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SPECIALIZATIONS OF ENDOMORPHISM RINGS OF
ABELIAN VARIETIES
BY

D.W. MASSER

ABSTRACT. — Let k be a number field with algebraic closure k, let V' be a variety
defined over k, and let A be an abelian variety defined over the function field k(V'). It is
shown that for v in V' (k) the absolute endomorphism ring End A, of the «(fibre» A,
is (almost always) isomorphic to the absolute endomorphism ring End A; and even
that the ( exceptional set )) of such v, where there is no such isomorphism, is ( sparse ).
More precisely, fix a projective embedding ¢ of V over k and let hy, be the associated
absolute logarithmic Weil height. Then there is a constant )\, depending only on the
dimension of A, and a constant C, depending only on k,V, A and ¢, with the following
property. For any real d > 1 and h > 1 there exists a homogeneous polynomial of
degree at most C(max{d, h})*, not vanishing identically on V, that vanishes at all
exceptional v in V (k) with [k(v) : k] < d and hy(v) < h. For example, this implies that
for any real H > 3 there are at most C(log H)> positive integers v < H for which the
Jacobian of the curve y® = z(z — 1)(z — v) has complex multiplication; or, there are
at most CH® (zlog H)>‘ sets of positive integers vg,...,vs < H for which the Jacobian
of the curve y? = vgz® + - - - 4+ v5 has non-trivial endomorphisms.

The proofs involve recent estimates of Wiistholz and the author [Math. Z. 215, 1994,
p. 641-653] for generators of endomorphism rings, together with an inequality of Lange
and some effective elimination techniques using zero estimates from transcendence
theory and Wronskians.

RESUME. — Soient k un corps de nombres, k une cléture algébrique de k, V une
variété définie sur k et A une variété abélienne définie sur le corps de fonctions k(V).
On montre que, si v appartient & V(k), ’anneau d’endomorphisme absolu End A, de
la fibre) A, est ( presque toujours) isomorphe & l’anneau d’endomorphisme absolu
End A; en fait, «’ensemble exceptionnel)) des v pour lesquels cela n’a pas lieu est
« peu dense ). Plus précisément, soient ¢ un plongement projectif de V' et hy, la hauteur
de Weil logarithmique absolue associée. Il existe alors une constante A, ne dépendant
que de la dimension de A, et une constante C, ne dépendant que de k,V, A et ¢
satisfaisant & la condition suivante: si d et h sont deux réels > 1, il existe un polynéme
homogene de degré au plus C(max{d, hl)x, non identiquement nul sur V, qui s’annule
en tout point exceptionnel v dans V(k) tel que [k(v):k] < d et hy(v) < h. Cela
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458 D.W. MASSER

implique par exemple que, pour tout réel H > 3, il existe au plus C(log H )>‘ entiers
positifs v < H tels que la jacobienne de la courbe y° = z(z — 1)(z — v) admette de
la multiplication complexe; ou bien, qu’il y a au plus CH®(log H)* familles d’entiers
positifs vg, . .., v5 < H telle que la jacobienne de la courbe y? = voz® +- - - +v5 admette
un endomorphisme non trivial.

Les démonstrations font appels & des estimations, obtenues récemment par Wiistholz
et Pauteur [Math. Z. 215, 1994, p. 641-653], sur les générateurs des anneaux d’endomor-
phismes, ainsi qu’a une inégalité de Lange et & des techniques d’élimination effective
(«zero estimates ) et wronskiens).

1. Introduction

Over the field C of complex numbers, it is well-known, and easy to
prove, that «almost all » abelian varieties are simple, and even that they
have trivial endomorphism rings consisting only of multiplications by
the ring Z of rational integers. For example, this may be interpreted in
measure-theoretical terms on some appropriate moduli space. Alternati-
vely one can use notions of algebraic independence; such a point of view
was considerably developed by Shimura in an important paper [Sh] (see in
particular his section 4).

Over the field Q of algebraic numbers, or over a fixed number field,
one may expect a similar situation, although it is not so easy even to
interpret the sense of «almost all» in this case. In the present paper we
prove precise versions of such statements, in somewhat generalized form,
and we give a number of illustrations. One of these, for instance, shows
that the recent counterexamples to a conjecture of Coleman, constructed
by de Jong and Noot [JN], are «sparse ». We have already in [Ma3] applied
our results to the study of «large period matrices »; these are of interest
in connexion with recent work of David [D] on a conjecture of Lang.

Our viewpoint will be similar to that taken in a previous paper [Ma2]
on specializations of Mordell-Weil groups. Namely, let k£ be a subfield
of C, let V be a variety defined over k, and let A be an abelian variety
defined over the function field £(V). We may also think of this as a
family of abelian varieties parametrized by points of V. More precisely,
after replacing V by a non-empty open subset if necessary (an operation
frequently to be performed in this paper), we may suppose that for each v
in V(C) the corresponding specialization from k(V') to k(v) provides an
abelian variety A, defined over k(v) in C.

We now have a «genericy endomorphism ring End A consisting of
all endomorphisms of A. These might be defined over a finite extension
of k(V), rather than over k(V) itself. For greater generality we do
not assume that this endomorphism ring is trivial. Also for each v
in V(C) we have the «special » endomorphism ring End A, consisting of all
endomorphisms defined over C. We shall say that v in V(C) is exceptional
if the rings End A, and End A are not isomorphic.
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SPECIALIZATIONS OF ENDOMORPHISM RINGS OF ABELIAN VARIETIES 459

As implied above, our interest lies mainly in the number field case,
so from now on we shall assume that k is a number field with algebraic
closure k embedded in C. We wish to prove that the exceptional points
of V(k) are scarce. We measure this as in [Ma2] by fixing an affine
embedding of V over k and then using the corresponding (absolute
logarithmic) Weil height function to define an arithmetic filtration of these
exceptional points in V' (k). Namely, for real numbers d > 1, h > 1 we
define

Vex(d, h) = vex(k;d, h)
to be the set of exceptional points v of
(1.1) [k(v) :Q] <d, h(v)<h.

Elementary height considerations show this to be finite. Accordingly for
any finite subset S of V(C) we write w(S) = wy (S) for the least degree
of any polynomial that vanishes on S but not identically on V. Our main
result can now be stated as follows.

THEOREM. — Let k,V,A be as above, and suppose A has dimension
n > 1. Then there exists C, depending only on'V and A, and there exists A,
depending only on n, such that

w(Vex(d,)) < € (maxc{d,h})*

foralld>1 and h > 1.
By way of comparison, note that if we consider the full set V(d,h)

of elements v of V (k) satisfying (1.1), then Scholium 1, p. 414, of [Ma2]
implies that

(1.2) w(V(d, h)) > exp(ch)

for suitable d and some ¢ > 0 independent of h; in fact it suffices to
take d as the degree of V in the given embedding. Thus the exceptional
sets Vix(d,h) grow «logarithmically slowly» compared to the full sets
V(d, h), at least with respect to the parameter h.

We shall give several examples for our theorem later on in section 6,
but here we mention just two.

Firstly, it was the curves of genus 4 defined by

v’ =z(z —1)(z —v)

that were considered by de Jong and Noot [JN]; they proved for the Jaco-
bians A, that there are actually infinitely many exceptional points. Our
theorem implies, for example, that for any H > 3 there are most c(log H)*
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460 D.W. MASSER

non-negative integers v < H such that End A, is not the ring of integers
of Q(exp(2mi/5)).

Second, for v = (ao, ..., as) let A, be the Jacobian of the «universal
hyperelliptic curve of genus 2 defined by

y® =apz’ + - + as.

Our result implies similarly that for each H > 3 there is a non-
zero polynomial P(Xy,...,Xs), of degree at most c(log H)*, such that
P(ag,...,a5) = 0 for all non-negative integers ao,...,as < H such that
End A, is not Z. It follows from a simple counting argument that this hap-
pens for at most cH®(log H) such elements v = (ao, ... ,as), compared
with at least H® altogether.

It is interesting to compare our theorem with a result of André
[A, p. 201]. On the one hand he places more restrictions on the family
Aj; thus n > 3 should be odd, V should be a curve, A should be simple,
and there is an additional hypothesis of multiplicative reduction which
implies that the tensor product Q ® End A embeds into the ring M, (Q) of
square matrices of order n with entries in the field Q of rational numbers.
On the other hand, now defining the (possibly smaller) exceptional set
Vixex @S the set of v for which Q ® End A, has no such embedding, he
is able to prove that the cardinality of Viiex(d,h) remains bounded as
h — oo. This looks like a special case of our theorem «without h» , and
it raises the question of whether or theorem itself might be true without
h. That the answer to this question could sometimes lie rather deep is
illustrated by some of the examples we give in section 6.

Actually, as André himself pointed out to me, his results can be
combined with ours. When his result applies, it yields the inequality
(see [A, p. 202])

(1.3) h(v) < cd®

for all v in his exceptional set Vi«ex(d,h), again for ¢ independent of d
and h, and x depending only n. Using our theorem, we conclude (when V
is a curve) that Vieex(d,h) contains at most cd* points, independently
of h, for 4 = Amax{1,k}; such an estimate does not follow from (1.3)
alone, since the height is logarithmic. An example is provided by the
Jacobians A, of the curves of genus 3 defined by

y? = z(z — 1)(z —v)(z — v?)(z — v*)(z — v°)(z — ®).

Thus for any d > 1 there are at most cd* algebraic numbers v of degree
at most d for which A, is of simple CM type. But a full proof of this
assertion must be deferred to a later paper.
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The results of André are proved using the method of G-functions in
the general context of transcendence theory. The proof of our theorem
also ultimately rests on transcendence. The key tool is an estimate for
endomorphisms established by Wiistholz and the author in [MW3], as a
consequence of the main result of [MW2] proved using Baker’s method.
This is applied in section 2 to obtain a relation (Lemma 2.1) between
the sets Vix(d, h) and certain other sets Vix(t) defined by a second, purely
geometric filtration. After this, there is no more number theory, and our
proposition, also stated in section 2, gives an upper bound for w(Vi(t))
in terms of the parameter ¢t. The proof is essentially an extended exercise
in effective elimination estimates, and it occupies sections 3, 4 and 5. We
also record in section 2 a consequence of the sharp effective form of the
Hilbert nullstellensatz established first by Brownawell.

In section 3 we introduce coordinates on the abelian varieties A, and
we use a result of Lange to estimate the degrees of equations defining
endomorphisms. We then make the coordinates into abelian functions by
introducing derivations, and for these we record a «zero estimate» of a
kind familiar in the context of transcendence theory.

In section 4 we construct certain systems. of auxiliary polynomials
whose purpose is to «encode» the generic endomorphism ring End A,
which we identify with End A,, for a generic point 7 of V. The encoding is
via analytic representations, and relies on generalized Wronskians together
with the zero estimate of section 3.

In section 5 we use the effective nullstellensatz to reformulate this
encoding property in terms of a system of polynomial identities over C.
We then «refine» these identities so that they are defined over the
field k(n). Roughly speaking, they thus involve a denominator Q(n) in
the ring k[n]. Now the proposition can be proved by observing that if v
is an exceptional point then the above «encoding» must break down
for End A,. This can happen essentially only if Q(v) = 0, which provides
our estimate for w.

Finally in section 6 we give the details for our examples.

When I first talked about these results in Paris, Daniel Bertrand raised
the interesting question of what kind of estimates for the exceptional sets
could be obtained using Hilbert’s irreducibility theorem. He sketched an
argument in the case d = 1, based on specialization properties of ¢-adic
Galois representations, suggesting that the set Vox(k) of exceptional points
over k is a «thin set» in V' (k) in the sense of Serre [Se2, p. 121]. Later on
I learnt from Rutger Noot that the Galois representation properties had
been proved by Serre himself in a letter [Sel] to Ribet. The details can be
found, together with the application to endomorphisms (and Mumford-
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Tate groups, among other things), in a preprint by Noot [No], and this
work does indeed imply that V. (k) is a thin set.

If V is a curve, one can deduce estimates for the sets V. (1,h) in
this way. For there are essentially best possible estimates for thin sets
(see for example [Se2, pp. 132-136]) which are «often», but not always,
polynomial in the logarithmic height A. For higher-dimensional V there
are also cardinality estimates [Se2, Thms. 3 and 4, p. 178], but these
seem not to be best possible unless one restricts to «integer points» [Se2,
Thms. 1 and 2, pp. 177-178]. In any case it is not clear how they can lead
to our polynomial estimates for w. For example, if S is a thin subset of Z™
in affine space V = A™, a cardinality estimate of order H" for points of
S with height at most h = log H would lead to an estimate for w of order
HY/™ We can get any v > m — % in general, and perhaps any v > m —1
«often », but neither of the resulting estimates for w can be polynomial
inhifm>2.

The situation gets worse if we consider the sets Vix(d,h) for fixed
d > 1. In fact there do not seem to be any analogous estimates at all
in the literature for thin sets. Even if there were, they could not possibly
be polynomial in h. For example, a typical thin set in k arises, from a
polynomial P(Y, X) in k[Y, X] irreducible over k(Y'), as the set of v such
that P(v, X) is reducible over k(v). But this happens in particular for all v
such that P(v,X) = 0 for some z in k. These v have bounded degree, and
it easily seen that their number with logarithmic height at most h grows
at least exponentially in h (compare (1.2) above).

Incidentally, all these remarks apply equally to the exceptional sets
discussed in [Ma2] in connexion with Mordell-Weil groups; that these are
thin sets was proved by Néron (see also [Se2, p. 152]).

Various versions of this article were written up at various times in
ETH Ziirich and MPI Bonn, and I am grateful to both institutions for
their hospitality and support. I also thank Y. André, R. Noot, Y. Zarhin
and especially D. Bertrand for valuable conversations.

2. Preliminaries

We first observe that it suffices to prove our theorem when A/k(V) is
what might be called «endomorphism-stable », that is, all endomorphisms
of A are already defined over k(V). For in general they are defined
over some finite extension K of k(V), which we can write as k'(V’)
for some covering V' of V defined over a finite extension k' of k. We
can now consider A as a family A’ over k¥’(V’), and as such it is clearly
endomorphism-stable. Suppose now that v lies in the exceptional set in V.
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SPECIALIZATIONS OF ENDOMORPHISM RINGS OF ABELIAN VARIETIES 463

Then any v’ in V’ over v lies in the exceptional set in V’. Further if v is in
Vex(d, h) then standard height estimates (see for example [Ma2, p. 419])
show that v’ lies in V) (cd, ch) for some c independent of d and h. So the
theorem for A’ over k'(V’) provides a polynomial vanishing at all such v’.
Now taking norms and clearing denominators leads to a polynomial
vanishing at all v, and standard estimates for these procedures lead to
a proof of the general theorem for A over k(V).

In a similar way we may extend the coordinate ring k[V'] of V' to include
any finite set of fixed elements of k(V'). More generally we may replace V
by a non-empty open subset, or equivalently restrict our attention to
«almost all » v; these operations change the counting function w additively
by only a bounded amount, and we shall employ them frequently during
the subsequent arguments.

The technical convenience of endomorphism-stability is that in this case
we have a unique specialization homomorphism o, from End A to End A,,
at least for all v in a non-empty open subset of V. Henceforth we shall
assume that this is indeed the case, and we write K = k(V). We shall
establish our theorem by proving that o, is very often an isomorphism.

It is rather easy to prove that o, is almost always injective. Let Tr be
the trace function from End A to Z, normalized so that Tr(1) = 2n. It is
well-known that the bilinear form defined by Tr(fg) is non-degenerate.
Thus if f1,. .., fo are basis elements of End A, the determinant det Tr(f; f;)
(1 < 4,5 < £) is non-zero. But traces are unchanged under specializa-
tion, as we see from considering regular representations. It follows that
det Tr(oy(fi)ou(f;)) is also non-zero, and so oy (f1),...,0,(fe) are inde-
pendent in End A,,. Therefore o, is an injection.

So the study of exceptional points is reduced to a problem of surjecti-
vity, and to deal with this we will need a positive definite bilinear form.
Thus let D be a very ample divisor on A defined over K, whose support
does not contain the origin. It will be convenient later also to assume
that D is three times an ample divisor. For almost all v this specializes
to a very ample divisor D, on A,, and we have a Rosati involution 4,
on Q ® End A, and a corresponding bilinear form ¢,(f, g) = Tr(i,(f)g)-
We put t,(f) = t,(f, f) as usual.

We introduce a second filtration on the set V.« of exceptional points as
follows. For a real number ¢t > 1 we define V., (t) as the set of all v in V (k)
for which there exists f in End A,, not in ¢, (End A), with ¢,(f) < t. The
relation between the two filtrations is contained in the following result. For
the rest of this paper, ¢ will denote an unspecified sufficiently large positive
constant, not necessarily the same at each occurrence, that depends only
on V and A (and the divisor D).
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LEMMA 2.1. — There ezists T, depending only on n, such that for every
d>1 and h > 1 the set Vix(d,h) is contained in Vi (t) for some t not
exceeding c(max{d,h})".

Proof. — For d > 1 and h > 1 let v be in the exceptional set Vox(d, h).
By Lemma 2.1, p. 414, of [MW2], all elements of End A, are defined over
an extension field &' of k(v) of relative degree at most ¢. By Lemma 5.1,
p. 651, of [MW3] applied to the fibre A, over k', the additive group End A,
has basis elements fi, ..., f¢ satisfying

to(fi) < c(max{d,h(Av)})T (1<i<¥),

where h(A,) is the (absolute logarithmic semistable) Faltings height of A,,
and 7 depends only on n. It is not difficult to prove that h(A4,) < ch (see
for example the argument in the proof of Lemma 2.2 of [Ma3], p. 160).
It follows that

(2.1) to(fi) < c(max{d,h})" (1 <i<¥).

Now by hypothesis End A, is strictly bigger than o, (End A), and it follows
that f = f; is not in o, (End A) for some ¢ with 1 < ¢ < £. Therefore v is
in Vox(t) where ¢ is the right-hand side of (2.1). This proves the lemma.

Unfortunately the exponent 7 is rather large; in fact
T = 4n(2n — 1)g(2ng + 1)™ 1,

where ¢ = (p — 1)47p! and p = n(2n +1).

So for the proof of our theorem it remains only to bound the quantities
w(Vex(t)) in a suitable way. This we do as follows.

ProposITION. — There exists p, depending only on n, such that
w(Vex(t)) < ct for every t > 1.

Most of the rest of this paper is devoted to a proof of this proposition.
We will actually prove it for any subfield k£ of C, and thus from now on
we can forget about number theory. But no generality is lost in assuming
that k has finite transcendence degree; this is convenient when we use the
language of generic points later on in section 3.

We finish the present section with a couple of observations on polyno-
mials.

First, we will require the following simple remark about linear equa-
tions; it is the quantity r that will eventually provide our polynomial
vanishing on V., (t).
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LEMMA 2.2. — Let L be a finite set of linear forms with coefficients in
a subring R of C containing 1. Then there is a complex number r # 0
in R, which is either 1 or a minor of the matriz of coefficients of L, with
the following property. Suppose that for each L in L there is A\, in R such
that the equations L = Ar, (L in L) have a solution over C. Then they
have a solution over r—'R.

Proof. — If every form in L is zero the lemma is trivially true with
r = 1. Otherwise their rank is m > 1, and by restricting to a maximal
linearly independent subset, we see that r can be taken as any non-zero
minor of order m. This completes the proof.

For a point u = (u1, ..., un) in C™ let M,, be the maximal ideal in the
polynomial ring C[X7, ..., X,,] with the generators X; —u1, ..., Xpm — U
For a finite subset U of C™ the product ideal of all the M, (u in U) has a
set of standard generators obtained by taking products of the generators
of the M,,; this set we denote by N (U).

LEMMA 2.3. — For a positive integer E let P be a finite set of
polynomials in C[X1,...,Xm], of degrees at most E, whose set S of common
zeroes in C™ is countable. Then there is a finite subset U of S, of
cardinality at most E™, and a positive integer e < 2(2E)™, such that
for every N in N(U) we have

N°®=Y"QnpP
PcP
for polynomials Qnp in C[X1,...,Xm] of degrees at most 2(2E)?™.

Proof. — Of course the countable algebraic set S is finite, and now the
cardinality estimate for U = S is well-known; one can use for example the
Corollary, p. 419, of [MW1], or also Proposition 3.3, p. 365, of [P]. The
estimates for e and the degrees of the @np then follow immediately from
the main result of [B] with u <m and D = E, Dy < E™.

3. Functions and derivations

Let A be our abelian variety over the field K = k(V'). We shall require
functions on A, and so we fix basis elements 1, . ..,z of the linear system
over K corresponding to the divisor D. These are regular at the origin.
Let z = (z1,...,Ts) be the associated coordinate vector. By normality
the coordinate ring of A corresponding to D is then K|[z] = K|[z1,...,Zs).

All this specializes nicely, at least on a non-empty open subset of V,
and so for v in V(C) we shall write x, for the coordinate vector on the
abelian variety A,. Let D be a positive integer. We shall say that an
endomorphism f of A, can be «rationally described by polynomialsy of
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degree at most D if there are polynomials Py, P,... Ps in x,, of degree
at most D, such that f is given by (P1/Fy,...,Ps/Ps) on a non-empty
open subset of A,.

LEmMA 3.1. — For v in V(C) let f be a non-zero endomorphism of A, .
Then f can be “rationally described by polynomials of degree at most”

to(f) + 1.

Proof. — Let a1,...,a, be the eigenvalues of i,(f)f in the analytic
representation. Then

max{a,...,a,} < a1+ +a, = %tv(f)<ma

where m is the least integer exceeding %tv (f). We now apply Theorem 3.1,
p. 618, of Lange [L]; this even tells us that f can be described as a
morphism by forms of degree m on a union of open sets covering A,,
and so the proof is complete.

Fix basis elements, defined over K, of the tangent space of A at the
origin. These are thus derivations from K[z] to K. Using the group law, we
can extend these in the usual way to invariant derivations 0, ..., d, from
the function field K(A4) = K(z) = K(x1,...,%s) to itself. Because K|[z] is
our coordinate ring, it follows that these also act on K|[z]. By extending
the coordinate ring of V, we can assume that these even act on R[z]
for R = k[V].

All this too specializes nicely, at least on a non-empty open subset of V.
Thus for all v in V(C) we can regard the components of z, = z,(z) as
abelian functions of z = (z1,...,2,) in C". Here 94, ...,0, are identified
with 8/021,...,0/0z,; and these abelian functions satisfy polynomial
partial differential equations over the ring k[v].

For a positive integer T let A(T') be the set of derivations § = 8% - - - 9in
of orders ¢; + -+ +t, < T. Let M, (C) be the ring of square matrices of
order n with complex entries. Recall that the constants ¢ depend only
on V and A.

LEMMA 3.2. — Suppose v is in V(C) and u is in M,(C). For positive
integers E and T let ®(z) be a polynomial, with complex coefficients, of
degree E in the components of z,(z) and z,(zu), such that §®(0) =0 for
all § in A(T). Then if T > cE*™, the function ®(z) vanishes identically.

Proof. — We use zero estimates (from transcendence theory) on the
algebraic group G = A, X A, and the analytic subgroup Z defined on the
tangent space by w = zu. In particular, if T > 4n, then Théoréme 2.1,
p. 358, of [P] applied with ¥ = 0, together with standard remarks about

TOME 124 — 1996 — n° 3



SPECIALIZATIONS OF ENDOMORPHISM RINGS OF ABELIAN VARIETIES 467

projective embeddings, leads to a connected algebraic subgroup H of G,
with tangent space S, such that

(3.1) (T'+ 1) (T' + m) < m! g(2E)*.

Here T" = [T/(2n)] — 1, g is the degree of G in the Segre embedding,
and m is the codimension of the intersection of Z and S in Z. Further,
the comments about translations in the Addendum to [P] (see also [Nal)
imply that the polynomial associated with ® vanishes on H. Now if ¢
is large enough, our condition on T leads at once to m = 0 in (3.1), so
that Z is contained in S, and therefore ® itself vanishes identically. This
completes the proof.

By once again extending the coordinate ring we can assume that the
affine coordinates of the origin in A lie in the ring R = k[V]. The repeated
effect of differentiating is then given as follows. For convenience we state
the result in terms of generic points.

LEMMA 3.3. — Let n be in V(C) generic over k, and let o be in M, (C)
generic over k(n). For a positive integer E let ®(2) be a polynomial, with
coefficients in k and degree at most E, in either

(a) the components of n and xy(2), or
(b) the entries of o, and the components of n,z,(z) and z,(2a).
Then for any positive integer T and any § in A(T) the function §®(z)

is also a polynomial in the same quantities, with coefficients in k, of degree
at most E + cT'.

Proof. — There exists a positive integer cy, depending only on V
and A, such that each derivative 9;x;,(2) (1 < j < n) of each coordinate
(1 <4 < s) is a polynomial, with coefficients in k, of degree at most ¢g in
the components of 7 and z,(2). So each 9;z;y(2¢) is a polynomial, with
coefficients in k, of degree at most ¢y + 1 in the entries of o, and the
components of n and z,(2). The desired result with ¢ = ¢y now follows by
a standard induction on T, and this completes the proof.

4. Wronskians

Let Y be variables on the ambient affine space of V, and let X be
the standard affine variables on the matrix ring M,,. For each positive
integer D and each positive integer T' we will define certain subsets
Z = I(D,T) of k[Y] and J = J(D,T) of k[Y,X]. The Wronskian
determinant will play a crucial role in the construction, so we briefly
review its definition and main properties.
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For a complex variable z = (21,...,2,) let x1,...,Xm be functions
holomorphic in some non-empty open subset of C". Let 61,...,6,, be

elements of the set A(m) defined in the previous section with reference to
0/0z,...,0/0z,. Then

is a (generalized) Wronskian of x1,...,Xm. If X1,...,Xm are linearly
dependent over C it is clear that W = 0; conversely, if W = 0 for all
choices of 61,...,0n, then it is well-known that x1,...,xm are linearly

dependent over C.

For convenience we work with a point 7 of V(C) generic over k; the
following constructions are easily seen to be independent of the choice of 7.
Let z,) = (%1y, ..., Zsy) be our affine coordinates on the abelian variety A,,.
These are abelian functions z,(z) of the complex variable z. For a positive
integer D let H = H(D) be the maximum number of monomials of degree
at most D in z, that are linearly independent over C on A,. Choose such
monomials M, ..., My (for example minimal in some fixed lexicographic
ordering) that are linearly independent on A,,. Consider the corresponding
Wronskians

(4.1) W(z) = W(Mi(2,(2)), .., M (zn(2)))-

For a positive integer T and § in A(T) it follows from Lemma 3.3 (a) that
each §WW(0) is a polynomial over k in the components of n and z,(0), and
therefore also in 1 alone. Denote by Z = Z(D,T) a corresponding set of
elements of k[Y] (say of minimal degree) obtained in this way, as W and ¢
vary.

For v in V(C) we write Z(v) = 0 if every element of Z vanishes at v;
and Z(v) # 0 otherwise.

LeEMMA 4.1. — The elements of Z are polynomials over k of degrees at
most ¢(D*™ +T). Also

(a) if Z(v) # 0 for some v in V(C), then Mi(zy(2)), ... , Mu(z,(2))
are linearly independent over C, and

(b) if further T > cD** | then I(n) # 0.

Proof.— By Theorem 1, p. 12, of [Ne] we have H < a(4D)", where a is
the projective degree of A,. Thus H < ¢D". By Lemma 3.3 (a) each W ()
can be written as a polynomial over k of degree at most

(4.2) E < cH(D+ H) < cD™

in the components of n and x,(2). Again by Lemma 3.3 (a) each §W () can
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be written as a polynomial over k of degree at most ¢c(E+T) < ¢(D?"+T)
in these components. The estimate for the degrees of the elements of 7 is
immediate.

Next, if Z(v) # 0 for some v in V(C), suppose to the contrary that
Mi(z4(2)),..., Mu(z,(2)) are linearly dependent over C. Then every
Wronskian of these functions vanishes, and therefore so does every de-
rivative at the origin. Specializing the differential equations of Lemma, 3.3
(a), we see that Z(v) = 0, a contradiction. This proves part (a) of the
present lemma.

Finally suppose Z(n) = 0. Then for every W in (4.1) we have §W(0) = 0
for all § in A(T). Since W(z) is a complex polynomial in z,(z) of degree
at most F, we see from Lemma 3.2 (without u) for v = 7 that these imply
W (z) = 0 provided T > cE?". By (4.2) this holds if T > ¢D* | and so we
get the linear dependence of M (z,(2)), ..., Mu(z,(z)) over C; however,
this contradicts the definition of M, ..., Mpg. So (b) is proved , and this
establishes the present lemma.

LEmMA 4.2. — Let D be a positive integer and let v be in V(C). Then
for any monomial M of degree at most D the functions Mi(z,(z)), ...,
My (zy(2)) and M(z,(2)) are linearly dependent over C.

Proof.— Pick any positive integer T', and perform the above Wronskian
construction with the monomials Mi,..., My and M instead of only
M, ..., Myg. We get asubset Tps = Zp (D, T) of k[Y]. However, the choice
of My, ..., My implies that M (z,(2)),..., Mu(z,(2)) and M(z,(2)) are
linearly dependent over C, and so this time all the elements of Zj; must
be zero at Y = 1.

Therefore they are zero at Y = v, and this means that every Wrons-
kian W of Mi(zy(2)),..., Mu(z,(2)) and M (z,(z)) satisfies 6W(0) = 0
for all § in A(T). Choosing T' > cD** and using again Lemma 3.2 as
in the proof of the previous lemma, we see that this implies W = 0, and
therefore the desired dependence relation. This completes the proof.

Probably a version of this lemma can be proved more directly using
only the concept of flatness (see for example [H, pp. 261-262]). It would
then hold for families of arbitrary varieties, not just abelian varieties.
A similar remark applies to Lemma 4.1 (a). However, the machinery of
Wronskians and zero estimates really does seem to be necessary in what
follows.

For the construction of 7, let n be as above, and let o be a point of
M,,(C) generic over k(n). This time, for each integer ¢ with 1 < i < s, we
write down all Wronskians W;(z, ) of the functions

My (z9(2)), - - ., My (29 (2)), Tin(20) M1 (24(2)), - . ., Tin(20) Mg (2 (2)).
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By Lemma 3.3 (b), for § in A(T) the §W;(0, &) are polynomials over k
in the entries of @ and the components of 7. We write J = J(D,T)
for a corresponding set of elements of k[Y, X] (again of minimal degrees)
as i, W and 6 vary.

To state the analogue of Lemma 4.1 we recall the definitions in sec-
tion 3. Also our choice of derivations provides an analytic representation p
from End A to My (K). Since End A is finitely generated as an additive
group, we can assume by extending the coordinate ring that p takes values
in the ring M, (R) of matrices with entries in R = k[V]. By specialization
we get for each v in V(C) an analytic representation p, from o,(End A)
to the ring M, (k[v]) of matrices with entries in k[v]. It extends to a re-
presentation, also denoted by p,,, from &, = End 4, to M, (C). Finally we
use the analogous notation J(v,u) =0, J(v,u) # 0 for v in V(C) and u
in M, (C).

LEMMA 4.3. — The elements of Jzare polynomials over k of degrees at
most ¢(D* + T). Assume T > cD*™" . Then

(a) if T(n,u) =0 for some u in M,(C), then u is in py(E,), and
(b) suppose Z(v) # 0 for some v in V(C). If f in &, can be rationally
described by polynomials of degree at most D, then J(v,p,(f)) = 0.

Proof. — The degree estimates are proved exactly as in Lemma 4.1,
except that we use Lemma 3.3(b). We omit the details. As for (a) and (b),
we assume T > ¢D*"" from now on.

To begin with, suppose J(n,u) = 0 for some u in M, (C). We deduce
from an application of Lemma 3.2 (this time with u) for v = 7 that the
functions

Mi(zy(2)), - .-, M (xn(2)), Tin(20) M1 (2(2)), - - -, Tin(2u) Mu (24(2))

are linearly dependent over C for each i with 1 < i < s. Since the first H
of these are independent, we deduce that each z;,(2u) (1 < i < s) is a
rational function of z,(z). It follows easily that these rational functions
correspond to an endomorphism f of A,, and that v = p,(f). This
proves (a).

Next suppose Z(v) # 0 for some v in V(C). Then Lemma 4.1 (a)
together with Lemma 4.2 shows that every monomial of degree at most D
in z,(2) is a linear combination of Mi(z,(2)),..., Muy(z,(2)). If f in &,
can be rationally described by polynomials of degree at most D, it follows
that with u = p,(f) each z;,(zu) (1 < i < s) is a rational function of
the z,(z) of degree at most D. We deduce that the functions

Mi(24(2)), ..., Ma(24(2)), Ziv (20) M1 (24(2)), . . ., T (2u) Mg (2,,(2))
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are linearly dependent. So every Wronskian vanishes, and it follows at
once by differentiating and putting z = 0 that J(v,u) = 0 as desired
for (b). This completes the proof of the present lemma.

5. Identities

We proceed to translate Lemma 4.3 (a) into a system of polynomial
identities. For a finite subset U of M,,(C) recall the set N (U) of section 2,
considered as a subset of the polynomial ring C[X]. For positive integers D
and T we write P = P(Y, X) for the elements of 7 = J(D,T).

LEMMZA 5.1. — Suppose T > cD** . Then there is a posigive integer
e <cT™ and a subset U of p,(E,) of cardinality at most cI™, such that
for every N in N(U) we have

(N(X)) =" Qup(X)P(n,X)

pPeJg

for polynomials Qnp(X) in C[X]| of degrees at most T .

Proof. — From Lemma 4.3 (a), the polynomials P(n, X) in C[X] have
common zeroes only in the set p,(&,). This set is countable, and since by
Lemma 4.3 the polynomials have degrees at most ¢T, the present lemma
follows at once from Lemma 2.4.

The identities of Lemma 5.1 are defined over C. We now proceed to
refine them to a similar set of identities defined over the ring k[n].

LEMMA 5.2. — Suppose T > ¢D*"* | and let v = 2n4 + 1. Then there is
a polynomial Qo(Y) in k[Y] of degree at most cT", with Qo(n) # 0, such
that for every N in N'(U) we have

Qo) (N(X))* = Qne(n,X)P(n,X)

PeJ
for polynomials @NP(Y,X) in k[Y, X].

Proof. — We regard the identities of Lemma 5.1 as linear equations for
the coefficients of the polynomials @ np(X). Naturally these equations are
solvable over C, and they are defined over the ring k[n]. By Lemma 2.2
there is therefore a solution over r~'k[n], where r # 0 is either 1 or a
minor of the matrix of the homogeneous linear part of the equations.
So r = Qo(n) for some Qo(Y) in k[Y] (independent of N), and it remains
only to estimate the degree of Q.
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In the first place, both sides of the identities in Lemma 5.1 have
degrees at most Dy < ¢T?"” in X. For each N there are therefore at
most Dy = (Dy + 1)”2 linear equations to be solved. In each equation
the coefficients of the homogeneous linear part are polynomials over k
in 1 of degrees at most Dy < T, by Lemma 4.3. So we get for the
minor r = Qo(n) a total degree in  not exceeding Dy Dy < cT" as claimed.
This completes the proof.

We can now prove our proposition. We may assume that ¢ is a positive
integer. Let v be in the exceptional set Vx(t). Thus there is f in &,, not
in 0,(&,), with

(5.1) tu(f) <t.
We choose D =t + 1 and then
(5.2) T = coD*,

where ¢y is a positive integer, depending only on V and A, which is so
large that the inequalities of Lemma 4.1, Lemma 4.3 and Lemma 5.2 hold.

We proceed to specialize the identities of Lemma 5.2 for J = J (D, T)
from the generic point 7 to the special point v. For this purpose the
specialization homomorphism o¢,, which goes from &, to &,, can also
be regarded as a homomorphism from k[n] to k[v]. Extending it to
polynomials in X, we obtain for each N in N'(U)

(5-3) Qo(v) (ou(N (X)) = Y Qnp(v, X)P(v, X).

Peg

Assume for the moment that
(5.4) Z(v)#0

for the set T = Z(D,T) of Lemma 4.1. By (5.1) and Lemma 3.1 the
endomorphism f can be rationally described by polynomials of degree
at most D = ¢t + 1. It follows from (5.4) and Lemma 4.3 (b) that the
right-hand sides of (5.3) all vanish at X = p,(f). Hence, looking at the
left-hand sides, we see that either

(5.5) Qo(v) =0

or all the 0,(N(X)) vanish at X = p,(f).

Let us examine the second possibility more closely. The o,(N) are
the elements of the set N (o, (U)), and therefore their common zeroes
are contained in the set o,(p,(&,)). Since the analytic representation
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specializes nicely, this latter set is just p, (0w (&y)); however, this does not
contain p,(f) by our hypothesis on f (note that p, is faithful). Therefore
this second possibility does not occur, and we have shown that either (5.5)
holds or (5.4) does not.

But Z(v) = 0 means that every element of Z in k[Y] vanishes at v.
By Lemma 4.1 (b) some element does not vanish at 7, and this element
can be written as @1 (Y’) for some polynomial @;(Y) in k[Y] of degree at
most cT'.

Summing up, we have found a polynomial @ = QoQ: in k[Y], not
vanishing identically on the variety V, that vanishes at all v in V. (t).
Therefore w(Vix(t)) is at most the degree of @, which is at most cT*+1.
Recalling (5.2), we see that we have proved the proposition with exponent

p=8n%(nt+1).

As we noted in section 2, the theorem follows immediately on combining
this with Lemma 2.1, with exponent A = ur.

6. Examples

From now on all the constants will be absolute. The simplest example
is provided by the elliptic family over Q(A), the function field of affine
space A, defined by
27§

T j—1728

The exceptional points correspond to quadratic values of the stan-
dard variable 7 in the upper half plane, and the associated values
j=4(r)#0,1728. Our theorem therefore implies that the number of
such j with degree at most d > 1 and logarithmic height at most h > 1
is at most c(max{d, h})*. Actually such an estimate, even with A = 6,
is a fairly immediate consequence of Lemma 3 (i), p. 187, of Faisant-
Philibert [FP]. But of course both these results fall well short of what
is known, and the classical theorems on class numbers of complex qua-
dratic fields show that we can eliminate h in this estimate, which further
supports the possibility raised in section 1.

Y =42 —gz—g, g

Our next example refers to the paper [JN] of de Jong and Noot, where
they give some families of counterexamples to a conjecture of Coleman.
Our theorem can be used to show that their families do not contain many
members. Thus let A, be the Jacobian of the curve of genus 4 defined by

y® =z(z — 1)(z —v).
They prove that A, is simple and of CM type for infinitely many v in C.
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Now we have an associated family A over k(A), where k = Q(exp(27i/5)).
Since A, is simple for infinitely many v, it follows that A is generically
simple. Hence End® A = Q ® End 4 is a division algebra. By [IN, p. 178]
this contains k. If End® A were any bigger, then Albert’s classification (see
for example [Sh, section 1]) would imply that it is a CM field of degree 8;
however, the only such families are well-known to be constant, contradic-
ting [JN, p. 179]. Hence End® A = k. In fact End A contains the ring of
integers O of k, and since the latter is the maximal order, we conclude
that End A = O.

It follows from our theorem, for example on taking d = 1 and h = log H
for H > 3, that the number of v in Z with 0 < v < H for which A4, is
of CM type, or even End A, # O, is at most c(log H)*.

In our next example we define A, for v = (ag,...,as) in A® as the
Jacobian of

(61) y2 :a0x5+...+a5'

This gives a family A over Q(AS). It is known that End A = Z (see for
example Theorem 6.5 of Mori’s article [Mo, p. 128]). Looking at Z° in A%,
we deduce that for each H > 3 there is a non-zero polynomial P, of degree
at most c(log H)*, such that

P((I,o,...,ag,):O

for all rational integers ag,...,as with 0 < ag,...,a5 < H such that
End A, # Z. Now counting as in Scholium 2, p. 414, of [Ma2], we find
at most ¢ H?(log H)* such exceptional v, in comparison with at least H®
altogether.

In this example the number of parameters can be cut down using the
curves

(6.2) v =z(z—1)(z — a)(z — B)(z — )

over Q(A3). It is easily seen that every curve (6.1) is isomorphic to one
of these; so we conclude End A = Z here as well. Thus there are at most
cH?(log H)* integer triples (a, 3,7), with 0 < a, 3,y < H, for which the
Jacobian of (6.2) has non-trivial endomorphism ring.

Now the triples («, 3,7) essentially parametrize a Siegel modular 3-
fold S, and the points on the so-called Humbert surfaces correspond to
abelian varieties with real multiplication (see for example [G, chap. IX]).
So our theorem implies, roughly speaking, that the algebraic points on
the totality of Humbert surfaces on S are relatively sparse.
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Our final example refers to a paper [Me] of Mestre. Define A, for
v = (u,t) in A? as the Jacobian of

¥ =(1-2)3+uz((l —2)®+uz? - 231 - 2)) — ta®(1 — 2)°.

In [Me, p. 202] it is proved that A, has real multiplication by the ring of
integers O of Q(1/5). On the other hand the corresponding moduli space
is this time a Hilbert modular surface H (see [G, chap. X]). Moreover the
discussion in [Me, pp. 193-194] shows that every point of H corresponds
to some A,. It follows that End A = O for the associated family A
over Q(A?). We deduce in particular that there are at most cH (log H)*
integer pairs v = (u,t) with 0 < u,t < H such that End A, # O. Now the
points on the so-called modular curves on H correspond to the abelian
varieties with multiplication by some order in some quaternion algebra
(see [G, chap. V]). So we see, again in rough terms, that the algebraic
points on the totality of modular curves on H are relatively sparse.
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