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THE 3D NAVIER-STOKES EQUATIONS

SEEN AS A PERTURBATION OF THE

2D NAVIER-STOKES EQUATIONS

PAR DRAGO§ IFTIMIE (*)

ABSTRACT. — We consider the periodic 3D Navier-Stokes equations and we take the
initial data of the form UQ = VQ + WQ, where VQ does not depend on the third variable. We
prove that, in order to obtain global existence and uniqueness, it suffices to assume that
[ [ WQ 1 1 x ̂ Pdholl^^^/^2) ^ ^^i where X is a space with a regularity H6 in the first two
directions and H ' ^ ~ in the third direction or, if 6 = 0, a space which is L2 in the first two

directions and B^ in the third direction. We also consider the same equations on the torus
with the thickness in the third direction equal to £ and we study the dependence on £ of the
constant C above. We show that if VQ is the projection of the initial data on the space of
functions independent of the third variable, then the constant C can be chosen independent
ofe.

RESUME. —— LES EQUATIONS DE NAVIER-STOKES 3D VUES COMME UNE PERTURBATION
DES EQUATIONS DE NAVIER-STOKES 2D. — On considere les equations de Navier-Stokes
periodiques 3D et on prend la donnee initiale de la forme UQ = VQ + WQ , ou VQ ne depend pas de
la troisieme variable. On demontre que, afin d'obtenir P existence et Punicite globale, il suffit
de supposer que ||wo||x e'x-p{\\vo\\22(rv•2\/^u'2'^ ^ ^^i ou ^ es^ un sspace avec une regularite
H6 dans les deux premieres directions et H 2 ~ dans la troisieme direction ou, si 6 == 0, un

espace qui est L2 dans les deux premieres directions et B^ dans la troisieme direction. On
considere aussi Ie meme systeme sur Ie tore avec une epaisseur e dans la troisieme direction et
on etudie la dependance de £ de la constante C ci-dessus. On trouve que, si VQ est la projection
de la donnee initiale sur Pespace des fonctions independantes de la troisieme variable, alors la
constante C peut etre choisie independante de e.

(*) Texte recu Ie 4 novembre 1997, revise Ie 2 fevrier 1998 et Ie 19 janvier 1999, accepte Ie 16
mars 1999.
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474 D. IFTIMIE

Introduction
The periodic 3D Navier-Stokes equations are the following:

{ 9tU + u • Vn — v^u = —Vp,

(N-S) div u(t,') = 0 for all t ̂  0,

U\t=Q = UQ.

Here, u(t,x) is a periodic time-dependent 3-dimensional vector-field. For the
sake of simplicity, we assume that the force is vanishing. This is not a serious
restriction, it is clear that the difficulty in solving these equations comes from
the non linear term. Similar results may be proved in the same way with a
force square-integrable in time with values in the right space. The choice of
periodic boundary conditions comes from the need to use the Fourier transform;
for this reason our methods do not trivially extend to other classical boundary
conditions.

It is well-known that in 2D, there exists a global unique solution for square-
integrable initial velocity. In larger dimensions, unless some symmetry is assu-
med, global existence and uniqueness of solutions is known to hold only for small
and more regular initial velocities. The goal of this paper is to prove global exis-
tence and uniqueness results by considering the 3D Navier-Stokes system as a
perturbation of the 2D system. To do that, we write the initial data as the sum
of a 2-dimensional initial part and a remainder. The main theorem says that, in
order to obtain global existence, it suffices to assume the remainder small, and
small compared to the 2-dimensional part.

Some stability results are already proved by G. Ponce, R. Racke, T.C. Sideris
and E.S. Titi in [9] but the norm of the remainder is not estimated and the
2-dimensional part of the initial data is assumed to be in H1 D L1 and not in
L2, the optimal assumption. This loss of regularity appears when they take the
product of a 2-dimensional function with a 3-dimensional function. This difficulty
is overwhelmed here by introducing anisotropic spaces, where the variables are
"separated". The loss of regularity is then optimal. Another advantage of these
spaces is that they are larger than the usual Sobolev spaces, hence we obtain in
the same time more general theorems.

It is natural to ask if the 3D Navier-Stokes equations on thin domains are close
to the 2D Navier-Stokes equations from the point of view of global existence and
uniqueness of solutions. A second aim of this work is to do the asymptotic study
of the Navier-Stokes equations on Tg = [0, 27ra] x [0,27rb\ x [0,27re] when e —> 0,
as was first considered by G. Raugel and G.R. Sell [II], [10] and, afterwards,
by J.D.Avrm [I], R. Temam and M. Ziane [12], [13] and I. Moise, R. Temam
and M. Ziane [8]. By asymptotic study, we mean proving global existence and
uniqueness of solutions for initial data in optimal sets, whose diameters should

TOME 127 — 1999 — ?4



NAVIER-STOKES EQUATIONS 475

go to infinity when the slenderness of the domain goes to 0. To do that, it is
natural to work in spaces where the third variable is distinguished. It appears
that the anisotropic spaces are again well adapted to this study.

In an earlier paper [7], we proved global existence and uniqueness of solutions
for (N-S) in M3 with small initial data in

H6^6^ ^+^+^= j , _ j < ^ < j ,

a space which is H6i in the z-th direction. Here we apply in the periodic case
the work we have done there. The precise result is that there exists a positive
constant (7, independent of ^, such that if 0 < 6 < 1 and the initial data is
VQ +WQ with VQ independent of the third variable, then, in order to obtain global
existence and uniqueness of solutions, it suffices to assume that

(0.1) ||wo|kexp(^^)<^,

where X is a space which is H6 in the first two variables and H ^ ~ 6 in the third
variable, or, if 6 = 0, a space which is L2 in the first two variables and B^ in
the third variable, where B8 is the usual Besov space given by

B^ = [u e S' such that || 2^||A^||Lp||^ < oo},

where A^ is defined in (1.1). We shall also prove local existence and uniqueness
of solutions for arbitrary initial data in the spaces above.

In the third paragraph we work in Tg and we study the dependence on e of
the constant of inequality (0.1). We shall prove that if VQ is the projection of the
initial data on the space of functions independent of x^ and 0 < 6 < ^ , then the
constant C can be chosen independent of e. This will imply that global existence
and uniqueness is achieved as long as

(»-2) «•"»«»»<., ̂ (""î ) .̂.
The inequality above can be read in various ways. For instance, it is implied by

/ Ihol^cp) \ _i
ll^o||^i(Te)exp^—^ J ^ Cve 2 ,

or, for all a > 0, by

Ihollz^or2) < Cu(\ + ^-a\oge) and ||wo||^i(T^) < Cve~^^OL.
Finally, if one needs to have a larger VQ, one can take VQ arbitrarily large, the
price to pay is that WQ has to be assumed exponentially small with respect to
that VQ.

Let us compare this theorem with the previous results.
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476 D. IFTIMIE

The precise results of G. Raugel and G.R. Sell [II], [10] are rather complicated
so we give only an approximation: they consider various boundary conditions and
obtain global existence and uniqueness of solutions as long as

K||^i(T2) < Ce~5/24 and ||wo||^i(T,) <: C^-5748

or

KII^CP) < C^-17/32, ||^||L2(T2) < Ce^ and ||wo||^i(T,) < Ce-1/^
where v^ is the third component of VQ.

In the paper ofJ.D. Avrin [1] it is shown that ||no||^i ^ CX^1^ suffices in the
case of homogeneous Dirichlet boundary conditions; we denoted by Ai the first
eigenvalue of the Laplacian with homogeneous Dirichlet boundary conditions. In
the case of a thin domain, the equivalent of Avrin's result would be:

\\uo\\m<Ce-^.

Let us note that in the case of homogeneous Dirichlet boundary conditions the
2-dimensional part can not be defined, so one of the major difficulties of the
problem, mixture of 2D functions with 3D functions, does not appear.

I. Moise, R. Temam and M. Ziane [8] prove that it is sufficient to assume that

lho||^i(T2) < Ce~^6 and ||wo||^i(T,) ^ Ce~^6,
where 6 is a positive number.

Finally we mention that spherical domains are considered by R. Temam and
M. Ziane [13].

1. Notations and preliminary results
Many of the notations and the results from [7] remain valid here with minor

modifications; for those results, we shall only sketch the proofs. The main
differences are that we use the Littlewood-Paley theory in two variables instead
of three and we have to adjust to the periodic case the definition of the Ag
operators. We work in

T3 = [0, 27T] X [0, 27T] X [0, 27T]

and we denote by (^i^^s) = (x' ,x^) the variable in T3. All the functions are
assumed to have vanishing integral on T3. Let

L^'9 = {u such that ||n||Lp>9 = ||||n(a:)||^ || p < oo},
3 X '

and (p^ be the similar space for sequences. Obviously, when p = q^ the spaces
^^ and L^ are nothing else but the usual ( p and L^ spaces. The order of
integrations is important, as shown by the following remark (see [7]):
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NAVIER-STOKES EQUATIONS 477

REMARK 1.1. — Let (Xi,/^i), (Xa,/^) be two measure spaces, 1 < p < a and
f:XxY-.R.Then ~

||ll/(-^2)||^(X.^)||^^^) <. IIH/Ori, •)\\L^X^\\^^.

The Holder and Young inequalities for the L^ spaces take the form:

\\fg\\L?^ < \\fhpi^\\g\\Lp2^,
, 1 1 1 1 1 1where -= — + — , - = — + _,

P Pi P2 q qi Q2

\\f^h^<\\fh^\\g\\L^^
where 1 + - = — + —, l + 1 = J- + _L.

o' di a-z b &i 63

We denote by h * the operator of convolution with h.
If ZA is periodic, then it has a Fourier series

u(x) = ̂  Un exp(m • x), v,n € C.
nez3

For q > 0 and g7 > 0, we define

o' V^ / • \ /' \nf\\S^u= ̂  unexp(zrrx)^[-^-),
nGZ3

^=^exp(m.^(^),1»3|'

nez3

A^ =^-^_i = ̂  ^exp^n-.r)^^1—!^ Vg ̂  1,
nGZ3

(1.1) ^0 = ̂ 0 = ̂  ^(0,0,^3) ̂ (^S^s),
nsGZ

^ - ̂  - ̂ i = ̂  Hnexp(m • x)^^-^) Vg ̂  1,^q-i = ̂  Un exp(zn ' x)
nez3

^o = ^o = ̂  ^(n',0) exp^n'a:'),
n'ez2

,̂,, = ̂ ^/,, A,,,, = A,A^,

-9 = ^9,95 ^q = Sq — 6'g-i, AQ = SQ,

where ^:IR ̂  [0,1] is a smooth function such that supp^ c ] - l , l [ , ^ ^ l o n
[0, j], ^ is decreasing on [0, oo[, ^(|) = ^ and ^(a:) = ^(.r) - ̂ (2aQ/
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478 D. IFTIMIE

Note that suppy? C ]^ ,1 [ and (p(x) > | for all a* € [ j ' |], With these
notations, the next inequality stems from Lemma 1.1 below:

(1.2) llywikpi^ < C^1-1/^^1-1/^2),

where (pq^ is given by A^g/ = (^g,g/*. The same holds for S q ^ q ' . Note that this
inequality is an extension of the classical equality

\^qhpW=C2d^-l/P\

where (pq is given by Ag = y?g*, Ag being the usual localization operator in R^
(see [2], [4]). It is important to use smooth cut-off functions; if we would use
characteristic functions of dyadic intervals, then inequality (1.2) would not hold
in the L1 case. For further details on the subject we refer to [6, Chap. 7].

LEMMA 1.1. — Let (f) be a compactly supported smooth function, X > l/(27r)
and

fW =^^(^)exp(m.z;).
n6Z

Then, for alll <_p <,oo and k € N there exist a constant C = C^^k) such that

||/(fc)||Lp^C7Afc+ l- l/^

where f^ is the k-th derivative of f.

Proof. — First we remark that we can restrict ourselves to the case k = 0.
Indeed, we have f^ = A^/c, where

9k(x) = ̂  ̂ k ( y ) exp(ma;) and ^k(x) = (zx^^x).
n

Interpolating L^ between -L1 and L00 shows that it suffices to consider the cases
p = 1 and p = oo. We have

\f{x)\<^ ^ <^)|^C7|H|L-A,
nGA supp 0

thus the case p = oo is proven.
Before going any further let us note that if A < l/(27r) then ||/||L00 is bounded

independently of A, hence so is ||/||L1. To estimate \\f\\L1 for A > l/(27r) we write

/^TT r1/^ /^Tr

II/ULI - / \f(x)\dx= \ \f(x)\dx+ / \f(x)\dx.
Jo Jo J i / x
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NAVIER-STOKES EQUATIONS 479

To estimate the first integral we use the bound on the sup norm of /:

/.I/A

/O

/.I/A -.

/ \f(x)\dx^~ ||/||̂  <CM^.
Jo A

In order to bound the second integral we use Abel's summation formula to
deduce that

exp(%(n + l)x) - exp(inx) / n -
— ————7——^——————————(f>[ —exp(za;) — 1 \ A >

/./ ^ _ v^ exp^n + L ) X ) - exp[znx) / n \
^ - 1. ————exp(^)-l————^IA)

_ ^ - ^ e x p ( m ^ ) r / n - l \ , /n \ - |
-I.exp^-li^-T-J'^lAJ}

V^ exp(m.r) ; ̂  - 2 ^ / ^ - i ^ /nx - i=>-(exp(^-l)2W^^)-20(^^)+0(A)^
Taylor's formula gives

/n-2\ ^ , /n - l \ / / ^ M C'
<^^)-2<-;-)+<A)1^'

for some constant (7 = C7(<^). Thus

ri/(.)id.<r y c^<c r^<c^ ' -
 y^ 1^.A2a;2 - x A/^2

 -G-

/.27T /.27T

' / /' t / l / A |n|<C'A

This completes the proof. []

As a corollary we find a Littlewood-Paley lemma in two variables:

LEMMA 1.2. — If u is a periodic function on T3 such that

supp£cB(0,Ai,A2) ̂  { ^ e R 3 such that |̂ | < A i , |̂ | <A2} ,

1 ^ ai ^ 61 ^ oo, 1 ^ 02 < &2 < oo one? a = (01,02,03) C N3 z5 a multi-index,
then

IÎ HL^ ^ ̂ A?1^2^1701-1/^3^1702-1/62)^!!^,,,.

Proof. — Recall that
U=(27T)3 ̂  U_»^.= (27T)3 ̂  U_A.

nez3
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480 D. IFTIMIE

Let
- . x -1- v-^ .. x / \n '\\ ( us \\
^,A.(^)=^^^exp^.^(^Jx(^J,

(27T)3 ^3 ^Ai^^

where ^ is defined immediately after relation (1.1). The localization of <^Ai,A2
and u implies that (f)\^^\^u = S, so

u = 0Ai,A2 *^-

Since

with

^Xi^W =^1(^)^2(^3)

^(a;/)=(^)2^EexP(m/•^(^)

and

^2(^3) = ̂  E exp(m3-rr3)x(^-),
?T-36Z

^2(^3)- ̂  ̂  ̂ .̂.., "^^As
nsCZ

applying Young's inequality and Lemma 1.1 yields

119^11^1^ ^ ||^°^,Aj| a.h, o.^ ||u||L°i,»2
^ 0,161+01—bi ' a2b2+a•2—62

. ^ai+a2+2(l/ai-l/bi)^Q3+(l/a2-l/b2)| i ||
_^ ^A^ A^ ||LA||^ai,a2 .

The proof is completed. []

DEFINITION 1.1. — We denote by M the operator given by

1 /l27r

Mu(x^,x^) = — / u(x)dx3= V -U(^o)exp(m' -a;').
^7r ^o /""ion'CZ2

It is easy to check that M, defined as a Fourier series, is the orthogonal
projection on the space of functions not depending on the third variable in every
Sobolev space H8.

When we will say that a possibly non-integrable function u has vanishing
mean we understand that ^(0,0,0) = 0- Similarly, vanishing mean in the third
direction refers to 'U(^Q) = 0 ^OT a^ ^' G Z2. Let us now introduce the first class
of spaces we shall use:

TOME 127 — 1999 — ?4



NAVIER-STOKES EQUATIONS 481

DEFINITION 1.2. — We denote by H ^ 8 ' the space
H8-8' = [u e P'(T3) such that H^/ < 00},

where
N^.—lKi+Kn^i+nj)5'/2^^,

in which Un are the Fourier coefficients of the function u. The homogeneous
variant of this space is

H8-8 ={u^HS-s'andMu=Q}.
The following two lemmas are similar to Lemmas 1.2 and 1.3 from [7] and

give a characterization of H 8 ^ ' in terms of dyadic decomposition.
LEMMA 1.3. — If u € H8^' then

H.^^^^^IIA^^II^II^.
Proof. — Definition 1.1 implies that for all q,q' > 1

l|A^.||i.=(2.)3^|^|V(^)^(^).
n

Using the localization of (p we obtain

(L3) c, ^ Kl^i+lnWi+MT'
3•2'^-3^|TO'|^3-2''-2

3.3<t'-3<^^3^<,'-2

^^qs+2q's'\\^u\\^

<C2 E Kl^l+Kl^^l+lnsI2)8',
2q~2<\n/\<,2q

2<^/-2^|n3|^29/

for some constants d and (72. Similarly,

(L4) c7! E l^'^l^l + In' T < 229s||A,,o^||i.
329-3<|n /|<3•2(^-2

<^ E |^,^(1+|^|2)- V 9 > 1 ,

29-2^|^/|<29

and

(1.5) C, ^ l"(o,n3)12(l+l"3|2)s'^22(''s'||Ao,,^||i.
329 /-3<|n3|^329 /-2

^^2 E Ko^i+l^lT' v^> i .
29/-2<|n3|<29'

Using that Ao,o^ = ^0,0 and summing relations (1.3), (1.4) and (1.5) gives the
desired conclusion. []
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482 D. IFTIMIE

LEMMA 1.4. — IfUp^p> is a sequence of square integrable functions such that

suppup^ C {1/72^ ^ |^| < 72^ 1/72^ < |6| < 72^} forp.p' ^ 1,
suppz^o C {1/72^ < |̂ | < 72^ |6| < 7} forp ̂  I,

supp2o,p' C {|^| < 7, 1/72^ < |61 ^ 72^} forp1 ̂  1,
suppSo,o C {|^| < 7J61 ^ 7}^

/or some constant 7 > 1 and

\•ys+p's'\\u^\\^<^,
then

u=^Up^ ^ H 8 ^ and \u ,^ ^ G||2ps+p/s/||^p^||^2||^.
p,?'

• Ifs>0it suffices to assume that

suppS^/ C {|^| < 72^ 1/72^ < 161 ^ 72^}.

• If sf > 0 it suffices to assume that

suppS^ C {1/72^ < |^| < 72^ |61 < 72^}.

• If s > 0 and s' > 0 it suffices to assume that

supp^C {1^72^ 161^72^}.
Proof. — We prove the relevant case s > 0. Similar proofs work for the other

situations. We use that the operators A^g/ are bounded in L2 independently of
q and q ' , and the localization of A^g/ and Up^ to deduce the existence of an
integer N such that

2^^'S'||A^U||^ ^ 2^'s'^||Ag,g^||^

where

P,P
< \^ 9(9-P)«+(9/-P/)s9PS+p/s/|| i|
— 7 ^ z z ll^p'IlL2

p^g-TV
Ip'-g^TV

— QiQ7 Q^^ ^

^g^+g7^ ifg<^, 9'[ <7V,
^g^g' —— •\

. 0 otherwise,

'q.q' = ̂ ' ' ' s 11^9, q' \\L2-^w=29s+g/s/|k
Young's inequality yields

||2^+^||A^||^|^ < \\a^\\,. . ||̂ ||,2.

Since s > 0 one has \\dq^ ||^i < oo. Applying Lemma 1.3 completes the proof. []
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The next theorem as well as its proof is a variant of the product Theorem 1.1
from [7] which states that the product of a function from 7^1^2,53 ̂ ^ ^ function
from 7^2,<3 lies in 7^1+^1-l^2+A2- j , 53+^3- ^ provided that Si < J , t, < ̂
Si+ti >0 , % G {1,2,3}.

THEOREM 1.1.—Ze^ C T^5^, v € ^'^ 5HC/1 thats.t < 1, 5+^ > 0, s ' ^ < \
and s' -\-11 > 0. Then uv G Hs^~t~11s +* -^ anJ ^ere exists a constant C such
that

(L6) M^-i,^^-^ ^c7 • H^ • l ^ l t , ^ -
Sketch of the proof. — We use the following anisotropic equivalent of Bony's

decomposition:
uv = ( T ' + R' + r^r" + R" + r"),

where T ' and T' correspond to the 2-dimensional paraproducts, R' corresponds
to the 2-dimensional remainder and the double prime refers to the third variable.
For instance, the definition of the term T ' B" is

T'R'\u,v)= ̂  ̂ S,_^,uW_,v.
i=-l p^p'

The theorem holds for each of these operators under weaker assumptions. If a
term contains T ' then we have to assume that s < 1, if it contains W then
5^4-1 > 0 and if it contains T ' then t < 1. A similar rule holds for T " , R" and
T " . Let us prove that if s < 1 and s ' +1' > 0 then T'R'^u, v) (E ̂ ^-i^^'- ^ ^
We follow the proof of Theorem 1.1 from [7]. Let

w^ = S^^u^^^v.

Using several times the anisotropic form of Holder's inequality, the definition of
the operator S ' as well as the anisotropic Littlewood-Paley Lemma 1.2 one can
show that

(1.7) ||A^w^,||^ ^ 2^2||A^,w^, ||^,i

<2^/2 ^ 2r||A^A;^||^.||A,A;,_^||^,
r<p-2

(see [7]). Defining

a^ = 2^+^HA^H^, ^ = 2^+^/||A^||^
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484 D. IFTIMIE

and using that s < 1 yields

IIA /?/^ II r9 < r'99'/2 9P(1-S-A) 9-P/(S/+^) ||r, ,|L /i11^9,9 ^p,^ II-L2-^ uz z z iFp^H^ ' °p,p'-i^

whence

^^-^^^^-^HA^W^II^
^ ^q-p^S^t-l^q'-p^S+t')^ „ ,
^ v-^ — 11"'P,P 1 1 ^ ^p^p'—f

The localization of w^ / shows that an integer N exists so that \p — q\ < N and
q' < p ' + N , so

og^+^-^+g'^+^-^llA ,^^IB"(f\l ? ^ 1 1z 11^9 ,9 2 iT l^"? t ;/||L2
1

^ ^ V^ V^ c)(q1-p^s-^l'}^ || i<c Z^ ^ 2^ P A ^ 'll^p/H^ -^-z.
i=-l \p-q\^N

p > q ' - N

Taking the ̂  norm gives

12^s+t- l)+^(5/+t/- ^) HA^^r^"^, ̂ ) ||̂  ||̂

<^E E 2^-^(^)||a^||^.[[^_,||^.
i=-lp'>^-A^

Taking the ^, norm, applying Young's inequality and using that s ' + t' > 0
yields

l^^-1)^'^'- s) HA^^r^^, v)\\^ [|^
l

^ G E II ll^w 11^ • ll^p'-^ll^ll^i •
i=-l

Finally, Holder's inequality implies

^,(^-i)W(^-,)^^^,^^^^^^ ^ C7. ||a^[|^ . II^/H^,

that is
I^ML+,-1^-, < ̂ - H^ • H^.

This completes the proof for r'J?". The other terms can be bounded in the same
way. []
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NAVIER-STOKES EQUATIONS 485

We now add an interpolation property for these spaces:
PROPOSITION 1.1. — Let s^t^s'\t' be four real numbers^ a e [0,1] and

u C H8-8 n^< Then u <E H^^-^^^-^' and

Mas+^-QQ^Q's'+Cl-a)^ ^ Fl?,^ ' Wt^t' '

Proof. — We have from Holder's inequality that

MQ'S+^-a^QS'+^-Q:)^

= II (1 + Inf) ^ (-^(^^ (1 4- nj) ^ (-+(i—)^)u'njl^

^IKO+I^D^O+^^^nrll^

.IK(I+^^^(i+^y/2^)1-0!!^-.)
7/1°' , • I?;!1"0'a\s,sf \u\t,tf •

This completes the proof. []

We will need to estimate |V'u|s^ in terms of norms of u. The coming
proposition gives an useful equivalence.

PROPOSITION 1.2. — Let u be a periodic function on the three dimensional
torus with vanishing mean. The following norms are equivalent:

\^U\s,s^ Hs+1,^ + H^+i, SUp 1^+^,^+1-a.
o-e[o,i]

Proof. — Using the interpolation property, one sees that the norm

SUp |n|s+c^+l-a
a<E[0,l]

is equivalent to the norm
l^ls+l,^ + Hs^+l.

On the other hand, we have by definition that
|Vu|̂ , = \8,u\2^, + \9^u ̂ , + W^,

= ̂  (1 + K)2)^! + nlY\n2, + nj + nj)K|2

nCZ3

and that
i 2 i i2
^ s+l,^ + Ms^+l

= ^{(l+|n/|2)s+l(l+n|)s'+(l+ n/2)s(l+nj)5'+l}K|2

n6Z3

= E^+i^D'^+^^^^+^+^i^i2
nez3

Since '^(O,O,G) = 0, the conclusion follows. []
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If v C ^(T2) then one can write v G L^T3) by defining

^(^1,3:2^3) =v(^i,a:2).
It is obvious that

^ov = \v, Aq^v =0 if q' ^ 1.
It follows that, in the proof of Theorem 1.1 there is no loss on q 1 ' . This enables
us to modify that theorem as follows:

THEOREM 1.2. — Let v <E 7P(T2), w <E H^^ such that s < 1, t < 1 and
s + t > 0. r/ien

my e H3^-1^ anc? |z'w|s+t_i^/ ^ (7 • |v|s • |w|^.
Proof. — We treat x^ as a parameter and we use the decomposition of the

product vw as the sum of two-dimensional paraproducts and remainder:
(1.8) vw = TyW + R(v, w) + fyw,
where

'T,w=^^_^A^
p i

(1-9) - R^w)=^^A,vA,_^
i=-l p

r^w = T^v.
We prove that the theorem holds under weaker assumptions for each of these
operators. More precisely, we have the following

LEMMA 1.5. — There exists a constant C such that if T, R and T are the
operators defined above, then for all v e ̂ (T2) and w € ̂ 't/ we have

\TvW\s^t-i,f < C • \v s • \uJ\t,t' zfs < 1,

\TvW\s^t-i,t' <: C ' \v\s ' \w\t^ ift < 1,
_^, <: C • \v\s • \w\t^ if s+t> 0.

Proof. — Let us prove the assertion on T. We have

\R(v,v.w) s-{-t

||A^7>||^< ^ ||A^(^_^A;w)||^
|P-9|<1

= E II^^^^A^W)!!^
b-9l^i

< c E 11^-2^^W[|^
b-g|<i

^^E 11^-2^11^-||A^w||^.
h-gl^i
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Since v is two-dimensional and s < 1, we infer

\\^v\\^^C2^1-s^v\,.

Therefore

(1.10) IIA^r.wll^^1-5)^ ^ ||A^,w||^.
|p-g|^l

It remains to multiply by 29(s+t-l)+9/t/ and to take the £2 norm to obtain the
result on T.

We consider now the f term. The following sequence of inequalities holds:

(1.11) 1|A^7>||^<, ^ ||A^(A>^w)||^
b-9l<i

= E K(A^_^,W)||^
b-<?l^i

^ E ||A>^_^,w|^
|P-9|^1

^C ^ IIA^II^.H^A^II^,..
\p-q\<l

One can estimate

H^A^wll^^ < ^ ||A^w||^oo,2
r^p-2

^C ̂  2r||A^w||^
r^p-2

<C72-^ ^ 2r(l-A)||2^^/||A^,w||^||^
r<p-2

^^-^-^-1)^^^^^^^^^^

Thus

^(^-i)+^^^^^^^^

<C ^ 2^||A>||^||2^^||A^w||^||^.
|P-QJ<1

The conclusion for T now follows by taking the ^2 norm.
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Finally, we prove the assertion on R. One has

||A^(^w)||^<, ̂  ^ ||A^(A^Ap-^)L.
i=—lp>q-2

1

= E E l|A,(A>Ap_^w)||^
i=—lp^g-2

1

^E E 2^||A^A^^w||^,2
i=-lp>q-'2

1

^E E 2^||A^|M|Ap_^w||^.
i=-lp^g-2

It follows that

(1.12) 2^+A-l)+^/t/||A^,^,w)|^
i

< c E E 2^-^^)2^||A^||^ . 2^-^)^^/||A^_^w||^.
^=-1^^9-2

Applying Young's inequality completes the proof of Lemma 1.5. []

The decomposition (1.8) and Lemma 1.5 implies Theorem 1.2. []

In Section 2 we shall need to apply Theorem 1.2 in the case s > 1. The coming
inequality is a variant of an inequality proved by J.-Y. Chemin and N. Lerner
in [5]. It shows how to avoid this difficulty in some cases.

PROPOSITION 1.3. — There exists a constant C such that for all v e IP(T2)
and w such that divv = 0, Vw e H^^, s < 2, t < 1 and s + 1 > 0 there exists a
sequence (ciq,q>) such that

|(A^(^.Vw) |A^w)|

^ C^^-^-1)-^!^ . |Vw|^ . ||A^/w||^

and [|a^/||^2 = 1.

Proof. — We write

|(A^(^ . Vw) [ A^/w)| = |(A^(r^Vw) | A^/w)|

+|(A^(7?(^Vw)) A^w)|

+ |(A^(Tvw^) | A^w)|,
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where T and R are the two-dimensional paraproduct and remainder denned in
the last theorem. The hypothesis on s, t and Lemma 1.5 imply that the terms

(L13) |(A^OR(^Vw)) A^,w)|,

(L14) |(A^(rv^)|A^w)|

are well estimated. One has to bound

(L15) |(A^(T,Vw)|A^/w)|.

Some simple computations and the localization of the terms of TyVw show that

(A^(T^Vw) |A^w)

= ^ ([A^,5p-2^](9jApW | A^w)
J,b-9l<4

+ J E ((^-2 - ̂ -2)^A,^> I A.^A^w)
J'JP-91^4
b/-g|^4

(see [3], [5]). Therefore, it suffices to estimate the model terms

A = |([A^^']^A^w | A^w)|,

h = KA^'^A^A^W | A^A^w)|.

The last term is bounded as follows

(1.16) IIA^II^oo ^ C72^||A^||^ < C2^1-s)|^|„

(1J7) H^-A^wll^ < C^2-^-^|Vw|^,

where ||^^/||^2 == 1. As for Ji we remark that

[h^f] b{x) = fh{y){f{x - y) - f(x))b(x - y ) d y ^

thus

(L18) ll^*^]6!!^ < Wf\\^\\b\\L.\\xh\\L..

Applying this inequality with / = SqV3\ b = 9j\^w and h^ = A^/ it comes

l|[A^^^](9,A^w|(^ < Ga^-^-1)-^!^ . |Vw|,^,

where ||ag^/||^2 == 1. This completes the proof. []
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We now introduce the second class of spaces we will use:

DEFINITION 1.3. — We denote by HB8^' the space defined by

HB8^' = [u (E P'(T3) such that \u\^s,s' < 00},

where q,q' > 0 and

N^-/^||29S+9/S/||A^^||^||^,,.

The homogeneous version is

HB8^ = {u C HB^8' and Mu = 0}.

REMARK 1.2. — Since B^(T) ̂  C(T), it follows that ^B^ is embedded in
the space of functions continuous in ^3 with values in 7P(T2).

The last defined class of spaces is similar to the class HB81^2^83 introduced in
the case of the entire space in [7], the purpose being the same, that is, avoiding
the critical case (5=0. The study of these spaces is similar to those ones and with
the study of the H 8 ^ . More precisely, all the assertions valid for the H8^ spaces
are valid for the HB818 spaces if we replace the £2 norms with the -^2'1 norms.
The following proposition as well as its proof is similar to Theorem 1.2 from [7]
which states that the product of a function from HB81182^83 with a function from
7^i,W3 lies in Tffi5^-^2+^2-^3+t3-|. provided that 5,, ̂  < ^ , s^t, > 0,
i G {1, 2} and 53, t^ < \, and 53 +1^ > 0.

PROPOSITION 1.4. — Let u e HB^81\ v G HB^^ such that s,t < 1 and
s+t > 0; s ' ,t' < j, and s ' +t' > 0. Then uv e HB8^-1^'^'-^ and

M^+t-i,^-^ < C\u\^,^ • \v ̂ ^.

Sketch of the proof. — The proof is almost identical to the one of Theorem 1.1,
the modification which enables u^
is that the classical paraproduct
the modification which enables us to take the case sf = ^ or tf = 1 into account
, 2i z

'T- n8 C'\^\ v R* /"ro^ v 'DS^~t~ 2 i1 . -09 i lK} X -09 -1 ( K ) ———> ±>o 1 z {

is well-defined and continuous if s < ̂ . We shall prove that each of the operators
from (1.6) is continuous under weaker assumptions. The only problem in the
proof is that at the end we have to commute some norms which give raise to the
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wrong inequality. To show that the other terms canjae handled in the same way,
we prove the assertion for some other term, say R ' T " . By definition

R'f"(u,v)= Wz^, with z^,=Wu^_,S';,_,v.z^, with z^, = A'^,u A^^.
i=-l p,p'

We will prove that R'f"(u,v) e HBS+t-l's'+t'-^ provided that s +1 > 0 and
t ' < 5. As in inequality (1.7) one obtains

l|A^<p,||̂  <.V Y 2r'/2||ApA>||^ . ||A;,_,A^||^.
r'<_p'-1

Recall that a^, = 29s+9's'||Ag,g/u||^ and b^, = 2<'t+^'t'||Ag,^||^. There
exists an integer N such that |;/ - q' ^ N and p> q- N. We have

(1.19) 2^+t-l)+^'+t'-3)||A^^,,||^

^C^+^-P) ̂  2(r'-P')(3-t')a^^^,
r/<p/-2

We now sum on i,p,p' and q' to obtain

^ y^-^^s^-,) [lA^^r'^^ii^
9'

^^ E E 2^)^)^ ̂  2(r/-/)(.-^^^_,„
z=-lp>q—N p' rf<^p'-2

1

< C V^ N^ 2(S+^^-P)|1<^ , 1 1 i IIT) II— ^ / ^ / ^ z ll^^'ll^1, • l l^p-^r ' l l^i,
i=—lp>q—N

Using that q < p-\- N and 5 + ^ > 0 and applying Young's inequality yields

l^"1^^- j) ̂ ^R'T^u^ v) ||̂  ||,̂
i

^ c E llll^Wll^, ' ll^-^P'II^JI^r
%==-!

Finally, we apply Holder's inequality to obtain
[^(s+t-^+g^s'+^-^iiA ,^/^"/...,^|| || ^ n\\r, 1 1 I IA 1 11 1 ^ \\^q^Hi (u,v)\\L2\\^^ s C||ap^||^2,i • \\bp^\\^,i,

which implies

R'T"{u,v)\^^_^^_^ ^ C\u\HBs,s' • \V\HB^'

This completes the proof for R'f". Q
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We also need to know what happens when we multiply a 2-dimensional
function with a 3-dimensional one. The result is

PROPOSITION 1.5. — Let v G ^(T2), w € HB^^ such that s,t < 1 and
s +1 > 0. Then

vw E HB8^'1^ and \vw\ffQs+t-i,t'< C\v\s • \w\ffQt,tf.

In equation (1.9) we defined two-dimensional paraproduct and remainder for
three-dimensional functions. We prove that the proposition holds under weaker
hypothesis for each of these operators. More precisely, we have the following

LEMMA 1.6. — There exists a constant C such that if T, R and T are the
operators introduced in equation (1.9), then for all v e H8^2) and w G HB1^
we have

\TvW\^s+t-i,t' < C\v\s ' |w|^t,t' if s < 1,

^v^ff^s+t-i,^ ^ C\v\s ' \w\^t,t' iff < 1,

\R(v,w)\ffQ,+t-i,t' < C\v\s • w\^t,f ifs-\-t>0.

Proof. — For T we start again from inequality (1.10), we multiply by
29(S+A-1)+9^/ and we take the £2^ norm to obtain

^,(^_i)+^^^^^^^^^ ^ ̂  ||2^+^||A^w||^||^.

We now consider the T term. Starting again from inequality (1.11), multi-
plying by2<^ s + A - l^+ 9^ and summing on qf gives

'̂̂ -^ '̂IIA^wll̂
9'

^02^-^ ̂  IIA^II^^^'H^A^wll^.
|p-g|<l q'

Furthermore, one can bound

^ '̂IÎ A ÎÎ ,. < ̂  ^2^'t'||A^w||^,.
q' r<_p-2 q'

^c E 2'-^2^'||A,,,/w||^
r^p-2 q'

<C ^ 2r(l-t)||2r^'t'||A^w||^||^
r<p-2

< ^'2-p^-l)|l9rt+g/^IIA / p / ^ l l r ^ l l-̂  uz IF l l^r^ '^HL2 11^2,1 •
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Thus

E f)q(s-^-t—l)+qt' || A 'n II2^ ^q \\Aq^TyW\\L2

q'

^C ^ 2^||A^||^||2r^/t/||A^w||^||^.
b-9l^i

The conclusion for T now follows by taking the ^ norm.
Finally, we prove the assertion on R. Starting from inequality (1.12) and

summing on q' yields

^y^-^^^R^w)^
q'

1

^ c E E2(<^-p)(s+t)2psl|A>||L-E2^)t+(''t'||Ap_,,,,w||^.
%=-lp^g,-2 ^/

Applying Young's inequality completes the proof. Q

We now prove an interpolation property for the HB spaces:

PROPOSITION 1.6. — Let s.t.s^t' be four real numbers, a e [0 1] and
u e HB8^' n HB^^. Then u e 7:fflQS+(l-a)^as/+(l-a)t/ and

Hjm^+ci-^^^+ci-")^ < W^B8^' ' 1^1^, t"

Proof. — From the definition of the HB spaces and using Holder's inequality,
we infer that

\U\^Bas+(l-a)t,as'+{l-a)t'

^ l̂ ^-^+^+ti- ÎIA ÎÎ IÎ

=||(2^'s'||A,,,^||^)"(2^'t'||A^^||^)l-"||„,

^||(2^'s'llA^«||^)a||^„,^

.||(2^'<'||A^^||^)i-°||^_,^^,_^

= ||2 '̂s'||A^u||̂ ||;, . [̂ '̂HA Î̂ II;;-

-K^'-H^;.'.

This completes the proof. \\
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As for the anisotropic Sobolev spaces, we now give an estimate for the HB
norm of a gradient.

PROPOSITION 1.7. — Let u be a periodic function on the three dimensional
torus with vanishing mean. Then the following norms are equivalent:

|V2A|^ps,^, \U\^QS+I,S' +Hj^,^+l, SUP U\ffQ^,S'+l-C..

o-e[o,i]

Proof. — Using the previous proposition proves that the norm

SUP U\^s+c.,s'+l-c.
ae[o,i]

is equivalent to the norm

\U\HBS+1'S' ~^~ \U\HBS^'+1'

To show the other equivalence, we first prove the following inequality:

(1-20) HVA^H^ > C{V + 2^)||A^||^.

The localization of Ag^/u clearly implies this relation for q ^ 1 and q' > 1. Since
u has vanishing mean, one has that Ao,o^ = 0, so the case q = q' = 0 is trivial.
Assume now that q = 0 and q' > 0. Since Ao,g/ depends only on x^ we have

||VAo,^||^ = \\9^^u\\^ > C2q/\\^u\\L2

> iC7(l+2^)||Ao,^|[^.

The case q = 0 and </ > 0 is similar so relation (1.20) is proved.
The localization of A^/IA implies that

HVA^H^ < C7/(2^+2^)||A^||^.

Using this relation together with (1.20) we infer that

|V^|^-/=||29S4-9V||A^V^||^||^,

^ p^'s^ +2^)||A^||^ ||̂

= ||(2^+l)s+^/s/ +2^+^(s/+l))||A^u||^||^,

^ \u\HBS+l'sf ~^~ 1^ J^B5'5^1*

The proof is completed. []
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Finally, we show how the statement and the proof of Proposition 1.3 can be
modified in the case of the HB spaces.

PROPOSITION 1.8. — There exists a constant C such that for all v € H8^2)
and w such that diw = 0, Vw 6 HBt't , s < 2, t < 1 and s + 1 > 0 there exists
a sequence (aq^q') such that

|(A^(^Vw)|A^w)|

< Caq^-^-^-^'^s' |Vw|^/ . ||A^w||^2,

and \\ciq^q' ||^2,i = 1.
Proof. — As in the proof of Proposition 1.3 we write

\{^q'{v • Vw) | A^w)| = |(A^(T^Vw) | A^w)|
+|(A^(7?(^Vw))|A^/w)|

+|(A^(rv^)|A^w)|,
where T and J% are the two-dimensional paraproduct and remainder defined in
relation (1.9). The hypothesis on s,t and Lemma 1.6 imply that

\(\^(R(v^w)) | A^/w)| and \(Aq^(T^v) \ A^w)|

are well estimated. It remains to estimate

|(A^(T,Vw)|A^w)|.

As in Proposition 1.3, we see that it suffices to bound

h = |([A^,^]<^A^w | A^/w)|,

h = |(A^A^Ap,w | A^A»|,

under the assumptions \p — q\ < 4, and \p' — q\ < 4. To estimate the last term
we write

r IIA '̂ii^c < cy\\\^\\^ ^ cy^\v\^
\ \\Q,\^w\\^ ^ Cbq^-^-^^w^^

where ||^^||^2,i = 1. For Ji we remark again that

\\[h^f]b\\^<C\\Vf\\^- NL- \\xh\\^.

Applying this inequality with / = SqV3, b == Qj^q^'w and /i* = ^9,9' lt comes

||[A^,^]^A^w||^ < Caq^-^-^-^^ . |Vw|^,^,

where ||ag^||^2,i = 1. The conclusion follows. Q
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We now write the 3D Navier-Stokes equations as a perturbation of the 2D
Navier-Stokes equations. Let us define v = Mu and w = {I - M)u. Applying the
projections M and I - M to (N-S) it is not difficult to see that the Navier-Stokes
equations

{ 9tU + u • Vn — i^Au = —Vp,
(N-S) divu{t, •) = 0 for all t > 0,

U\t=0 = UQ,

are equivalent to the following coupled systems

{ 9tV + v^7v — v^v = —M(wVw) — Vpi,
(1.22) d ivv=0 ,

v\t=o = VQ (= Muo),

for some pi independent of 0:3 and

{ 9tW + vVw + w\/v + (I — M)(wVw) — ^Aw = —Vp2?
(1.23) d ivw=0 ,

wj^o = ^o (= (I - M)uo).

As far as v is concerned, only classical L2 energy estimates are needed; indeed,
in dimension two the regularity obtained via L2 energy estimates suffices to
ensure global existence and uniqueness. The problem is to derive estimates on
w. Since M and I-M are projections, their norms are equal to 1, so the estimates
below shall not involve these operators.

We shall also consider the case when UQ = VQ + WQ where VQ is not necessarily
the projection of UQ, hence it is not possible to write the same equations for v
and w. We will replace them with some simpler ones:

( 9tV + v ' "\/v — i/Av = —Vj/,
(1.24) div^,.) = 0 for all t > 0,

V\t=0=VQ,

for some p ' independent of x^ and

( OfW + w • Vw + w • \/v + v • Vw — ^Aw = —Vp",
(1.25) ^ divw(^, •) = 0 for all t ̂  0,

^\t=Q=WQ.
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2. The case of the H3^ spaces
Let 0 < 6 < 1. We shall prove the following theorems:

THEOREM 2.1 (global existence and uniqueness). — There exists a positive
constant C = C(8) such that if the initial data UQ has vanishing mean over the
three-dimensional torus, div^o = 0, VQ = MUQ e L2^2), WQ = (J — M)uo G
H6^-6 and

|wok^exp("^)<^

then the (N-S) equations have a unique global solution such that

(2.1) w = ( I - M)u e L^^oo^^/2^-^/2) nL^do^;^-^

and
f = =Mue ^(lo^oot;^1) nL^Oo^ool;^2).

THEOREM 2.2 (global existence and uniqueness). — There exists a positive
constant C = C(6) such that if the initial data verifies UQ = VQ +WQ, where VQ and
WQ have vanishing mean over the three-dimensional torus, div?;o = divwo = 0,
VQ <E L2^2), wo <E H6^-6 and

(Mi.
l-olM-^-^)^

then the (N-S) equations have a unique global solution such that, ifv is the unique
solution of the 2D {with three components) Navier-Stokes equations (1.24) with

veL^^^H^nL00^^!.2),

then

w = u - v C ̂ (jO^oot;^^)/2^1-^2) H L00^,^!!6^-6)

and is a solution of system (1.25).

THEOREM 2.3 (local existence and uniqueness). — If the initial data verifies
UQ = VQ + WQ, where VQ and WQ have vanishing mean over the three-dimensional
torus, divvo = divwo = 0, VQ G ̂ (T2) and WQ G H61 ̂ ~6 then there exist T >0
and a unique solution of (N-S) on [0,T] such that ifv is the unique solution of
the 2D (with three components) Navier-Stokes equations (1.24) with

v e ̂ (^oot;^1) nL^do^oo^L2),
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then

^ = u - v e L^lo^I;^^6)/2^1-^/2) n L°°(]o,r[;^-^

and is a solution of system (1.25).

The smallness assumption of Theorem 2.1 is a particular case of the one of
Theorem 2.2. We give two different theorems because v and w are not defined
in the same way in the two theorems (see relations (1.22), (1.23), (1.24) and
(1.25)). Moreover, we will need to make the asymptotic study, that is we will
consider the Navier-Stokes equations in Tg and we will study the dependence on
e of the constant C. In order to obtain optimal results, we will need to assume
that w is "homogeneous" in the third variable, which corresponds to the case of
Theorem 2.1. In short, Theorem 2.1 is a particular case of Theorem 2.2 when e is
fixed, but this changes when E —> 0. That is why we prefer to prove Theorem 2.1,
even though systems (1.22) and (1.23) are more complicated than systems (1.24)
and (1.25). The proof of Theorem 2.2 is similar to that of Theorem 2.1; it suffices
to replace the system for (I—M)u with system (1.25), the estimates are simpler.

Sketch of the proof of local existence. — We proved in Section 2 of [7] a local
existence and uniqueness theorem (Theorem 2.2) for solutions of the Navier-
Stokes equations with initial data in a space 7-̂ 1 ̂ 2,<5s ^ ^he proofs given there
can be adjusted to the case of the initial data in the space H61 ̂  ~6. Let us show
that those arguments can be modified to allow the presence of a two-dimensional
term, the v term. The proof will consist of some a priori estimates. As usual, the
existence can be rigorously justified by an approximation procedure.

Applying the operator A^g/ to the equation (1.25) of w, taking the scalar
product with A^g/w and using inequality (1.20) as well as the product Theo-
rems 1.1, 1.2 and Lemma 1.3 yields:

^||A^w||i. + Cv^ + 4^)||A^w||i.

< rt^1-6)^^6-^ 4-2-9<$+9^+<^<^ , l? /7 l 2 IIA in\\-^^^ +2 Jag,9/lwl(l+<$)/2,(l-<$)/2llA9,9/wll^2

+ C^^l-^+^-l)^ _p ^-g<?/2+g /(l+<$)/2^

• ^Wh j l^l(l+<$)/2,(l-<$)/2| |Ag,^w||^2,

where ^ ^^(^) = 1 for all t. GronwalPs Lemma gives
9,9
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11^^)11^

< ||A^wo||L2exp(-C^(49+49/)^
^^/^(l-^+g^-j) _^_ ^-^+g/(j+^)^

•a^|w|^^^^_^^*exp(-G^/(49+4g/)^)

+ C(2q{l~6/2)+qf{6~1^2 + 2-9<V2+(?/(1+<^/2)
• °W H j Ho+^Aa-^ * exp^-Ci^^ + 4^)^.

Taking the Z/^O.r) norm and using Young's inequality yields:

11^,9^11^(0,^^2)

^ C^-1/^ + 4^)-l/4||A,,,,wo||^ (1 - exp(-C7^ + 4^)r))1/4

+ C^-3/4 (2^1-6)+9/(<?- ^ ) + ̂ -^q'^ +<5)V49 ̂  49^-3/4

• H^wl^ (l+<$)/2,(l-<$)/2ll^2(o,^)

+ C7^/-3/4(29(l-5/^+9/^-l)/2 + 2-<?<$/2+9 /( l+<$)/2)(49 4. 49')-3/4

' l l^^ ' l^ l^ Mci+^A^-^^lli^o.r)-

It is easy to check that multiplying by 2^1+<?)/2+9/(l-^/2^ faking the £2 norm
and using Holder's inequality as well as Remark 1.1 implies

(2.2) ||'^||L4(0,T;^"(1+<$)/2,(1-<5)/2)

<A(^)+C^-3/4||^||
^ ̂  + ̂ ^IH^T.^ ) • ̂ "^(O^^^d-^)~ v / 1 1 "L4^^;^-?)

+ C^ llw l lL4(0,^;^"(l+6) /2,( l-5)/2)5

where

A(^)=^-l/4||2^+./(.-^)||A^,wo||L2(l-exp(-^(4^+4^)T))l/4||^.

The Lebesgue dominated convergence theorem shows that lim A(T) = 0
T^O

On the other hand, we know that v G L°°(0, cx);L2) H 7.2(0, oo;^1). Since
h| ^ ^11^||L2 • Hi. it follows that v e L^O.oo;^). Let r* be such that
A(T-) < ^/(IGC) and H^^.^^ < ̂ /4/(2Cf). Then, one has from (2.2)
and for all 0 < t < T*

^3/4 ^

h^O^H^/2^-6)/^ < -^T + ^374lHll4(o,^(i+.)/2,(i-.)/2).w
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But the quantity | |w||^4(o,t;^(i+5)/2,(i-6)/2) is continuous in time and vanishes
for t = 0. We infer that

1 1 1 1 ^3/4
l lw l lL4(0,(;^ l+^ /2,1-^/2) < ———^-

for all 0 < t <, T*. One can deduce from relation (2.7) that

9t w ̂  _, < -^ \v Mw|^ _, + ̂  |w|^/^i_,)/2.

Gronwall's lemma implies that w e L00^,^;!!6^-6). This completes the
proof. []

Proo/ of global existence. — We apply A^g/ to the equation verified by w and
we multiply by Ag^/w to obtain:

(2.3) ^||A^,w||i.+^||A^Vw||i.

^C|(A^(J-M)(wVw) A^/w)|
+C7[(A^(7;.Vw) A^w)|

+C[(A^(wVv) | A^/w)|.

Since w is divergence free an integration by parts shows that

|(A^/(J-M)(wVw) |A^/w)| = |(A^(J-M)(w0w) | A^Vw)[

and we can use the product Theorem 1.1 to deduce that

(2.4) |(A^(J-M)(w.Vw)|A^w)|

< Cb^2-^^-^ . \w\^^_^ . ||A^Vw||^

where ^^^/ = 1. Next we use Proposition 1.3 to obtain that
q.q'

(2.5) |(A^.Vw)|A^w)|

< Ca^2-^^-^\v\, . |Vw ̂ _, . ||A^w||^,

where V^^,^ = 1.
g^7
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Applying Theorem 1.2 and Lemma 1.3 gives

(2.6) |(A^(w.V^|A^w)|

< Cc^2^)-^-^Hi • H, i-. • IIA^/wll^,

where ̂ c^ = 1.
9,9

Using relations (2.4), (2.5) and (2.6) in (2.3) yields

%||A^w||i.+2z.||A^Vw||i.

< C^^-^-^-^Hi . |Vw|,^_, . ||A^w||^

+C^2-^-^^-^|w|^^/2^_,)/, . ||A^Vw||^

+ Cc^^^1-^^^-^^!! • |w|,i_, . ||A^w||^.o , ^ -

Multiplying both sides by 49<?+9 ^2~6^ using Schwarz's inequality, summing
and using Proposition 1.2 implies

(2.7) W^_,+2i/|V<^_,

^ C\V\l •\^W\s^_s•\w}s^_s+C\W2^s)/2,(l-S)/2• |Vw|^_5.

Interpolating fft^15)/2^1-6)/2 between H6^'6 and -ff1 '^ and using again Pro-
position 1.2 we find

(2.8) \W\^+s)/2,(l-S)/2 ̂  \W\S^-6 • Hi,5 ^ 1^16,5-5 • IVwIg^.^.

Therefore

Qt^^s+^Ws^-s
< C\v\i • |Vw|^ ^ _, • |w|^ ^ _, + <7|w|^ ^ _„ • |Vw|^ ^ _,

^ ^HMw^^+qwig^^.ivwi^^+^^ivwil^^.

One deduces

(2.9) 9t|w|^_,+3i//2|Vw|^_,

^ ^l^l? • klJ^-^ +<"H^-5 • |Vw|^_,.
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Let us assume that C\ > C and
v

2C[(2.10) K,j-,<

It follows that
C_

(2.11) 9,w\]__^^w\]__^-\v\^\w\^__,..t-° ' •^t-° — v ' ^ ' '^t

GronwalPs inequality then implies

(2.12) Kt)|^_, < |wo|^_,exp(^Kr)|^dT).

We have to estimate Jo(G/^)|v(r)|^dr in terms of H^oll i^ . To do that we take
the product of equation (1.22) with v and we integrate by parts to obtain that

(2.13) 9t\\v\\i. +2^H^ < |(M(wVw) | v}\

< |(M(w(g)w) | Vv)|

<C|^[i • |M(w(g)w)|^(T2)

^C7|i;|r |M(w(g)w)|^,^)

=C7|^|i • |M(w(g)w)|^_^

^ C7|2;|i • |w(g)w|^i_^.

Using the product Theorem 1.1 and inequalities (2.8), (2.10) yields

(2.14) 9t\\v\\i. + 2^H^ ^ GHi . |w|^/2^i_,)/2

<C7|^|i • \W\s^_^w\6^-6
Cv , . ,

< -^Hi '|v^l<$,j-6
<^l?+^|Vw|^_,.. 1 2 , ^IT^.,^

^2
^1

Hence

(2.15) ^l<2+^H?<^|Vw|^_,.1|2 i ,,|.,|2 ^ ^1^7...12
-^2
^1

Integrating this inequality gives

(2.16) fh(T)|;dT^ ^y'lVw^l^^dr+^KIli..
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We go back to inequality (2.11) and we integrate to obtain

/'I^MI^-^T^ ^|wo|^_,+^^l.(r)|;. w(T)|^_,dr

^KIU-.+ ̂ f^\>-V ' -"°.3-0 Cf Jo

The inequality above along with relation (2.16) yields for large enough C\
i-t

\vf ^dT^JIM^+^lwoj^.

Now, we use this inequality in (2.12) and we find

^[^^^^^.^^(^(KlU-^^0^2))-
Recall that this holds only as long as

!<„-.< 2^ •
Hence the condition to assume initially is

/ C \ i/2
|^o|^_^exp(^(|wo|^_^+||vo|li2))^ ^2-

This is implied by a condition of the type

Kki-"p("^1)^.
Indeed, if the latter holds, we have

\^0\6^-6 <C'V,

which gives

kolt^exp (^^ (K|^_<5 + Kl^))

<exp(CQ|wo|^_,exp(^)

< exp(C/)G/^

We proved that Vw G L2^, oo^H6^-6). From inequalities (2.12) and (2.8) we
deduce that

w C L°° (]0, oo[;^ ^ -6) n L4 (]0, ool;^^^/2^-^/2).

Finally, integrating relation (2.15) shows that

^GL^O.r^nL^O.T;^1).

This completes the proof of global existence. []
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Proof of uniqueness. — Let u^ and u^ be two solutions with the same initial
data such that for i = 1, 2

w, = (I-M)u, e L^^T^H^^^-^/^nL00^^^6^-6),

vi = Mu, e L°°(o,r;L2) n 2.2(0, T;^1).
We deduce by interpolation that ̂  C ^(O, T;^). The difference ?;i -^2 verifies
the equation

9t{Vt - V2) - y^(Vt - V2) + 2;iV(vi - ̂ 2) + (^1 - 'y2)V?;2

+ div M(wi 0 wi - W2 0 W2) = Vpi,

for some pi. The usual L2 energy estimates give

<9t|hi - V2\\i2 + 2 î - v^
< C\\V^ -V2\\L^ ' \Vl -V2\l ' Ml

+ 2||M(wi 0 Wi - W2 0 W2)||^ • 1^1 - ̂ 2|l.

We infer that

(2.17) 9t\\vi-V2\\i^y\vi-V2\'i

<Clhl -V2\\i2 • |^ |?+C7| |M(wi(g)Wi -W20W2)| |^ .

But
||M(WI (g)Wi -W2 0W2)| |^2

^ |M(WI 0Wi -W2 0W2)|^ ^ _ ^

^ |(wi - ^ 2 ) 0 W i | ^ ^ _ ^ + |W20(W1 - W 2 ) | ^ ^ _ ^

< G|WI - W2|(i+^)/2,(l-<$)/2

• (l^ll(l+<$)/2,(l-<$)/2 + |^2|(1+^)/2,(1-<?)/2).

Applying Gronwall's lemma in (2.17) now yields

\\^-V2)(t)\\^+y[ \v,-v^dr
Jo

^exp (C^ ̂ l^dr) f^ - w^^_^

' (l^l|^l+5)/2,(l-<?)/2 + l^lfi-^)^!-^)^

< Cexp (C7y H?dT)l|wi - W2||i4(o,r;^(^)/2,(i-.)/2)

' ( l lw l l lL4(0, t ;^( l+•5)/2,( l-6)/2) + II^II^O^^I+.'Q^.CI-^)^)).
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Since |^i — z^l i ^ ll^i — ^H^ • hi — V2\f we infer that

(2.18) lhi-^2|^^

< Cexp(c l^drjUwi - z^H^^r;^^)/2^-^)/2)

• (ll^lllL^O^^+^^Ci-^/^) + ||W2||L4(0,^•,^(1+<5)/2•(1-•5)/2))•

We turn to the estimate of wi — W2. Its equation is

9t{wi — w'z) — z^A(wi — ^2) + (^ — M)wiV(wi — w^)
+ (J - M)(WI - W2)VW2 + VlV(wi - ̂ 2) + (v-t - V2)VW2

+ WlV(^i — 2:2) + (^1 — W2)V^2 = V?2;

for some p^. As in the proof of local existence, one can deduce that

H'^1 — W2||L4(0,T;^(1+<5)/2 '(1-^)/2)

< C||wi — W2||^4(o,^;^( l+^)/2 ' ( l-<$)/2)

' (llwl | lL4(0,^;^( l+•5)/2 ' ( l-<5)/2) + llw2||L4(0,T;a•( l+<$)/2 '( l-^)/2)

+^lll^(O.T.^.)+^21lL.(0,T;^.))

+C7||^i -^II^Q^^^Olwill^^T;^^)/2^1-^/2)

+ IIW2||L4(0,^;^(1+6)/2•(1-<5)/2))•

In view of (2.18) we obtain

(2.19) ||wi — W2||^4(o,^;^( l+<5)/2 '( l-<5)/2)
< ||wi -W2||^4(o,T;^( l+<5)/2 '( l-6)/2)-0(T)?

where

B(T) = C<{||wl||^4(o,^•,a•( l+<$)/2 '( l-6)/2)
/IT

+ llw2||L4(o,^;^(l+<5)/2 '(l-^/2)}exP (c/ l^l^drj

+ ̂ (IHI^T;^) + ll^llL^o^^.))-

Since 5 is continuous and B(0) = 0 we obtain from (2.19) and (2.18) local
uniqueness, that is global uniqueness. []
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3. The case of the HB33 spaces
We shall prove the following theorems:

THEOREM 3.1 (global existence and uniqueness). — There exists C > 0 such
that if the initial data UQ has vanishing mean over the three-dimensional torus^

divuo =0, VQ= MUQ C L^T2), wo = {I - M)uo e HB°^

and |«'«|»^ex')('y!^)«'-.
then the (N-S) equations have a unique global solution such that

(3.1) w=(J-M)^eL4(]o,oo[;Jro^^)nLOO(]o,oo[;Jroo^)
and

v = Mu e ̂ OO.oo^1) H L°°(]0,oo[;L2).

THEOREM 3.2 (global existence and uniqueness). — There exists C > 0 such
that if the initial data verifies UQ = VQ + wo, where VQ and WQ have vanishing
mean over the three-dimensional torus,

div VQ = div wo = 0, VQ e L^T2), wo C HB°' ^

and |"»|^.^"p(^l)<^
then the (N-S) equations have a unique global solution such that, ifv is the unique
solution of the 2D {with three components) Navier-Stokes equations (1.24) with

^e^Oo^^nL^^oo^L2),
then

w=u-veL\}0,oo[•,HB^^)^}LOO{}0,oo[',HBO^)
and is a solution of system (1.25).

As far as local existence is concerned, the 2-dimensional part v is not
important. Indeed, a square integrable 2D function belongs to HB°^ as a 3D
function, so UQ e HB°^. It is proved in [7] in a more difficult setting the
local existence of a solution u e L^(Q,T;HB^^). But v e ^(O.T'.H^) so
v e L^{0,T',HB^^) which implies that

w = n - ̂  C L^O, r;^^ ).

As for the case of H8^ spaces, Theorem 3.1 is a particular case of Theo-
rem 3.2, the reason of its presence is that in the asymptotic study we have to
work in homogeneous spaces in order to obtain optimal results. Let us remark
that the space HB°^ is invariant for the scaling ^3 »—^ \x^, as well as for the
usual scaling of the Navier-Stokes equations.
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Proof of global existence. — As in Theorem 2.1 we may find the inequality

(3.2) 9t\\^w\\i. + ̂ ||A^Vw||i.

^ ^g'llAg.g'Wll^ + C'(?g,J[Ag,g/W||^ +C^,J|Ag,g,W||^

where
_ |(A^(u-Vw) |Ag^w)|

-r q , q ' — iT~A—————ri————————— 5

||Ag,g/W||^

G. , ̂  |(Aq^(w-V^) |A^w)|
ll^.g'wllLZ

^ ^ |(Ag^(7 - M)(W • VW) | Ag g,W)|

<?'9' A ^ w | | ^ '

if \\\q^w\\^ ^ 0 and 0 otherwise. The function t ̂  ||Ag,g,w||^2 is a Lipschitz
function, hence its derivative exists almost everywhere. A variant of Gronwall's
inequality and inequality (3.2) now implies that

9t\\^q'w\\L2 + v{^ + 4«')||A^u;||^ ^ CF^, + CG^ + CH^.

Multiplying by 29'/2 and summing on q' yields

9t Y, 2(''/2||A^w||^ + v Yj^ + 4^'/2||A^w||^
1' g'

^ C^V'^F^ +cy/2G^ +Cy2H^.
q' q' q'

Now we multiply by ̂  2g//2||A^/w||^2 and we sum on q to obtain
q '

()<E(E297211A^w|^)2

q q'

+2^/E((E(4(^+4<^')2g721|A^w||,.)(^2^2||A^w||^))
g g' ' g' //

<CE((E2972^')(E2g721|A^w||,.))
9 97 q'

+c1E((E2g72^-)(E2972ll^w||„))
9 9' g7

+c7E((E2g72^-)(E2g72ll^-ll^))•
9 9' 9' //
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From Schwarz's inequality we get

^ + 4('')2^'/2||A^w||^ ̂  2(''/2||A^w||^
<?' g'

^(^'/^^^IIA^-wH^)2,
9'

EKE^ .̂Qd:̂ '''2!!̂ ..-!!̂ ))

' s{E(E^)y{Z(E^llA„.-»ll.,)2}i,
^ q1 q q'

EKE2972^-)^:2972!!^,^!!..))
9/ = E ((E2^^972^.') (E^^iiA^wii^)

9 g' g/ //

^{Ed:2-^72^')2}3

•^(E2^72"^-!!..)2}3.
9 9'

and the same inequality for the Jf-term

EKE2972^^2972^-^))
9 q' q'

^{Ed:2-^72^')2}3

•{E(E2g/2+g72llA.^ll.-)2}3.
q q' / )

It follows that

wLo,,+^<,o,
^^^l^.ill2972^'!^1

+clwl^... ̂ ~Q/2+q'/2G^'\\^ + ||2-<'/2+^'/2^,,||,.,,).
Using Propositions 1.4 and 1.5 yields

^-^^G^lk^GHi.H^,,,,
1|2-^'/2^, 11,.,, ^ C|w|^ ,, ̂  |Vw|^, ̂  .
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Proposition 1.8 gives

^^^'ll^i^q^ii.ivwi^^.

Furthermore, applying Proposition 1.7 and interpolating HB ̂  ̂  between HB°- ^
and H B 1 ' 2 yields

(3-3) ^<o,,^|V^

<^H^i,,(Hi+|Vw|^,,)
+CH^o,,Hr|Vw|^o^

^ ̂ H^o, i H^^ (Hi + |Vw^)
+^H^o,,Hr|Vw|^^

^ ̂ H^o,, |Vw|^o, ̂  (Hi + |vw|^, ̂ )

^'^'Lo-.+^HM-lLo,,
+c-iv<,o,,l<,o,i.

Therefore
(3-4) ^HL-.^^i^iLo,

<^M?•'wlL°..+GlvwlL°..•H^o,^.
This inequality is entirely similar to inequality (2.9), so we can repeat the
argument valid in the Sobolev spaces case to obtain the existence of a solution
such that

w e L°°([0,oo]; ffi?0-?), Vw e L^oo]; ffi?0-?).

We use again Proposition 1.7 and the interpolation to deduce that

weL\[0,oo];HB^'^.

This completes the proof of the global existence. [|

Proof of uniqueness. — An uniqueness result is proved in [7] but in a space
smaller than the one we consider here. Therefore, we have to give another proof.
Let T > 0. We prove that a solution with w in

L4 ([0, T]; HB 5 • 5) n L°° ([0, T]; HB0' 3)
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and with initial data UQ is unique in this class. We saw in inequality (3.3) that

^1<B^ +^V<BO.. ̂ K^.^+l^l^)

+^H^o,i •\Vl-W^^.

Furthermore, we deduce

^K^^^I^IL"^
^l.,,^ , , , ^ L . 1 2 . ^i,.,^ |,,|2^^HL^^Gl'l^^^^rK

Integrating yields
VweL^r];^®0^).

Moreover, since |v| i^ = |v|i, the standard energy estimates for the Navier-
Stokes equations imply that

u c ̂ ([o.r]; HB^}, vn e ̂ ([o.r]; jro0^).
Let ^1 and u^ be two such solutions. Subtracting the equations verified by u\

and ^2 yields

9i(ui - ̂ 2) - ̂ A(ni - -^2) + ^i • V(ni - ̂ 2) + (^i - u-2) ' V^ = V(pi - 7)2).

Making similar computations as in the proof of the global existence we find the
inequality

(3.5) 9t\u,-u,\^ +^|V(^-^)|2^

<^-^^-|V^o,,

+C^HB^1. •I"1-"2!^,, •V(yi-U2)|^o,i

Let
A^q^-^^.iv^o,,,
5 ̂  ̂ l"1!^*.. • I"! - "2l^^i • 1^1 - "2)1^0,, .

Using the interpolation, Schwarz's inequality and Proposition 1.2 we get

B<\ul\HB^h •l^l-^l^ •|U1-«2^^ -|V(U1-H2)^

^ iHll̂ ,,, • ̂  - U^^ . |V(^ - ̂ )|̂

^ ̂ ^iLi.^l"1-"2^.. +^-IV("1-U2)IL°^'
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and
A ̂  |ui - ̂ |̂ ,i • k - ̂ l^o,, • jV^l^o,,

^ |V(^ -^)|^o,i • k -"2|^o,i • |V^|^o,,

< ^|V("1 -"2)l^o,, + ̂ \U,-U^^ . |V^|^.

The two inequalities above along with relation (3.5) imply

^l-u2lL".4 ^ ̂ -<^(i<^.i ̂ lLo,,).
Uniqueness now follows from a simple application of GronwalPs lemma. Q

4. Asymptotic study
In this section we work in

T, = ]0, 27T[ X ]0, 27T[ X ]0, 27T£[, £ ^ 1

and we study the dependence on e of the constant of Theorem 2.1. All the norms
of the 2-dimensional functions are understood to be taken in T2. We shall prove
that the constant from Theorem 2.1 can be chosen independent ofe. This follows
from the simple remark that the classical product theorem for the Sobolev spaces
is valid for the homogeneous Sobolev spaces, so the constant involved should
be scale-invariant; it follows that in the periodic case the constant involved
should not depend on the period, hence all the constants appearing in the
proof of Theorem 2.1 should not depend on e. However, the spaces should be
"homogeneous" in the third variable, and that is why we have to assume that
Mw = 0. We now redefine in a "natural" way some of the quantities we are
working with. From now on, all constants are assumed to be independent of e.
Let u be periodic on T^ and Un be such that

u^) = —r- ̂  Unexp (i(n^ +7^2 + ^a-sY).
ve n€Z3 v v e »

Note that
\\e~^ exp(z(nia1! +712^2 4-^3/^3)) ||^2 = (27r)3/2.

We redefine

IX.— |K(1 +1^12)s/2(n3/^/||^
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1 />27r£

Mu(x^,x^) = -— / ^(a;)d;r3,
27T£ 7o

\,q'u(x) = e~ ̂  ^ ^n exp(z(?2ia;i + n^x-2 + ̂ 3/^3))

^h /^hnCZ3

^Mî )'
We need to redefine the • \s^sf norm because in the asymptotic study the proofs
will be based on a dilatation in the third variable so we need a norm which
is homogeneous. It is obvious that the two norms are equivalent if Mu = 0.
Furthermore, the || • |s^/ norm is equivalent to the norm defined by dyadic
decomposition:

Ih^+^^NA ,7/||.., |
II 11—<L9 ^II-L2 |^25

and the constants in this equivalence are independent of e.

We are ready to prove the following theorem.

THEOREM 4.1. — Consider the Navier-Stokes equations on the thin three
dimensional torus Tg and 0 < 6 < ^. There exists a positive constant C = C(6)
independent of e such that if the initial data UQ has vanishing mean over Tg,

divno-0, VQ=MUQ CL^T2), WQ = (I - M)uo ^ H 6 ^ - 6

and
„ , / K||i2(TT2)\ .,
||wo|^_^exp^——^——) <c^

then the (N-S) equations have a unique global solution such that

(4.1) w=(J-M)^^eL4(]0,oo[;^ l+^2^1-^/2)nLOO(]0,oo[;^^-6)

and
v = Mu e ^(jO.ool;^1) H L°°(]0,oo[;L2)

Proof. — It suffices to prove that the constants from Lemma 1.3, from
Propositions 1.1, 1.3, 1.2, from Theorems 1.1, 1.2 and from relation (2.15) can be
chosen independent of e if the 3D functions are assumed to have vanishing mean
in the third direction and the | • \s,s' norm is replaced with the || • \s,s' norm. We
define

^(0-1,^2^3) = \/£u{x^,x^,ex^)

or, if u is not depending on x^, Us = u. Next we compute the |[ • [s^/ norm of u
in terms of the || • \s,s' norm of u^. We have

\\u\s^s'= K(l + IrWW^ H,,

- ̂ ||^(1 + Inf)572^^ = ̂ IKI^/.
We start with Theorem 1.1.
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THEOREM 4.2. — Let u and v two periodic functions on the thin three
dimensional torus T, such that u e ̂ < v e 7^< s^t < 1 and s + t > 0
s^t' < j and s ' +^ > 0. TTien TO e 7:fs+^-l's/+^-^ and

M^-i,^-^ ^IH^-IH^,
m^ a constant C independent of e.

Proof. — We have

M^^,_^ = ̂ -^-^IKTO),!^.,^^^
=6 s \\ueVe\s+t-l,s'^tf-^^

IH^ ' \\V\t,t' = ̂ "'^Kl^ • \\Ve\t,t^

Applying now Theorem 1.1 for ̂  and ^ gives the conclusion. []

We now state the variant of Theorem 1.2 on T^.

THEOREM 4.3. - Letv e H^T2) and w be a perzodzc function on the thin
three dimensional torus T, such that w e J^< s,t < 1 and s +1 > 0. Then

vw e H8^-^^ \\vw\^t,,^ ^ C\V\HS^) • |H ,̂

where the constant C is independent of e.

Proof. — The same proof as above holds, all we have to do is to remark that

(vw)^ = v(w^). []

Next we consider the case of the Proposition 1.3.

PROPOSITION 4.1. — There exists a constant C independent of e such that for
all v G I I s (T ) and every w periodic on the thin three dimensional torus T such
that div^ = 0, Vw C ̂  ^ s < ̂ t < 1 and s +1 > 0 there exists a sequence
^ q ^ q ' ) such that

KA^^.VW) |A^,w)|

< Ca^2-^-^'\^^ . nvwl,,,, . ||A^,w||^

and \\aq^\\(,2 = 1.
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Proof. — We remark that, in fact, the whole argument takes place on T2,
so e should not affect the inequalities proved there. Let us prove it rigorously.
First, we look at the terms given in (1.13) and (1.14). We saw above that in the
product Theorem 4.3, the constant C does not depend on e. Now we need to
prove that in the inequalities from Lemma 1.5, the constant C does not depend
on e. This is proved by remarking that (ApW)g = Ap(wg) and (SpW)e = Sp(we),
hence, definitions (1.9) imply that

(T,w), =T,(w,), {R(v,w))^=R(v^We), (7>), =T,(w,),

thus we can conclude as above. It remains to study the estimate on (1.15). The
estimate (1.16) is independent of e since v is independent of the third variable.
Finally, the last place where e might have an influence is inequality (1.18), more
precisely, when we estimate ||a'/i||^i. In fact, since / does not depend on the third
variable, a closer look to the proof of inequality (1.18) shows that it suffices to
estimate ||a//2-||L1? thus it suffices to estimate H^-Hz , 1 - But /z* = Ag^/, hence

, 1 V^ /./ , , ri3 A (\n' \ (\n^\\h=^ L^P^^i+^^+y^)^^)^^^).
n€Z3

It follows that

^Ll = I S exP(^(nl^l+n2^2+^3^3))^(^)^(-l^)| ^
n€Z3 E L

and this is independent of e: as a consequence of the proof of Lemma 1.1. This
completes the proof. []

Finally, it is clear that the proofs of Propositions 1.1 and 1.2 hold for
homogeneous norms and with constants independent of e.

It remains to look at the proof of relation (2.15). As in (2.13), we have

9t\\v\\i^2v\v\^ < | (M(w0w) |V^)| .

Furthermore, the definition of the projection M implies

1 3 f
(M(w(g)w) | Vv) = ,— V / WiWjQiVj.

Z7T£ —J /T
ij^l^^e

The product Theorem 4.3 now gives

C 3

| (M(W^W)|V^|<^ ^ ̂  M^-6-M^- -6,6-^

tj=i

<^C/E\\W\6^-6• 11^ 1-6,<5-^ HI-
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The definition of the norm || • \s,s^ the hypothesis 6 < ^ along with Proposi-
tion 1.2 for homogeneous norms yield

|Hi_^_^ ^^ | |wi_^+^ ^C^||Vw|^_^.

The inequalities above imply

9t\\v\\i^2v\v\i < |(M(w0w)|V2;)| < C\\w\^_, • ||Vw|^_, . Hi.

One obtains inequality (2.15) as in relation (2.14). This completes the proof of
Theorem 4.1. Q

As an immediate corollary we find

COROLLARY 4.1. — There exists a constant C > 0 independent of e such that
if UQ has vanishing mean over the three dimensional torus, VQ = MUQ G L^T2),
wo = {I - M)uo G ̂ (Te) and

( |Nli2(T2)\ _i
K|^i(T,)exp^—^—)<Cye ^

then the (N-S) equations have a unique global solution with initial data UQ.

Proof. — It suffices to remark that

/ |2 i ^2/.2\\\w\\H^^=\\^n(\n'\^ni/e^\\^

> ^-.llw^l+KlY/2^/^)^-^2^

= j^lM^-^

and to use Theorem 4.1. []

The same method may be used to prove that the constant from Theorem 3.1
is independent of e. The most delicate argument is the equivalence between

^HB^8' an(^ e~s \U£\HBS'S^

which is the behavior of the Besov spaces with respect to dilatations. In the
following we give the proof of this equivalence.
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Since we want to reduce the problem to an equivalent one but on the torus
not depending on e, we need to define a dyadic decomposition which depends
on E but is for functions on T3. This new decomposition is given by

^u(x)= ̂  ^exp(z(nl^l+n2^2+n3^3))x(^)xf- l^ | ly
nez3 - £z /

Then it is easy to see that

H^-/=||29S+9/S/||A^,^||^||^.

We have
2< '̂5'||A^||^ < ̂ ^'HA^A^II^.

q"

But A^Ag',,^ i- 0 only when l/(Ce) < li'-i" ^ C / e , that is when

cl+^lnle<-q'-q"<c2+^Ille•

We deduce

2^s/\\^u^ < Ce-8' ^ 2^'^IIA^^H^.
C'l+T^ln1^-^

Q'-g'^C'a+T^ Inl

Taking the £2^ norm and applying Young's inequality we find

^HB8^' <-^e U£\HBS^''•

The reverse inequality may be proved in the same way. This completes the proof.

We end up this section with the remark that all the results above are valid
for the domain M2 x ]0,27re[. The same proofs apply if, for

^) = —r y^n^i^expf^sVVs ̂  ^ e )/e n^ y £

we define

Sq^u(x)= ——^ ^SqUn^X^X^X^^Xp^X^.jq^q'u,^) — ——= ^ ^ CfqUn^X-t,

nez
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