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THE 3D NAVIER-STOKES EQUATIONS
SEEN AS A PERTURBATION OF THE
2D NAVIER-STOKES EQUATIONS
PAR DRAGOS IFTIMIE (*)

ABSTRACT. — We consider the periodic 3D Navier-Stokes equations and we take the
initial data of the form wg = vg + wo, where vy does not depend on the third variable. We
prove that, in order to obtain global existence and uniqueness, it suffices to assume that
llwoll x exp([lvol2, T2)/C"2) < Cv, where X is a space with a regularity H® in the first two

directions and H 2 ~% in the third direction or, if § = 0, a space which is L2 in the first two
1

directions and 325,1 in the third direction. We also consider the same equations on the torus
with the thickness in the third direction equal to € and we study the dependence on € of the
constant C above. We show that if vg is the projection of the initial data on the space of
functions independent of the third variable, then the constant C' can be chosen independent
of €.

RESUME. — LES EQUATIONS DE NAVIER-STOKES 3D VUES COMME UNE PERTURBATION
DES EQUATIONS DE NAVIER-STOKES 2D. — On considére les équations de Navier-Stokes
périodiques 3D et on prend la donnée initiale de la forme up = vo +wo, ol vo ne dépend pas de
la troisi¢me variable. On démontre que, afin d’obtenir I’existence et 'unicité globale, il suffit
de supposer que ||lwol|x exp(||volliz(T2)/Cu2) < Cv, ou X est un espace avec une régularité

H? dans les deux premiéres directions et H 2 ~¢ dans la troisiéme direction ou, si 6 = 0, un

1
espace qui est L2 dans les deux premiéres directions et 325,1 dans la troisieme direction. On
considére aussi le méme systéme sur le tore avec une épaisseur € dans la troisieme direction et
on étudie la dépendance de € de la constante C ci-dessus. On trouve que, si vg est la projection
de la donnée initiale sur ’espace des fonctions indépendantes de la troisieme variable, alors la
constante C' peut étre choisie indépendante de .
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474 D. IFTIMIE

Introduction

The periodic 3D Navier-Stokes equations are the following:

ou+u-Vu—vAu = —Vp,
(N-S) divu(t,-) =0 forall¢t>0,

U|¢=0 = Uo-

Here, u(t,z) is a periodic time-dependent 3-dimensional vector-field. For the
sake of simplicity, we assume that the force is vanishing. This is not a serious
restriction, it is clear that the difficulty in solving these equations comes from
the non linear term. Similar results may be proved in the same way with a
force square-integrable in time with values in the right space. The choice of
periodic boundary conditions comes from the need to use the Fourier transform;
for this reason our methods do not trivially extend to other classical boundary
conditions.

It is well-known that in 2D, there exists a global unique solution for square-
integrable initial velocity. In larger dimensions, unless some symmetry is assu-
med, global existence and uniqueness of solutions is known to hold only for small
and more regular initial velocities. The goal of this paper is to prove global exis-
tence and uniqueness results by considering the 3D Navier-Stokes system as a
perturbation of the 2D system. To do that, we write the initial data as the sum
of a 2-dimensional initial part and a remainder. The main theorem says that, in
order to obtain global existence, it suffices to assume the remainder small, and
small compared to the 2-dimensional part.

Some stability results are already proved by G. Ponce, R. Racke, T.C. Sideris
and E.S. Titi in [9] but the norm of the remainder is not estimated and the
2-dimensional part of the initial data is assumed to be in H! N L! and not in
L2, the optimal assumption. This loss of regularity appears when they take the
product of a 2-dimensional function with a 3-dimensional function. This difficulty
is overwhelmed here by introducing anisotropic spaces, where the variables are
“separated”. The loss of regularity is then optimal. Another advantage of these
spaces is that they are larger than the usual Sobolev spaces, hence we obtain in
the same time more general theorems.

It is natural to ask if the 3D Navier-Stokes equations on thin domains are close
to the 2D Navier-Stokes equations from the point of view of global existence and
uniqueness of solutions. A second aim of this work is to do the asymptotic study
of the Navier-Stokes equations on T, = [0, 2ma] X [0, 27b] X [0, 27e] when & — 0,
as was first considered by G.Raugel and G.R.Sell [11], [10] and, afterwards,
by J.D. Avrin [1], R. Temam and M. Ziane [12], [13] and I. Moise, R. Temam
and M. Ziane [8]. By asymptotic study, we mean proving global existence and
uniqueness of solutions for initial data in optimal sets, whose diameters should
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NAVIER-STOKES EQUATIONS 475

go to infinity when the slenderness of the domain goes to 0. To do that, it is
natural to work in spaces where the third variable is distinguished. It appears
that the anisotropic spaces are again well adapted to this study.
In an earlier paper [7], we proved global existence and uniqueness of solutions
for (N-S) in R? with small initial data in
1

1 1
61,62,63 § § o= =y —= &; -,
H , 01+ 02+ 03 3 ) <0 < 5

a space which is H% in the i-th direction. Here we apply in the periodic case
the work we have done there. The precise result is that there exists a positive
constant C, independent of v, such that if 0 < § < 1 and the initial data is
vg +wo with vy independent of the third variable, then, in order to obtain global
existence and uniqueness of solutions, it suffices to assume that

“UO”%z(Tz)
Cv?

where X is a space which is H? in the first two variables and H 2% in the third

(0.1) l[wollx exp ( ) <Cv,

1
variable, or, if § = 0, a space which is L? in the first two variables and B3, in
the third variable, where B, , is the usual Besov space given by

B; , = {u € &' such that || 2°°||A;ul| s

where A;u is defined in (1.1). We shall also prove local existence and uniqueness
of solutions for arbitrary initial data in the spaces above.

In the third paragraph we work in T, and we study the dependence on ¢ of
the constant of inequality (0.1). We shall prove that if vg is the projection of the
initial data on the space of functions independent of z3 and 0 < § < %, then the
constant C' can be chosen independent of e. This will imply that global existence
and uniqueness is achieved as long as

”Eq < OO}’

”'UOH%z T2
(0.2) lwoll ;3 5, exP <c_y2(‘)) < Cw.

The inequality above can be read in various ways. For instance, it is implied by

l[voll3
lwo |l 2 (t. ) exp (%) < Cue‘%,

or, for all a > 0, by
lvoll 22y < Cv(1+ /—aloge) and [wolgi(r,) < Cre™ 2+

Finally, if one needs to have a larger vy, one can take vy arbitrarily large, the
price to pay is that wy has to be assumed exponentially small with respect to
that vg.

Let us compare this theorem with the previous results.
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476 D. IFTIMIE

The precise results of G. Raugel and G.R. Sell [11], [10] are rather complicated
so we give only an approximation: they consider various boundary conditions and
obtain global existence and uniqueness of solutions as long as

—5/24 —5/48

”’UO”HI('H‘Z) < Ce and ”’LUO”HI(']I‘E) < Ce

or
llvoll 2y < Ce™ 732, vl 212y < Ce® and |lwollerigr.y < Ce™ /3,

where v3 is the third component of vy.

In the paper of J.D. Avrin [1] it is shown that ||ug|| g1 < C)\l_l/4 suffices in the
case of homogeneous Dirichlet boundary conditions; we denoted by \; the first
eigenvalue of the Laplacian with homogeneous Dirichlet boundary conditions. In
the case of a thin domain, the equivalent of Avrin’s result would be:

llwol|zrr < Ce™ 3.

Let us note that in the case of homogeneous Dirichlet boundary conditions the
2-dimensional part can not be defined, so one of the major difficulties of the
problem, mixture of 2D functions with 3D functions, does not appear.

I. Moise, R. Temam and M. Ziane [8] prove that it is sufficient to assume that

-1 1
lvoll 1 (r2y < Ce™ 5+ and  |Jwolla(r,) < Ce™ 5+,

where § is a positive number.

Finally we mention that spherical domains are considered by R. Temam and
M. Ziane [13].

1. Notations and preliminary results

Many of the notations and the results from [7] remain valid here with minor
modifications; for those results, we shall only sketch the proofs. The main
differences are that we use the Littlewood-Paley theory in two variables instead
of three and we have to adjust to the periodic case the definition of the A,
operators. We work in

T2 = [0, 27] x [0, 27] x [0, 2]
and we denote by (1,72, 73) = (z',z3) the variable in T2. All the functions are
assumed to have vanishing integral on T3. Let

P9 = {u such that ||u||zr.« def |]||u(ac)||,;;3 ||Lp/ < oo},

and ¢P>7 be the similar space for sequences. Obviously, when p = ¢, the spaces
PP and LPP are nothing else but the usual /P and LP spaces. The order of
integrations is important, as shown by the following remark (see [7]):
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NAVIER-STOKES EQUATIONS 477

REMARK 1.1. — Let (X3, p1), (X2, u2) be two measure spaces, 1 < p < g and
f: X xY — R. Then
HHf( . ,x2)I|L”(X1,H1)”Lq(Xz,uz) < H“f(l‘l, . )“Lq(Xz,uz)HLp(Xl’”l).
The Holder and Young inequalities for the LP-9 spaces take the form:
Ifgllra < W fllovallgliLese,
1 1 1 1 1 1
where — = — + —) — = —
P N P2 g q1 q2
I * gllpar < [ fllpeseallgllzozzs

)

1
wherel+ - = — + — 14+ - = — 4+ —-
a

We denote by h* the operator of convolution with h.
If u is periodic, then it has a Fourier series

u(z) = Z un exp(in- ), wu, € C.
nez3

For ¢ > 0 and ¢’ > 0, we define

. n/
Sou = Z unexp(znw)x(%),
nezsd
Sy = Z u exp(inm)x(m)
q n 29 4
nezsd
A =S8 -8 _,= Zu exp(in - x) (m) Vg>1
q q q-1 n €Xp P\ 5q q=1,
nezs
(1.1) Ay =8y = Z U(0,0,n5) €XP(iN3T3),
n3€Z
. ng
M= Sy = Y wmesptin- (18] Vo1
nezsd
AY=Sg =D um o exp(in'z’),
n’EZz
Sq’q/ = S‘/I (II//, Aq,q' = A; ,q//,
Sq=5Sqq Dg=58—58¢-1, Ao =S50,

where x:R — [0, 1] is a smooth function such that suppx C ] —1,1[, x =1 on

[0, 3], x is decreasing on [0,00[, Xx(3) = 1 and ¢(z) = x(z) — x(2z).
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478 D. IFTIMIE

Note that suppy C ]3,1[ and (z) > 1 for all z € [2,3]. With these
notations, the next inequality stems from Lemma 1.1 below:

(1.2) I q.qllLres < C 22q(1—1/p1)+q/(1—1/p2),

where @, o is given by Ay ¢ = g.4*. The same holds for S, 4. Note that this
inequality is an extension of the classical equality

||90q||Lp(Rd) =C 2‘111(1—1/;7)’

where ¢, is given by A, = pg*, A4 being the usual localization operator in R4
(see [2], [4]). It is important to use smooth cut-off functions; if we would use
characteristic functions of dyadic intervals, then inequality (1.2) would not hold
in the L! case. For further details on the subject we refer to [6, Chap. 7].

LemMA 1.1. — Let ¢ be a compactly supported smooth function, A > 1/(2m)

and
Z ¢( ) exp(in).

nez
Then, for all1 < p < oo and k € N there ezist a constant C = C(¢,k) such that

IF®lze < OXFHIZUP,

where f*) is the k-th derivative of f.

Proof. — First we remark that we can restrict ourselves to the case k£ = 0.
Indeed, we have f(*¥) = A\*g,. where

Zwk( ) exp(inz) and Yy(z) = (ix)F(x).

Interpolating LP between L' and L™ shows that it suffices to consider the cases
p =1 and p = co. We have

f@l< Y |o(F)] < Cliglier,

nEAsupp ¢

thus the case p = oo is proven.

Before going any further let us note that if A\ < 1/(2) then || f|| L~ is bounded
independently of A, hence so is || f||L1. To estimate || f||z: for A > 1/(27) we write

27 1/ 27
1l = /0 |F(@)]da = /0 |F(@)|dz + / @)
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NAVIER-STOKES EQUATIONS 479

To estimate the first integral we use the bound on the sup norm of f:

1/ L
[ 15@laz < Jsles < Clolom.

In order to bound the second integral we use Abel’s summation formula to
deduce that

f(z) = Z exp(i(n + 1)z) — exp(inz) ¢( )

n
exp(iz) — 1 A
n
A

—Zei’,f‘lim) {o(*57) -o(3)}
=% e (5 -2 (5) +e(3)

Taylor’s formula gives

o("57) ~20("57) +o(5)] < 3o
for some constant C = C(¢). Thus
Cdz _C [*d
/ )| dz < /m x> oo < X/m = <c.

This completes the proof. []

As a corollary we find a Littlewood-Paley lemma in two variables:

LeEMMA 1.2. — If u is a periodic function on T3 such that
suppu C B(0,A1,\2) E {€ € R? such that [€'] < A1, |&] < )\2}

1<a; <b <o0,1<as<by <o and a=(a1,a2,a3) € N® is a multi-index,

then

1% Lor.on < C/\?l+a2+2(1/a1—l/bl))\ga+(1/a2_l/b2)“UHLaLaz

Proof. — Recall that

@=(2r)° > u_nbn.

n€ezd

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



480 D. IFTIMIE
Let » .
1 . n ns
P22:() = Gy nzeza expin - 2)x (35 )x( 35, )

where x is defined immediately after relation (1.1). The localization of 5,\17 A
and u implies that ¢, »,u = U, so

u= ¢)\1,)\2 * U.

Since
Daine (T) = P, ()P, (3)
with W
n
qS,\l( = 2 Z expm :v (2)‘1>
n! €72
and s
ns
i = 52 & et sn(5),

applying Young’s inequality and Lemma 1.1 yields

Haau“Lbl*tQ S ||8a¢/\1,/\2|| a1by azbo ||u||La1"12
L aibi+a1—b; azbz+az—bs

< C)\(i*q+a2+2(1/a1—l/bl))\gg—i—(l/ag—l/bz) ||'U:||La1,a2 )

The proof is completed. []

DerFINITION 1.1. — We denote by M the operator given by

1 2m
Mu(zq,z2) = %/ u(z)dzs = Z U(ns 0y €xp(in’ - z').
0

n'€Z?

It is easy to check that M, defined as a Fourier series, is the orthogonal
projection on the space of functions not depending on the third variable in every
Sobolev space H*.

When we will say that a possibly non-integrable function w has vanishing
mean we understand that w0y = 0. Similarly, vanishing mean in the third
direction refers to u(,: gy = 0 for all n' € Z2. Let us now introduce the first class
of spaces we shall use:
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NAVIER-STOKES EQUATIONS 481

DerFiNiTION 1.2. — We denote by H%*' the space
H> = {u € D'(T?) such that |u|s,s < 00},

where

fuls,s = [|(1+ I/ 2)*/2 (1 +n3)* | .,
in which u, are the Fourier coefficients of the function u. The homogeneous
variant of this space is

HS = {ue H*% and Mu = 0}.

The following two lemmas are similar to Lemmas 1.2 and 1.3 from [7] and
give a characterization of H*® in terms of dyadic decomposition.

LEmMA 1.3. — Ifu € H**' then
77
luls,s =~ '12q8+q ° ”Aq,q’uHLzHez'

Proof. — Definition 1.1 implies that for all ¢,¢' > 1
| |n3]
1Agquls = @m)* Y lunl2e? (57 )* (5 )-
n
Using the localization of ¢ we obtain

(1.3) i Y P+ ) (14 [nsf?)?
3.2973<|n’|<3-2972
329 3<|ns| <329 2

< 22qs+2q’s'”Aq’q,u”%2
<C 3 PR (1 + sl

2972< |’ <29
29" =2 <|ng|<29’

for some constants C; and Cs. Similarly,

(1.4) G Y fugg P+ 2)° < 22| A oull3
329-3<|n’|<3-29-2

<0 Y JuwolPA+17P) ve>1,
24-2<|n’[<24
and
(1.5) Ci Y [ty P(L+Insl?)” < 220%)|Ag ull2

324’ -3<|nz|<329 -2
< Cy Z [u0ms)|* (1 + |n3?)° Vg > 1.
24’ ~2< |ng| <29’

Using that Agou = 9,0 and summing relations (1.3), (1.4) and (1.5) gives the
desired conclusion. []
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482 D. IFTIMIE

LeMMA 1.4. — If u, v 45 a sequence of square integrable functions such that
supp iy, C {1/72° < |¢'] <72°, 1/927 < |gs| <42F'} forp,p > 1,
suppilp,0 C {1/72° < |¢'] <727, |&] < v} forp>1,
suppdo, C {|€'] <, 1/72" < |&s| <27’} forp' >1,
suppo,0 C {[€'] < v,l& < v},

for some constant v > 1 and
122577 (lup,pr || 2|2 < 00,
then ) .,
W= tpy € H* and |ulsy < ClI2P Y fup |-
p,p’
o If s > 0 it suffices to assume that
suppp,p C {[€] < 2P, 1/727 < |&s| <27’}
o If ' > 0 it suffices to assume that
supp Uy, C {1/'72p <€ < 2P, |€s] < 2P }
o If s> 0 and s’ > 0 it suffices to assume that
Supp Uy, C {1€'] < 727, |&5] < 72F }.

Proof. — We prove the relevant case s > 0. Similar proofs work for the other
situations. We use that the operators A, , are bounded in L? independently of
g and ¢’, and the localization of A4 4 and up, to deduce the existence of an
integer N such that

2qs+qISI“Aq,q’u”L2 < gasta’s’ Z 1Aq,q tupprll L2
p,p’

q—p)s+(q'—p')s 9ps+p’s’

< E 2 2 llup,p ll 22
p>2q—N
Ip'—q'|<N

= aq,q' *bg,q',

where .,
295+t4's jf g < N, ]q’| <N,
Qq,q =

0 otherwise,
b = 29 g
Young’s inequality yields
[[29°% 9% | Ag gl L2 || 2 < Nlagller - 1bg,qllez-

Since s > 0 one has [|aq,q¢ || < co. Applying Lemma 1.3 completes the proof. []
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NAVIER-STOKES EQUATIONS 483

The next theorem as well as its proof is a variant of the product Theorem 1.1
from [7] which states that the product of a function from H*®'-°2-°¢ with a function
from Hivt2ts lies in Ho Ha—2s2Ht2—3.s5+ta=3 provided that s; < 3,6t < 3,
si+t;>0,i€{1,2,3}.

THEOREM 1.1.— Let u € H5* v € HY such thats,t <1, s+t >0, ' ,t' < 3
and s’ + ' > 0. Then wv € H* =15+ =3 qnd there exists a constant C such

that

(1.6) 'uv's+t—1,5’+t’—% <C- |U|s,s’ : Ivlt,t"

Sketch of the proof. — We use the following anisotropic equivalent of Bony’s
decomposition: B B
uY = (T/ _|_ RI +T/)(T// _|_ R/I +T”),

where T’ and T" correspond to the 2-dimensional paraproducts, R’ corresponds
to the 2-dimensional remainder and the double prime refers to the third variable.
For instance, the definition of the term T'R" is

T'R"(u,v) = Z ZS’ QAp UL A v,

i=—1 p,p’

The theorem holds for each of these operators under weaker assumptions. If a
term contains 7" then we have to assume that s < 1, if it contains R’ then
s+t >0 and if it contains 7’ then ¢ < 1. A similar rule holds for 7", R” and
T". Let us prove that if s < 1 and s’ +¢' > 0 then T'R” (u,v) € H5Ht~1Ls'"+t'~3
We follow the proof of Theorem 1.1 from [7]. Let

o " N

Wy, = Sp_ o ApuN AL v

Using several times the anisotropic form of Holder’s inequality, the definition of

the operator S, as well as the anisotropic Littlewood-Paley Lemma 1.2 one can
show that

(L7) [ Agqwppyllze <2772 Agqwp 2
<22 3 AL ALl 1AL AY e,
r<p-2

(see [7]). Defining
ag.q =221 Ay gulliz,  beg =29V | Ag o) L2
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484 D. IFTIMIE

and using that s < 1 yields
1Aq, q’w e < €29 /2 gp(1=s=t) g=p'(s'+t)) llapp ||€°° bp,p—i»

whence

QU=+ =D A wd |2

_ _1 I_ / ’ ’
< 2P (sHt=1)+(a' —p)(s"+t )”ap,p’”ﬁ, “bp pr—i-

The localization of w;p, shows that an integer N exists so that |[p — ¢| < N and
qd <p + N, so

9a(s+t—1)+q'(s'+t' —2)HA T'R" (u,v)]| ..

<C Z Z 9@ =p")(s"+1 )llap,p'“lg by pr—i-

i=—1 |p—gq|<N
p'>q'—N

Taking the £2 norm gives

20+ DA o TR (u,0) 22

1
<> Y 2@yl (b —illes.

i=—1p'>q¢'—N

Taking the 83, norm, applying Young’s inequality and using that s’ +t > 0
yields

[[ote = DHa =2 Ay o T R (w,0) |2

<cC Z applez - . —ilez 1 -

1=—1
Finally, Holder’s inequality implies
_ ’ ’ /_ l
|20 DFCEHE= DA o TR (u,0) | 12 o < C - lapprllez - [1Bp 0l ez

that is

|T'R" (u, )] S C-uls,er - [oleer

stt—1,8'+t'— 3
This completes the proof for 7' R”. The other terms can be bounded in the same
way. []
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NAVIER-STOKES EQUATIONS 485

We now add an interpolation property for these spaces:

ProposiTiON 1.1. — Let s,t,s',t' be four real numbers, o € [0,1] and
uwe H>S NHY . Then u € Host(-atas'+(-a)t’" 4pg
[U|as+(1—a)t,as'+(1—a)t < |u|?,s’ ) Iuii—t’a
Proof. — We have from Holder’s inequality that
Iulas+(l—a)t,as’+(1—a)t’
— ”(1 + lnl|2)%(as+(1—a)t)(1 +n§)%(as'+(1—a)t')un||e2

1 1l \a
<A+ 1221 +n3) 25 un)?| o
@+ 12 T+ n2)E ) | rame

R Ul vl

= luls,s’

This completes the proof. []

We will need to estimate |Vu|ss in terms of norms of w. The coming
proposition gives an useful equivalence.

ProrosiTiON 1.2. — Let u be a periodic function on the three dimensional
torus with vanishing mean. The following norms are equivalent:
IVuls,s/s  [uls+1,s + |uls, o741, sup |ulsta,s'+1-a-
a€l0,1]

Proof. — Using the interpolation property, one sees that the norm

sup 'u|s+a,s’+1-—a
a€l0,1]

is equivalent to the norm
'uk+l§'+'uh§“H‘
On the other hand, we have by definition that
IVul? o = 01ul? o + 102ul? o + |05ul?
= > () (1 + ) (03 + 13 + nd) un?
nez3
and that
'u|§+1,s' + |U|§,s'+1
S AP +n3)T + 1+ [ P) (1 + n3)*F g ?
nez3
S+ P) (14 n3) 2+ nd 4 nd 4+ nd)funf?

nezs

Since u(g,0,0) = 0, the conclusion follows. i
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If v € L?(T?) then one can write v € L2(T?) by defining
v(x1, T2, 23) = v(T1,Z2).
It is obvious that
Agov =27, Aggv=0 if ¢ >1.

It follows that, in the proof of Theorem 1.1 there is no loss on ¢’. This enables
us to modify that theorem as follows:

THEOREM 1.2. — Let v € H*(T?), w € HY such that s < 1, t < 1 and
s+t>0. Then

vw € HST1 gnd [vw|sqt—1,00 < C - |v]s - |wle 4.
Proof. — We treat x3 as a parameter and we use the decomposition of the
product vw as the sum of two-dimensional paraproducts and remainder:
(1.8) vw = Tyw + R(v,w) + Tyw,
where

Tyw = Z Sy v w,

p
1
(1.9) R(v,w)= Y > ALwA, w,

i=—1 p
Tow = Tyv.

We prove that the theorem holds under weaker assumptions for each of these
operators. More precisely, we have the following

LeEmMMA 1.5. — There exists a constant C such that if T, R and T are the
operators defined above, then for all v € H*(T?) and w € H®* we have

| Tyw|s4t—1,66 < C - |vls - |wle,p if s <1,
| Tyw|sqt—1,00 < C - |v|s - |wle,pr ift <1,
‘R(v’w)‘s-f-t—l,t’ SC- s |wle,e  if s+¢>0.

Proof. — Let us prove the assertion on 7. We have
[Aq,¢ Towllz2 < Z ”Aqth’(Sz@—ﬂA;w)”Lz

[p—q|<1

= Z ’|A;(SII7—2UAP:Q'W)HL2
lp—q|<1

<C Z “Szl)—ZvApyq’w“m
[p—q|<1

<C ISy gvllnee - [Apgwlze.
|p—q|<1
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Since v is two-dimensional and s < 1, we infer

18)_svll L < C2PO=I o,
Therefore

(1.10) 18q,¢ Towllzz < €290l Y Ay gwlre.

l[p—q|<1

It remains to multiply by 29(s+t=D+4't" 514 to take the ¢2 norm to obtain the
result on T'.

We consider now the 7' term. The following sequence of inequalities holds:

(1.11) 18ge Tl < 3 [|Agq (A Sh_yw)| s

lp—q|<1

= 3 |layAL S, AL,
lp—q|<1

< Y A oA,
lp—q|<1

SC Z “A;’U“.Lz'“Szlj_zA;I/w”Loo,Z,
[p—q|<1

One can estimate

1S g Ahwlpes < > [ Argwllzee,

r<p—2
<C Z 2"[|Ar g w2
r<p—2
< C2—q't' Z 2r(l_t)||2rt+q,t,”Ar,q’w”L2”eﬁ

r<p—2

< Cz—qlt'—P(t—l)||27‘t+q't,||AT‘q,w“Lz”gz;.
Thus

galstt=D+a't I Aq,q’fv'w Il L2

<0 3 ALl 27 A gw]l 2l
Ip—q|<1

The conclusion for 7' now follows by taking the ¢2 norm.
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Finally, we prove the assertion on R. One has

1
| Ag.q R(v,w)]| 2 < Z Z [ Ag,q (ALvA! )|,

i=—1p>q-2
1
=3 3 Ay gw)Le
i=—1p>q—2
1
<CY Y 2 AwA, s gwlle
i=—1p>q-2
1
<03 Y 21 AL] e Api g .
i=—1p>q-2

It follows that

(1.12) 2q(s+t—1)+q’t’|

Ag ¢ R(v, u))HL2

1
SO 3 AP Ay e - 20T A, ] e

i=—1p>q—-2
Applying Young’s inequality completes the proof of Lemma 1.5. []
The decomposition (1.8) and Lemma 1.5 implies Theorem 1.2. []

In Section 2 we shall need to apply Theorem 1.2 in the case s > 1. The coming
inequality is a variant of an inequality proved by J.-Y.Chemin and N. Lerner
in [5]. It shows how to avoid this difficulty in some cases.

ProposiTioN 1.3. — There exists a constant C' such that for all v € H*(T?)
and w such that diveo =0, Vw € HYY | s < 2,t <1 and s+t > 0 there exists a
sequence (aq,q') such that

|<Aq,q’(v - Vw) | Aq,q’ww

< Cagq 27D | |Vl - [ Ag,gwli2,
and |lag,q [l = 1.
Proof. — We write
‘(Aq,q’(v -Vuw) | Aq,q’w>| = |<Aq,q'(Tvvw) | Aq,q’wﬂ
+ )<Aq,q’(R(v’Vw)) | Aq,q’“’)‘
+ I(Aq,q’ (Twwv) | Aq,q’w>'v
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where 7" and R are the two-dimensional paraproduct and remainder defined in
the last theorem. The hypothesis on s, ¢t and Lemma 1.5 imply that the terms

(1.13) ](Aqvq:(R(v,Vw)) | Aqvqlw)’,
(1.14) [(Agq (Twv) | Agqw)|
are well estimated. One has to bound
(1.15) [(Aq,q (T, Vw) | Aggw)|.
Some simple computations and the localization of the terms of T;,, Vw show that
(Agq (TyVw) | Aggw)
= Y {[Agg,Sp-20710;8pw | Ag gw)

Jslp—q|<4
+ 3003 ((Sp2— Sp2)V70;8g g Apw | Ag g Ayw)
Jylp—ql<4
[p'—q|<4

(see [3], [5]). Therefore, it suffices to estimate the model terms

I = |<[Aq,q’asqvj]aqu,q’w I Aq,q’w>|a

I = (A0 0;8q,0 Ayw | Ag g Ajw)|.
The last term is bounded as follows
(1.16) 180 |z~ < C2AM 12 < C20=)o),,
(1.17) 108,22 < Cbg,gr2™ "= [Vl
where ||bg,q|l¢2 = 1. As for I; we remark that

(he, 110@) = [ @) (7o~ v) - F(&)blz - ),
thus
(1.18) [[7o%, 18] 2 < CUV FllLoo 1B 22 |2kl 2
Applying this inequality with f = Sgv?, b = 8;Aq gw and h* = Ay 4 it comes
”[Aq,q” quj] 3qu,q1wHL2 < Caq,q’z_q(sﬁ—l)‘q,tl’UIs : |Vw]t7t/,

where ||ag ¢ ||z = 1. This completes the proof. []
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We now introduce the second class of spaces we will use:

DeFiNiTION 1.3. — We denote by HB***' the space defined by
HB**® = {u € D'(T?) such that |u|yg. .« < oo},

where q,q' > 0 and

ﬂ ”2qs+q’sl ”Aqﬂ’u”Lz HZ211 .

|u|HBs,s’
The homogeneous version is

HB** = {u € HB** and Mu = 0}.

REMARK 1.2. — Since Bél(’]l‘) s C(T), it follows that HB*2 is embedded in
the space of functions continuous in z3 with values in H*(T?).

The last defined class of spaces is similar to the class HB®1:*2>%3 introduced in
the case of the entire space in [7], the purpose being the same, that is, avoiding
the critical case § = 0. The study of these spaces is similar to those ones and with
the study of the H s More precisely, all the assertions valid for the H 55" spaces
are valid for the HB** spaces if we replace the #2 norms with the ¢>! norms.
The following proposition as well as its proof is similar to Theorem 1.2 from (7]
which states that the product of a function from HB?®:2>%3 with a function from
HB! 12013 lies in HBS Hti— 3 s2H2— 5 53+— 3 provided that s;, t; < ., sitt; >0,
i € {1,2} and s3,t3 < 3, and s3 +t3 > 0.

PROPOSITION 1.4. — Let u € HB**, v € HB"' such that s,t < 1 and
’ ’ 1
s+t>0; ¢t/ < %, and s’ +t >0. Then uwv € HB**~15+1 =3 gnd

IuleBs+t—1,s’+t’—% S C[ulHBs,s’ . IU|HBM’-

Sketch of the proof.— The proof is almost identical to the one of Theorem 1.1,
the modification which enables us to take the case s’ = 3 or ' = 1 into account

is that the classical paraproduct
s t s+t—3
TiB2,1(R) X B2,1(R) — By; * (R)
is well-defined and continuous if s < % . We shall prove that each of the operators
from (1.6) is continuous under weaker assumptions. The only problem in the

proof is that at the end we have to commute some norms which give raise to the
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wrong inequality. To show that the other terms can be handled in the same way,
we prove the assertion for some other term, say R'T”. By definition

R'T" (u,v) Z Z zp With 2, = AT AN u A Sy g
i=—1p,p’
We will prove that R'T"(u,v) € HB**t=15'+'=3 provided that s + t > 0 and
t' < 1. Asin inequality (1.7) one obtains
2
1Bg,0 2 llz2 <29 D 272 AL ALl 2 - 1A, AT ] 2.
r'<p'—-2

Recall that ag, = 295795 ||A, gull2 and by = 2949Y||A, v 2. There
exists an integer N such that [p’ — ¢'| < N and p > ¢ — N. We have
(1.19) 2q(s+t—1)+q/(sf+t/_%)”Aq . ;‘)p Il 2

< c2(st)(a—p) Z o(r'=p") (3 =t/ Vap prbp_i .
r<p'—2

We now sum on %,p,p’ and ¢’ to obtain

22‘1(5“‘1”",“/“/ )HA R "T" (u,v HL2
q/

SCZ Z 9(s+t)(q— p)z Z 9(r'=p") (5 —t") poprbp—i

l——1p>q N p’ r'<p'-2
ey Y 200D lay |, - 1Bpsr e,
i=—1p>q—N

Using that ¢ < p+ N and s +t > 0 and applying Young’s inequality yields
”2‘1(S+t—1)+q’(s/+t’_ ; ) ”Aq’q,leU(u’ ’U) ”L2 H

02,1

1
<C Y llapgles, - lbp-irlles ||

i=—1

Finally, we apply Holder’s inequality to obtain
22+ A ¢ RT (,0) 122 g1 < Cllaprlleaas - 1ol
which implies
|R/7~W(U7U)|HBs+t_1,s/+u_% < C|u'HBSvS’ : |U|HBM’-

This completes the proof for R'T". []
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We also need to know what happens when we multiply a 2-dimensional
function with a 3-dimensional one. The result is

PROPOSITION 1.5. — Let v € H*(T?), w € HB"' such that s,t < 1 and
s+t >0. Then

PW € HBs+t_1’t, and va|HBs+t—l,t’ < Clvls . Iw|HBt,t’~

In equation (1.9) we defined two-dimensional paraproduct and remainder for
three-dimensional functions. We prove that the proposition holds under weaker
hypothesis for each of these operators. More precisely, we have the following

LEMMA 1.6. — There exists a constant C' such that if T, R and T are the
operators introduced in equation (1.9), then for all v € H*(T?) and w € HB%*

we have
|Tow|ygste-1,e0 < Clols - |[w|gge, e if s <1,

|fvw'HBS+‘—1~¢’ < Clols - lwlgpe,v ft <1,
|R(v,w)| ggs+e<1,e0 < Clvls - |[w|gge.r if s+t >0.
Proof. — For T we start again from inequality (1.10), we multiply by

2a(s+t=1+4't" anq we take the £>! norm to obtain

”2q(s+t_l)+qlt/”Aq,q’va”Lzﬂgz,l < C]'U|s . ”2qt+q/t/”AP,quHLZHezJ.

We now consider the T term. Starting again from inequality (1.11), multi-
plying by 24(s+t=D+4't" and summing on ¢’ gives

3 eV YA T )|
q/

< O N7 [ Apullze Y0277 1S, 5 A w]| e

|p—q|<1 q

Furthermore, one can bound

> 278, A wllien £ Y D27 A g wllpens
ql

r<p-2 ¢

<C Y ) 2774 gw] e
2 q’

r<p—

< C Z 2r(1—t)H2rt+q’t’”Aryq,w“L2

r<p—2
< 027 PE=D||2rtHa YA, | 2

ez

ez
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Thus

3 2ulH=DA YA T2
q/
<C Y Al a2 | A gwll e

lp—q|<1

Iz

The conclusion for T’ now follows by taking the Zg norm.

Finally, we prove the assertion on R. Starting from inequality (1.12) and
summing on ¢’ yields

320 HDHY A L R (v, w)] 12
ql

<C Z Z 9(a—p)(s+t) 2P| AL ]| 12 - Zg(p t+q't! 1Ap_i.gw] L2

i=—1p>q—2
Applying Young’s inequality completes the proof. []

We now prove an interpolation property for the HB spaces:
ProposiTION 1.6. — Let s,t,s',t' be four real numbers, a € [0,1] and
u € HB>* N HBYY . Then u € HBs+(1-o)t.as’+(1-a)t’" gpg

[ulHBms+(1 atas’+(1—ay < |u[HBs s’ |U HB‘ /e

Proof. — From the definition of the HB spaces and using Holder’s inequality,
we infer that

U] frpas+a-aytas+a-ay
= [Jastest -t s+ A, ]
= [ A gull2)* @™ | Ag gl 2)' 0| o
< ||(2qs+q,s,”Aq,q’uulﬂ)ane?/avl/a
-|( (2949 Ay grull2) | g2/ am a1

= 1294 1 Ag gl s - 12747 A g gl

il

s
= IU‘HBs,s’ HBt.t' "

This completes the proof. []
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As for the anisotropic Sobolev spaces, we now give an estimate for the HB
norm of a gradient.

ProrosiTiON 1.7. — Let u be a periodic function on the three dimensional
torus with vanishing mean. Then the following norms are equivalent:

| L"'HBS’5/7 |lLl s+1,s’ |U| s,s'+1 sup ‘U’|H sta,s'+1—a-
: HB HB B
agl0,1]

Proof. — Using the previous proposition proves that the norm

sup |u|HBs+a,s'+1—a
a€l0,1]

is equivalent to the norm
[ul ggssrer + |l gpesrsa-
To show the other equivalence, we first prove the following inequality:
(1.20) IVAGgullz > C27 +27)||Aggrull 2.

The localization of A, ou clearly implies this relation for ¢ > 1 and ¢’ > 1. Since
u has vanishing mean, one has that Agou = 0, so the case ¢ = ¢’ = 0 is trivial.
Assume now that ¢ = 0 and ¢’ > 0. Since Ag  depends only on x3 we have

IV A0 gullpz = 9580, gullzz > C27[| Ao grull 2
> C(1+ 29)]| Ao g ul| 2.

The case ¢ = 0 and ¢’ > 0 is similar so relation (1.20) is proved.
The localization of A, 4u implies that

[VAgqulz: < C'(27 + 2q,)||Aq,q’u||L2~
Using this relation together with (1.20) we infer that
Vul e = 12777 | Ag g Vuul 12| .
= ||2qs+q,sl(2q + 2ql)”Aq:q’“HL2 ”e“
o g Y A ],
~ |ulggerr,er + Ul gpesia

The proof is completed. []
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Finally, we show how the statement and the proof of Proposition 1.3 can be
modified in the case of the HB spaces.

PRrROPOSITION 1.8. — There exists a constant C' such that for all v € H*(T?)
and w such that divev =0, Vw € HB"', s < 2,t <1 and s+t > 0 there exists
a sequence (aq,q) sSuch that

|<Aq,q’(v -Vuw) | Aq,q’w>|
< Cag,g 2 H= D=4yl [Vl e - [Bg,qwlize,
and ||aq,q/”gz,1 = 1.

Proof. — As in the proof of Proposition 1.3 we write
‘( a.q (V- VW) | Aggw) | = l g0 (ToVw) | Aqq’w>|
+ [(Agq (R(v, V) | Aggw)|
+ I a9 (Tywv) | A, q’w>|

where T and R are the two-dimensional paraproduct and remainder defined in
relation (1.9). The hypothesis on s,¢ and Lemma 1.6 imply that

](Aq,q/(R(v,Vw)) | Aq,q’w” and l(Aq,q’ (Tywv) | Aq,q/w>|
are well estimated. It remains to estimate
I(Aq,q’ (T, Vw) | Aq,q“”)l'
As in Proposition 1.3, we see that it suffices to bound
L = '<[Aq7q’a5’q"’j] 9;Aq,qw | Aq,q’w>’7
I, = [(AqvjaquyqrA;/w | Aq,q/A;w)L
under the assumptions |p — ¢| < 4, and |p’ — ¢| < 4. To estimate the last term

we write

18g07 ||z < C2U| A || 2 < C290 9o,
(1.21)

1089 wliLz < Cbggr2” "~ V| yrge.vr
where ||bg ¢/]l¢21 = 1. For I; we remark again that
[, £16]| o < CIV fllzoe - 1Bll 2 - llzh]] s
Applying this inequality with f = Sgv7, b = 9;A, yw and h*x = A, 4 it comes
[18q.q, 840710 8qqw] o < Caqq 2 9D o) - [V e,

where |lag q/]l¢21 = 1. The conclusion follows. []

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



496 D. IFTIMIE

We now write the 3D Navier-Stokes equations as a perturbation of the 2D
Navier-Stokes equations. Let us define v = Mu and w = (I — M)u. Applying the
projections M and I — M to (N-S) it is not difficult to see that the Navier-Stokes
equations

Owu+u-Vu —vAu = —Vp,
(N-S) divu(t,-) =0 forall t >0,

Ul¢t=0 = Uo,
are equivalent to the following coupled systems
O + vV — vAv = —M (wVw) — Vpy,
(1.22) divev =0,
V|¢=0 = vo (= Muo),
for some p; independent of 3 and

Ow + vVw + wVv + (I — M)(wVw) — vAw = —Vpa,
(1.23) divw =0,
W= = wo (= (I — M)uo).
As far as v is concerned, only classical L? energy estimates are needed; indeed,
in dimension two the regularity obtained via L? energy estimates suffices to
ensure global existence and uniqueness. The problem is to derive estimates on

w. Since M and I— M are projections, their norms are equal to 1, so the estimates
below shall not involve these operators.

We shall also consider the case when ug = vg + wo where vy is not necessarily
the projection of ug, hence it is not possible to write the same equations for v
and w. We will replace them with some simpler ones:

O +v-Vv—vAv=-Vp/,
(1.24) divo(t,-) =0 forall ¢t >0,
V|t=0 = Vo,
for some p’ independent of z3 and
Ow+w-Vw+w-Vv+v-Vw—vAw = -Vp”,
(1.25) divw(t,-) =0 forall t>0,

W|t=p = Wo-
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2. The case of the H**' spaces
Let 0 < 6 < 1. We shall prove the following theorems:

THEOREM 2.1 (global existence and uniqueness). — There ezists a positive
constant C = C(8) such that if the initial data ug has vanishing mean over the
three-dimensional torus, divuy = 0, vg = Mug € L*(T?), wo = (I — M)ug €
H% 2% and

llvollZ2
lwols, 1 _s €xp v <Cv,

then the (N-S) equations have a unique global solution such that
(2.1)  w= (I - M)ue L*(]0,00[; HI+/20=8)/2) o [ (10,00[; H 5 %)

and
v = Mu € L*(]0,00[; H') N L°°(]0,00[; L?).

THEOREM 2.2 (global existence and uniqueness). — There ezists a positive
constant C = C(6) such that if the initial data verifies ug = vo+wg, where vy and
wo have vanishing mean over the three-dimensional torus, divvy = divwy = 0,
vo € L2(T?), wo € H® 2% and

llvollZ
|w0'6,%—6 €Xp Cv2? < CI/,

then the (N-S) equations have a unique global solution such that, if v is the unique
solution of the 2D (with three components) Navier-Stokes equations (1.24) with

v € L*(]0,00[; H') N L™ (]0,00[; L?),
then
w=u—v € L*(]0,00[; HI+9/2.(1=8)/2) L°°(]O,oo[;H6’%_5)

and is a solution of system (1.25).

THEOREM 2.3 (local existence and uniqueness). — If the initial data verifies
ug = vg + wg, where vg and wy have vanishing mean over the three-dimensional
torus, divvg = divwe = 0, vg € L2(T2) and wo € H® 279 then there exist T >0
and a unique solution of (N-S) on [0,T] such that if v is the unique solution of
the 2D (with three components) Navier-Stokes equations (1.24) with

v € L*(]0,00[; H') N L (]0,00[; L?),
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then
w=u—ve L*]0,T[; H1+9/2(-8/2) o [ (0, T[; H> ~?)

and is a solution of system (1.25).

The smallness assumption of Theorem 2.1 is a particular case of the one of
Theorem 2.2. We give two different theorems because v and w are not defined
in the same way in the two theorems (see relations (1.22), (1.23), (1.24) and
(1.25)). Moreover, we will need to make the asymptotic study, that is we will
consider the Navier-Stokes equations in T, and we will study the dependence on
¢ of the constant C. In order to obtain optimal results, we will need to assume
that w is “homogeneous” in the third variable, which corresponds to the case of
Theorem 2.1. In short, Theorem 2.1 is a particular case of Theorem 2.2 when ¢ is
fixed, but this changes when £ — 0. That is why we prefer to prove Theorem 2.1,
even though systems (1.22) and (1.23) are more complicated than systems (1.24)
and (1.25). The proof of Theorem 2.2 is similar to that of Theorem 2.1; it suffices
to replace the system for (I — M)u with system (1.25), the estimates are simpler.

Sketch of the proof of local existence. — We proved in Section 2 of [7] a local
existence and uniqueness theorem (Theorem 2.2) for solutions of the Navier-
Stokes equations with initial data in a space H%1*2:%  The proofs given there
can be adjusted to the case of the initial data in the space H® 2%, Let us show
that those arguments can be modified to allow the presence of a two-dimensional
term, the v term. The proof will consist of some a priori estimates. As usual, the
existence can be rigorously justified by an approximation procedure.

Applying the operator A, o to the equation (1.25) of w, taking the scalar
product with A, yw and using inequality (1.20) as well as the product Theo-
rems 1.1, 1.2 and Lemma 1.3 yields:

at”Aq,q'w”%Z + Cv (49 + 4q,)||Aq7q’w”%2

— (55— 1 _ 11
< C(QQ(I 0)+d'(6=3) 4 9—ab+q (2H))aq,q'|w|%1+5)/2,(1_5)/2||Aq,q’w“L2
+ C(2q(1—6/2)+q'(6—1)/2 + 2—q6/2+q/(1+6)/2)

“g,q[0] 1 [l (146)/2,(1-6) /2 Ag,qw]l L2,

where Y aqu, (t) =1 for all t. Gronwall’s Lemma gives
9,9’
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HAq,q’w(t)HLz
< | Ag,qwollLz exp(—Cr(47 + 47 )t)
+ C(zq(1—5)+4'(5~ ) 4 o—ad+d (% +5))
Qg [w|%1+a)/2,(1_5)/2 * exp(—Cr(47 + 4‘1')7:)
+ C(gq(1—6/2)+q’(6—1)/2 + 2—q6/2+q'(1+6)/2)
: aq,q’lvlé [w|(146)/2,(1—8)/2 * exp(—Cv (49 + 4ql)t).

Taking the L*(0,T) norm and using Young’s inequality yields:

1Aq,qwllLao,r;L2)
< Cv=V/A(49 4 49 ) V4 A, woll 2 (1 — exp(—Cw(47 + 49 )T))
+ CU—3/4(2q(1—5)+q’(6— 3) 4 2—q5+q'(%+6))(4q + 4q/)—3/4
: ”aq,tI’]w|%1+6)/2,(1—6)/2”L2(0,T)
+ CV—3/4(2q(1—5/2)+q’(6—1)/2 + 2-q5/2+q'(1+5)/2)(4q + 4q')—3/4
llag,q [l 3 [wl146)/2,1-6) /2]l L2 (0,7)-
It is easy to check that multiplying by 2¢(1+8)/2+4'(1=8)/2 taking the ¢2 norm
and using Holder’s inequality as well as Remark 1.1 implies
(2.2) Nwllpao,1;ma+5/2.0-0)/2)

< A(T) + CV—3/4||U“L4(0,T;H%) wllzsozmarorza-os
+ CV—3/4“w||%4(0,T;H(1+5>/21(1“5)/2)’

where
A(T) = Cv™ V420544 G =0 A w12 (1— exp(-Cr(49+47)T)) 4| ..

The Lebesgue dominated convergence theorem shows that 71}31() A(T) = 0.
On the other hand, we know that v € L°(0,00;L?) N L?(0,00;H?'). Since
[v]2 < C|v|l2 - [v]1, it follows that v € L(0,00;H?). Let T* be such that
A(;’*) < v¥%/(16C) and ||| < v3/4/(20). Then, one has from (2.2)
and forall0 < ¢t <T*

L4(0,T+;H )

v3/4 2C 9
”w”L“(O,t;H(1+5)/2v(1‘5)/2) < @ + m”w”L4(O,t;H(1+5)/2v(1—5)/2)'
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But the quantity ||wl|za( ¢ ma+e/2.0-5/2) is continuous in time and vanishes
for t = 0. We infer that

3/4
14
||w||L4(0,t;H1+6/2,1—6/2) < el

for all 0 <t < T*. One can deduce from relation (2.7) that

C

2 2 2 4

at'“’l&,%—a < ;IUII : |w|5,%_§ + ;|w|(1+6)/2,(1—5)/2-

Gronwall’s lemma implies that w € L*(0,T *;Hé*%_‘s). This completes the

proof. []

Proof of global existence. — We apply A4 4 to the equation verified by w and
we multiply by Ay g w to obtain:

(2.3) at“Aq,q'wnsz +v||A,, q’va%Z
< ClAgg(I = M)(w-Vw) | Aggw)|
+C[ 9,9’ (”'Vw)lAqq’w)l
+ C|(Agq (w- V) | Aggw)|.

Since w is divergence free an integration by parts shows that
KAqq (I = M)(w-Vw) | Aggw) | = ’ gq({ = M)(ww) | Aqq’vw>|
and we can use the product Theorem 1.1 to deduce that

(24) (A (I = M)(w- V) | Aggw)]
—qb—q' (L —
< qu,q’2 #-a (370 |w|?1+6)/2,(1—6)/2 ' ||Aq,q'vw||L2

where Z biq, = 1. Next we use Proposition 1.3 to obtain that
9

(25)  [{Bgq(v- V) | Aggu)|

< Caq,q’qué_q,(%_mvh : 'leé,%—é A g wll L2,

2 _
where _5_ ag o = 1.
9,9’
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Applying Theorem 1.2 and Lemma 1.3 gives

(2.6) [(Agq (w- Vo) | Aggw)]|

—8)—qg' (L -
< Ceg g2 7070y lwls 1 s [Aq,qwllL2,

where Ecg’q, =1.
7,9
Using relations (2.4), (2.5) and (2.6) in (2.3) yields
8t||Aq7q’w||i2 + 2V11Aq,q’vw”%2
—ab—a' (L —
< Cag,q2 =z 6)11’[1 ’ valé,%—é : ”Aq,q'w”L2
—qb—q'(2—6
+ Cbg,q 27971 (3 )|w|%1+6)/2,(1—6)/2 [ Ag Vol L2

—8)—q' (L -
+ COcq 2907070l - fwls 3 _s - | Agqwllre.

Multiplying both sides by 495+4'(3-6) using Schwarz’s inequality, summing
and using Proposition 1.2 implies

(2.7) 8t|w|§7%_6 + 2V[V’U)|§’%_6

SOl - [Vwls 1 s lwls 1 s+ C|w|%1+5)/2,(1—5)/2 [Vwls 1 s

Interpolating H(1+6)/2:(1=8)/2 hetween H% 2% and H% and using again Pro-
position 1.2 we find

(2.8) ]w|?1+6)/2,(1—6)/2 < lwls s w1 < wls a5 [Vwls 1 _s.
Therefore
6t|w[§’%_6 + 21/|Vw|§7%_5
S Clvly - [Vwls y s |wls s+ Clwls 1 s - lelﬁ,%_g
< Sof} ol s+ Cluls - V0l s+ 3IV0,
One deduces
(2.9) Belwly s _s+3v/2|Vuwl 1

C 2 2 2
< ;'vll : ]w'&%_a + C'wlé,%—é : 'vwla,%ﬂs-
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Let us assume that C; > C and

v
2.10 < —
(2.10) wle 35 < 567
It follows that
2 2 2 2
Gronwall’s inequality then implies
t C 0
(212) 0 4 < tool} y _pesp( [ Slurfiar).

We have to estimate fg(C/v)lv(T)ﬁdT in terms of ||vg||z2. To do that we take
the product of equation (1.22) with v and we integrate by parts to obtain that

(2.13) Ovl|32 + 2v|vf3 < |

<

(M(w9w) |v)]

< [(M(w®w) | Vo)

< Clv|; - |M(w®w)|L2(T2)
< Clols - |M (0 ® )] o ga,
= Clvl; - |M(w®w)|61%_6

< Cloly - lw @ wls s

Using the product Theorem 1.1 and inequalities (2.8), (2.10) yields

(2.14) Allvl|Ze + 2v[vl} < Clvly - [w[F 16y /2,1-8)/2
S Clvfy - [wls, 1 _sIVwls 3 s
Cv
< oA vly - [Vwls 1 s

C%
< Ul 2
<vp|f + % IVwls 1 _s

Hence
Cv
(2.15) Oe||v]|22 + vluff < cz |Vw|§7%_6.
Integrating this inequality gives
t 9 C t 2 1 9
(2'16) 0 |U(T)|1d7' < 0_12 0 va(T)|5,%_5dT+ ;”'UO”LZ‘
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We go back to inequality (2.11) and we integrate to obtain

t 2 1 c [t 2 2
/OIVw(T)I&%_édTS ;|w0|§’%_6+§/0 I”(T)ll"w(T)lal_sdT

)
1 2 c [ 2
S ;'wolé,%—§+ 512‘/(; |'U(T).1d7'.

The inequality above along with relation (2.16) yields for large enough C;

¢ 2. 2, 00 C o
; I”(T)|1dT < ;vaHLz + ;|w0|6’%_6.

Now, we use this inequality in (2.12) and we find

2 C
‘w(t)’g’%_g < |w01§,%_§ exp(ﬁ (|w0|§%_6 + va)”%z))

Recall that this holds only as long as
[wls, 35 <
w — .
8 % 6= 201
Hence the condition to assume initially is
C v?
2 2 2
w0l s &0 ( 35 (rwolf 3 s +lwllEe)) < g
This is implied by a condition of the type

Ioola \ _
lwols, 1 5 exp o ) SO

Indeed, if the latter holds, we have

lwols,1 s < C'v,
which gives

1
|w0|§,%_5 exp (W (lwoli,%_a + ||U0“%2))

[lvollZ
< GXP(CI)IWOIE, 1_5€Xp (—C,—Véi)

We proved that Vw € L2(]0, c0[; H®2 ~%). From inequalities (2.12) and (2.8) we
deduce that

w € L=(]0,00[ H*% %) N L*(]0, 0o, H1F9/2(1-0/2),
Finally, integrating relation (2.15) shows that
v € L°°(0,T;L?) N L*(0,T;H).
This completes the proof of global existence. []
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Proof of uniqueness. — Let u; and uz be two solutions with the same initial
data such that for i = 1,2

w; = (I — M)u; € L*(0, T; HA+9/20-0/2) g (0, T; H% %),
v; = Mu; € L>(0,T;L?) N L*(0,T;H').

We deduce by interpolation that v; € L*(0, T;H 3 ). The difference v; —v9 verifies
the equation

O (v1 — v2) — vA(v1 — v2) + 11V (v1 — v2) + (v1 — v2) Vg
+ divM(w1 ® wyp — wso ®'w2) = Vpi,

for some p;. The usual L? energy estimates give

Ollvr — vall7 + 2v|v1 — vl
< Cllvr = vellz2 - [v1 — w21 - |v21
+ 2[|M(w1 Q@ wy — we ®w2)HL2 - |vr — a1

We infer that
(2.17) Oellvr — v2|22 + v|vr — val}
2
< Cllvr = vall7z - o2} + C||M (w1 @ w1 — wp @ wy)[ -

But
HM(w1 Rw; —we Q wz)HLz

< ]M(w1 Q@ wy — we ®w2)}6,%‘—6
< (w1 —wa) @il y s+ w2 ® (wr —wa)l; g

< Clwy — wal(146)/2,(1-6)/2
“(lwil+6)/2,a-8)/2 + [w2l1+6)/2,1-6)/2)-

Applying Gronwall’s lemma in (2.17) now yields

t
0 — o)), +v / o — vaf2dr

t t
< Cexp (C/O |v2|%d7') /0 I(wl - w2)‘?1+5)/2,(1—5)/2
“(lw1lt146) 2,18y 72 + [W2lf148)/2,(1-6)/2) AT
t
< Cexp (C/o |”2|%d7') [[wy — w2||i4(o,T;H(1+6>/2,<1—6)/2)
' (”wl”3;4(o,t;H(1+6>/2,<1~6>/2) + ”w2||2L4(o,t;H(1+6>/2,<1—6>/2))'

TOME 127 — 1999 — ~° 4



NAVIER-STOKES EQUATIONS 505

1 1
Since |v; — ’Ugl% < lvr —v2|| 22 - [vr — v2|? we infer that

(218) o1 = v2ll 1o 7o

T
< Cexp (C/ ,vZI%dT) ||w1 — w2”L4(0,T;H(1+5)/2,(1ﬂs)/2)
0
: (“wl“L4(O,T;H(1+5)/2,(1~6)/2) + ”w2”L4(O,T;H(1+5)/2,(1—6)/2)).
We turn to the estimate of w; — ws. Its equation is
O(w1 — w2) — vA(wr — wz) + (I = M)w1V (w1 — ws)
+ (I — M)(wy — we)Vws + 01 V(w1 — wa) + (v1 — v2)Vwe
+ w1V (v; — v2) + (w1 — wz)Vug = Vpg,

for some p». As in the proof of local existence, one can deduce that

llwr — wall ago,7; H1+6)/2.0-6)/2)
< Cllwr — wel|pago,r; HO+6)/2.0-6)/2)
. (]]wl||L4(0,T;H<1+&>/2,<1~5>/2 + “w2“L4(0 T;H(+6)/2,(1-6)/2)

+ ol + ozl

L4(0,T;H?%) L4OTH7))

+ Cllvr — v2| willLaco,r; HO+8)/2.0-8)/2)

L4(0,T;H%)(
+ llwell 20,7, ra+5)/2.0-8)/2))

In view of (2.18) we obtain

(2'19) le - w2”L4(0,T;H(1+5)/2,<1—5>/2)

< lwr - w2”L4(O,T;H(1+6)/2,(1~6)/2)B(T),

where

B(T) = C{ ||w1 “L4(07T;H(1+6)/2,(1—6)/2)

T
+ ”wQ”L4(O,T;H<1+5)/2’(1‘5)/2)} exp C/ |U2|?d7’>

+C(Jluall + llozl

LA T;H?Y) L40TH7))

Since B is continuous and B(0) = 0 we obtain from (2.19) and (2.18) local
uniqueness, that is global uniqueness. []
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3. The case of the HB** spaces
We shall prove the following theorems:

THEOREM 3.1 (global existence and uniqueness). — There exists C > 0 such
that if the initial data ug has vanishing mean over the three-dimensional torus,

divug =0, wvo = Mug € L3(T?), wo= (I — M)ug € HB" %

" Jvoll
Vo
w0l 0.3 P (T B0 ) < Cw,

then the (N-S) equations have a unique global solution such that
(31)  w=(-MueL*(]0,00[ HB* %) N L*(]0,00[; HB" ?)

and

v=Mu € L*(]0,00[; H') N L*°(]0,00[; L?).
THEOREM 3.2 (global existence and uniqueness). — There exists C > 0 such

that if the initial data verifies ug = vg + wo, where vo and wy have vanishing
mean over the three-dimensional torus,

divve = divwe =0, vy € L2(T?), wo € HB" 3

and

o3y _ &
HBO‘%exp W < Cv,

then the (N-S) equations have a unique global solution such that, if v is the unique
solution of the 2D (with three components) Navier-Stokes equations (1.24) with

v e L2(]0,00[; HY) N L=(]0,00[; L?),

wo|

then - - )
w=u—veL*]0,00[; HBZ>%) N L>*(]0,00[; HB* ?)

and is a solution of system (1.25).

As far as local existence is concerned, the 2-dimensional part v is not
important. Indeed, a square integrable 2D function belongs to HB%z as a 3D
function, so ug € HB%Z. It is proved in [7] in a more difficult setting the
local existence of a solution u € L*(0,T;HBz2°%). But v € L*0,T;H?) so
v € L*(0,T;HB %) which implies that

w=u—veL0,T;HB? ).

As for the case of H** spaces, Theorem 3.1 is a particular case of Theo-
rem 3.2, the reason of its presence is that in the asymptotic study we have to
work in homogeneous spaces in order to obtain optimal results. Let us remark

that the space HB® % is invariant for the scaling x3 — Axs, as well as for the
usual scaling of the Navier-Stokes equations.
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Proof of global existence. — As in Theorem 2.1 we may find the inequality

(32) at”Aq,q/’(U“%‘z + V||Aq,q/VwH2Lz
S CFogllAgqwlpe + CGqql|Agqwl e + CHyq||Ag,qwllr2

where
F o, = [{(Agq (v Vw) | Ag gw)l ,
o Ag,gwlz2
G = {Agg(w-Vv) | Ay gw)] ,
o [Agqwl L
i, - 8B = M)(w-Vw) | Aggw)]|
o4 [ Ag,qwllL2

if ||Ag,qwl|/z2 # 0 and 0 otherwise. The function t — ||Ag gw||z2 is a Lipschitz
function, hence its derivative exists almost everywhere. A variant of Gronwall’s
inequality and inequality (3.2) now implies that

Ol Agqwllrz + (47 + 4q/)||Aq,q’w||L2 SCFq+CGqq +CHg g .
Multiplying by 29'/2 and summing on ¢’ yields
0:3_ 2 2B qwlie + vy (47 47N Ag g2
q’ q’

=C Z 2q//2quq’ +C Z 2q,/2quq’ +C Z 2q,/2Hq,q’-

q q q

Now we multiply by Z 2‘1//2HAq7qlw|]Lz and we sum on ¢ to obtain
q/

Z (qu 2B quli)
+ 2vZ ((Z (47 + 47027 2| A gl ) (302721 Ag w2 )

-
< CZ ((Z 20/2F,0 ) (3027218 gwllse )
q q’ q’
+0 Y (272G 00 ) (3o 27 1A wwllie )
q q’ q

PO (2 Ha ) (2 P80l
q q

q
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From Schwarz’s inequality we get

Y (@47 272 A vl 22‘1 1 Ag gl

:
2 (2 1+ 22 pulie)

Z((ZW F, )(qu P8 g gz )
< {Z( Zq/ qu) }%{Z(ZQq,n”Aq,q’w“L?)z}%’

q q

> (2 )(Z 28012

! _ Z (<Z2 q/2+q /2G )(Z 2q/2+‘1//2HAq,q/w[[L2))
(E(Trra))

) {Z (Z2q/2+q’/2||Aq’q,w”L2>2}

q

D=

and the same inequality for the H-term

> (2 ) (2218wl )
q q 7

~q/2+4'/2 , 2
(L (rmem)) N
AX (D2 A gwlie) )
q/

q
It follows that
2
8t|w|HBo, 'vaHBO
< Clw'HBo,é 12 /2Fq,q’”£2~1
+ C]w|HB%’% (|,2—q/2+q /2Gq,q'l|e2.1 + ”2—q/2+q /2Hq,q’”82:1)-
Using Propositions 1.4 and 1.5 yields

12792 2Gy g lza < Clols - [wl gy s

127922 2 Hy g2 < Cluwl g 3 [Vl
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Proposition 1.8 gives

1272, gl s < Cloly - [Vl .y -

Furthermore, applying Proposition 1.7 and interpolating HB?'% between HB"?
and HB 2 yields
(33) Bl .y + ZIVWl

< CIW@B%,% (lwh + VWl p0.4)

+ C'leBO,% |v|1 : vaIHBU,

3
(lvls + |VW|HBO,%)
vl - [Vwl, oy

< Clwl, oy Il 4

+Clul, 0.3

< 01w|HBo,% wl, o3 (ol + Vol

HB® 2z HB" % )

C
vw'HBO Ivll lw|HBO

+CIVul 4wl

2C I
HB" %
Therefore

v 2
(34) Bl ., + S IVul,

< Sl ol oy +CIVWE oy 003

This inequality is entirely similar to inequality (2.9), so we can repeat the
argument valid in the Sobolev spaces case to obtain the existence of a solution
such that

w € L®([0,00); HB" %), Vw € L?([0,00]; HB" 7).

We use again Proposition 1.7 and the interpolation to deduce that
w € L*([0, oc]; HB%’%).
This completes the proof of the global existence. []

Proof of uniqueness. — An uniqueness result is proved in [7] but in a space
smaller than the one we consider here. Therefore, we have to give another proof.
Let T > 0. We prove that a solution with w in

L*([0,T); HB%°%) n L= ([0, T]; HB" %)
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and with initial data ug is unique in this class. We saw in inequality (3.3) that

Ol oy + V0 oy S Cll s 4 (10h + Vol )

+C|w|HB°'il‘ “|vla - |vw|HB°'§1‘

Furthermore, we deduce

at|w, vw|HBO

HB* % 2C|
C 4 2
e A A

5 ol

HBO

Integrating yields
Vw € L*([0, T);HB" ?).

Moreover, since |UIHB1’ 3 = |vl1, the standard energy estimates for the Navier-
Stokes equations imply that

ue L*([0,T); HBY%), Vue L2([0,T); HB"?).

Let u; and ug be two such solutions. Subtracting the equations verified by u;
and uq yields

Op(u1 — u2) — vA(uy —ug) +uy - V(ug —ug) + (u1 — u2) - Vug = V(p1 — p2).

Making similar computations as in the proof of the global existence we find the
inequality

v 2
(8:5) Bilur —wal} oy + 5|V = u2)| 0.3

< Clug — U2IZB%,% V|04
+Clul g - lun —u2fppg g |V (ur — u2)’HB°”i’
Let dof
AZ=Clug - Uzli{B%,% V2l oy
def
= ClullHB%'% | — uleB%'% ’ ’V(ul - u2)|HB°'%

Using the interpolation, Schwarz’s inequality and Proposition 1.2 we get

1 1
B < IullHB%’% . I'LL1 - UZ|12130'% . 'ul _UZI:[BL% . |V(u1 — UQ)IHBO’%
3 3/2
< |u1|HB%’% . 'U] — UQIIZ{BO’% . |V(’LL1 - ’U,Q)l 0'%
c 4 2
< Jlulypyy lm—wl oy + 7= IV(Ul —w)l? oy,
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and
A< fur —ug| g lun — 2l 0.3 - [Vual, 04
< |V(ur = u2)| oy < lur —ual oy -1 V2l oy
< 15 1V — )y + Zhn —wall - Vel -

The two inequalities above along with relation (3.5) imply

C
Oelur — w2}, oy < —lur —wal} oy (nal} gy + V2l o y)-

Uniqueness now follows from a simple application of Gronwall’s lemma. []

4. Asymptotic study

In this section we work in
T. =]0,27[ x |0, 27[ x ]0,27we[, e<1

and we study the dependence on € of the constant of Theorem 2.1. All the norms
of the 2-dimensional functions are understood to be taken in T2. We shall prove
that the constant from Theorem 2.1 can be chosen independent of €. This follows
from the simple remark that the classical product theorem for the Sobolev spaces
is valid for the homogeneous Sobolev spaces, so the constant involved should
be scale-invariant; it follows that in the periodic case the constant involved
should not depend on the period, hence all the constants appearing in the
proof of Theorem 2.1 should not depend on ¢. However, the spaces should be
“homogeneous” in the third variable, and that is why we have to assume that
Mw = 0. We now redefine in a “natural” way some of the quantities we are
working with. From now on, all constants are assumed to be independent of .
Let u be periodic on T, and u,, be such that

Z Uy, €XP ( (77,11'1 + noZo + -.’E3)>

nezd

Note that .
HE— 2 exp (i(n1z1 + nozo + 77,3/‘€:1c3))]|L2 = (27r)3/2.

We redefine
kst = [|un(1 + [712)*/?(n3/)* || s
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1 2me
Mu(zq,z2) = %/ u(z)dzs,
0

Aggu(z)=c % Z U, exp(i(n1x1 + noxe + ng/exs))

73
) o(5)e(50)

We need to redefine the |- |5 & norm because in the asymptotic study the proofs
will be based on a dilatation in the third variable so we need a norm which
is homogeneous. It is obvious that the two norms are equivalent if Mu = 0.
Furthermore, the |- |5 s norm is equivalent to the norm defined by dyadic

decomposition: .,
29 | Ag grull 2| o

and the constants in this equivalence are independent of ¢.

We are ready to prove the following theorem.

THEOREM 4.1. — Consider the Navier-Stokes equations on the thin three
dimensional torus T, and 0 < § < 3. There exists a positive constant C = C(6)
independent of € such that if the initial data up has vanishing mean over T,

divug =0, o= Mug € L*(T?), wo= (I — M)ug € H>37°
and

“'UOH%z(qrz)
lwols, 1 —s exp (T) < Cv,

then the (N-S) equations have a unique global solution such that
(4.1)  w=(I - M)ue L*(]0,00[; HI+/2.0-0/2) 0 [2(]0,c0[; H® 3 ~9)
and

v = Mu € L*(]0,00[; H') N L*°(]0,00[; L?)

Proof. — It suffices to prove that the constants from Lemma 1.3, from
Propositions 1.1, 1.3, 1.2, from Theorems 1.1, 1.2 and from relation (2.15) can be
chosen independent of ¢ if the 3D functions are assumed to have vanishing mean
in the third direction and the | - |; »» norm is replaced with the || - |5 s norm. We
define

ue(xl, o, £II3) = \/gu(zl, T2, E(Eg)
or, if u is not depending on x3, u. = u. Next we compute the || - |s,s norm of u
in terms of the | - |5 s+ norm of u.. We have

luls,sr = [[un(l+ [n'[2)*/?(ns/e)* |
= & lun (1 + 10 12)*/%n5 || 2 = £ [uicls,s-

We start with Theorem 1.1.
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THEOREM 4.2. — Let u and v two periodic functions on the thin three
dimensional torus T. such that u € HS®, v € Hb' s;t <1 and s+t > 0,

1

st < i and s+t > 0. Then uwv € HH=15'+' =3 qnd
“u”|s+t—1,s'+t'—§ < Clluls,s - [vle,er,

with a constant C independent of €.

Proof. — We have

1oyt
oot [(u0)elst—1,6rer— 2

||uv|s+t—-1,s’+t/_% =€
- I__ !
=g * t ”usve|s+t_1’s/+t1_ %,

8

’ ’
l|wls,s - vleer =€~ et fluels,s - l|velt,e -

Applying now Theorem 1.1 for u. and v, gives the conclusion. []

We now state the variant of Theorem 1.2 on T..

TueorEM 4.3. — Let v € H*(T?) and w be a periodic function on the thin
three dimensional torus T, such that w € HYY, s;t <1 and s+t > 0. Then

. ’
vw € HMH0 0 low|sqi—1,e < Clolgre(re) - lwle,er s

where the constant C' is independent of €.

Proof. — The same proof as above holds, all we have to do is to remark that

(vw)e = v(we). [J

Next we consider the case of the Proposition 1.3.

ProrosiTION 4.1. — There exists a constant C independent of € such that for
allv € H5(T?) and every w periodic on the thin three dimensional torus T such
that divo =0, Vw € H" | s <2, t <1 and s+t > 0 there exists a sequence
(aq,q) such that

’<Aq,q’ (v-Vw) | Aq,q’“’)’

< Cag g2+ D=0 | oy - |Vl - [|Ag, w2,
and |jag,q [l = 1.
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Proof — We remark that, in fact, the whole argument takes place on T2,
so ¢ should not affect the inequalities proved there. Let us prove it rigorously.
First, we look at the terms given in (1.13) and (1.14). We saw above that in the
product Theorem 4.3, the constant C' does not depend on . Now we need to
prove that in the inequalities from Lemma 1.5, the constant C' does not depend
on €. This is proved by remarking that (Ajw). = A} (w.) and (S,w)e = S, (we),
hence, definitions (1.9) imply that

(Tyw)e = Ty(we), (R(v,w)), = Rv,we), (Tyw)e = Ty(we),

thus we can conclude as above. It remains to study the estimate on (1.15). The
estimate (1.16) is independent of € since v is independent of the third variable.
Finally, the last place where £ might have an influence is inequality (1.18), more
precisely, when we estimate ||zh||z1. In fact, since f does not depend on the third
variable, a closer look to the proof of inequality (1.18) shows that it suffices to
estimate ||z’h|| L1, thus it suffices to estimate ||h||L:. But hx = A, 4, hence

= exp (z(n 1 + noxa + _n3x3))(p<|nll)¢(|n3|>
2me 1 € 29 €29 )’
nez3

It follows that

WAllos = H > exp(i(ma1 +nozs +n3x3))¢<M)w<@)l

24 €249’
nez3

b

Ll

and this is independent of € as a consequence of the proof of Lemma 1.1. This
completes the proof. []

Finally, it is clear that the proofs of Propositions 1.1 and 1.2 hold for
homogeneous norms and with constants independent of ¢.
It remains to look at the proof of relation (2.15). As in (2.13), we have
OcllvllZz + 2vvlf < [(M(w @ w) | Vo).

Furthermore, the definition of the projection M implies
138
<M(’LU ®’LU) ' V’U> = 2_71'6 ijzzl /EE ’U)iw]‘ai’l)j.
The product Theorem 4.3 now gives

C 3
[(M(w@w) | V)| < = 3 lwilsg—s - llwjdiv] s

2,j=1

< Cfellwls y _s - llwly_s5- 1 [v]1-
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The definition of the norm || - |5, the hypothesis § < % along with Proposi-
tion 1.2 for homogeneous norms yield

lwh_ss-1 <ellwly_ss41 < Cel|Vwls 1 _

The inequalities above imply
Bellvllgz + 2vfoff < [(M(w® w)|V)| < Cllwls g _s - IVwls 3 _s - vl:-

One obtains inequality (2.15) as in relation (2.14). This completes the proof of
Theorem 4.1. []
As an immediate corollary we find

COROLLARY 4.1. — There exists a constant C > 0 independent of € such that
if uo has vanishing mean over the three dimensional torus, vo = Mug € L?(T?),
wo = (I — M)ug € HY(T.) and

b

H”O”iz(qrz) _1

'w0|H1(’IFE) exp (
then the (N-S) equations have a unique global solution with initial data ug.
Proof. — Tt suffices to remark that
[wa(n'|* +n3/e?) 2,
Hwn 4+ ) ) O

~% ”wlzs 1_s

Il

”w”Hl(Ts)

Y

1z
2
1.
2¢
and to use Theorem 4.1. ]

The same method may be used to prove that the constant from Theorem 3.1
is independent of €. The most delicate argument is the equivalence between

[l pgss and e [Ue| g po.s »

which is the behavior of the Besov spaces with respect to dilatations. In the
following we give the proof of this equivalence.
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Since we want to reduce the problem to an equivalent one but on the torus
not depending on &, we need to define a dyadic decomposition which depends
on ¢ but is for functions on T3. This new decomposition is given by

. n' n
A; gu(z) = Z Uy, exp(i(n1z1 + nozs + wm))x(%)x(%).
nezs

Then it is easy to see that
’ !
ul s = H2qs+q ’ ”Az,q’%”“”zm'

We have ., L
21 AL uclpe <) 29T AS LAY | e
"

q

But A7 /Al ue # 0 only when 1/(Ce) < 2¢'=4" < C/e, that is when

1 1 1 1
Ci+—In-<¢-¢"<Cy+ —1In--
In2 ¢ In2 ¢

We deduce
2| AS el < CemY YD 295 A | e

Ci+15 In 1 <q'—¢"
¢ —q¢"'<Co+ 25 Inl

In2 €
Taking the ¢£>! norm and applying Young’s inequality we find
lulHBS’sl S Cs—s luE[HBs,s’ .

The reverse inequality may be proved in the same way. This completes the proof.

We end up this section with the remark that all the results above are valid
for the domain R? x |0, 27¢[. The same proofs apply if, for

u(z) = % Zun(azl,x2) exp (%nm),
neZ

we define

Sqqu(r) = % Z Squn(xl,xz)x(g—,) exp (%.’Iﬁg)

neEZ
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