,1) € L.

(5.5)
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Here J = (fs,t) is a two-parameter family of w-compatible almost complex
structures such that Jso = Jo and Js1 = Jy for all s. If one writes u(s,t) =
¢ (w(s,t)) then (5.5) in the region s > 1 reads
{ Osw + f;t(w)atw =0,
w(s,0) € Lo, w(s,1) € ¢(L1),

where :T\s”t = (qStH)*_ljsyt, in particular js’,1 = ¢,J1. Following the usual strategy,
one can use solutions of (5.5) to define a map

(5.6) HF (Lo, Jo, L1, J1) — HF (Lo, Jo, p(L1), $+(J1)).

The main technical point is that there can be no bubbling off of holomor-
phic discs, since the almost complex structures J,; for ¢ = 0,1 do not admit
such discs. Standard arguments of a similar kind show that (5.6) is an isomor-
phism. []

If 2¢; (M) = 0, one can consider graded Lagrangian submanifolds, and obtains

graded Floer groups HF *(ZO,JO,Zl,Jl) with properties analogous to those
above.

THEOREM 5.17. — Let (M,w) be a symplectic 4-manifold with 2¢;(M,w) =0
and which contains an (As)-configuration (£9,¢1,€2) of Lagrangian two-spheres.

Define Lgk) = 77%(L1). Then all the L(lk) are isotopic as smooth submanifolds,
but no two of them are isotopic as Lagrangian submanifolds.

Proof. — This is the same argument as in Theorem 5.10, except that one has
to be more careful about the properties of Floer cohomology. Choose an oco-fold
Maslov covering £>° and gradings Lj, such that

(Lo, Ly;xo) = I(L1, Lysar) = 0,
where g, z1 are the unique intersection points. Fix some k # 0 and write
Ly =2%Ly), Lj =728Ly).

Assume that Ly ~ L}, so that Ly[r] ~g L} for some r € Z. One can embed the
Lagrangian isotopy into a Hamiltonian isotopy (¢:) of M. The graded analogue
of Lemma 5.16 shows that

HF*(Z()y J()azl» Jl) = HF*_T (EO,JOvz/la (¢1)*(J1))7

HF*(Ly, Jy, Lo, J2) = HE*" (LY, (61).(J1), L2, J2)
for all J,,, € J*8(L,,), m =0,1,2.
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On the other hand, by using the graded version of Lemma 5.15 and arguing
as in the proof of Theorem 5.10 one finds that

HF*(Lo, Jo, L1, J1) = HF* (L1, J1, Lo, J5) = A%,
HF*(Lo, Jo, LY, ($1)+(J1)) = A HF*(L1, (¢1)+(J1), L2, J2) = AL72H),
which leads to a contradiction. []
COROLLARY 5.18. — For (M,w) as in Theorem 5.17, the map
mo(Aut(M,w)) — mo(Diff(M))

has infinite kernel.

Proof. — We have already quoted the fact that 77 is trivial in 7o (Diff (M))
(see [30, Lemma 6.3]). Theorem 5.17 obviously implies that [77 ] € mo(Aut(M,w))
has infinite order. []

ExampPLE 5.19. — Recall that an Enriques surface is an algebraic surface with
fundamental group Z/2, whose universal cover is a K3 surface. Enriques surfaces
satisfy 2¢; = 0. We will now construct an Enriques surface which contains an
(A3)-configuration of Lagrangian spheres. Consider the quartic surface X ¢ CP?
defined by

(5.7) (x2 +27)? + xd23 + 25 + 73 = 0.

X has two singular points [1: & :0:0] of type (Asz). Let Y be the minimal
resolution of singularities of X. It is a K3 surface and hence has a holomorphic
symplectic form . Complex conjugation defines an anti-holomorphic involution
on X, which is free because (5.7) has no nonzero real solutions. Because of the
uniqueness of minimal resolutions, this involution lifts to an anti-holomorphic
involution on Y, which we denote by «¢.

Obviously ¢ is again free. Since the holomorphic symplectic form is unique
up to a constant, it satisfies :*Q = 2Q for some z € S!. By rescaling Q we
can assume that z = 1. Then w = re{) descends to a real symplectic form on
the quotient M = Y/.. The singular points of X give rise to two disjoint (Ajz)-
configuration of rational curves in Y, which are exchanged by ¢. These curves
are Lagrangian with respect to w, hence descend to a single (Ajs)-configuration
of Lagrangian spheres on M.

To see that M is Kihler one argues as follows: let 8 € QU'! be a positive form
on Y such that t*3 = —f(. Such a form can be constructed e.g. by averaging. Let
g be the unique Ricci-flat Kdhler metric which has the same Kéhler class as 3.
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The uniqueness theorem for such metrics implies that g is t-invariant. The metric
g is hyperkahler, which means that there are complex structures J and K such
that Q(v,w) = g(v, Jw) + ig(v, Kw). It follows that J is t-invariant and hence
descends to a complex structure on M which is compatible with w. This means
that M is Kéahler and in fact an Enriques surface.

ExampPLE 5.20. — K3 surfaces have ¢ = 0. As an example of a K3
surface containing an (Ajs)-configuration of Lagrangian spheres one can take
the manifold (Y,re Q) constructed in the previous example.
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