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WEIGHTED ESTIMATES
FOR DIFFERENTIAL OPERATORS
WITH OPERATOR-VALUED COEFFICIENTS

BY

W. O. AMREIN, A. M. BOUTET de MONVEL-BERTHIER
and V. GEORGESCU (*)

RESUME. — On étudie des opérateurs difféerenuels de la forme
L= —(d/dt)M (t)d/dt+S (1)d/dt+ T (1), ou M(t), S(1) et T(r) sont des opérateurs linéaires
dans un espace de Hilbert H et tel=(a, + ®)cR. On démontre des inégalités du type
llexp(@) ul| + ||d/dt(exp(@)uw)||Scljt(1+t0) " *2exp(@) Lufl. ou les normes sont dans
L3(I;H)et @ : I = R est croissante.

ABSTRACT. — We consider differential operators of the form
L= —(d/dt)yM (t)d/dt+S (t1)d/dt + T (1), where M(1). S(1) and T(t) are linear operators in
some Hilbert space H and tel=(a, + x)c R. We prove weighted esimates of the type
llexp(@) u|| + ||d/dt (exp(@)w)|| <cljt(1+1@) "*expi@) Lul|. where the norms are
L*(1; H)and ¢ : I = R is increasing.

1. Introduction and abstract framework

Let L be a second order ordinary differential operator the coefficients
of which are linear operators acting in a Hilbert space H. We are
concerned here with the problem of getting information about the asympto-
tic behaviour of functions u:I=(a, «©c) - H from that of Lu. More
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292 W. 0. AMREIN and al.

precisely we shall prove weighted estimates in the Hilbert space
L*(I; H; dt) of the form

<cl[t(1+19) e Lu

l.

(1 |le°u”+”5;(e’u)

where @:1— R belongs to a class of increasing weight functions and u
does not grow at infinity (in a sense to be specified).

Inequalities of the form (1) for simple first order differential operators
have been known for a long time, viz. Hardy's inequality ([6].
Theorem 330) and its generalizations. More recently AGMmox [1] proved
very precise weighted estimates in L? (R") for second order elliptic partial
differential operators for the case when z=0 does not belong to their
essential spectrum. One of the motivations for our present work was to
obtain similar inequalities for second order partial differential operators
containing 0 in their essential spectrum. We shall indicate in the last part
of this paper how our abstract formalism applies to such opcrators: only
a simple situation will be considered, the applications to elliptic operators
with coefficients that may be singular both locally and at infinity will be
the topic of a separate publication. The body of the present paper consists
of a derivation of inequalities of the type (1) in the more general framework
of ordinary differential operators with operator-valued coefficients: we
mention that this analysis can be pushed further and then leads to conside-
rably more general and detailed estimates [2].

We fix a number a>1 and denote by I the open interval (a. + x). We
denote by | .|, and (...), the norm and the scalar product respectively
in the complex Hilbert space H, and for u, ve .# =L*(I;. H) we set

(u. v)= j (u (). v (1)), dr
1

and |iul =[(u. w)]'*. We set P= —id.dr (the derivatives are alwayvs in the
sense of distributions) and denote by J#™=.7 " (/. H) the usual Sobolev
space of order m(m=0.1.2....) of H-valued functions on I and by ¥ "

the set of all functions ue )™ with compact support in I. ¥ ™ 1s just the
set of functions w in L°(I: H) such that P"ue L (I. H). provided with
the norm

bu ,-=(”unz+ [Pmu -y -

TOME 118 - 1987 - & 1}



DIFFERENTIAL OPERATORS WITH OPERATOR-VALUED COEFFICIENTS 293

We say that a linear subspace & of S is k-semilocal (k=0,1.2,...) if
n f € F for each f € # and each n e C§ (I) (the set of all complex-valued
functions of class C* on I having compact support in I), and we then set

F.={fe F |supp fis compact in I }
and
Froc=1{feL}.(I; H)|n fe &F for each neCy()) }.

Clearly #, and &,,. are stable under multiplication by functions from
C*(I). We say that a mapping T: &F — 5 is k-ultralocal if it is linear
and T(n f)=nT(f) for all fe # and neCf(I). Then T(F,) < ¥, and
there is a unique mapping T: &, = #,,. which coincides with T on #
and satisfies T(n f)=nT(f) for each fe F . and each neC*(I). We
shall denote this canonical extension T by the same letter T.

If 4 « &, is a linear subspace, we define its k-semilocal closure to be
the smallest k-semilocal subspace of »# that contains 4. Clearly it is equal
to the linear subspace generated by elements of the form n f, with
neCt() and fe¥%.

Remark A. — The most important examples of k-semilocal subspaces
we have in mind are the Sobolev spaces of sections of direct integrals of
Hilbert spaces continuously embedded in H. More precisely, for each te/
let there be given a dense subspace K(t) of H, provided with a new Hilbert
structure such that the inclusion mapping i: K(t) = H is continuous. We
say that an element u of K= n“ ,K(t) is Borel if it is Borel when
considered with values in H. Let us assume that for each such Borel
element the real-valued function |u(f)|c,, is Borel on I. Let # be the
space of all equivalence classes with respect to Lebesgue measure of Borel
elements ue K such that t—|u(t)|}, is integrable on / and ue #*(I: H).
Then # is our standard example of a k-semilocal space. It occurs in our
applications to elliptic operators the coefficients of the principal part of
which are only locally Lipschitz. The fact that # has a quite complicated
structure will be unimportant in these applications: 1t will be casy to show
(without considering explicitly the spaces K (1)) that .# is k-semilocal.

From now on we assume that the following objects are given:

(i) A 2-semilocal subspace & of ¥ such that & c .# .

(ii) A function M : 1 — 2 (H) which is locally Lipschitz (in other terms
such that its denivative M’ is a weakly measurable locally bounded function)
and such that M (1) is a positive symmetric operator in H for each tel.

BULLETIN DF LA SOCIFTE MATHEMATIQUE DE FRANCE



294 W. O. AMREIN and al.

(ii1) A 2-ultralocal mapping Q : 2 — J which is symmetric as an opera-
tor in J¥.

(iv) A 1-ultralocal mapping S:2, — ), where £, is the l-semilocal
closure of the linear space 2+ P 2.

(v) A 2-ultralocal mapping R: Z — J¥.

As said before, we denote also by @, R:Z, — X, and
S:2, \oc = H)\. the canonical extensions of Q, R and S respectively. We
observe that 2, < #2. and introduce the following two operators from
9\ Into H,

(2) L,=PMP+Q. L=L,+SP+R.

If e C?*(I), we can define L(p)=e®Le *: 2, — X, and similarly
L, (p). We observe that

(3) L(@)=L,+SP+R+2i¢'MP+i¢'S+(Mo¢’) —M o2

For each xe R we set P, =P —ix(21) ! and define the following symme-
tric sesquilinear form Q, on & :

(4) (1,0 v)=(1—x) (v, Qv)+2Re(v", 1 Q v),

where v"=dv/dt. Formally Q.= —xQ —tQ’, where Q' =i[P, Q] is in some
sense the derivative of Q with respect to t. By some straightforward
integrations by parts one can then prove the following identity:

LemMMa I. — Let aeR, @: 1 —= R of class C* and ve 2. Then

(5) 2Im(P,_,v.tL(®)v)=(r,[2Q—a) PMP+Q Jv)
+(Pr.[dto M=t M]PY+2Im(Pr.t M @' v)

+(r.I:M(a+t§-)(p”+tM’(p"—(tM(p”)']U)
'

+2Im(P,_,v. t[SP+R+i¢ S]v).

Remark B. — Equation (5), which we call the fundamental identity in
[2). 1s a genecrahization of an identity that we first saw in a paper by
Eidus [3]. Identities of a similar nature appeared in several other articles
(see . g. [4], [S]. [7) and [8)).

ToME 115 - 987 - N 3



DIFFERENTIAL OPERATORS WITH OPERATOR-VALUED COEFFICIENTS 295

To end this section, we introduce some additional notations. We provide
the space 2 with the norm

©® il =+ ) P+ ) Lol

A nomm ||. ||, on 2, will be called admissible if, for some finite constant
C, all ue 2 and all ne C! (I), one has:

(7) [null<Clllull,+ InPull +[[(In]*+ [n"Dul])

For example, || . ||, is an admissible norm, but in the applications stronger
norms are usually needed.

For any subspace 4 < . and any r>a. we denote by ¥ (r) the set of
all ue % which are zero on (aq, r).

2. Weighted estimates

This section contains the main result of our paper, namely an estimate
of type (1). We shall consider the difference of L and L, as some kind of
a perturbation of L, and consequently assume that this perturbation is
“small at infinity” in a certain sense. Explicitly, we shall assume from
now on (in addition to the hypotheses (i)«(v) already made) that the
coefficients M, Q, S and R of L satisfy the following conditions:

(vi) lim, _ o | M (t)=1|gum=lim, - | M’ (t)|gu=0.

(vii) There are real constants a, B, y with a<2, >0, y>0 such that,
as sesquilinear forms on Z:

(8) (2—a) P2+Q,=B+7YP>.

(viii) An admissible norm || . ||, is given on &, such that for each v>0
there is a number r(v)e(a. o) such that for all ueZ (r(v)) and all
reZ (r(v)):

9 fleSull <vlful],.
(10) lt(SP+R)c| <v]ie]

From now on we shall fix and denote by r=r(v) a function
r:(0,1) = (a+ 1. ) which is decreasing. satisfics r(v)=v 2 is such that

BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCF
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for t=>r(v):
(11) IM(0)=1]aw<Vs t{M (1) |y SV

and such that (9) and (10) hold if ue 2,(r(v)) and ve Z (r(v)). We also
set, for each weight function ¢ of class C%

(12) §E§.5(¢)=(a+tdi>¢"+ﬁ=w”+2t<p’<p”+ﬁ,
t

(13) V=y(@)=(1+19) 12

We shall first prove an auxiliary estimate (Lemma 2) that follows from
(vi) and (viii) and then use (vi)-{viii) to estimate the various terms in
Lemma 1. which will lead to an inequality of type (1) for functions u of
compact support (Proposition 3). This result will then be extended to
general u in Theorem 4.

LEMMA 2. — For each ge[l, o) there are constants ro=ry(q)el and
Co=Co(q)€ (0, ) such that for all ve & (r,) and all real @ € C* (I) satisfving

(149 t(lo” ] +]e"(MP<q+9’ (1) and  0<o'(D<qr,
the following inequality is true:
(15 el + lISeli<colllW L@l + [[Po] +[[(1+0) 0]}

Proof. — Assume ge[l, o) to be fixed.
(1) By using (6) and the identity (3) to express L,, one finds that for all
Uez:

(16) Jjull<[Jull + |[Pull + [ IL(@—ie SJul| + 2|0’ MPul|
+|llo' M +(@” =o' )Mlu|| + || (SP+R)u||.

Now assume that ue & (r(v)) with ve(0,1). Then, since r(v)>a+122,
we have by (10):

1
lSP+Ryull < ||t (SP+R)ul| s%llullz.

Upon inserting this into (16) and then using (11) and (14), one sees that
there is a constant ¢, such that, for all ¢ satisfying (14):

(N il <c, (L@ =10 SHul|+ [|(1 + @V Pul| + || (1 + ) ul|].

TOME 115 — 1987 - ~ %
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(i) One has the following commutation relation:
[L(o)—i¢@ S]Y=YyL(@)—i(@'y+V¥)S
—2iY MP—Y' M — (¥ +2¥ @) M.
By noticing that 0S¥ <1, ¢’ ¥<q. |¥'| <qV¥<gq, |¥"’| <£24* and by using

(17) with u=Vr. one finds that there is a constant ¢, such that for all
ve(0.1), all re 7 (r(v)) and all ¢ satisfying (14):

(18 fyr L@ +]Sc]+[[Pe]
+la+e)e|l+]|T+@)PYL|| +[|[(1+0) V]

2 <6,

Now. since ¥ ' <(1+4t%)' < (29)"? 1. we have by (9) and (7):

(19 [iSel=lv 'Svr[l<gt?fiSvef <@gt v,
<@ ivC[|[Vefa+ [PV +[[wef].

Also (1+~0 1V ¥ <(1+9)(1+¢) and
(200 TPVl <+ Py <[ +@)WPe| +]|(1+0)¥ ¢l
SO+ Pell+qlla+e)e]l.

Upon inserting these inequalities into ( 18), one finds that there is a constant
c3€(l. x) such that for all v, v and ¢ as before:

I . |

Ch el + SISy <[V L)
+vliwell+ [ Pefl+ [l +e0e]])
(15) now follows from (21) upon choosing v=v,=(2¢3)"'. ¢,=2c; and

ro=r(vy). ]

Prorosttion 30— For each q=1 there are constants vo=vqo(g)€(0. 1)
and c=c(qre(l. 7 ) such that tor all ve(0. v,). all re 7 (r(v)) and all real
©e CY (D sanstving (14). the following equality is true:

(22 (i-ved+or—tio7 o+ (Pr.te +y—vc]Pr)

+viSeiigv el Loy

Proot — The inequahty (22) can be obtained from Lemma | by suitably
estimating the 1 h. s and cach of the five terms on the r. h. s. of (5). Wc¢

RULEFTIN DE LA M) IFTE MATHEMATIOUE DF FRANCE



298 W. 0. AMREIN and al.

shall use several times the inequality 2|( f, g)| <v|| f||*+v™"||g]|* which
is valid for all v>0 and f, ge #. We assume ve(0, 1) and ve 2 (r (v)) for
the moment, and we fix a number g>1. We then have for the 1. h. s.
of (5):

1
(23) 2Im(Py_ et L@V PP+ Sy L@

For the first four terms on the r. h. s. of (5) we use (8), (11), and (14)
(for the third term notice that ¢ <[r(v)] 'q(1+¢)<vg*(1+¢’) on
[r(v). «c)) and obtain that

(24)  (e.[2=0) PMP+QJ0)2 B¢ [ +[y—v2 -] Po |,
(25  (Pr. [Vt M—tM]Pv)24(1-Vv)(Pv, 1@ Pv)—v| Pv

2
)

(26) (v,[M(u+!di>(p’2+t Mei-(tMo”)] v) =(v, [E—B]v)
t

—v(r.[|a|e?+299 (1 +9)]r)—v(v, 9 v)
—(t. 1@ jr)=Vv(gv+2+9) (v, (1 +9")v),
(27) 2Im(Pr.aM o' v)> —v| Pu|?

1
= leM ool >~V ol —v] ool
Finally the last term in (5) is majorized as follows:

(28 2Im(P, _,t.t[SP+R+i S]v)

>—vW P, elP= Yl tw(SP+R+ie S
\%

For the first norm on the r. h. s. of (28) —which also occurs in (23) —we
use

o P elP<2fla+re) 2 PP + 1(‘ ~2* (4 /o]

To majonze the norm in the second term on the r. h. s. of (28), we
set J=@ +vy ¥ ' notice that |ov] <24 |ow’| <247

TOME [1S - 198™ - ~ 13
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@+ |ZD¥<5¢*(1 +¢") and use (10), (9) and (7) to obtain that

|t W (SP+R+i¢ S)v|*=|[[t(SP+R)+it;S]yv|]?
<2V |[wolZ+6viCl|[wolli+ [ISPYo]lP+ [[(C2+ | D wol?)
S2(1+30)V*[||Wolli+44* || Po]* +4q*|v|? +25¢* || (1 + @) v*).

By using Lemma 2 to majorize || Y v||3 and after inserting all these inequali-
ties into (5), one finds that (22) holds, without the term v||Sv||? on its
l. h.'s., provided that v<v,, where v, is chosen sufficiently small and ¢
sufficiently large. By virtue of (15), (22) then also holds with the term
v|| S v||? included (it suffices to choose the constant ¢ suitably larger than
that obtained before adding the term v||Sv]|?). B

THEOREM 4. — Assume that the conditions (i)-(viii) are satisfied. Let
@€ C3(I) be a real function such that ¢’ >0 and

, . 1+’ 1+9¢’
=00 ¢ =0(—73>. ® =o( = )

14
lim inf, _ _ =@ o
+¢?

If <0, assume in addition that @ =0 (1). Then there are constants c, r
such that for all ue 2, (r) satisfving Pue ), Sue ¥ and texp(¢)Lue X¥:

(29) ||(1+@)e®ull +|[(1+19) 2 Pe®ul| +||Se®ul
<cllt(V+19) V2 Lull.

Proof. — For g>1 we denote by ®, the set of real functions @€ c
such that for r>a+gq:

(30) 0<o’ <qt. [t " ()| + |2 ()] <q(1 +¢ (1)

1
(31 Lepl@ (D2 -[1+0 (D).
q

Clearly. if @ is as in the statement of the theorem. then @€ ®, for some
q=1

(1) We observe that for each ¢ =1 there are constants c. r such that the
inequality (29) holds for all o€ ®, and all ve & (r). indeed this follows

BULLETIN DE LA SOCIETE MATHEMATIQUE DF FRANCE



300 W. 0. AMREIN and al.

from Proposition 3 by setting v =exp(®) u. by taking v small enough and
by noticing that L(¢)r=exp(¢)Lu and [1¢""|<gr ' (1+¢)? if t>r.
The extension of this result to functions u without compact support will
be made below in several steps.

(ii) We first prove the following fact: let g> 1, let &)q be a subset of @,
and suppose that for each individual ¢ € ®, one has proven the existence
of constants c=c (@) and r=r(¢) (i. e. which may depend on ¢) such that
the inequality (29) holds (with c=c () for all ueZ,  (r(y)) satisfying
Pues#, Sues¥ and texp(@) Lue #. Then there are other constants c,
r (independent of o, i. e. depending only on ¢q) such that (29) holds for all
(petﬁq and all ue 7, (r) satisfying Pue ¥, Sue ¥ and texp(@)Lue ¥ .

To prove the above claim. we choose a non-increasing function
neC* (R) satisfying 0<n <1, n(r)=1 for t<1 and n(1)=0 for t>2 and
denote by n, the function n (t)=n(er). €>0. Clearly

(32) [t (O] + [P0 (@)] Spxge-1, 2010

for some constant p. where x, is the characteristic function of the set A.

By (i), there exist constants ¢ and r (depending only on ¢) such that
(29) holds for all ¢e®, (and a fortiori for all tped)q) and all functions
ueZ that are equal to zero below r. We show that our claim holds for
these constants ¢ and r. So let ue 2, .(r) be such that Pue X', Sue X
and rexp (@) Lue ), with cpe@,. Then
(33) [[(1+e)e* noull +[[(1+:9) ?Pe*n ul| + [ n.Sevull

et +ro) e Lnu|,

and it suffices to show that this inequality remains valid for €=0 (i. e.
with n, replaced by 1). For this we remark that

(34) L(mw=nLu=2in, MPu—in;Su—(mM +n, M)u.

This implies, together with (32) and (11). that

(35) |¢e* L (n, ) |, < {tc"Lui,,+<',(]¢"Pul,,+ IS e ul, +

e®u
t

)

where ¢, is a constant independent of € and o.

TOME 115 — 19%” - ~ 3
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Since (29) is assumed to hold for we&’e (with some constants ¢=c (@)
and r=r(¢)), one has

(36) (1+09@)efuest, (14+19)'"2Pe®uc i, Se®ue .

(If r(p)<r, then ueZ,.(r(9)): on the other hand. if r(p)>r, write
u=0u+(1—0)u, where 6 C*(I) is such that 8(1)=0 for r<r(¢) and
0(2)=1 for t=r(¢@)+1, and observe that Bue Z,  (r(¢)) and (1-0)ue ¥
and that ¢ and @’ are bounded on the support of (1 —6)u). By using (36)
and the identity exp(¢@) Pu=Pexp(@)u+i@ exp(¢)u, one sees that the
r. h.s. of (35) is a square-integrable function of 1. Since n,u — wu
P(n,u) = Puand L(n, u)— Lu almost everywhere on I. one can perform
the limit € — 0 in (33) by writing the norms as integrals and using Fatou's
Lemma on the L. h. s. and the Lebesgue dominated convergence theorem
on the r. h. s. This completes the proof of our claim.

(111)) We now prove the theorem under the additional condition ¢ =0 (1).
The argument is essentially the same as that of part (ii) above. We let n,
N, and u be as above and observe that (33) and (35) are satisfied (with
constants ¢ and r depending only on g). Since exp(¢) is bounded. Pue .
SueJ ¥ and rexp(¢) Lue ¥ by assumption and r~ ' ue ¥ by Theorem 327
of [6], the r. h. s. of (35) is square-integrable and one can take the limit
€ — 0 in (33) as above. Thus. for each g= 1. there are constants ¢ and r
(depending only on g) such that (29) holds for all u as stated and all
Ped, o={0ed |o=0(1),.

(iv) We now prove the thcorem iteratively by considering successively
the following three classes of weight functions:

0, ,=0ed,[0o =0(l)].
P, .= {0t lo =0, and (f2>000, ;=0

q

We shall show by recursion on k (using the result of (1) in the first step.
i. e. for k =1) that the following statements (P,) are truc for k=1.2.3:

(P,) for each g =1 there are constants ¢ and r such that (29) holds for all
0e®, ,and all ueZ, (r) sausfying Pue ¥ . Sue. ¥ and rexp(¢) Lue.x.

For this, we fix 0 e®_, and approximate it from below by a sequence
of functions | ¢, },.,.,, such that ¢, =@ as £ -0 and ¢,€®, , , for
some q’ (depending on A. ¢ and ¢ but not on £) Then. by the recursion
assumption. there arc constants ¢ and r. depending only on ¢'. such that
for each £€(0. g5) and cach we ~ (r) sausfying Pue #. Sue.¥ and

BULLETIN DE LA SOCIETE MATHEMATION t DE P RANCE



302 W. 0. AMREIN and al.

texp(@) Luesf:
6D |1 +e)ereu] + (1490 Pereul| + || Sevu]

<cllt(+1@) 2 e% Lul|

(because exp(@,) <exp(¢), hence texp(¢,) Lue ) also). We let € =0 in
(37) and pass the limit under the integrals by using Fatou's Lemma on
the I. h. s. and the Lebesgue dominated convergence theorem on the r. h. s.
This shows that (37) holds also for €=0, i. e. with ¢, replaced by ¢, and
the validity of (P,) now follows from the result of part (ii) above (take
®,=0,,).

It remains to indicate for each class of weight functions ®, , how to
choose a sequence { ¢, } having the required properties. We begin with
the case k =1 where we take

1

(38) (p:(t)=(p(a+l)+.[ LACKFN
as1 14E58%

Clearly ¢!" - ¢" as €¢—0 uniformly on compact subsets of [ for
i=0,1,2,3, o, <@ and 0<@,<¢@'<qgt on [a+q. x). It is also easy to
show that

[t | <(@+2)(1+¢)
and
2@ <(5q+6)(1+9) if t(=a+q.

On the other hand, since ¢'(1)—0 as t —oc and %, z(@)2q ' (1 +¢'%)

for t>a+q, we must have B>¢q~'. Hence

5 p0)=207+20,. 19 +B= —c(g)@ +B=0(1)+P.

These estimates imply the existence of a number ¢ €(q. ) such that
¢, €®, for each e€(0. 1). as claimed, and clearly ¢, =0 (1) (not uniformly
in g, of course).

For k=2 we set
toei(s)

IS

(39) w‘u)=(p(a+l)+J- ds

a+l
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One has properties and estimates for @, and its derivatives of the same
type as those for k=1, with the exception of the lower bound for &, ¢(®,)
which requires a more careful analysis. For this we notice that, for
t=za+q:

a@?+2t9' Q" + - ,
b pl0d= L OHR g1 —r2 207
2
> T g9 2602
r‘

1 1
-(1+9)+ (B— ->(l -1 =2¢0.
q q

Since @, < @, if g, <g,, we may assume without loss of generality that
1/g<B. We then have

2 2 l
£ p(0) > 1+q‘°‘ —2eq> % + (—— —2e>¢:’-

By taking e<g,=(49)" ", we see that ¢, e ®, . for some fixed q’, and since
@,(t) =0 as t — c© (because ©'=0 (1) if k=2), we have in fact ¢, €®,. ,.
Finally let us consider the case k=3. Then a>0, and we define @, by

(40) (pt(t)=(p(a+l)+J.‘ 96y
a+1 1+a(p’ (S)

It is easy to show that o,<¢, 0<@ <@ <qt, ¢;=0 (1),
o |+ |2 | <c@(1+9) on [a+gq, o). Let ag=a—q ',
Bo=B—g~'. As above, we may assume without loss of generality that

%o >0and B,>0. Then

1+09.?
B p(0) = ——2= =E,, 5, (@)
24219°0" 3
=u+mo_&_ +B,

(1+e9)? (1+e9")?

.2 v _er
;M_ﬁ”’_‘p_+go;__ﬁ'_+po;0

(1+¢£9)? (1+e9)?

Thus ¢, €®,. , for some fixed g". B
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Remark C. — (a) The condition rexp (@) Lue ¥ in Theorem 4 is artifi-
cial if t@" 1s not bounded. It can be shown that this condition is not
necessary if t @’ (t) — oc as t — oc.

(b) The estimate (29) is essentially optimal, as can be shown by studying
the asymptotic behaviour of solutions of Lu=0 in the case where the
coefficients M. Q, S, R of L are real functions. hence where L is an
ordinary differential operator (H =C).

(c) The idea of approximating a weight function by a sequence of more
slowly growing functions was already used in [l] and in [4] and [5] in
somewhat different contexts.

3. An example

We shall consider here only a rather simple but non-trivial example,
namely first order perturbations of the Laplace operator. Let a> 1,

Q= xeR"| [x|>a]. H(Q)=L"(Q:dx)
and J# ™ (Q) the usual Sobolev space of order m. We set 1= | x|, o=x/|x|.
If D;= —icicx, let

n—1

2

1 n .
(41 P=;(m.D+D.w)EZj=‘(x)J-D}—1

It can be shown that

2

(42) -A=D*=Y"_ D;=P'+

s =

“
.

-~

where N is a second order operator that acts only on the angular vanables
w (1t 1s the spherical Laplace operator plus a constant). In particular N is
independent of t. Consider now some Borel functions A4;. V,
BW:Q-C(y=1.....n and a constant AeR and the following formal

differential operator:

(43) L=D+A4A.D+V+W—-}x

-~ ,.‘\' N 2
=P~ ( - +H'~r.> +(A. P+t "4 A+ =P +Q+SP+R,
e ;
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where A=(A,, ..., A,) and

. . n—1 .
(44) Aj= Zk=lmk(kaj—ij,,)+z—2—wj G=1,...,n).

The operators A; are also independent of ¢ and act only on the angular -
variables @ (and one has N=A?—(n—1)/2). The last identity in (43)
contains implicitly the definition of the operators ¢, S and R, whereas
M =1 in this case.

We say that the function W is regular if Wues# (Q) for each
ue #?2(Q) and if there is a constant ¢ such that for all ue #?2 (Q):

@5 Julle@<clllullea+ | Pullea + O+ Wulleal

This class of functions is quite large: for example, it is enough to have
W=W,+ W, such that W,: Q = R, W, #2(Q) c & (Q), W, is D*-boun-
ded on #2(Q) with DZ2-relative bound zero, W, is positive and
|AW, | <W?+b for some b< co (which admits functions that grow rapidly
at infinity).

In the next theorem all derivatives are understood to be in the sense of
distributions:

THEOREM 5. — Let L be defined by (43) and assume that the following
conditions are fulfilled:

(@) W is real, regular, and there are constants a <2, B>0, y>0 such
that as sesquilinear forms on C3 (Q):

(46) aW+x.VWQ2-a)D*+ah—p—y P?

(b) for each £€>0 there is a number p<oc such that for all ue C§ (Q)
with u(x)=0 for | x| <p:

47) Iixlaull <elulleran  lxIVull <elulleran

Let ¢ be as in Theorem 4. Then there are constants ¢ and r such that the
Jollowing inequality is true (with t(x)=|x|) for each s€[0,2] and each
ue Xl (Q) having the properties u(x)=0 if |x|<r, ueX¥'(Q) and
| x| exp (@ (]x])) Lue H# (Q):

(48) "[l +‘p'“)]l_'e.m““r‘(ms"”'“ +to (’)]. ! :c.‘“Lu“’(ﬂl'
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If to’(t) is bounded or tends to infinity as t — oo, the condition
| x|exp (@ (| x|)) Lue H# (Q) is not needed.

We sketch the proof only for the case s=0 (our abstract Theorem 4
combined with an interpolation argument implies in fact the general case
of (48)). The connection with the abstract formalism is made as follows.
Let £={0eR"||w|=1}, provided with the usual measure dw, and
H=L?*(Z; do). Then we represent X (Q) as # =L?(I; H) through the
unitary operator ¥ : )¥ (Q) — S defined by

(49) (¥ NH(O@=1"""2f (tw).

In this new representation of ) (Q), P becomes —id/dt, and if n is a
function from I to C then the operator of multiplication by the function
xv—on(lxl) becomes the operator of multiplication by the function
t—n(t). We take 2 =2 (Q); the condition of 2-semilocality and the
condition that 2 c #? (which is strictly larger than #¥#?(Q)) are
obviously satisfied. Since W is regular, we have || f|le2 @ <c||% f]]..
from which one can easily deduce that | .||,, defined by
llull,=||% " ul| 1 @ is an admissible norm. Condition (b) of the theorem
corresponds to condition (viii) in Section 2, whereas (a) corresponds to
(vii) by virtue of the following identity (as sesquilinear forms on J#2(Q)):

(50) ¥ '(2-a) PP +Q)J¥=Q2-a)D*+ah—aW—-x.VW.

Thus Theorem 5 is a straightforward consequence of Theorem 4.
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