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ON A^-HIGH SUBGROUPS OF ABELIAN GROUPS

JOHN M. IRWIN AND KHALID BENABDALLAH.

1. Introduction.

This paper is based on a curious property of N-high subgroups when N
is a subgroup of G1 the subgroup of elements of infinite height of a group G.
Let G be a group, N a subgroup of G, we say that a subgroup H of G
is N-high if H is maximal with respect to the property H n N == o. Our
first result (theorem 2.4) is that given a group G and Na subgroup of G',
then G = < H, K > whenever 7:f is an N-high subgroup of G and K is
a pure subgroup of G containing N. A close look at the proof of this result
shows that the assumption that K is pure can be replaced by the weaker
one that NcK\ An immediate consequence is the classical theorem
that divisible subgroups of a group are absolute summands of the group.

N-high subgroups where Nc G1 were first introduced and studied
by IRWIN and WALKER in [3]. These authors proved that N-high sub-
groups are pure and that the factor groups they induce are divisible.
It turns out (theorem 2.5) that H is an N-high subgroup of a group G,
where Nc G1 if and only if H is pure, Hr\N == o, G ==^H, K> for
all K pure containing N and GIH is divisible. We use this property
of JV-high subgroups where Nc G\ to generalize and simplify many
results in [4]. In particular, we obtain a criterion for a pure subgroup
of a group G containing Nc G1 to be a summand of G (theorem 3.1).

In the fourth part, we define the concept of quasi-essential and strongly
quasi-essential subsocles of a p-group (definition 4.1) and proceed to
characterize those qjdasi-essential subsocles which are also centers of
purity (theorem 4.4) and those which are strongly quasi-essential
(theorem 4.8).

We use standard notation from [I], The symbol Z4- denotes the set
of positive integers. If G is a p-group, R a subgroup of G and g^R,
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the symbol hn(g) denotes the height of the element g in the subgroup J?.
All groups considered are Abelian.

2. A characterization of N-high subgroups of a group G,
withNcG1.

We need the following lemmas.

LEMMA 2.1. — Let G be a p-group, N subgroup of G1 and K a pure
subgroup of G containing N. Then for any N-high subgroup H of G,
G = < J ^ , K > .

Proof. — Clearly < H, K y ^ H [ p ] Q N [ p ] = G[p]. By induction
suppose ^ H , K y ^ G [ p n ] . Let ge G, o(^)=p / ^ + l , if g ^ H ,
^ g . H ^ r ^ N ^ o thus there exists h^H, g ' e N , and m < n + i , such
that

Pfng+h=gf^o

since K is pure, g'^.K\ thus there exists k^K, such that g r = p " l k ,
or h^^^g—k). If h ̂  o, by purity of H (see [3], theorem 5) there
exists h ' ^ H , such that pmhf == h, therefore p 7 7 ^—k—h' ) == o. This
implies ^— k— h' €<^, K>, and ge < H, K>, thus<^,K>D G^'].
By induction

G=^H, K>.

LEMMA 2.2. — Let G be a torsion group, N a subgroup of G1 and K a pure
subgroup of G containing N. Then for any N-high subgroup H of G,
G=<^ ,K>.

Proof. — Let G=^Gp, H ===^Hp, K==^Kp and N==^Np
then for each prime?, Hp is Np-high in Gp (see[2], lemma 11) and since Kp
is pure containing N p , lemma 2.1 holds and Gp == < H p , K p y. Therefore

G=^Hp,Kpy==<^H,Ky.

LEMMA 2.3. — Let G be a group, N a subgroup of G' and H an N-high
subgroup of G. Then Hf is Nrhigh in Gf.

Proof. — Clearly ^nN<=o, let ge d, o(g)==b,g^. H then
< g, H > n N ̂  o, thus there exists h e H, n € N, and a positive integer
a such that ag + h == n -^ o. Clearly a -^- b. Now bag + bh == bn,
thus bh = bn = o, and h e Ht, n e N/, therefore < g. Hi > n M 7^ o.
This implies that J^ is A^-high in G^.

THEOREM 2.4. — L^ G be a group, N a subgroup of G1 and K a pure
subgroup of G containing N. Then for any N-high subgroup H of G,

G=<7f,X>.
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Proof. — Suppose ge G, g ^ H , then < g, ^>nN^o, thus there exists
h € H, n e N and a positive integer a, such that

ag + h = n ̂  o.

By an argument similar to the one used in lemma 2.1, there exists h ' ^ H
and A-eJC such that a(g-^ h'—k) = o. Thus ^ + h'—ke d. But,
by lemmas 2.3 and 2.2, we know that G,==<^,X/>, therefore
^€<J:f, K> and G =<Jf, K>.

A classical theorem follows immediately from theorem 2.4.

COROLLARY. — J/'D is a divisible subgroup of a group G, then D is an
absolute summand of G.

Proof. — Let D == N in theorem 2.4, since D is divisible it is pure in G.
Thus G = D ® H, for any D-high subgroup H of G.

THEOREM 2.5.—Let G be a group, N a subgroup of G1 and H a subgroup
of G disjoint from N. Then H is N-high in G if and only if H is pure,
GIH is divisible and G == < H, K> for any pure subgroup K of G contai-
ning N.

Proof. — The necessity follows from theorem 2.4. Suppose then that H
satisfies the conditions of the theorem. Since HpiN == o there exists
an N-high subgroup H ' of G containing H. Since H ' is pure in G,
H ' j H is pure in GfH which is divisible, therefore H ' j H is divisible and
GIH = (H'jH)^ {RfH) where R can be chosen to contain N. Since H is
pure in G and RfH is pure in GIH, R is pure in G, and since R 3 N,

Therefore
J?==<J? , J f>= G.

H=.Rr\H1 = G r \ H ' = H '
and JZ is N-high in G.

3. Some applications.

We first obtain a criterion for pure subgroups of a group G to be
summands of G.

THEOREM 3.1. — Let G be a group, K a pure subgroup of G containing
a subgroup N of G1. Then K is a direct summand of G if and only if there
exists an N-high subgroup H of G such that Hr\K is a direct summand
ofH.

Proof. — Suppose G ==X©L, let M be any N-high subgroup of K,
then it is easy to see that H == L© M is N-high in G and Hr\K== M
is a summand of H.
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Suppose now that there exists an N-high subgroup H of G such that
H==(Hr\K)^R, by theorem 2.4 :

G=<^H, K>=<(7fnK)®J?, K>=<7?, K>

and since R n K == o, G = RQ) K.
The following corollary contains theorem 2 in [4].

COROLLARY. — A reduced group G splits over its maximal torsion sub-
group Gt if and only if some N-high sub group of G splits, where Nc G' n G/.

Proof. — If G is reduced and G = GiQ)L then G'c Gt and since G{
is pure theorem 3.1 implies there exists an N-high subgroup such that
H n Gt = Hi is a summand of H. Now if J^ is N-high and H == Hi@L
since Nc G^n G1 by theorem 3.1, G^ is a summand of G.

For what follows we need the following lemmas.

LEMMA 3.2. — Let G be a group, H a subgroup of G then if KIH{ is
an (HIHt)-high subgroup of GfHi, then K is pure in G and K~^ Gi.

Proof. —Suppose ng^K where ge G. Leto^/i= ag+ke^K, g^r\H
then nag + nk = nh e K n H == Hi, therefore h e Hi, thus <( K, g )> n H=Hi
which implies <^ K, g y = K, therefore g e K and thus K is pure in G.
Now if ge. Gt then letting n==o(g) in the above argument we see
that K^ Gt.

LEMMA 3.3. — Let G be a group, N a subgroup of G1, H an N-high
subgroup of G and K a pure subgroup of G containing <(N, G^ and such
that K n H = Hf. Then for any N-high subgroup H ' we have K n H ' = H[.

Proof. — Such K do exist (lemma 3.2). Clearly K r \ H ' ^ H [ . Let
h' e K n H ' and suppose h^H then there exists h € H, g e N and a positive
integer a such that ah' -\- h = g y^ o, thus he.Kr\H = Hi let b == o(/i),
then

bah' = bah^ bh = bge H ' n N == o

thus bak == o and consequently h^Hi. Therefore Kr\H' =H'i.

COROLLARY 1 ([4], lemma). — If G is a group, N a subgroup of G1

and H is an N-high subgroup of G, then HfHt is a summand of GjHt.

Proof. — Let K/J^ be J^-high in G/J^. Choose K ^ N . Then,
since K is pure in G (lemma 3.2), it follows from theorem 2.4 that
G = < K, H >. Therefore G/7^/ = W^) ® WH^).

COROLLARY 2 ([4], theorem 4). — Let H and H ' be two N-high subgroups
of a reduced group G where N is a subgroup of G'. Then HfHt ̂  H ' I H ' L
and GlHt^ G/H;.
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Proof. — From corollary 1, G / H t = (HI Hi) ® WH^ From lemma 3.3,
Kr\H'=H't, therefore ^ GfHi--= (^/^©(K/^). The result follows
from this and the fact that GIH ̂  G\R' (see [3]).

COROLLARY 3 ([4], theorem 1). —Let G be a reduced group, N a subgroup
of G1 and H an N-high subgroup of G then ifH = Ht © L, we have G ==K® L
where K\Gi is the divisible part of GfGt.

proof. — G\Ht = HIHt@KfHt from corollary 1.
Now K I H / is divisible since KjHtC^ GIH, and HfHt^ L is reduced.

Thus K\Gt is the divisible part of G\Hi. Now Kr\H=Ht implies
K n L = o a n d < K , ^ > = = G implies < K, L> == G, therefore

G=K®L.

4. Generalizations. Quasi-Essential subsocles of p-groups.

It is natural to ask, what kind of subgroups of a group G have pro-
perties similar to subgroups of G1. We consider first p-groups. It is
trivial to verify that two subgroups of a p-group are disjoint if and only
if their socles are. Thus it suffices to consider subgroups of the socle
of a p-group which we will call subsocles.

DEFINITION 4.1. — Let G be a p-group, a subsocle S of G is said to be
quasi-essential (q. e.) if G = < H, K > whenever H is an 5'-high subgroup
of G and K a pure subgroup of G containing S. S is said to be strongly
quasi-essential (s. q. e.) if every subgroup of S is q. e.

We now proceed to characterize those quasi-essential subsocles of G
a p-group G which are also centers of purity (see [7] and [6]).

THEOREM 4.2. — Let G be a p-group, S a center of purity, Sc G[p].
If S is not quasi-essential in G then there exists neZ, ^e G[p], g ^ S
and s € S such that

h(s) == h(g) == n and h(s + g) = u + i-

Proof. — Set Pn=(pflG)[p], ?.;== G'[p] and P. ̂ = o then it is
known (see [6]) that S is a center of purity if and only if

P^DSDP/,+2 for some ne } i, 2, . . . , oo, oo + i i -

From lemma 2.1, we see that if n == oo, i. e. Sc G1, S is q. e. Thus if S is
not q. e. there exists n e Z^, such that

Pn^S-^Pn^.

Also S is not q. e. implies that there exist a pure subgroup K of G contai-
ning S and an S-high subgroup H, of G such that < H, K > ̂ - G. Let
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< H, K> = R. Since 7?3 G[p] and R^- G, R is not pure in G (see [5],
lemma 12). Therefore there exists an element xeR[p] such that
h (x) > hn (x). H and K being both pure in G implies that x ̂  H and x ̂  K
Therefore there exists ge H [ p ] and se S such that : r=^+s ,^o^s .
It is easy to verify that

^ (9) -= hn (g) = h (g) and /^ (s) == J^ (5) = A (s),

therefore
/z(^) = h(s)^hn(g +s)< h(g + s).

Now s e 5 implies A(s) ̂  p'\ g ^ S implies h(g) ̂  n + i and since S 3 P/,+,
we conclude that h(s) =h(g) ==n and 7 z ( ^ + s ) = = n + i as stated.

COROLLARY 1. — Let G be a p-group, S a subsocle of G such that

Pn^^^Pn+i then S is quasi-essential.

Proof. — S is a center of purity, thus theorem 4.2 applies and clearly
there exists no pair ge G[p], g^ S and s€ S that satisfy the conditions
of the theorem. Thus S is q. e.

COROLLARY 2. — Let G be a p-group, S subsocle of G such that S supports
an absolute summand A of G then S is quasi-essential.

Proof. — S is a center of purity, thus theorem 4.2 holds and again
if g ^ S and s ^ S and h(g) = h(s) then, since g can be embedded in a
complementary summand of A in G, h(g + s) = h(g) =h(s). Therefore
the condition of the theorem cannot be satisfied and S must be q. e.

COROLLARY 3. — Let G be a p-group, K a pure subgroup of G containing
Pn for some n e Z^, then K is a direct summand containing p" G.

Proof. — Since P,, is q. e., G = = < K, H^, where H is a P/,-high sub-
group of G. Now H is bounded, in fact p^H = o, and G\K ̂  HjHr\K,
therefore K is a direct summand of G and p ' 1 GcK.

In fact, it turns out that the conditions on S in corollary 1 and 2 as
well as the condition that S be quasi-essential and a center of purity,
are equivalent provided S<t G'. To prove this, we need the following
lemma.

LEMMA 4.3. — Let G be a p-group, H a pure subgroup of G such
that GfH is pure-complete. Let S be a subsocle of G such that H[p]c S.
Then S supports a pure subgroup K of G containing H.

Proof. — Since GfH is a pure-complete group, by definition, every
subsocle of GjH supports a pure subgroup of GfH. Now < S, H ^ I H is
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clearly a subsocle of GIH, therefore there exists K\R a pure subgroup
of G\H such that

( K I H ) [ p ] = = ^ S , H > I H .

Since H is pure in G, K is pure in G (see [5], lemma 2). Clearly K[p} 3 S,
let A-€ K[p], then k + He (K/J-f)[p] = < S, Jf >/^, thus there exists 5€ S
and h e Jf such that k — s --= h, but ph = p (k — s) == o, and since
S^H[p], we conclude that A:e5. Therefore K[p] == 5'.

COROLLARY. — Let G be a p-group, S a subsocle containing Pu

(see theorem 4.2) for some neZ-^, then S supports a pure subgroup of G
containing p71 G.

Proof. — Let Gn be as in [I], p. 98. Then Gn is pure in G, Gn[p] == Pn
and GjGn is bounded and therefore pure complete. Thus lemma 4.3
holds, and S supports a pure subgroup of G containing Gn.

THEOREM 4.4. — Let G be a p-group, S subsocle of G not contained in G'
then the following are equivalent:

(i) S is both a center of purity and a quais-essential subsocle of G;
(ii) S supports an absolute direct summand of G;

(iii) There exists n e Z^ such that Pn 3 S 3 P/,+i.

Proof. — (i) implies (ii). Suppose S satisfies (i), then since S is a center
of purity SDP,n for some m€=Z4 ' and by the corollary to lemma 4.3,
S supports a pure subgroup K of G. Since S is also quasi-essential K is
an absolute summand of G.

(ii) implies (i). Suppose S supports an absolute summand K. Then S
is clearly a center of purity and by corollary 2 to theorem 4.2, S is q. e.

(i) implies (iii). Suppose S satisfies (i), then S supports an absolute
summand K of G. Since S is a center of purity, we know there exists
m^Z^^P^^ 5'3P^+2. Suppose P^+i^ S, we will show, by contra-
diction, that S^>P,n+r Indeed, suppose not, i. e. there is x^ G[p] such
that x^:S and h(x) = m + i. Now Pm+i <t S implies there exists se S,
h (s) = m, otherwise Pm c Sc Pm+i, and we would be done. Let

y =x—s then h(y) = m, y ^ - S and' h(y + s) ==m + i.

Since y ^ S there is an 5'-high subgroup H of G such that y ^ H . But,
G=KQ)H and h(y) = h(s) imply that h(y + s) ==h(y) = h(s) which
is a contradiction. Therefore S^Pm+i.

(iii) implies (i). If S satisfies (iii) it is a center of purity
(see theorem 4.2, proof) and by corollary 1 to theorem 4.2 it is also q. e.

At this point we have completely characterized those quasi-essential
subsocles of a p-group which are also centers of purity. An immediate
consequence is the following.
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COROLLARY. — Let G be a p-group, A a pure subgroup of G, then A is
an absolute direct summand of G if and only if A is divisible or
Pn 3 A [p] 3 Pn+i for some n e Z+.

The strongly quasi-essential subsocles have also a simple characteriza-
tion which can be obtained from the previous result. We need the
following lemmas.

LEMMA 4.5. — Let G be a group; A, B, C three subgroups of G then

<AnB, Cn5> ==<AnB, C > n J 3 = < A , CnB>c5.

LEMMA 4.6. — Let G be a group, N a subgroup of M a subgroup of G,
if a subgroup H is N-high in G then Hr\M is N-high in M. Conversely
if H ' is an N-high subgroup of M then H ' == H r\M for any N-high sub-
group H of G containing H ' ' .

Proof. — Let H be N-high in G then for all x^: H, we have

<^,a;>nN^o.

Suppose m^M, m^H, then

^Hc\M, m>nN=<^, m>nMnN=<JZ, m>nN^ o.

and since (H n M) n N == o, H n M is N-high in M.
Let H ' be an N-high subgroup of M, and let H be any N-high subgroup

of G then H ^ M - ^ H ' and (^nM)nN=o. The maximality of H1

implies H n M = H ' ' .

LEMMA 4.7. — Let G be a p-group, S a quasi-essential subsocle of G.
Let K be a pure subgroup of G containing S. Then S is quasi-essential
in K.

Proof. — Let M be a pure subgroup of K containing S and let H be
an iS-high subgroup of K. Let JT be an S-high subgroup of G contai-
ning H then, since S is q. e. and M is also pure in G we have < M, H ' y = G,
thus by lemma 4.5 and 4.6,
K=<M,^>nK==<MnK,^>nK=<MnK, JTnJQ = <M, AT>,

and S is q. e. in K as stated.

THEOREM 4.8. — Let G be a p-group, S a subsocle of G then S is strongly
quasi-essential if and only if either Sc G1 or there exists n€Z4-, such that
p72 G == o and (p^-1 G)[p] 3 S.

proof. — If Sc G\ S is s. q. e. follows from lemma 2.1. If there
exists n e Z+ such that p^ G[p] 3 S 3 p7' G = o then S is s. q. e. as a



N-HIGH SUBGROUPS OF ABELIAN GROUPS. 345

consequence of corollary 1 to theorem 4.2. Suppose now that S is s. q. e.
and S(t G1 then there exists s€ S such that h(s) < oo. By corollary 24.2
in [I], s can be embedded in a finite pure subgroup K such that K[p] =<( s )>.
Since S is s. q. e., K is an absolute summand of G. Thus by theorem 4.4,
there exists meZ4-, such that (p771 G)[p]c< -s > c (p771-1 G) [p] but < s > is
a cyclic group of order p, therefore G is a bounded group. This implies
that S supports a pure subgroup M of G, and since 5' is q. e., M is an
absolute summand of G. From lemma 4.7, we see that every subsocle
of M is q. e. in M, and thus every summand of M is an absolute summand.

By problem 11(6), p. g3 in [I], M==VC(?") for some ^eZ+ and

S=M[p}c(pn-lG)[p].

Clearly M[p] (t (p^ G) [p], therefore (p" G)[p]c Sc^-1 G) [p], and since
M is pure Pn G c M. Thus

p/^ G = (p71 G) n M == yM == o,

and the proof is complete.
The following characterization follows immediately from theorem 4.8.

THEOREM 4.9. — Let G be a p-group, every subsocle of G is quasi-
essential if and only if G is divisible or G is a direct sum of cyclic groups
of same order.

We have not been able to decide whether a quasi-essential subsocle
is necessarily a center of purity or not. But in the next theorem, we have
a case where quasi-essential subsocles are centers of purity.

THEOREM 4.10. — Let G be a p-group, if G is pure-complete then every
quasi-essential subsocle of G is a center of purity.

Proof. — Let S be q. e. Since G is pure-complete, S supports a pure
subgroup K of G. This K is an absolute summand and therefore the
result follows from corollary 2 to theorem 4.2
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