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1. Introduction

In this paper we continue the study of Grothendieck’s six operations for
sheaves on Artin stacks begun in [14]. Our aim in this paper is to extend the
theory of finite coefficients of loc. cit. to a theory for adic sheaves. In a sub-
sequent paper [15] we will use this theory to study perverse sheaves on Artin
stacks.

Throughout we work over an affine excellent finite-dimensional scheme S.
Let � be a prime invertible in S, and such that for any S-scheme X of finite
type we have cd�(X) < ∞ (see [14, 1.0.1] for more discussion of this assump-
tion). In what follows, all stacks considered will be algebraic locally of finite type
over S.

Let Λ be a complete discrete valuation ring with maximal ideal m and with
residue characteristic �, and for every n let Λn denote the quotient Λ/mn so that
Λ = lim←−Λn. We then define for any stack X a triangulated category Dc(X ,Λ)

which we call the derived category of constructible Λ-modules on X (of course as in
the classical case this is abusive terminology). The category Dc(X ,Λ) is obtained
from the derived category of projective systems {Fn} of Λn-modules by localiz-
ing along the full subcategory of complexes whose cohomology sheaves are AR-null

(see 2.1 for the meaning of this). We can also consider the subcategory D(b)
c (X ,Λ)

(resp. D(+)
c (X ,Λ), D(−)

c (X ,Λ)) of Dc(X ,Λ) consisting of objects which are lo-
cally on X bounded (resp. bounded below, bounded above).

For a morphism f : X → Y of finite type of stacks locally of finite type
over S we then define functors

Rf∗ : D(+)
c (X ,Λ) → D(+)

c (Y ,Λ), Rf! : D(−)
c (X ,Λ) → D(−)

c (Y ,Λ),

Lf ∗ : Dc(Y ,Λ) → Dc(X ,Λ), Rf ! : Dc(Y ,Λ) → Dc(X ,Λ),

RRRhomΛ : D(−)
c (X ,Λ)op × D(+)

c (X ,Λ) → D(+)
c (X ,Λ),

and

(−)
L⊗(−) : D(−)

c (X ,Λ) × D(−)
c (X ,Λ) → D(−)

c (X ,Λ)
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satisfying all the usual adjointness properties that one has in the theory for schemes
and the theory for finite coefficients.

In order to develop this theory we must overcome two basic problems. The
first one is the necessary consideration of unbounded complexes which was already
apparent in the finite coefficients case. The second one is the non-exactness of the
projective limit functor. It should be noted that important previous work has been
done on the subject, especially in [1] and [7] (see also [12] for the adic problems).
In particular the construction of the normalization functor 3.0.8 used in this paper
is due to Ekedahl [7]. None of these works, however, give an entirely satisfactory
solution to the problem since for example cohomology with compact support and
the duality theory was not constructed.

1.1. Conventions. — We follow the conventions of [14, 1.1]. Let us recall in
particular that if C is a complex of sheaves and d ∈ Z, then we write C(d ) for
the Tate twist and C[d ] for the shifted complex. We denote C(d )[2d ] by C〈d 〉.

2. R lim for unbounded complexes

Since we are forced to deal with unbounded complexes (in both directions)
when considering the functor Rf! for Artin stacks, we must first collect some results
about the unbounded derived category of projective systems of Λ-modules. The key
tool is [14, §2].

2.1. Projective systems. — Let (Λ,m) be a complete local regular ring and
Λn = Λ/mn+1. We demote by Λ• the pro-ring (Λn)n≥0. At this stage, we could take
any projective system of rings and Λ the projective limit. Let X /S be a stack (by
convention algebraic locally of finite type over S). For any topos T , we will denote
by T N the topos of projective systems of T . These topos will be ringed by Λ

and Λ• respectively. We denote by π the morphism of ringed topos π : T N →T
defined by π−1(F) = (F)n, the constant projective system. One checks the formula

π∗ = lim←−.

For every n ∈ N there is also a morphism of topos

en : T → T N.

The functor e−1
n is the functor sending a sheaf F = (Fm)m∈N to Fn. The functor en∗

sends a sheaf G ∈ T to the projective system with

(en∗G)m =
{

G if m ≥ n
{∗} if m < n.
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The functor e−1
n also has a left adjoint sending a sheaf G to the projective system

with

(en!G)m =
{
∅ if m > n
G if m ≤ n.

Note also that en extends naturally to a morphism of ringed topos

en : (T ,Λn) → (T N,Λ•)

and e∗n = e−1
n .

Recall that for any F ∈ Mod(T ,Λ•), the sheaf Riπ∗F is the sheaf associated
to the presheaf U �→ Hi(π∗U, F). We’ll use several times the fundamental exact
sequence [6, 0.4.6]

0 → lim←− 1Hi−1(U, Fn)→ Hi(π∗U, F)→ lim←− Hi(U, Fn)→ 0.(2.1.i)

If ∗ denotes the punctual topos, then this sequence is obtained from the Leray
spectral sequence associated to the composite

TN → ∗N → ∗
and the fact that Ri lim←− is the zero functor for i > 1.

Recall (cf. [16, lemme 12.1.2]) that lisse-étale topos can be defined using the
lisse-étale site Lisse-ét(X ) whose objects are smooth morphisms U →X such that
U is an algebraic space of finite type over S.

Recall (cf. [11, exp. V]). that a projective system Mn, n ≥ 0 in an additive
category is AR-null if there exists an integer r such that for every n the composite
Mn+r → Mn is zero.

2.1.1. Definition. — A complex M of Mod(X N
lis-ét,Λ•) is

– AR-null if all the H i(M)’s are AR-null.

– constructible if all the H i(Mn)’s (i ∈ Z, n ∈ N) are constructible.

– almost zero if for any U →X in Lisse-ét(X ), the restriction of H i(M) to

Étale(U) is AR-null.

Observe that the cohomology sheaves H i(Mn) of a constructible complex
are by definition cartesian.

2.1.2. Remark. — A constructible complex M is almost zero if and only
if its restriction to some presentation X →X is almost zero, meaning that there
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exists a covering of X by open subschemes U of finite type over S such that the
restriction MU of M to Étale(U) is AR-null.

2.2. Restriction of Rπ∗ to U. — Let U →X in Lisse-ét(X ). The restriction
of a complex M of X to Étale(U) is denoted as usual MU.

2.2.1. Lemma. — One has Rπ∗(MU) = (Rπ∗M)U in D(Uét,Λ).

Proof. — We view U both as a sheaf on X or as the constant projective
system π∗U. With this identification, one has (Xlis-ét|U)N = (X N

lis-ét)|U which we will
denote by X N

lis-ét|U. The following diagram commutes

X N
lis-ét|U ��

j

��

π

X N
lis-ét

��

π

Xlis-ét|U ��
j

Xlis-ét

where j denotes the localization morphisms and π is as above. Because the left
adjoint j! of j∗ is exact, j∗ preserves K-injectivity. We get therefore

Rπ∗ j∗ = j∗Rπ∗.(2.2.i)

As before, the morphism of sites ε−1 : Étale(U) ↪→ Lisse-ét(X )|U and the corres-
ponding one of total sites induces a commutative diagram

X N
lis-ét|U ��ε

��

π

UN
ét

��

π

Xlis-ét|U ��ε Uét.

Since ε∗ is exact with an exact left adjoint ε∗, one has

Rπ∗ε∗ = ε∗Rπ∗.(2.2.ii)

One gets therefore

(Rπ∗M)U = ε∗ j∗Rπ∗M
= ε∗Rπ∗ j∗M by (2.2.i)
= Rπ∗ε∗ j∗M by (2.2.ii)
= Rπ∗(MU). �


2.2.2. Proposition ([7, Lemma 1.1]). — Let M be a complex of Mod(X N
lis-ét,Λ•).

1. If M is AR-null, then Rπ∗M = 0.

2. If M almost zero, then Rπ∗M = 0.



THE SIX OPERATIONS FOR SHEAVES ON ARTIN STACKS II: ADIC COEFFICIENTS 173

Proof. — Assume M is AR-null. By [7, Lemma 1.1] Rπ∗H j(M) = 0 for
all j. By [14, 2.1.10] one gets Rπ∗M = 0. The second point follows from (1)
using 2.2.1. �


As before, let T be a topos and let A denote the category of Λ•-modules
in T N.

2.2.3. Lemma ([7, Lemma 1.3 iv)]). — Let M be complex in T of Λn-modules.

Then, the adjunction morphism M → Rπ∗π∗M is an isomorphism.

2.2.4. Remark. — Here we view π is a morphism of ringed topos (T N,Λn)→
(T ,Λn). The functor π∗ sends a Λn-module M to the constant projective sys-
tem M. In particular, π∗ is exact (in fact equal to π−1) and hence passes to the
derived category.

Proof of 2.2.3. — The sheaf Riπ∗H j(π∗M) is the sheaf associated to the
presheaf sending U to Hi(π∗U,H j(π∗M)). It follows from (2.1.i) and the fact
that the system Hi−1(U,H j(π∗M)n) satisfies the Mittag-Leffler condition that this
presheaf is isomorphic to the sheaf associated to the presheaf

U �→ lim←− Hi
(
U,H j(π∗M)n

) = Hi(U,H j(π∗M)).

It follows that Riπ∗H j(π∗M) = 0 for all i > 0 and

H jM = Rπ∗H j(π∗M).(∗)

By [14, 2.1.10] one can therefore assume M bounded from below. The lemma
follows therefore by induction from (∗) and from the distinguished triangles

H j(M)[−j ]→ τ≥ jM → τ≥ j+1M. �

In fact, we have the following stronger result:

2.2.5. Proposition. — Let N ∈ D(T N,Λn) be a complex of projective systems such

that for every m the map

Nm+1 → Nm(2.2.iii)

is a quasi-isomorphism. Then the natural map π∗Rπ∗N → N is an isomorphism. Consequently,

the functors (π∗, Rπ∗) induce an equivalence of categories between D(T ,Λn) and the category

of complexes N ∈ D(T N,Λn) such that the maps (2.2.iii) are all isomorphism.

Proof. — By [14, 2.1.10] it suffices to prove that the map π∗Rπ∗N → N is an
isomorphism for N bounded below. By devissage using the distinguished triangles

H j(N)[ j ] → τ≥ jN → τ≥ j+1N
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one further reduces to the case when N is a constant projective system of sheaves
where the result is standard (and also follows from 2.2.3). �


3. λ-complexes

Following Behrend and [11, exp. V, VI], let us start with a definition. Let X
be an algebraic stack locally of finite type over S, and let A denote the category
of Λ•-modules in X N

lis-ét, where Λ• is a projective system of rings with inverse limit
Λ (shortly we will assume that Λ• is obtained from a complete discrete valuation
ring as in the introduction, but this is not necessary for the basic definitions).

3.0.6. Definition. — We say that

– a system M = (Mn)n of A is adic if all the Mn’s are constructible and moreover

all morphisms

Λn ⊗Λn+1 Mn+1 → Mn

are isomorphisms; it is called almost adic if all the Mn’s are constructible and if

for every U in Lisse-ét(X ) there is a morphism NU → MU with almost zero kernel

and cokernel with NU adic in Uét.

– a complex M = (Mn)n of A is called a λ-complex if all the cohomology modules

H i(M) are almost adic. Let D c(A ) ⊂ D(A ) denote the full triangulated subcategory

whose objects are λ-complexes. The full subcategory of D c(A ) of complexes concentrated

in degree 0 is called the category of λ-modules.
– The category Dc(X ,Λ) (sometimes written just Dc(X ) if the reference to Λ is

clear) is the quotient of the category D c(A ) by the full subcategory of almost zero

complexes.

3.0.7. Remark. — Let X be a noetherian scheme. The condition that a sheaf
of Λ•-modules M in XN

ét admits a morphism N → M with N adic is étale local
on X. This follows from [11, V.3.2.3]. Furthermore, the category of almost adic
Λ•-modules is an abelian subcategory closed under extensions (a Serre subcategory)
of the category of all Λ•-modules in XN

ét . From this it follows that for an algebraic
stack X , the category of almost adic Λ•-modules is a Serre subcategory of the
category of all Λ•-modules in X N

lis-ét.
In fact if M is almost adic on X, then the pair (N, u) of an adic sheaf N

and an AR-isomorphism u : N → M is unique up to unique isomorphism. This
follows from the description in [11, V.2.4.2 (ii)] of morphisms in the localization
of the category of almost adic modules by the subcategory of AR-null modules. It
follows that even when X is not quasi-compact, an almost adic sheaf M admits
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a morphism N → M with N adic whose kernel and cokernel are AR-null when
restricted to any quasi-compact étale X-scheme.

As usual, we denote by Λ the image of Λ• in Dc(X ). By [11, exp. V]
the quotient of the subcategory of almost adic modules by the category of almost
zero modules is abelian. By construction, a morphism M → N of D c(A ) is an
isomorphism in Dc(X ) if and only if its cone is almost zero. Dc(X ) is a triangu-
lated category and has a natural t-structure whose heart is the localization of the
category of λ-modules by the full subcategory of almost zero systems (cf. [1]). No-
tice however that we do not know at this stage that in general HomDc(X )(M, N)

is a (small) set. In fact, this is equivalent to finding a left adjoint of the pro-
jection D c(A )→ Dc(X ) [18, Section 7]. Therefore, we have to find a normal-
ization functor M → M̂. We’ll prove next that a suitably generalized version of
Ekedahl’s functor defined in [7] does the job. Note that by 2.2.2 the functor
Rπ∗ : D c(A ) → D c(X ) factors uniquely through a functor which we denote by
the same symbols Rπ∗ : Dc(X ) → D c(X ).

3.0.8. Definition. — We define the normalization functor

Dc(X ) → D(A ), M �→ M̂

by the formula M̂ = Lπ∗Rπ∗M. A complex M ∈ D(A ) is normalized if the natural

map M̂ → M is an isomorphism (where we write M̂ for the normalization functor applied to

the image of M in Dc(X )).

Notice that Λ̂ = Λ (write Λ• = Lπ∗Λ and use 3.0.10 below for instance).

3.0.9. Remark. — Because Λ is regular, the Tor dimension of π is d =
dim(Λ) < ∞ and therefore we do not have to use Spaltenstein’s theory in order
to define M̂.

3.0.10. Proposition ([7, 2.2 (ii)]). — A complex M ∈ D(X N
lis-ét,Λ•) is normalized

if and only if for all n the natural map

Λn

L⊗Λn+1 Mn+1 → Mn(3.0.iv)

is an isomorphism.

Proof. — If M = Lπ∗N for some N ∈ D(Xlis-ét,Λ) then for all n we have

Mn = Λn

L⊗Λ N so in this case the morphism (3.0.iv) is equal to the natural iso-
morphism

Λn

L⊗Λn+1 Λn+1

L⊗Λ N → Λn

L⊗Λ N.

This proves the “only if ” direction.
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For the “if ” direction, note that since the functors e∗n form a conservative
set of functors, to verify that M̂ → M is an isomorphism it suffices to show that
for every n the map e∗n M̂ → e∗n M is an isomorphism. Equivalently we must show
that the natural map

Λn

L⊗Λ Rπ∗(M) → Mn

is an isomorphism. As discussed in [7, bottom of p. 198], the natural map Lπ∗Λn→
π∗Λn has AR-null cone. In the case when Λ is a discrete valuation ring with uni-
formizing parameter λ, this can be seen as follows. A projective resolution of Λn

is given by the complex

Λ
×λn+1−−−→ Λ.

From this it follows that Lπ∗(Λn) is represented by the complex

(Λm)m
×λn+1−−−→ (Λm)m.

Therefore the cone of Lπ∗(Λn) → π∗Λn is up to a shift equal to λm−nΛm which
is AR-null.

Returning to the case of general Λ, we obtain from the projection formula
and 2.2.2

Λn

L⊗Λ Rπ∗(M) � Rπ∗(Lπ∗Λn

L⊗ M)

� Rπ∗(π∗Λn

L⊗Λ• M) = Rπ∗(Λn

L⊗Λ• M).

The proposition then follows from 2.2.5. �

We have a localization result analogous to Lemma 2.2.1. Let M∈D(Xlis-ét,Λ).

3.0.11. Lemma. — One has Lπ∗(MU) = (Lπ∗M)U in D
(
UN

ét,Λ•
)
.

Proof. — We use the notations of the proof of Lemma 2.2.1. First, j∗ = Lj∗

commutes with Lπ∗ due to the commutative diagram

X N
lis-ét|U ��

j

��

π

X N
lis-ét

��

π

Xlis-ét|U ��
j

Xlis-ét.

One is therefore reduced to prove that ε∗ = Rε∗ commutes with Lπ∗. We
have certainly, with a slight abuse of notation,

ε−1Λ• = Λ•.
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Therefore, if N denotes the restriction of M to X|U we get

ε∗Lπ∗N = ε∗
(
Λ•

L⊗π−1Λ π−1N
)

= ε∗
(
ε−1Λ•

L⊗π−1Λ π−1N
)

= Λ•
L⊗ε∗π−1Λ ε∗π−1N by the projection formula

= Λ•
L⊗π−1Λ π−1ε∗N because ε∗ commutes with π−1

= Lπ∗ε∗N.
�


3.0.12. Remark. — The same arguments used in the proof of 3.0.10 shows
that if M ∈ D c(Xlis-ét,Λ•) and MU is bounded for U ∈ Lisse-ét(X ), then M̂U is
also bounded. In particular, all M̂U,n are of finite tor-dimension.

3.0.13. Corollary. — Let M ∈ D(X N
lis-ét,Λ•) and U →X in Lisse-ét(X ). Then,

the adjunction morphism

M̂ → M

restricts on Uét to the adjunction morphism Lπ∗Rπ∗MU → MU.

Proof. — It is an immediate consequence of Lemmas 3.0.11 and 2.2.1. �

We assume now that Λ is a discrete valuation ring with uniformizing pa-

rameter λ. Let us prove the analogue of [7, Proposition 2.2].

3.0.14. Theorem. — Let M be a λ-complex. Then, M̂ is constructible and M̂ → M
has an almost zero cone.

Proof. — Let U →X be an object of Lisse-ét(X ) and

N = MU ∈ D c(Uét,Λ•).

Let us prove first that (M̂)U ∈ D(Uét) is constructible and that the cone of
(M̂)U → MU is AR-null. We proceed by successive reductions.

1. Let dU = cd�(Uét) be the �-cohomological dimension of Uét (which is fi-
nite by assumption). By an argument similar to the one used in the proof
of 2.2.3 using (2.1.i), the cohomological dimension of Rπ∗ is ≤ 1 + dU.
Therefore, Rπ∗ maps D±,b

(UN
ét) to D±,b

(Uét). Because Lπ∗ is of finite
cohomological dimension, the same is true for the normalization functor.
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More precisely, there exists an integer d (depending only on U →X
and Λ) such that for every a

N ∈ D≥a (
UN

ét

) ⇒ N̂ ∈ D≥a−d (
UN

ét

)
and

N ∈ D≤a (
UN

ét

) ⇒ N̂ ∈ D≤a+d (
UN

ét

)
.

2. One can assume N ∈ Mod(Uét,Λ•). Indeed, one has by the previous
observations

H i(N̂) = H i(N̂i)

where Ni = τ≥i−dτ≤i+dN. Therefore one can assume N bounded. By in-
duction, one can assume N is a λ-module.

3. One can assume N adic. Indeed, there exists a morphism A → N with
AR-null kernel and cokernel with A adic. In particular the cone of A → N
is AR-null. It is therefore enough to observe that Â = N̂, which is a con-
sequence of 2.2.2.

4. We use without further comments basic facts about the abelian category
of λ-modules (cf. [11, exp. V] and [5, Rapport sur la formule des traces]).
In the category of λ-modules, there exists n0 such that N/ ker(λn0) is tor-
sion free (namely the action of λ has no kernel). Because Dc(Uét) is trian-
gulated, we just have to prove that the normalization of both N/ ker(λn0)

and ker(λn0) are constructible and the corresponding cone is AR-null.
5. The case of N̄ = N/ ker(λn0). An adic representative L of N̄ has flat

components Ln, in other words

Λn

L⊗Λn+1 Ln+1 → Ln

is an isomorphism. By 3.0.10, L is normalized and therefore ˆ̄N = L̂ = L
is constructible (even adic) and the cone L = ˆ̄N → N̄ is AR-null because
the kernel and cokernel of L → N̄ are AR-null.

6. We can therefore assume λn0N = 0 (in the categories of λ-modules up to
AR-isomorphisms) and even λN = 0 (look at the λ-adic filtration). The
morphism

(Nn)n∈N →(Nn/λNn)n∈N(3.0.v)

has AR-zero kernel and the normalization of both are therefore the same.
But, N being adic, one has Nn/λNn = N0 for n ≥ 0. In particular, the
morphism (3.0.v) is nothing but

N →π∗N0(3.0.vi)
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and is an AR-isomorphism and

N̂ = π̂∗N0 = Lπ∗N0

(2.2.3). One therefore has to show that the cone C of Lπ∗N0 →π∗N0

is almost zero. On U, there exists a finite stratification on which N0 is
smooth. Therefore, one can even assume that N0 is constant and finally
equal to Λ0. In this case the cone of Lπ∗Λ0 → π∗Λ0 is AR-null by the
same argument used in the proof of 3.0.10. This completes the proof that
M̂U → MU has AR-null cone.

We now have to prove that M̂ is cartesian. By 3.0.13 again, one is reduced to
the following statement:

Let f : V → U be a morphism in Lisse-ét(X ) which is smooth. Then1,

f ∗M̂U = M̂V = f̂ ∗MU.

The same reductions as above allows to assume that MU is concentrated in
degree 0, and that we have a distinguished triangle

L → MU → C

with C AR-null and L either equal to Λ0 or adic with flat components. Using the
exactness of f ∗ and the fact that M is cartesian, one gets a distinguished triangle

f ∗L → MV → f ∗C

with f ∗C AR-null. We get therefore f ∗M̂U = f ∗L̂ and f̂ ∗MU = f̂ ∗L: one can assume
MU = L and MV = f ∗L. In both cases, namely L adic with flat components or
L = Λ0, the computations above show f ∗L̂ = f̂ ∗L proving that M̂ is cartesian. �


3.0.15. Remark. — The last part of the proof of the first point is proved in
a greater generality in [7, Lemma 3.2].

3.0.16. Remark. — In general the functor Rπ∗ does not take cartesian
sheaves to cartesian sheaves. An example suggested by J. Riou is the following:
Let Y = Spec(k) be the spectrum of an algebraically closed field and f : X → Y
a smooth k-variety. Let � be a prime invertible in k and let M = (Mn) be the
projective system Z/�n+1 on Y. Then Rπ∗M is the constant sheaf Z�, and so
RiΓ( f ∗Rπ∗M) is the cohomology of X with values in the constant sheaf Z�. On
the other hand, RiΓ(Rπ∗( f ∗M)) is the usual �-adic cohomology of X which in
general does not agree with the cohomology with coefficients in Z�.

1 By 3.0.13, there is no ambiguity in the notation.
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3.0.17. Corollary. — Let M ∈ Dc(X ). Then for any n ≥ 0, one has

Λn

L⊗Λ Rπ∗M ∈ D c(X ,Λn).

Proof. — Indeed, one has e−1
n M̂ = Λn

L⊗Λ Rπ∗M which is constructible
by 3.0.14. �


We are now able to prove the existence of our adjoint.

3.0.18. Proposition. — The normalization functor is a left adjoint of the projection

D c(X N)→ Dc(X ). In particular, HomDc(X )(M, N) is small for any M, N ∈ Dc(X ).

Proof. — With a slight abuse of notations, this means HomDc(M̂, N) =
HomDc(X )(M, N). If we start with a morphism M̂ → N, we get a diagram

M̂

����
��
��
��

���
��

��
��

M N

where M̂ → M is an isomorphism in Dc(X ) by 3.0.13 and 3.0.14 which defines
a morphism in HomDc(X )(M, N). Conversely, starting from a diagram

L

����
��
��
��

���
��

��
��

M N

where L → M is an isomorphism in Dc(X ). Therefore one has M̂ = L̂ (2.2.2),
and we get a morphism M̂ → N̂ in D c and therefore, by composition, a morphism
M̂ → N. One checks that these constructions are inverse to each other. �


3.0.19. Remark. — The t-structure on Dc(X ,Λ) enables us to define the
various bounded derived categories D+

c (X ,Λ), D−
c (X ,Λ), and Db(X ,Λ). We

can also define the locally bounded derived categories

D(+)
c (X ,Λ), D(−)

c (X ,Λ), and D(b)(X ,Λ)

consisting of objects K ∈ Dc(X ,Λ) whose restriction to any quasi-compact open
U ⊂ X lies in D+

c (U ,Λ), D−
c (U ,Λ), or Db(U ,Λ) respectively.
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3.1. Comparison with Deligne’s approach. — Let M, N ∈ D c(X
N,Λ•) and assume

M is normalized. Then there is a sequence of morphisms

Rhom(Mn, Nn)→ Rhom(Mn, Nn−1)

= Rhom(Λn−1

L⊗Λn Mn, Nn−1)

= Rhom(Mn−1, Nn−1).

Therefore, we get for each i a projective system (Exti(Mn, Nn))n≥0.

3.1.1. Proposition. — Let M, N ∈ D c(X N) and assume M is normalized. Then

there is an exact sequence

0 → lim←− 1 Ext−1(Mn, Nn)→ HomDc(X N)(M, N)

→ lim←− HomD(X ,Λn)(Mn, Nn)→ 0.

Proof. — Let X ≤n
lis-ét be the [0 · · · n]-simplicial topos of projective systems

(Fm)m≤n on Xlis-ét. Notice that the inclusion [0 · · · n]→ N induces an open im-
mersion of the corresponding topos and accordingly an open immersion

jn : X ≤n
lis-ét ↪→ X N

lis-ét.(3.1.i)

The inverse image functor is just the truncation F = (Fm)m≤0 �→ F≤n = (Fm)m≤n.
The functor jn∗ sends a system G = (Gm)m≤n to the system with

( jn∗G)m =
{

Gn if m > n
Gm if m ≤ n.

We get therefore an inductive system of open sub-topos of X N
lis-ét:

X ≤0
lis-ét ↪→ X ≤1

lis-ét ↪→ · · · ↪→ X ≤n
lis-ét ↪→ · · · ↪→ X N

lis-ét.

Fixing M, let

F : C+(X N,Λ•) → AbN

be the functor

N �→ (Hom(M≤n, N≤n))n.

Then there is a commutative diagram

C+(X N,Λ•) ��F

��
Hom(M,−)

RRR
RRR

RRR
RRR

RRR
AbN

��
lim←−zz

zz
zz
zz

Ab
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which yields the equality

Rhom(M, N) = R lim←−◦RF(N).

By the definition of F we have RqF(N) = (Extq(M≤n, N≤n))n. Because lim←− is of co-
homological dimension 1, there is an equality of functors τ≥0R lim←− = τ≥0R lim←− τ≥−1.

Using the distinguished triangles

(H −dRF(N))[d ]→ τ≥−dRF(N)→ τ≥−d+1RF(N)

we get for d = 1 an exact sequence

0 → lim1 Ext−1(M≤n, N≤n)→ Hom(M, N)→ R0 lim←− τ≥0RF(N)→ 0,

and for d = 0

lim←− Hom(M≤n, N≤n) = R0 lim←− τ≥0RF(N).

Therefore we just have to show the formula

Extq(M≤n, N≤n) = Extq(Mn, Nn)

which follows from the following lemma which will also be useful below. �

3.1.2. Lemma. — Let M, N ∈ D(X N) and assume M is normalized. Then, one

has

1. Rhom(M≤n, N≤n) = Rhom(Mn, Nn).

2. e−1
n Rhom(M, N) = Rhom(Mn, Nn).

Proof. — Let πn : X ≤n
lis-ét →Xlis-ét the restriction of π. It is a morphism of

ringed topos (X is ringed by Λn and X ≤n
lis-ét by j−1

n (Λ•) = (Λm)m≤n). The morph-
isms ei : X →X N, i ≤ n can be localized in ẽi : X →X ≤n, characterized by
e−1
i M≤n = Mi for any object M≤n of X ≤n

lis-ét. They form a conservative sets of func-
tors satisfying

ei = jn ◦ ẽi.(3.1.ii)

One has

πn∗(M≤n) = lim←−
m≤n

Mm = Mn = ẽ−1
n (M).

It follows that πn∗ is exact and therefore

Rπn∗ = πn∗ = ẽ−1
n .(3.1.iii)
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The isomorphism Mn → Rπn∗M≤n defines by adjunction a morphism Lπ∗Mn → M≤n

whose pull back by ẽi is Λi

L⊗Λn Mn → Mi. Therefore, one gets

Lπ∗
n Mn = M≤n(3.1.iv)

because M is normalized. Let us prove the first point. One has

Rhom(M≤n, N≤n)
(3.1.iv)= Rhom

(
Lπ∗

n Mn, N≤n
)

adjunction= Rhom
(
Mn, Rπn∗N≤n

)
(3.1.iii)= Rhom(Mn, Nn)

proving the first point. The second point is analogous:

e−1
n Rhom(M, N) = ẽ−1

n j−1
n Rhom(M, N) (3.1.ii)

= ẽ−1
n Rhom(M≤n, N≤n) ( jn open immersion)

= Rπn∗ Rhom(M≤n, N≤n) (3.1.iii)

= Rπn∗ Rhom
(
Lπ∗

n Mn, N≤n
)

(3.1.iv)

= Rhom
(
Mn, Rπn∗N≤n

)
(projection formula)

= Rhom(Mn, Nn) (3.1.iii). �

3.1.3. Corollary. — Let M, N ∈ D c(X N) be normalized complexes. Then, one has

an exact sequence

0 → lim←− 1 Ext−1(Mn, Nn)→ HomDc(X )(M, N)

→ lim←− HomD(X ,Λn)(Mn, Nn)→ 0.

3.1.4. Remark. — Using similar arguments (more precisely using the
Grothendieck spectral sequence of composite functors rather than truncations as
above), one can show that for any adic constructible sheaf N, the cohomology
group H∗(X , N)

def= Ext∗Dc(X )(Λ, N) coincides with the continuous cohomology
group of [12] (defined as the derived functor of N �→ lim←− H0(X , Nn)).

Now let k be either a finite field or an algebraically closed field, set S =
Spec(k), and let X be a k-variety. In this case Deligne defined in [4, 1.1.2] another
triangulated category which we shall denote by Db

c,Del(X,Λ). This triangulated cat-
egory is defined as follows. First let D−

Del(X,Λ) be the 2-categorial projective limit
of the categories D−

(X,Λn) with respect to the transition morphisms

L⊗Λn Λn−1 : D−
(X,Λn) → D−

(X,Λn−1).
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So an object K of D−
Del(X,Λ) is a projective system (Kn)n with each Kn ∈

D−(X,Λn) and isomorphisms Kn

L⊗Λn Λn−1 → Kn−1. The category Db
c,Del(X,Λ) is

defined to be the full subcategory of D−
Del(X,Λ) consisting of objects K = (Kn)

with each Kn ∈ Db
c(X,Λn). By [4, 1.1.2 (e)] the category Db

c,Del(X,Λ) is trian-
gulated with distinguished triangles defined to be those triangles inducing distin-
guished triangles in each Db

c(X,Λn).
By 3.0.10, there is a natural triangulated functor

F : Db
c(X,Λ) → Db

c,Del(X,Λ), M �→ M̂.(3.1.v)

3.1.5. Lemma. — Let K = (Kn) ∈ Db
c,Del(X,Λ) be an object.

(i) For any integer i, the projective system (H i(Kn))n is almost adic.

(ii) If K0 ∈ D [a,b]
c (X,Λ0), then for i < a the system (H i(Kn))n is AR-null.

Proof. — By the same argument used in [4, 1.1.2 (a)] it suffices to consider
the case when X = Spec(k). In this case, there exists by [11, XV, p. 474 Lemme 1
and following remark] a bounded above complex of finite type flat Λ-modules P·

such that K is the system obtained from the reductions P· ⊗ Λn. For a Λ-module
M and an integer k let M[λk] denote the submodule of M of elements annihilated
by λk. Then from the exact sequence

0 −−−→ P· λk−−−→ P· −−−→ P·/λk −−−→ 0

one obtains for every n a short exact sequence

0 → Hi(P·) ⊗ Λn → Hi(Kn) → Hi+1(P·)[λn] → 0.

These short exact sequences fit together to form a short exact sequence of pro-
jective systems, where the transition maps

Hi+1(P·)[λn+1] → Hi+1(P·)[λn]
are given by multiplication by λ. Since Hi+1(P·) is of finite type and in particular
has bounded λ-torsion, it follows that the map of projective systems

Hi(P·) ⊗ Λn → Hi(Kn)

has AR-null kernel and cokernel. This proves (i).
For (ii), note that if z ∈ Pi is a closed element then modulo λ the element z

is a boundary. Write z = λz′ +d(a) for some z′ ∈ Pi and a ∈ Pi−1. Since Pi+1 is flat
over Λ the element z′ is closed. It follows that Hi(P·) = λHi(P·). Since Hi(P·) is
a finitely generated Λ-module, Nakayama’s lemma implies that Hi(P·) = 0. Thus
by (i) the system Hi(Kn) is AR-isomorphic to 0 which implies (ii). �
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3.1.6. Theorem. — The functor F in (3.1.v) is an equivalence of triangulated categories.

Proof. — Since the Ext−1’s involved in 3.1.3 are finite for bounded con-
structible complexes, the full faithfulness follows from 3.1.3.

For the essential surjectivity, note first that any object K ∈ Db
c,Del(X,Λ) is

induced by a complex M ∈ D c(XN,Λ•) by restriction. For example represent
each Kn by a homotopically injective complex In in which case the morphisms
Kn+1 → Kn defined in the derived category can be represented by actual maps of
complexes In+1 → In. By 3.0.10 the complex M is normalized and by the preced-
ing lemma the corresponding object of Dc(X,Λ) lies in Db

c(X,Λ). It follows that
if M ∈ Db

c(X,Λ) denotes the image of M then K is isomorphic to F(M). �


3.1.7. Remark. — One can also define categories Dc(X , Q l). There are sev-
eral different possible generalizations of the classical definition of this category for
bounded complexes on noetherian schemes. The most useful generalizations seems
to be to consider the full subcategory T of Dc(X , Zl) consisting of complexes K
such that for every i there exists an integer n ≥ 1 such that H i(K) is annihilated
by ln. Note that if K is an unbounded complex there may not exist an integer
n such that ln annihilates all H i(K). Furthermore, when X is not quasi-compact
the condition is not local on X . Nonetheless, by [18, 2.1] we can form the quo-
tient of Dc(X , Zl) by the subcategory T and we denote the resulting triangulated
category with t-structure (induced by the one on Dc(X , Zl)) by Dc(X , Q l). If X
is quasi-compact and F, G ∈ Db(X , Zl) one has

HomDb(X ,Zl)(F, G) ⊗ Q � HomDb(X ,Q l )(F, G).

Using a similar 2-categorical limit method as in [4, 1.1.3] one can also
define a triangulated category Dc(X , Q l).

4. Rhom

We define the bifunctor

Rhom : Dc(X )opp × Dc(X )→D(X )

by the formula

RRRhomΛ(M, N) = RhomΛ•(M̂, N̂).

Recall that D c(X ,Λn) denotes the usual derived category of complexes of
Λn-modules with constructible cohomology.
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4.0.8. Proposition. — Let M ∈ D(−)
c (X ) and N ∈ D(+)

c (X ), then RRRhomΛ(M, N)

has constructible cohomology and is normalized. Therefore, it defines an additive functor

RRRhomΛ : D(−)
c (X )opp × D(+)

c (X )→ D(+)
c (X ).

Proof. — One can assume M, N normalized. By 3.1.2, one has the formula

e−1
n Rhom(M, N) = Rhom

(
e−1
n M, e−1

n N
)
.(4.0.vi)

From this it follows that RRRhomΛ(M, N) has constructible cohomology.
By (4.0.vi) and 3.0.10, to prove that RRRhomΛ(M, N) is normalized we have

to show that

Λn

L⊗Λn+1 RhomΛn+1(Λn+1

L⊗Λ Rπ∗M,Λn+1

L⊗Λ Rπ∗N)

��

RhomΛn(Λn

L⊗Λ Rπ∗M,Λn

L⊗Λ Rπ∗N)

is an isomorphism. For this it suffices to show that for any U → X in Lisse-ét(X )

the restriction of this map to Uet is an isomorphism. By 3.0.17, both Mn+1 =
Λn+1

L⊗Λ Rπ∗M and Nn+1 = Λn+1

L⊗Λ Rπ∗N define constructible complexes of Λn+1

sheaves on Uét. One is reduced to the formula

Λn

L⊗Λn+1 RhomΛn+1(Mn+1, Nn+1)

→RhomΛn(Λn

L⊗Λn+1 Mn+1,Λn

L⊗Λn+1 Nn+1)

for our constructible complexes M, N on Uét. This assertion is well-known (and is
easy to prove), cf. [11, lemma II.7.1, II.7.2]. �


4.0.9. Remark. — Using almost the same proof, one can define a functor

RRRhomΛ : D(b)
c (X )opp × Dc(X )→ Dc(X ).

5. RhomΛ

Let M, N in D(−)
c (X ), D(+)

c (X ) respectively. We define the functor

RhomΛ : D(−)opp
c (X ) × D(+)

c (X )→ Ab

by the formula

RhomΛ(M, N) = RhomΛ•(M̂, N̂).(5.0.vii)
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By 3.0.18, one has

H0 RhomΛ(M, N) = HomD c(X N)(M̂, N̂) = HomDc(X )(M, N).

One has

RhomΛ•(M̂, N̂) = RhomΛ•(Λ•,Rhom(M̂, N̂)).

By 4.0.8, Rhom(M̂, N̂) is constructible and normalized. Taking H0, we get the
formula

HomDc(X N)(M̂, N̂) = HomD c(X N)(Λ•,Rhom(M̂, N̂)).

By 3.0.18, we get therefore the formula

HomDc(X )(M, N) = HomDc(X )(Λ,RRRhomΛ(M, N)).(5.0.viii)

In summary, we have gotten the following result.

5.0.10. Proposition. — Let M, N in D(−)
c (X ), D(+)

c (X ) respectively. One has

HomDc(X )(M, N) = H0 RhomΛ(M, N)

= HomDc(X )(Λ,RRRhomΛ(M, N)).

5.0.11. Remark. — Accordingly, one defines

EEExtΛ
∗
(M, N) = H ∗(RRRhomΛ(M, N)) and

ExtΛ∗(M, N) = H∗(RhomΛ(M, N))

and

HomDc(X )(M, N) = H0(RhomΛ(M, N)).

6. Tensor product

Let M, N ∈ Dc(X ). We define the total tensor product

M
L⊗Λ N = M̂

L⊗Λ• N̂.

It defines a bifunctor

Dc(X ) × Dc(X )→Dcart(X ).

6.0.12. Proposition. — For any L, N, M ∈ D(−)
c (X ,Λ) we have

RRRhomΛ(L
L⊗ N, M) � RRRhomΛ(L,RRRhomΛ(N, M)).
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Proof. — By definition this amounts to the usual adjunction formula

Rhom(L̂
L⊗ N̂, M̂) � Rhom(L̂,Rhom(N̂, M̂)),

together with the fact that L̂
L⊗ M̂ is normalized which follows from 3.0.10. �


6.0.13. Corollary. — For any L, M ∈ D(−)
c (X ,Λ) there is a canonical evaluation

morphism

ev : RRRhomΛ(L, M)
L⊗ L → M.

Proof. — The morphism ev is defined to be the image of the identity map
under the isomorphism

RRRhomΛ(RRRhomΛ(L, M),RRRhomΛ(L, M))

� RRRhomΛ(RRRhomΛ(L, M)
L⊗ L, M)

provided by 6.0.12. �


7. Duality

7.1. Review: Change of rings for dualizing complex on schemes. — Let A be
a Gorenstein local ring of dimension 0 and with residue characteristic � invertible
in S. Then A is a Z/(�n)-algebra for some integer n ≥ 1.

Now let X be an S-scheme of finite type. Recall (cf. [20, 5.1]) that a A-dual-

izing complex on X is an object K ∈ Db
c(X, A) such that the following hold:

(i) K is of finite quasi-injective dimension.
(ii) K is of finite tor-dimension.
(iii) For any M ∈ Db

c(X, A), the natural map

M → D2
K(M)

is an isomorphism, where DK(−) := Rhom(−, K).

7.1.1. Remark. — In [11, Exposé I, Définition 1.7], a dualizing complex for
A = Z/(n) on a finite type S-scheme X is defined to be an object K ∈ D+(X, A)

satisfying (i) and (iii) and such that for F ∈ D−
c (X, A) we have DK(F) ∈ D+

c (X, A).
This last condition is in fact automatic thanks to Gabber’s finiteness results (see
[11, Exposé I, Proposition 3.3.1]). Thus our notion of dualizing complex is stronger
than the one in [11].

7.1.2. Proposition. — Let K0 ∈ Db
c(X, Z/(�n)) be a Z/(�n)-dualizing complex on X.

Then K := A
L⊗Z/(�n) K0 is a A-dualizing complex on X.
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Proof. — Since A is Gorenstein of dimension 0, A is injective as an A-mod-
ule, and the functor

RhomA(−, A) : Db
c(A) → Db

c(A)

is an involution. The result therefore follows from [20, Théorème 6.2 and 6.3].
�


Now let Λ be a complete discrete valuation ring as in the introduction, and
let Λn denote Λ/mn.

7.1.3. Proposition. — There exists a collection {ΩS,n, ιn}∞
n=1, where ΩS,n is a Λn-dual-

izing complex on S and

ιn : Λn

L⊗Λn+1 ΩS,n+1 → ΩS,n

is an isomorphism in Db
c(S,Λn).

Proof. — By 7.1.2, it suffices to consider the case when Λ = Z�.
For a geometric point x̄ → S and K ∈ D+

c (S,Λn), let RΓx̄(K) denote
i!x̄(K|Spec(OS,x̄)), where ix̄ : Spec(k(x̄)) ↪→ Spec(OS,x̄) denotes the inclusion of the
closed point. For a point x ∈ S we define RΓx(K) ∈ D+

c (Spec(k(x))et,Λn) similarly,
replacing Spec(OS,x̄) by Spec(OS,x).

Recall [20, Définition 1.2], that an immediate specialization ȳ → x̄ of geometric
points of S is a commutative diagram

Spec(OS,ȳ) ��

��I
II

II
II

II
I

Spec(OS,x̄)

zzuu
uu
uu
uu
uu

S,

such that the codimension in Spec(OS,x̄) of the image of the closed point in
Spec(OS,ȳ) is equal to 1. As explained in [20, §1], for an immediate specializa-
tion ȳ → x̄ and K ∈ D+

c (S,Λn) there is a canonical map

spȳ→x̄ : RΓȳ(K) → RΓx̄(K)〈1〉.
This map is compatible with change of rings. For this recall first that i!x̄

is independent of Λn in the following sense. Let f : X → S be a compactifi-
able morphism of schemes and let n ≥ 1 be an integer. The functor (where we
temporarily write f !

n as opposed to f ! to indicate the coefficient ring)

f !
n : D+

c (S,Λn) → D+
c (X,Λn)
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is independent of the coefficient ring in the following sense. Let

ρn : D+
c (S,Λn) → D+

c (S,Λn+1), ρn : D+
c (X,Λn) → D+

c (X,Λn+1)

be the restriction of scalars functors. Then by [10, XVIII Corollaire 3.1.12.1],
there is a natural isomorphism of functors

ρn ◦ f !
n � f !

n+1 ◦ ρn+1.

In what follows, we write simply f ! for the functors f !
n .

For K ∈ D+
c (S,Λn), where KΛn+1 for the image of K in D+

c (S,Λn+1). Then
it follows from the above discussion that for K ∈ D+

c (S,Λn) and geometric point
x̄ → S there is a canonical isomorphism in D+

c (Λn+1)

RΓx̄(K)Λn+1 � RΓx̄(KΛn+1).(7.1.i)

Furthermore it follows from the construction of the specialization morphisms in
[20] that for any immediate specialization ȳ → x̄ and K ∈ D+

c (S,Λn+1) the diagram

RΓȳ(K)Λn+1
��

spn
ȳ →x̄

��

(7.1.i)

RΓx̄(K)〈1〉Λn+1

��

(7.1.i)

RΓȳ(KΛn+1) ��
spn+1

ȳ →x̄ RΓx̄(KΛn+1)〈1〉
(7.1.ii)

commutes, where the superscript on spȳ→x̄ indicates whether we are considering
Λn or Λn+1 coefficients.

Define a pinning2 of a Λn-dualizing complex ΩS,n to be a collection of iso-
morphisms

ιx : RΓx(K) → Λn〈− codim(x)〉
for every point x ∈ S, such that for every immediate specialization ȳ → x̄ the
diagram

Γȳ(K) ��
spȳ →x̄

��

ιy

OO
OO

OO
OO

OO
O

RΓx̄(K)〈1〉

��

ιx〈1〉

Λn〈− codim( y)〉
commutes. A pinned Λn-dualizing complex is a Λn-dualizing complex ΩS,n together
with a pinning {ιx}. By [20, Théorème 4.1], any two pinned Λn-dualizing com-
plexes are uniquely isomorphic (in the obvious sense).

If (ΩS,n+1, {ιx}) is a pinned Λn+1-dualizing complex, then the dualizing com-

plex (by 7.1.2) K := ΩS,n+1

L⊗Λn+1 Λn has a natural pinning defined as follows. Let

2 épinglage in french.



THE SIX OPERATIONS FOR SHEAVES ON ARTIN STACKS II: ADIC COEFFICIENTS 191

x ∈ S be a point. Using the compatibility of i!x with change of rings, the natural
map

ΩS,n+1 → KΛn+1

in D+
c (S,Λn+1) induces a morphism

RΓx(ΩS,n+1)
L⊗Λn+1 Λn → RΓx(K),

which one verifies immediately is an isomorphism. We therefore obtain isomor-
phisms

RΓx(K)
�−−−→ RΓx(ΩS,n+1)

L⊗Λn+1 Λn
ιx−−−→ Λn〈− codim(x)〉.

That this defines a pinning follows from the compatibility of the specialization
maps with change of rings, as in the commutativity of (7.1.ii).

By the uniqueness of pinned dualizing complexes, to prove Proposition 7.1.3
it therefore suffices to show that for every n there exists a pinned Λn-dualizing
complex. This is [20, Théorème 4.1]. �


Fix a compatible choice of dualizing complexes {ΩS,n} on S as in 7.1.3. Let
f : X → S be a finite type compactifiable morphism of schemes. Then for every n,
the complex ΩX,n := f !ΩS,n (where as in the proof of 7.1.3 we use the compatibility
of f ! with change of rings) is a dualizing complex on X. Furthermore, for every
n the map

ΩS,n+1 → ΩS,n

in D+
c (S,Λn+1) induces a map in D+

c (X,Λn+1)

ΩX,n+1 → ΩX,n

which by adjunction gives a map

ΩX,n+1

L⊗Λn+1 Λn → ΩX,n.(7.1.iii)

7.1.4. Lemma. — The map (7.1.iii) is an isomorphism.

Proof. — To ease notation write Ω′
X,n for ΩX,n+1

L⊗Λn+1 Λn. Both ΩX,n and
Ω′

X,n are Λn-dualizing complexes on X, and therefore the sheaves

Hom(Ω′
n,Ωn) and Hom(Ωn,Ω

′
n)

are locally constant sheaves on X. To prove that (7.1.iii) it suffices to show that
the map of locally constant sheaves

Hom(Ωn,Ω
′
n) → Hom(Ω′

n,Ω
′
n) � Λn, g �→ g ◦ (7.1.iii)
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is an isomorphism. To verify this we can restrict to a dense open subset of X.
By shrinking on S and X, and possibly replacing them by their maximal reduced
subschemes, one then reduces the proof to the case when S and X are regular,
and f factors as

X
a−−−→ X′ b−−−→ S,

where b is smooth and a is radicial. After further shrinking, and possible changing
our choice of ΩS,n by a shift we may further assume that ΩS,n+1 = Λn+1 (which
implies that ΩS,n = Λn). In this case the result is immediate as b! = b∗〈d 〉 (where
d is the relative dimension of X′ over S) and a! = a∗. �


The isomorphism (7.1.iii) is compatible with pullbacks along smooth morph-
isms in the following sense. Let g : Y → X be a smooth morphism of rela-
tive dimension d of finite type S-schemes. For any F ∈ Dc(X,Λn) we then have
g∗F〈d 〉 � g!F. In particular, we obtain for any n a diagram

ΩY,n+1

L⊗Λn+1 Λn
��

(7.1.iii) for Y

��

�

ΩY,n

��

�

g∗ΩX,n+1

L⊗Λn+1 Λn〈d 〉 ��
(7.1.iii) for X

ΩX,n〈d 〉,
which commutes by construction.

7.2. Change of rings for dualizing complex on stacks. — Let Λ be a discrete
valuation ring, and let ΩS,n be a compatible collection of Λn-dualizing complexes
as in Proposition 7.1.3.

Let f : X → S be an algebraic S-stack locally of finite type. Let ΩX ,n denote
the Λn-dualizing complex defined in [14] using the dualizing complex ΩS,n on S.
For any smooth morphism U → X with U → S of finite type, we obtain by
Proposition 7.1.3 an isomorphism

(ΩX ,n+1

L⊗Λn+1 Λn)|Uét → ΩX ,n|Uét.

These isomorphisms are compatible with smooth morphisms V → U, and therefore
by the gluing lemma [14, Theorem 2.3.3], we obtain:

7.2.1. Proposition. — There is a canonical isomorphism

ΩX ,n+1

L⊗Λn+1 Λn → ΩX ,n. �

As we now explain, the system {ΩX ,n} in fact arises from an object of

D c(X
N,Λ•).
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7.2.2. — Let U → X be an object of Lisse-ét(X ) and let ε : X |U → Uét

be the natural morphism of topos. Let us describe more explicitly the morphism ε.
Let Lisse-ét(X )|U denote the category of morphisms V → U in Lisse-ét(X ). The
category Lisse-ét(X )|U has a Grothendieck topology induced by the topology on
Lisse-ét(X ), and the resulting topos is canonically isomorphic to the localized
topos Xlis-ét|U. Note that there is a natural inclusion Lisse-ét(U) ↪→ Lisse-ét(X )|U
but this is not an equivalence of categories since for an object (V → U) ∈
Lisse-ét(X )|U the morphism V → U need not be smooth. Viewing Xlis-ét|U in
this way, the functor ε−1 maps F on Uét to FV = π−1F ∈ Vét where π : V → U ∈
Lisse-ét(X )|U. For a sheaf F ∈ Xlis-ét|U corresponding to a collection of sheaves FV,
the sheaf ε∗F is simply the sheaf FU.

In particular, the functor ε∗ is exact and, accordingly H∗(U, F) = H∗(Uét, FU)

for any sheaf of Λ modules on X .

7.2.3. Theorem. — There exists a normalized complex ΩX ,• ∈ D c(X
N), unique up

to canonical isomorphism, inducing the ΩX ,n.

Proof. — The topos X N
lis-ét can be described by the site S whose objects

are pairs (n, u : U →X ) where u : U →X ∈ Lisse-ét(X ) and n ∈ N. The set of
morphisms in S from (m, v : V → X ) to (n, u : U →X ) is empty if m > n, and
if m ≤ n then the set of morphisms is equal to the set of X -morphisms V → U.
A collection of maps

{(ni, ui : Ui → X ) → (n, u : U → X )}
is a covering if ni = n for all i and if {Ui → U} is a covering in Lisse-ét(X ).

We want to use the gluing theorem [14, 2.3.3].

– Let us describe the localization morphisms explicitly. Let (U, n) be in S .
An object of the localized topos X N

|(U,n) is equivalent to giving for every
U-scheme of finite type V → U, such that the composite α : V → U → X
is smooth of relative dimension dα, a projective system

FV = (FV,m, m ≤ n)

where FV,m ∈ Vét together with morphisms f −1FV → FV′ for U-morphisms
f : V′ → V. The localization morphism

jn : X N
|(U,n) →X N

is defined by the truncation(
j−1
n F•

)
V

= (Fm,V)m≤n.

We still denote j−1
n Λ• = (Λm)m≤n by Λ• and we ring X N

|(U,n) by Λ•.
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– Notice that π : X N →X induces

πn : X N
|(U,n) →X|U

defined by π−1
n (F) = (F)m≤n (the constant projective system). One has

πn∗(Fm)m≤n = lim←−
m≤n

Fm = Fn.

– As in the proof of 3.1.2, the morphisms ei : X →X N, i ≤ n can be
localized in ẽi : X|U →X N

|(U,n), characterized by ẽ−1
i (Fm)m≤n = Fi. They form

a conservative sets of functors.
– One has a commutative diagram of topos

X|U ��
ẽn

		

ε

�
�
��

�
�
�
�
�
�
�
�
�
�
��

X N
|(U,n)

��

πn





pn

��
jn

X N

X|U

��

ε

Uét.

(7.2.i)

One has π−1
n (Λn) = (Λn)m≤n – the constant projective system with value Λn

– which maps to (Λm)m≤n: we will ring X|U (and also both X and Uét)
by Λn and therefore the previous diagram is a diagram of ringed topos.
Notice that e−1

n = e∗n implying the exactness of e∗n .
– Let us define

ΩU,n = Lπ∗
n ΩX ,n|U = Lp∗

nKU,n〈−dα〉(7.2.ii)

where KU,n ∈ D c(Uét,Λn) is the dualizing complex.
– Let f : (V, m)→(U, n) be a morphism in S . It induces a commutative

diagram of ringed topos

X N
|(V,m)

��

pm

��
f

X N
|(U,n)

��

pn

Vét
��

f
Uét.

By the construction of the dualizing complex in [14] and 7.2.1, one has
therefore

Lf ∗ΩU,n = Lπ∗
m(Λm

L⊗Λn ΩX ,n|V) = Lπ∗
mΩX ,m|V = ΩV,m.(7.2.iii)

Therefore, ΩU,n defines locally an object D c(S ,Λ•). Let’s turn to the Ext’s.
– The morphism of topos πn : X N

|(U,n) →X|U is defined by π−1
n F = (F)m≤n.

One has therefore

πn∗F = Fn and pn∗F = Fn,U.
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In particular, one gets the exactness of pn∗ and the formulas

Rpn∗ = pn∗ and πn∗ = ẽ∗
n .(7.2.iv)

Using (7.2.i) we get the formula

pn∗Lp∗
n = ε∗ẽ ∗

n Lp∗
n = ε∗ε∗ = Id.(7.2.v)

Therefore one has

Exti(Lp∗
nKU,n, Lp∗

nKU,n) = Exti(KU,n, pn∗Lp∗
nKU,n)

= Exti(KU,n, KU,n) by (7.2.v)

= Hi(Uét,Λn) by duality.

By sheafification, one gets

Ext
i
(Lp∗

nKU,n, Lp∗
nKU,n) =

{
0 i �= 0
Λn i = 0.

Therefore, the local data (ΩU,n) has vanishing negative Ext’s. By [14, 2.3.3],
there exists a unique ΩX ,• ∈ D c(X ,Λ) inducing ΩU,n on each X N

|(U,n).
– Using the formula jn ◦ en = ẽn ◦ j (7.2.i) and (7.2.ii), one obtains

(e∗n ΩX ,•)|U = ΩX ,n|U.

By [14, 2.3.3], the isomorphisms glue to define a functorial isomorphism

e∗nΩX ,• = ΩX ,n.

By 7.2.1 and 3.0.10, ΩX ,• is normalized with constructible cohomology.
– The uniqueness is a direct consequence of 3.1.1. �

7.2.4. Remark. — In what follows, we write ΩX for the image of ΩX ,• in

Dc(X ,Λ).

7.3. The duality theorem. — Let M be a normalized complex. By 3.1.2, one
has

e−1
n Rhom(M,ΩX )→Rhom

(
e−1
n M, e−1

n ΩX

)
.(7.3.i)

The complex ΩX is of locally finite quasi-injective dimension in the following
sense. If X is quasi-compact, then each ΩX ,n is of finite quasi-injective dimension,
bounded by some integer N depending only on X and Λ, but not n. Therefore
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in the quasi-compact case one has

EEExtΛ
i
(M,ΩX ) = 0 for any M ∈ D≥0

c (X ) and i ≥ N.

Let’s now prove the duality theorem.

7.3.1. Theorem. — Let D : Dc(X )opp →D(X ) be the functor defined by D(M) =
RRRhomΛ(M,ΩX ) = RhomΛ•(M̂, Ω̂X ).

1. The essential image of D lies in D c(A ) (where as before A denotes the category of

Λ•-modules in X N
lis-ét ).

2. If D : Dc(X )opp → Dc(X ) denotes the induced functor, then D is involutive and

maps D(−)
c (X ) into D(+)

c (X ).

Proof. — Both assertions are local on X so we may assume that X is
quasi-compact. Because ΩX is of finite quasi-injective dimension, to prove the first
point it suffices to prove (1) for bounded below complexes. In this case the result
follows from 4.0.8.

For the second point, one can assume M normalized (because M̂ is con-
structible (3.0.14) and normalized). Because ΩX is normalized (7.2.1), the tautolog-
ical biduality morphism

M →Rhom(Rhom(M,ΩX ),ΩX )

defines a morphism

M → DD(M).

Using (7.3.i), one is reduced to the analogous formula

DnDn

(
e−1
n M

) = e−1
n M

where Dn is the dualizing functor on D c(Xlis-ét,Λn), which is proven in [14]. �

7.3.2. Corollary. — For any N, M ∈ Dc(X ,Λ) there is a canonical isomorphism

RRRhomΛ(M, N) � RRRhomΛ(D(N), D(M)).

Proof. — Indeed by 6.0.12 we have

RRRhomΛ(D(N), D(M)) � RRRhomΛ(D(N)
L⊗ M,ΩX )

� RRRhomΛ(M, DD(N))

� RRRhomΛ(M, N). �
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8. The functors Rf∗ and Lf ∗

8.0.3. Lemma. — Let f : X → Y be a morphism of finite type between S-stacks.

Then for any integer n and M ∈ D(+)
c (X ,Λn+1) the natural map

Rf∗M
L⊗Λn+1 Λn → Rf∗(M

L⊗Λn+1 Λn)

is an isomorphism.

Proof. — The assertion is clearly local in the smooth topology on Y so we
may assume that Y is a scheme. Furthermore, if X• → X is a smooth hypercover
by schemes and M• ∈ D c(X•,Λn+1) is the complex corresponding to M under
the equivalence of categories D c(X•,ét,Λn+1) � D c(X ,Λn+1) then by [19, 9.8] it
suffices to show the analogous statement for the morphism of topos

f• : X•,ét → Yet.

Furthermore by a standard spectral sequence argument (using the sequence defined
in [19, 9.8]) it suffices to prove the analogous result for each of the morphisms
fn : Xn,ét → Yét, and hence it suffices to prove the lemma for a finite type morph-
ism of schemes of finite type over S with the étale topology where it is standard.

�

8.0.4. Proposition. — Let M = (Mn)n be a bounded below λ-complex on X . Then

for any integer i the system Rif∗M = (Rif∗Mn)n is almost adic.

Proof. — The assertion is clearly local on Y , and hence we may assume
that both X and Y are quasi-compact.

By the same argument proving [19, 9.10] and [5, Th. finitude], the sheaves
Rif∗Mn are constructible. The result then follows from [11, V.5.3.1] applied to the
category of constructible sheaves on Xlis-ét. �


Now consider the morphism of topos f• : X N → Y N induced by the morph-
ism f . By the above, if M ∈ D+

(X N) is a λ-complex then Rf∗M is a λ-complex
on Y . We therefore obtain a functor

Rf∗ : D(+)
c (X ,Λ) → D(+)

c (Y ,Λ), M �→ Rf∗M̂.

It follows immediately from the definitions that the pullback functor Lf ∗ :
D c(Y N,Λ) → D c(X N,Λ) take λ-complexes to λ-complexes and AR-null com-
plexes to AR-null complexes and therefore induces a functor

Lf ∗ : Dc(Y ,Λ) → Dc(X ,Λ).
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8.0.5. Proposition. — Let M ∈ D(+)
c (X ,Λ) and N ∈ D(−)

c (Y ,Λ). Then there is

a canonical isomorphism

Rf∗ RRRhomΛ(Lf ∗N, M) � RRRhomΛ(N, Rf∗M).

Proof. — We can rewrite the formula as

Rf∗ Rhom(Lf ∗N̂, M̂) � Rhom(N̂, Rf∗M̂)

which follows from the usual adjunction between Rf∗ and Lf ∗. �


9. The functors Rf! and Rf !

9.1. Definitions. — Let f : X → Y be a finite type morphism of S-
stacks and let ΩX (resp. ΩY ) denote the dualizing complex of X (resp. Y ).
Let DX : Dc(X ,Λ) → Dc(X ,Λ) denote the functor RRRhomΛ(−,ΩX ) and let
DY : Dc(Y ,Λ) → Dc(Y ,Λ) denote RRRhomΛ(−,ΩY ). We then define

Rf! := DY ◦ Rf∗ ◦ DX : D(−)
c (X ,Λ) → D(−)

c (Y ,Λ)

and

Rf ! := DX ◦ Lf ∗ ◦ DY : Dc(Y ,Λ) → Dc(X ,Λ).

9.1.1. Lemma. — For any N ∈ D(−)
c (X ,Λ) and M ∈ D(+)

c (Y ,Λ) there is

a canonical isomorphism

Rf∗ RRRhomΛ(N, Lf !M) � RRRhomΛ(Rf!N, M).

Proof. — Set N′ = DX (N) and M′ := DY (M). Then by 7.3.2 the formula
can be written as

Rf∗ RRRhomΛ(Lf ∗M′, N′) � RRRhomΛ(M′, Rf∗N′)

which is 8.0.5. �


9.1.2. Lemma. — If f is a smooth morphism of relative dimension d , then there is

a canonical isomorphism Rf !(F) � f ∗F〈d 〉.

Proof. — By the construction of the dualizing complex and [14, 4.6.2], we
have ΩX � f ∗ΩY 〈d 〉. From this and biduality 7.3.1, the lemma follows. �
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If f is a closed immersion, then we can also define the functor of sections
with support H0

X on the category of Λ•-modules in Y N. Taking derived functors
we obtain a functor

RH0
X : D(Y N,Λ•) → D(Y N,Λ•).

By the finite coefficient case this takes D c(Y N,Λ•) to itself, so we obtain a functor

f ∗RH0
X : D c(Y

N,Λ•) → D c(X
N,Λ•).

As in the finite coefficient case this functor is right adjoint to

Rf∗ : D c(X
N,Λ•) → D c(Y

N,Λ•).

Both of these functors take AR-null complexes to AR-nul complexes and
hence induce adjoint functors on the categories Dc(Y ,Λ) and Dc(X ,Λ).

9.1.3. Lemma. — If f is a closed immersion, then ΩX = f ∗RH0
X ΩY .

Proof. — By the gluing lemma this is a local assertion in the topos X N and
hence the result follows from [14, 4.7.1]. �


9.1.4. Proposition. — If f is a closed immersion, then f ! = f ∗RH0
X and Rf∗ = Rf!.

Proof. — This follows from the same argument proving [14, 4.7.2]. �

Finally using the argument of [14, 4.8] one shows:

9.1.5. Proposition. — If f is a universal homeomorphism then f ∗ΩX = ΩY ,

Rf ! = f ∗, and Rf! = Rf∗.

There is also a projection formula

Rf!(A
L⊗ f ∗B) � Rf!A

L⊗ B(9.1.i)

for B ∈ D(−)
c (Y ,Λ) and A ∈ D(−)

c (X ,Λ). This is shown by the same argument
used to prove [14, 4.5.2].

10. Computing cohomology using hypercovers

For this we first need some cohomological descent results.
Let X be a algebraic stack over S and X• → X a strictly simplicial smooth

hypercover with the Xi also S-stacks. We can then also consider the topos of
projective systems in X•,lis-ét which we denote by XN

• .
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10.0.6. Definition. — (i) A sheaf F of Λ•-modules in XN
• is almost adic if it is

cartesian and if for every n the restriction F|Xn,lis-ét is almost adic.

(ii) An object C ∈ D(XN
• ,Λ•) is a λ-complex if for all i the cohomology sheaf

H i(C) is almost adic.

(iii) An object C ∈ D(XN
• ,Λ•) is almost zero if for every n the restriction of C to

Xn is almost zero.

(iv) Let D c(XN
• ,Λ•) ⊂ D(XN

• ,Λ•) denoted the triangulated subcategory whose objects

are the λ-complexes. The category Dc(X•,Λ) is the quotient of D c(XN
• ,Λ•) by

the full subcategory of almost zero complexes.

As in 2.1 we have the projection morphism

π : (
XN

• ,Λ•
) → (X•,lis-ét,Λ)

restricting for every n to the morphism (XN
n ,Λ•) → (Xn,lis-ét,Λ) discussed in 2.1.

By 2.2.2 the functor Rπ∗ : D(XN
• ,Λ•) → D(X•,Λ) takes almost zero complexes

to 0. By the universal property of the quotient category it follows that there is an
induced functor

Rπ∗ : Dc(X•,Λ) → D(X•,Λ).

We also define a normalization functor

Dc(X•,Λ) → D
(
XN

• ,Λ•
)
, M �→ M̂

by setting M̂ := Lπ∗Rπ∗(M).

10.0.7. Proposition. — Let M ∈ D c(XN
• ,Λ•) be a λ-complex. Then M̂ is in

D c(XN
• ,Λ•) and the canonical map M̂ → M has almost zero cone.

Proof. — For any integer n, there is a canonical commutative diagram of
ringed topos

XN
•

rn−−−→ X•
n

π

⏐⏐� ⏐⏐�π

X•,lis-ét
rn−−−→ Xn,lis-ét,

where rn denotes the restriction morphisms. Furthermore, the functors rn∗ are exact
and take injectives to injectives. It follows that for any M ∈ D(XN

• ,Λ•) there is
a canonical isomorphism

Rπ∗(rn∗(M)) � rn∗Rπ∗(M).
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From the definition of π∗ it also follows that rn∗Lπ∗ = Lπ∗rn∗, and from this it
follows that the restriction of M̂ to Xn is simply the normalization of M|Xn . From
this and 3.0.14 the statement that M̂ → M has almost zero cone follows.

To see that M̂ ∈ D c(XN
• ,Λ•), note that by 3.0.14 we know that for any in-

tegers i and n the restriction H i(M̂)|Xn is a constructible (and in particular carte-
sian) sheaf on Xn,lis-ét. We also know by 2.2.1 that for any n and smooth morphism
U → Xn, the restriction of H i(M̂) to Uét is equal to H i(M̂U). From this and
3.0.14 it follows that the sheaves H i(M̂) are cartesian. In fact, this shows that if
F ∈ D c(X N,Λ•) denotes the complex obtain from the equivalence of categories
(cohomological descent as in [14, 2.2.3])

D c

(
XN

• ,Λ•
) � D c

(
X N,Λ•

)
,

then H i(M̂) is the restriction to XN
• of the sheaf H i(F̂). �


As in 3.0.18 it follows that the normalization functor induces a left adjoint
to the projection D c(XN

• ,Λ•) → Dc(X•,Λ).
Let ε : X•,lis-ét → Xlis-ét denote the projection, and write also ε : XN

• → X N

for the morphism on topos of projective systems. There is a natural commutative
diagram of topos

XN
•

π−−−→ X•,lis-ét

ε

⏐⏐� ⏐⏐�ε

X N π−−−→ Xlis-ét.

By [14, 2.2.6], the functors Rε∗ and ε∗ induce an equivalence of categories

D c

(
XN

• ,Λ•
) � D c

(
X N,Λ•

)
,

and the subcategories of almost zero complexes coincide under this equivalence.
We therefore have obtained

10.0.8. Proposition. — Let X be an algebraic stack over S and X• → X a strictly

simplicial smooth hypercover with the Xi also S-stacks. Then, the morphism

Rε∗ : Dc(X•,Λ)
∼→ Dc(X ,Λ)

is an equivalence with inverse ε∗.

Consider next a finite type morphism of stacks f : X → Y . Choose a com-
mutative diagram

X•
˜f−−−→ Y•

εX

⏐⏐� ⏐⏐�εY

X
f−−−→ Y ,
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where εX and εY are smooth (strictly simplicial) hypercovers by S-stacks, and
for every n the morphism f̃n : Xn → Yn is of finite type. The functors Rf∗ :
D c(X N,Λ•) → D c(Y N,Λ•) and Rf̃∗ : D c(XN

• ,Λ•) → D c(YN
• ,Λ•) evidently take

almost zero complexes to almost zero complexes and therefore induce functors

Rf∗ : Dc(X ,Λ) → Dc(Y ,Λ), Rf̃∗ : Dc(X•,Λ) → Dc(Y•,Λ).

It follows from the construction that the diagram

Dc(X ,Λ)
10.0.8−−−→ Dc(X•,Λ)

Rf∗
⏐⏐� ⏐⏐�R ˜f∗

Dc(Y ,Λ)
10.0.8−−−→ Dc(Y•,Λ)

commutes.

10.0.9. Corollary. — Let f : X → Y be a finite type morphism of S-stacks, and

let X• → X be a strictly simplicial smooth hypercover by S-stacks of finite type over Y .

For every n, let fn : Xn → Y be the projection. Then for any F ∈ D(+)
c (X ,Λ) there is

a canonical spectral sequence in the category of λ-modules

Epq
1 = Rqfp∗(F|Xp) �⇒ Rp+qf∗(F).

Proof. — We take Y• → Y to be the constant simplicial topos associated
to Y . Let F• denote ε∗

XF. We then have

Rf∗(F) = Rf∗RεX∗(F•) = RεY∗Rf̃∗(F•).

The functor RεY∗ is just the total complex functor (which passes to Dc), and
hence we obtain the corollary from the standard spectral sequence associated to
a bicomplex. �


10.0.10. Corollary. — With notation as in the preceding corollary, let F ∈
D(−)

c (X ,Λ). Then there is a canonical spectral sequence in the category of λ-modules

Epq
1 = H q(DY (Rfp!(F))) �⇒ H p+q(DY (Rf!F)).

Proof. — Apply the preceding corollary to DX (F). �


11. Kunneth formula

Throughout this section we assume S is regular, and that our chosen system
of dualizing complexes {ΩS,n} on S is the system Λ•.
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We prove the Kunneth formula using the method of [14, §5.6].

11.0.11. Lemma. — For any P1, P2, M1, M2 ∈ Dc(X ,Λ) there is a canonical

morphism

RRRhomΛ(P1, M1)
L⊗RRRhomΛ(P2, M2) → RRRhomΛ(P1

L⊗ P2, M1

L⊗ M2).

Proof. — By 6.0.12 it suffices to exhibit a morphism

RRRhomΛ(P1, M1)
L⊗RRRhomΛ(P2, M2)

L⊗ P1

L⊗ P2 → M1

L⊗ M2

which we obtain from the two evaluation morphisms

RRRhomΛ(Pi, Mi) ⊗ Pi → Mi.
�


Let Y1 and Y2 be S-stacks, and set Y := Y1×Y2 with projections pi : Y → Yi.

For Li ∈ Dc(Yi,Λ) let L1

L⊗S L2 ∈ Dc(Y ,Λ) denote p∗
1L1

L⊗ p∗
2L2.

11.0.12. Lemma. — There is a natural isomorphism ΩY � ΩY1

L⊗S ΩY2 in

Dc(Y ,Λ).

Proof. — This is reduced to [14, 5.7.1] by the same argument proving 7.2.3
using the gluing lemma. �


11.0.13. Lemma. — For Li ∈ D(−)
c (Yi,Λ) (i = 1, 2) there is a canonical iso-

morphism

DY1(L1)
L⊗S DY2(L2) → DY (L1

L⊗S L2).(11.0.ii)

Proof. — Note first that there is a canonical map

p∗
i DYi(Li) → RRRhomΛ( p∗

i Li, p∗
i ΩYi).(11.0.iii)

Indeed by adjunction giving such a morphism is equivalent to giving a morphism

DYi(Li) → Rpi∗ RRRhomΛ( p∗
i Li, p∗

i ΩYi),

and this in turn is by 8.0.5 equivalent to giving a morphism

DYi(Li) → RRRhomΛ(Li, Rpi∗p∗
i ΩYi).
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We therefore obtain the map (11.0.iii) from the adjunction morphism ΩYi →
Rpi∗p∗

i ΩYi .
Combining this with 11.0.11 we obtain a morphism

DY1(L1)
L⊗S DY2(L2) → RRRhomΛ(L1

L⊗S L2,ΩY1

L⊗S ΩY2),

which by 11.0.12 defines the morphism (11.0.iii).
To see that this morphism is an isomorphism, note that by the definition

this morphism is given by the natural map

RhomΛ•(L̂1,ΩY1)
L⊗S RhomΛ•(L̂2,ΩY2) → RhomΛ•(L̂1

L⊗S L̂2,ΩY )

in the topos Y N. That it is an isomorphism therefore follows from [14, 5.7.5]. �

Let fi : Xi → Yi be finite type morphisms of S-stacks, set X := X1 × X2,

and let f := f1 × f2 : X1 × X2 → Y1 × Y2. Let Li ∈ D(−)
c (Xi,Λ) (i = 1, 2).

11.0.14. Theorem. — There is a canonical isomorphism in Dc(Y ,Λ)

Rf!(L1

L⊗S L2) → Rf1!(L1)
L⊗S Rf2!(L2).(11.0.iv)

Proof. — As in [14, proof of 5.7.5] we define the morphism as the composite

Rf!(L1

L⊗SL2)
�−−→ DY ( f∗DX (L1

L⊗SL2))

�−−→ DY ( f∗(DX1(L1)
L⊗SDX2(L2)))

−−→ DY ( f1∗DX1(L1)
L⊗S( f2∗DX2(L2)))

�−−→ DY1( f1∗DX1(L1))
L⊗SDY2( f2∗DX2(L2))

�−−→ Rf1!(L1)
L⊗SRf2!(L2).

That this morphism is an isomorphism is reduced, as in the proof of 11.0.13, to
loc. cit. �


12. Base change theorem

Let

X ′ a−−−→ X

f ′
⏐⏐� ⏐⏐� f

Y ′ b−−−→ Y

(12.0.v)
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be a cartesian square of S-stacks with f of finite type. We would then like an
isomorphism between the two functors

b∗Rf!, Rf ′
! a∗ : D(−)

c (X ,Λ) → D(−)
c (Y ′,Λ).

As in [14], we construct such an isomorphism in some special cases, and on the
level of cohomology sheaves.

By 7.3.1 to prove the formula b∗Rf! = Rf ′
! a∗ it suffices to prove the dual

version b!Rf∗ = Rf ′
∗a! (functors from D(+)(X ,Λ) to D(+)(Y ′,Λ)).

12.1. Smooth base change. — By 9.1.2 the formula b!Rf∗ = Rf ′
∗a! is equivalent

to the formula b∗Rf∗ = Rf ′
∗a∗. We can therefore take the base change morphism

b∗Rf∗ → Rf ′
∗a∗ (note that the construction of this arrow uses only adjunction for

(b∗, Rb∗) and (a∗, Ra∗)). To prove that this map is an isomorphism, note that it
suffices to verify that it is an isomorphism locally in the topos Y ′N where it follows
from the case of finite coefficients [14, 5.1].

12.2. Base change by a universal homeomorphism. — By 9.1.5 in this case b! = b∗

and a! = a∗. We then again take the base change arrow b∗Rf∗ → Rf ′
∗a∗ which as

in the case of a smooth base change is an isomorphism by reduction to the case
of finite coefficients [14, 5.4].

12.3. Base change by an immersion. — In this case one can define the base
change arrow using the projection formula (9.1.i) as in [14, 5.3].

Note first of all that by shrinking on Y it suffices to consider the case of
a closed immersion. Let A ∈ D(−)

c (X ,Λ). Since b is a closed immersion, we have
b∗Rb∗ = id. By the projection formulas for b and f we have

Rb∗b∗Rf!A = Rb∗(Λ)
L⊗ Rf!A = Rf!(A

L⊗ f ∗Rb∗Λ).

Now clearly f ∗b∗ = a∗ f ′∗. We therefore have

Rf!(A
L⊗ f ∗Rb∗Λ) � Rf!(A

L⊗ Ra∗ f ′∗Λ)

� Rf!a∗(a∗A
L⊗ f ′∗Λ)

� b∗Rf ′
! (a

∗A).

Applying b∗ we obtain the base change isomorphism.

12.4. Compatibilities

12.4.1. Proposition (Λ-version of [14, Prop. 5.3.3]). — Let f : X → Y be

a finite type morphism of S-stacks, and consider a composite

Y ′′ r−−−→ Y ′ p−−−→ Y ,
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where r and pr are immersions, and p is smooth and representable. Let

X ′′

��

ψ

��
ρ

X ′

��

φ

��π
X

��

f

Y ′′ ��r
Y ′ ��

p
Y

be the resulting commutative diagram with cartesian squares. Let

bcp : p∗f! � φ!π∗

be the base change morphism defined in 12.1, and let

bcr : r∗φ! � ψ!ρ∗, bcpr : ( pr)∗f! � ψ!(πρ)∗

be the base change isomorphisms defined in 12.3. Then for F ∈ D(−)
c (X ,Λ) the diagram

r∗p∗f!F ��
bcp

��

�

r∗φ!π∗F ��
bcr

ψ!ρ∗π∗F

��

�

( pr)∗f!F ��
bcpr

ψ!(πρ)∗F

commutes.

Proof. — This is essentially the same as the proof of [14, Proposition 5.3.3].
Let us sketch the argument in the case when Y , and hence also Y ′ and Y ′′,
is a quasi-compact algebraic space. To indicate this assumption we write Y
(resp. Y′, Y′′) for Y (resp. Y ′, Y ′′) for the rest of the proof.

Let

b̂cp : p!f∗ � φ∗π !, b̂cr : r!φ∗ � ψ∗ρ!, b̂cpr : ( pr)!f∗ � ψ∗(πρ)!

be the duals of the base change isomorphisms. Then it suffices to show that for
G ∈ D+

c (X ,Λ) the diagram in Dc(Y′′
ét,Λ)

r!p!f∗G

��

�

��
b̂cp

r!φ∗π !G ��
b̂cr

ψ∗ρ!π !G

��

�

( pr)!f∗G ��
b̂cpr

ψ∗(πρ)!G

commutes. Let

α : ( pr)!f∗G → ( pr)!f∗G

be the automorphism obtained by going around the diagram.
Choose a smooth surjection X → X with X a quasi-compact algebraic

space, and let X· be the associated simplicial space. Let X′
· (resp. X′′

· ) denote the
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base change of X· to Y′ (resp. Y′′) so we have a commutative diagram of topos

X′′
·,ét

��

ψ·

��
ρ· X′

·,ét

��

φ·

��
π· X·,ét

��

f·

Y′′
ét

��r Y′
ét

��
p

Yét.

By the classical theory we have functors

r! : D
(
Y′N,Λ•

) → D
(
Y′′N,Λ•

)
,

p! : D
(
YN,Λ•

) → D
(
Y′N,Λ•

)
,

and

( pr)! : D
(
YN,Λ•

) → D
(
Y′′N,Λ•

)
lifting and extending the previously defined functors on Dc(Y′

ét,Λ) and Dc(Yét,Λ).
By the same argument used in the proof of [14, Proposition 5.3.3], one

constructs an automorphism α̃ of the functor

( pr)!f∗ : D+(
XN

·,ét,Λ•
) → D+(

Y′′N
·,ét,Λ•

)
such that the induced automorphism of the composite functor

D+
c (X ,Λ) ��10.0.8 D+

c (X·,ét,Λ) ��
( pr)!f∗ Dc(Y′′

ét,Λ)

is equal to the earlier defined automorphism α.
Now ( pr)!f·∗ is the derived functor of the functor

( pr)∗H0
Y′′R0f·∗ : (

Λ•-modules in XN
•,ét

) → (Λ•-modules in Y′′
ét),

so to prove that α̃ is the identity it suffices to show that for any sheaf of Λ•-
modules F on X·, the induced automorphism of ( pr)∗H0

Y′′R0f·∗F is the identity.
This is shown as in the proof of [14, Proposition 5.3.3]. �


12.4.2. Proposition (Λ-version of [14, Prop. 5.3.4]). — Let f : X → Y be

a finite type morphism of S-stacks, and consider a composite

Y ′′ ��r
Y ′ ��

p
Y ,

where r and p are immersions. Let

X ′′

��

ψ

��
ρ

X ′

��

φ

��π
X

��

f

Y ′′ ��r
Y ′ ��

p
Y
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be the resulting commutative diagram with cartesian squares. Let

bcp : p∗f! � φ!π∗, bcr : r∗φ! � ψ!ρ∗, bcpr : ( pr)∗f! � ψ!(πρ)∗

be the base change isomorphisms defined in 12.3. Then for F ∈ D(−)
c (X ,Λ) the diagram

r∗p∗f!F ��
bcp

��

�

r∗φ!π∗F ��
bcr

ψ!ρ∗π∗F

��

�

( pr)∗f!F ��
bcpr

ψ!(πρ)∗F

commutes.

Proof. — This follows from a similar argument to the one proving 12.4.1
(and [14, Proposition 5.3.3]). �


12.5. Base change for smoothable morphisms. — Recall [14, Definition 5.5.1], that
a morphism of S-stacks b : Y ′ → Y is smoothable if there exists a factorization

Y ′ i−−−→ V
q−−−→ Y ,(12.5.i)

where i is an immersion and q is smooth and representable. Any such factorization
induces a commutative diagram

X ′

��

f ′

��ι
XV

��

g

��κ
X

��

f

Y ′ ��i
V ��

q
Y .

Let F ∈ D(−)
c (X ,Λ). In the case when the morphism b in (12.0.v) is smooth-

able, we obtain an isomorphism

bcb : b∗f!F → f ′
! a∗F

as follows. Choose a factorization (12.5.i) if b, and define bcb to be the composite
morphism

b∗f!F
�−−−→ i∗q∗f!F

bcq−−−→ i∗g!κ∗F
bci−−−→ f ′

! ι
∗κ∗F

�−−−→ f ′
! a∗F,

where bcq (resp. bci) denotes the base change morphism defined for the smooth
morphism q (resp. immersion i ).

12.5.1. Proposition. — The isomorphism bcb is independent of the choice of the fac-

torization (12.0.v).
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Proof. — This follows from the same argument proving [14, 5.5.3], using
12.4.1. �


12.5.2. Proposition (Λ-version of [14, Prop. 5.5.4]). — Let f : X → Y be

a finite type morphism of S-stacks. Consider a diagram of algebraic stacks

Y ′′ ��h
Y ′ ��

p
Y

with h, p, and ph smoothable, and let

X ′′ ��
η

��

ψ

X ′

��

φ

��π
X

��

f

Y ′′ ��h
Y ′ ��

p
Y

be the resulting commutative diagram with cartesian squares. Let

bcp : p∗f! → φ!π∗, bch : h∗φ! → ψ!η∗, bcph : ( ph)∗f! → ψ!(πη)∗

be the base change isomorphisms. Then for any F ∈ D(−)
c (X ,Λ) the diagram

h∗p∗f!F

��

�

��
bcp

h∗φ!π∗F ��
bch

ψ!η∗π∗F

��

�

( ph)∗f!F ��
bcph

ψ!(πη)∗F
commutes.

Proof. — This follows from the same argument proving [14, Proposition
5.5.4], using 12.4.2. �


12.5.3. Corollary. — For any commutative diagram (12.0.v) of algebraic S-stacks with

f of finite type, F ∈ D(−)
c (X ,Λ), and q ∈ Z there is a canonical isomorphism (in the quotient

of the category of λ-modules by the subcategory of almost zero systems)

b∗Rqf!(F) � Rqφ!a∗F.

Proof. — This follows from the same argument proving [14, Corollary 5.5.6].
�
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