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COUNTING POINTS OF SMALL
HEIGHT ON ELLIPTIC CURVES

BY

D. W. MASSER (*)

RESUME. — Soit k un corps de nombres et soit E une courbe elliptique definie
sur k. On prouve un resultat d'enumeration qui donne, entre autre, Pexistence d'une
constante positive C, effectivement calculable en fonction de k et de E, avec la propriete
suivante. Pour chaque extension K de k de degre relatif au plus D (> 2), la hauteur
canonique absolue logarithmique de chaque point d'ordre infini de E ( K ) est au moins
CD-^logD)-2.

ABSTRACT. — Let k be a number field and let E be an elliptic curve defined over k.
We prove a counting result which gives, among other things, the existence of a positive
constant C, effectively computable in terms of k and E, with the following property.
For any extension K of k of relative degree at most D (> 2), the absolute logarithmic
canonical height of any non-torsion point of E(K) is at least CD~3(\ogD)~2.

1. Introduction

Let A; be a number field, let ^2, 93 be elements of k with gj / 27 g j,
and let E be the elliptic curve defined by

y2 =4x3 - g ^ x - g ^ .

We view E as a complete variety in complex projective space P2(C) in
the usual way, and for a subfield K of C containing k we use the standard
notation E(K) for the group of points on_E defined over K. Let ~k be the
algebraic closure of k. For a point P in E(k) we define the Weil height h(P)
as the absolute logarithmic height of the corresponding projective point
(see for example [S' p. 215]). We also write q(P) for the associated Neron-
Tate height

/-. - h(2nP)
q(P) = lim ———•^oo 4^

(*) Texte recu Ie 16 fevrier 1988 , revise Ie 10 octobre 1988.
D. W. MASSER, University of Michigan, Department of Mathematics, Ann Arbor,
Michigan 48109-1003, U.S.A .
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248 D. W. MASSER

For a positive integer D let K be an extension of k with relative degree
[K:k} not exceeding D. The elliptic analogue of a famous question of
LEHMER (see for example [AM p. 24]) asks whether there exists a positive
constant c, depending only on k, g^, g^ but not on D or K, such that

(1.1) ,(P) > ^

for all non-torsion P in E(K). This has not yet been answered (and neither
has the original question); however, it is known that inequalities similar
to (1.1) are valid. For convenience assume henceforth that D > 3. Then
it was proved in [AM] that

(1-2) q ( P ) > c
q{ } - D^^ogD)6

for all such P; and if E has complex multiplication this was improved to

(1-3) q ( P ) > c
q{ } - D^logD)2

SILVERMAN [S] further sharpened (1.2) to q(P) > cD-\ but only in the
case that K is an abelian extension of k. Finally LAURENT [L] greatly
improved (1.3) (for complex multiplication) to

^ ^^(1^
this is rather close to (1.1). One may also refer to an interesting conditional
result ofHiNDRY [H p. 90]).

In the present paper we shall extend (1.3) to all elliptic curves, whether
there is complex multiplication or not. This will be a consequence of our
Theorem below, which gives a reasonable upper bound for the number
of P in E(K), torsion as well as non-torsion, that fail to satisfy (1.1)
for a suitably small constant c. Another consequence is that we recover
the lower bounds of [M] for the degrees of the division fields associated
with E.

In addition, all our results will be made explicit in their dependence
on (72 and ^3. After the work [C] of Paula COHEN, this is a fairly
straightforward matter. Let w > 1 (standing for log Weierstrass) be an
upper bound for the absolute logarithmic height of the point in projective
space with coordinates 1, ^ , <73; this relatively unsophisticated measure
suffices for our purposes. We can now state our main result.
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COUNTING POINTS OF SMALL HEIGHT 249

THEOREM. — There is a positive effective constant C, depending only
on the degree of k, such that for any D > 1 and any extension K of k of
relative degree at most D, the number of points P in E(K) with

q^ < ̂
is at most C^wD^w + logD).

From this we deduce the following consequences.

COROLLARY 1. — There is a positive effective constant C^, depending
only on the degree of k, such that

q{p) ̂  CiwD^w+logD)2

for all non-torsion P in E{K).

This implies (1.3) without any hypothesis of complex multiplication.
For fixed D we recover the result of COROLLARY 1 (p. 110) of [M'], at least
for elliptic curves.

COROLLARY 2. — There is a positive effective constant C^, depending
only on the degree of k, such that the torsion subgroup of E(K) has
cardinality at most C^^/wD(w + log.D).

A slightly larger estimate was found by Paula COHEN in [C], but only for
the exponent of the torsion subgroup (see also the recent work of DAVID
[Da] for abelian varieties). For fixed D the estimates of COROLLARY 2
(p. Ill) of [M'] give even better bounds for cardinality.

Finally for a positive integer n let k(En) be the field obtained by
adjoining to k the coordinates of all torsion points of E(k) whose order
divides n.

COROLLARY 3. — There is a positive effective constant C-^, depending
only on the degree of k, such that, for all n,

n2

[k(En):k] >
~ C3^(w +logn)

This is the main theorem of [M] with the dependence on E made
explicit.

The proofs of these results will be given in section 6 of this paper. They
will be deduced from a Proposition which is proved in section 5. But first
we have to record some technical preliminaries. In section 2 we recall the

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



250 D. W. MASSER

concept of distance on E which was introduced in [M'], and we refine the
Box Principle of [M'j. Then in section 3 we prove some new asymptotic
growth estimates for certain entire functions. In section 4 we complete the
preliminaries and state our Proposition.

Throughout the paper, the various symbols ci, 0 2 , . . . will denote
unspecified positive constants that are effectively computable in terms
of the appropriate quantities. For convenience we renumber the constants
at the start of each section.

The research in this paper was partially supported by the National
Science Foundation.

2. Distances

For this section we do not assume that ^25 93 are algebraic, and we
consider them only as complex numbers. We recall here the distance
function r(P) defined in [M'j for all P in E{C). Let T temporarily denote
the tangent space of E at its origin 0, and let D temporarily denote a
symmetric very ample divisor on E. Then there is a Hermitian form H on
T associated with D (see for example [I pp. 64-70]). For simplicity we take
D as three times the origin of E ; this is the polar divisor of the function y .
To calculate H we identify T with C by means of the differential d x / y . The
exponential map exp^; on E(C) is then given in terms of the Weierstrass
elliptic function p with invariants g^, ^3 ; in fact if ^ is the period lattice of
p in C, then of course for any z not in ^ the point exp^(^) has projective
coordinates 1, p(^), <p'(z).

If A denotes the area of any fundamental parallelogram for ^, then
we find that H ( z ) == c\z\2 / A for an absolute constant c (depending on
normalization). For us it is especially convenient to define the related
quantity

(2.1) r(z) =

Then for P in E(C) we write

^H2

A

(2.2) r (P )= in f r (^ ) ,

where the infimum is taken over all z with exp^(^) = P. The double use
of the same symbol here should not cause any confusion.

To work with these functions it is helpful to introduce basis elements
^1,^2 of Q in such a way that r = ̂ 2/^1 = ^ + ir] lies in the standard
fundamental region for the modular group. In particular |$| < |, and
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COUNTING POINTS OF SMALL HEIGHT 251

r] > ^V^. This makes r almost unique; and in fact r] = Qmr is unique.
We shall need the following Box Principle for E(C), which generalizes that
of paragraph 4 of [M']. The constants in this section will be absolute.

LEMMA 2.1. — Given integers B,S with 1 <^ S < B, and points
PO? • • • ; PB of E(C), we can find distinct integers 60; • • • i bs^ between 0
and B, such that the points Qo = P^, . . . , Qs = Pbs satisfy

r(Qz - Q,) < ci ̂ x(j|^(||)2) (0 < z ^ < S).

Proof. — Let rjo be a positive absolute constant such that rj > TJQ ; for
example T]Q = ^V3. Define

'-^•wj
and integers

M =[^ N , = [ B / ( S ^ ) ] .

Clearly A^i is a positive integer. And if [L = 1 then N'2 is also a positive
integer; but otherwise if fi -^ 1 then

so A^2 is still a positive integer.
Let F be the set of complex numbers of the form x^uj^ + ^2^2 for real

x\,x^ satisfying 0 < x\,x^ < 1. Divide F into N]_N^ equal subsets each
congruent to the subset defined by 0 < x\ < l/A^i, 0 < x^ < 1 / N ^ .
Choose ZQ, . . . , ZB in -F with

exp^(^) =Pb {0<b<B).

Observe that N^N^ < B / S , so that

5Wi7V2<B+l .

The classical Box Principle now shows that at least one of the subsets of
F must contain at least S + 1 of the numbers ZQ, . . . , ZB ; more precisely,
we can find distinct integers bo,...,bs, between 0 and B, such that
^,... , Z b s all lie in a single subset. It follows from (2.1) and (2.2) that
for the points Qo = P^, . . . , Qs = Pbs we have

^-0,)<^^) (0..,^).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE



252 D. W. MASSER

But A = 7?|^i|2, and since |^| < ^ we deduce |cj2| < c^rj\(jj^\. Therefore

(2.3) r(Q, - Q,) < C3(-^- +^(||)2) (0 < z, ^ < 5).

Finally the definition of ^ gives

^ . C 4 ^ ? _ (S_\

^T] - T) B ^\B)
and also

2 /< 6 >^2 ( S / 5 < \ 2 ^^U ^^^b^b))-
These together with (2.3) complete the proof of the present lemma.

3. Analytic growth

As in the preceding section, we do not assume that ^25^3 are algebraic
numbers. Write

=max(y^|(72|, y^l^l ) > 0

and

A = g^ - 27gj ^0, j = 1728^3

A

Let r and T} = Qm r be as before. The constants of this section will again
be absolute. We shall need the inequality

27T7?

(3.1) ——<max( l , | j | )<c ie 2 ^
^i

which is easily proved using the well-known Fourier series (see for example
[FP p. 187]. Let p(^) and r(z) also be as before.

LEMMA 3.1. — There exists 6o(z) such that 0(z) = 7<9o(^) and
0(z) = p(z)0Q(z) are entire functions with no common zeroes and such
that

m(z)=\ogm^x{\0(z)^\0(z)\)

satisfies
\m(z) -r(z)\ < c^rj

for all complex z.
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Proof. — In her thesis [C], Paula COHEN constructed O'^z) such that
the corresponding function m'{z) satisfies

\m'(z)\ <c^r(z)+C,

where C is a certain expression in g ' 2 , 9 3 (see also [FP p. 189]. The
more precise asymptotic inequality of the present lemma holds only for
0o (z) = e(3z OQ (z), where f3 is in general non-zero. It can be established by
modifying the arguments of [C]; compare also PROPOSITION 3.1 (p. 212)
of [Da].

However, it turns out that our inequality can be deduced rather
quickly from a result of ZIMMER [Z']. Because [C] is relatively inaccessible,
we present this deduction here.

We start by defining 0o(z). With c^i,^ as in the previous section write
^15^2 tor the corresponding quasi-periods, so that r]\uj^ — rf^i = 27rz.
Define

^1^2-^2^1 Z / - _ x .. / . _^2 / . 2^ =—=————^=0-7(^2-^1), 0o(z)=e az (cr{z)) ,
Cc;iCJ2 - UJ-2^1 2A v / \ v / / ^

where a(z) is the Weierstrass sigma function associated with the lattice Q.
Temporarily writing z = x\uj^ +^2^2 tor real x\,x^, and then temporarily
defining z* as x\r}\ + ^2^2; we find that z* = az + 7rA~1^. Thus
Ke^*) = ^^(Q'^2) + r(z), so that if we further write

6(z) = - log \a(z)\ + J SRe(^*) - ̂  log |A|,

then we end up with

log|0o(^|-r(^=-2^)- l log|A|,
b

at least if z is not in fL
The reason for introducing 6 is that, according to Theorem C (p. 243)

of [Z'], it is the local Neron function on the elliptic curve E corresponding
to the standard infinite valuation. In particular we can write 6(z) = 6(P)
for P = exp^(z) / 0 on E(C). If we also write p(z) = x{P), and,
following [Z' p. 222],

fi= -log7, d(P) = ̂ max(-^,log|a;(P)|),

then we find that

m(z) - r ( z ) = -2(^(P) - d(P) + ^log|A|).
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The Corollary (p. 224) of [Z'j now gives

(3.2) ^)-^)|<c4+JlL|,

where L == 6/^ + log |A|. But L = — log M where

M=^max(27b-|, 4|^-1728|),

and clearly
— max(l, \j\) <, M < (-5 max(l, |j'|).
^5

This together with (3.1) and (3.2) completes the proof of the present
lemma.

We would like to point out that the possibility of having C^T) on the
right-hand side of (3.2), instead of a more complicated function of g^
and ^3, was suggested by a remark of G. WUSTHOLZ.

4. More preliminaries

From here onwards we assume that 9^,93 lie in our number field A;,
and we recall the parameter w > 1, which is an upper bound for
the absolute logarithmic height of the point with projective coordinates
^ 92^93- The constants of this section will depend only on the degree of k.
Recall the heights h,q defined in section 1.

LEMMA 4.1. — For all P in E(k), we have

\h(P)-q(P)\<c,w.

Proof. — This is well-known, and in fact the inequalities of [Z p. 40]
show that ci can be taken as an absolute constant.

The following "analytic analogue'5 concerns the functions m(z), r ( z )
appearing in section 3.

LEMMA 4.2. — For all complex z, we have

\m{z) — r(z)\ < c^w.

Proof. — This is immediate from inequality (3.1), LEMMA 3.1, and easy
height estimates for j = 1728^j/(^j - 27^j).

We shall also need estimates for the quantities A and 7 introduced
earlier.

TOME 117 — 1989 — N° 2



COUNTING POINTS OF SMALL HEIGHT 255

LEMMA 4.3. — We have

A> -^ -]-<-f<c^.— ^w ^w — ' — 4C3 €4

Proof. — The inequalities for 7 are immediate from height considera-
tions. For A we note first the well-known relation

/ fjji \ 12

^=(^) A

where

A( r )=^n( l -^ ) 2 4 , q^e2^
n==l

Now |^| = e"271'77, and so (3.1) gives easily q > c^w. Since r is in
the fundamental region we have \q\ < e~77^3 < 1, and it follows that
|A(r)| > Cg-^l > CT-^. But |A| < c^, so we deduce

1 ^ 1 1 >—
Finally, as claimed,

A=r)\LJi\2 > -^-.
" i ' — ^IV

^

Next we record the following lemma, where /i(l, a\,..., On) denotes the
absolute logarithmic height of the point in Pn with algebraic projective
coordinates l , a i , . . . , On. For n = 1 we refer to h(\,a) loosely as the
height of a.

LEMMA 4.4. — For M > 1, h > 0 let K be a number field of degree
M generated over Q by algebraic numbers of heights at most h. Then we
can find basis elements ai,..., OM of K over Q with

/ i ( l , a i , . . . , aM) ^(M-l)h.

Proof.— We suppose K = Q(/?i, . . . ,/^) for algebraic numbers
/3 i , . . . , ftn of heights at most h. Writing

m,= [Q(A, . . . ,A) :Q(A,—,A- i ) ] (K^n),

we see that m\... mn = M, and we can take a i , . . . , OM as the monomials

f3^ • ' • f3^ (0 < k, < m, - 1; 1 < i < n).

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE
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Clearly
n

/ i ( l , Q i , . . . , a M ) < h^(mz - 1).
i=l

But the inequality

n n^(m,-i)< (n^)-1
i=l i=l

is readily verified to hold for any real numbers m\ > 1 , . . . , mn > 1; and
the lemma follows.

In the next section we shall prove the following result.

PROPOSITION. — There is a positive effective constant Co, depending
only on the degree of k, such that for any D > 1 and any extension K of
k of relative degree at most D, the number of points P in E(K) with

max(ZW),r(P)) < 1

^o

is at most 2CoD(w -h logJD).

5. Proof of Proposition

It plainly suffices to prove the Proposition under the additional assump-
tion that K is generated over Q by g^ and ^3 together with the coordinates
of the points P under consideration. For then the general case follows by
replacing K and k by appropriate subfields.

In this section the constants will depend only on the degree of k.
We write for brevity

£ = w + l o g D > l .

If the constant Co of the Proposition is large enough, we shall deduce a
contradiction from the existence of more than 2CoD£ points P satisfying
the conditions of the Proposition. We shall actually work with the constant
c - r 1 1 ^o — OQ .
Define

Now at most

N = [cf2\/w^^.

N2 < C^wD < C^DC = CoDC
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COUNTING POINTS OF SMALL HEIGHT 257

of these points P satisfy NP == 0; and after removing them (if any),
we can suppose that for

S = [C^DC\

there are distinct points Pi , . . . , PS in E(K) such that

^)<^ r(P,)<^ NP^O { K s < S ) .

In particular we can write

Ps =exp^(^) (1 <s < S)

with

(4.1) k l2<^ (l^^)-

Introduce the parameters

[Cw2D-\L=[C3wD}, T= L c P
and let M = [K:Q}. Our assumptions on K^ together with LEMMA 4.1,
imply that it is generated over Q by algebraic numbers of heights at
most ciw. Thus by LEMMA 4.4 we can find basis elements a i , . . . ,OM of
K over Q with

(4.2) / i ( l , a i , . . . ,OM) <ciwM <c^wD.

LEMMA 5.1. — There are rational integers p(m,^,^), not all zero,
of absolute values at most exp(c3C3w'2D), such that the function

M L L

f^= E E E^'^)"-^))^^))'2
m=l ^1=0^2=0

has a zero of order at least T at z = u\,..., us-
Proof. — The number of variables p(m, ̂ i, ^2) is

M(L+\)2>CGw2D2M

and the number of equations is

ST <C5w2D2.
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Since the equations are denned over a field of degree M, there is a
non-trivial solution in rational integers. The heights are estimated as
follows. Notice that d / d z maps the ring Z[^2, p0), p'O)] into itself.
From this it is a standard deduction that (d /'dz^\p(z)Y is a polynomial
in ^2, p(^), p ' ( z ) of total degree at most c^{t + t) whose coefficients are
rational integers of absolute values at most tic^1. Also, for n = 1 or TV,
we have

q(nP,) = n2q(P,) <w (l < s < S) ,

so that by LEMMA 4.1 the numbers p(^), p'(^), p(A^,), p ' ( N u s )
(1 < 5 < S) have heights at most c^w. Hence using for example the
Proposition (p. 32) of [AM] and (4.2) we end up with the estimate

^D ̂  ̂ (T+L) ^T ^ exp^C3^)

for the coefficients ^(m,^,^). This proves the present lemma.
For an entire function F = F(z) write M(F,R) for its maximum

modulus on the circle defined by \z = R. With (9o0) as in LEMMA 3.1,
the function

F(^)=(eo(z))L(0o(N^))Lf(^)

is entire, since we have

M L L
(4.3) ^(^EEE^-^)

m=l ^1=0^2=0

x^(^))'l(7-l^))L-'l(^^))^2^-l^^))L-^

Define
r = f^^^l

L £ J

LEMMA 5.2. — We have

1^(^)| <^r (1 < 5 < 5, 0<t< T ' ) .

Proof. — With U = Tr-^^C-^A1/^ the function F has at least ST
zeroes 2: satisfying |^| < U, by (4.1). Hence a standard application of the
maximum modulus principle gives

(4.4) M(F, 2(7) < ——M(F, 22(7).
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But using (4.3) together with LEMMAS 4.2, 4.3, 5.1 and the estimates
l^ml < c^02 (1 < m ̂  M) arising from (4.1) we find that

M(F^2U) < exp^C^D) c^2 c^ expf484^2 + 1))
\ c 7

^exp^GVD2).

However,

ST > ̂ w2!)2,

and therefore (4.4) gives

M(F,2^^.

Finally Cauchy's Integral Formula leads in the standard way to

M(F».U) , 1!M^),

and using LEMMA 4.3 to estimate U from below we find that

^r wT' 1
M(F^\U) < T ' \ —^0- < ̂  (0 < t < T ' } .

This implies the present lemma.

LEMMA 5.3. — There exist s, t with 1 < s < S and 0 < t < T ' such
that

/^J^O.

Proof. — This is of course a zero estimate. But we cannot use the
standard theory, as the points Ps have no additive structure. Neither can
we use the resultant arguments of [BM], since T ' is not large enough.
We are forced to use the simpleminded method of [M]. Note that / is not
identically zero because N2 > ^C^wD whereas L < C3wD (see [M p. 51]).
It is an elliptic function with respect to ^ of order

Z < 2L + 2L7V2 < CnCW^2.

Thus it cannot have more than Z zeroes modulo n, and since

sr > jcWD2 > z
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this completes the proof.

From now on we suppose that s is chosen as in the above lemma, and
that t is picked minimally for this choice of s.

LEMMA 5.4. — We have

l r ( t } / \\ ^ 1
1/^)1 < ̂ T-

Proof. — The relation

/(^) =
F^(us)

(0o(u^(0o(Nu^

follows from the minimality of t. For n = 1 or N , LEMMA 4.2 and (4.1)
show that

|6>o(n^)|max(7,|p(m^)|) > -^ exp(-) > -i-.
^2 V0 / ^

But we have already seen during the proof of LEMMA 5.1 that the numbers
p(nus) have heights at most csw. It follows that \p(nUs)\ < ^3°, and,
since also 7 < c^ from LEMMA 4.3, we conclude that

1^0(^)1 > ——— •
Ci4

The present lemma is therefore a consequence of LEMMA 5.2.
LEMMA 5.5. — We have

^(u^^exp^C^D2).

Proof. — We simply estimate the height, as in the proof of LEMMA 5.1,
but allowing t to go up to T ' instead of T. We obtain the (exponentiated)
upper bound

exp^ie^w2^ r.'qf^ N^ < exp^rC^D).

Since /^(us) is a non-zero algebraic number of degree at most M < c^D,
the lower bound of the present lemma is immediate.

Finally since ST > ^C5w2D'2 the preceding two lemmas contradict
each other if C is sufficiently large; and this completes the proof of the
Proposition.
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COUNTING POINTS OF SMALL HEIGHT 261

6. Proof of Theorem

Again the constants will depend only on the degree of k. Let Co > 1
be as in the Proposition, and let B + 1 be the number of points P in
E(K) with q(P) < ^(CoD)-1. Call these points PO, . . . ,PB, and write
S = [2CoD£} with C = w + logD as before. If B < S then there is
nothing more to prove. So henceforth we assume that B > S.

We may therefore use LEMMA 2.1 to find distinct points Q o , . . . , Q s
among Po , . . . , PB such that

a c r)
r(Qs - Qo) ̂  ci max(^(^) ) (0 ̂  s ̂  S),

with rf = 'Sm T as before. Since

q(Qs - Qo) ̂  (Vq(Qs) + Vq(Qo))2 < —— (O^s^S),v / c/o-^

the Proposition implies that

( S (S\^\ , 1
cimax(^,^)j^.

Thus we have either

B < c^CoS or B < ̂ /c^CorfS.

Because rj < c^w by (3.1), each of the above inequalities implies the The-
orem.

The Corollaries are deduced in the usual way. Let C denote the constant
of the Theorem, and suppose there exists P in E(K) with

q{p) < C^JW-

Let M = [C^/wDjC], and let m be any integer with 0 < m < M. Then

1
q(mP) = m2q(P) <

CD

so that the M + 1 points 0, P, . . . , MP of E{K) satisfy the conditions of
the Theorem. They therefore cannot be all distinct, and so P must be a
torsion point. This proves COROLLARY 1, with C\ == C3.
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COROLLARY 2 is obvious with C^ = C. And finally this result applied
to K = k(En) gives the estimate

(6.1) n2 <C^/wD(w+\ogD)

for D = [K:k]. If D > n2 there is nothing more to prove; otherwise
D < n2 and (6.1) yields

n2 < 2C^/wD (w + log n).

This establishes COROLLARY 3 with €3 = max(l, 2(7). A similar argument
shows that any point P of order n generates a field of degree at least
C^w^^n^w + logyi)"1 over k. We can also obtain analogous lower
bounds when P satisfies nP = Q for some fixed non-torsion point Q;
but these are of order of magnitude only (n/logn)2/3 as n —^ co.

We conclude this paper with some miscellaneous comments. First we
discuss the extent to which our estimates could be improved. For the
moment regard E as fixed and D as varying. We have already seen in
SECTION 1 that COROLLARY 1 is probably not best possible. However,
it was pointed out in [M] that COROLLARY 3 is best possible apart from
the factor logn. Therefore COROLLARY 2 and the Theorem are also best
possible apart from the factor \ogD.

Next regard D as fixed and E as varying. In this situation it seems
plausible that the number of points in the Theorem should be bounded
above independently of w. But the present methods of proof are unlikely
to yield such estimates. At best we may be able to replace certain powers
of w by powers of rj = Im r; for example the arguments at the beginning of
this section immediately give the upper bound C^/rjD(w +logD) instead
otC^/wD(w-\-\ogD).

In the case of complex multiplication some of these results can be
improved. For example, in the above proof of COROLLARY 1 we could
take complex multiples of P. For a fixed elliptic curve this leads to
q(P) > cD~2(\ogD)~l•, but to calculate the dependence on w we need
estimates for the endomorphism ring of E. Such estimates were obtained
by FAISANT and PHILIBERT (see [FP p. 187], although there is no proof).
They lead to

q(p) ̂  C^^w+logD)

for positive effective C depending only on the degree of k. We omit the
details of the proof, since it is possible that better bounds could be found
by calculating the constants in LAURENT'S result (1.4) (see [L p. 138]).
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Finally we mention that our Theorem has an analogue for the multi-
plicative group G^. Thus one can show that for any number field K of
degree at most D > 3 there are at most CD\ogD elements of K with
absolute logarithmic height at most I / { C D ) . Here C is positive, effective,
and absolute.

This result appears to be new, and it implies multiplicative analogues
of our Corollaries. By contrast these are not new; the analogue of COROL-
LARY 1 is much inferior to DOBROWOLSKPS original analogue [Do] of 1.4,
while the analogues of COROLLARIES 2 and 3 are equivalent merely to an
estimate of the form

/ \ ^ CTi^(n) > -——
\ogn

for Euler's totient function. For these reasons there seems to be no point
in giving complete proofs. But for someone wishing to construct proofs we
should make the following remark. Whereas the group E(C) is compact,
the group Gy^(C) == C* is not, and so there is no obvious analogue of
the Box Principle (our LEMMA 2.1). However, all the algebraic numbers a
under consideration can be assumed to have heights at most D - llog2,
and this implies that they lie in the region defined by - < \a\ < 2. Since
this region is compact, a suitable Box Principle can be established without
difficulty.

Addendum

The referee kindly pointed out that our Theorem enables Silverman's
estimate q(P) > cD~2 to be improved to q(P) > cD~~l(\ogD\og \ogD)~2.
Actually we can even prove the following result.

COROLLARY 4. — There is a positive effective constant €4, depending
only on the degree of k, such that if K is an abelian extension of k of
relative degree at most D, we have

q^ ̂  C^wD(w+\ogD)2

for all non-torsion P in E(K).

Proof. — We need the initial remark that if Q\^Q^ are conjugates of
a non-torsion point P satisfying riQi = ^202 tor positive integers r i , r2,
then r-i = r2. This is easily proved; the simple multiplicative argument of
DOBROWOLSKPS paper [Do p. 395]) carries over with no change (compare
also p. 142of[L]).

Next suppose there exists non-torsion P in E(K) with

q(p) < C(C+iywD£^
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where C = w -+- log D and (7 is the constant of the Theorem. Write KQ for
the subfield of K generated over k by the coordinates of P. Let r be the
torsion subgroup of E(Ko), and let Q be a maximal set of conjugates
of P over k that are mutually incongruent modulo r. Further write
M = 1 + [C^/wC]y and denote by S the set of points of the form mQ + T
for T in r, Q in Q, and integers m with 1 < m < M. Since I^o is a Galois
extension of A*, the elements of S lie in E{Ko). Moreover they are distinct.
To see this, suppose m\Q\ + T\ ==- m^Q^ + T^ for T^Ta in r, Qi.Q^ in
Q, and positive integers mi, 7712. Multiplying by the cardinality t ofF, we
find that tm\Q\ = tm^Q^; so mi = m/2 from our initial remark. Hence
mi(Qi - 02) = T'2 - Ti, so that the point Qi - ̂ 2 of E(KQ) has finite
order, and is consequently in F. But the definition of Q implies now that
Qi = Q2- Thus finally T\ = T^ as well, and indeed the points of S are
distinct.

Their cardinality is therefore s = tqM, where q is the cardinality of Q.
However, P has DQ = [KQ'.k] < D distinct conjugates over A:, and since
any congruence class modulo r has at most t elements, it follows that
Do < tq. Thus

s > DoM > C^/wDo (w + log Do).

Also since M < (C + l)\/w£ we have

1 1
q(mQ + T) = m^P) < M^(P) < ̂  < ̂

for every point mQ + T of S. These inequalities contradict our Theo-
rem applied to the field Ko, and thereby establish COROLLARY 4 with
C^=C(C+1)2.
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