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ABSTRACT

Given a scheme in characteristic p together with a lifting modulo p2, we construct a functor from a category
of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the
decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.
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Introduction

Let X/C be a smooth projective scheme over the complex numbers and let
Xan be the associated analytic space. Classical Hodge theory provides a canonical iso-
morphism:

Hn(X,Ω·
X/C) ∼= Hn(Xan, C) ∼=

⊕

i+j=n

Hi
(
X,Ω

j
X/C

)
.(0.0.1)
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Carlos Simpson’s “nonabelian Hodge theory” [36] provides a generalization of this
decomposition to the case of cohomology with coefficients in a representation of
the fundamental group of Xan. By the classical Riemann–Hilbert correspondence,
such a representation can be viewed as a locally free sheaf E with integrable con-
nection (E,∇) on X. If (E,∇) satisfies suitable conditions, Simpson associates to it
a Higgs bundle (E′, θ), i.e., a locally free sheaf E′ together with an OX-linear map
θ : E′ → E′ ⊗ Ω1

X/C such that θ ∧ θ : E′ → E′ ⊗ Ω2
X/C vanishes. This integrability

implies that the iterates of θ are zero, so that θ fits into a complex (the Higgs complex)

E′ ⊗ Ω·
X/C := E′ → E′ ⊗ Ω1

X/C → E′ ⊗ Ω2
X/C · · · .

As a substitute for the Hodge decomposition (0.0.1), Simpson constructs a natural iso-
morphism:

Hn(X, E ⊗ Ω·
X/C, d) ∼= Hn(Xan, V) ∼= Hn(X, E′ ⊗ Ω·

X/C, θ).(0.0.2)

In general, there is no simple relation between E and E′, and in fact the correspon-
dence E �→ E′ is not holomorphic.

Our goal in this work is to suggest and investigate an analog of Simpson’s theory
for integrable connections in positive characteristics, as well as an extension of the
paper [8] of Deligne and Illusie to the case of de Rham cohomology for modules with
an integrable connection. Let X be a smooth scheme over the spectrum S of a perfect
field k, and let F : X → X′ be the relative Frobenius map. Assume as in [8] that there
is a lifting X̃ of X′ to W2(k). Our main result is the construction of a functor CX̃ (the
Cartier transform) from the category MIC(X/S) of modules with integrable connection
on X to the category HIG(X′/S) of Higgs modules on X′/S, each subject to suitable
nilpotence conditions.

The relative Frobenius morphism F and the p-curvature

ψ : E → E ⊗ F∗Ω1
X′

of a module with integrable connection (E,∇) play a crucial role in the study of
connections in characteristic p. A connection ∇ on a sheaf of OX-modules E can be
viewed as an action of the sheaf DX of PD-differential operators [3, (4.4)]1 on X. This
sheaf of rings has a large center ZX: in fact, F∗ZX is canonically isomorphic to the
sheaf of functions on the cotangent bundle T∗

X′ :

c : S·TX′ ∼= F∗ZX,(0.0.3)

and F∗DX is an Azumaya algebra over S·TX′ [4]. The map c takes a vector field ξ

(i.e., a derivation of OX) to ξp −ξ( p) ∈ DX, where ξ( p) ∈ Der(OX) is the pth iterate of ξ

1 The name “differential operators” is perhaps misleading: although DX acts on OX, the map DX → End(OX)
is not injective.
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and ξp is the pth power of ξ in DX. If ∇ is an integrable connection on E, then by
definition ψξ is the OX-linear endomorphism of E given by the action of ∇c(ξ).

Let X̃ be a lifting of X. Our construction of the Cartier transform CX̃ is based
on a study of the sheaf of liftings of the relative Frobenius morphism F : X → X′.
For each open subset U ⊆ X, the set LX̃(U) of all Frobenius liftings F̃ : Ũ → Ũ′ is
naturally a torsor under the group F∗TX′ . Key to our construction is the fact that the
F∗TX′-torsor q : LX̃ → X has a canonical connection

∇ : LX̃ → F∗TX′ ⊗ Ω1
X,

compatible with the Frobenius descent connection on the vector bundle F∗TX′ . If F̃ is
a local section of LX̃, ∇(F̃) ∈ Hom(F∗Ω1

X′,Ω1
X) is given by

ζF̃ : F∗Ω1
X′ → Ω1

X,

where ζF̃ := p−1dF̃ is the lifting of the inverse Cartier operator defined by F̃. Thus the
sheaf of functions AX̃ := q∗OLX̃

acquires a connection, as does its OX-linear dual BX̃.
The torsor structure on LX̃ induces an action of the completed PD symmetric alge-
bra Γ̂·F∗TX′ on AX̃ and BX̃. We show that the induced action of S·TX′ coincides with
the action of the center S·TX′ ⊂ DX defined by the p-curvature of the connection ∇.
Thus BX̃ becomes a module over the algebra Dγ

X := DX ⊗S·TX′ Γ̂·TX′ .
We define the Cartier transform CX̃ from the category of Dγ

X-modules to the cate-
gory of Γ̂·TX′-modules by the formula:

CX̃(E) = ι∗ HomDγ
X
(BX̃, E),

where ι is the involution of TX′ sending ξ ′ to −ξ ′.2 In fact, BX̃ is a splitting module for
the Azumaya algebra Dγ

X, and from this point of view, the Cartier transform is, up
to the twist by ι, just the equivalence of categories between the category of modules
over a split Azumaya algebra and the category of O-modules on the underlying space
defined by the choice of a splitting module. In particular, the Cartier transform gives
an equivalence between the category MICp−1(X) of nilpotent D-modules of level less
then or equal to p − 1 and the category HIGp−1(X′) of Higgs modules supported on
the (p − 1)st infinitesimal neighborhood of the zero section X′ ↪→ T∗

X′ . The larger
categories of locally nilpotent Dγ

X-modules and Γ̂·TX′-modules have the advantage of
being tensor categories, and the Cartier transform is in fact compatible with the tensor
structures.

We also obtain an analog of Simpson’s isomorphism (0.0.2): if (E′, θ ′) is the
Cartier transform of a module with connection (E,∇) whose level is less than the

2 The role of the involution ι is to insure that our constructions are compatible with the standard Cartier
operator and with the decomposition of the de Rham complex constructed by Deligne and Illusie [8].
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p minus the dimension of X, then we construct an isomorphism in the derived cate-
gory between the de Rham complex of (E,∇) and the Higgs complex of (E′, θ ′). This
result generalizes the decomposition theorem of Deligne-Illusie [8].

Let us describe the structure and content of the paper in more detail. We work
with a smooth morphism X/S of schemes in characteristic p. We shall see that the
Cartier transform depends on a lifting X̃′/S̃ of X′/S modulo p2 rather than a lifting
of X/S, and we write X /S for the pair (X/S, X̃′/S̃). In Theorem 1.1 of Section 1.1
we construct the torsor LX /S of liftings of Frobenius and compute its connection
in Proposition 1.10 and its p-curvature in Proposition 1.5, using the geometric lan-
guage of the crystalline site and in particular Mochizuki’s geometric description of the
p-curvature, which we recall in Proposition 1.7. We also discuss in Section 1.3 the re-
lationship between AX /S and some more familiar constructions in the literature.

Section 2 is devoted to the construction of the Cartier transform. We begin by
reviewing in Theorem 2.1 the Azumaya property of the algebra of differential oper-
ators and the canonical fppf splitting module described in [4]. Then we discuss the
global Cartier transform CX /S as well as a local version which depends on a lifting
F̃ of the relative Frobenius morphism FX/S. Theorem 2.7 constructs from such a lift-
ing F̃, or just the corresponding splitting ζ of the inverse Cartier operator, a surjective
étale endomorphism αζ of T∗

X′ and a splitting module Bζ of α∗
ζ DX/S. The restric-

tion B̂ζ of Bζ to the formal completion of T∗
X′ along its zero section splits the ring

D̂X/S := DX/S ⊗S·TX′/S
Ŝ·TX′/S of HPD differential operators, and this splitting module

defines an equivalence, which we call in Theorem 2.11 the local Cartier transform, be-
tween the category of modules over D̂X/S and the category of modules over the ring
Ŝ·TX′/S. In fact, B̂ζ is naturally isomorphic to the dual of the divided power envelope
of AX̃ along the ideal of the section of LX /S defined by F̃. This gives the compati-
bility between the local and global Cartier transforms.

In Theorem 2.23 we explain how the Cartier transform can be viewed as an
analog of the Riemann–Hilbert correspondence, with the sheaf of OX-algebras AX /S

playing the role of OXan . We also discuss a filtered version of the construction, in which
we study filtered Dγ

X/S-modules (E, N·), where N· is a filtration on E such that

(ΓjTX′/S)NkE ⊆ Nk−jE(0.0.4)

for all k and j. The algebra AX /S has a canonical filtration with this property, and we
show that the filtered object CX /S (E, N·), can be computed from the tensor product
filtration on AX /S ⊗ E, which again satisfies (0.0.4). This construction will become
important in our analog, Theorem 2.26, of the cohomological theorems of Simpson
and Deligne-Illusie and in particular to our study of the “conjugate filtration” in co-
homology.

Section 3 investigates the compatibility of the Cartier transform with direct and
inverse images with respect to a morphism of smooth S-schemes h : X → Y. We begin
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with a review of the construction of the Gauss Manin connection on the relative de
Rham cohomology Rqh∗(E⊗Ω·

X/Y) when h is smooth and discuss its analog for Higgs
fields. Our review culminates with Theorem 3.4, which shows that Rqh∗ increases the
level of nilpotence of a connection by at most the relative dimension d of h, strength-
ening the result [18, 5.10] of Katz. In particular, we show that if N· is a filtration
of E such that GrN E has zero p-curvature, then the filtration of Rqh∗(E ⊗ Ω·

X/Y) in-
duced by Deligne’s “filtration décalée” Ndec of E ⊗ Ω·

X/Y has the same property. The-
orem 3.8 shows that the Cartier transform is compatible with direct image by con-
structing, given a lifting h̃′ of of h′ : X′ → Y′, an isomorphism in HIG(Y′/S)

Rqh′HIG
∗ CX /S E ∼= CY /S RqhDR

∗ E(0.0.5)

if the level of E is less than p−d ; we also show that this construction is compatible with
the filtrations Ndec. This result can be regarded as a relative version of the cohomology
comparison Theorem 2.26.

The remainder of Section 3 is devoted to derived versions of these results in
a certain filtered derived category of DX/S-modules. The first important ingredient of
this approach is a new construction, described in Proposition 3.12, of the functors
Lh∗

DR and RhDR
∗ in characteristic p, due to Bezrukavnikov and Braverman [5], based

on the Azumaya property of the algebra FX/S∗DX/S. This construction allows us to
work locally over the cotangent bundle. Another ingredient is the conjugate filtration

· · · ⊂ I i
X ⊂ · · · ⊂ I 1

X ⊂ FX/S∗DX/S,(0.0.6)

where I i
X = SiTX′/S(FX/S∗DX/S)

and the concept of the I -filtered derived category DF(FX/S∗DX/S,IX) of modules over
the filtered algebra FX/S∗DX/S. Objects of this category are filtered complexes (E·, N·)
of FX/S∗DX/S-modules such that for every integer i

IXNiE· ⊂ Ni+1E·,
or equivalently, such that the associated graded module has vanishing p-curvature. We
lift the functors RhDR

∗ and Lh∗
DR to functors between the I -filtered derived categories

and prove in Proposition 3.16 that, for a smooth morphism h : X → Y of relative
dimension d , the functor RhDR

∗ increases the range of the I -filtration at most by d :

RhDR
∗ (DF[k,l ](FX/S∗DX/S,IX)) ⊂ DF[k−d,l ](FY/S∗DY/S,IY).

A different filtered derived category of DX/S-modules was defined by Laumon
in [20]. Instead of the conjugate filtration (0.0.6) he considers the order filtration

OX = DX/S,0 ⊂ DX/S,1 ⊂ · · · ⊂ DX/S,i ⊂ · · · ⊂ DX/S.
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An object of Laumon’s category D(MF(DX/S)) is a complex E· of DX/S-modules to-
gether with a filtration

· · · ⊂ FiE· ⊂ Fi−1E· ⊂ · · · ⊂ E·

by OX-submodules satisfying Griffiths transversality:

DX/S,i(F jEk) ⊂ F j−iEk.

It is shown in [20] how the functors RhDR
∗ and Lh∗

DR lift to functors between Laumon’s
filtered derived categories. Laumon’s construction makes sense over any base S, not
necessarily of characteristic p.

We observe in Section 3.4 that the graded Azumaya algebra GrI FX/S∗DX/S has
a canonical splitting which then defines an equivalence of categories

C
�

X/S : D(Mod
�

(GrIX FX/S∗DX/S)) ∼= D(HIG
�

(X′/S)).

We explain in Remark 3.19 how this observation combined with the formalism of fil-
tered derived categories leads to a generalization of Katz’s formula [19, Theorem 3.2]
relating the p-curvature to the Kodaira–Spencer mapping. Namely, for any smooth
morphism h, we have canonical quasi-isomorphisms

C
�

Y/S GrN RhDR
∗ (OX) � Rh′HIG

∗ (OX′) � GrF Rh′DR
∗ (OX′), where

DF(FY/S∗DY/S,IY)
C
�

Y/S GrN−−−−−→ D(HIG
�

(Y′/S))
GrF←−−−− D(MF(DY′/S)).

(The second quasi-isomorphism is constructed in [20].)
In Section 3.5 we explain how, when l − k < p, the Cartier transform lifts to an

equivalence of triangulated categories

CX /S : DF[k,l ](FX/S∗DX/S,IX) ∼= DF[k,l ](S·TX′/S,JX′)

between the category DF[k,l ](FX/S∗DX/S,IX) and the J-filtered derived category

DF[k,l ](S·TX′/S,JX′) of Higgs modules, where JX′ ⊂ S·TX′/S is the ideal generated
by TX′/S. We then show in Theorem 3.22 that, for a smooth morphism h : X → Y,
a lifting h̃′ : X̃′ → Ỹ′ induces a filtered quasi-isomorphism

CX /S ◦ RhDR
∗ ∼= Rh′

∗
HIG ◦ CX /S, for l − k + d < p.

The exposition of Sections 3.3–3.5 does not depend on Sections 3.1–3.2, which obtain
many of the same results on the level of cohomology by more explicit methods.

Section 4 is devoted to applications and examples. First we give a characteri-
zation of the local étale essential image of the p-curvature functor from the category
MIC(X/S) to the category of F-Higgs sheaves. We show in Theorem 4.1 that if E is
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coherent and ψ : E → E ⊗ F∗
X/SΩ

1
X′/S is an F-Higgs field, then, étale locally on X,

(E, ψ) comes from a connection if and only if, étale locally, (E, ψ) descends to X′.
This can be regarded as a nonabelian analog of the exact sequence [23, 4.14]

0 �� O∗
X′ ��

F∗
X/S FX/S∗O∗

X
��dlog
FX/S∗Z1

X/S
��

π∗
X/S−CX/S

Ω1
X′/S

�� 0,

where CX/S is the Cartier operator and πX/S : X′ → X is idX × FS. Next in The-
orem 4.5 and Proposition 4.4 come a comparison of the gerbes of liftings of X′ and
of splittings of FX/S∗Dγ

X/S and a cohomological formula for the class of FX/S∗DX/S in
the Brauer group. We prove in Theorem 4.14 that if X is an abelian variety, then
FX/S∗DX/S always splits over the formal completion of the zero section of its cotangent
bundle, and in Section 4.5 we construct an example of a liftable surface for which
FX/S∗DX/S does not have this property. Section 4.6 contains a discussion of p-torsion
Fontaine modules, especially as developed in [11] and [28], from the point of view of
the Cartier transform. As an application, we give a reduction modulo p proof of the
semistability of the Higgs bundles arising from Kodaira–Spencer mappings. Finally, in
Section 4.7, we show how our nonabelian Hodge theory can be used to give a reduc-
tion modulo p proof of a celebrated recent theorem of Barannikov and Kontsevich,
answering a question of Sabbah [34].

We conclude with an appendix devoted to generalities about Higgs fields, and in
particular to the study of the tensor product structure on the category of Higgs mod-
ules. This structure can be viewed as convolution with respect to the additive group
law on the cotangent space and makes sense when restricted to the formal and divided
power completions of the zero section. The tensor category of Higgs modules has an
internal Hom, and an object B of HIG(X) defines what we call a “Higgs transform”
E �→ HomHIG(B, E) from the category of Higgs modules to itself. Our key techni-
cal result is Proposition 5.16, which shows that the Higgs transform with respect to
a character sheaf on the cotangent space defines (after a change of sign) an involutive
autoequivalence of tensor categories. In the last part of the appendix we introduce,
using DX/S as a model, the notion of a tensor structure on an Azumaya algebra A
over a group scheme. Such a structure makes the category of A -modules a tensor
category.

Both authors would like to express their gratitude to Roman Bezrukavnikov. The
second author would like to say that he learned the main idea of this work from him:
in particular, he explained that the ring of differential operators in characteristic p is
an Azumaya algebra over the cotangent bundle and suggested that it might split over
a suitable infinitesimal neighborhood of the zero section. The first author was blocked
from realizing his vision (based on [29]) of a nonabelian Hodge theory in positive
characteristics until he learned of this insight. Numerous conversations with Roman
also helped us to overcome many of the technical and conceptual difficulties we en-
countered in the course of the work. The authors also benefited greatly from Pierre
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Berthelot, who in particular explained to the first author years ago how a lifting of
Frobenius makes D̂X/S into a matrix algebra. Special thanks go to the referee who
pointed out a mistake in an early draft as well as a simplification in our argument
which offered a way around it. This led us to the realization that we could greatly
strengthen one of our main results and allowed us to develop the filtered Cartier trans-
form in the context of cohomology and derived categories. We are also extremely
grateful to the referee for pointing out an enormous number of misprints and ambi-
guities in an early draft. We would also like to thank Alexander Beilinson, Alexander
Braverman, Luc Illusie, and Ofer Gabber for the interest they showed and the ad-
vice they provided. Finally, we would like to alert the reader to a forthcoming work
by Daniel Schepler which extends this theory to log geometry.3

1 The torsor of Frobenius liftings

1.1 Liftings of Frobenius

If X is a scheme in characteristic p, let FX denote its absolute Frobenius en-
domorphism, i.e., the map which is the identity on the underlying topological space
and which takes each section of OX to its pth power. For any morphism f : X → S
of schemes in characteristic p, FS ◦ f = f ◦ FX, and one has the relative Frobenius
diagram:

X

��

f

CC
CC

CC
CC

C
��FX/S

X(S)

��
f (S)

��πX/S

X

��
f

S ��FS
S.

The square in this diagram is Cartesian, and the map FX/S is the unique morphism
over S such that πX/S ◦ FX/S = FX. If no confusion seems likely to result, we may
simplify the notation, writing X′ for X(S), F for FX/S, etc. We also often write X/S for
the morphism f : X → S, viewed as an S-scheme.

If f : X → S is any morphism of schemes in characteristic p > 0 and n is a pos-
itive integer, by a lifting of f modulo pn we shall mean a morphism f̃ : X̃ → S̃ of flat
Z/pnZ-schemes, together with a Cartesian diagram

X

��
f

�� X̃

��
f̃

S �� S̃,

3 Both authors would like to acknowledge the support this collaboration received from the Committee on
Research at the University of California at Berkeley. The second author was partially supported by NSF grant
DMS-0401164, but support for the team effort was denied by the National Science Foundation and the Miller
Institute for Basic Research.
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where S → S̃ is the closed subscheme defined by p. Note that if X̃/S̃ is such a lifting
and X/S is flat (resp. smooth), then so is X̃/S̃. We shall be primarily interested in
the case n = 2, and if n is not specified, this is what we shall mean. If the absolute
Frobenius endomorphism FS lifts to S̃, then f̃

′ : X̃ ×FS̃
S̃ → S̃ lifts X′/S. For example,

if S is the spectrum of a perfect field k and S̃ the spectrum of its truncated Witt ring,
then there is a unique such FS̃, but in general there is no reason for a lifting of FS̃ or
of X′ to exist even locally on S, unless S is smooth over a perfect field.

Throughout the rest of this section, let us fix a smooth X/S as above. We assume
that a lifting X̃′/S̃ of X′/S modulo p2 exists, and we denote the pair (X/S, X̃′/S̃) by
X /S . Note that, given a lifting X̃ of X, it is very rare for there to exist a global
lifting of FX/S : X̃ → X̃′. (For example, no such lift can exist if X is a smooth proper
curve of genus at least two over a perfect field, as is well known.) However it follows
from the smoothness of X′/S that such lifts do exist locally, and we shall see that the
sheaf of such liftings is crystalline in nature.

Let us fix a divided power structure on the ideal pOS̃ and consider the crys-
talline site Cris(X/S̃). If (U, T̃) is an object of Cris(X/S̃), let T be the reduction of
T̃ modulo p. The ideal JT of the inclusion i : U → T is a divided power ideal, and so
ap = 0 for every local section a of JT. Then the relative Frobenius map FT/S factors
through U′, and there is a unique and canonical morphism fT/S : T → X′ such the
following diagram commutes

T

��

fT/S

��
��
��
��

��
f ′
T/S

��FT/S
T′

X′ U′.oo inc′

��

i ′

��������

(1.0.1)

Let us note for future reference that the differential of fT/S vanishes:

0 = dfT/S : Ω1
X′/S → fT/S∗Ω1

T/S.(1.0.2)

Indeed, df ′
T/S ◦ di ′ = dFT/S = 0, and since di ′ is an epimorphism, df ′

T/S = 0.
If g : T1 → T2 is a morphism in Cris(X/S), then fT2/S ◦ g = fT1/S. Hence if E′ is

a sheaf of OX′-modules, there is a natural isomorphism

θg : g∗f ∗
T2/SE′ ∼= f ∗

T1/SE′,

and the collection { f ∗
T/SE′, θg} defines a crystal of OX/S-modules. The corresponding

object of MIC(X/S) is F∗
X/SE′ with its Frobenius descent connection. (This is the

unique connection ∇ on F∗
X/SE′ which annihilates the sections of F−1

X/SE′ ⊆ F∗
X/SE′.)

An extension of crystals

0 → E → H
h−→OX → 0(1.0.3)
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gives rise to a sheaf h−1(1) ⊂ H of E-torsors on Cris(X/S); this construction defines an
equivalence between the category of E-torsors and the category of extensions (1.0.3).
Recall that giving a crystal E amounts to giving a quasi-coherent sheaf of OX-modules
with an integrable connection ∇E : E → E ⊗ Ω1

X/S. Similarly, giving an E-torsor L
on Cris(X/S) is equivalent to giving an E-torsor L on Zar(X) together with a map

∇L : L → E ⊗ Ω1
X/S

such that ∇L (l + e) = ∇L (l ) + ∇E(e) and such that the composition

L
∇L−−→ E ⊗ Ω1

X/S
∇E−−→ E ⊗ Ω2

X/S

is equal to zero.
If E is a locally free crystal of OX/S-modules, we shall denote by E the corres-

ponding crystal of affine group schemes over Cris(X/S). That is, for each T ∈ Cris(X/S),

ET := SpecT S·ΩT,

where Ω is the crystal of OX/S-modules dual to E. In particular, a vector bundle E′

over X′ defines a crystal of affine schemes F∗
X/SE′. More generally, for an E-torsor L

on Cris(X/S), we denote by L the corresponding crystal of affine schemes, which has
a natural action E × L → L.

Now let us fix a pair X /S := (X/S, X̃′/S̃) as above. By a lifting of fT/S to T̃
we shall mean a morphism F̃ : T̃ → X̃′ lifting fT/S. The sets of such liftings on open
subsets of T̃ form a sheaf LX /S ,T̃ on the Zariski topology of T̃ (which coincides with
the Zariski topology of T). Since X̃′/S̃ is smooth, such liftings exist locally, and by
standard deformation theory, the sheaf LX /S ,T̃ of such liftings forms a torsor under
the abelian sheaf Hom( f ∗

T/SΩ
1
X′/S, pOT̃) ∼= f ∗

T/S(TX′/S).

Theorem 1.1. — Let X /S := (X/S, X̃′/S̃) be as above. Then there is a unique crystal

of F∗
X/STX′/S-torsors LX /S on X/S with the following properties.

1. For each object T of X/S admitting a flat lifting T̃ ∈ Cris(X/S̃), LX /S ,T is the sheaf

of liftings of fT/S to T̃.

2. For each morphism g̃ : T̃1 → T̃2 of flat objects in Cris(X/S̃) and each lifting

F̃ : T̃2 → X̃′ of fT2/S, the transition map θg : g∗LX /S ,T2 → LX /S ,T1 satisfies

θg(F̃) = F̃ ◦ g : T̃1 → X̃′.

We denote by LX /S the crystal of relatively affine schemes Spec AX /S corresponding to the

F∗
X/STX′/S-torsor LX /S ; thus AX /S is a crystal of quasi-coherent OX/S-algebras.

Remark 1.2. — We should point out that if T̃1 and T̃2 are two flat liftings of
an object T of Cris(X/S̃), then the set of liftings of fT/S to T̃1 and to T̃2 can be
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canonically identified. More precisely, let T̃1 and T̃2 be flat objects of Cris(X/S̃), and
let g̃ and g̃ ′ be two morphisms T̃1 → T̃2 with the same reduction modulo p. Then
LX /S ( g̃) = LX /S ( g̃ ′) as maps LX /S (T̃2) → LX /S (T̃1). This will follow from the
proof of the theorem, but it can also be deduced from the following elementary argu-
ment. Let g : T1 → T2 be the common reduction modulo p of g1 and g2. Then there
is a map h : Ω1

T2/S → g∗OT1 such that g̃ ′∗(ã) = g̃ ∗(ã) + [p]h(da) for every section ã
of OT̃2

lifting a section a of OT2 . Then if F̃ ∈ LX /S (T̃2) is any lift of fT2/S and b̃ is
a section of OX̃′ with image b in OX′,

(F̃ ◦ g̃ ′)∗(b̃) = (F̃ ◦ g̃)∗(b̃) + [p]h(dfT2/S(db)).

But we saw in (1.0.2) that dfT2/S = 0, hence F̃ ◦ g̃ = F̃ ◦ g̃ ′.

Proof of Theorem 1.1. — We will need the following easy technical result.

Lemma 1.3. — Let Crisf (X/S̃) denote the full subsite of Cris(X/S̃) consisting of those

objects which are flat over S̃. Then the morphism of sites a : Crisf (X/S̃) → Cris(X/S̃) induces

an equivalence between the respective categories of crystals of OX/S̃-modules.

Proof. — Indeed, the question is local on X, so we may assume the existence
of a lifting X̃/S̃. Then both categories can be identified with the category of pairs
(E, ε), where E is a quasi-coherent OX̃-module and ε is an isomorphism between the
two pullbacks of E to the divided power completion of X̃ × X̃ along the diagonal,
satisfying the cocycle condition [3, §6]. ��

Thus we can identify the category of crystals of OX/S-modules on Cris(X/S) and
the category of p-torsion crystals of OX/S̃-modules on Crisf (X/S̃). The same is true for
torsors over crystals of OX/S-modules.

It is clear that the family {LX /S ,T̃ : T̃ ∈ Crisf (X/S̃)}, together with the family
of transition maps θg described in the theorem, forms a sheaf of sets on Crisf (X/S̃).
Furthermore, as we saw above, this family naturally forms a sheaf of F∗

X/STX′/S-torsors.
This proves the theorem. ��

Let us record some basic facts about vector groups which we will need later. Let
πT : T → X be a vector group over X and let T be its sheaf of sections. Thus T is
a locally free sheaf of OX-modules of finite rank and T = SpecX S·Ω, where Ω is the
dual of T. The pairing T × Ω → OX extends to a pairing T × S·Ω → S·Ω, where
sections of T act as derivations of S·Ω. This action defines a map:

ξ �→ Dξ : T → πT∗TT/X,

which identifies T with the sheaf of translation invariant vector fields of T relative
to X. It also induces an isomorphism π∗

TT → TT/X. Moreover, there is a canonical
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pairing of OX-modules:

ΓnT ⊗ Sn+mΩ → SmΩ

which is perfect when m = 0; see Section 5.4 and [3, A10]. If we endow Γ·T with the
topology defined by the PD-filtration of Γ·T and S·Ω with the discrete topology, this
action is continuous. Thus it extends to a continuous action of the completion Γ̂·T
and identifies HomOX(S·Ω,OX) with the completed divided power algebra Γ̂·T of T.4

This action identifies the sheaf of divided power algebras Γ·T [33] with the subring
of translation invariant elements in the full ring of differential operators [3, 2.1] of T
relative to X.

A section ξ of T can be thought of as a section of the map πT : T → X; let
tξ : T → T be translation by ξ . Then the derivation Dξ belongs to the divided power
ideal of Γ·T, exp(Dξ) makes sense as a differential operator of infinite order, and one
has the formula (Taylor’s theorem):

t∗ξ ( f ) = (exp Dξ)( f )(1.3.1)

for the action of t∗ξ on S·Ω. The increasing filtration

NnS·Ω :=
∑

i≤n

SiΩ ⊆ S·Ω

is invariant under t∗ξ ; furthermore t∗ξ acts trivially on the successive quotients.
Now let L be a T-torsor over X and let πL : L → X be the corresponding

relatively affine scheme. It follows from the translation invariance of Dξ that the action
of Γ̂·T on S·Ω carries over to an action on πL∗OL. Similarly, there is a canonical
filtration N· on πL∗OL and a canonical isomorphism

GrN· (πL∗OL) ∼= S·Ω.(1.3.2)

Note that NiπL∗OL can also be characterized as the annihilator of
∏

j >i ΓjT. The
bottom level N0S·Ω of S·Ω corresponds to the translation invariant sections, so there
is a canonical exact sequence

0 → OX → E → Ω → 0,

where E := N1πL∗OL is the set of affine functions on L.
A section 
 of L determines an isomorphism s
 : L → T: s
(
′) := 
′ − 
 ∈ T

for all sections 
′ over all X-schemes. This isomorphism determines an isomorphism

σ
 := s∗
 : S·Ω → πL∗OL.

4 Thus the Cartier dual of T is the formal scheme T̂∗
γ associated to the PD-algebra Γ̂·T with the topology

defined by the divided power filtration {∏j≥n ΓjT : n ∈ N}.
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This is the unique isomorphism of filtered OX-algebras with the property that
σ
(ω)(
′) = 〈ω, 
′ − 
〉 for all local sections 
′ of L over X and ω of Ω. (The unique-
ness comes from the fact that any polynomial α ∈ A[t1, ..., td] of degree less than or
equal to 1 is determined by its values on all A-valued points.) Note in particular that,
as a Γ̂·T-module, πL∗OL is locally coinvertible, i.e., its OX-linear dual is, locally on X,
free of rank one over Γ̂·T.

Finally, let us remark that if T → T′ is an OX-linear map of locally free sheaves,
and L ′ is the T′-torsor deduced from L by pushout, then the morphism L → L ′

induces an isomorphism

πL ′∗OL′ ∼= HomΓ̂·T(Γ̂·T′, πL∗OL).(1.3.3)

Let us summarize these remarks for our crystal of torsors LX /S .

Proposition 1.4. — Let X /S := (X, X̃′) and LX /S be as above, and let AX /S

denote the corresponding crystal of OX-algebras.

1. There is a natural horizontal action of Γ̂·F∗
X/STX′/S on AX /S , compatible with the

action of F∗
X/STX′/S by translation, as described in formula (1.3.1) above. As a sheaf

of Γ̂·F∗
X/S(TX′/S)-modules on X, AX /S is locally coinvertible.

2. There is a natural horizontal filtration N· on AX /S , invariant under the action of

F∗
X/STX′/S. In fact NiAX /S is the annihilator of

∏
j>i ΓjF∗

X/STX′/S, and there is

a canonical isomorphism:

GrN· AX /S
∼= F∗

X/SS·Ω1
X′/S.

3. Let T̃ be a flat object of Cris(X/S̃) and let F̃ : T̃ → X̃′ be a lift of fT/S. Then there

is a unique isomorphism of ( filtered) OT-algebras

σF̃ : f ∗
T/SS·Ω1

X′/S
∼=−→ AX /S ,T

with the following property. For every section ã ′ of OX̃′ lifting a section a′ of OX′ ,

σF̃( f ∗
T/Sda′) ∈ N1AX /S ,T is the OT-valued function on LX /S (T̃) such that for

each F̃′,

[p]σF̃( f ∗
X/Sda′)(F̃′) = F̃′∗(ã ′) − F̃∗(ã ′).

Furthermore GrN σF̃ is the isomorphism of (2). ��
In particular we have a fundamental exact sequence:5

0 → OX → EX /S → F∗
X/SΩ

1
X′/S → 0,(1.4.1)

where

EX /S := N1AX /S .

5 The first explicit construction of this sequence was given in [37].



14 A. OGUS, V. VOLOGODSKY

A section F̃ of LX /S determines as above a homomorphism σF̃ which induces a split-
ting (not compatible with the connections) of this sequence, and in fact the set of split-
tings is bijective with the set of sections.

Since πL : LX /S → X is an F∗
X/STX′/S-torsor over X, there is a natural identi-

fication Ω1
L /X

∼= π∗
L F∗

X/SΩ
1
X′/S. (Here we are omitting the distinction between L and

L in the notation.) The following result is the key to our theory; it shows that the
p-curvature of the connection on AX /S is very rich.

Proposition 1.5. — The action described in part (1) of Proposition 1.4 of F∗
X/STX′/S ⊆

Γ̂F∗
X/STX′/S on AX /S is the same as the action given by the p-curvature ψ of the connection ∇

on AX /S . That is, the diagram

AX /S

��
∼=

��ψ
AX /S ⊗ F∗

X/SΩ
1
X′/S

��
∼=

πL∗OL
��d
πL∗Ω1

L /X,

where d is the usual exterior derivative and ψ is the p-curvature of the connection on AX /S , is

commutative.

This formula can be proved by explicit calculation (see Remark 1.11 below).
We prefer to give here a conceptual proof based on a geometric construction of the
p-curvature due to Mochizuki and communicated to us by Brian Osserman; see [30].
This construction begins with the following crystalline interpretation of F∗

X/SΩ
1
X′/S.

Proposition 1.6. — Let X/S be a smooth morphism of schemes in characteristic p, let

X(1) := X ×S X, and let (D(1), I, γ) denote the divided power envelope of the ideal I of the

diagonal immersion X → X(1). Then there is a unique and functorial isomorphism

ξp : F∗
X/SΩ

1
X′/S → I/(I

[p+1] + IOD(1))

such that, for every local section a of OX,

ξp(dπ∗(a)) = dp(a) := ((1 ⊗ a) − (a ⊗ 1))[p] (mod I
[p+1] + IOD(1)).

Proof. — For each section a of OX, let ξ(a) := 1 ⊗ a − a ⊗ 1 ∈ IOD(1) ⊆ I. Note
that ξ(a) annihilates I/(I

[p+1] + IOD(1)), and hence that the actions of (a ⊗ 1) and of
(1⊗a) on I/(I

[p+1]+IOD(1)) are the same. Thus this quotient can be viewed as a sheaf
of OX-modules. If b is another section of OX, then

ξ(a + b)[p] = (ξ(a) + ξ(b))[p] = ξ(a)[p] +
p−1∑

i=1

ξ(a)[i]ξ(b)[p−i] + ξ(b)[p]

= ξ(a)[p] + ξ(b)[p] (mod IOD(1)).
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Furthermore, ξ(ab) = (1 ⊗ a)ξ(b) + (b ⊗ 1)ξ(a), so a similar calculation shows that

ξ(ab)[p] = apξ(b)[p] + bpξ(a)[p] (mod IOD(1)).

Finally, if a is a local section of f −1(OS), ξ(a) = 0. These properties imply that dp

is a derivation OX → FX∗
(
I/(I

[p+1] + IOD(1))
)
, and hence that dp factors through an

OX-linear ξp as claimed. To see that ξp is an isomorphism, we may work with the aid
of a system of local coordinates t1, ..., tm for X/S. Let ξi := ξ(ti), so that, in multi-
index notation, {ξ [I] : I ∈ Nm} forms a basis for h1∗OD(1), where h1 : D(1) → X is
the first projection. Note that I ⊆ I

[p] + IOD(1) and that ξ [I] ∈ IOD(1) if any Ij < p. It
follows that I/(I

[p+1] + IOD(1)) is freely generated by ξ
[p]
1 , ..., ξ [p]

m , and hence that ξp is
an isomorphism. ��

Proposition 1.7 (Mochizuki). — Let E be a crystal of OX-modules on X/S, Let h1 and h2

be the canonical maps D(1) → X, and let ε : h∗
2E → h∗

1E be the canonical isomorphism. Then

the p-curvature ψ of E identifies, via the isomorphism ξp of Proposition 1.6, with the map sending

each local section e of EX to the class of ε(h∗
2(e)) − h∗

1(e) in I/(I
[p+1] + IOD(1)) ⊗ E.

Proof. — We verify this formula with the aid of a system of local coordinates
(t1, ..., tm), using the notation above. Then if Di := ∂/∂ti ,

ε(h∗
2(e)) =

∑

I

ξ [I]∇I
Dh∗

1(e);

note that D( p)
i = 0. Thus, modulo I

[p+1] + IOD(1), ε(h∗
2(e)) − h∗

1(e)) reduces to

∑

i

ξ
[p]
i ∇p

Di
h∗

1(e) =
∑

i

ξp(dπ∗(ti))∇p
Di

h∗
1(e) = (id ⊗ ξp)(ψ(e)).

��
Remark 1.8. — Let h : X → Y be a morphism of smooth S-schemes, let

E ∈ MIC(Y/S) be a module with an integrable connection, and let ψY : E →
E ⊗OY F∗

Y/SΩ
1
Y′/S be its p-curvature. Then the p-curvature of h∗E is the composition:

h∗E
h∗ψY−−→ h∗E ⊗OX F∗

X/Sh′∗Ω1
Y′/S

id⊗h∗−−→ h∗E ⊗OX F∗
X/SΩ

1
X′/S.

This follows immediately from Proposition 1.7; it was first proved years ago by O. Gab-
ber, using an indirect method.

Proof of Proposition 1.5. — Let F̃ : X̃ → X̃′ be a local lift of FX/S. Let (D̃(1), J, γ)

denote the PD-envelope of the diagonal ideal J of X̃(1), let (D(1), I, γ) denote its
reduction modulo p, and denote again by F̃ the induced maps X̃(1) → X̃′(1) and
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D̃(1) → D̃′(1). Since J is flat over S̃, multiplication by p induces an injective map

[p] : I/IOD(1) → J/pJOD̃(1).

Since J/J
[p+1]

is flat over S̃, ( pJOD̃(1) + J
[p+1]

) ∩ pOD̃(1) = p( JOD̃(1) + J
[p+1]

), so multi-
plication by p induces an injective map

[p] : I/
(
IOD(1) + I

[p+1]) → J/
(

pJOD̃(1) + J
[p+1])

.

If ã is a local section of OX̃, we let ξ(ã) := 1 ⊗ ã − ã ⊗ 1.

Claim 1.9. — Let F̃ : X̃ → X̃′ be a local lift of Frobenius, let a be a local section
of OX, let a′ := π∗(a), and let ã′ be a local lift of a′ to OX̃′. Then

ξ(F̃∗(ã′)) = −[p]ξ(a)[p] (mod pJOD̃(1))

= −[p]dp(a)
(
mod pJOD̃(1) + J

[p+1])
.

Proof. — We may prove this claim with the aid of a local lifting ã of a. Then
F̃∗(ã ′) = ã p + pb̃ for some section b̃ of OX̃. Since pξ(b̃) ∈ pJOD̃(1),

ξ(F̃∗(ã′)) = 1 ⊗ ã p − ã p ⊗ 1 (mod pJOD̃(1)).

Now 1 ⊗ ã = ã ⊗ 1 + ξ(ã), so

1 ⊗ ãp = ãp ⊗ 1 + pζ + (ξ(ã))p,

where pζ = ∑p−1
i=1

(p
i

)
ãiξ(ã)p−i ∈ pJOD̃(1). Since (ξ(ã))p = p!(ξ(ã))[p] and (p − 1)! ≡

−1 (mod p), this proves the claim. ��
Let σF̃ be the splitting associated with F̃ described in Proposition 1.4, and let

α := σF̃(dπ∗(a)) ∈ AX /S . Then ψ(α) ∈ AX /S ⊗ F∗
X/SΩ

1
X′/S, and by the p-curvature

formula of Proposition 1.7, (id ⊗ ξp)ψ(α) is the class of h∗
2(α) − h∗

1(α) in AX /S ⊗
(I/IOD(1) + I

[p+1]
). If F̃′ : D̃(1) → X̃′ is any section of LX /S (D̃(1)) and F̃i := F̃ ◦ h̃i,

[p](id ⊗ ξp)ψ(α)(F̃′) = [p] (h∗
2(α)(F̃′) − h∗

1(α)(F̃′)
)

= [p]σF̃2
(F∗

X/Sda′)(F̃′) − [p]σF̃1
(F∗

X/Sda′)(F̃′)

= (
F̃′∗(ã ′) − F̃∗

2(ã
′)
) − (

F̃′∗(ã ′) − F̃∗
1(ã

′)
)

= h̃∗
1F̃∗(ã ′) − h̃∗

2F̃∗(ã ′)

= −ξ(F̃∗(ã ′))
= [p](dpa)
= [p]ξp(dπ∗a).
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Since [p] is injective, it follows that ψ(α) = dπ(a). This proves the formula for elem-
ents of the form α = σF̃(da′). The general case follows from the fact that both ψ

and the action described in Proposition 1.4.1 annihilate OX ⊆ AX /S and both are
compatible with the algebra structure. ��

It is helpful to have at our disposal an explicit formula for the connection on
AX /S . Recall from [18] that the inverse Cartier isomorphism C−1

X/S is a canonical OX′-
linear map:

C−1
X/S : Ωi

X′/S → H i(FX/S∗Ω·
X/S);(1.9.1)

if i = 1 and a is a local section of OX, then C−1
X/S(dπ∗

X/S(a)) is the cohomology class of
ap−1da. Let Zi

X/S denote the sheaf of closed i-forms on X/S. Then the Cartier operator

is the composite

CX/S : FX/S∗Zi
X/S → H i(FX/S∗Ω·

X/S) → Ωi
X′/S

where the first map is the natural projection and the second is the inverse of C−1
X/S.

Since Ω1
X′/S is locally free, locally on X there exists a section of CX/S (in degree one),

giving rise to a commutative diagram:

FX/S∗Ω1
X/S

Ω1
X′/S

��
ζ

qqqqqqqqqqq

��C−1
X/S MM

MM
MM

MM
MM

M
�� FX/S∗Z1

X/S

��

OO

��CX/S
Ω1

X′/S

xx C−1
X/Sqq

qq
qq
qq
qq
q

H 1(FX/S∗Ω·
X/S)

(1.9.2)

Mazur’s formula [21] shows that a lifting F̃ of the relative Frobenius morphism
FX/S : X → X′ determines such a splitting ζ . Suppose that F̃ : X̃ → X̃′ is a lifting of
FX/S modulo p2. Since

dF̃ : Ω1
X̃′/S̃ → FX/S∗Ω1

X̃/S̃

is divisible by p, there is a unique map ζF̃ making the following diagram commute:

Ω1
X̃′/S̃

��

��dF̃ F̃∗Ω1
X̃/S̃

Ω1
X′/S

��ζF̃ FX/S∗Ω1
X/S.

OO

[p](1.9.3)

Then ζF̃ is a splitting of the inverse Cartier operator in the sense of diagram (1.9.2).
Let us recall the proof. Let ã be lift of a section a of OX and let ã ′ be a lift of π∗a.
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Then F̃∗(ã ′) = ã p + pb̃ for some b̃ ∈ OX̃. Hence

[p]ζF̃(dπ∗a) = dF̃∗(ã ′) = [p]ap−1da + [p]db,

where b is the image of b̃ in OX. Then ζF̃(dπ∗a) = ap−1da + db is closed, and its image
in H 1(FX/S∗Ω·

X/S) is the class of ap−1da, as required.

Proposition 1.10. — Let X /S be as above and let Ũ be a lift of some open subset of X,

let F̃ be an element of LX /S (Ũ), and let σF̃ be the corresponding splitting of EX /S ,U described

in Proposition 1.4. Then for any local section ω′ of Ω1
X′/S,

∇(σF̃(1 ⊗ ω′)) = −ζF̃(ω
′)

where ∇ is the connection (1.4.1) on EX /S .

Proof. — Since both sides are linear over OX′ , it suffices to prove the formula if
ω′ = da′, where a′ is a section of OX′. Let T̃ be the first infinitesimal neighborhood of
Ũ in Ũ ×S̃ Ũ with its two natural projection h̃i : T̃ → Ũ, and let T be the reduction
of T̃ modulo p, so that OT

∼= OU ⊕ Ω1
U/S. The crystal structure on EX /S gives us

isomorphisms

h∗
2EX /S ,U

∼=−→ EX /S ,T
∼=←− h∗

1EX /S ,U

reducing to the identity modulo the ideal Ω1
U/S of OT. Using the resulting identifica-

tions,

∇(σF̃(da′)) :=
h∗

2(σF̃(F
∗
X/Sda′)) − h∗

1(σF̃(F
∗
X/Sda′)) ∈ AX /S ,U ⊗ Ω1

X/S ⊆ AX /S ,T.

Let us evaluate this section on an arbitrary section F̃′ : T̃ → X̃′ of LX /S (T̃). Let
F̃i := F̃ ◦ h̃i ∈ LX /S (T̃). If ã ′ is a lift of a′, then by Proposition 1.4,

[p]∇(σF̃(F
∗
X/Sda′))(F̃′) = [p]h∗

2(σF̃(F
∗
X/Sda′))(F̃′) − [p]h∗

1(σF̃(F
∗
X/Sda′))(F̃′)

= [p]σF̃2
(F∗

X/Sda′)(F̃′) − [p]σF̃1
(F∗

X/Sda′)(F̃′)

= (
F̃′∗(ã ′) − F̃∗

2(ã
′)
) − (

F̃′∗(ã ′) − F̃∗
1(ã

′)
)

= h̃∗
1F̃∗(ã ′) − h̃∗

2F̃∗(ã ′)
= −dF̃∗(ã ′)
= −[p]ζF̃(da′). ��

Remark 1.11. — Somewhat more generally, let ζ be a section of C−1
X/S as in

(1.9.2), and let

(Eζ ,∇) := OX ⊕ F∗
X/SΩ

1
X′/S,
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where ∇ : Eζ → Eζ ⊗ Ω1
X/S is the map

( f , g ⊗ ω′) �→ (df − g ⊗ ζ(ω′), ω′ ⊗ dg).

Then ∇ is an integrable connection on Eζ , and one can simply compute that its
p-curvature is the map

ψ : Eζ → Eζ ⊗ F∗
X/SΩ

1
X′/S ( f , g ⊗ ω′) �→ ( g, 0) ⊗ ω′.

(See for example [26, 2.10].) If F̃ is a lift of Frobenius, then σF̃ provides a splitting of
the fundamental exact sequence (1.4.1) and hence an isomorphism EX /S

∼= Eζ induc-
ing the identity maps on OX and F∗

X/SΩ
1
X′/S. The formula of Proposition 1.10 shows

that this morphism is horizontal, and hence provides another proof of Proposition 1.5.

1.2 Functoriality

The geometric construction of LX /S we have given makes it quite straight-
forward to check its functoriality. Note first that a morphism h : X → Y of smooth
S-schemes induces a morphism of schemes h′ : X′ → Y′, a morphism of OX′-modules
TX′/S → h∗TY′/S, and hence a morphism of crystals of vector bundles:

Th′ : F∗
X/STX′/S → h∗F∗

Y/STY′/S.

Proposition 1.12. — Let h : X → Y be a morphism of smooth S-schemes and let h̃′ be

a lift of h′. Then the pair h̃ := (h, h̃′) induces a morphism of crystals of torsors:

LX /S

Lh̃−→ h∗LY /S ,

compatible with the actions of F∗
X/STX′/S and h∗F∗

Y/STY′/S via the morphism Th′ . This induces an

isomorphism of crystals of h∗F∗
Y/STY′/S-torsors,

h∗F∗
Y/STY′/S ×F∗

X/STX′/S
LX /S

Lh̃−−→h∗LY /S ,

a horizontal morphism of filtered OX-algebras:

θh̃ : (h∗AY /S , N·) → (AX /S , N·)
and a horizontal isomorphism of h∗F∗

Y/SΓ·TY′/S-algebras

h∗AY /S
∼=−→ HomF∗

X/SΓ̂·TX′/S
(h∗F∗

Y/SΓ̂·TY′/S,AX /S ).

Proof. — Recall from [3, 6.5] and [3, 5.11] that if E is a crystal on Y/S, then
h∗E is the unique sheaf such that for each morphism g : T1 → T2 from an object
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in Cris(X/S) to an object in Cris(Y/S), (h∗E)T1 = g∗(ET2). Now if T̃ is an object of
Crisf (X/S̃), h′◦fT/S is a map T → Y′, and the set Lh,T of its liftings T̃ → Ỹ′ is a torsor
under f ∗

T/Sh′∗TY′/S. We claim first of all that T �→ f ∗
T/Sh′∗TY′/S can be identified with

h∗F∗
Y/STY′/S and that T �→ Lh,T can be identified with h∗LY /S . Indeed, if g : T1 → T2

is as above, then

(h∗F∗
Y/STY′/S)T1 = g∗((F∗

Y/STY′/S)T2) = g∗f ∗
T2/STY/S = f ∗

T1
h′∗TY/S,

proving the first part of the claim. Suppose further that T̃1 ∈ Crisf (X/S̃), T̃2 ∈
Crisf (Y/S̃), and g̃ : T̃1 → T̃2 is a PD-morphism, compatible with h, and let g : T1 → T2

be its reduction modulo p. If F̃ is a local section of LY /S ,T2 , then F̃ ◦ g̃ : T̃1 → Ỹ′ is
a lift of fT2 ◦ g = h′ ◦ fT1/S, and the sheaf of such lifts forms a g∗f ∗

T2/STY′/S-torsor. Thus
F̃ �→ F̃◦ g̃ defines an isomorphism of torsors from LY /S ,T2 ×T2 T1 to the torsor of such
liftings, proving the second part of the claim. Now if F̃1 : T̃1 → X̃′ is a local section of
LX /S ,T1 , then h̃′ ◦ F̃1 is such a lifting. Thus composition with h̃′ defines a morphism
LX /S ,T1 → g∗LY /S ,T2 , which is evidently compatible with the torsor actions. ��

Corollary 1.13. — Let h : X → Y is a morphism of smooth S-schemes. Then a lift

h̃′ : X̃′ → Ỹ′ of h′ induces an exact sequence

h∗EY /S → EX /S → F∗
X/SΩ

1
X′/Y′ → 0.

If h is smooth, this sequence is short exact (and locally split). ��

1.3 Further remarks

If FS lifts to S̃ and X̃/S̃ lifts X/S, then X̃′ := X̃ ×FS̃
S̃ lifts X′. In this case there

is a lifting π̃ ′ : X̃′ → X̃ of π : X′ → X, and the following proposition applies.

Proposition 1.14. — Suppose that π̃ : X̃′ → X̃ lifts π : X′ → X. Then for each section ã
of OX̃, there is a unique section δπ̃(ã) of EX /S ⊆ AX /S such that for every lifting F̃ : Ũ → X̃′

of FX/S over some open subset U of X,

[p]δπ̃(ã)(F̃) = F̃∗π̃∗(ã) − ã p

on Ũ. Furthermore, δπ̃ has the following properties.

1. The following diagram commutes:

OX

��
F∗

X

��[p]
OX̃

��
δπ̃

�� OX

��
d◦π∗

OX �� EX /S
�� F∗

X/SΩ
1
X′/S,

where the bottom row is the fundamental extension (1.4.1).
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2. The set of all δπ̃(ã) for ã ∈ OX̃ generates EX /S as an OX-module.

3. If F̃ : X̃ → X̃′ is a lift of F,

δπ̃(ã) = δπ̃(ã)(F̃) + σF̃(F
∗
Xda),

where σF̃ is the splitting defined in Proposition 1.4.

4. For every local section ã of OX̃ lifting some a ∈ OX,

∇δπ̃(a) = −1 ⊗ ap−1da ∈ AX /S ⊗ Ω1
X/S and

ψδπ̃(a) = 1 ⊗ F∗
X(da) ∈ AX /S ⊗ F∗

X/SΩ
1
X′/S.

5. If ã and b̃ are sections of OX̃ reducing to sections a and b of OX,

δπ̃(ãb̃) = apδπ̃(b̃) + bpδπ̃(ã),

δπ̃(ã + b̃) = δπ̃(ã) + δπ̃(b) +
∑

0<i<p

ai

i!
bp−i

(p − i)! .

Proof. — First of all, note that π ◦ FX/S = FX, which takes any section a of OX

to ap. Hence if F̃ is a lift of FX/S and ã is a lift of a, F̃∗π̃∗(ã) − ãp is divisible by p.
Thus the formula defining δπ̃ as a function LX /S (Ũ) → OX makes sense. Now if F̃′

is another lift of FX/S,

[p]δπ̃(ã)(F̃′) = F̃′∗π̃∗(ã) − ã p

= F̃∗π̃∗(ã) − ã p + F̃′∗π̃∗(ã) − F̃∗π̃∗(ã)

= [p]δπ̃(ã)(F̃) + [p]σF̃(F
∗
X(da)(F̃′),

by Proposition 1.4. This proves that, as functions on LX /S (Ũ),

δπ̃(ã) = δπ̃(ã)(F̃) + σF̃(F
∗
Xda).

This proves that δπ̃ is well defined and satisfies (3). If ã = [p]b for some b ∈ OX, then
ãp = 0, and [p]δπ̃(ã)(F̃) = F∗

X/Sπ̃
∗(pb) = [p]bp. This proves the commutativity of the

first square in the diagram, and shows that the sub-OX-module of EX /S generated by
the image of δπ̃ contains OX. We have already proved (3), which implies the commu-
tativity of the second square and the fact the set of images of all the δπ̃(ã)’s generates
EX /S . To prove (4), we may assume that a lifting F̃ of FX/S exists. Then by (3) and
Proposition 1.10,

∇δπ̃(ã) = dδπ̃(ã)(F̃) + ∇σF̃F∗
X(da)

= dδπ̃(ã)(F̃) − ζF̃(dπ∗(a))
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hence

[p]∇δπ̃(ã) = d([p]δπ̃(ã)(F̃)) − [p]ζF̃(dπ∗(a))
= d

(
F̃∗π̃∗(ã) − ãp − (F̃ ◦ π̃)∗(ã)

)

= −dãp

= −[p]ap−1da.

This proves the first equation in (1.14.4). The second follows from the formula for the
p-curvature ψ in Proposition 1.5; see also Remark 1.11.

The proofs of the formulas of (1.14.5) are straightforward calculations which we
leave to the reader. ��

Remark 1.15. — We have seen that if FS̃ : S̃ → S̃ lifts FS and X̃′ = X̃×FS̃
S̃, then

the projection X̃′ → X̃ is a natural global choice of a lifting π̃ as above. If X̃′ is some
other lifting of X′, then such a lift π̃ will exist locally on X. However in general there
may be no lift of FS even locally on S, and consequently there may be no lift π̃ even
locally on X. However, if ã ∈ OX̃ is a local lift of a ∈ OX, then we can choose a local
lift ã ′ ∈ OX̃′ of π∗(a). Then the analogs of the formulas in Proposition 1.14 hold with
ã′ in place of δπ̃(ã).

Let us describe another construction of the fundamental exact sequence (1.4.1).
For each T ∈ Cris(X/S̃), let Γ be the graph of fT/S : T → X′, and for each lifting
F̃ : T̃ → X̃′ of fT/S let Γ̃ be the graph of F̃. Let JT̃ be the ideal of the of the immersion

j : T
Γ−→T ×S X′ inc−→ T̃ ×S̃ X̃′.(1.15.1)

A morphism g̃ : T̃1 → T̃2 in Crisf (X/T̃) induces a corresponding morphism of conor-
mal sheaves: g∗JT̃2

/J2
T̃2

→ JT̃1
/J2

T̃1
, and so the family { JT̃/J2

T̃
: T̃ ∈ Crisf (X/T̃)} forms

a sheaf on Crisf (X/S̃). If F̃ : T̃ → X̃′ is a lifting of fT/S and c̃ is a section of JT̃,
Γ̃∗(c̃) ∈ OT̃ vanishes on T, and hence is divisible by p.

Proposition 1.16. — For each T̃ ∈ Crisf (X/S̃), there is a unique morphism

β̃ : JT̃ → JT̃/J2
T̃

β−→EX /S ,T̃ c̃ �→ β̃ c̃

such that for every local lift F̃ of fT/S and every section c̃ of JT̃,

[p]β̃ c̃(F̃) = Γ∗
F̃(c̃) ∈ OT̃.

In fact, β defines an isomorphism of crystals of OX/S-modules and fits into a commutative diagram:

0 �� OT

��
id

��[p]
JT̃/J2

T̃

��
β

�� I/I2 ��

��
∼=

0

0 �� OT �� EX /S ,T̃
�� f ∗

T/SΩ
1
X′/S

�� 0,

where I is the ideal of Γ : T ⊆ T × X′ and the bottom row is the exact sequence (1.4.1).
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Proof. — Suppose for example that ã′ is a local section of OX̃′ and that b̃ is a local
section of OT̃ such that f ∗

T/S(a
′) = inc∗(b̃). Then c̃ := 1 ⊗ ã′ − b̃ ⊗ 1 is a section of JT̃,

and JT̃ is locally generated by such elements. If F̃ is any local lift of fT/S, [p]βc̃(F̃) =
F̃∗(ã ′) − b̃. If ξ ′ is a local section of f ∗

T/STX′/S and F̃′ = ξ ′ + F̃′, then β̃ c̃(F̃
′) = β̃c̃(F̃) +

〈ξ ′, da′〉. This shows that β̃ c̃ defines a section of EX /S ,T. It is clear that β̃ c̃ depends
only on the class of c̃ mod J2

T̃
, and so c̃ �→ βc̃ defines a map β : JT̃/J2

T̃
→ EX /S ,T.

Let us check that the diagram commutes. We may assume that a lifting F̃ of
fT/S exists. By definition I := JT̃/(p) is the ideal of Γ. Then I/I2 ∼= f ∗

T/SΩ
1
X′/S, and the

image of σF̃(da′) in I/I2 is the class of

1 ⊗ a′ − f ∗
T/S(a

′) ⊗ 1 = ( fT/S × id)∗(1 ⊗ a′ − a′ ⊗ 1),

which corresponds to f ∗
T/S(da′) in f ∗

T/SΩ
1
X′/S, so that the right square of the diagram

commutes. Furthermore, if ã is a local section of OT̃, then pã ∈ JT̃ and β̃pã(F̃) =
Γ∗

F̃
(pã) = [p]a, where a is the image of ã in OT. This shows that the left square of

the diagram also commutes. This implies that the arrow [p] in the diagram is injec-
tive. The exactness of the rest of the top row is formal, and it follows that β is an
isomorphism. ��

Remark 1.17. — The isomorphism class of the extension of connections in (1.4.1)
is an element of Ext1

MIC(F∗
X/SΩ

1
X′/S,OX), and there is a spectral sequence with

Ei, j
2

∼= Hi
(
X,Ext

j
MIC

(
Ω1

X′/S,OX

)) ∼= Hi
(
X′, TX′/S ⊗ Ω

j
X′/S

)
.

In particular, there is an exact sequence

0 → H1(X′, TX′/S) → Ext1
MIC

(
F∗Ω1

X′/S,OX

) → H0
(
X′, TX′/S ⊗ Ω1

X′/S

)
.

The extension (1.4.1) has the property that its image in H0(X′, TX′/S ⊗ Ω1
X′/S) is the

identity, and the above exact sequence shows that the set of extension classes with
this property is a (pseudo)-torsor under H1(X′, TX′/S). Note that the same is true of
the set of isomorphism classes of liftings of X′/S. We shall investigate this further in
Section 4.2.

It is perhaps worthwhile to elucidate the relationship between the fundamental
extension (1.4.1) and some more familiar exact sequences. Since the relative Frobenius
morphism FX/S : X → X′ is a homeomorphism, (1.4.1) remains exact when pushed
forward by FX/S. Pulling the resulting sequence back by means of the canonical map
Ω1

X′/S → FX/S∗F∗
X/S(Ω

1
X′/S), one gets an exact sequence

0 → FX/S∗(OX) → E ′
X /S → Ω1

X′/S → 0(1.17.1)
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of locally free sheaves on X′. Each local section e ′ of E ′
X /S maps to a horizontal sec-

tion of F∗
X/SΩ

1
X′/S, and hence ∇(e ′) lies in OX ⊗ Ω1

X′/S ⊆ EX /S ⊗ Ω1
X′/S. Since ∇ is

integrable, in fact ∇(e ′) ∈ Z1
X′/S. Thus, the connection ∇ on EX /S induces an OX′-

linear map E ′
X /S → FX/S∗Z1

X/S, which fits into the commutative diagram below:

0 �� FX/S∗OX �� FX/S∗EX /S
�� FX/S∗Ω1

X′/S
�� 0

0 �� FX/S∗OX

��
d

OO

=

�� E ′
X /S

OO

��
C−1

X /S

�� Ω1
X′/S

OO

inc

��

��
C−1

X/S

0

0 �� FX/S∗B1
X/S

�� FX/S∗Z1
X/S

�� FX/S∗H 1
DR(X/S) �� 0.

(1.17.2)

Here the middle row is the pullback of the top row along inc and the familiar
bottom row is the pushout of the middle row along d : FX/S∗(OX) → FX/S∗BX/S. Recall
that the bottom row is rarely split. Indeed, a splitting would induce an injective map
Ω1

X′/S → FX/S∗Z1
X/S → FX/S∗Ω1

X/S and in particular a nonzero map F∗
X/SΩ

1
X′/S → Ω1

X/S.
For example, no such map can exist on a complete curve of genus at least two over
a field.

Note that there is also an exact sequence

0 → OX′ → FX/S∗OX → FX/S∗BX/S → 0.(1.17.3)

When pulled back to X this sequence is split by the natural map

s : F∗
X/SFX/S∗OX → OX.

Thus F∗
X/SFX/S∗(OX) ∼= OX ⊕ F∗

X/SF∗(BX/S). Furthermore, (1.4.1) is the pushout by s
of the pullback by F∗

X/S of (1.17.1) along s. Warning: the map s is not compatible
with the natural connections on the source and target. An S-scheme X/S for which
sequence (1.17.3) splits is called F-split [16].

2 Connections, Higgs fields, and the Cartier transform

2.1 DX/S as an Azumaya algebra

Let X/S be a smooth morphism of schemes in characteristic p > 0. Let Ω1
X/S

be its sheaf of Kahler differentials, let TX/S be its dual, and let DX/S denote the ring
of PD-differential operators of X/S [3, §2]. A section D of TX/S can be viewed as
a derivation of OX relative to S and hence as a PD-differential operator of order less
than or equal to 1, and DX/S is generated as a sheaf of rings over OX by TX/S. If E
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is a sheaf of OX-modules, then to give an integrable connection ∇ : E → E ⊗ Ω1
X/S

is the same as to give an extension of the action of OX on E to an action of DX/S

[3, 4.8], which we continue to denote by ∇. The pth iterate D( p) of a derivation is
again a derivation, hence a section of TX/S and an operator of order less than or
equal to 1. This is in general not the same as the pth power Dp of D, which is an
operator of order less than or equal to p, even though D( p) and Dp have the same
effect on sections of OX. For each derivation D, let

c(D) := Dp − D( p).(2.0.1)

One can show either by calculating in local coordinates [4] or by means of tech-
niques from noncommutative algebra [18], that c is an F∗

X-linear map from TX/S to
the center ZX/S of DX/S. By adjunction, one deduces from c an OX′/S-linear map

c′ : TX′/S → FX/S∗ZX/S : D′ �→ c′(D′) := (1 ⊗ D′)p − (1 ⊗ D′)( p).(2.0.2)

Let ∇ be an integrable connection on E and ψ : E → E ⊗ F∗
X/SΩ

1
X′/S be its

p-curvature. It follows from the definitions that for every local section D′ of TX′/S, ψD′

is the endomorphism of E induced by the differential operator c′(D′). This mapping
satisfies the linearity and integrability conditions of a Higgs field with F∗

X/SΩ
1
X′/S in

place of Ω1
X/S. We refer to such a map as an F-Higgs field on E, and we denote by

Ψ : MIC(X/S) → F-HIG(X/S)

the functor taking (E,∇) to (E, ψ).
Since c′ maps to the center of FX/S∗DX/S, it extends to a map from the sym-

metric algebra S·TX′/S to ZX/S, and in particular makes FX/S∗DX/S into a sheaf of
S·TX′/S-modules. Let T∗

X′/S := SpecX′ S·TX′/S be the cotangent bundle of X′/S. Since
FX/S∗DX/S is quasi-coherent as a sheaf of OX′-modules, it defines a quasi-coherent sheaf
DX/S on T∗

X′/S.
Recall that an Azumaya algebra over a scheme Y is a sheaf of associative algebras

A such that locally for the fppf topology, A is isomorphic to EndOY(O
n
Y). More gen-

erally, if Y is a topological space, R is a sheaf of commutative rings on Y, and A is
a sheaf of associative R-algebras which is locally free and finite rank as an R-module,
we say that A is an Azumaya algebra over R if the canonical map A⊗Aop → EndR(A)

is an isomorphism. One can show that if Y is a scheme and R = OY, then these def-
initions agree. (See Chapter 4 of [23] for a quick review.)

Our starting point in this section is the following theorem of [4], which asserts
that DX/S is an Azumaya algebra on T∗

X′/S.

Theorem 2.1. — Let X/S be a smooth S-scheme of relative dimension d . Then the map

(2.0.2) induces an isomorphism:

S·TX′/S
∼=−→ FX/S∗ZX/S.



26 A. OGUS, V. VOLOGODSKY

This morphism makes FX/S∗DX/S an Azumaya algebra over S·TX′/S of rank p2d . The corresponding

sheaf DX/S of OT∗
X′/S

-algebras on T∗
X′/S is canonically split (isomorphic to a matrix algebra) when

pulled back via the map πT in the diagram below:

T′∗
X/S

��LL
LL

LL
LL

LL
LL

��:= X ×X′ T∗
X′/S

��

��πT T∗
X′/S

��
X ��FX/S

X′.

(2.1.1)

Proof. — We recall here only the main idea of the proof, referring to [4] for
the details. Let MX/S := FX/S∗DX/S which we can view as a module over OT′∗

X/S
=

FX/S∗ZX/S ⊗OX′ FX/S∗OX via right multiplication and the inclusion OX → DX/S as well
as a left module over itself. These left and right actions agree on the center ZX/S, and
hence they define a homomorphism of sheaves of rings

FX/S∗DX/S ⊗S·TX′/S
OT′∗

X/S
→ EndOT′∗

X/S
(MX/S),

which one can check is an isomorphism in local coordinates. ��
Observe that if dim X/S > 0, then DX/S is not split locally in the Zariski top-

ology of T∗
X′/S. It suffices to check this when S is the spectrum of a field and X is

affine. Then Γ(X, DX/S) has no zero divisors, because its associated graded sheaf with
respect to the filtration by order is canonically isomorphic to the symmetric algebra
S·TX/S. Since T∗

X′/S is integral and DX/S is locally free as an OT∗
X′/S

-module, it also has
no zero divisors and hence is not split.

Remark 2.2. — The power of Theorem 2.1 can be seen from its application to
Cartier descent [18]. Consider the action of DX/S on OX. Since Dp and D( p) agree
on OX, this action kills the ideal S+TX′/S of S·TX′/S. Thus FX/S∗(OX) can be viewed
as a sheaf of i∗DX/S modules, where i : X′ → T∗

X′/S is the zero section. Since i∗DX/S

is an Azumaya algebra over X′ of rank p2d and FX/S∗(OX) has rank pd , this shows
that i∗DX/S is split, and that tensoring with the splitting module FX/S∗(OX) induces an
equivalence between the category of OX′-modules and the category of DX/S-modules
for which the action of S+TX′/S is zero. This is just the category of OX-modules en-
dowed with an integrable connection whose p-curvature is zero.

Let D

X/S be the commutative subalgebra of DX/S generated by the left inclusion

OX → DX/S and its center. Then FX/S∗D

X/S defines a quasi-coherent sheaf of algebras

D

X/S on T∗

X′/S. In fact, it is easy to check that the natural map F∗
X/SS·TX′/S → D


X/S

is an isomorphism, so that SpecT∗
X′/S

D

X/S

∼= T′∗
X/S (see Diagram (2.1.1)). In particular,

a sheaf M of DX/S-modules which is quasi-coherent over X can be viewed as a quasi-
coherent sheaf of OT′∗

X/S
-modules.
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Proposition 2.3. — Let f : Z → T∗
X′/S be a morphism and suppose L is a splitting module

for f ∗DX/S. Then L, viewed as a sheaf of f ∗D

X/S-modules, is locally free of rank one.

Proof. — First let us prove this when f = πT and L = MX/S. Our claim is that
MX/S := DX/S is locally free of rank one over π∗

TD

X/S = OX ⊗S·TX′/S ⊗OX, where the

first OX acts by multiplication on the left and the second on the right and the tensor
products are taken over OX′. We may assume that we have a system of local coordi-
nates (t1, ..., td) for X/S, with a corresponding set of generators Di for DX/S. Then the
product Dp−1

1 · · · Dp−1
d generates MX/S as a module over π∗

TD

X/S, as one sees from the

fact that [Di, tj] = δij . This generator defines a surjective map π∗
TD


X/S → MX/S, and
since the source and target of this map are locally free OX′-modules of the same rank,
it is an isomorphism.

To deduce the general statement, note that it is enough to prove the claim about
L after a faithfully flat cover, and in particular after a base extension induced by πT.
Thus we can replace Z by Z ×T∗

X′/S
T′∗

X/S
∼= Z ×X′ X. The pullback of MX/S to this

space has the desired property, and L is necessarily locally isomorphic to MX/S. This
concludes the proof. ��

Let us recall that the category of left DX/S-modules is equipped with a tensor
structure. In Section 5.5 we will discuss this structure from the point of view of Azu-
maya algebras.

2.2 An étale splitting of DX/S

The proof of Theorem 2.1 gives an explicit flat covering of T∗
X′/S which splits

DX/S. It follows from the general theory of Azumaya algebras that there exist étale

coverings over which it is split. In this section we will give an explicit construction
of such a covering, which in fact is a surjective étale endomorphism of the group
scheme T∗

X′/S.
The construction of the splitting depends on a choice ζ of a splitting of the

Cartier operator CX/S, as exhibited in Diagram (1.9.2). In order to express the formu-
las we shall encounter geometrically, we introduce the following notation. The map ζ

induces by adjunction a map F∗
X/SΩ

1
X′/S → Ω1

X/S whose dual is a map φ : TX/S →
F∗

X/STX′/S. Pulling back by πX/S, we find an OX′-linear map φ′ : TX′/S → F∗
X′TX′/S. We

let hζ be the composite of the map of vector bundles induced by φ′ with the relative
Frobenius map for the X′-scheme T∗

X′/S, as displayed in the diagram below.

T∗
ζ := T∗

X′/S

��hζ KK
KK

KK
KK

KK
��

FT∗/X′
T∗(X′)

X′/S

��
Spec φ′

T∗
X′/S

(2.3.1)



28 A. OGUS, V. VOLOGODSKY

This morphism is a homomorphism of affine group schemes over X′, but it is not
compatible with the vector bundle structures. We shall see that αζ := hζ − id is sur-
jective and étale and that the Azumaya algebra DX/S splits when pulled back
via αζ .

Recall from Remark 1.11 that associated to a splitting ζ there is an object (Eζ ,∇)

of MIC(X/S), where Eζ = OX ⊕ F∗
X/SΩ

1
X′/S. The connection ∇ on Eζ induces a con-

nection on each SnEζ , compatibly with the inclusion maps SnEζ → Sn+1Eζ induced by
the map OX → Eζ , and hence also on the direct limit Aζ := lim−→ SnEζ . The split-
ting σ : Eζ → OX defines an isomorphism of OX-algebras Aζ

∼= F∗
X/SS·Ω1

X′/S and
the submodule F∗

X/SΩ
1
X′/S generates an ideal Iζ of Aζ , which we can identify with

S+F∗
X/SΩ

1
X′/S. By [3, 6.2], the completed PD-envelope ˆA γ

ζ of this ideal has a natural
structure of a crystal of OX/S-modules, so the connection ∇ on Aζ extends canon-
ically to a connection ∇ζ on ˆA γ

ζ . Furthermore, if a is a local section of Iζ , then

∇ζa[n] = a[n−1]∇ζ (a), and ∇ζ maps I
[n]
ζ to I

[n−1]
ζ ⊗ Ω1

X/S. The algebra Aζ
∼= F∗

X/SS·Ω1
X′/S

also has a canonical F-Higgs field θ: if ξ is a local section of TX′/S and ω′ a local sec-
tion of Ω1

X′/S, θξ(ω
′) = 〈ξ, ω′〉, and the action of θξ on the higher symmetric powers

is determined by the Leibnitz rule. In fact, as we saw in Remark 1.11, this F-Higgs
field is also the p-curvature of the connection Aζ

∼= S·F∗
X/SΩ

1
X′/S. This field extends to

the divided power envelope A γ

ζ and its completion ˆA γ

ζ : the pairing

SnF∗
X/STX′/S ⊗ Γn+mF∗

X/SΩ
1
X′/S → ΓmF∗

X/SΩ
1
X′/S(2.3.2)

comes from the multiplication on the symmetric algebra and the duality between the
symmetric and divided power algebras explained for example in [3, A10]. In particu-
lar, if ξ ∈ TX′/S and ω ∈ Ω1

X′/S, one has

ξω[i] = 〈ξ, ω〉ω[i−1] and hence ξpω[i] = 〈ξ, ω〉pω[i−p].(2.3.3)

Let

Bζ := lim−→HomOX

(
A γ

ζ /I
[n]

,OX

)
,

be the topological dual of ˆA γ

ζ , equipped with the dual connection and F-Higgs
field (5.5.1). Thus Bζ

∼= ⊕
SnF∗

X/STX′/S as an OX-module. Because of the sign in the
definition of the dual Higgs field, a section of ξ of TX′/S acts on Bζ as multiplication
by −ξ . The F∗

X/SS·TX′/S-structure of Bζ corresponding to this field identifies it with
ι∗F∗

X/SS·TX′/S, where ι : T∗
X′/S → T∗

X′/S is the involution t → −t of the vector group
TX′/S. Note that ∇ is compatible with the algebra structure of Aζ and with the di-
vided power algebra structure of ˆA γ

ζ . It is not, however, compatible with the algebra
structure of Bζ , but rather with its coalgebra structure.
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Remark 2.4. — If ζ comes from a lifting F̃ of FX/S as in (1.9.1), we can give
a geometric interpretation of the construction of Bζ as follows. Let (A γ

F̃
, I) be the

divided power envelope of the the ideal I of the section of LX /S corresponding to F̃.
Recall from Proposition 1.4 that AX /S has a connection ∇ as well as an action of
F∗

X/SS·TX′/S, the latter via its identification with the ring of translation invariant PD-
differential operators. Both the connection ∇ and the action of F∗

X/STX′/S extend nat-
urally to A γ

F̃
and to its PD-completion ˆA γ

F̃
. Then ˆA γ

ζ can be identified with the ˆA γ

F̃
and Bζ with its topological dual. It is clear from the definitions that these identifi-
cations are compatible with the F∗

X/SS·TX′/S-module structure, and Proposition 1.10
shows that they are also compatible with the connections.

Proposition 2.5. — Let X/S be a smooth morphism of schemes in characteristic p > 0 with

a splitting ζ of C−1
X/S, and let hζ and Bζ := F∗

X/SS·TX′/S with the connection ∇ζ described above.

1. The map:

αζ := id − hζ : T∗
ζ := T∗

X′/S → T∗
X′/S

is a surjective étale morphism of affine group schemes over X′.
2. The action of an element ξ ′ of S·TX′/S on Bζ defined by its p-curvature is multiplication

by α∗
ζ (ξ

′).

Proof. — We have already observed that hζ is a morphism of group schemes,
and consequently so is αζ . Since hζ factors through the relative Frobenius map, its
differential vanishes, and it follows that αζ is étale. Then the images under αζ of the
geometric fibers of T∗

ζ/X′ are open subgroups of the fibers of T∗
X′/S/X′. Hence the

image of each fiber of T∗
ζ/X′ must contain the entire corresponding fiber of T∗

X′/S/X′,
and so αζ is surjective. Thus αζ is an étale covering (but not necessarily an étale cover,
since it need not be a finite morphism).

We must next compute the p-curvature of the divided power envelope A γ

ζ
∼=

Γ·F∗
X/SΩ

1
X′/S of Aζ . Let ω′ be a local section of Ω1

X′/S, so that x := (0, 1 ⊗ ω′) belongs
to the divided power ideal of A γ

ζ . Let D be a local section of TX/S and let ξ ′ :=
π∗

X/SD ∈ TX′/S. Then φ(D) ∈ F∗
X/STX′/S, and we shall need the following formula.

Claim 2.6. — φ(D)p = F∗
X/Sh∗

ζ (ξ
′) ∈ S·F∗

X/STX′/S.

To check this, let T∗ := SpecX′ S·TX′/S and let T̃∗ denote its pullback to X via the
map FX/S, i.e., T̃∗ = SpecX F∗

X/SS·TX′/S. Then there is a commutative diagram:

T̃∗

��
pr

��
FT̃∗/X

T̃∗(X)

��
pr

��

πT̃∗/X

FF
FF

FF
FF

T∗ ��
FT∗/X′

T∗(X′) ��c T̃∗,
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where the morphism c is the projection

T∗(X′) := T∗ ×FX′ X′ ∼= T̃∗ ×πX/S X′ → T̃∗.

Let us view φ(D) as a section of OT̃∗ . Then c∗φ(D) = φ′(ξ ′), so

(φ(D))p = F∗
T̃∗(φ(D))

= F∗
T̃∗/X′π

∗
T̃∗/X(φ(D))

= F∗
T̃∗/X′pr∗(φ′(ξ ′))

= pr∗F∗
T∗/X′(φ

′(ξ ′))
= pr∗h∗

ζ (ξ
′).

Since the map pr in the diagram corresponds to pullback by FX/S, the claim is proved.
By the definition of the connection on Eζ ⊆ A γ

ζ given in Remark 1.11 and of
the morphism φ,

∇D(x) = ∇D(0, 1 ⊗ ω′) = (〈D,−ζ(1 ⊗ ω′)〉, 0)

= −(〈φ(D), 1 ⊗ ω′〉, 0)

= −φ(D)x ∈ A γ

ζ .

The formula [29, 6.1.1] for the p-curvature of divided powers and the compu-
tation of the p-curvature of Eζ (Proposition 1.5), then say:

ψξ ′(x[i]) = x[i−1] ⊗ ψξ ′(x) + x[i−p](∇D(x))p

= 〈ξ ′, x〉x[i−1] − x[i−p](φ(D)x)p

= ξ ′x[i] − (φ(D))p(x[i])
= (ξ ′ − h∗

ζ (ξ
′))x[i]

= −α∗
ζ (ξ

′)x[i].

Since Bζ ⊆ Hom(A γ

ζ ,OX) as a module with connection, the second part of
Proposition 2.5 follows from the formula for the p-curvature of the dual of a con-
nection; see for example Lemma 5.27. ��

We can now show that DX/S splits when pulled back by αζ . Since T∗
ζ = T∗

X′/S,
FX/S∗Bζ can also be viewed as a quasi-coherent sheaf on T∗

ζ .

Theorem 2.7. — There is a unique action of α∗
ζ (DX/S) on FX/S∗Bζ extending the actions

of α−1
ζ (DX/S) and of OT∗

ζ
. The resulting module splits the Azumaya algebra α∗

ζ (DX/S).

Proof. — Proposition 2.5 shows that the actions of S·TX′/S on FX/S∗Bζ defined on
the one hand through the p-curvature homomorphism S·TX′/S → DX/S and through
αζ agree, and hence that the action of DX/S extends canonically to an action
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of α∗
ζDX/S. Since Bζ = F∗

X/SB
′
ζ and B′

ζ
∼= S·TX′/S, Bζ is locally free of rank pd

over T∗
ζ . Hence it is a splitting module for the Azumaya algebra α∗

ζDX/S. ��

2.3 The Cartier transform

In this section we explain how a lifting of FX/S : X → X′ or just of X′/S mod-
ulo p2 determines splittings of DX/S on suitable neighborhoods of the zero section of
T∗

X′/S. We then use these splittings to define characteristic p analogs of the Simpson
correspondence.

Let us begin with the global construction. Suppose we are given a lifting X̃′/S̃
of X′/S; and as before, let X /S denote the pair (X/S, X̃′/S̃). The sheaf Γ·TX′/S has
a canonical divided power structure and can be identified with the divided power en-
velope T∗γ

X′/S of the zero section of the cotangent bundle T∗
X′/S of X′/S. Its completion

Γ̂·TX′/S with respect to the PD-filtration {I[n] : n ∈ N} can be viewed as the sheaf of
functions on the formal scheme T̂∗γ

X′/S. The topology on the structure sheaf is defined
by the PD-filtration and is admissible [14, 7.1.2] but not adic, and its underlying topo-
logical space is X′. It inherits the structure of a formal group scheme from the group
structure of T∗

X′/S, and the group law is a PD-morphism. If T∗γ
n is the closed sub-

scheme defined by I
[n+1]

, the group law factors through maps T∗γ
n × T∗γ

m → T∗γ
n+m for

all n, m. We shall denote by HIGγ (X′/S) the category of sheaves of Γ̂·TX′/S-modules
and by HIG·

γ (X
′/S) the full subcategory of locally PD-nilpotent modules, i.e., those

with the property that each local section is annihilated by some I
[n]

. As explained in
Definition 5.3 and (more abstractly) in Section 5.5 of the appendix, the group law on
T̂∗γ

X′/S defines a tensor structure (convolution) on the category HIG·
γ (X

′/S). If HIGn
γ

denotes the category of OT∗γ
n -modules, the convolution factors through functors

HIGm
γ (X

′/S) × HIGn
γ (X

′/S) → HIGm+n
γ (X′/S).

If E1 and E2 are objects of HIG·
γ (X/S) and ξ is a local section of TX′/S, then the total

PD-Higgs field on the tensor product satisfies

ψξ [n] =
∑

i+j=n

ψξ [i] ⊗ ψξ [ j].(2.7.1)

Note that ψξ [ p] can be nonzero even if E1 and E2 have level less than p. Note also
that this total PD-Higgs field commutes with the Higgs fields id ⊗ ψ and ψ ⊗ id. If
E1 ∈ HIGm

γ (X
′/S) and E2 ∈ HIGn

γ (X
′/S), then HomOX(E1, E2) ∈ HIGm+n

γ (X/S), with
the unique PD-Higgs field satisfying:

ψξ [n](h) =
∑

i+j=n

(−1) jψξ [i] ◦ h ◦ ψξ [ j] .
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See Section 5.5 for a geometric explanation of this formula. More generally, if E1 is
locally PD-nilpotent, then E1 = lim−→ NkE1, where NkE1 is the subsheaf of sections an-

nihilated by I
[k+1]

, and if E2 ∈ HIGn
γ (X/S) for some n, then

HomOX(E1, E2) ∼= lim←−HomOX(NkE1, E2)

has a natural structure of a Γ̂·TX′/S module, but it may not be locally PD-nilpotent.
Let Dγ

X/S denote the tensor product

Dγ

X/S := DX/S ⊗S·TX′/S
Γ̂·(TX′/S)

via the map S·TX′/S → DX/S induced by the p-curvature mapping c′ (2.0.2). The cat-
egory MICγ (X/S) of Dγ

X/S-modules on X is equivalent to the category of sheaves of
OX-modules E equipped with a connection ∇ and a horizontal homomorphism

ψ : Γ̂·(TX′/S) → FX/S∗EndOX(E,∇)

which extends the Higgs field

S·TX′/S → FX/S∗EndOX(E,∇)

given by the p-curvature of ∇. We write MIC·
γ (X/S) for the full subcategory of locally

nilpotent objects, those for which each local section is locally annihilated by
ΓiTX′/S for i � 0. For example, OX has an obvious structure of a Dγ

X/S-module. More
generally, if (E,∇) is a module with integrable connection whose p-curvature is nilpo-
tent of level less than p, (E,∇) can be viewed as an object of MIC·

γ (X/S) by letting
the pth divided power of the ideal Γ+TX′/S act as zero.

The convolution product on HIG·
γ (X

′/S) allows us to make the category
MIC·

γ (X/S) into a tensor category. If E1 and E2 are objects of MIC·
γ (X/S) and ξ

is a local section of TX′/S, then the total PD-Higgs field on the tensor product satisfies
Equation (2.7.1). Since these endomorphisms are horizontal and since this formula
agrees with the p-curvature of a tensor product when n = 1, it does indeed define
an object of MIC·

γ (X/S). If E1 ∈ MIC·
γ (X/S) and E2 ∈ MICn

γ (X/S) for some n,
then HomOX(E1, E2) ∈ MICγ (X/S), with the usual connection rule and the action of
Γ̂·(TX′/S) defined above.

In order to keep our sign conventions consistent with other constructions6, we
have found it convenient to introduce a twist. Let ι : T∗

X′/S → T∗
X′/S be the inverse

operation in the group law. Then ι∗ = ι∗ is an involutive autoequivalence of the tensor
category HIG(X′/S). If (E′, ψ ′) ∈ HIG(X′/S),

(E′, ψ ′)ι := ι∗(E′, ψ ′) = ι∗(E′, ψ ′) = (E′,−ψ ′).(2.7.2)

6 See for example Remark 2.15 below.
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Recall that in Theorem 1.1 we constructed an algebra AX /S from the torsor
of Frobenius liftings LX /S . We have seen in Proposition 1.5 that the p-curvature of
(AX /S ,∇A ) coincides with the action of S·TX′/S coming from the torsor structure
and hence that it extends naturally to a continuous divided power Higgs field ψA .
Thus AX /S can be regarded as an element of MIC·

γ (X/S). Let BX /S be its OX-
linear dual, which makes sense as an object of MICγ (X/S) (although it does not lie
in MIC·

γ (X/S)).

Theorem 2.8. — Let X /S := (X/S, X̃′/S̃) be a smooth morphism together with a lift

of X′/S modulo p2.

1. The Dγ

X/S-module BX /S described above is a splitting module for the Azumaya algebra

FX/S∗(D
γ

X/S) over Γ̂·(TX′/S).

2. The functor

CX /S : MICγ (X/S) → HIGγ (X′/S)

E �→ ι∗ HomDγ
X/S

(BX /S , E)

defines an equivalence of categories, with quasi-inverse

C−1
X /S : HIGγ (X′/S) → MICγ (X/S)

E′ �→ BX /S ⊗Γ̂·TX′/S
ι∗E′.

Furthermore, CX /S induces an equivalence of tensor categories:

MIC·
γ (X/S) → HIG·

γ (X
′/S).

3. Let (E,∇) be an object of MICγ (X/S), let ψ be its p-curvature, and let (E′, ψ ′) :=
CX /S (E,∇). A lifting F̃ of FX/S, if it exists, induces a natural isomorphism

ηF̃ : (E, ψ) ∼= F∗
X/S(E

′,−ψ ′).

Proof. — To prove that BX /S is a splitting module for Dγ

X/S, it suffices to show
that it is locally free of rank pd over the center Γ̂·TX′/S of Dγ

X/S As we have already
observed, the action of this center coincides with the action coming from the torsor
structure as described in Proposition 1.4. Since AX /S is coinvertible by op. cit., BX /S

is locally free of rank one over F∗
X/SΓ̂·TX′/S, and hence is locally free of rank pd over

Γ̂·TX′/S. It then follows from the general theory of matrix algebras that
HomDγ

X/S
(BX /S , ) and BX /S⊗Γ̂·TX′/S

are quasi-inverse equivalences of categories.
Since ι∗ is an involutive equivalence, the functors CX /S and C−1

X /S are also quasi-
inverse equivalences.

The algebra structure of AX /S endows BX /S with the structure of a coalge-
bra with counit. As explained in Proposition 5.29, this gives BX /S the structure of
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a tensor splitting and makes Hom(BX /S , ) a tensor functor; the compatibility iso-
morphism

CX /S (E1) ⊗ CX /S (E2) → CX /S (E1 ⊗ E2)

comes from the diagram:

HomDγ

X/S
(BX /S , E1) ⊗ HomDγ

X/S
(BX /S , E2)

��
⊗

		WWWW
WWWWW

WWWWW
WWWWW

WWW

HomDγ
X/S

(BX /S ⊗ BX /S , E1 ⊗ E2) ��µ∗ HomDγ
X/S

(BX /S , E1 ⊗ E2).

Since ι is a group morphism, ι∗ is also compatible with the tensor structure.
A lifting F̃ of FX′/S defines a trivialization of the torsor LX /S and hence iso-

morphisms of Γ̂·TX′/S-modules

AX /S
∼= F∗

X/SS·ΩX′/S, BX /S
∼= F∗

X/SΓ̂·TX′/S.

Then

E ∼= ι∗E′ ⊗Γ̂·TX′/S
BX /S

∼= ι∗E′ ⊗Γ̂·TX′/S
F∗

X/SΓ̂·TX′/S
∼= F∗

X/Sι∗E′,

as F∗
X/SΓ̂

·TX′/S-modules. Statement (3) follows. ��
Corollary 2.9. — With the notation of Theorem 2.8, the Azumaya algebra FX/S∗DX/S

splits on the (p − 1)st infinitesimal neighborhood of the zero section of T∗
X′/S.

Remark 2.10. — Although the source and target of the isomorphism ηF̃ in part
(3) of Theorem 2.8, are independent of F̃, ηF̃ itself is not. Indeed, let F̃2 and F̃1 be
two liftings of FX/S, differing by a section ξ of F∗

X/STX′/S. Then one can form eξ in
the completed divided power envelope F∗

X/SΓ̂TX′/S. Since E′ ∈ HIG·
γ (X

′/S), eξ acts
naturally on F∗

X/SE′, and we have the formula

ηF̃2
= eξ ◦ ηF̃1

.

This follows from the fact that the isomorphism of Theorem 2.8 is induced by the
section of LX /S defined by F̃ and the formula (1.3.1) for the action by translation of
F∗

X/STX′/S on AX /S .

A lifting F̃ of FX/S, if it exists, allows us to extend the equivalence of The-
orem 2.8 to the category MIC·(X/S) of all locally nilpotent connections. As explained
in [3, 4.4, 4.12], objects of this category give rise to modules over the ring D̂X/S of
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hyper-PD-differential operators. This ring can be identified with the tensor product of
DX/S with the completion Ŝ·TX′/S of S·TX′/S along the ideal of the zero section, and
FX/S∗D̂X/S can be viewed as an Azumaya algebra over the sheaf of rings Ŝ·TX′/S, or
equivalently, over the formal completion T̂X′/S of the cotangent space of X′/S along its
zero section. Let MIC∞(X/S) denote the category of sheaves of D̂X/S-modules on OX,
and let HIG∞(X′/S) denote the category of sheaves of Ŝ·TX′/S-modules on OX′ . The
subcategories MIC·(X/S) and HIG·(X′/S) are tensor categories. The natural map
Ŝ·TX′/S → Γ̂·TX′/S induces a pair of adjoint functors

γ∗ : HIGγ (X′/S) → HIG∞(X′/S)

γ ∗ : HIG∞(X′/S) → HIGγ (X′/S),

and similarly for MIC(X/S).
Let AF̃ be the divided power envelope of the augmentation ideal of AX /S de-

fined by the section of LX /S given by F̃, and let B̂F̃ be its OX-linear dual. Recall
from Remark 2.4 that it has a natural D̂X/S-module structure. There are natural maps

AX /S → AF̃; Dγ

X/S ⊗D̂X/S
B̂F̃

∼= BX /S .(2.10.1)

Theorem 2.11. — Let X/S be a smooth morphism of schemes endowed with a lift

F̃ : X̃ → X̃′ of the relative Frobenius morphism FX/S.

1. The D̂X/S-module B̂F̃ described above is a splitting module for the Azumaya algebra

FX/S∗D̂X/S over its center FX/S∗ẐX/S
∼= Ŝ·TX′/S.

2. The functor

CF̃ : MIC∞(X/S) → HIG∞ (X′/S)

E �→ ι∗ HomD̂X/S
(B̂F̃, E)

defines an equivalence of categories, with quasi-inverse

C−1
F̃

: HIG∞ (X′/S) → MIC∞(X/S)

E′ �→ B̂F̃ ⊗ẐX′/S
ι∗E′.

Furthermore, CF̃ induces an equivalence of tensor categories

MIC·(X/S) → HIG·(X′/S).

3. The map B̂F̃ → BX /S (2.10.1) induces isomorphisms of functors

CF̃ ◦ γ∗ ∼= γ∗ ◦ CX /S and CX /S ◦ γ ∗ ∼= γ ∗ ◦ CF̃.
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Proof. — Let ζ : Ω1
X′/S → FX/S∗Ω1

X/S be the splitting of Cartier associated to F̃
(1.9.3). Recall that we constructed in Proposition 2.5 a module with connection Bζ

together with a horizontal action of F∗
X/SS·TX′/S; as a module over this sheaf of rings,

Bζ is free of rank one. As we have already noted in Remark 2.4, we can identify
B̂F̃ with the formal completion B̂ζ of Bζ ; this identification is compatible with the
connections and the actions of F∗

X/SŜ·TX′/S. In particular, B̂ζ is an invertible (even
free) sheaf of F∗

X/SŜ·TX′/S-modules, and hence is locally free of rank pd over Ŝ·TX′/S.
Recall from Proposition 2.5 that there is a surjective étale group morphism
αζ = id − hζ : T∗

X′/S → T∗
X′/S, and note that its restriction α̂ζ to T̂∗

X′/S is an isomorph-
ism, with inverse

α̂−1
ζ = id + hζ + h2

ζ + · · · .

According to Proposition 2.5, the p-curvature action of S·TX′/S on B̂ζ is given by α̂∗
ζ

followed by the standard action. Since α̂ζ is an isomorphism, α̂ζ∗B̂ζ is locally free
of rank pd . Thus B̂ζ is an FX/S∗D̂X/S-module which is locally free of rank pd over
the center Ŝ·TX′/S, and hence is a splitting module. This proves (1), and (2) follows as
before. The compatibilities stated in (3) follow immediately from the constructions and
the morphisms (2.10.1). ��

Let us give a more explicit description of the local Cartier transform CF̃. Given
a splitting ζ and a Higgs module (E′, ψ ′) we define a module with integrable con-
nection

Ψ−1
ζ (E′, ψ ′) := (F∗

X/SE′,∇)(2.11.1)
∇ := ∇0 + (idE′ ⊗ ζ) ◦ F∗

X/S(ψ
′),(2.11.2)

where ∇0 is the Frobenius descent connection and (idE′ ⊗ζ)◦F∗
X/S(ψ

′) is the OX-linear
map

F∗
X/SE′ F∗

X/S(ψ′)−−−−→ F∗
X/SE′ ⊗ F∗

X/SΩ
1
X′/S

idE′⊗ζ−−−→ F∗
X/SE′ ⊗ Ω1

X′/S.

Let B′
X/S := ι∗S·TX′/S, viewed as an object of HIG(X′/S).

Lemma 2.12. — The isomorphism Bζ
∼= ι∗S·F∗

X/STX′/S induces an isomorphism

Ψ−1
ζ (B′

X/S)
∼= Bζ

compatible with the connections.

Proof. — For each n, the ideal B′>n
X/S := ⊕

j>n S jTX′/S also defines an object of
HIG(X′/S), as does the quotient B′

n of B′
X/S by B′>n

X/S. Let A ′γ
n denote the dual of



NONABELIAN HODGE THEORY IN CHARACTERISTIC p 37

B′
n in HIG(X′/S) and let A ′

X/S := lim−→A ′γ
n . For example,

A ′γ
1 = E ′

X/S := OX′ ⊕ Ω1
X′/S,

and if ξ ∈ TX′/S, a′ ∈ OX′ , and ω′ ∈ Ω1
X′/S,

ξ(a′, ω′) = (〈ξ, ω′〉, 0).

Furthermore, A ′γ
X/S

∼= Γ·Ω1
X′/S, and if ω′

j ∈ Ω1
X′/S for j = 1, ..., r, then each xj := (0, ω′

j)

belongs to the divided power ideal of A ′γ
X/S, and

ξ
(
x[i1]

1 x[i2]
2 · · · x[ir ]

r

) =
∑

j

〈ξ, ω′
j〉x[i1]

1 x[i2]
2 · · · x[ij−1]

j x[ir ]
r .

It follows from the definitions that (Eζ ,∇) = Ψ−1
ζ (E ′

X/S). Then by the formula
above for the action of TX′/S on divided powers and the similar formula for the action
of a connection on divided powers, it follows that (A γ

ζ ,∇) ∼= Ψ−1
ζ (A ′γ

X/S). Hence by
the compatibility of Ψ−1

ζ with duality, (Bζ ,∇) ∼= Ψ−1
ζ (B′

X/S). ��
Let (E′, ψ ′) be an object of HIG(X′/S). Then the isomorphism in the previous

lemma induces isomorphisms:

Ψ−1
ζ (ι∗E′) ∼= Ψ−1

ζ (E′ ⊗S·TX′/S
B′

X/S)(2.12.1)
∼= E′ ⊗S·TX′/S

Ψ−1
ζ (B′

X/S)
∼= E′ ⊗S·TX′/S

Bζ .

Recall from Theorem 2.7 that FX/S∗Bζ splits the Azumaya algebra α∗
ζDX/S over

T∗
ζ := T∗

X′/S

αζ−→ T∗
X′/S.

This, together with (2.12.1), implies the following result.

Theorem 2.13. — Let ζ be a lift of C−1
X/S, let

α∗
ζ : FX/S∗ZX/S

∼= S·TX′/S → S·TX′/S := Zζ

be the map described in Proposition 2.5, and let

Dζ := S·TX′/S ⊗α∗
ζ

FX/S∗DX/S.

Let MICζ (X/S) denote the category of sheaves of Dζ -modules on X. For each ξ ∈ TX′/S, the

p-curvature ψξ on Ψ−1
ζ (ι∗E′) is induced by the action of α∗

ζ (ξ) on E′, i.e., ψξ = F∗
X/S(−α∗

ζ (ξ)).

This makes Ψ−1
ζ (ι∗E′) a Dζ -module. Furthermore, the functors

HIG(X′/S) → MICζ (X/S)

(E′, ψ ′) �→ E′ ⊗Zζ
Bζ

(E′, ψ ′) �→ Ψ−1
ζ (ι∗E′)
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are isomorphic equivalences of categories, with quasi-inverse given by

E �→ HomDζ
(Bζ , E).

Corollary 2.14. — Let (E,∇) be an object of MIC∞(X/S), let ψ be its p-curvature,

and let (E′, ψ ′) := CF̃(E,∇), and let ζ be the splitting of Cartier determined by F̃. Then there

is canonical isomorphism:

(E,∇) ∼= Ψ−1
ζ α−1

ζ∗ (E′, ψ ′).

Remark 2.15. — The appearance of the involution ι in Definition 2.8 insures the
compatibility of the Cartier transform with the usual Cartier operator. Let us explain
this in the context of extensions. The group Ext1

MIC(OX,OX) of isomorphism classes of
the category EXT1

MIC(OX,OX) of extensions of OX by OX in the category MIC(X/S)

is canonically isomorphic to the de Rham cohomology group H1
d R(X/S). Similarly,

the group Ext1
HIG(OX′,OX′) of isomorphism classes of the category EXT1

HIG(OX′,OX′)

of extensions of OX′ by OX′ in HIG(X′/S) is canonically isomorphic to

H1
Hdg(X

′/S) ∼= H1(X′,OX′ ⊕ Ω1
X′/S[−1]).

The inverse Cartier transform defines an equivalence of categories

C−1
X /S : EXT1

HIG(OX′,OX′) → EXT1
MIC(OX,OX),

and hence an isomorphism of groups

c−1
X /S : H1

Hdg(X
′/S) → H1

d R(X/S).

Let us consider the following diagram.

H1
Hdg(X

′/S)

��
c−1
X /S

�� H0(X′,Ω1
X′/S)

��
C−1

X/S

H1
d R(X/S) �� H0(X,H 1

d R(X/S)).

Thanks to our definition, the diagram is commutative. It suffices to verify this when
FX/S lifts and for extensions OX′ → E → OX′ which split in the category of OX′-
modules. Then E′ has a basis (e ′

0, e ′
1) such that ψ(e ′

0) = 0 and ψ(e ′
1) = e0 ⊗ ω′, where

ω′ ∈ Ω1
X′/S. Then one can check that E := C−1

X /S (E′) has a basis (e0, e1) such that
∇(e0) = 0 and ∇(e1) = e0 ⊗ ζ(ω′), where ζ is the splitting of C−1

X /S defined by the
lifting of FX/S. This implies that the diagram commutes.



NONABELIAN HODGE THEORY IN CHARACTERISTIC p 39

2.4 The Cartier transform as Riemann–Hilbert

In the previous section we defined a pair of inverse quasi-equivalences of cate-
gories:

CX /S : MIC·
γ (X/S) → HIG·

γ (X
′/S) : E �→ ι∗ HomD

γ
X/S

(BX /S , E)

C−1
X /S : HIG·

γ (X
′/S) → MIC·

γ (X/S) : E′ �→ BX /S ⊗Γ̂·TX′/S
ι∗E′.

Our goal here is to show how the ring structure on the dual AX /S of BX /S can
be used to give an alternative and more symmetric description of these functors. This
viewpoint sharpens the analogy between the Cartier transform and the Riemann
Hilbert and Higgs correspondences, with the sheaf of OX-algebras AX /S playing the
role of the sheaf of analytic or C∞ functions. This construction of the Cartier trans-
form relies on the “Higgs transforms” described in (5.9) and ordinary Frobenius de-
scent instead of the theory of Azumaya algebras.

Roughly speaking, the idea is the following. The algebra AX /S is endowed with
a connection ∇A and a PD-Higgs field θA . If (E,∇) is an object of MIC·

γ (X/S), the
tensor product connection on E ⊗ AX /S commutes with the PD-Higgs field id ⊗ θA .
Hence id ⊗ θA induces a PD-Higgs field on the sheaf of horizontal sections of
E ⊗ AX /S , and it turns out that the corresponding object of HIG·

γ (X
′/S) is CX /S (E).

Similarly, if (E′, θ ′) is an object of HIG·
γ (X

′/S), then the total PD-Higgs field θ ′
tot

of E′ ⊗ AX /S commutes with the connection induced by ∇A . Hence the subsheaf
of sections annihilated by θ ′

tot inherits a connection, and the corresponding object of
MIC·

γ (X/S) is C−1
X /S (E′).

To make this precise, we begin with some notation and a slightly more general
setting. Let Ω be a locally free sheaf of OX-modules, let T be its dual, and let T be the
vector group SpecX S·Ω. Let G be the group scheme SpecX Γ·T, and let us write OG

for the sheaf Γ·T, I for the divided power ideal Γ+T of Γ·T, and OGn := OG/I [n+1]

if n ∈ N. Recall from the discussion preceding Proposition 1.4 that if πL : L → X is
any T-torsor, then there is natural action of OG on the filtered algebra (AL , N·) :=
(πL∗OL , N·), and that NnAL is the annihilator of the ideal I [n+1]. Thus there is
a natural map

OGn × NnAL → NnAL .(2.15.1)

We shall find it both useful and convenient to study filtered OG -modules. We
denote by I · the divided power filtration on OG (although we should perhaps really
write I [·]).

Definition 2.16. — Let E be an OG -module. An increasing (resp. decreasing) filtration N·
(resp N·) of E by sub OG -modules is said to be I ·-saturated, or just an I ·-filtration, if for

all j and k,

I[ j ]NkE ⊆ Nk−jE, (resp. I[ j ]NkE ⊆ Nk+jE).
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For example, the filtrations N· of AL and I · of OG are I ·-filtrations. If E is
any OG -module, then the canonical filtration

NkE := {e ∈ E : I [k]e = 0}(2.16.1)

is I ·-saturated, and E is locally nilpotent if and only if this filtration is exhaustive. If
(E1, N·) and (E2, N·) are OG -modules with I ·-saturated filtrations, then the tensor
product filtration

Nc(E1 ⊗ E2) :=
∑

a+b=c

Im(NaE1 ⊗ NbE2 → E1 ⊗ E2)(2.16.2)

is again I ·-saturated, because the group law induces maps

µ∗ : I [ j ] →
∑

a+b=j

Im(I [a] ⊗ I [b] → OG ⊗ OG ).

If E is any OX-module, let θ0 denote the OG -module structure on E for which
the ideal I acts as zero. That is, (E, θ0) = i∗E, where i∗ : OG → OX is restriction
along the zero section. If E any OX-module and θ is an OG -module structure on E,
let

Eθ := HomOG
(i∗OX, E),

i.e., Eθ is the sub OX-module of E consisting of all the elements annihilated by the
ideal I .

Now let E be an OX-module equipped with an OG -module structure θ and an
I ·-saturated filtration N·. The OX-module

AL (E) := E ⊗OX AL

has three natural OG -module structures: the action by transport of structure via E,
the action by transport of structure via AL , and the convolution structure defined in
(2.7.1). We shall denote these by

θE := θE ⊗ idA = θE � θ0

θA := idE ⊗ θA = θ0 � θA

θtot := θE � θA .

We endow it with the total (tensor product) filtration N· (2.16.2). It follows from For-
mula (2.7.1) that θA and θtot commute. Define

TL (E) := (AL (E))θtot,
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with the OG -structure θT induced by θA and the filtration induced by N· We have
natural maps, compatible with the OG -structures shown:

(E, θ0, θE)
iE−→(AL (E), θA , θtot)

jE←− (TL (E), θT , θ0),(2.16.3)

where iE(e) := 1⊗e and jE is the inclusion. Note that iE factors through (AL (E))θA and
jE factors through (AL (E))θtot . Endow AL (TL (E)) with the tensor product filtration,
and let

h : AL (TL (E)) → AL (E)

be the map defined by the commutative diagram:

AL (TL (E)) =TL (E) ⊗ AL

��
h

��jE⊗id
E ⊗ AL ⊗ AL

vv idE⊗mlll
lll

lll
lll

l

AL (E) = E ⊗ AL .

(2.16.4)

Proposition 2.17. — Let E be an OX-module with a locally nilpotent OG -module structure

θ and an I ·-filtration N· which is bounded below.

1. The map iE of (2.16.3) is injective and strictly compatible with the filtrations, and its

image is (AL (E))
θA .

2. The map jE of (2.16.3) is injective and strictly compatible with the filtrations, and its

image is (AL (E))
θtot .

3. The map h of (2.16.4) fits in a commutative diagram

TL (TL (E))

��
k

��
jTL (E)

AL (TL (E))

��
h

E ��iE
AL (E).

Furthermore, h and k are strict filtered isomorphisms, compatible with OG -module structures

as shown:

h : (
AL (TL (E)), θA , θtot

) → (AL (E), θtot, θA )

k : (
TL (TL (E)), θT

) → (E, θE).

4. If s is a section of L , then s∗ ◦ jE induces a strict isomorphism

ηs : (TL (E), θT ) → (E, ι∗θE),

where ι is the inversion mapping of the group scheme G .
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Proof. — This result can be interpreted and proved in many ways. For example,
it is a special case of the theory of Higgs transforms on affine group schemes as ex-
plained in Section 5. Here we give a simpler version. Indeed, all of the statements of
the proposition can be verified locally on X, and so we may and shall assume without
loss of generality that L has a section s defining an isomorphism L ∼= T and hence
AL

∼= S·Ω.
Note that the OG -module structure (2.15.1) on AL and the map

s∗ : AL → OX

defined by the section s of L together define a perfect pairing

OGn × NnAL → OX.(2.17.1)

If E is any OX-module, let

H·(OG , E) := lim−→HomOX(OGn, E) ⊆ HomOX(OG , E).

Then the pairing (2.17.1) defines an isomorphism:

AL (E) := AL ⊗ E ∼= H·(OG , E).(2.17.2)

Let us denote by θA and θtot the OG -module structures on H·(OG , E) deduced from
the corresponding structures on AL (E). These can be described explicitly as follows. If
E1 and E2 are two OG -modules, then HomOX(E1, E2) can be give an OG ⊗OG -module
structure by the rule

(b1, b2)(φ)(e1) := b2φ(b1e1).

Then θtot corresponds to the OG -structure induced by µ∗ and θA to the structure in-
duced by pr1∗.7 The total filtration N· of AL (E) corresponds to the filtration N· of
H·(OG , E) defined by

NkH·(OG , E) := {
φ : φ(I [ j ]) ⊆ Nk−jE

}
.

Now if E is a locally nilpotent OG -module, let us consider the following maps:

iE : E → H·(OG , E) iE(e)(b) := i∗G (b)e
σ : H·(OG , E) → E φ �→ φ(1).

The map iG is the identity section of G and the map iE corresponds to the map iE
defined in (2.16.3). Similarly the map σ corresponds to the map ηs of statement (4) of

7 In the systematic treatment in the appendix, we use µ′
∗ instead of µ∗.
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Proposition 2.17. Note that σ is compatible with the filtrations and that σ ◦ iE = idE.
This shows that iE is injective and strictly compatible with the filtrations. The image
of iE is just the set of homomorphisms which factor through OG0 = iG∗(OX), which
corresponds to (A (E))θA . This proves (1) of Proposition 2.17, and (2) is a tautological
consequence of the definitions.

Define

τ : E → H·(OG , E) by τ(e)(b) := ι∗(b)e,

where ι : G → G is the inverse mapping in the group G . If e ∈ E, then a priori

τ(e) is just an element of HomOX(OG , E), but if e is annihilated by I[n+1] then τ(e) ∈
Hom(OGn, E). Thus τ is well-defined if E is locally nilpotent. Note that σ◦τ = idE, so τ

is also injective. If e ∈ NkE and b ∈ I [ j ], then ι∗(b)e ∈ Nk−jE, so τ(e) ∈ NkH·(OG , E).
Thus τ is compatible with the filtrations, and in fact is strictly compatible because σ

is also compatible.
It is clear that the image of τ consists precisely of the elements of H·(OG , E)

which are ι-linear. We claim that these are the elements which correspond to elem-
ents of TL (E) ⊆ AL (E). Indeed, if φ : OG → E is ι-linear then it follows from the
commutativity of the diagram

G ��pr

��
(id,ι)

X

��
iG

G × G ��µ

G

that θtot(φ) = 0, and the converse follows from the fact that the diagram is Cartesian.
Thus we can write τ = jE ◦ τ , where τ : E → TL (E) is an isomorphism of OX-

modules, inverse to the mapping σ ◦ j. It is clear from the definitions of τ and θA that
τ takes θE to ι∗θA , and this proves (4) of Proposition 2.17.

It remains for us the prove statement (3). First let us check that h is compatible
with the Higgs fields as described there. As we have observed in equation (2.16.3),
jE takes θ0 to θtot . More precisely, but perhaps somewhat cryptically: θtot ◦ jE =
jE ◦ θ0, where for example we are writing θtot for the endomorphism of E ⊗ AL in-
duced by some element of OG corresponding to the OG -module structure given by θtot.
Hence:

(θtot � θA ) ◦ ( jE ⊗ idA ) = ( jE ⊗ idA ) ◦ (θ0 � θA )

(idE ⊗ m) ◦ (θtot � θA ) ◦ ( jE ⊗ idA )

= (idE ⊗ m) ◦ ( jE ⊗ idA ) ◦ (θ0 � θA )

θtot ◦ (idE ⊗ m) ◦ ( jE ⊗ idA ) = (idE ⊗ m) ◦ ( jE ⊗ idA ) ◦ θA

θtot ◦ h = h ◦ θA .
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Similarly, (θ0 � θA ) ◦ jE = jE ◦ θT , so

(θ0 � θA � θA ) ◦ ( jE ⊗ idA ) = ( jE ⊗ idA ) ◦ (θT � θA )

(idE ⊗ m) ◦ (θ0 � θA � θA ) ◦ ( jE ⊗ idA )

= (idE ⊗ m) ◦ ( jE ⊗ idA ) ◦ (θT � θA )

(θ0 � θA ) ◦ (idE ⊗ m) ◦ ( jE ⊗ idA ) = h ◦ (θT � θA )

θA ◦ h = h ◦ θtot.

Thus h takes θA to θtot and θtot to θA as claimed. Since h takes θtot to θA , it induces
the map k:

TL (TL (E)) := (
AL (TL )(E)

)θtot → AL (E)θA = E.

Let us check that h is compatible with the filtrations. By definition,

Ntot
c AL (TL (E)) =

∑

a

Im
(
NaTL (E) ⊗ Nc−aAL →TL (E) ⊗ AL (E)

)
.

The definition of NaTL (E) shows that its image under jE is contained in the sum of
the images of NbE ⊗ Na−bAL . Hence h maps Ntot

c AL (TL (E)) into the sum of the
images of

NbE ⊗ Na−bAL ⊗ Nc−aAL
m−→E ⊗ AL (E),

which is contained in Ntot
c AL (E).

Note that if h is a strict isomorphism, then it induces a strict isomorphism from
the annihilator of θtot to the annihilator of θA , i.e., from TL (TL (E)) to E. Thus k is
also a strict isomorphism.

Thus it remains only to show that h is a strict isomorphism. Suppose first that
Gri E = 0 for all i �= k. Then the OG -structure on E factors through iG , so θA = θtot

and E = TL (E) ⊆ AL (E). Then the map h is:

e ⊗ a �→ e ⊗ 1 ⊗ a �→ e ⊗ a,

i.e., the identity map. Now we can proceed by dévissage. Statement (4) shows that the
functor E �→ TL (E) preserves strict exact sequences, and since Gr AL is locally free,
the same is true of the functors E �→ AL (E) and E �→ AL (TL (E)). Now suppose
that NaE = 0 and that h induces an isomorphism for E′ := Nb−1E. Then we have
a strict exact sequence

0 → E′ → NbE → E′′ → 0,
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where E′′ := NbE/Nb−1E. We have seen above that the theorem is true for E′′, and
it holds for E′ by the induction assumption. Then it also holds for NbE by the strict
exactness of the functors AL ( ) and AL (TL ( )). It follows by induction that h is
a strict isomorphism whenever the filtration on E is bounded, and, by taking direct
limits, whenever the filtration is bounded below and exhaustive. This completes the
proof. ��

Remark 2.18. — It is easy to see that the filtration of TL (E) induced by the
total filtration Ntot on AL (E) is the same as the filtration induced by the filtration
AL ⊗ N·E. The total filtration has the advantage of being again I ·-saturated, a fact
we will exploit in our cohomology computations in the next section.

Remark 2.19. — A similar result holds for standard Higgs fields if one works
with the divided power completion of AL along the ideal of a section. More abstractly,
suppose that T and Ω be as above, let θ : E → E ⊗ Ω be a locally nilpotent T-Higgs
field on E. Let I be the ideal of the symmetric algebra S·T generated by T. Then an
I-saturated filtration on E is just a filtration N such that INkE ⊆ Nk−1E. Let AΩ be the
divided power algebra Γ·Ω, and define AΩ(E) := E ⊗ AΩ and TΩ(E) := (AΩ(E))

θtot .
Then the evident analog of Proposition 2.17 holds.

We will sometimes want to consider graded Higgs fields and PD-Higgs modules,
i.e., graded modules over the graded ring OG , where OG = Γ·T or S·T. There is an
evident functor Gr from the category of I ·-filtered (resp. I -filtered) modules to the
category of graded OG -modules, compatible with the convolution tensor product. In
particular, if L is a T-torsor, then Gr AL

∼= S·Ω = S·
T, as a graded Γ·T-modules

(note that the multiplication sends Γa T ⊗ SbΩ to Sb−aΩ); furthermore its divided
power envelope Γ·Ω is in a natural way a graded S·Ω-module. If E is an I ·-filtered
OG-module, the natural map

Gr E ⊗ AT
∼= Gr E ⊗ Gr AL → Gr AL (E)

is an isomorphism, since Gr AL is locally free over OX, and it is compatible both
with θA and θtot. In particular, if E satisfies the hypothesis of Proposition 2.17, the
map TL (E) → AL (E) induces a map

Gr TL (E) → Gr(AL (E)) ∼= Gr(E) ⊗ AT(E)

whose image is annihilated by θtot and hence induces a map

Gr TL (E) → TT(Gr(E)).

Corollary 2.20. — Let (E, θ, N·) be an OX-module E equipped with an OG -module struc-

ture θ and an I ·-filtration N·, as in Proposition 2.17.
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1. The map Gr TL (E) → TT(Gr(E)) above is an isomorphism. In fact there is a com-

mutative diagram of isomorphisms:

TT(Gr E) ⊗ AT

��
h

Gr TL (E) ⊗ AT
oo

��

�� Gr AL (TL (E))

��
Gr(h)

Gr(E) ⊗ AT Gr E ⊗ AT
oo id �� Gr AL (E),

compatible with the OG -module structures as in op. cit.
2. There is a natural isomorphism of graded OG -modules:

Gr TL (E) ∼= ι∗ Gr E.

Proof. — The existence and the commutativity of the diagram is clear, as is
the fact that the arrows are compatible with the OG -module structures. Furthermore,
it follows from Proposition 2.17 that h and Gr(h) are isomorphisms. It follows that
the middle vertical arrow is an isomorphism, and that the image of Gr TL (E) in
Gr E ⊗ AT is exactly the annihilator of θtot , i.e., TT(Gr(E)). This proves (1). Then (2)
follows by applying (4) of Proposition 2.17 with E replaces by Gr E and L replaced
by T. ��

There is a useful cohomological complement to the construction of Remark 2.19.
Recall that associated to a T-Higgs module (E, θ) is its Higgs (Koszul) complex

E → E ⊗ Ω → E ⊗ Ω2 → · · ·,
where Ωi := ΛiΩ.

Proposition 2.21. — Let E be a graded OX-module with a graded T-Higgs field θ :

θ : E → E ⊗ Ω,

where Ω is in degree 1. Using the notation of Remark 2.19, let

A i, j
Ω (E) := AΩ(E) ⊗ Ωi ⊗ Ω j

and let

dA : A
i, j
Ω (E) → A

i+1, j
Ω (E)

dtot : A i, j
Ω (E) → A i, j+1

Ω (E)

be the boundary maps associated to the fields θA and θtot respectively, tensored with the identity. Then

these maps fit into a graded double complex A ··
Ω (E), and the maps i and j of Remark 2.19 define

augmentations of the double complex

E ⊗ Ω· → A ··
Ω (E)

TΩ(E) ⊗ Ω· → A ··
Ω (E).

For each i, A i,·
Ω (E) is a resolution of E ⊗ Ωi and for each j A ·, j

Ω (E) is a resolution of

TΩ(E) ⊗ Ω j .
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Proof. — It is immediate to verify that the boundary maps commute and hence
define a double complex. The fact that A i,·

Ω (E) is a graded resolution of E⊗Ωi follows
from the filtered Poincaré lemma [3, 6.13] for the divided power algebra Γ·(Ω). Since
h is an isomorphism transforming θtot into θA , the second statement follows. ��

Let us now return to our discussion of the Cartier transform. Recall that the
center of Dγ

X/S can be identified with the divided power algebra Γ·TX′/S. Let I ·
X

denote the divided power filtration of the divided power ideal IX of Γ·TX′/S. Let
MICNγ (X/S) denote the category of Dγ

X/S-modules E equipped with an exhaustive,
horizontal, and bounded below filtration I ·-filtration N· (see Definition 2.16). Simi-
larly, let HIGNγ (X′/S) denote the category of Γ·TX′/S-modules E′ equipped with an
exhaustive and bounded below I ·-saturated filtration N′·.

If (E,∇, N·) is an object of MICNγ (X/S), let

E∇,γ := HomDγ
X/S

(OX, E), and

E∇ := Ker
(
E

∇−→E ⊗ Ω1
X/S

)
.

The action of the center Γ·TX′/S of Dγ

X/S defines a PD-Higgs field on FX/S∗E and
hence an F-PD Higgs field ψ on E; note that Eψ is invariant under the connection
∇ : E → E⊗Ω1

X/S. Furthermore, E∇,γ = Eψ∇ , since Dγ

X/S is generated as a topological
ring by TX/S and Γ·TX′/S.

We endow AL (E) := E ⊗ AL with the tensor product Dγ

X/S-module structure
∇ coming from the given structures on E and on AX /S and with the tensor product
filtration coming from the filtrations N· of E and AX /S . We also endow it with the
F-PD-Higgs field θA := id ⊗ θA , where θA is the F-PD-Higgs field of AX /S .

Lemma 2.22. — The action θA of Γ·(TX′/S) on AX /S (E) commutes with the action of

Dγ

X/S corresponding to the tensor product Dγ

X/S-module structure.

Proof. — As we have already observed, it follows from the formula (2.7.1) that the
p-curvature PD-Higgs field of AX /S (E) commutes with id ⊗ θA . That is, the action
of Γ·TX′/S ⊆ Dγ

X/S commutes with id ⊗ θA . Furthermore, if D ∈ TX/S, ξ ′ ∈ Γ·TX′/S,
e ∈ E, and α ∈ AX /S ,

(id ⊗ θξ ′)∇D(e ⊗ a) = ∇D(e) ⊗ θξ ′(a) + e ⊗ θξ ′∇D(a)
= ∇D(e) ⊗ θξ ′(a) + e ⊗ ∇Dθξ ′(a)
= ∇D(id⊗θξ ′ )(e ⊗ a).

Since Dγ

X/S is generated by TX/S and Γ·TX′/S, it follows that ∇D commutes with θξ ′

for every D ∈ Dγ

X/S. ��
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Now recall that, by definition, ι∗CX /S (E) = HomDγ
X/S

(BX /S , E), with the
Γ·TX′/S-module structure coming from E, where BX /S := HomOX(AX /S ,OX) in the
category of Dγ

X/S-modules. Thus when E is locally nilpotent,

ι∗CX /S (E) := HomDγ
X/S

(BX /S , E) ∼= (
E ⊗ AX /S

)∇,γ

= (
(AX /S (E))ψ

)∇
.

Of course, the total PD-Higgs field on CX /S (E) is zero, but because of the commu-
tation of Dγ

X/S and id ⊗ θA , ι∗CX /S (E) is stable under the PD-Higgs field id ⊗ θA of
AX /S . In fact, the induced PD-Higgs field induced by θA on is ι∗ of the PD-Higgs
field induced by θE. A geometric explanation of this fact is given in the appendix after
Definition 5.9; it can also be checked by direct computation. Thus it follows that

CX /S (E) := ι∗ HomDγ
X/S

(BX /S , E) ∼= (
TX /S (E)

)∇
(2.22.1)

where TX /S (E) := (AX /S (E))θtot as in Proposition 2.17.
It is clear from the construction that there are natural maps, compatible with

the connections and F-PD-Higgs fields shown:

(E, θ0,∇)
i−→(AX /S (E), θA ,∇)

j←− (F∗
X/SCX /S (E), θ,∇0).(2.22.2)

Here ∇0 is the Frobenius descent connection on F∗
X/SCX /S (E). Since N· is an

I ·-filtration on E, the filtration on F∗
X/SCX /S (E) induced by the total filtration of

AX /S (E) is horizontal and is also an I ·-filtration with respect to the action of θA .
It follows that it descends to an I ·-filtration on CX /S (E). Thus we obtain a filtered
version of the Cartier transform:

CX /S : MICN·
γ (X/S) → HIGN·

γ (X
′/S).(2.22.3)

On the other hand, if (E′, θ ′, N′·) is an object of HIGN·
γ (X

′/S), we can endow

A ′
X /S (E′) := F∗

X/SE′ ⊗OX AX /S(2.22.4)

with the tensor product F-PD-Higgs field θ ′
tot . It follows as in Lemma 2.22 that θ ′

tot
commutes with the tensor product connection on F∗

X/SE′ ⊗ AX /S , where F∗
X/SE′ is

given the Frobenius descent connection ∇0. Thus

C′
X /S (E′) := (A ′

X /S (E′))θ ′
tot(2.22.5)

inherits a nilpotent Dγ

X/S-module structure from AX /S , which we denote by ∇A ′ . We
have natural maps

F∗
X/S(E

′, θ ′,∇0)
i ′−→(A ′

X /S (E′), θ ′
tot,∇A ′)

j ′←− (C′
X /S (E′), θ ′

tot,∇A )(2.22.6)
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where i ′ takes the PD-Higgs field of E′ As before, the I ·-filtration N′· on E′ induces
an I ·-filtration on C′

X /S (E′), and we get a functor:

C′
X /S : HIGN·

γ (X
′/S) → MICN·

γ (X/S).(2.22.7)

The commutative diagram

F∗
X/SCX /S (E) ⊗ AX /S

��
h

��j⊗id
E ⊗ AX /S ⊗ AX /S

tt id⊗miiii
iiii

iiii
iiii

i

E ⊗ AX /S

defines a horizontal map

h : (A ′
X /S (CX /S (E)), θA , θtot, N·) → (AX /S (E), θtot, θA , N·).(2.22.8)

A similar construction defines a horizontal map

h′ : (AX /S (C′
X /S (E′)), θ ′

A ′, θ
′
tot, N′·) → (A ′

X /S (E′), θ ′
tot, θ

′
A , N′·).(2.22.9)

Theorem 2.23. — Let X /S := (X/S, X̃′/S̃) be a smooth morphism with a lifting of

X′ mod p2 as described above.

1. Let (E,∇, N·) be an object of MICN·
γ (X/S) and let (E′, θ ′, N′·) denote

CX /S (E,∇, N·). Then the map h (2.22.8) is a filtered isomorphism, and fits into a com-

mutative diagram:

C′
X /S (E′)

��
∼=

��j ′
A ′

X /S (E′)

��
h

E′oo i ′

��
id

E ��i AX /S (E) CX /S (E).oo j

2. Let (E′, θ ′, N′·) be an object of HIGN·
γ (X

′/S), and let (E,∇, N·) denote

C′
X /S (E′, θ ′, N′·). Then the map h′ (2.22.9) is a filtered isomorphism and fits into

a commutative diagram:

CX /S (E)

��
∼=

��j
AX /S (E)

��
h′

Eoo i

��
id

E′ ��i ′ A ′
X /S (E′) C′

X /S (E′).oo j ′
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Consequently, C′
X /S is quasi-inverse to the Cartier transform CX /S and is therefore isomorphic to

the functor C−1
X /S of Theorem 2.8 (ignoring the filtrations).

Proof. — This theorem is an immediate consequence of Proposition 2.17 and
Cartier descent. The p-curvature of the connection on AX /S (E) is the total Higgs
field θtot . Hence

E′ := CX /S (E) = ((AX /S (E))θtot)∇ = TX /S (E)∇,

in the notation of op. cit.. Since the p-curvature of the connection TX /S (E) vanishes,
standard Cartier descent implies that the natural map

F∗
X/SE′ → TX /S (E)

is a filtered isomorphism. Thus we have a commutative diagram

F∗
X/SE′ ⊗ AX /S



h SSS
SSS

SSS
SSS

SSS
��∼= TX /S (E) ⊗OX AX /S

��
h̃

E ⊗ AX /S .

Proposition 2.17 implies that h̃ is a filtered isomorphism and hence so is h, and it
is also horizontal. The vertical left arrow in the diagram of (1) corresponds to the
map k of Proposition 2.17 and is also a horizontal filtered isomorphism, compatible
with the PD-Higgs fields, i.e., an isomorphism in the category MICN·

γ (X/S). A similar
argument works if we start with an object (E′, θ ′, N′·) of HIGN·

γ (X
′/S). This shows

that CX /S and C′
X /S are quasi-inverse equivalences. ��

Corollary 2.24. — Let (E,∇, N·) be an object of MICN·
γ (X/S) and let

(E′, θ ′, N′·) := CX /S (E,∇, N·).
Then there is a natural isomorphism in the category of graded Γ·TX′/S-modules:

(Gr(E′, θ ′, N′·)) ∼= ι∗ (Gr(E, ψ, N·))∇ ,

where ψ is the action of Γ·TX′/S ⊆ Dγ

X/S and ι is the inversion involution of Γ·TX′/S.

Proof. — Using Corollary 2.20, we have

Gr E′ ∼= Gr
(
(TX /S (E))∇)

∼= (Gr TX /S (E))∇

∼= (ι∗ Gr(E))∇ . ��
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Remark 2.25. — A similar formalism works when there is a lifting F̃ of FX/S.
Let MICN(X/S) denote the category of modules with connection (E,∇) endowed
with a horizontal filtration N· such that GrN(E) is constant. We assume also that N·
is exhaustive and bounded below. As before, let AF̃ be the nilpotent divided power
completion of AX /S along the ideal of the corresponding augmentation AX /S → OX.
Then if (E,∇, N·) is an object of MICN(X/S), its p-curvature ψ gives (FX/S∗E, N·)
an I-saturated Higgs field as discussed in Remark 2.19. Then we define:

AF̃(E) := E ⊗OX AF̃ and TF̃(E) := (AF̃(E))
θtot

where TF̃(E) has the Higgs field θT induced by θA . Then

CF̃(E) := (AF̃(E))∇ = (TF̃(E))∇

with it inherits a Higgs field and filtration. Thus we obtain a functor

CF̃ : MICN(X/S) → HIGN(X′/S).

On the other hand, if (E′, θ ′, N′·) is an object of HIGN(X′/S), let

AF̃(E
′) := E′ ⊗O ′

X
AF̃.

Then the total Higgs field θ ′ on AF̃(E′) commutes with the connection id ⊗ ∇A . Let

C−1
F̃

:= (AF̃(E
′))θ ′

,

which inherits a connection from the action of id ⊗ ∇A and a filtration N· from the
total filtration N′

tot. Thus C−1
F̃

is a functor

C−1
F̃

: HIGN(X′/S) → MICN(X/S).

These functors are quasi-inverse equivalences, compatible with the tensor structures
and with the global functors CX /S considered above.

2.5 De Rham and Higgs cohomology

Let us continue to denote by X /S a smooth morphism X/S of schemes in
characteristic p, together with a lifting X̃′/S̃ of X′/S. Let (E,∇) be a module with
integrable connection on X/S, nilpotent of level 
. Our goal in this section is to com-
pare the de Rham cohomology of (E,∇) with the Higgs cohomology of its Cartier
transform (E′, θ ′). We shall do this by constructing a canonical filtered double com-
plex (A ··

X /S (E), N·) of OX′-modules and quasi-isomorphisms

FX/S∗(E ⊗ Ω·
X/S, d) → NnA

·
X /S (E) ← (E′ ⊗ Ω·

X′/S, θ
′),
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whenever 
 + d ≤ n < p, where A ·
X /S is the total complex associated to the double

complex A ··
X /S .

In fact,

A
ij
X /S (E) := FX/S∗

(
E ⊗ AX /S ⊗ F∗

X/SΩ
i
X′/S ⊗ Ω

j
X/S

)

∼= FX/S∗
(
E ⊗ AX /S ⊗ Ω

j
X/S

) ⊗ Ωi
X′/S

with boundary maps constructed from the de Rham differentials of (E,∇) and the
p-curvature of AX /S . In the case (E,∇) = (OX, d) we obtain an isomorphism in the
derived category

FX/S∗(E ⊗ Ω·
X/S, d) ∼ (Ω·

X′/S, 0)

between the de Rham complex of X/S and the Hodge complex of X′/S, when d < p.
This is the result of Deligne and Illusie [8] (with a loss of one dimension). For general
E it can be regarded as an analog of Simpson’s “formality” theorem [36].

We shall find it convenient to work with filtered connections and their de Rham
complexes. Let (E,∇) be a module with integrable connection endowed with a ho-
rizontal filtration N· such that (GrN(E),∇) is constant, i.e., has zero p-curvature. We
assume that N−1E = 0 and Np−1E = E, so that (E,∇, N·) defines an object of
MICN·

γ (X/S). Let Ntot· be the tensor product filtration on E ⊗ AX /S induced by N·
and the filtration N· of AX /S . Let (E′, N′·) be the Cartier transform of (E, N·) with
the filtration induced by Ntot· , as explained in Theorem 2.23. For fixed i, the de Rham
complex of the module with connection AX /S (E) ⊗ F∗

X/SΩ
i
X′/S is the complex:

A i,0
X /S (E)

di,0−→ A i,1
X /S (E)

di,1−→ · · · .(2.25.1)

Similarly, for fixed j, the Higgs complex of (AX /S , θA ) tensored with E⊗Ω
j
X/S, is the

complex

A
·, j

X /S (E) := A
0, j

X /S (E)
d ′0, j−→ A

1, j
X /S (E)

d ′1, j−→ · · · .(2.25.2)

It follows from Lemma 2.22 that the differentials d and d ′ commute. Thus we can
form the double complex A ··

X /S (E) and the associated simple complex A ·
X /S (E).

For each i there is a natural map from E′ ⊗ Ωi
X′/S to Ker(di,0), which can be

regarded as a morphism of filtered complexes,
(
E′ ⊗ Ωi

X′/S, N′·
) → (

A i,·
X /S (E), Ntot·

)
,(2.25.3)

compatible with the Higgs boundary maps:
(
E′ ⊗ Ωi

X′/S, N′·
)

��

��
(
A i,·

X /S (E), Ntot·
)

��(
E′ ⊗ Ωi+1

X′/S, N′·
)

��
(
A i+1,·

X /S (E), Ntot·
)
.
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In the same way we find for each j a morphism

FX/S∗
(
E ⊗ Ω

j
X/S, N·

) → (
A

·, j
X /S (E), Ntot·

)
(2.25.4)

compatible with the de Rham boundary maps

FX/S∗
(
E ⊗ Ω

j
X/S, N·

)

��

��
(
A ·, j

X /S (E), Ntot·
)

��

FX/S∗
(
E ⊗ Ω

j+1
X/S, N·

)
��
(
A ·, j+1

X /S (E), Ntot·
)
.

These assemble into morphisms of filtered complexes:

(E′ ⊗ Ω·
X′/S, N′·)

aX /S−−→ (
A ·

X /S , Ntot·
) bX /S←−−− (E ⊗ Ω·

X/S, N·).(2.25.5)

If there is a lifting F̃ of FX/S, we can make the analogous construction with AF̃ in
place of AX /S , and we use the analogous notation. Then there is a natural morphism
of double complexes A ··

X /S (E) → A ··
F̃

(E). Taking associated simple complexes, we
find a commutative diagram:

(CX /S (E) ⊗ Ω·
X′/S, N′·)

��

��
aX /S (

AX /S , Ntot·
)

��

(E ⊗ Ω·
X/S, N·)oo

bX /S

��
(CF̃(E) ⊗ Ω·

X′/S, N′·) ��aF̃
(
AF̃, Ntot·

)
(E ⊗ Ω·

X/S, N·).oo bF̃

(2.25.6)

Before stating the main theorem, let us recall that if C· is a complex with an in-
creasing filtration N·, then as explained in [7], the filtration décalée Ndec· on C· is defined
by

Ndec
k Cq := Nk−qCq + d

(
Nk−q+1Cq−1

)
.(2.25.7)

Theorem 2.26. — Let X/S be a smooth morphism in characteristic p. Let E := (E,∇, N)

be an object of MICN(X/S) with N−1E = 0 and Np−1E = E.

1. If X /S is a lifting of X/S, then the maps aX /S and bX /S (2.25.5) induce filtered

quasi-isomorphisms:
(
N′dec

p−1(CX /S (E) ⊗ Ω·
X′/S), N′dec·

) → FX/S∗
(
Ndec

p−1A
·
X /S (E), Ndec·

)

FX/S∗
(
Ndec

p−1(E ⊗ Ω·
X/S), Ndec·

) → (
Ndec

p−1A
·
X /S (E), Ndec·

)
.

Consequently they assemble into an isomorphism in the filtered derived category of

OX′-modules:

FX/S∗
(
Ndec

p−1(E ⊗ Ω·
X/S), Ndec· , d

) ∼= (
N′dec

p−1(CX /S (E) ⊗ Ω·
X′/S), N′dec· , θ ′).
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2. If F̃ is a lifting of FX/S, then the maps aF̃ and bF̃ (2.25.6) induce filtered quasi-iso-

morphisms:

(
CF̃(E) ⊗ Ω·

X′/S, N′dec·
) → FX/S∗

(
A ·̃

F (E), Ndec·
)

FX/S∗
(
E ⊗ Ω·

X/S, Ndec·
) → (

A ·̃
F (E), Ndec·

)
.

These assemble into an isomorphism in the filtered derived category of OX′-modules

(
FX/S∗(E ⊗ Ω·

X/S), Ndec·
) ∼= (

CF̃(E) ⊗ Ω·
X′/S, N′dec·

)
.

Corollary 2.27. — Let (E,∇) be an object of MIC(X/S) which is nilpotent of level


 < p. Then a lifting X /S induces isomorphisms in the derived category:

FX/S∗(τ<p−
(E ⊗ Ω·
X/S))

∼= τ<p−
(CX /S (E) ⊗ Ω·
X′/S),

and if 
 + dim(X/S) < p,

FX/S∗(E ⊗ Ω·
X/S)

∼= (CX /S (E) ⊗ Ω·
X′/S).

Applying (2) of Theorem 2.26 to the canonical filtration (2.16.1) of a locally
nilpotent connection, we obtain the following result.

Corollary 2.28. — Let (E,∇) be an object of MIC(X/S). Assume that the connection

∇ is locally nilpotent (quasi-nilpotent in the terminology of [3]). Then a lifting F̃ of FX/S induces

isomorphisms in the derived category

FX/S∗(E ⊗ Ω·
X/S)

∼= CF̃(E) ⊗ Ω·
X′/S.

Before beginning the proof of Theorem 2.26, let us remark that it is not true
that the maps

aF̃ : (E′ ⊗ Ω·
X′/S, N·) → FX/S∗(A ·̃

F (E), N·)(2.28.1)

bF̃ : FX/S∗(E ⊗ Ω·
X/S, N·) → (A ·̃

F (E), N·)(2.28.2)

are filtered quasi-isomorphisms. However, these maps induce maps of spectral se-
quences, which on the E1 level are maps of complexes of sheaves:

H (Gr aF̃) : (H (Gr E′ ⊗ Ω·
X′/S), d1) → (FX/S∗(H (Gr A ·̃

F (E)), d1)(2.28.3)

H (Gr bF̃) : (FX/S∗H (Gr E ⊗ Ω·
X/S), d1) → (H (Gr A ·̃

F (E)), d1)(2.28.4)

where d1 is the differential of the spectral sequences. We shall prove that these maps
are quasi-isomorphisms (not isomorphisms), and hence induce isomorphisms on the
E2-terms of the spectral sequence.
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Lemma 2.29. — In the situation of (2) in Theorem 2.26, the maps (2.28.3) and (2.28.4)
above are quasi-isomorphisms.

Proof. — Since the p-curvature of Gr E vanishes, the classical Cartier isomorph-
ism induces a canonical isomorphism:

E·
1(E ⊗ Ω·

X/S, N) = H q(Gr E ⊗ Ω·
X/S)

∼= (Gr E)∇ ⊗ Ω
q
X′/S.

Corollary (5.1.1) of [29] allows us to compute the differential d1 of this spectral se-
quence. It asserts that the diagram below is anticommutative, thus identifying the
(negative of ) the differential dq

1 with the graded map Gr(ψ) induced by the p-curvature
of E:

H q(Gri E ⊗ Ω·
X/S)

��

��
dq

1 H q+1(Gri−1 E ⊗ Ω·
X/S)

��
(Gri E)∇ ⊗ Ω

q
X′/S

��Gr(ψ)
(Gri−1 E)∇ ⊗ Ω

q+1
X′/S.

(2.29.1)

Thus there is an isomorphism of complexes

(FX/S∗E·
1(E ⊗ Ω·

X/S, N·), d1) ∼= (Gr E′ ⊗ Ω·
X′/S, Gr(ψ)).

We apply the same method to analyze the E1 term of the spectral sequence of
the filtered complex (A ·̃

F
(E), N·). The total differential of the double complex A ··

F̃
(E)

induces a map

NkA
i, j

F̃
→ Nk−1A

i+1, j
F̃

⊕ NkA
i, j+1

F̃
,

so the differential on Gr A ·̃
F
(E) is just the de Rham differential of the module with

connection

Gr A ·,0
F̃

(E) =
⊕

i

Gr AF̃(E) ⊗ F∗
X/SΩ

i
X′/S.

Since this connection has vanishing p-curvature, the classical Cartier isomorphism pro-
vides an isomorphism:

H·( Gr A ·,0
F̃

(E) ⊗ F∗
X/SΩ

i
X′/S, d

) ∼= (Gr(AF̃(E))∇ ⊗ Ω·
X′/S ⊗ Ωi

X′/S.

The differential d1 of the spectral sequence is then a sum of maps

(Gr(AF̃(E))∇ ⊗ Ω
j
X′/S ⊗ Ωi

X′/S → (Gr(AF̃(E))∇ ⊗ Ω
j
X′/S ⊗ Ωi+1

X′/S

(Gr(AF̃(E))∇ ⊗ Ω
j
X′/S ⊗ Ωi

X′/S → (Gr(AF̃(E))∇ ⊗ Ω
j+1
X′/S ⊗ Ωi

X′/S.
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The first of these is the map induced by differential d ′ of A ··
F̃

(E), which comes from
the p-curvature of A , and [29] identifies the second as the map coming from the
p-curvature of the connection ∇ on AF̃(E). Thus we have an isomorphism of com-
plexes:

(E·
1(A

·̃
F (E), N·, d1) ∼= (

Gr AF̃(E)∇ ⊗ Ω·
X′/S ⊗ Ω·

X′/S, d
)
,

where the differential on the right is the differential of the simple complex associated
to the double complex whose term in degree i, j is

(Gr AF̃(E))∇ ⊗ Ωi
X′/S ⊗ Ω

j
X′/S

and whose differential is the graded map induced by the Higgs fields θA and θtot.
In fact, by Corollary 2.20, Gr AF̃(E) ∼= Gr E ⊗ Gr AF̃(E), compatibly with the con-
nections and Higgs fields. Furthermore,

(Gr E ⊗ Gr AF̃)
∇ ∼= (Gr E)∇ ⊗ (Gr AF̃)

∇ ∼= (Gr E)∇ ⊗ Γ·Ω1
X′/S.

Let us write Ω for Ω1
X′/S and T for its dual. According to Corollary 2.20, Gr E′ is the

Higgs transform of Gr E with respect to the T-Higgs module Γ·Ω. Thus the maps
Gr aF̃ and Gr bF̃ become identified with maps of complexes which term by term are
the mappings

(Gr E)∇ ⊗ Ω j → (Gr E)∇ ⊗ Γ·Ω ⊗ Ω· ⊗ Ω j

Gr(E′) ⊗ Ωi → Gr(E′) ⊗ Γ·Ω ⊗ Ωi ⊗ Ω·

constructed in the same way as aF̃ and bF̃. This is exactly the situation discussed in
Proposition 2.21, so the lemma follows. ��

Proof of Theorem 2.26. — To prove that the arrows in (1) of the theorem are iso-
morphisms is a local question, so we may without loss of generality assume that there
is a lifting F̃ of Frobenius. For i < p, the map NiAX /S → NiAF̃ is an isomorphism.
Furthermore, since N−1E = 0,

Ntot
i AX /S (E) =

i∑

j=0

NjE ⊗ Ni−jAX /S =
i∑

j=0

NjE ⊗ Ni−jAF̃ = Ntot
i AF̃(E)

when i < p. Thus the map
(
A ··

X /S (E), Ntot·
) → (

A ··
F̃ (E), Ntot·

)

is a filtered isomorphism when restricted to Np−1. Thus statement (1) will follow from
statement (2).
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Since the filtration N· on E is exhaustive and formation of direct limits in the
category of sheaves on X is exact, we may and shall assume that N· is finite. It will
suffice for us to prove that the maps of complexes

FX/S∗ GrNdec
(E ⊗ Ω·

X/S) → GrNdec
(A ·̃

F (E))

GrNdec
(CF̃(E) ⊗ Ω·

X′/S) → GrNdec
(A ·̃

F (E))

are quasi-isomorphisms. Recall from [7] that there are natural injections Hq(GrN C·)
→ GrNdec

Cq which assemble to form a quasi-isomorphism

(E1(C·, N·), d) ∼= (H·(GrN C·), d) → GrNdec
C· ∼= (

E0(C·, Ndec· ), d
)
.(2.29.2)

Thus the theorem follows from Lemma 2.29. ��
Remark 2.30. — Let (E,∇) be an object of MIC·(X/S), suppose that there ex-

ists a global lifting of FX/S, and let (E′, ψ ′) denote the Cartier transform of (E,∇). By
Remark 2.10, there is a canonical isomorphism F∗

X/S(E
′, ψ ′) ∼= (E,−ψ), where ψ is

the p-curvature of ∇. This induces isomorphisms

F∗
X/SH

i(E′, ψ ′) ∼= H i(E,−ψ)

for all i. Recall from [29] that the sheaves of OX-modules H i(E,−ψ) carry a canon-
ical integrable connection ∇ whose p-curvature is zero, induced by the given con-
nection on E and the Frobenius descent connection on F∗

X/SΩ
q
X′/S. It follows easily

that the above isomorphisms are horizontal and hence descend to isomorphisms of
OX′-modules

H i(E′, ψ ′) ∼= H i(E,−ψ)∇ .

On the other hand, (2.26) gives us isomorphisms H i(E′, ψ ′) ∼= H i(E,∇). Combining
these, we find the “generalized Cartier isomorphism”

H i(E,∇) ∼= H i(E,−ψ)∇ .

Another construction of such an isomorphisms was given in [29], independent of any
lifting of X or FX/S or nilpotence condition on ∇. One can easily see that these two
isomorphisms are the same, because they agree when i = 0 and because both sides
are effaceable cohomological delta functors in the category MIC·(X/S).

Suppose that X is noetherian and E is coherent. A consequence of the isomor-
phisms discussed in Remark 2.30 is the fact that the de Rham complex of (E,∇) with
an integrable connection ∇ is determined, as an object in the derived category, by its
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formal completion along a closed subset determined by its p-curvature ψ. Recall that
(E, ψ) gives rise to a coherent sheaf Ẽ on T∗

X′/S. Define the essential support of (E,∇) to
be the set-theoretic intersection of the support of Ẽ with the zero section of T∗

X′/S. We
should perhaps recall that FX/S : X → X′ is a homeomorphism and from [29, 2.3.1]
that the essential support of (E,∇) corresponds via FX/S to the support in X of the
Higgs cohomology sheaves of the p-curvature of (E,∇). (In fact, the dth cohomology
sheaf suffices.)

Proposition 2.31. — Let X/S be a smooth morphism of noetherian schemes in characteristic

p > 0 of relative dimension d . Let (E,∇) be a coherent sheaf with integrable connection on X/S,

and let Z ⊆ X be a closed subscheme containing the essential support of (E,∇). Let iZ : X/Z → X
denote the natural map from the formal completion of X along Z to X. Then the natural map of

de Rham complexes:

a : E ⊗ Ω·
X/S → iZ∗E/Z ⊗ Ω·

X/S

is a quasi-isomorphism.

Proof. — It suffices to prove that the map above induces an isomorphism on
cohomology sheaves. The generalized Cartier isomorphism [29] is an isomorphism of
sheaves of OX′-modules

H q(FX/S∗E ⊗ Ω·
X/S)

∼= FX/S∗H q(E ⊗ F∗
X/SΩ

·
X′/S)

∇

where the complex on the right is the Higgs complex of the F-Higgs field given by
the p-curvature of ∇. Now one has a commutative diagram

H q(FX/S∗E ⊗ Ω·
X/S)

��
∼=

�� H q(iZ∗E/Z ⊗ Ω·
X/S)

��
∼=

H q(E ⊗ F∗
X/SΩ

·
X′/S)

∇ �� H q(iZ∗E/Z ⊗ F∗
X/SΩ

·
X′/S)

∇ .

Thus it suffices to prove that the natural map

H q(E ⊗ F∗
X/SΩ

·
X′/S) → H q(iZ∗E/Z ⊗ F∗

X/SΩ
·
X′/S)

is an isomorphism of OX-modules. Since the completion functor is exact, and since
the cohomology sheaves H q(E ⊗ F∗

X/SΩ
·
X′/S) have support in Z, this is clear. ��

Let us also remark that in the situation of Proposition 2.31, we can define a for-

mal Cartier transform as follows. Let I ⊆ OX′ be an ideal of definition of the essential
support Z of Ẽ. For each n, let En := E/F∗

X/SInE, which inherits an integrable con-
nection from the connection on E. Then the p-curvature of (En,∇) is nilpotent and
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hence, given a lifting F̃ of FX/S, it has has Cartier transform CF̃(En). These Cartier
transforms are compatible with change in n, and they fit together to define a coherent
sheaf on the formal scheme X′

/Z, which we (slightly abusively) still denote by CF̃(E).
The double complex constructions used in the proof of Theorem 2.26 also fit together
into a formal double complex. The following statement is a consequence of this and
the previous proposition.

Proposition 2.32. — Suppose that X is noetherian and that (E,∇) is a coherent sheaf on X
with integrable connection. Let F̃ be a lifting of FX/S and let CF̃(E) denote the formal Cartier trans-

form of E described above. Then the maps of Proposition 2.31 and statement (2) of Theorem 2.26

fit together to define an isomorphism in the derived category of OX′-modules

FX/S∗(E ⊗ Ω·
X/S, d) ∼= (CF̃(E) ⊗ Ω·

X′/S, θ
′).

3 Functoriality of the Cartier transform

3.1 Gauss–Manin connections and Higgs fields

In this section we review the definitions of higher direct images of modules with
connections and Higgs fields. We show that their formation with respect to a smooth
morphism of relative dimension d increases the level of nilpotence of a connection
(resp. of a Higgs field) by at most d . This result strengthens the nilpotence theorem of
Katz [18, 5.10] and will be used in our discussion of the compatibility of the Cartier
transform with higher direct images.

Recall that if h : X → Y is a smooth morphism of smooth S-schemes and if
(E,∇) is a module with integrable connection on X/S, then the sheaves

RnhDR
∗ (E,∇) := Rnh∗(E ⊗ Ω·

X/Y, d)

are endowed with a canonical connection, called the Gauss–Manin connection. By the
same token, if (E, θ) is a module with a Higgs field θ, then the sheaves

RnhHIG∗(E, θ) := Rnh∗(E ⊗ Ω·
X/Y, θ)

are endowed with a canonical Higgs field, which we shall call the Gauss–Manin field.
Each of these can be constructed in many ways. For the reader’s convenience we ex-
plain one of these here; a variant of the “explicit” construction explained in [18, 3.4].
We write out the details in the de Rham case only; the Higgs case is analogous but
easier.

Let (E,∇) be a module with integrable connection on X/S and let ξ be a local
section of TX/S. Then interior multiplication by ξ defines a map of graded sheaves

iξ : E ⊗ Ω·
X/S → E ⊗ Ω·

X/S,
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of degree −1. The Lie derivative with respect to ξ is by definition the map

Lξ := diξ + iξd,

which has degree zero. By construction Lξ is a morphism of complexes, homotopic to
zero. Now recall that a smooth morphism h induces exact sequences

0 → h∗Ω1
Y/S → Ω1

X/S → Ω1
X/Y → 0(3.0.1)

0 → TX/Y → TX/S → h∗TY/S → 0.(3.0.2)

Pull the second of these sequences back via the map h−1TY/S → h∗TY/S to obtain
an exact sequence of sheaves of h−1(OY)-modules:

0 → TX/Y → TY
X/S → h−1TY/S → 0.(3.0.3)

Let us note that TY
X/S ⊆ TX/S is closed under the bracket operation and that the

inclusion TX/Y → TY
X/S is compatible with the bracket operations. Moreover, if g is

a local section of h−1(OY) and ξ is a local section of TY
X/S, then ξ( g) also belongs to

h−1(OY), and if η is a local section of TX/Y, then

[η, ξ]( g) = η(ξ( g)) − ξ(η( g)) = 0.

It follows that [η, ξ] ∈ TX/Y, so that TX/Y is an ideal in the Lie algebra TY
X/S and the

map TY
X/S → h−1TY/S is a Lie algebra homomorphism.

Lemma 3.1. — If ξ is a local section of TY
X/S, then Lξ preserves the Koszul filtration

K· of E ⊗ Ω·
X/S induced by the exact sequence (3.0.1). In particular, Lξ induces a morphism of

complexes

Lξ : E ⊗ Ω·
X/Y → E ⊗ Ω·

X/Y.

Furthermore, if ξ and ξ ′ are local sections of TY
X/S, then [Lξ , Lξ ′ ] = L[ξ,ξ ′] in End(E⊗Ω·

X/Y).

Proof. — By definition,

Ki
(
E ⊗ Ω

q
X/S

) = Im
(
h∗Ωi

Y/S ⊗ E ⊗ Ω
q−i
X/S

) → E ⊗ Ω
q
X/S.

Let ξ be a local section of TY
X/S. Since Lξ acts as a derivation with respect to multi-

plication by Ω·
X/S, it suffices to check that if ω is a local section of h∗Ω1

Y/S, then Lξ(ω)

also belongs to h∗Ω1
Y/S. Again using the fact that Lξ is a derivation, we see that it suf-

fices to check this when ω lies in h−1Ω1
Y/S. But if ω ∈ h−1Ω1

Y/S and if the image of ξ

in h∗TY/S lies in h−1TY/S, Lξ(ω) = diξ(ω) + iξdω ∈ h−1Ω1
Y/S.

The fact that the action of TX/S on E by Lie derivative is compatible with the
bracket follows from the integrability of ∇, and it is well-known that the same is true
for its action on Ω·

X/S. Since Lξ , Lξ ′ and L[ξ,ξ ′] act as derivations with respect to multi-
plication by forms, it follows that [Lξ , Lξ ′ ] = L[ξ,ξ ′] on E ⊗ Ω·

X/S and hence also on
E ⊗ Ω·

X/Y. ��
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Now let

T·
X→Y := TX/Y

d−→TY
X/S,

regarded as a complex in degrees −1 and 0, where the boundary map is the inclu-
sion. We can give T·

X→Y the structure of a differential graded Lie algebra by defining
[η, η′] := 0 if η, η′ ∈ TX/Y, [η, ξ] := [dη, ξ] ∈ TX/Y if η ∈ TX/Y and ξ ∈ TY

X/S,
and [ξ, ξ ′] the usual bracket if ξ, ξ ′ ∈ TY

X/Y. The exact sequence (3.0.3) defines an
isomorphism in the derived category of f −1OY-modules:

T·
X→Y → h−1TY/S,(3.1.1)

which is compatible with the bracket structure on h−1TX/Y.
If η is a local section of TX/Y, then iη defines a section of degree −1 of the

complex End(E ⊗ Ω·
X/Y), which we denote by ∇−1(η). If ξ is a local section of TY

X/S,
then Lemma 3.1 tells us that Lξ defines a section ∇0(ξ) of degree 0 of End(E⊗Ω·

X/Y).
Let us observe that ∇−1 and ∇0 assemble into a morphism of complexes:

∇· : T·
X→Y → End(E ⊗ Ω·

X/Y).

Indeed, if ξ ∈ TY
X/S, then ∇0(ξ) is a morphism of complexes, so it is annihilated by

the total differential of End(E ⊗ Ω·
X/Y). If η ∈ TX/Y, then ∇−1(η) has degree −1, so

d∇−1(η) = d ◦ ∇−1(η) + ∇−1(η) ◦ d = d ◦ iη + iη ◦ d = Lη = ∇0(dη).

Let us also check that ∇· is a morphism of differential graded Lie algebras. If
ξ, ξ ′ ∈ TY

X/S, then we saw in Lemma 3.1 that

[∇0(ξ),∇0(ξ ′)] := [Lξ , Lξ ′ ] = L[ξ,ξ ′] = ∇0([ξ, ξ ′]).
We must also check that if ξ ∈ TY

X/S and η ∈ TX/Y, then

[∇−1(η),∇0(ξ)] = ∇−1([η, ξ]), i.e.,

that [iη, Lξ] = i[η,ξ]. Observe first that both sides are derivations of E⊗Ω·
X/Y of degree

−1 with respect to multiplication by forms, and in particular are OX-linear. Thus it
suffices to check the formula for closed 1-forms. In fact, if ω ∈ Ω1

X/S is closed, then

[∇−1(η),∇0(ξ)](ω) = iηLξ(ω) − Lξ iη(ω)

= iη(d〈ξ, ω〉) − Lξ〈η,ω〉
= η〈ξ, ω〉 − ξ〈η,ω〉
= 〈[η, ξ], ω〉
= ∇−1([η, ξ]),

as required. Finally, let us observe that ∇· is a derivation with respect to multiplication
by sections of h−1(OY).
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Definition 3.2. — Let h : X → Y be a smooth morphism of smooth S-schemes and let

(E,∇) (resp. (E, θ)) be a module with integrable connection (resp. Higgs field) on X/S. Then the

Gauss–Manin connection (resp. Higgs field) on Rnh∗(E ⊗ Ω·
X/Y) is the map

TY/S → End Rnh∗(E ⊗ Ω·
X/Y)

obtained by composing the adjunction map

TY/S → h∗h−1TY/S = R0h∗h−1TY/S

with the inverse of the isomorphism R0h∗T·
X→Y → R0h∗h−1TY/S defined by (3.1.1) and the maps

R0h∗(∇·) : R0h∗(T·
X→Y) → R0h∗End(E ⊗ Ω·

X/Y) → End Rnh∗(E ⊗ Ω·
X/Y).

Remark 3.3. — The integrability of the Gauss–Manin connection defined here
follows from the compatibility of the maps (3.1.1) and ∇· with the bracket operations.
A similar construction defines the Gauss–Manin Higgs field, and thus we obtain se-
quence of functors

RnhDR
∗ : MIC(X/S) → MIC(Y/S)

RnhHIG
∗ : HIG(X/S) → HIG(Y/S).

It is straightforward to check that these fit into sequences of exact effaceable δ-functors
and hence are derived functors. This makes it easy to compare this construction with
the many others which appear in the literature and in particular with the derived cat-
egory constructions appearing in Section 3.3.

Now suppose that N· is an increasing filtration on E which is stable under the
connection (resp. Higgs field). Then the filtrations N· and Ndec of E ⊗ Ω·

X/Y are stable
under the action of T·

X→Y, and hence the higher direct images of the corresponding
filtered pieces and the graded objects inherit Gauss–Manin connections.

Theorem 3.4. — Let h : X → Y be a smooth morphism of smooth S-schemes. Let E be

a sheaf of OX-modules endowed with an integrable connection ∇ (resp. a Higgs field θ). Suppose that

N· is a filtration on E such that GrN ∇ is constant (resp., such that GrN θ = 0). Then for each

n and i, the action of the Gauss–Manin connection (resp. Higgs field) on Rnh∗(GrNdec

i (E ⊗Ω·
X/Y))

is constant (resp. trivial).8

Proof. — If θ is a Higgs field such that GrN(θ) = 0, then θ maps NiE to
Ni−1E ⊗ Ω1

X/S. It follows that the actions of TX/Y and TY
X/S on E ⊗ Ω·

X/Y by interior
multiplication and Lie derivative map Ndec

i to Ndec
i−1. Hence T·

X→Y acts trivially on
GrNdec

i (E ⊗ Ω·
X/Y).

8 We should point out that the statement for connections, but not for Higgs fields, requires that S have
characteristic p > 0.
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Now suppose that ∇ is a connection on E and N is a horizontal filtration on E.
Recall that we have a natural quasi-isomorphism (2.29.2) of complexes

a : (
E·, j

1 (E ⊗ Ω·
X/Y, N), d1

) → GrNdec

j (E ⊗ Ω·
X/Y, d).

Here Ei, j
1 (E ⊗ Ω·

X/Y, N) = H j−i(GrN
i E ⊗ Ω·

X/Y). Note that if ξ ∈ TX/Y ⊆ TY
X/S, then

iξ is well-defined on E ⊗ Ω·
X/Y, and hence Lξ = diξ + iξd acts as zero on H q(E ⊗

Ω·
X/Y). Thus the action of T·

X→Y factors through h−1TY/S; the boundary maps d1 are
compatible with this action. Thus Rnh∗(E

·, j
1 , d1) has a connection also, and we claim

that Rnh∗(a) is compatible with the connections. To see this, it is convenient to recall
the “dual” version of the filtration décalée:

N∗
i

(
E ⊗ Ω

q
X/Y

) := Ni−qE ⊗ Ω
q
X/Y ∩ d−1

(
Ni−q−1E ⊗ Ω

q
X/Y

)
.

Then there is also a natural quasi-isomorphism

a∗ : (
GrN∗

j (E ⊗ Ω·
X/Y), d

) → (
E·, j

1 (E ⊗ Ω·
X/Y, N), d1

)
.

Then a∗ and aa∗ are compatible with the actions of T·
X→Y. Although a is not compat-

ible with the action of T·
X→Y on the level of complexes, it follows that it is compatible

with the induced action of TY/S on hyper direct images.
Now suppose that Gr E := GrN E is constant. The theorem will follow if we

prove that the Gauss–Manin connection on Rnh∗(E·
1(E ⊗ Ω·

X/Y, N·), d1) is constant.
Let us consider the relative Frobenius diagram:

X

��h CC
CC

CC
CC

C
��FX/Y
X(Y)

��
h(Y)

��πX/Y/S
X′

��
h′

Y ��FY/S
Y′.

(3.4.1)

Here FX/S = πX/Y/S ◦ FX/Y and he square is Cartesian, so Ω
q
X(Y)/Y

∼= π∗
X/Y/SΩ

q
X′/Y′ .

The morphism of filtered complexes

(E ⊗ Ω·
X/S, N·) → (E ⊗ Ω·

X/Y, N·)
induces a morphism of spectral sequences, which on the E1-level corresponds to the
top row of the following commutative diagram:

H q(Gr E ⊗ Ω·
X/S)

�� H q(Gr E ⊗ Ω·
X/Y)

H 0(Gr E ⊗ Ω·
X/S) ⊗ Ω

q
X′/S

		
a

VVVV
VVVV

VVVV
VVVV

VVV

OO
cS

�� H 0(Gr E ⊗ Ω·
X/Y) ⊗ Ω

q
X(Y)/Y

OO
cY

H 0(Gr E ⊗ Ω·
X/S) ⊗ Ω

q
X′/Y′.

OO

b
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The vertical maps cS and cY induced by the inverse Cartier isomorphism are isomor-
phisms because Gr E is constant, the map a is surjective, and the map b is injective.
Thus H 0(Gr E ⊗Ω·

X/S)⊗ Ω
q
X′/Y′ can be identified with the image of the arrow at the

top of the diagram. Since the differentials of the spectral sequence leave this image
invariant, they induce maps

H 0(Gr E ⊗ Ω·
X/S) ⊗ Ω

q
X′/Y′ → H 0(Gr E ⊗ Ω·

X/S) ⊗ Ω
q+1
X′/Y′.

and define a complex H 0(Gr E ⊗ Ω·
X/S) ⊗ Ω·

X′/Y′ of sheaves of OX′-modules on X′.
Since the natural map

π∗
X/Y/S

(
H 0(Gr E ⊗ Ω·

X/S) ⊗ Ω
q
X′/Y′

) → H 0(Gr E ⊗ Ω·
X/Y) ⊗ Ω

q
X(Y)/Y

is an isomorphism, we see that the complex E·
1(E, N·) descends to a complex of

OX′-modules on X′.
Note that if ξ ∈ TX/Y ⊆ TY

X/S, then iξ is well-defined on E ⊗ Ω·
X/Y, and hence

Lξ = diξ + iξd acts as zero on H q(E ⊗ Ω·
X/Y). Thus the action of T·

X→Y on
H q(E ⊗ Ω·

X/Y) factors through h−1TY/S. For the same reason, h−1TY/S acts as zero
on the image of H q(Gr E ⊗Ω·

X/S) in H q(Gr E ⊗Ω·
X/Y) and it follows that the action

of h−1TY/S on E·
1(E, N·) is nothing but the Frobenius descent connection. It follows

that the Gauss–Manin connection on Rnh(Y)
∗ (H · GrN(E ⊗ Ω·

X/Y), d1) is the Frobenius
descent connection. ��

The following result is an improvement of the result [18, 5.10] of Katz, which
gives a multiplicative instead of an additive estimate for the level of nilpotence of
higher direct images.

Corollary 3.5. — In the situation of the previous theorem, suppose that h : X → Y has

relative dimension d , and denote by MICN
(X/S) the category of objects of MICN(X/S) of

level 
, i.e., such that there exists an integer k such that NkE = 0 and Nk+
E = E. Then for

each q, RqhDR
∗ (E ⊗ Ω·

X/Y, Ndec· ) lies in MICNd+
(Y/S), and the analogous statement for Higgs

modules also holds.

Remark 3.6. — In the case of connections, we can use the diagram (2.29.1),
which computes the boundary maps of the complex E·, j

1 (E ⊗ Ω·
X/Y, N·), to see that

Rnh∗ GrNdec

i (E ⊗ Ω·
X/Y, d) ∼= F∗

Y/SRnh′
∗ GrN· (E ⊗ Ω·

X′/Y′, ψ)

where ψ is the map induced by the p-curvature.

Example 3.7. — Let k be a field of characteristic p, S := Spec k, Y := Spec k[t]. If
d is a positive integer, let m := d+2, assume (p, m) = 1, and consider the hypersurface



NONABELIAN HODGE THEORY IN CHARACTERISTIC p 65

X in Pn+1 over S defined by Xm
0 +Xm

1 +· · · Xm
d+1 + tX0X1 · · · Xd+1. Once Y is replaced

by a suitable affine neighborhood of the origin, X/Y will be smooth, and the iterated
Kodaira–Spencer mapping

(κ∂/∂t)
d : H0

(
X,Ωd

X/Y

) → Hd(X,OX)

is an isomorphism [27, 3.4]. Then Katz’s formula [19, Theorem 3.2] implies that the
iterated p-curvature mapping

(ψ∂/∂t′)
d : H0

(
X,H d(Ω·

X/Y)
) → Hd

(
X,H 0(Ω·

X/Y)
)

is also an isomorphism. This implies that the level of the Gauss–Manin connection on
Rdh∗(Ω·

X/Y) is d . Moreover, if d > p, the action of the center of DY/S on Rdh∗(Ω·
X/Y)

does not factor through the divided power neighborhood of the zero section.

3.2 The Cartier transform and de Rham direct images

Let h : X/S → Y/S be a smooth morphism of smooth S-schemes, endowed with
liftings X̃′/S and Ỹ′/S . We shall explain how a lifting h̃′ : X̃′ → Ỹ′ of h′ defines
a compatibility isomorphism between the Cartier transform of the de Rham direct
image of a module with connection and the Higgs direct image of its Cartier trans-
form.

It is convenient to work with filtered categories as described in Corollary 3.5.
If 
 < p, an object (E,∇, N·) of MICN
(X/S) can be viewed as an object of
MICN·

γ (X/S) and we apply the filtered Cartier transform of Theorem 2.23 to ob-
tain an object (E′, θ ′, N′·) of HIGN
(X′/S).

Theorem 3.8. — Let h : X/S → Y/S be a smooth morphism of smooth S-schemes, en-

dowed with liftings X̃′/S and Ỹ′/S . Let 
 be an integer less than p − d , where d is the relative

dimension of h. Then a lifting h̃′ : X̃′/S → Ỹ′/S of h′ : X′/S → Y′/S induces an isomorphism

of functors (made explicit below):

Θ
q
h̃′ : Rqh′HIG

∗ ◦ CX /S ⇒ CY /S ◦ RqhDR
∗

making the diagram below 2-commutative:

MICN
(X/S)

��
RqhDR∗

��
CX /S

HIGN
(X′/S)

��
Rqh′HIG∗

MICN
+d(Y/S) ��
CY /S

HIGN
+d(Y′/S).
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We shall construct the compatibility isomorphism of Theorem 3.8 from a canon-
ical filtered double complex, a relative version of the double complex we used in the
construction of the comparison isomorphism in Theorem 2.26. For any (E,∇, N) ∈
MICN(X/S), define

A
ij
X /Y /S (E) := FX/S∗

(
E ⊗ AX /S ⊗ F∗

X/SΩ
i
X′/Y′ ⊗ Ω

j
X/Y

)

∼= FX/S∗
(
E ⊗ AX /S ⊗ Ω

j
X/Y

) ⊗ Ωi
X′/Y′.

The de Rham and Higgs boundary maps then form a double complex
(A ··

X /Y /S(E), d ′, d), which we endow with the total filtration N· := Ntot· . There is
a canonical morphism

(
A ··

X /S (E), Ntot·
) → (

A ··
X /Y /S (E), Ntot·

)
.

Let us recall from the diagram (3.4.1) that we have a morphism h(Y) : X(Y) → Y and
a homeomorphism πX/Y/S : X(Y) → X′, which we will sometimes allow ourselves to
view as an identification to simplify the notation. The terms of the complex
A ··

X /Y /S (E) are FX/S∗OX-modules and the boundary maps are πX/Y/S∗OX(Y)-linear.
Recall from Proposition 1.12 that the lifting h̃′ of h defines a morphism of filtered

algebras with connection

θh̃′ : (h∗AY /S , N·) → (AX /S , N·).
Then we have a morphism of filtered relative de Rham complexes:

(
E ⊗ h∗

DRAY /S ⊗ Ω·
X/Y, Ntot·

) → (
E ⊗ AX /S ⊗ Ω·

X/Y, Ntot·
)
.

Since h∗
DRAY /S comes from Y, its p-curvature relative to Y vanishes, so for each j, the

map

E ⊗ h∗AY /S ⊗ Ω
j
X/Y → E ⊗ AX /S ⊗ Ω

j
X/Y(3.8.1)

is annihilated by the differential:

d ′ : E ⊗ AX /S ⊗ Ω
j
X/Y → E ⊗ AX /S ⊗ Ω

j
X/Y ⊗ F∗

X/SΩ
1
X′/Y′.

Let AY /S (E) := E ⊗ h∗
DRAY /S ∈ MIC(X/S). It follows that the maps (3.8.1) define

a morphism of filtered complexes:

b : FX/S∗
(
AY /S (E) ⊗ Ω·

X/Y, Ntot·
) → (

A ·
X /Y /S (E), Ntot·

)
.(3.8.2)

Let E′ be the Cartier transform of E. Since formation of p-curvature is compat-
ible with de Rham pullback (see Remark 1.8), the map θh̃′ is also compatible with the
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F-Higgs fields. Thus we have a morphism of filtered relative F-Higgs complexes:
(
E′ ⊗ h∗AY /S ⊗ F∗

X/SΩ
·
X′/Y′, Ntot·

) → (
E ⊗ AX /S ⊗ F∗

X/SΩ
·
X′/Y′, Ntot·

)
.

Note that there is an isomorphism of OX(Y)-modules

πX/Y/S∗h(Y)∗AY /S
∼= h′∗FY/S∗AY /S .

Since h(Y)∗AY /S and the Cartier transform E′ of E are both annihilated by the relative
de Rham differential AX /S (E) → AX /S (E) ⊗ Ω1

X/Y, the same is true of the tensor
product

AY /S (E′) := E′ ⊗ πX/Y/S∗h(Y)∗AY /S .

Thus we find a morphism of filtered complexes:

a : (
AY /S (E′) ⊗ Ω·

X′/Y′, Ntot·
) → (

A ·
X /Y /S (E), Ntot·

)
.(3.8.3)

We shall deduce Theorem 3.8 from the following result on the level of com-
plexes.

Theorem 3.9. — Suppose that E is an object of MICN(X/S) such that Np−1E = E
and N−1E = 0. Then the morphisms a and b above induce filtered quasi-isomorphisms

a : (
Ndec

p−1(AY /S (E′) ⊗ Ω·
X′/Y′), Ndec·

) → (
Ndec

p−1A
·
X /Y /S (E), Ndec·

)

b : FX/S∗
(
Ndec

p−1(AY /S (E) ⊗ Ω·
X/Y), Ndec·

) → (
Ndec

p−1A
·
X /Y /S (E), Ndec·

)
.

The map a is compatible with the Gauss–Manin connections and the map b is compatible with the

Gauss–Manin Higgs fields defined in (3.2). Moreover, the Gauss–Manin connection annihilates the

map

E′ ⊗ Ω·
X′/Y′ → A ·

X /Y /S (E)

and the Gauss–Manin Higgs field annihilates the map

FX/S∗E ⊗ Ω·
X/Y → A ·

X /Y /S (E).

Proof. — The compatibilities with the Gauss–Manin connections and fields are
straightforward. To prove that the maps in the theorem are filtered quasi-isomorph-
isms, we follow the outline of the proof of Theorem 2.26. In particular, we may work
locally on X and Y, and we may assume that there are compatible Frobenius lifts
G̃ : Ỹ → Ỹ′ and F̃ : X̃ → X̃′. Then we work with the local Cartier transforms, using
complexes A ·̃

F/G̃/S
(E), A ·̃

G/S
(E), and A ·̃

G/S
(E′). It will suffice to show that the maps
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of complexes

a : (
E·, j

1 (A ·̃
G/S

(E′), N·), d1

) → (
E·, j

1 (A ·̃
F/G̃/S

(E), N·), d1

)

b : (
E·, j

1 (A ·̃
G/S(E), N·), d1

) → (
E·, j

1 (A ·̃
F/G̃/S

(E), N·), d1

)

are quasi-isomorphisms. As in the proof of Theorem 2.26, we find that these become
maps

Gr a : (Gr E′ ⊗ Γ·ΩY′/S ⊗ Ω·
X′/Y′, d1) → Gr(E ⊗ Γ·ΩX′/S ⊗ Ω·

X′/Y′, d1)

Gr b : (Gr E ⊗ Γ·ΩY′/S ⊗ Ω·
X′/Y′, d1) → Gr(E ⊗ Γ·ΩX′/S ⊗ Ω·

X′/Y′, d1).

Working locally on X, we may assume that the sequence 0 → h′∗Ω1
Y/S → Ω1

X′/S →
Ω1

X/Y → 0 splits. Then we can identify Γ·Ω1
X′/S with the tensor product h′∗Γ·Ω1

Y′/S ⊗
Γ·Ω1

X′/Y′ , and the result follows from the filtered Poincaré lemma, as in Propos-
ition 2.21. ��

Proof of Theorem 3.8. — We may assume without loss of generality that N−1E = 0.
For each q, let (Eq

DR, N·) := RqhDR
∗ E with the filtration induced by the filtration Ndec·

of E ⊗ Ω·
X/Y, and let (E′q

HIG, N·) := Rqh′HIG
∗ E′ with the filtration induced by N′dec· .

Since the pieces of Gr AY /S consists of locally free sheaves of finite rank, the
projection formula gives filtered isomorphisms

(
AY /S ⊗ Eq

DR, Ntot·
) ∼= (

RqhDR
∗ AY /S (E), N·

)
(
FY/S∗AY /S ⊗ E′q

HIG, Ntot·
) ∼= (

RqhHIG
∗ AY /S (E′), N·

)

where the filtrations on the right are induced by the filtration Ndec· . Furthermore, these
maps are compatible with the Higgs fields and connections. Theorem 3.9 then gives
us an isomorphism

(
Ntot

p−1

(
AY /S ⊗ Eq

DR

)
, Ntot·

) ∼= (
Ntot

p−1

(
AY /S ⊗ E′q

HIG

)
, Ntot·

)

compatible with the filtrations, connections, and Higgs fields. Since Eq
DR has level at

most p − 1, its Cartier transform is obtained by taking the horizontal sections of
Np−1AY /S (Eq), which by the above isomorphism is (E′q

HIG, N·). ��
Remark 3.10. — When Y = S, the categories MIC
(Y/S) and HIG
(Y′/S)

reduce to the category of OS-modules, and Theorem 3.8 above reduces to The-
orem 2.26.

3.3 Derived direct and inverse images

Let S be a noetherian scheme of finite Krull dimension, h : X → Y a morphism
of smooth schemes over S. Let T∗

X′→Y′ be the pullback of T∗
Y′/S to X′, which fits into
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the following diagram:

T∗
X′→Y′

��
h
′

��
i ′h T∗

X′

T∗
Y′

Note that i ′h is a closed embedding if and only if h′ is smooth.
Let HIG(X′ → Y′) denote the category of sheaves of h′∗S·TY′/S-modules on X′.

We define the derived inverse image

Lh′∗
HIG : D(HIG(Y′/S)) → D(HIG(X′/S))

to be the composition

D(HIG(Y′/S))
Lh′∗−→ D(HIG(X′ → Y′))

i ′h∗−→ D(HIG(X′/S)).

Since h′ is a morphism between smooth S-schemes, h′∗ has bounded cohomological
dimension, and so takes Db(HIG(Y′/S)) to Db(HIG(X′/S)).

Similarly, for a smooth morphism h, the derived direct image

Rh′HIG
∗ : D(HIG(X′/S)) → D(HIG(Y′/S))

is the composition

D(HIG(X′/S))
Ri′h

!
−→ D(HIG(X′ → Y′))

Rh
′
∗−→ D(HIG(Y′/S)),

where Ri′! sends a complex E in D(HIG(X′/S)) to

Ri′!(E) = R HomS·TX′/S
(S·h′∗TY′/S, E).

It is again true that this functor takes bounded complexes to bounded complexes. Note
that Rh′HIG

∗ is right adjoint to Lh′∗
HIG.

Let us pass to the direct and inverse images of D-modules. Proposition 3.12 be-
low is a reformulation, based on the Azumaya property of the algebra of differential
operators in characteristic p, of the usual definition of the functors

Lh∗
DR : D(MIC(Y/S)) → D(MIC(X/S))

RhDR
∗ : D(MIC(X/S)) → D(MIC(Y/S)).

Recall that DX/S is the sheaf of algebras on the cotangent space of X′/S associated to
FX/S∗DX/S. We first need the following result.
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Theorem 3.11 ([5]). — Let h : X → Y be a morphism of smooth S-schemes. Then

the DX/S ⊗ h−1Dop
Y/S-module DX→Y := h∗DY/S induces an equivalence of Azumaya algebras

on T∗
X′→Y′ :

i ′∗hDX/S ∼ h′∗DY/S.

Proof. — To prove the theorem consider DY/S as a left module over itself. Re-
mark 1.8 shows that the left action of DX/S on h∗DY/S and the right action of h−1DY/S

together define a left action of

FX/S∗DX/S ⊗S·TX′/S
h′∗FY/S∗Dop

Y/S,

where S·TX′/S acts on h′∗FY/S∗Dop
Y/S via i ′∗h and the evident action of h′∗S·TY′/S. This

gives us a module over the Azumaya algebra i ′∗hDX/S ⊗OT∗
X′→Y′

(h′∗DY/S)
op. A local com-

putation shows that this module is locally free over OT∗
X′→Y′ of rank ind(i ′∗hDX/S) ·

ind(h′∗DY/S). ��
As a corollary, we get an equivalence of categories:

CX′→Y′ : Mod(i ′h
∗FX/S∗DX/S) � Mod(h′∗FY/S∗DY/S),(3.11.1)

where Mod(A ) denotes the category of A -modules. Note that, since FX/S is a homeo-
morphism, the functor

MIC(X/S) = Mod(DX/S)
FX/S∗−→ Mod(FX/S∗DX/S)

is an equivalence of categories. Thus the following result determines Lh∗
DR and RhDR

∗ .

Proposition 3.12 ([5]). — For any morphism h : X → Y there is a canonical isomorphism:

FX/S∗ ◦ Lh∗
DR

∼= i ′h∗ ◦ C−1
X′→Y′ ◦ Lh′∗ ◦ FY/S∗.

If h is smooth we also have

FY/S∗ ◦ RhDR
∗ ∼= Rh′

∗ ◦ CX′→Y′ ◦ Ri ′h
! ◦ FX/S∗.

Proof. — We shall just explain the second formula. By definition, for any
E ∈ D(MIC(X/S)), we have

CX′→Y′ ◦ Ri′h
!
(FX/S∗E)

∼= Homi ′∗h FX/S∗DX/S(FX/S∗h∗DY/S, R HomFX/S∗DX/S(i
′∗
h FX/S∗DX/S, FX/S∗E))

∼= R HomFX/S∗DX/S(FX/S∗h∗DY/S, FX/S∗E).

It follows then that

Rh′
∗ ◦ CX′→Y′ ◦ Ri′h

!
(FX/S∗E) = FY/S∗Rh∗(R HomDX/S(h

∗DY/S, E)).

When h is smooth this is the standard definition of FY/S∗ ◦ RhDR
∗ . ��
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As an application of the new construction of RhDR
∗ let us observe that if

E ∈ MIC(X/S) and the Zariski closure of supp FX/S∗E ⊂ T∗
X′ does not intersect

T∗
X′→Y′ ⊂ T∗

X′ , then RhDR
∗ E = 0. (This follows also from Proposition 2.31).

3.4 The conjugate filtration on FX/S∗DX/S

The algebra of differential operators in characteristic p, besides the order filtra-
tion, has another natural filtration by ideals:

· · · ⊂ I i
X ⊂ · · · ⊂ I 1

X ⊂ FX/S∗DX/S,(3.12.1)

I i
X = SiTX′(FX/S∗DX/S).

We shall call (3.12.1) the conjugate filtration since, as we will explain in (3.17) below,
it induces the conjugate filtration on the de Rham cohomology groups. The associ-
ated graded algebra Gr(FX/S∗DX/S) is a canonically split tensor Azumaya algebra. In
this section we shall study a certain filtered derived category of modules over the fil-
tered algebra FX/S∗DX/S. We will see how the splitting property of Gr(FX/S∗DX/S) to-
gether with some general results in homological algebra lead to generalizations and
simple proofs of some of the fundamental results of Katz, including the p-curvature
formula for the Gauss–Manin connection. Our main application is the functoriality of
the Cartier transform with respect to the direct images.

The following construction plays a central role in this subsection.

Definition 3.13. — Let A be a sheaf of algebras over a scheme Z and I ⊂ A be a two-

sided ideal. Denote by CF(A ,I ) the category of (unbounded) filtered complexes of A -modules

· · · ⊂ (Ni+1E·, d) ⊂ (NiE·, d) ⊂ · · · ⊂ (E·, d),

satisfying the following conditions:

1.
⋃

i∈Z NiE j = E j and
⋂

i∈Z NiE j = 0,

2. The filtration N· on each E j is an I -filtration, that is:

INiE j ⊆ Ni+1E j .(3.13.1)

(see also Definition 2.16).

The I -filtered derived category DF(A ,I ) is the Verdier quotient of the homotopy category

Ho(CF(A ,I )) of CF(A ,I ) by the subcategory Ho(CFac(A ,I )) of acyclic complexes.

In the context of this definition, a filtered complex is said to be acyclic if for
every i the complex (NiE·, d) is acyclic. Recall that by the definition of the Verdier
quotient there is a triangulated functor

L : Ho(CF(A ,I )) → DF(A ,I ),
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such that L (Ho(CFac(A ,I ))) = 0. The pair (DF(A ,I ), L) has the following uni-
versal property: for every triangulated category T, the composition with L induces an
equivalence of categories between the full subcategory of triangulated functors
Φ : Ho(CF(A ,I )) → T, such that Φ (Ho(CFac(A ,I ))) = 0, and the category
of triangulated functors Φ′ : DF(A ,I ) → T. Explicitly, DF(A ,I ) can be con-
structed as the category whose objects are those of Ho(CF(A ,I )) and morphisms
HomDF(A ,I )(X, Y) are represented by diagrams

X
α−→ Y′ s←− Y,

where α and s are morphisms in Ho(CF(A ,I )) and cone s ∈ Ho(CFac(A ,I )). We
refer the reader to [25] for a detailed discussion. In the case when I = 0, the filtered
derived category DF(A ) := DF(A , 0) was first considered by Illusie in his thesis [15].

Given a filtered complex E·, we denote by E·(r) the same complex but with
the shifted filtration: Ni(E·(r)) = Ni+rE·. Let CF≤l(A ,I ) be the full subcategory of
CF(A ,I ) whose objects are filtered complexes with Nl+1E· = 0, let CF≥k(A ,I )

be the full subcategory whose objects satisfy NkE· = E·, and let be CF[k,l ](A ,I ) the
intersection of CF≤l(A ,I ) and CF≥k(A ,I ). Denote by DF≤l(A ,I ), DF≥k(A ,I ),
and DF[k,l ](A ,I ) the quotients of the corresponding homotopy categories.

Lemma 3.14. — The functor c≥k : DF≥k(A ,I ) → DF(A ,I ) has a right adjoint

functor

w≥k : DF(A ,I ) → DF≥k(A ,I ) : w≥k(E·) = NkE·.
The functor c≤l : DF≤l(A ,I ) → DF(A ,I ) has a left adjoint functor

w≤l : DF(A ,I ) → DF≤l(A ,I ) : w≤l(E·) = E·/Nl+1E·.
Moreover, w≥kc≥k � Id, w≤l c≤l � Id.

The proof is straightforward.

Corollary 3.15. — The functors c≥k, c≤l and c[k,l ] : DF[k,l](A ,I ) → DF(A ,I )

are fully faithful. The essential image of c≥k consists of those objects (E·, N·E·) such that each

NjE· → E· is a quasi-isomorphism for all j ≤ k, and the essential image of c≤l consists of those

objects such that NjE· is acyclic for all j > l.

Proof. — Indeed, for E·, E′· ∈ DF≥k(A ,I ) we have

HomDC≥k(A ,I )(E·, E′·) � HomDF≥k(A ,I )(E·, w≥kc≥kE′·)
� HomDF(A ,I )(c≥kE·, c≥kE′·),
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where the first isomorphism is induced by w≥kc≥k � Id and the second one comes
from the adjointness property from the lemma. The proofs for c≤l and c[k,l ] are similar.
If (E·, N·E·) is an object of DF(A,I ) and each NjE· → E· is a quasi-isomorphism
for all j ≤ k, then the natural map c≥k w≥k(E·, N·E·) → (E·, N·E·) is an isomorphism
in DF(A,I ), so that (E·, N·E·) is in the essential image of c≥k. The proof for c≤l is
similar. ��

Let p : V → Z be a vector bundle over a scheme Z, V the corresponding sheaf
of sections (thus, V is a locally free sheaf of OZ-modules), and let A be a flat sheaf
of algebras over p∗OV

∼= S·V∗. Let I be the sheaf of ideals in A generated by V∗.
Denote by Gr A = ⊕

j≥0 I j/I j+1 the sheaf of graded algebras over S·V∗. Since A

is flat over S·V∗ the morphism:

S·V∗ ⊗OZ A /I → Gr A , f ⊗ a −→ fa(3.15.1)

is an isomorphism and Gr A is a flat S·V∗-module. Denote by D(Mod
�

(Gr A )) the
derived category of graded Gr A -modules. We then have a functor:

Gr : DF(A ,I ) → D(Mod
�

(Gr A ))

(E·) �→
⊕

−∞<j<+∞
NjE·/Nj+1E·.

Let q : W → Z be another vector bundle over Z and i : W ↪→ V a linear
embedding. Set B = A ⊗S·V∗ S·W∗ and I ′ = W∗B ⊂ B. Then B is a sheaf of
algebras over S·W∗ and I ′ ⊂ B is a subsheaf of ideals.

Proposition 3.16. — Assume that Z is a noetherian scheme of finite Krull dimension.

1. The functor i∗ : DF(B,I ′) → DF(A ,I ) has a right adjoint

Ri! : DF(A ,I ) → DF(B,I ′)

and the functor i∗ : D(Mod
�

(Gr B)) → D(Mod
�

(Gr A )) has a right adjoint:

Ri! : D(Mod
�

(Gr,A )) → D(Mod
�

(Gr B)).

2. The functor Ri! takes the essential image of DF≤l(A ,I ) into the essential image of

DF≤l(B,I ′) and the essential image of DF≥k(A ,I ) into the essential image of

DF≥k−d(B,I ′), where d := rk V − rk W.

3. For every I -filtered A complex E·, the morphism Gr Ri!E· → Ri! Gr E· defined by

adjunction:

Id ∈ Hom(E·, E·) → Hom(Gr i∗Ri!E·, Gr E·)
→ Hom(Gr Ri!E·, Ri! Gr E·)

is an isomorphism.
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4. Ri! commutes with the forgetful functors

Ψ : DF(A ,I ) → D(Mod(A )) and Ψ′ : DF(B,I ′) → D(Mod(B)),

i.e. the canonical morphism Ψ′Ri!E· → Ri!ΨE·, defined by adjunction, is an isomorph-

ism.

Proof. — For (1) we use the technique from [24]. The Brown representability the-
orem (loc.cit., Theorem 4.1.) asserts that the existence of the adjoint functor
Ri! : DF(A ,I ) → DF(B,I ′) would follow if we prove that

1. the categories DF(A ,I ) and DF(B,I ′) have arbitrary direct sums
2. the functor i∗ commutes with arbitrary direct sums
3. the category DF(B,I ′) is compactly generated9.

The first two properties are immediate. Let us check the third. Given an open subset
j : U ↪→ Z, denote by BU the filtered B-module such that NiBU = j!B for i ≤ 0 and
NiBU = j!(SiW∗B) for i > 0. For any E· ∈ DF(B,I ′), one has

HomDF(B,J)(BU(l ), E·[ j]) � RjΓ(U, N−lE·).
It follows that DF(B,J) is generated by objects of the form BU(l ). It is known that
for any noetherian space U of finite Krull dimension the functor RΓ(U, ) commutes
with arbitrary direct sums (see, for example [38]). Thus the objects BU(l ) are com-
pact.

The second claim in (1) is proven by a similar argument.
For (2), let E· ∈ DF≤l(A ,I ). We want to show that w≥l+1Ri!(c≤l E·) = 0. In-

deed, for every E′· ∈ DF≥l+1(B,I ′) we have

Hom(E′·, w≥l+1 Ri!(c≤l E·)) � Hom(c≥l+1 E′·, Ri!(c≤l E·))
� Hom(w≤l i∗(c≥l+1E′·), E·)
� Hom(w≤l c≥l+1 i∗(E′·), E·)
= 0.

To prove the second statement consider the forgetful functor

Φ : DF(B,I ′) → DF(OZ) := DF(OZ, 0)

to the filtered derived category of OZ-modules. By Corollary 3.15, we will be done if
we show that ΦRi!(E·) ∈ DF≥k−d(OZ) for every object E· of DF≥k(A ,I ). Consider

9 Recall that an object X ∈ DF(B,I ′) is called compact if for every set of objects {Yα} one has⊕
Hom(X, Yα) � Hom(X,⊕Yα). A category is said to be compactly generated if there exists a set T of com-

pact objects such that for every nonzero Y ∈ DF(B,I ′) there exists X ∈ T such that Hom(X, Y) �= 0.
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the Koszul complex

0 → ΛdT ⊗OZ A (−d) → · · · → T ⊗OZ A (−1) → A → i∗i∗A → 0,(3.16.1)

where T := ker (V∗ i∗−→W∗), and where the I -filtration on ΛmT⊗OZ A (−m) is defined
by

Ni(ΛmT ⊗OZ A (−m)) = ΛmT ⊗OZ I i−m.

Then (3.16.1) is an acyclic complex in CF(A ,I ). It yields a functorial iso-
morphism

ΦRi!(E·) � HomA (Λ·T ⊗OZ A (−·), E·).(3.16.2)

This is the filtered complex C· whose term in degree i is

Ci :=
⊕

p+q=i

ΛpT∗ ⊗OZ Eq(p).

Since Eq(p) ∈ DF≥k−p(A ,I ) and T∗ has rank d , this completes the proof.
For the last two statements, it will be enough to prove that Gr Ri!E· → Ri! Gr E·

(resp. ΨRi!E· → Ri!ΨE·) becomes an isomorphism after the projection to the derived
category of graded OZ-modules (resp. the derived category of OZ-modules). In turn,
this follows from the Koszul computation in (2). ��

Let h : X → Y be a smooth morphism of relative dimension d of smooth
schemes over a noetherian scheme S of finite Krull dimension. We shall apply the
above construction to the linear morphism

T∗
X′→Y′

i ′h−→ T∗
X′,

and to A ⊃ I being either S·TX′ ⊃ JX′ := ⊕
i>0 SiTX′ or the Azumaya algebra

FX/S∗DX/S ⊃ IX := TX′(FX/S∗DX/S). We then have the filtered derived image functors

Rh′HIG
∗ = Rh′

∗ ◦ Ri′h
! : DF(S·TX′,JX′) → DF(S·TY′,JY′)

RhDR
∗ = Rh′

∗ ◦ CX′→Y′ ◦ Ri′h
! : DF(FX/S∗DX/S,IX) →DF(FY/S∗DY/S,IY)

and by the previous proposition

Rh′HIG
∗ : DF[k,l ](S·TX′,JX′) → DF[k−d,l ](S·TY′,JY′)

RhDR
∗ : DF[k,l ](FX/S∗DX/S,IX) → DF[k−d,l ](FY/S∗DY/S,IY).

In particular, this gives another proof of Corollary 3.5.
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Example 3.17. — Consider the DX/S-module OX ∈ DF(FX/S∗DX/S,IX) endowed
with the trivial filtration. Then the filtration on

RhDR
∗ OX ∈ DF[−d,0](FY/S∗DY/S,IY)

coincides with the “conjugate” filtration. Indeed, we will construct a canonical quasi-
isomorphism in the filtered derived category DF(i′∗h (FX/S∗DX/S)):

(
Ri′!h (FX/S∗OX), N·) � (

Ri′!h (FX/S∗OX), T·),
where for any complex C·,

TiCq :=

⎧
⎪⎨

⎪⎩

Cq if q ≤ −i
Im(dq) if q = −i + 1
0 if q > −i + 1.

That is, TiC· = τ≤−iC·, where τ≤ is the canonical filtration. Note that by (3.16.2),

Gr−m Ri′!h (FX/S∗OX) � Ωm
X′/Y′ ⊗ FX/S∗OX[−m].

Thus the result follows from the following lemma, whose proof is straightforward.

Lemma 3.18. — Let (E·, N·) be a filtered complex in an abelian category. Assume that the

filtration is finite and that for every m

Hi(Gr−m E·) = 0, for every i �= m.

For each i, let Ti
NE· := TiNiE· ⊆ NiE·. Then the morphisms

(E·, N·) ← (E·, T·
N) → (E·, T·)

are filtered quasi-isomorphisms. ��
Observe that the graded Azumaya algebra

Gr FX/S∗DX/S � (FX/S∗DX/S/IX) ⊗OX′ S·TX′

over S·TX′ splits canonically: FX/S∗OX ⊗OX′ S·TX′ is the graded splitting module. This
defines an equivalence of categories:

C
�−1
X/S : D(HIG
�

(X′/S)) → D(Mod
�

(Gr FX/S∗DX/S))

C
�−1
X/S(E

· �) = E· � ⊗S·TX′/S
(FX/S∗OX ⊗ S·TX′/S)

∼= E· � ⊗OX′ FX/S∗OX.
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Observe that C
�−1
X/S and its quasi-inverse C

�

X/S commute with Ri ′!h . By Part (3) of Prop-
osition 3.16 we have a functorial isomorphism

C
�

X/S Gr Ri′!h (E
·) � Ri′!h (C
�

X/S Gr E·)(3.18.1)

and its direct image to Y′

C
�

Y/S Gr RhDR
∗ (E·) � Rh′HIG

∗ (C
�

X/S Gr E·).(3.18.2)

Let E· be an object of DF[k,l ](FX/S∗DX/S,IX). Then the filtered complex
RhDR

∗ (E·) yields a spectral sequence:

Ep,q
1 = Hp+q

(
Grp RhDR

∗ (E·)) ⇒ H∗(RhDR
∗ (E·)).

We shall call it the conjugate spectral sequence10 (c.f. Example 3.17).
Assume that the conjugate spectral sequence degenerates at E1. Then the quasi-

isomorphism (3.18.2) induces an isomorphism of graded Higgs modules:

C
�

Y/S Gr RjhDR
∗ (E·) � Rjh′HIG

∗ (C
�

X/S Gr E·).(3.18.3)

Remark 3.19. — Let us explain how formulas (3.18.2) and (3.18.3) can be viewed
as generalizations of Katz’s formula [19, Theorem 3.2] relating p-curvature and the
Kodaira–Spencer mapping. Recall from [20] that the complex M· = Rh′DR

∗ (OX′) of
DY′/S-modules has another natural filtration

· · · ⊂ FiM· ⊂ Fi−1M· ⊂ · · · ⊂ M·,

where F jMk ⊂ Mk are OY′-submodules satisfying Griffiths transversality:

TY′/S(F jMk) ⊂ F j−1Mk.

The last property makes GrF Mk a Higgs module on Y′ and there is canonical quasi-
isomorphism

GrF Rh′DR
∗ (OX′) � Rh′HIG

∗ (OX′)(3.19.1)

in the derived category of graded Higgs modules [20, Construction 5.6.1]. If the mor-
phism h′ is smooth and proper, the filtration F· induces the Hodge filtration on

10 Let us note that, when E = OX the Er-terms of our spectral sequence correspond to the Er+1 terms of the
usual conjugate spectral sequence, after a suitable renumbering.
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Rh′DR
∗ (OX′) and the spectral sequence associated to F· is the Hodge spectral sequence.

Combining Laumon’s formula (3.19.1) with (3.18.2) ( for E· = OX) we obtain a canon-
ical quasi-isomorphism

C·
Y/S GrN RhDR

∗ (OX) � GrF Rh′DR
∗ (OX′)(3.19.2)

in D(HIG
�

(Y′/S)).
Assume that h is smooth, proper, and that the Hodge spectral sequence and the

conjugate spectral sequence for the de Rham direct image of OX degenerate at E1.
Then (3.19.2) yields an isomorphism of Higgs modules

C
�

Y/S GrN RjhDR
∗ (OX) � (

GrF Rjh′DR
∗ (OX′), κ

)
,(3.19.3)

where GrF denotes the associated graded object with respect to the Hodge filtration
on Rjh′DR

∗ (OX′) and κ is the Kodaira–Spencer operator viewed as a Higgs field on
GrF RhDR

∗ (OX′). This is Katz’s p-curvature formula11. See Example 3.17 for an explica-
tion of the left side which relates it to Katz’s original formulation. We refer the reader
to Section 4.6 (Formula (4.16.2)) for a generalization of this remark.

Remark 3.20. — Example 3.17 can be generalized as follows. Let A be sheaf of
algebras flat over S·V∗ and i : W ↪→ V a linear embedding. Consider the functors

DF(A ,I )

��

��i! DF(i∗A , i∗I )

��
DF(A ) ��i! DF(i∗A ).

This diagram is not commutative. However, we will show that for every A -module
E with a finite I -filtration (E = N0E ⊃ · · · ⊃ NnE ⊃ Nn+1E = 0) the I -filtration
(Ri!E = N−dRi!E ⊃ · · · ⊃ NnRi!E ⊃ Nn+1Ri!E = 0) is the filtration décalée of (Ri!E =
Ri!N0E ⊃ · · · ⊃ Ri!NnE ⊃ Ri!Nn+1E = 0). To see this we, first, recall an interpretation
of the filtration décalée convenient for our purposes.

Let DF(C ) be the filtered derived category of an abelian category C , and let
DF≤k(C ) ⊂ DF(C ) (resp. DF≥k(C ) ⊂ DF(C )) be the full subcategory whose objects
are filtered complexes (E·, F·E·) such that, for every integer n, Grn E· has vanishing
cohomology in degrees greater than n + k (resp. less then n + k). It is known [1, Ap-
pendix], that the subcategories DF≤k(C ) and DF≥k(C ) define a t-structure on DF(C )

whose heart is the abelian category of complexes C(C ). In particular, the embedding

11 In loc.cit. Katz considers also the log version of his formula. We shall not do so here.
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DF≤k(C ) → DF(C ) has a right adjoint functor

τ≤k : DF(C ) → DF≤k(C ).

Explicitly,

Fm(τ≤k(E·, F·E·))i = Fm+i−kEi + d(Fm+i−k−1Ei−1),

if i > k and

Fm(τ≤k(E·, F·E·))i = FmEi

otherwise.
The canonical filtration

· · · ⊂ τ≤k(E·, F·E·) ⊂ · · · ⊂ (E·, F·E·).
makes E· a bifiltered complex. We shall denote this bifiltered complex by

(E·, F·E·)dec := (E·, N·F·E·),
so that (E·, N−kF·E·) = τ≤k(E·, F·E·). We then have the following generalization of
Lemma 3.18.

Lemma 3.21. — Let (E·, N·F·E·) be a bifiltered complex. Assume that the filtration N is

finite, i.e. there exist integers a and b such that NaF·E· = 0 and NbF·E· = Nb−iF·E· for every

i ≥ 0. Set F·E· := NbF·E·. Assume also that, for every m,

Gr−m
N (E·, N·F·E·) ∈ DF≤m(C ) ∩ DF≥m(C ),

i.e. Hj(Grk
F Gr−m

N (E·, N·F·E·)) = 0, for every j �= k + m. Then the canonical morphism

(E·, N·F·E·) → (E·, F·E·)dec

defined as in Example 3.17 is a bifiltered quasi-isomorphism.

We omit the proof.
We apply the lemma to the bifiltered complex (Ri!E, N·F·Ri!E), where

NkFmRi!E = NkRi!c≥mw≥mE 12. By (3.16.2),

Grk
F Gr−m

N Ri!E � ∧k+mT∗ ⊗OZ Grk E[−k − m].
12 Precisely, (Ri!E, N·F·Ri!E) is defined as Ri!(E, N·F·E), NkFmE = Nmax(k,m)E in the bifiltered derived category

of A -modules (E·, N·F·E) such that INkFmE· ⊂ Nk+1FmE·.
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Thus we get a canonical bifiltered quasi-isomorphism

(Ri!E, N·F·Ri!E) � (Ri!E, F·Ri!E)dec.

3.5 The derived Cartier transform

Let X /S be a lifting. For any k and l with l−k < p, the Cartier transform yields
equivalences of categories

DF[k,l ](FX/S∗DX/S,IX)
CX /S∼−−−→ DF[k,l ](S·TX′,JX′)

CX /S (E·, N·E·) = (CX /SE·, CX /SN·E·).

Theorem 3.22. — a) Let h : X → Y be a morphism of smooth schemes over S. Then, for

any integers k and l with l − k < p, a lifting h̃′ : X̃′ → Ỹ′ of h′ induces an isomorphism:

Lh∗
DR ◦ C−1

Y /S
∼= C−1

X /S ◦ Lh′∗
HIG :

DF[k,l ](S·TY′,JY′) → DF[k,l ](FX/S∗DX/S,IX).

b) If in addition h is smooth of relative dimension d and l − k − d < p, then

RhDR
∗ ◦ C−1

X /S
∼= C−1

Y /S ◦ Rh′
∗

HIG :
DF[k,l ](S·TX′,JX′) → DF[k−d,l ](FY/S∗DY/S,IY).

Proof. — a) Define an equivalence of categories

DF[k,l ](i′∗h (S·TX′),J ′
X′)

(
CY

X /S

)−1

∼−−−−−→ DF[k,l ](i′∗h (FX/S∗DX/S),I
′
X)

to be the composition

(
CY

X /S

)−1 := MX /S ◦ ι∗,

where ι∗ : DF[k,l ](i′∗h (S·TX′),J ′
X′) → DF[k,l ](i′∗h (S·TX′),J ′

X′) is the involution defined
in (2.7.2) and MX /S is the tensor product with the splitting module FX/S∗BX /S :

MX /S(E·, N·E·) = (E· ⊗Γ̂TX′/S
FX/S∗BX /S , N·E· ⊗Γ̂TX′/S

FX/S∗BX /S ).

Similarly, the splitting module h′∗FY/S∗BY /S yields an equivalence of categories

DF[k,l ](h′∗(S·TY′), h′∗JY′)

(
CX

Y /S

)−1

∼−−−−−→ DF[k,l ](h′∗(FY/S∗DY/S), h′∗IY).
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Lemma 3.23. — A morphism (h, h̃′) : X /S → Y /S induces an isomorphism of func-

tors

CY
X /S � CX

Y /S ◦ CX′→Y′

DF[k,l ](i′∗h (FX/S∗DX/S),I ′
X)

��
CY

X /S

��CX′→Y′
DF[k,l ](h′∗(FX/S∗DY/S), h′∗IY)

��
CX

Y /S

DF[k,l ](i′∗h (S·TX′),J ′
X′) ��= DF[k,l ](h′∗(S·TY′), h′∗JY′).

Proof. — Recall from Proposition 1.12 that a morphism (h, h̃′) : X /S → Y /S
induces an isomorphism

h∗AY /S
∼=−→ HomF∗

X/SΓ·TX′/S
(h∗F∗

Y/SΓ
·TY′/S,AX /S ).

Dualizing this isomorphism, we find an isomorphism of DX/S-modules

F∗
Y/Sh′∗Γ̂TY′/S ⊗F∗

X/SΓ̂TX′/S
BX /S

∼= h∗BY /S .

With the notations of Theorem 3.11, we have

FX/S∗h∗BY /S � FX/S∗DX→Y ⊗h′∗FY/S∗DY/S h′∗FY/S∗BY /S .

Thus we get an isomorphism of splitting modules for h′∗Γ̂TY′/S ⊗S·TX′/S
FX/S∗DX/S:

h′∗Γ̂TY′/S ⊗Γ̂TX′/S
FX/S∗BX /S

∼= FX/S∗DX→Y ⊗h′∗FY/S∗DY/S h′∗FY/S∗BY /S .(3.23.1)

By definition, the functor (CY
X /S )−1 is the composition of the involution ι∗ and the

tensor product over h′∗Γ̂TY′/S with the left-hand side of (3.23.1), and the functor
(CX

Y /S ◦ CX′→Y′)−1 is the composition of ι∗ and the tensor product with the right-
hand side of (3.23.1). Thus, (3.23.1) induces the desired isomorphism (CY

X /S )−1 �
(CX

Y /S ◦ CX′→Y′)−1. ��
Let us return to the proof of the theorem. Observe the natural isomorphisms of

functors:

Lh′∗ ◦ (CY /S )−1 � (
CX

Y /S

)−1 ◦ Lh′∗ and

i ′h∗ ◦ (
CY

X /S

)−1 � (CX /S )−1 ◦ i ′h∗.

Hence, by Lemma 3.23

Lh∗
DR ◦ C−1

Y /S � i ′h∗ ◦ (CX′→Y′)−1 ◦ Lh′∗ ◦ C−1
Y /S

� i ′h∗ ◦ (CX′→Y′)−1 ◦ (
CX

Y /S

)−1 ◦ Lh′∗

� i ′h∗ ◦ (
CY

X /S

)−1 ◦ Lh′∗ � C−1
X /S ◦ Lh′∗

HIG.

This proves part a) of the theorem.
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b) By Lemma 3.23 it remains to construct an isomorphism of functors:

Ri′h
!CX /S

∼= CY
X /S Ri′h

! :(3.23.2)

DF[k,l ](FX/S∗DX/S,IX) → DF[k−d,l ](i′∗h (S·TX′),J ′
X′).

Let E· ∈ DF[k,l ](FX/S∗DX/S,IX) and E′· ∈ DF[k−d,l ](i′∗h (S·TX′),J ′
X′). We then have

functorial isomorphisms

Hom
(
E′·, Ri′h

!CX /S (E·)) � Hom
(
C−1

X /S i ′h∗E′·, E·)

� Hom
(
i ′h∗

(
CY

X /S

)−1
E′·, E·)

� Hom
(
E′·, CY

X /S Ri′h
!
(E·)).

By the Yoneda lemma this yields (3.23.2). ��
Remark 3.24. — In the absence of the lifting of h′ the theorem can be modi-

fied as follows. Let Lh′ be the h′∗TY′/S-torsor of liftings of h′ and let exp Lh′ be the
pushforward of Lh′ via the homomorphism

exp : h′∗TY′ → (h′∗Γ̂TY′)∗.

Thus exp Lh′ is an (h′∗Γ̂TY′)∗-torsor. We denote by Kh′ the corresponding invertible
module over h′∗Γ̂TY′ . Define an autoequivalence

τh′ : Mod(h′∗Γ̂TY′) → Mod(h′∗Γ̂TY′)

τh′(E) = E ⊗h′∗Γ̂TY′ Kh′ .

Then, with the notations from the proof of Theorem 3.22, one has

Kh′ ⊗Γ̂TX′/S
FX/S∗BX /S

∼= FX/S∗DX→Y ⊗h′∗FY/S∗DY/S h′∗FY/S∗BY /S ,

Lh∗
DR ◦ C−1

Y /S
∼= C−1

X /S ◦ i ′h∗ ◦ τ−1
h′ ◦ Lh′∗

DF[k,l ](S·TY′,JY′) → DF[k,l ](FX/S∗DX/S,IX)

and if h is smooth of relative dimension d and l − k + d < p

RhDR
∗ ◦ C−1

X /S
∼= C−1

Y /S ◦ Rh′
∗ ◦ τh′ ◦ Ri′!h

DF[k,l ](S·TX′,JX′) → DF[k−d,l ](FY/S∗DY/S,IY).

Corollary 3.25. — Let h : X → Y be a smooth morphism of relative dimension d and

let E· be an object of D(HIG
�

[k,l ](X
′/S)). Assume that l − k − d < p and that there exists

h̃′ : X̃′ → Ỹ′. Then the conjugate spectral sequence for H∗(RhDR
∗ (C−1

X /S E·)) degenerates at E1.

Proof. — We have

RhHIG
∗ (E·) � RhHIG

∗ (Gr E·) � Gr RhHIG
∗ (E·).

Here the first isomorphism comes from the grading on E· and the second one from
(3) of Proposition 3.16. It follows that the spectral sequence of the filtered complex
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RhHIG
∗ (E·) degenerates at E1. Then by Theorem 3.22 the same is true for

RhDR
∗ (C−1

X /S E·). ��

4 Applications and examples

4.1 Local study of the p-curvature

Let X/S be a smooth morphism of schemes in characteristic p > 0 and let

Ψ : MIC(X/S) → F-HIG(X/S)(4.0.1)

denote the functor taking a module with integrable connection to the corresponding
module with F-Higgs field. This functor is not an equivalence or even fully faithful. For
example, the category of pairs (O,∇) with vanishing p-curvature is equivalent to the
category of invertible sheaves L on X′ together with a trivialization F∗

X/SL ∼= OX. How-
ever, we show that if (E1,∇1) and (E2,∇2) are two noetherian objects of MIC(X/S)

with isomorphic images in F-HIG(X/S), then Zariski locally on X, (E1,∇1) and
(E2,∇2) are isomorphic. Moreover, we can characterize the image of the functor Ψ,
étale locally on X: if ψ is an F-Higgs field on a coherent E, then étale locally on
X/S, ψ comes from a connection if and only if (E, ψ) descends to a Higgs field on
X′/S. Taken together, these results can be interpreted as a nonabelian analog of the
well-known exact sequence [23, 4.14]

0 → O∗
X′

F∗
X/S−−→ FX/S∗O∗

X
dlog−→ FX/S∗Z1

X/S

π∗−CX/S−−−−→ Ω1
X′/S → 0,

where CX/S is the Cartier operator and π : X′ → X the projection. Indeed, one can
recover this sequence by considering the category of connections of the form
(OX, d + ω), where ω is a closed one-form, and recalling that the p-curvature of such
a connection is precisely π∗(ω) − CX/S(ω).

Theorem 4.1. — Let X/S be a smooth morphism of noetherian schemes in characteristic p.

1. Let (Ei,∇i), i = 1, 2, be objects of MIC(X/S), with Ei coherent, and let ψi denote

their p-curvatures. Suppose that there exists an isomorphism h : (E1, ψ1) → (E2, ψ2) in

F-HIG(X/S). Then Zariski locally on X, (E1,∇1) and (E2,∇2) are isomorphic in

MIC(X/S).

2. Let E be a coherent sheaf with an F-Higgs field ψ : E → E ⊗ F∗
X/SΩ

1
X′/S. Then étale

locally on X, the following are equivalent:

(a) There exists a connection on E whose p-curvature is ψ.

(b) There exist a coherent sheaf with a Higgs field (E′, ψ ′) on X′/S and an isomorphism

(E, ψ) ∼= F∗
X/S(E

′, ψ ′).
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Proof. — To prove (1), let H := Hom(E1, E2), with the internal Hom connection
and p-curvature. Let Hψ ⊆ H be the subsheaf annihilated by ψ, and let FX/S∗(H∇) be
the subsheaf annihilated by ∇. Then by Cartier descent, the natural map
F∗

X/SFX/S∗H
∇ → Hψ is an isomorphism of OX-modules.

Let x be a point of X, and let x′ be its image in X′. Then k(x) is a finite and
purely inseparable extension of k(x′). The fiber V′ := (FX/S∗H∇)(x′) of FX/S∗H∇ at
x′ is a finite dimensional k(x′)-vector space, the fiber V := Hψ(x) of Hψ at x is a fi-
nite dimensional k(x)-vector space, and the natural map k(x) ⊗k(x′) V′ → V is an iso-
morphism. There is also a natural map V → Homk(x)(E1(x), E2(x)). Let V be the
affine space over k(x) corresponding to the k(x)-vector space V, and let U denote the
Zariski open subset of V corresponding to those elements which define isomorphisms
E1(x) → E2(x). The isomorphism h lies in Hψ and hence its image h(x) in V corres-
ponds to a k(x)-rational point of U. Let V′ be the affine space over k(x′) corresponding
to V′. Then V is the base change of V′ to Spec k(x), and since k(x′) → k(x) is a purely
inseparable extension, the projection mapping V → V′ is a homeomorphism and the
image U′ of U in V′ is a nonempty open subset. If k(x′) is infinite, it follows that the
k(x′)-rational points of V′ are Zariski dense, so U′ has a k(x′)-rational point. If k(x′)
is finite, it is perfect, and it follows that k(x) = k(x′). Thus in either case there is an
element v′ in V′ which induces an isomorphism E1(x) → E2(x). Then there exists an
element g′ in the stalk of the OX′-module FX/S∗H∇ at x′ whose image in V′ is v′. Let
h′ := F∗

X( g′), which defines a horizontal morphism E1 → E2 in some neighborhood
of x. The fiber of h′ at x is an isomorphism. We know that E1,x and E2,x are isomorphic
as OX,x-modules, and in particular their reductions module any power of the maximal
ideal have the same finite length. It follows from Nakayama’s lemma that h′ is sur-
jective modulo any power of the maximal ideal, and hence is also an isomorphism
modulo any such power. Then it follows that h′ is an isomorphism in a neighborhood
of x. This proves (1).

We should remark that (1) could also have been proved from the theory of Azu-
maya algebras; we preferred to explain the elementary proof above. We do not know
of such an elementary proof of (2). Note first that since (2) is a local statement, we
may assume that there exists a spitting ζ of C−1

X/S as in (1.9.2).
Suppose that (E′, ψ ′) is an object of HIG(X′/S), with E′ coherent as an

OX′-module. Let Ẽ′ denote the coherent sheaf on T∗
X′/S corresponding to (E′, ψ ′). Let

i ′ : Z′ → TX′/S be the closed immersion defined by the annihilator of Ẽ′ in OT∗
X′/S

.
Since E′ is coherent as a sheaf of OX′-modules, Z′ is finite over X′, and hence the
étale covering αζ : TX′/S → TX′/S splits over Z′, étale locally on X′. Thus, after replac-
ing X′ by an étale localization, we may assume that there exists a map j ′ : Z′ → T∗

X′/S

such that αζ ◦ j ′ = i ′. Let Ẽ′′ := j ′∗i ′∗Ẽ′, which corresponds to an object (E′′, ψ ′′) of
HIG(X′/S). Then Ẽ′ ∼= i ′∗i′∗Ẽ′ ∼= αζ∗ j ′∗i ′∗Ẽ′ ∼= αζ∗Ẽ′′. Let (E,∇) := Ψ−1

ζ (E′′, ψ ′) (see
Theorem 2.13). By op. cit., the p-curvature of (E,∇) is F∗

X/Sαζ∗(E′′, ψ ′′) ∼= F∗
X/S(E

′, ψ ′).
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Conversely, suppose that (E,∇) is an object of MIC(X/S), with E coherent as
an OX-module. Its p-curvature defines an object (E, ψ) of F-HIG(X/S), and hence
a coherent sheaf Ẽ on T∗(X′)

X′/S := VF∗
X/STX′/S (see diagram (2.1.1)). The claim is that

there exists a coherent sheaf Ẽ′ on TX′/S such that π∗
T(Ẽ′) ∼= Ẽ. Since FX/S∗E is coher-

ent as an OX′-module, the scheme-theoretic support Z′ of πT∗ is finite over X′, and
there exists a section j ′ of αζ over Z′. If we view Ẽ as a module over S·

ζTX′/S via j ′�,
then the action of S·

ζTX′/S agrees with the action of S·TX′/S, and so the action of DX/S

on E extends to an action of Dζ . Let Ẽ′ := HomDζ
(Bζ , E), corresponding to an object

(E′, ψ ′) ∈ HIG(X′/S). Then (E,∇) ∼= Ψ−1
ζ (E′, ψ ′), so (E, ψ) ∼= F∗

X/S(αζ∗(E′, ψ ′)) in
F-HIG(X/S), by Theorem 2.13. ��

4.2 Stacks of liftings and splittings

In this subsection we discuss relationships between and geometric interpretations
of some of the liftings and splittings used in our constructions. In particular, we show
that there is a natural equivalence between the gerbe of liftings of X′ and the gerbe of
tensor splittings of DX/S over the completed divided power envelope T̂∗γ

X′/S of the zero
section of T∗

X′/S.
First we shall study the gerbe of splittings of the Azumaya algebra DX/S on

T∗
X′/S. Recall from [23] and [9] that the equivalence class of this gerbe can be viewed

as the image of DX/S in the cohomological Brauer group H2(T∗
X′/S,O

∗
T∗

X′/S
). Our first

goal is to provide a simple description of this cohomology class.
Recall from [23, 4.14] that for any smooth Y/S there is an exact sequence of

étale sheaves on Y′:

0 → O∗
Y′

F∗
Y/S−−→ FY/S∗O∗

Y

dlog−→ FY/S∗Z1
Y/S

π∗
Y/S−CY/S−−−−−→ Ω1

Y′/S → 0.(4.1.1)

Here FY/S∗Z1
Y/S ⊂ FY/S∗Ω1

Y/S is the subsheaf of closed one-forms, CY/S is the Cartier
operator, and πY/S : Y′ → Y is the morphism induced by the Frobenius on S. As we
observed in Section 4.1, the morphism π∗

Y/S −CY/S : FY/S∗Z1
Y/S → Ω1

Y′/S can be viewed
as the map sending the line bundle OY with integrable connection ∇ = d + ω to its
p-curvature. The exact sequence (4.1.1) induces a morphism:

φ : H0
(
Y′,Ω1

Y′/S

) → H1(Y′, FY/S∗(O∗
Y)/O∗

Y′) → H2(Y′,O∗
Y′) = Br(Y′).

As we shall recall below, the cotangent bundle of X′/S has a canonical global one-
form (the “contact form”). We shall see in Proposition 4.4 below that the Brauer class
of DX/S can be identified with the image of this one-form under the map φ. We begin
with the following convenient geometric description of the map φ.

Proposition 4.2. — Let ω′ ∈ H0(Y′,Ω1
Y′/S) be a one-form. For each étale U′ → Y′,

let U := F−1
Y/S(U

′) → Y and let P�

ω′ (U′) be the groupoid of invertible sheaves with integrable
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connection on U whose p-curvature is equal to ω′. Then, P�

ω′ forms a fibered category which is in

fact a gerbe under O∗
Y′ on Y′. The class of P�

ω′ in H2(Y′,O∗
Y′) is equal to φ(ω′).

Proof. — It is clear that P�

ω′ forms a stack and that the automorphism group
of each object is O∗

Y′ . The local surjectivity of π∗
Y/S − CY/S implies that the class of

objects of P�

ω′ is locally not empty. If L1 and L2 are two objects of P�

ω′ over some U′,
then the p-curvature of Hom(L1, L2) is zero, and hence locally has a horizontal basis.
This implies that any two objects of P�

ω′ are locally isomorphic, so that P�

ω′ is indeed
a gerbe.

The boundary map associated to the exact sequence

0 → FY/S∗(O∗
Y)/O∗

Y′
dlog−→ FY/S∗Z1

Y/S

π∗
Y/S−CY/S−−−−−→ Ω1

Y′/S → 0

takes ω′ to the (FY/S∗O∗
Y)/O∗

Y′-torsor Tω′ of closed one-forms η such that π∗
Y/Sη −

CY/S(η) = ω′. The boundary map associated to the exact sequence

0 → O∗
Y′ → FY/S∗(O∗

Y) → FY/S∗(O∗
Y)/O∗

Y′ → 0

takes Tω′ to the gerbe Gω′ of FY/S∗(O∗
Y)-torsors L equipped with an isomorphism

α : L → Tω′ , where L is the (FY/S∗O∗
Y)/O∗

Y′-torsor associated to L . Hence
φ(ω′) = Gω′ , and it will suffice to prove that Gω′ is equivalent to P�

ω′ . Let L be
an object of Gω′ over U′, let L be the associated invertible sheaf over U, and let e
be a local section of L , i.e., a basis for L on some open subset V of U. There is
a unique connection ∇ on L such that ∇(e) = e ⊗ α(e). It follows from the fact that
α is a morphism of torsors that ∇ is independent of the choice of e, and it is clear
that the p-curvature of ∇ is ω′. This construction defines a functor from the gerbe Gω′

to P�

ω′ , which is easily seen to be an equivalence. ��

Remark 4.3. — In the context of the above proposition, the form ω′ gives a mor-
phism i : Y′ → T∗

Y/S′ , and P�

ω′ is the gerbe of splittings of the Azumaya algebra i∗DY/S

on Y′.

Let us write T∗ for T∗
X/S, and recall that there is an exact sequence

0 → pr∗Ω1
X/S → Ω1

T∗
X/S/S → Ω1

T∗
X/S/X → 0.(4.3.1)

Furthermore, T∗ = SpecX S·TX/S, so that there is a canonical global section of
pr∗pr∗Ω1

X/S
∼= Ω1

X/S ⊗ S·TX/S, corresponding to the identity element of Ω1
X/S ⊗ TX/S

∼=
End TX/S. The image of this section in Ω1

T∗/S is the well-known “contact form” on the
cotangent bundle.
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Proposition 4.4 ([5]). — Let ω′ ∈ Γ(T∗
X′/S,Ω

1
T∗

X′/S
) be the contact form and let P�

ω′ be

the corresponding Gm-gerbe on T∗
X′/S described in Proposition 4.2. Then the gerbe P�

ω′ is equivalent

to the gerbe S of splittings of the Azumaya algebra DX/S on T∗
X′/S. In particular, the class of DX/S

in Br(T∗
X′/S) is φ(ω′).

Proof. — We have a diagram:

T∗
X/S

��F
FF

FF
FF

FF
��

FT∗/X T′∗
X/S

��

��πT T∗
X′/S

��

�� T∗
X/S

��
X ��

FX/S
X′ ��π X,

in which both squares are Cartesian and FT∗/S = πT ◦ FT∗/X. We identify the pullback
of T∗

X/S by FS with T∗
X′/S and use abbreviations:

T∗ := T∗
X/S, T∗′ := T∗

X′/S, T′∗ := T′∗
X/S.

Let U′ → T∗′ be étale, let U → T∗ (resp. U′′) be its pullback via FT∗/S, (resp. via πT).
Let (L,∇) be an object of P�

ω′ (U′), i.e., an invertible sheaf with integrable connection
on U/S whose p-curvature is ω′. The connection ∇ defines an action of DT∗/S and
hence of the subalgebra DT∗/X on L. Since the projection of ω′ to Ω1

T∗′/X′ is equal
to 0, the p-curvature of the corresponding object of MIC(T∗/X) vanishes. Let

L′ := H 0
d R(L ⊗ Ω·

T∗/X) := Ker
(
L

∇−→L ⊗ Ω1
T∗/S → L ⊗ pr∗Ω1

T∗/X

)
.

Then L′ has a natural structure of a sheaf of OT′∗-modules on U′′, and it follows from
Cartier descent that the natural map F∗

T∗/XL′ → L is an isomorphism. Furthermore,
∇ induces a map ∇′ : L′ → L′ ⊗ pr∗Ω1

X/S, which defines a pr−1DX/S-module structure
on L′. (This is essentially the Gauss–Manin connection for the morphism T∗ → X.)
The p-curvature of this module is still given by the contact form ω′, which means that
the action of sections of OT∗′ via the p-curvature is the same as the action via the
map T′∗ → T∗′ and the given OT′∗-structure. This means that we can safely view the
pr−1DX/S-module structure and the OT′∗-module structure as defining a DX/S-module
structure on L′. Since L′ is an invertible sheaf on T′∗, it has rank pd over T∗′, and
thus defines a splitting module for the Azumaya algebra DX/S. Thus we have defined
a functor Pω′ → S . It is clear that this functor is fully faithful, since the automor-
phisms of objects in either category are just give by units in OT∗′ . On the other hand,
suppose that M is a splitting module for DX/S. Then viewing OX → DX/S via the ac-
tion on the left, we can view M as a module over T′∗, and by Proposition 2.3 it then
becomes an invertible sheaf of OT′∗-modules. Since the OT′∗-module structure of M
comes from its p-curvature, the p-curvature of M is just the contact form ω′. A local
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calculation shows that there is a unique extension of the action of DX/S on M to an
action of DT∗/S on F∗

T∗/XM with the property that M is the annihilator of DT∗/X. This
shows that the functor P�

ω′ → S is an equivalence. The statement about the Brauer
group then follows, as explained in [23]. ��

In this following discussion we will assume that the reader is acquainted with
the notion of tensor structure on an Azumaya algebra introduced in Section 5.5. In
particular, we explain there that the algebra DX/S has a canonical symmetric tensor
structure. Let us consider the following stacks on X′

ét.

1. The stack L of liftings of X′.
2. The stack TSP of tensor splittings of DX/S over the completed divided

power envelope T̂∗γ

X′/S of the zero section of T∗
X′/S.13

3. The stack SP1 of pairs (M1, α), where M1 is a splitting of DX/S over the
first infinitesimal neighborhood T∗

1 of the zero section of T∗
X′/S and α : i∗M1 �

FX/S∗OX is an isomorphism between the restriction of M1 to the zero section
and the canonical splitting over X′.

4. The stack EX of extensions of F∗
X/SΩ

1
X′/S by OX in MIC(X/S) such that the

graded p-curvature mapping ψ : F∗
X/SΩ

1
X′/S → OX ⊗ F∗

X/SΩ
1
X′/S is the identity.

In the discussion preparing for Theorem 2.8 we constructed a functor B asso-
ciating a tensor splitting BX /S to a lifting X̃′ of X′. Furthermore, recall that X̃′ de-
termines an extension (1.4.1) as in (4), so that we also have a functor E : L → EX .
Recall that for any tensor splitting M there is a canonical isomorphism α : i∗M �
FX/S∗OX, and hence there is a restriction functor i∗1 : TSP → SP1. The dual of an
extension in EX is an object of SP1, so there is also a functor from EX → SP1.
This functor is easily seen to be an equivalence. The following theorem, shows that in
fact all the above functors are equivalences.

Theorem 4.5. — The stacks above are in fact gerbes, and the functors

B : L → TSP, i∗1 : TSP → SP1, and E : L → EX

are equivalences.

Proof. — It is clear that L and SP1 are gerbes. The fact that i∗1 is an equiv-
alence is proven in Proposition 5.30, and it follows that TSP is also a gerbe. Thus,
it suffices to prove that the composition i∗1 ◦ B : L → SP1 is an equivalence. Let
us show that, for any lifting X̃′, the group of automorphisms of X̃′ reducing to the
identity on X′ maps isomorphically to the group of automorphisms of (i∗1BX /S , α).
Indeed, the first group can be identified with the group of vector fields on X′, and

13 Note that the étale topologies of X, X′, and T̂∗γ

X′/S are the same.
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the second one with the group of invertible functions on X′
1 equal to 1 on X′, and

the map is the obvious isomorphism between this two groups. The following easy and
well known result completes the proof.

Lemma 4.6. — Let F : M → N be a morphism of gerbes on Yét. Assume that for every

étale morphism U → Y and every object C ∈ M (U) the induced map

F∗ : Aut(C) → Aut(F(C))

is an isomorphism. Then F is an equivalence of gerbes. ��

Let θ ∈ TX′/S(U) be a vector field on U ⊂ X′. We may view θ as a linear
function on the cotangent space T∗

U/S. Then the exponential exp(θ) = ∑
θ i

i! makes
sense as an invertible function on the completed PD envelope T∗γ

U/S ⊂ T∗γ

X′/S. Thus we
get a homomorphism of sheaves:

exp : TX′/S → O∗
T∗γ

X′/S
= (Γ̂TX′/S)

∗.

This, in turn, gives a map:

exp : H∗
ét(X

′; TX′/S) → H∗
ét(X

′;O∗
T∗γ

X′/S
).

In the following corollary we use Γ̂F∗
X/STX′/S-module structure on BX /S as in-

troduced in Subsection 2.

Corollary 4.7

1. Let θ ∈ H0(X′, TX′/S) be an automorphism of a lifting X /S reducing to the identity

on X′. Then the induced morphism

θ∗ : BX /S → BX /S

is the multiplication by F∗
X/S(exp θ) ∈ (Γ̂F∗

X/STX′/S)
∗.

2. Let (X /S )1, (X /S )2 be liftings, and let LId be the TX′/S-torsor of isomorphisms

between X̃1 and X̃′
2 reducing to the identity on X′. Denote by exp LId the correspond-

ing O∗
T∗γ

X′/S
-torsor and by KId the corresponding invertible sheaf on T∗γ

X′/S. Then the iso-

morphism of F∗
X/STX′/S-torsors LX /S 1

⊗F∗
X/STX′/S

F∗
X/SLId � LX /S 2

induces a tensor

isomorphism of splitting modules

B(X /S )1 ⊗Γ̂F∗
X/STX′/S

F∗
X/SKId � B(X /S )2.
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3. The class of the Azumaya algebra DX/S restricted to T∗γ

X′/S in the cohomological Brauer

group Br(T∗γ

X′/S) = H2
ét(X

′;O∗
T∗γ

X′/S
) is equal to exp δ, where δ ∈ H2

ét(X
′; TX′/S) is the

obstruction to lifting of X′ over S̃.

Proof. — Since θ∗ and exp θ are tensor automorphisms of BX /S , by Theorem 4.5
it is enough to check that θ∗ and exp θ are equal when restricted to i∗1BX /S . In turn,
this follows from the fact that the automorphism of LX /S induced by the automorph-
ism of the lifting X /S coincides with the translation by F∗

X/Sθ ∈ H0(X, F∗
X/STX′/S).

This proves (1). The proof of the second claim is similar, and the last claim follows
from Proposition 5.32. ��

Remark 4.8. — The construction of the tensor splittings in the proof of Prop-
osition 5.32 can be viewed in the present setting as follows. Let exp LX /S be the push-
forward of the F∗

X/STX′/S-torsor LX /S via the homomorphism

exp : F∗
X/STX′/S → (Γ̂F∗

X/STX′/S)
∗.

The (Γ̂F∗
X/STX′/S)

∗-torsor exp LX /S acquires the induced connection, as does the as-
sociated invertible Γ̂F∗TX′/S-module exp LX /S ⊗(Γ̂F∗

X/STX′/S)∗ Γ̂F∗
X/STX′/S. We then have

a horizontal isomorphism

BX̃ � exp LX /S ⊗(Γ̂F∗
X/STX′/S)∗ Γ̂F∗

X/STX′/S.

Let us end by explaining the relationships between the various liftings, split-
tings, and extensions we have been considering. Consider the exact sequence of OX′-
modules:

0 → FX/S∗B1
X/S → FX/S∗Z1

X/S → FX/S∗H 1
DR(X/S) → 0.

A splitting of this sequence amounts to lifting ζ of C−1
X/S as in (1.9.2). Let MX/S denote

the sheaf on X which to every open set U assigns the set of liftings of C−1
X/S over U.

If U is an open subset of X, let LX/S(U) denote the category whose objects are mor-
phisms F̃ : Ũ → Ũ′ lifting the relative Frobenius morphism FU/S : U → U′ and whose
morphisms F̃1 → F̃2 are commutative diagrams

Ũ1

��
f

��F̃1 Ũ′
1

��
f ′

Ũ2
��F̃2 Ũ′

2,

where f and f ′ reduce to the identity modulo p. In particular, f and f ′ are necessarily
isomorphisms, and LX/S defines a stack over S. As a variant, consider the stack JX/S

which over each U is the category whose objects are pairs (Ũ′, s), where Ũ′ is a lift of
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U′ and s is a section of the torsor LU /S defined by Ũ′ as in Theorem 1.1 and whose
morphisms are those reducing to the identity and compatible with s. If we are given
a fixed lifting X̃′/S̃ of X′/S, then we can also consider the fibered category LX /S

which to every open set U in X assigns the category of pairs (Ũ, F̃), where Ũ is a lift
of U and F̃ : Ũ → X̃′ is a lift of fU/S. Morphisms in this category are diagrams as
above, in which f ′ is the identity. If Ũ is a fixed lifting of U, recall that LX /S (Ũ)

is the set of all liftings of fU/S, so there is a natural map from LX /S to the sheaf of
objects of LX /S . Finally, if F̃S : S̃ → S̃ is a lift of the Frobenius endomorphism of S
we can define a more rigid version of LX/S. If U is an open subset of X, let KX/S(U)

denote the subcategory of LX/S(U) whose objects are liftings F̃ : Ũ → Ũ′ of FU/S with
Ũ′ = S̃ ×F̃S

Ũ and whose morphisms are diagrams as above with f ′ = f ×F̃S
idS.

Proposition 4.9. — Let LX/S denote the sheaf associated to the presheaf of isomorphism

classes of objects of LX/S, and use the analogous notation for LX /S .

1. The stack JX/S is rigid, and the natural map LX/S → JX/S induces an isomorphism

LX/S → JX/S.

2. The map (1.9.3) F̃ �→ ζF̃ induces an isomorphism LX/S → MX/S and hence also

JX/S
∼= MX/S.

3. The natural map LX /S ,X → LX /S is an isomorphism.

4. If F̃S̃ lifts FS, then KX/S is rigid, and if S is the spectrum of a perfect field, then F̃ �→ ζF̃

induces an isomorphism KX/S → MX/S.

Proof. — The following lemma follows from standard deformation theory and
Remark 1.2; we omit its proof.

Lemma 4.10. — Let X̃ and X̃′ be liftings of X and X′ respectively. Then

1. The sheaf of liftings F̃ : X̃ → X̃′ of FX/S is a torsor under F∗
X/STX′/S, under the standard

action.

2. If F̃1 and F̃2 : X̃ → X̃′ lift FX/S and differ by a section h′ of f ∗
X/STX′/S, then F̃1 is

isomorphic to F̃2 in LX/S if and only if h′ comes from a section of TX′/S.

3. If f is an automorphism of X̃ lifting the identity, then F̃ ◦ f = F̃; if f ′ is an auto-

morphism of X̃′ lifting the identity such that f ′ ◦ F̃ = F̃, then f ′ = id.

4. The sheaf of automorphisms of an object F̃ of LX/S is canonically isomorphic to TX/S.

��
Suppose that (Ũ′, s) is a section of JX/S over U. Then, locally on U, there exist

a lift Ũ of U and a lift F̃ : Ũ → Ũ′ inducing s. Then an automorphism f of (Ũ′, s) cor-
responds to an automorphism of Ũ′ reducing to the identity and such that
f ◦ F̃ = F̃. By Lemma 4.10, f is the identity, i.e., J is rigid. It follows that the nat-
ural functor LX/S → JX/S factors through LX/S, and the above argument makes it
clear that this morphism is surjective. The injectivity follows from the definitions.
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It follows from the lemma that LX/S is a torsor under

C := Cok(TX′/S → FX/S∗F∗
X/STX′/S) ∼= Hom

(
Ω1

X′/S, FX/S∗B1
X/S

)
,

since

(FX/S∗OX)/OX′ ∼= FX/S∗B1
X/S ⊆ F∗

X/SΩ
1
X/S,

where as before BX/S is the sheaf of locally exact one-forms. The sheaf MX/S is also
naturally a torsor under Hom(Ω1

X′/S, FX/S∗B1
X/S), and the map F̃ �→ ζF̃ factors through

LX/S:

LX/S → MX/S : F̃ �→ ζF̃.

This map is a morphism of torsors, hence a bijection. Now suppose that F̃S̃ exists
and suppose that F̃ is an object of KX/S(U). Then an automorphism of F̃ is an auto-
morphism f̃ of Ũ lifting idU such that f̃ ′F̃ = F̃f̃ . where f̃ ′ := f̃ ×F̃S̃

id. But then it
follows from the lemma that f̃ = id, so KX/S is rigid and its presheaf of isomorph-
ism classes is a sheaf. Let F̃1 and F̃2 be two objects of KX/S(U). After shrinking U,
Ũ1 and Ũ2 become isomorphic; let us assume they are equal. Then F̃1 is isomorphic
to F̃2 if and only if there exists a lifting f̃ of the identity such that F̃2 = f̃ ′F̃1 f −1.
But f̃ ′F̃1 f −1 = f̃ ′F̃1, and if f̃ corresponds to an element D of TX/k, f̃ ′F̃1 differs from F̃1

by the action of π∗D. This shows that KX/S is a torsor under the cokernel of the map

π1TX/S
π∗−→ TX′/S → FX/S∗F∗

X/STX′/S.

When S is the spectrum of a perfect field, π∗ is an isomorphism, and it follows that
KX/S is also a torsor under C.

Statement (3) can be checked at the stalks. Let x be a point of U ⊆ X and
let Ũ1 be a liftings of U. Then the stalk of LX /S ,U = LX /S ,Ũ1 at x is the set of
germs at x of lifts of fU/S to Ũ1, and the stalk of LX /S at x is the set of germs of iso-
morphism classes of of lifts (Ũ2, F̃) of fU/S. Let F̃ : Ũ2 → X̃′ be a lift of fU/S in some
neighborhood of x. Then there is an isomorphism Ũ1

∼= Ũ2 near x, and this shows
that the map is surjective. For the injectivity, observe that if F̃ and F̃′ are elements
of LX /S (Ũ1) which become equal in LX /S ,U, then there is an automorphism of Ũ1

which is the identity mod p and which takes F̃ to F̃′. But then by Remark 1.2, F̃ = F̃′.
This shows the injectivity. ��

4.3 Line bundles with connection

We use the following notation. If X is a scheme over a field k, E is a coherent
sheaf of OX-modules on k, and S is a k-scheme,

Hi(X, E)(S) := H0(S,OS) ⊗k Hi(X, E).
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If Hi(X, E) is finite dimensional, the functor Hi(X, E) is represented by the (vector)
k-scheme Spec S·Hi(X, E)∨.

Let X/k be a smooth proper geometrically connected scheme over a perfect
field of characteristic p > 0, with a k-rational point x0. Let Pic�

X(S) denote the set
of isomorphism classes of triples (L,∇, α), where L is an invertible sheaf on X × S,
∇ is an integrable connection on L relative to S, and α is an isomorphism
L ∼= OX over x0 × S. Forgetting ∇ defines a morphism b from Pic�

X to the Picard
scheme PicX of X. If L is an invertible sheaf on X × S, the set of integrable con-
nections on L is either empty or a torsor under the group H0(X, Z1

X×S/S) of closed
one-forms on X × S/S. Note that formation of the latter commutes with base change
and that H0(X, Z1

X/k)
∼= H0(X′, F∗Z1

X/k). Thus H0(X, Z1
X×S/S)

∼= H0(X′, F∗Z1
X/k)(S).

The Chern class map dlog : O∗
X → Z1

X/k defines a morphism c : PicX → H1(X, Z1
X/k),

and there is thus an exact sequence:

0 → H0
(
X, Z1

X/k

) → Pic�

X
b−→ PicX

c−→ H1
(
X, Z1

X/k

)
.

The proof of the following is then immediate (and well-known).

Proposition 4.11. — The above sequence is exact as a sequence of sheaves in the flat top-

ology. Furthermore, the functor Pic�

X is representable, and its tangent space at the origin is canonical

isomorphic to H1
d R(X/k). ��

If (L,∇) is an object of Pic�

X(S), its p-curvature can be viewed as an elem-
ent of H0(X′ × S,Ω1

X′×S/S). This defines a morphism of group schemes ψ : Pic�

X →
H0(X′,Ω1

X′/k). If L′ is an invertible sheaf on X′ × S trivialized along x′
0 × S, then

(FX/S × idS)
∗L is an invertible sheaf on X × S, and we can equip it with its canonical

Frobenius descent connection to obtain an element of Pic�

X(S). This defines a mor-
phism of group schemes φ : PicX′ → Pic�

X. An element in the kernel of b is given by
an integrable connection on OX×S, relative to S i.e., a closed one-form ω ∈ Ω1

X×S/S,
and the p-curvature of the corresponding connection is π∗

X×S/S(ω)− CX×S/S(ω), where
CX×S/S is the Cartier operator [19, 7.22]. Thus there is a commutative diagram:

PicX′

��
φ

��

F∗
X/S

MM
MM

MM
MM

MM
M

H0
(
X, Z1

X/k

)

��π∗
X/k−CX/k PPP

PPP
PPP

PPP
��a
Pic�

X
��b

��
ψ

PicX

H0
(
X′,Ω1

X′/k

)
,

(4.11.1)

where π∗
X/k is the composition:

H0
(
X, Z1

X/k

) → H0
(
X,Ω1

X/k

)
(4.11.2)

→ H0
(
X′,Ω1

X′/k

) = H0
(
X,Ω1

X/k

) ×F∗
k

k = H0
(
X,Ω1

X/k

)′
.
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Here the map H0(X,Ω1
X/k) → H0(X,Ω1

X/k)
′ is the relative Frobenius map of the

k-scheme H0(X,Ω1
X/k). The map CX/k in the diagram is the map of group schemes

induced by the linear map of vector spaces

CX/k : H0
(
X, Z1

X/k

) → H0
(
X′,Ω1

X′/k

)
.

Recall that there are two spectral sequences converging to de Rham cohomo-
logy: the Hodge spectral sequence, with Ei, j

1 = Hj
(
X,Ωi

X/k

)
, and the conjugate spec-

tral sequence, with Ei, j
2 = Hi

(
X,H

j
d R

) ∼= Hi(X′,Ω j
X′/k).

Lemma 4.12. — In the diagram of tangent spaces corresponding to Diagram (4.11.1),

H1(X′,O ′
X)

��
dφ

��

F∗
X/k

OOO
OOO

OOO
OOO

H0
(
X, Z1

X/k

)
��da

��−CX/k OOO
OOO

OOO
OOO

H1
d R(X/k) ��db

��
dψ

H1(X,OX)

H0
(
X′,Ω1

X′/k

)

db (resp. −dψ) is the edge homomorphism coming from the Hodge (resp. conjugate) spectral sequence,

and dψ ◦ da = −CX/k.

Proof. — Since π∗
X/k in Diagram (4.11.1) factors through the relative Frobenius

map in Formula (4.11.2) above, its differential is zero. Since CX/k is k-linear, it follows
that dψ ◦ da = −CX/k. To compute dψ, let S := Spec k[ε], let η ∈ H1

DR(X/k) and let
(L,∇) be the corresponding line bundle with connection over X × S. Then dψ(η) is
a section of H0(X′,Ω1

X′/k) and is determined by its restriction to any nonempty open
subset of X′. We can choose an open subset on which L is trivial, and hence reduce
to the previous calculation. This proves the claim. ��

As we have seen, FX/k∗DX/k defines an Azumaya algebra DX/k over T∗
X′/k; we

shall study the splitting of the pullback of this Azumaya algebra along the canoni-
cal map q : X′ × H0(X′,Ω1

X′/k) → T∗
X′/k. The universal (L,∇) defines a module over

the pullback of DX/k to X′ × Pic�

X, and since it is locally free of rank pdim X, it is
a splitting module. More generally, suppose we are given a morphism of k-schemes
f : Z → H0(X′/k,Ω1

X′/k) and a splitting module L over the pullback of DX/k to X′ ×Z
via the map idX′ × f . Then L is a coherent sheaf on X′ × Z equipped with an ac-
tion of the differential operators FX×Z/Z∗(DX×Z/Z), and in particular can be regarded
as a coherent sheaf with integrable connection on X×Z/Z whose p-curvature is equal
to the section of Ω1

X′×Z/Z defined by f . By Proposition 2.3, L is an invertible sheaf on
X × Z. By a rigidified splitting of DX/k along f we shall mean a pair (L, α), where L is
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a splitting module for (idX′ × f )∗q∗DX/k and α is a trivialization of the restriction of L
to x0 × Z. Thus the universal (L,∇, α) is a rigidified splitting of DX/k along ψ.

Proposition 4.13. — Let f : Z → H0(X′,Ω1
X/k) be a morphism and let (L,∇, α) be

the universal rigidified line bundle with connection on X × Pic�

X.

1. The map f �→ f ∗(L,∇, α) is a bijection between the set of isomorphism classes of rigid-

ified splittings of DX/k and the set of maps f̃ : Z → Pic�

X such that ψ f̃ = f .

2. If f as above is a morphism of commutative group schemes, then under the the bijection

above, the tensor splittings of (id × f )∗q∗F∗DX/k correspond to the group morphisms f̃
with ψ f̃ = f .

Proof. — We have seen that a rigidified splitting of (id × f )∗q∗F∗DX/k gives an
invertible sheaf (M,∇, α) with connection on X × Z whose p-curvature is given by
f and a trivialization of M on x0 × Z. Hence there is a unique map f̃ : Z → Pic�

X

such that f̃
∗
(L,∇, α) ∼= (M,∇, α), and necessarily ψ f̃ = f . This completes the proof

of (1), and (2) follows immediately. ��

4.4 Abelian varieties

Theorem 4.14. — Let A be an abelian variety over a perfect field k of characteristic p.

1. The Azumaya algebra F∗DA/k splits (non-canonically) over the formal comple-

tion T̂∗
A′/k.

14

2. There exists a tensor splitting of F∗DA/k over T̂∗
A′/k if and only if A is ordinary. For an

ordinary A, the tensor splitting is unique.

Proof. — It is known [22] that Hodge and conjugate spectral sequences for A
degenerate and that Pic�

A is smooth. Thus Lemma 4.12 implies that the differential of
ψ : Pic�

A → H0(A′,Ω1
A′/k) is surjective, and it follows that ψ is smooth. This implies

that ψ has a lifting over the formal completion of H0(A′,Ω1
A/k) at the origin, and

therefore by Proposition 4.13 that DA/k splits over A′ × Ĥ0(A′,Ω1
A′/k)

∼= T̂∗
A′/k.

It follows from Proposition 4.13 that giving a tensor splitting of F∗DA/k over Â′ is
equivalent to giving a group homomorphism

ψ̃ : V̂H0
(
A′,Ω1

A′
) → Pic�

A

such that ψ◦ψ̃ = id. The map b◦ψ̃ necessarily factors through Pic0
A, and since the lat-

ter is p-divisible, b◦ ψ̃ = 0. Hence ψ̃ factors through a in diagram (4.11.1) and can be
viewed as a morphism V̂H0(A,Ω1

A) → H(A, Z1
X/k). Since H0(A, Z1

X/k) = H0(A,Ω1
X/k),

the groups V̂H0(A, Z1
A/k) and V̂H0(A′,Ω1

A′) are smooth of the same dimension. Thus

14 This result is due to Roman Bezrukavnikov.
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the existence of ψ̃ is equivalent to the differential of ψ ◦ a at 0 being an isomorphism.
It follows from Lemma 4.12 that this restriction is the negative of the Cartier operator

CA/k : H0
(
A,Ω1

A/k

) → H0
(
A′,Ω1

A′/k

)
.

One of the equivalent definitions of an ordinary abelian variety is that CA/k is an iso-
morphism. This proves that lifting h exists if and only if A is ordinary. Moreover, for an
ordinary A the morphism ψ : V̂H0(A,Ω1

A) → V̂H0(A′,Ω1
A′) is an isomorphism. Thus,

in this case, the lifting is unique. We could also remark that an ordinary abelian var-
iety over a perfect field of characteristic p has a canonical lifting, together with a lifting
of F, and this gives a tensor splitting of T̂∗

A′/k by Theorem 2.11. ��

4.5 A counterexample: DX/k need not split on T̂X′/S

In this section, we will construct an example of a smooth proper surface X/k
over a perfect field k which lifts to W(k) but such that DX/k does not split over the
formal completion of T∗

X′/k along the zero section, or even over the formal completion
of X′ × H0(X′,Ω1

X′/k) along the zero section.

Lemma 4.15. — Let X/k be a smooth and proper scheme with a rational point x0. Assume

that the following properties hold:

1. dim H0(X,Ω1
X/k) = dim H1(X,OX),

2. FX acts as zero on H1(X,OX),

3. The Hodge spectral sequence of X/k degenerates at E1,

4. q∗F∗DX/k splits over the formal completion of X′×H0(X′,Ω1
X′/k) along the zero section.

Then PicX is reduced.

Proof. — It follows from assumption (3) that the Hodge and conjugate spectral
sequences of X/k degenerate at E1 and E2 respectively [19, 2.32], and so the row
and column of the commutative diagram of Lemma 4.12 are short exact. The map
h := F∗

X/k in the diagram below vanishes by assumption (2). This implies that the
map dφ factors as shown below through da. By (1) and (3) the induced map h′ is an
isomorphism, and it follows that CX/k is zero, and hence that dψ factors through an
arrow h′′ as shown.

H1(X′,OX′)

vv

h′

��
dφ

��

h

PPP
PPP

PPP
PPP

H0
(
X, Z1

X/k

)

��CX/k OOO
OOO

OOO
OOO

��da H1
d R(X/k)

��
dψ

��db H1(X,OX)

ww h′′

H0
(
X′,Ω1

X′/k

)
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Now suppose that FX/k∗DX/k splits over X′ × Ĥ0(X′,Ω1
X′/k). Choosing a rigidifi-

cation of the splitting module, we get a lifting ψ̃ of ψ over Ĥ0(X′,Ω1
X′/k), so dψ ◦ dψ̃

= id. Then h′′ ◦ db ◦ dψ̃ = id, so

db ◦ dψ̃ : H0
(
X′,Ω1

X′/k

) → H1(X,OX)

is injective. By (1), the source and target have the same dimension, so the differential
of the morphism b◦ψ̃ is an isomorphism. Since V̂H0(X′,Ω1

X′/k) is smooth, this implies
that PicX is smooth. ��

Let k be a perfect field of odd characteristic and let W be its Witt ring. We con-
struct an example of a smooth projective surface X̃/W whose special fiber X over
k satisfies (1)–(3), but whose Picard scheme is not reduced, using the technique of
Serre and its generalization by Raynaud [31, 4.2.3]. Let E be an elliptic curve over W
with supersingular reduction and denote by G the kernel of multiplication by p in E.
By [op. cit.], there exists a projective complete intersection Ỹ, flat of relative dimen-
sion two over W, with a free action of G and whose quotient X̃ := Ỹ/G is smooth
over W. By the weak Lefschetz theorem, Pic0

Ỹ
= 0, and it follows that Pic0

X̃
is the

Cartier dual of G, which can be identified with G itself. Since Pic commutes with
base change, the Picard scheme of the special fiber X is the special fiber G0 of G. In
particular G0 is not smooth. Replacing k by a finite extension, we may assume that
X has a rational point. Thus to produce our counterexample, it will suffice to prove
that X satisfies (1)–(3) of Lemma 4.15. The degeneration of the Hodge spectral se-
quence of X/k follows from its liftability. The endomorphism of H1(X,OX) induced
by FX corresponds via its identification with the tangent space of G0 to the Cartier
dual of the endomorphism induced by the Frobenius of G0 which in our case van-
ishes. Since PicX

∼= G0, H1(X,OX) is one-dimensional, and so to prove (1), it will suf-
fice to prove that H1

d R(X/k) is two-dimensional. We use Faltings’ comparison theorem
[12, 5.3] which relates the de Rham cohomology H1

d R(X/k) to the étale cohomology
H1

ét(X̃K, Fp). In particular, this theorem implies that these have the same dimension.
Since X̃K = ỸK/GK, GK

∼= Fp⊕Fp, and ỸK is simply connected, H1
ét(X̃K, Fp) ∼= Fp⊕Fp.

Thus H1
d R(X/k) is two dimensional, and (2) follows.

4.6 Fontaine modules

Throughout this section we assume that S is a smooth scheme over a field of
characteristic p.

Definition 4.16. — Let X/S be a smooth scheme and let X /S be a lifting. Fix integers

k ≤ l with l − k < p. Then a Fontaine module on X /S consists of a coherent sheaf with

integrable connection (M,∇) of MIC(X/S) and a Hodge filtration

0 = Fl+1M ⊆ FlM ⊆ · · · ⊆ FkM = M
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satisfying Griffiths transversality, together with an isomorphism

φ : C−1
X /Sπ∗

X/S(Gr·F M, κ) ∼= (M,∇),(4.16.1)

where the Higgs field κ is given by the Kodaira–Spencer operator

Gr ∇ : Gri
F M → Gri−1

F M ⊗ Ω1
X/S.

We will denote the category of Fontaine modules by MF[k,l ](X /S ). Although we
shall not do so here, one can check that if S is the spectrum of a perfect field k, and
the lifting X̃′ → S̃ = Spec W2(k) comes from a smooth formal scheme XW(k) over
W(k), the category MF[k,l ](X /S ) is equivalent to the full subcategory of p-torsion
objects in Faltings’ category MF∇

k,l(XW(k)) [11].
The formula Nm(Gr·F M, κ) = ⊕

i≤−m Gri
F M ⊂ Gr·F M defines a JX-filtration on

(Gr·F M, κ). Applying the isomorphism φ we obtain an IX-filtration on M:

NmM = C−1
X /Sπ∗

X/S

( ⊕

i≤−m

Gri
F M

) ⊂ M

together with an isomorphism of Higgs modules:

C
�

X/S (GrN M, Gr ψ) � π∗
X/S (GrF M, Gr ∇).(4.16.2)

Theorem 4.17. — Let (M,∇, F·M, φ) and (M′,∇′, F·, φ′) be Fontaine modules

over X. Then

1. For every integer i, the OX-module Gri
F M is locally free. In particular, M is a locally

free OX-module [11, Theorem 2.1].

2. Every morphism f : M → M′ of Fontaine modules is strictly compatible with the Hodge

filtration F·. In particular, the category MF[k,l ](X /S ) is abelian [ op. cit].
3. Let h : X → Y be a smooth proper morphism of relative dimension d , let h̃′ : X̃′ → Ỹ′

be a lifting of h′, and let (M,∇, F·, φ) ∈ MF[k,l ](X /S ) be a Fontaine module.

Assume that l − k + d < p. Then, the Hodge spectral sequence for RhDR
∗ (M, F·M)

degenerates at E1. Thus, by Theorem 3.22 b), for every integer i, we have a canonical

isomorphism

φ : C−1
Y /Sπ∗

Y/S

(
Gr·F RihDR

∗ M, κ
) ∼= (RihDR

∗ M,∇),(4.17.1)

which makes (RihDR
∗ M,∇, F·RihDR

∗ M, φ) a Fontaine module over Y. In particular, if

d < p, the DY/S-module RihDR
∗ OX is a Fontaine module [11].

4. The Chern classes ci(M) ∈ H2i
ét(X, Ql(i)), l �= p, i > 0 are all equal to 0.

Proof. — The key to parts a) and b) is the following general result, whose proof
can be found in [28, 8.2.3].
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Lemma 4.18. — Let Z be a smooth scheme over a field of characteristic p and let

0 = Fl+1M· ⊆ FlM· ⊆ · · · ⊆ FkM· = M·

be a bounded filtered complex of coherent OZ-modules. Assume that there exists a (not necessarily

filtered) quasi-isomorphism

F∗
Z GrF M· � M·.

Then the differential M· → M·+1 is strictly compatible with the filtration and, for every pair of

integers i and j, the OZ-module Hj(Gri
F M·) � Gri

F Hj(M·) is locally free.

Let us return to the proof of the theorem. Since the claims in parts (1) and (2)
are local on X we may assume that there exists a lifting F̃ of the Frobenius FX/S. By
Theorem 2.11, such a lifting induces a natural isomorphism of OX-modules

ηF̃ : C−1
X /S (E) � F∗

X/SE,(4.18.1)

for every E ∈ HIGp−1(X′/S). Composing this with (4.16.1) we obtain an isomorphism
of OX-modules

F∗
X GrF M � M.

Then the statements (1) and (2) follow from the lemma.
By Theorem 3.22 the lifting h̃′ induces an quasi-isomorphism

C−1
Y /Sπ∗

Y/SRhHIG
∗ (Gr·F M, κ) ∼= RhDR

∗ M.(4.18.2)

Applying (4.18.1) we obtain locally on Y an isomorphism in the derived category of
OY-modules

F∗
YRhHIG

∗ (Gr·F M, κ) ∼= RhDR
∗ M.

We can compute RhHIG
∗ (Gr·F M, κ) as follows. Endow the relative de Rham complex

Ω·
X/Y ⊗ M with the filtration

Fi(Ω·
X/Y ⊗ M) = (FiM → Ω1

X/Y ⊗ Fi−1M → · · · → Ωd
X/Y ⊗ Fi−dM),

and let (RhDR
∗ M, F·) be the filtered derived direct image of (Ω·

X/Y ⊗ M, F·). We then
have an isomorphism in the derived category of OY-modules

GrF RhDR
∗ M � RhHIG

∗ (Gr·F M, κ).
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Thus by Lemma 4.18, applied to the filtered complex of coherent OY-modules
(RhDR

∗ M, F·), the Hodge spectral sequence for RhDR
∗ (M, F·), (RhDR

∗ M, F·), degener-
ates at E1. Hence we get a canonical isomorphism of OY-modules

GrF RihDR
∗ M � RihHIG

∗ (Gr·F M, κ).(4.18.3)

It is well known15 that this isomorphism is compatible with the Higgs fields. Thus pass-
ing to the cohomology sheaves in (4.18.2) we obtain the desired isomorphism (4.17.1).
This completes the proof of statement (3).

For statement (4), we will first prove that for any OX-coherent N ∈ HIGp−1(X/S),
[
C−1

X /Sπ
∗
X/SN

] = F∗
X[N],

where [ ] denotes the class of a coherent OX-module in K′
0(X) = K0(X). Indeed,

choose any filtration N = N0 ⊃ N1 ⊃ · · · ⊃ Nm = 0 by Higgs submodules such that
Ni/Ni+1 ∈ HIG0(X/S). Then

(
C−1

X /Sπ
∗
X/SNi

)
/
(
C−1

X /Sπ
∗
X/SNi+1

) � C−1
X /Sπ

∗
X/S(N

i/Ni+1)

� F∗
X(Ni/Ni+1) � F∗

XNi/F∗
XNi+1.

This implies the claim.
In particular, for a Fontaine module (M,∇, F·M, φ) it follows that [M] = F∗

X[M].
Thus

ci([M]) = ci(F∗
X[M]) = pici([M]),

and we are done. ��
Proposition 4.19. — Let X be a smooth projective curve of genus g over a field spec k = S,

X̃′ → S̃ a lifting, and let (M,∇, F·, φ) belong to the category MF [0,n]. Assume that

n (rk M − 1) max {2g − 2, 1} < p − 1.

Then (Gr·F M, κ) is a semistable Higgs bundle.

Proof. — We have to show that (Gr·F M, κ) has no Higgs subbundles

(L, θ) ↪→ (Gr·F M, κ)

of positive degree. Replacing (L, θ) by ∧rk L(L, θ) and M by ∧rk LM (this is again
a Fontaine module) we reduce proposition to the following claim:

15 This fact should be compared with Katz’s formula (3.18.3). A conceptual proof of this result can be
obtained using an appropriate filtered derived category of D-modules. See, for example [35].
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For any Fontaine module (M,∇, 0 = Fn+1M ⊂ FnM ⊂ · · · ⊂ F0M = M, φ),
with n (2g − 2) < p − 1 the Higgs bundle (Gr·F M, κ) does not have one-dimensional
Higgs subbundles

(L, 0) ↪→ (Gr·F M, κ)(4.19.1)

of positive degree.
Assume that this is not the case and consider such an L of the largest possible

degree d > 0. Then any morphism (L′, 0) → (Gr·F M, κ), where L′ is a line bundle of
degree > d , is equal to zero. Consider the morphism

F∗
XL � C−1

X /Sπ
∗
X/S(L, 0) ↪→ C−1

X /Sπ
∗
X/S(Gr·F M, κ)

φ� M

induced by (4.19.1). We will prove by induction on m that the composition

F∗
XL → M → M/FmM(4.19.2)

is 0. Let us, first, check this for m = 1. Observe that the Higgs field κ restricted to
M/F1M ↪→ Gr·F M is 0. Thus

(F∗
XL, 0) → (M/F1M, 0) ↪→ (Gr·F M, κ)

is a morphism of Higgs bundles. Since deg F∗
XL = pd > d , this morphism must be equal

to zero.
Assume that the composition F∗

XL → M → M/Fm−1M is 0. Then (4.19.2) factors
through F∗

XL → Fm−1M/FmM. For any j, 0 ≤ j < m, consider the composition

ρj : F∗
XL → Fm−1M/FmM

κ j−→ Fm−1−jM/Fm−jM ⊗ (
Ω1

X/S

) j
,

and let j0 be the smallest integer less then m, such that ρj0 �= 0. Then ρj0 induces
a nonzero map of Higgs bundles

(
F∗

XL ⊗ (TX/S)
j0, 0

) → (
⊕

i≥ j0

Fm−1−iM/Fm−iM, κ) ↪→ (Gr·F M, κ).

However

deg (F∗
XL ⊗ (TX/S)

j0) = pd − j0(2g − 2) ≥ pd − n(2g − 2) > d.

This contradiction completes the proof. ��
Remark 4.20. — Let h : Y → X be a smooth proper morphism of relative

dimension d , and let h̃′ : Ỹ′ → X̃′ be a lifting. Then, for d < p, M = RnhDR
∗ OY is

a Fontaine module on X. Thus, by Proposition 4.19, if n (rk M − 1) max {2g − 2, 1} <
p − 1, (Gr·F M, κ) is semistable. By the standard technique this implies the following
result over the complex numbers.
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Theorem 4.21. — Let X be a smooth projective curve over C and let h : Y → X be

a smooth proper morphism. Then (Gr·F RnhDR
∗ OY, κ) is a semistable Higgs bundle.

This result was proved by analytic methods ( for any polarizable variation of
Hodge structure) by Beilinson and Deligne (unpublished) and later, in a greater gen-
erality, by Simpson [36] using a similar technique.

4.7 Proof of a theorem of Barannikov and Kontsevich

Let us recall the following striking result of Barannikov and Kontsevich, of which
the only published proof we know is due to Sabbah [34].

Theorem 4.22. — Let X/C be a quasi-projective smooth scheme over C. Suppose that

f ∈ Γ(X,OX) defines a proper morphism to A1/C. Then the hypercohomologies of the complexes

OX
d+∧df−−−→ Ω1

X/C

d+∧df−−−→ Ω2
X/C · · · and

OX
−∧df−−→ Ω1

X/C

−∧df−−→ Ω2
X/C · · ·

have the same finite dimension in every degree.

We shall show how our version of nonabelian Hodge theory can be used to
give a proof of this theorem by the technique of reduction modulo p. Since any pair
(X/C, f ) as in Theorem 4.22 comes from some “thickened” situation, it is clear that
the following result implies Theorem 4.22 by base change R → C.

Theorem 4.23. — Let S = Spec R be an affine, integral, and smooth scheme over Z, let

X /S be a smooth quasi-projective S-scheme, and let f̃ be a global section of OX which defines

a proper morphism: X → A1
S . Then, after replacing S by some étale neighborhood of its generic

point, the following results are true.

1. The hypercohomology groups

H∗(X ,Ω·
X /S , d + df̃ ) and H∗(X ,Ω·

X /S ,− ∧ df̃ )

are finitely generated free R-modules whose formation commutes with base change.

2. Let p be a prime, let X/S denote the reduction of X /S modulo p, and let X
FX/S−−→

X′ π−→ X be the usual factorization of FX. Then for every p, the complexes of OX′-

modules

FX/S∗OX
d+∧df−−−→ FX/S∗Ω1

X/S

d+∧df−−−→ FX/S∗Ω2
X/S · · ·

OX′
−∧dπ∗f−−−→ Ω1

X′/S

−∧dπ∗f−−−→ Ω2
X′/S · · ·

are quasi-isomorphic.
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The rest of this section will be devoted to a proof of Theorem 4.23. Along the
way we shall prove some auxiliary results which may be of independent interest, for
example the finiteness criterion given in Proposition 4.26 and Corollary 4.27. We be-
gin with a “cleaning” lemma.

Lemma 4.24. — With the notation of Theorem 4.23, let Z ⊆ X be the reduced zero

locus of df . Then after replacing S by some étale neighborhood of its generic point, the following

conditions are satisfied.

1. The morphism Z → S is proper, flat, and generically smooth, and for every p the re-

duction modulo p of Z is reduced.

2. The restriction of f to each connected component Z ′ of Z lies in the image of the map

Γ(S ,OS ) → Γ(Z ′,OZ ′).

Proof. — Note that formation of Z commutes with étale base change S ′ → S ,
so that our statement is not ambiguous. Let σ be the generic point of S . The state-
ments are trivial if the generic fiber of Zσ of Z /S is empty, so let us assume that
this is not the case. By the theorem of generic flatness [13, 6.9.1], we may assume
that Z is flat over S . Then the map from each irreducible component Zi of Z to
S is dominant and the generic fiber of Zi is an irreducible component of Zσ . Lo-
calizing further if necessary, we may assume that if Zi and Zj intersect, then so do
their generic fibers. There is a finite extension k ′ of k(σ) such that all the connected
components of Zk ′ are geometrically connected and have a k ′-rational point. Replac-
ing S by an étale neighborhood of σ , we may assume that k ′ = k(σ). Since Zσ is
reduced and k(σ) is a field of characteristic zero, Zσ/σ is generically smooth. Since
the differential of f|Zσ

vanishes, its restriction to the smooth locus Z sm
σ of Zσ is locally

constant. Thus for each irreducible component Zi of Z , there exists an element ci

in k(σ) (the value of f at a rational point) such that f = ci on Z sm
iσ . Since Zi is re-

duced, this holds on all of Zi. If Zi and Zj intersect, so do Ziσ and Zjσ , and it follows
that ci = cj . Thus ci depends only on the connected component of Zσ containing Zi.
Furthermore, localizing on S̃, we may assume that each ci belongs to R. Thus (2) is
proved. Now if Z ′ is a connected component of Z , the composite Z ′ → X → A1

S

factors through the section of A1
S /S defined by the appropriate element of R, Since

X → A1
S is proper, so is each Z ′ → S and hence the same is true of Z → S .

We have now attained all the desired properties of Z , except for the reduced-
ness of its reductions modulo p, which is a consequence of the following (probably
standard) lemma.

Lemma 4.25. — Let Z be a reduced scheme of finite type over Spec Z. Then for almost

all primes p, the reduction modulo p of Z is reduced.

Proof. — In the course of the proof, we may without loss of generality replace
Z by the open subset defined localization by any positive integer. In particular, by
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the theorem of generic flatness, we may assume that Z is flat over Z. Since ZQ/Q
is reduced and of finite type, it is generically smooth over Z. Let η : Y → Z be
the normalization mapping. Then Y is also generically smooth over Z. Thus each
irreducible component Y 0 of Y contains a proper closed subscheme Y 1 such that
Y 0 \ Y 1 → S is smooth. For almost all p, the reduction modulo p of Y 1 has strictly
smaller dimension than that of the reduction modulo p of Y 0, and we may assume
this is true for all p. Then the map Y → Spec Z remains generically smooth mod-
ulo p for every p. By [13, 7.7.4], η is finite, and hence the cokernel Q of η� : OZ →
η∗OY is a coherent sheaf of OZ -modules. Again by the lemma of generic flatness,
TorZ

1 (Q , Fp) = 0 for all but finitely many p. Shrinking, we may assume that this is
true for all p. It then follows that the reduction modulo p of η� remains injective for
all p. Since Y is normal, it satisfies Serre’s condition S2, and since each p defines
a nonzero divisor on Y the fiber Y of Y over p satisfies S1. Since Y is generically
smooth over Fp, it is generically reduced, and since it satisfies S1, it is reduced. Since
η� is injective mod p, the fiber Z of Z over p is also reduced. ��

��

Let E := (OX , d + df̃ ) ∈ MIC(X /S ) and let L := (OX , df̃ ) ∈ HIG(X /S );
we denote by just E and L their respective reductions modulo a prime p of Z. Let
J ⊆ OX be the ideal of the scheme-theoretic zero locus of df̃ . This is just the ideal
generated locally by the set of partial derivatives of f̃ in any set of local coordinates for
X /S . The Higgs complex L ⊗Ω·

X /S of L can be locally identified with the Koszul
complex of this sequence of partials, and it follows that the cohomology sheaves of
L ⊗ Ω·

X /S are annihilated by J [10, 17.14]. Since the closed subscheme of X de-
fined by the radical of J is Z , which is proper over S , the hypercohomology groups
Hi(L ⊗ Ω·

X /S ) are finitely generated R-modules. Since R is reduced, they are free
in some neighborhood of the generic point of S , which we may assume is all of S .
Since the terms in the complex L ⊗ Ω·

X /S are flat over S , the formation of its hy-
percohomology will then commute with all base change. This completes the proof of
Theorem 4.23.1 for the Higgs complex.

The proof for the de Rham complex is more difficult; in general, the de Rham
cohomology groups of a coherent sheaf with integrable connection on a smooth
scheme of finite type over Z are not finitely generated. (For example, the de Rham
cohomology of the trivial connection on A1

Z is not finitely generated.) We will use the
technique of logarithmic geometry to study the irregularity of the connection d + df
to obtain the finiteness we need.

Let Y/S be a smooth morphism of fine saturated and noetherian log schemes.
We just write Ω·

Y/S for the logarithmic de Rham complex of Y/S [17]. If m is a sec-
tion of MY, the set Ym of all y ∈ Y such that my ∈ M∗

Y,y is open in Y. In fact, since
α : MY → OY is a log structure, y ∈ Ym if and only if αY(m) ∈ O∗

Y,y. Let us assume
that αY(m) is a nonzero divisor of OY, so that it defines a Cartier divisor D of Y and
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Ym = Y \ D. Suppose we are given a torsion free coherent sheaf E on Y and an in-
tegrable connection ∇ on j∗E, where j : Ym → Y is the inclusion. Then ∇ induces
a connection on j∗ j∗E ∼= E(∗) := lim−→ E(nD). If ∇ maps E to E ⊗ Ω1

Y/S, then E has
regular singular points along D; we wish to measure the extent to which this fails.
Since E is coherent, ∇ maps E to E ⊗ Ω1

Y/S(nD) for some n; replacing m by mn we
may assume that n = 1. Since da ∈ IDΩ1

Y/S(D) for all a ∈ OY, the map

θD : E ⊗ OD → E ⊗ Ω1
Y/S(D)|D

induced by ∇ is OD-linear. It follows from the integrability of ∇ that θD defines an ac-
tion of the symmetric algebra S·(IDTY/S) on E|D , so that E|D can be viewed as a mod-
ule over V(IDTY/S).

The following result is inspired by of a result of Deligne [6, II, 6.20] which was
pointed out to us by H. Esnault.

Proposition 4.26. — Suppose that in the above situation θD is noncritical, i.e., that the

support of the V(IDTY/S)-module ED defined by (ED, θD) is disjoint from the zero section. Suppose

further that Y/S is proper and that S = Spec R. Then for every i, Hi(Y \ D, E ⊗ Ω·
Y/S) is

a finitely generated R-module.

Proof. — Let Ω
q
Y/S(∗) := j∗ j∗Ωq

Y/S and for each natural number n, let

Fn

(
E ⊗ Ω

q
Y/S

)
(∗) := E ⊗ Ω

q
Y/S((n + q)D) ⊆ j∗ j∗

(
E ⊗ Ω

q
Y/S

)
.

Then F· defines an exhaustive filtration of the complex E ⊗ Ω·
Y/S(∗) by coherent

sheaves. Since Y/S is proper, for each n and i, Hi(FnE ⊗ Ω·
Y/S(∗)) is finitely gener-

ated over R. Thus it will suffice to show that for each n ≥ 0, the natural map

FnE ⊗ Ω·
Y/S(∗) → E ⊗ Ω·

Y/S(∗)

is a quasi-isomorphism, and for this it will suffice to prove that for each n ≥ 0, the
map

F0E ⊗ Ω·
Y/S(∗) → FnE ⊗ Ω·

Y/S(∗)

is a quasi-isomorphism. This will follow by induction if for every n > 0, GrF
n E ⊗

Ω·
Y/S(∗) is acyclic.

Multiplication by gn defines an isomorphism FnE(∗) → F0E(∗) which induces
an isomorphism

E(nD)|D = GrF
n E(∗) → GrF

0 E(∗) = E|D.

If e ∈ FnE, then ∇(e) ∈ FnE ⊗ Ω1
Y/S(D) and ∇( gne) ∈ E ⊗ Ω1

Y/S(D). Since g = α(m)

and dg = g dlog m,

∇( gne) = ngne ⊗ dlog(m) + gn∇(e) ∈ E ⊗ Ω1
Y/S(D).
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Since gne ⊗ dlog(m) ∈ E ⊗ Ω1
Y/S, ∇( gne) reduces to gn∇(e) in E ⊗ Ω1

Y/S(D)|D . Thus
multiplication by gn identifies GrF

n ∇ with θD for all n ≥ 0. This identification extends
to an isomorphism of complexes

GrF
n (E ⊗ Ω·

Y/S(∗)) ∼= GrF
0(E ⊗ Ω·

Y/S(∗)).

But Gr0
F(E ⊗ Ω·

Y/S(∗)) is just the Higgs (Koszul) complex of θD, whose cohomology
sheaves can be identified with Ext∗OV

(i∗OX, ED), where i : X → V is the zero section
of V := V(IDTY/S). These vanish since θD is noncritical. ��

The following corollary then completes the proof of statement (1) of The-
orem 4.23: take (E,∇) to be the constant connection on X /S .

Corollary 4.27. — Let X/S be a smooth quasi-projective scheme over S = Spec R, where

R is a flat and finitely generated Z-algebra. Let (E,∇) be a coherent sheaf with integrable connection

on X/S whose restriction to the generic fiber of X/S has regular singularities at infinity. Suppose

that f ∈ OX(X) is a global function which defines a proper morphism X → A1
S, and let (E′,∇′)

be the df -twist of (E,∇): E′ = E, and ∇′ := ∇ + ∧df . Then after replacing S by some

affine neighborhood of the generic point of S, the de Rham cohomology H∗(X, E′ ⊗Ω·
X/S) is finitely

generated and free over R.

Proof. — Let σ be the generic point of S. We may find a projective compact-
ification Xσ of Xσ , and after blowing up Xσ outside of Xσ we may assume that f
extends to a morphism Xσ → P1

σ , which we still denote by f . After a further blowing
up outside of Xσ , we may assume that Xσ is smooth over σ and that the complement
of Xσ in Xσ is a divisor with strict normal crossings. Then the log scheme Yσ obtained
by endowing Xσ with the log structure corresponding to the inclusion Xσ → Xσ is
(log) smooth. Furthermore, f extends to a morphism of log schemes Yσ → P1

σ , where
P1

σ is the log scheme P1
σ obtained by endowing P1

σ with the log structure corresponding
to the inclusion A1

σ → P1
σ .

Let t be the coordinate of A1
σ and let s := t−1, which is a local generator of the

ideal of ∞. There is a unique local section m of the sheaf of monoids MP1
σ

over V
with s := αP1

σ
(m), and dlog m is basis for the stalk of Ω1

P1
σ

at ∞. Let y be a point of
D := f −1(∞). Then in an étale neighborhood of y, there exists a system of coordi-
nates (t1, · · ·, tn) and natural numbers r, e1, ..., er such that such that f ∗(s) = te1

1 · · · ter
r .

Then f ∗(dm) = ∑
i ei dlog ti, which is nonvanishing in the fiber of Ω1

Yσ /σ at y. (This
implies that f is log smooth at y.) Since (E,∇) has regular singularities at infinity,
there is a coherent (even locally free) extension E of E to Yσ and a log connection
∇ : E → E ⊗ Ω1

Yσ/σ extending ∇. Now df = f ∗(dt) = −s−2ds = −s−1f ∗ dlog m. Thus
∇′ maps E to E ⊗ Ω1

Yσ/σ (D), and θD is the map E|D → E|D ⊗ Ω1
Yσ/σ sending e to

−e ∧ s−1 dlog m. This is an isomorphism, so θD is noncritical. There exists an affine
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neighborhood of the generic point of S over which all this remains true, and without
loss of generality we may assume they are true for Y/S. Then Proposition 4.26 implies
that the de Rham cohomology groups of (E,∇) over Y\D = X are finitely generated
over R; shrinking further we may assume they are free. ��

We now turn to the proof of statement (2) of Theorem 4.23. Assume that X /S
satisfies the conditions in (1) of Theorem 4.23 and in Lemma 4.24. Fix a prime p, let
X/S be the reduction of X /S modulo p, and let S1 be the reduction of S mod-
ulo p2. Since S /Z is smooth and affine, there exists a lifting FS of the absolute Frobe-
nius endomorphism of S to S1 and hence a Cartesian square:

X ′
1

��

��π̃
X1

��
S1

��FS
S1.

(4.27.1)

We shall abuse notation and write CX /S for the Cartier transform defined by the
lifting X ′

1/S1 of X′/S.
Let (E,∇) be the restriction of (E ,∇) to X/S. According to [19, 7.22], the

p-curvature ψ : E → E ⊗ F∗
X/SΩ

1
X′/S is multiplication by

F∗
X(df ) − F∗

X/SCX/S(df ) = F∗
X/Sπ

∗(df ).

Since this is not nilpotent, we cannot apply our Cartier transform to it directly. Our
approach will be to approximate E by nilpotent connections, and we shall see that the
Cartier transform of these approximations approximate L.

In general, if (E,∇) is a connection on a smooth X/S in characteristic p,
FX/S∗(E) becomes an S·TX′/S module via the p-curvature ψ, and since ψ acts hori-
zontally, the quotient E(n) of E by the nth power of the ideal S+TX′/S of S·TX′/S in-
herits a connection. In fact, this quotient is the maximal quotient of E on which the
connection is nilpotent of level n − 1. In the situation at hand, we can be quite ex-
plicit. Let J ⊆ OX be the ideal of the zeroes of df , i.e., the ideal generated by the
partial derivatives of f in any local system of coordinates. Then E(n) is the quotient of
E by F∗

X( Jn). Our next goal is the computation of the Cartier transform of a suitable
quotient of E(n).

Proposition 4.28. — Suppose that X /S and f̃ satisfy the conditions of Lemma 4.24,

and let Z be the reduction of Z modulo p. Let n be a natural number and

E := (OX, d + df ) ∈ MIC(X/S)

En := (
E/F∗

X

(
In

Z

)
E, d + df

) ∈ MIC(X/S)

L := (OX,−df ) ∈ HIG(X/S)

Ln := L/In
ZL ∈ HIG(X/S)

L′
n := π∗Ln ∈ HIG(X′/S).
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Finally, let r be the maximum codimension of Z in X . Then if p > rn, the Cartier transform

CX /S(En) of En with respect to X ′
1/S1 is isomorphic to L′

n.

Proof. — Note that, by definition, IZ is the radical of the ideal J, so En is indeed
a quotient of E(n) and CX /S (En) is defined. It is enough to prove the proposition after
restricting to each connected component of Z . To simplify the notation, we shall as-
sume that Z is connected. Replacing f̃ by f̃ − c̃, for a suitable c̃ ∈ Γ(OS ) as in (2) of
Lemma 4.24, we may assume that the restriction of f̃ to Z vanishes.

Recall from Proposition 1.14 that the lifting π̃ of π : X′ → X determines a map
δπ̃ : OX → AX /S .

Claim 4.29. — Let α := δπ̃( f̃ ) ∈ AX /S and let

β := 1 + α + α2

2! + · · · + αp−1

(p − 1)! ∈ AX /S .

Then:

1. αr ∈ F∗
X(IZ)AX /S ,

2. ψA (β) = (
β − α p−1

( p−1)!
) ⊗ F∗

Xdf , and

3. ∇A (β) = −(β − α p−1

( p−1)!) f p−1 ⊗ df .

Proof. — By (1) of Lemma 4.24, Z is reduced and in particular satisfies
Serre’s condition S1. Since X is regular, its absolute Frobenius endomorphism is flat,
and hence the inverse image Z( p) of Z by FX still satisfies S1. (To see this, let j : U → Z
be the inclusion of any dense open subset of Z and observe that the map OZ → j∗ j∗OZ

is injective, and remains so after pullback by FX.) Since SpecX AX /S is smooth over X,
the inverse image of Z( p) in SpecX AX /S also satisfies S1. Thus it suffices to check (1)
at the generic points of Z, and since Z/S is generically smooth, we may assume that it
is smooth. We may work in a neighborhood of a point of Z with the aid of a system of
local coordinates (t̃1, ..., t̃n) for X /S such that IZ = (t̃1, ..., t̃s). Let F̃ : X1 → X ′

1 be
the lift of FX/S sending π̃∗ t̃ i to t̃ p

i for all i. This defines a splitting of the fundamental
exact sequence (1.4.1), and hence an isomorphism

N1AX /S = EX /S
∼= OX ⊕ F∗

X/SΩ
1
X′/S.

Proposition 1.14 says that, in terms of this splitting, α = ( g, F∗
Xdf ), where F̃∗π̃∗( f̃ ) =

f̃ p + [p]g. Since f̃ ∈ IZ f̃ p belongs to Ip
Z , and since F̃∗π̃∗ maps IZ to Ip

Z , it follows
that [p]g ∈ Ip

Z . It follows from the smoothness of Z and X over S that the closed
subscheme of X defined by Ip

Z is flat over S , and hence that g ∈ Ip
Z. Then g s ∈ Ips

Z ,
and since IZ has s generators, Ips

Z ⊆ F∗
XIZOX, so in fact g s ∈ F∗

XIZOX. Since df ∈ IZΩ1
X/S

by hypothesis, F∗
Xdf ∈ F∗

X(I)F∗
X′/S(Ω

1
X′/S). Thus αs ∈ F∗

X(IZ)AX /S , and since s ≤ r, the
same is true of αr . This proves (1).
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Recall from Proposition 1.14 that ψA (α) = F∗
Xdf . Hence

ψA (β) =
(

1 + α

1! + α2

2! + · · · + αp−2

(p − 2)!
)

ψ(α)

=
(

β − αp−1

(p − 1)!
)

⊗ F∗
Xdf .

This proves (2). Proposition 1.14 also says that ∇A (α) = −f p−1df , so a similar calcu-
lation proves (3). ��

Recall from Theorem 2.23 that

C−1
X /S (L′

n) := (
L′

n ⊗ FX/S∗AX /S

)ψtot
.

As an OX-module, L′
n ⊗ FX/S∗AX /S

∼= AX /S/F∗
X(In

Z)AX /S . Since αrn ∈ F∗
X(In

Z) by (1)
of the claim, this module is annihilated by αp−1 if p > rn. Hence

ψA (β) = β ⊗ F∗
Xdf in L′

n ⊗ AX /S ⊗ F∗
X′/SΩ

1
X′/S.

Hence if we view β as a global section of L′
n ⊗ AX /S , we find

ψtot(β) = ψL(1)β + ψA (β) = −β ⊗ π∗df + β ⊗ π∗df = 0.

Thus β ∈ C−1
X /S (L′

n) = (L′
n ⊗ AX /S )ψtot , and in fact β is a basis for C−1

X /S (L′
n) since it

is a unit modulo I. Furthermore, it follows from (3) of the claim that

∇tot(β) = −β ⊗ f p−1df ∈ E′
n ⊗ Ω1

X/S.

Now consider the Artin–Hasse exponential of f , which is given formally by

g := exp( f + f p/p + f p2
/p2 + · · · ),

and which in fact has p-adically integral coefficients. Then

g−1dg = (1 + f p−1 + f p2−1 + · · · )df .

Since f ∈ IZ and p > n, f p2−1 = F∗
X( f p−1) f p−1 ∈ F∗

X(In
Z), so

dg = g(1 + f p−1)df mod F∗
X(In

Z).

Since g is a unit, e := gβ is also a basis for C−1
X /S (L′

n), and

∇(e) = g∇(β) + β ⊗ dg

= −gβ ⊗ f p−1df + g(1 + f p−1df )β ⊗ df

= e ⊗ df .

In other words, C−1
X /S (L′

n) is isomorphic to En, as claimed. ��
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We shall also need the following general result about morphisms in the derived
category.

Proposition 4.30. — Let X be a noetherian scheme or formal scheme, let K· be a perfect

complex of coherent sheaves of OX-modules, and let J be a sheaf of ideals annihilating the cohomology

sheaves of K. Then there exists a natural number n such that for all m > 0, the map in the derived

category

Jn+m L⊗ K· → Jm L⊗ K·
induced from the inclusion Jn+m → Jn is zero.

Proof. — First we prove the statement for the induced maps on cohomology
sheaves. We may cover X by a finite number of open affines on each of which K· is
quasi-isomorphic to a bounded complex K̃·of locally free OX-modules. and it suffices
to prove the local statement on each of these open sets. Thus we may assume that

X = Spec A and replace K· by Γ(X, K̃·). Then Jm
L⊗ K· ∼= Jm ⊗ K· for all m. Let

Bq ⊆ Zq ⊆ Kq be the boundaries, (resp. cycles, resp. chains) of K· in degree q. By
the Artin–Rees lemma, there exists an integer r such that Zq ∩ Jm+rKq ⊆ JmZq and
Bq ∩ Jm+rKq ⊆ JmBq for all m ≥ 0. The hypothesis on J implies that JZq ⊆ Bq. Hence if
n > r, Zq ∩ Jm+nKq ⊆ JZq ⊆ Bq, so

Zq ∩ Jm+nKq ⊆ Bq ∩ Jm+nKq ⊆ JmBq.

Since Kq is free, Zq( Jm+nKq) = Zq ∩ Jm+nKq and JmBq = Bq( JmK). It follows that the
map Hq( Jm+nK) → Hq( JmK) is zero.

The following lemma then completes the proof of the proposition.

Lemma 4.31. — Let K0
f0−→ K1

f1−→ K2
f2−→ · · · fn−→ Kn+1 be a sequence of morphisms

in the derived category of an abelian category. Suppose that each Ki has cohomological amplitude in

[a, a + n] and that the maps H∗(Ki) → H∗(Ki+1) are all zero. Then the composition K0 →
Kn+1 is zero.

Proof. — The proof is by induction on n. If n = 0, there is nothing to prove, since
Ki

∼= Ha(Ki) for all i. Let τ< denote the canonical filtration [2], let f := f1 f2... fn+1,
and consider the following diagram:

Ha+n(K0)[−a − n] ��Ha+n( f0)
Ha+n(K1)[−a − n]

K0

OO

��f0 K1

OO

α

��f
Kn+1

τ<a+nK0

OO

�� τ<a+nK1

OO

β

��f ′
τ<a+nKn+1.

OO
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Since Ha+n( f0) = 0, αf0 = 0 and since β and α comprise a distinguished triangle, it
follows that f0 factors through β. The induction hypothesis implies that f ′ = 0, and it
follows that f f0 = 0. This proves the claim. ��

��
Corollary 4.32. — Let L := (OX ,−df ) ∈ HIG(X /S ), let L̂ denote its formal

completion along Z , and let b : L → Ln denote the projection to the restriction of L to the nth

infinitesimal neighborhood of Z . Then for sufficiently large n, there exists a map s in the derived

category making the diagram below commute.

L̂ ⊗ Ω·
X /S

��
id

��b Ln ⊗ Ω·
X /S

xx
s

pp
pp
pp
pp
pp
p

L̂ ⊗ Ω·
X /S

Proof. — Let us write L̂ · for the complex L̂ ⊗ Ω·
X /S , and consider for each

natural number n the exact sequence of complexes

0 → In
Z L̂ · → L̂ · → L ·

n → 0.

There is then a corresponding exact sequence of abelian groups

Ext0(L ·
n , L̂ ·) → Ext0(L̂ ·, L̂ ·) → Ext0

(
In
Z L̂ ·, L̂ ·),

where Ext0 means hyperext, or equivalently, the group of morphisms in the derived
category. It will thus suffice to prove that the identity element of Ext0(L̂ ·, L̂ ·) maps
to zero in Ext0(In

Z L̂ ·, L̂ ·). But the image of the identity element is just the class of
the inclusion mapping, which vanishes for n sufficiently large by Proposition 4.30. ��

Proof of Theorem 4.23. — Choose n as in Corollary 4.32 and localize S so that all
primes less than the maximum of rn and n+dim(X /S ), become invertible. Let X/S
and Z/S denote the reductions of X /S and Z /S modulo one of the remaining
primes p. Let X/Z denote the formal completion of X along Z, let Ê := E/Z and
L̂′ := L′

/Z, and consider the following diagram:

FX/S∗(E ⊗ Ω·
X/S)

��a FX/S∗(Ê ⊗ Ω·
X/S)

��
h

��p
FX/S∗(En ⊗ Ω·

X/S)

��
cn

L′ ⊗ Ω·
X′/S

��a′
L̂′ ⊗ Ω·

X′/S
��b′
L′

n ⊗ Ω·
X′/S.oo

s′
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Here a, p, a′, and b′ are the obvious maps, cn is the quasi-isomorphism coming from
Theorem 2.26, s′ is the pullback via π of the map s of Corollary 4.32, and h :=
s′cnp. Note that we do not know if b′h = cnp. The arrow a is a quasi-isomorphism
by Proposition 2.31 and a′ is a quasi-isomorphism by a similar (easier) argument. We
shall show that h is a quasi-isomorphism, completing the proof of Theorem 4.23.

Since our statement is local, we may restrict to an open affine subset U of X and
then choose a lifting F̃ of FX/S mod p2. Let CF̃(Ê) be the formal Cartier transform of
Ê described in Proposition 2.32 with respect to this lifting.

Claim. — There exists an invertible sheaf Λ on X′
/Z such that CF̃(Ê) ∼= L⊗OX′ Λ,

where Λ is given the trivial Higgs field.
Indeed, the F-Higgs module corresponding to the p-curvature of C−1

F̃
(L̂′) is

F∗
X/SL̂′, and hence the p-curvature of Hom(Ê, C−1

F̃
(L̂′)) is zero. Hence there exists an

invertible sheaf Λ on X′ such that Hom(Ê, C−1
F̃

(L̂′)) ∼= F∗
X/SΛ with the Frobenius de-

scent connection. Then CF̃(Ê) ∼= L′ ⊗OX′ Λ, where Λ has the trivial Higgs field.
By the compatibility of CF̃ and CX /S , the isomorphism αn : CX /S (En) ∼= L′

n of
Proposition 4.28 defines a trivialization of Λn. Restricting to smaller affine if necessary,
we may assume that Λ is trivial, and choose an extension α of αn to an isomorphism
CF̃(Ê) → L̂′. Now consider the commutative diagram of maps in the derived category:

FX/S∗(Ê ⊗ Ω·
X/S)

��
e

��p
FX/S∗(En ⊗ Ω·

X/S)

��
c

ĈF̃(Ê) ⊗ Ω·
X′/S

��
α

��b′′
CX /S (En) ⊗ Ω·

X′/S

��
αn

L̂′ ⊗ Ω·
X′/S

��b′
L′

n ⊗ Ω·
X′/S.

The arrows e and c are quasi-isomorphisms by Proposition 2.32 and Theorem 2.26,
respectively, and α and αn are quasi-isomorphisms by construction. Furthermore,
cn = αnc, so

h = s′cnp = s′αncp = s′αnb′′e = s′b′αe = αe

and hence is a quasi-isomorphism. ��

5 Appendix: Higgs fields and Higgs transforms

5.1 Higgs fields over group schemes

Let X/S be a smooth morphism of schemes, let ΩX/S be its sheaf of Kahler dif-
ferentials and TX/S the dual of ΩX/S. Recall that a Higgs field on a sheaf E of
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OX-modules is any of the following equivalent sets of data:

1. an OX-linear map θ : E → E ⊗ΩX/S such that the composition of θ with the
map E ⊗ ΩX/S → E ⊗ Λ2ΩX/S induced by θ vanishes

2. a linear map θ : TX/S → EndOX(E) with the property that the endomorphisms
associated to any two sections of TX/S commute

3. an extension θ of the OX-module structure on E to an S·TX/S-module struc-
ture.

If E is quasi-coherent, then associated to the S·TX/S-module E is a quasi-coherent
sheaf Ẽ of OT∗-modules on the cotangent bundle T∗

X/S of X/S. Conversely, if Ẽ is
such a sheaf, its direct image on X is a quasi-coherent sheaf of OX-modules equipped
with a Higgs field.

These definitions make sense with any locally free sheaf T in place of TX/S and
with the vector bundle VT := SpecX S·T in place of cotangent bundle. In fact, it
will be useful for us to work in an even more general context, in which the vector
bundle T∗

X/S is replaced by any commutative affine group G scheme over X. Abus-
ing notation, we shall denote by OG the sheaf of OX-bialgebras on X corresponding
to G.

Definition 5.1. — Let G be a commutative flat affine group scheme over X and let E be

a sheaf of OX-modules on X. A G-field on E is a structure θ of an OG-module on E, compatible

with the given OX-module structure via the map OX → OG.

We denote by G-HIG the category whose morphisms are sheaves of OX-modules E
equipped with a G-field θ and whose objects are morphisms compatible with the
G-fields. We will often omit the θ from the notation when no confusion seems likely
to result. As before, there is an evident equivalence between the category of quasi-
coherent objects in this category and the category of quasi-coherent sheaves on G.
Since we will have to deal with sheaves which are not quasi-coherent, we will not
make use of the topological space SpecX OG. Nevertheless we will try to use geo-
metric notation whenever possible. Thus, if A is a sheaf of OX-algebras, we denote
by Mod(A ) the category of sheaves of A -modules on the topological space X. If
γ � : A → B is a homomorphism of sheaves of OX-algebras, we have functors:

γ ∗ : Mod(A ) → Mod(B) : M �→ B ⊗A M

γ∗ : Mod(B) → Mod(A ) : N �→ N, with an := γ �(a)n

γ ! : Mod(A ) → Mod(B) : M �→ HomA (γ∗B, M),

with (bh)(b′) := h(bb′),

together with the standard adjunction isomorphisms:

HomA (M, γ∗N) ∼= γ∗ HomB(γ ∗M, N)

HomA (γ∗N, M) ∼= γ∗ HomB(N, γ !M).
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Note that even if A and B are quasi-coherent, the functor γ ! does not preserve quasi-
coherence, in general.

In our context we shall consider the following morphisms of X-schemes and the
corresponding morphisms of sheaves of OX-algebras. Here all fiber products are taken
in the category of X-schemes and all tensor products in the category of OX-modules.

Notation 5.2.

pi : G × G → G : ( g1, g2) �→ gi, p�

i : OG → OG ⊗ OG

σ : G × G → G × G : ( g1, g2) �→ ( g2, g1), σ� : OG ⊗ OG → OG ⊗ OG

ι : G → G : g �→ g−1, ι� : OG → OG

µ : G × G → G : ( g1, g2) �→ g1g2, µ� : OG → OG ⊗ OG

µ′ : G × G → G : ( g1, g2) �→ g2g−1
1 , µ′� : OG → OG ⊗ OG

i : X → G : x �→ 0, i� : OG → OX

p : Gn → X : ( g1, ..., gn) �→ p( gi), p� : OX → OGn

j : G → G : g �→ 0, j� : OG → OG

These are the projections pi, the inversion mapping ι, the group law µ, the
twisted group law µ′ := µ ◦ σ ◦ (ι × id), the augmentation given by the zero sec-
tion of G, the structure map Gn → X, and the map p ◦ i. Note that since ι2 = idG,
ι∗ = ι∗. If E is any object of G-HIG, we let Eι := ι∗E = ι∗E.

5.2 Convolution

Definition 5.3. — Let (E1, θ1) and (E2, θ2) be two objects of G-HIG. Then

1. E1 � E2 := p∗
1E1 ⊗OG×G p∗

2E2, as an object of G × G-HIG.

2. E1 � E2 := µ∗(E1 � E2), as an object of G-HIG.

For example, if (E1, θ1) and (E2, θ2) are objects of HIG(X/S), then E1 � E2 is
the tensor product of E1 and E2 in the category of OX-modules, with the Higgs field
θ defined by

θ = θ1 ⊗ idE2 + idE1 ⊗ θ2.

Geometrically, the object (E1 ⊗ E2, θ) corresponds to the convolution of E1 and E2

with respect to the group structure of the cotangent space of X/S.
The associative law for G implies that the standard isomorphism

(E1 ⊗ E2) ⊗ E3
∼= E1 ⊗ (E2 ⊗ E3)

induces an isomorphism

(E1 � E2)� E3
∼= E1 � (E2 � E3).
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Similarly, the commutativity of G implies that the standard isomorphism E1 ⊗ E2
∼=

E2 ⊗ E1 induces an isomorphism

E1 � E2
∼= E2 � E1.

Furthermore, if we let

U := i∗OX ∈ G-HIG,

then the fact that i is the identity section implies that the natural isomorphism
OX ⊗OX E ∼= E induces an isomorphism in G-HIG:

U� E ∼= E.

Thus � makes the category G-HIG into an OX-linear tensor category [9] (ACU ten-
sor category in the terminology of [32]), and U is its unit object.

Definition 5.4. — Let E1 and E2 be objects of G-HIG. Then

Hex(E1, E2) := HomOG×G

(
p∗

1E1, p!
2E2

)

H (E1, E2) := µ′
∗ Hex(E1, E2).

We call Hex(E1, E2) the external Hom of E1 and E2. Its underlying OX-module is
given by

HomOX(p∗E1, p∗E2) ∼= p∗ HomOG(p∗p∗E1, E2) ∼= p∗ HomOG(p2∗p∗
1E1, E2)

∼= p∗ HomOG×G

(
p∗

1E1, p!
2E2

) ∼= p∗ Hex(E1, E2)

∼= p∗H (E1, E2)

and the OG ⊗ OG structure on Hex(E1, E2) is given by:

(a ⊗ b)h : E1 → E2 e1 �→ bh(ae1).

Lemma 5.5. — Let E1, E2, and E3 be objects of G-HIG. Then the standard adjunction

isomorphism in the category of OX-modules

HomOX(E1 ⊗OX E2, E3) ∼= HomOX(E1,HomOX(E2, E3))

induces isomorphisms

HomOG(E1 � E2, E3) ∼= HomOG(E1,H (E2, E3)) (of groups)

H (E1 � E2, E3) ∼= H (E1,H (E2, E3)) (in G-HIG).
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Proof. — By definition,

HomOG(E1,H (E2, E3)) = HomOG

(
E1, µ

′
∗ HomOG×G

(
p∗

1E2, p!
2E3

))

= HomOG×G

(
µ′∗E1,HomOG×G

(
p∗

1E2, p!
2E3

))

= HomOG×G

(
µ′∗E1 ⊗OG×G p∗

1E2, p!
2E3

))
.

Let α : G × G → G × G denote the map (µ′, p1), i.e., the map sending ( g1, g2) to
( g2g−1

1 , g1). Note that α is an isomorphism, whose inverse β = (p2, µ) sends (a, b) to
(b, ab). Thus β∗ = α∗, and furthermore µ′∗(E1) ⊗ p∗

1E2 = α∗(E1 � E2). Hence

HomOG(E1,H (E2, E3)) = HomOG×G

(
α∗(E1 � E2), p!

2E3

)
)

= HomOG×G

(
β∗(E1 � E2), p!

2E3

)
)

= HomOG×G

(
E1 � E2, β

!p!
2E3

)
)

= HomOG×G

(
E1 � E2, µ

!E3

)
)

= HomOG(µ∗(E1 � E2), E3))

= HomOG(E1 � E2, E3).

This proves the first statement. The second statement just asserts that the standard
adjunction morphism is compatible with the G-Higgs fields. It follows formally from
the first. Indeed, it will suffice to check that for all E, the adjunction isomorphism
induces isomorphisms:

HomOG(E,H (E1 � E2, E3)) ∼= HomOG(E,H (E1,H (E2, E3))).

This follows from the first statement and the associativity of �. ��
Lemma 5.5 shows that H is the internal Hom functor of the tensor category

(G-HIG,�) in these sense of [9]. As usual, the dual of an object E of G-HIG is de-
fined by

E∨ := H (E, U).(5.5.1)

The map

ev : E∨ � E → U

is by definition the element of

HomOG(E∨ � E, U) = HomOG(E∨,H (E, U)) = HomOG(E∨, E∨)

corresponding to idE∨ ; it corresponds to the usual evaluation map

HomOX(E,OX) ⊗ E → OX.
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For any E2, one gets by functoriality maps

E2
∼= H (U, E2) → H

(
E∨

1 � E1, E2

)

HomOG(E2,H (U, E2)) → HomOG

(
E2,H

(
E∨

1 � E1, E2

))

HomOG(E2 �U, E2) → HomOG

(
E2 � E∨

1 � E1, E2

)

HomOG(E2, E2) → HomOG

(
E2 � E∨

1 ,H (E1, E2)
)

HomOG(E2, E2) → HomOG

(
E∨

1 � E2,H (E1, E2)
)
.

The element of Hom(E2 � E1,H (E1, E2)) corresponding to idE2 is the map

E∨
1 � E2 → H (E1, E2)(5.5.2)

corresponding to the usual map E∨
1 ⊗ E2 → HomOX(E1, E2) in the category of OX-

modules. In particular it is a homomorphism in G-HIG and commutes with any en-
domorphism of E1 or E2 in the category G-HIG. For example, any local section of
OG defines such an endomorphism on each Ei. Note that if E1 is locally free and E1

or E2 is of finite presentation as an OX-module, (5.5.2) an isomorphism. For example,
when G is the cotangent space of X and θ is a Higgs field on X, then the Higgs field
θ∨ on E∨ is given by the usual rule, so that

〈θξ(φ), e〉 + 〈φ, θξ(e)〉 = 0

for sections ξ of T, φ of E∨ and e of E.

Remark 5.6. — If E1 and E2 are objects of G-HIG, the OX-module underly-
ing H (E1, E2) is HomOX(E1, E2) and the OX-module underlying E1�E2 is E1 ⊗OX E2.
These OX-modules also inherit OG-structures by “transport of structure” from the OG-
module structures of E1 and E2. When necessary we denote by θEi the structure com-
ing from Ei in this way and by θtot the structure defined in (5.3) and (5.4). Thus θEi is
the structure on H (E1, E2) (resp. E1�E2) obtained from the structure on Hex(E1, E2)

(resp. E1�E2) by letting OG act via the morphism pi∗. Note in particular that the OG-
module structure on E∨ is not the structure θE corresponding to the action by trans-
port of structure on HomOX(E,OX), rather it is given by ι∗θE. Indeed, the OG ⊗ OG-
module Hex(E,OX) is annihilated by the ideal of the graph Γj of the zero morphism
j : G → G, and µ′ ◦ Γj = ι.

Remark 5.7. — A morphism h : G′ → G of affine X-schemes induces a pair of
adjoint functors

h∗ : G-HIG → G′-HIG and h∗ : G′-HIG → G-HIG.

If h is a homomorphism of group schemes, these are compatible with � and H .
For example, let f : X → Y be a morphism of schemes, let G′′ be a commutative
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affine group scheme over Y, and let f −1G′′ be its pullback to X. If (E, θ) is an object
of G′′-HIG, then f ∗E has a natural f −1G′′-field f ∗θ. If G is an affine group scheme
over X equipped with a map h : f −1G′ → G, then one gets by composition with h#

a G-field on f ∗E. For example, this construction applied to the cotangent bundles,
with h the differential of f , defines a functor f ∗ : HIG(Y/S) → HIG(X/S). Finally,
note that since ι : G → G is a group homomorphism, we find a canonical isomorph-
ism

(E1 � E2)
ι ∼= Eι

1 � Eι
2.

Remark 5.8. — Let E1 and E2 be object of G-HIG. Then there is a natural
isomorphism of sheaves of OX-modules

i!H (E1, E2) ∼= p∗ HomOG(E1, E2).

This follows from the adjointness properties of H :

i!H (E1, E2) := HomOG (i∗OX,H (E1, E2))

∼= HomOG(U� E1, E2) ∼= HomOG(E1, E2).

We find a natural map of OX-modules

HomOG(E1, E2) ∼= i!H (E1, E2) ⊆ p∗H (E1, E2).(5.8.1)

This map is compatible with the actions of OG induced by transport of structure
via its actions on E1 and E2.

5.3 Higgs transforms

We can use an object of G-HIG as a kernel for what we shall call a Higgs trans-

form, of which we consider the following variants.

Definition 5.9. — Let F be an object of G-HIG. Define functors from G-HIG to itself

by:

HF(E) := HomOG(F, E)

TF(E) := F ⊗OG E

T !
F(E) := i!(F � E).

We view these objects as G-Higgs modules, with the Higgs field induced by
transport of structure from the field on F . Note that this is the same as the field
induced from E in the first and second cases, and differs by ι in the third. Indeed,

i!(F � E) = HomOG(i∗OX, µ∗(F � E)) ∼= HomOG×G(µ∗i∗OX,F � E).
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This is an OG×G-module, and the action of OG by transport of structure via F corres-
ponds to the action induced by the first projection, while the action via E is induced
by the second projection. We claim these differ by ι. In fact it is enough to check this
for the OG×G-module i∗µ∗(OX). But this is clear, since the latter is annihilated by the
ideal of the graph of ι.

The map (5.5.2) induces a natural map of OG-modules

ι∗T !
F∨(E) → i!(H (F, E)) ∼= HF(E)(5.9.1)

which is an isomorphisms if F is finitely generated and projective as an OX-module.
The presence of the ι is due to the fact that OG acts on T !

F∨(E) by transport of struc-
ture via F∨ and on HF(E) via F , and these structures differ by ι, as we saw in
Remark 5.6.

Let B be any object of G-HIG. Observe that there are natural transformations:

ηB : TB ◦ HB → id and ζB : id → HB ◦ TB,

where for any E,

ηB,E : B ⊗OG HomOG(B, E) → E

sends b ⊗ h to h(b) and

ζB,E : E → HomOG(B,B ⊗OG E)

sends e to the homomorphism b �→ b ⊗ e. Then the following result is immediate.

Proposition 5.10. — Let B be an object of G-HIG which is invertible as an OG-module.

Then ηB and ζB are inverse isomorphisms. In particular, HB and TB are quasi-inverse equiva-

lences of categories. ��
In our main application, B will be equipped with the structure of a cocommu-

tative coalgebra with counit in the category G-HIG. That is, it will be provided with
morphisms

ν : B → B �B and β : B → U(5.10.1)

satisfying the usual compatibilities. These data give the corresponding Higgs transform
additional structure. We shall be especially interested in the following case.

Definition 5.11. — A character sheaf 16 in G-HIG is a coalgebra (B, ν, β) such that

the map ν̃ : µ∗B → B�B corresponding to ν is an isomorphism of OG×G-modules and the map

β̃ : i∗B → OX induced by β is an isomorphism of OX-modules.

16 This terminology is borrowed from G. Lusztig.
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Lemma 5.12. — Let (B, ν, β) be a character sheaf in G. The map ν induces an iso-

morphism of OG-modules B⊗OG Bι ∼= OG. In particular, B is invertible as an OG-module, with

inverse Bι.

Proof. — Definition (5.11) implies that i∗B ∼= OX, hence j∗B ∼= OG. Let Γι :
G → G × G denote the graph of ι. Pulling the isomorphism ν̃ back via Γι, we find
an isomorphism:

B⊗OGBι ∼= Γ∗
ι (B �B) ∼= Γ∗

ι µ
∗(B) ∼= j∗B ∼= OG. ��

Remark 5.13. — Giving a character sheaf is equivalent to giving a commutative
extension of the group G by the multiplicative group Gm. Assume G is finite and flat
over X and denote by G∨ its Cartier dual. Then a G∨-torsor gives rise to a character
sheaf. Indeed, G∨ can be identified with the group of automorphisms of the trival
extension E of G. Then if L is a G∨-torsor, we can form the “twist” L ⊗G∨ E of E
by L. This defines an extension of G by Gm and hence a character sheaf B. The
functor L �→ B is an equivalence from the category of G∨-torsors to the category of
character sheaves which are, locally on X, isomorphic to OG as character sheaves.

Proposition 5.14. — Let (B, ν, β) be a character sheaf on G. If E1 and E2 are objects

of G-HIG, the standard tensor product map ⊗ on homomorphisms and the comultiplication ν define

a commutative diagram:

HB(E1)�HB(E2)




∼= TTT

TTT
TTT

TTT
TTT

��⊗
HB�B(E1 � E2)

��
ν∗

HB(E1 � E2).

Thus the functor HB is an auto-equivalence of the tensor category G-HIG.

Proof. — The diagram above can be expanded as follows.

µ∗(HB(E1)�HB(E2))

		

:=
XXXXX

XXXXX
XXXXX

XXXXX
XX

HB(E1)�HB(E2)

��

OO

:=

µ∗
(

p∗
1 HomOG(B, E1) ⊗OG×G p∗

2 HomOG(B, E2)
)

��
�

HB(E1 � E2) µ∗ HomOG×G(B �B, E1 � E2)oo ν̃∗

The right vertical map is an isomorphism because B is invertible, and the map ν̃∗

is an isomorphism because ν̃ is an isomorphism. The cocommutativity of the coalge-
bra B implies that HB preserves the commutativity constraint of the tensor category
G-HIG. ��
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A change of sign allows us construct an involutive auto-equivalence of G-HIG.

Definition 5.15. — Let B be an object of G-HIG. Then H ′
B is the functor G-HIG →

G-HIG sending an object E to ι∗ HomOG(B, E).

For example, H ′
OG

can be identified with the involutive functor ι∗. More gener-
ally, if (B, ν, β) is a character sheaf, then by Lemma 5.12:

H ′
B(H ′

B(E)) = ι∗ HomOG(B, ι∗ HomOG(B, E))

∼= ι∗ι∗ HomOG(ι∗B,Hom(B, E))

∼= HomOG(ι∗B ⊗OG B, E) ∼= HomOG(OG, E) ∼= E.

The natural inclusion of OX-modules HomOG(B, E) ⊆ HomOX(B, E) defines
morphisms of OG-modules:

γE : H ′
B(E) → H (B, j∗E) and j∗H ′

B(E) → H (B, E).(5.15.1)

The morphism β : B → U and the isomorphism H (U, E) ∼= E induce maps of OG-
modules:

βE : E → H (B, E) and j∗E → H (B, j∗E).(5.15.2)

Finally, let us consider the following diagram:

H (B,H ′
B(E))

��
νE

�
�
�

��γE∗
H (B,H (B, j∗E))

��
∼=

H (B, j∗E) H (B �B, j∗E)oo νE∗

H (B, j∗H ′
B(E)) ��γE∗

��
νE

�
�
�

H (B,H (B, E))

��
∼=

H (B, E) H (B �B, E).oo νE∗

(5.15.3)

Here the top horizontal arrow is induced by the morphism γE (5.15.1), the right arrow
is the adjunction map of Lemma 5.5, and the bottom horizontal arrow is induced
by ν; the diagram defines the arrow νE.

Theorem 5.16. — Let (B, ν, β) be a character sheaf for G (5.11). Then for any object E
of G-HIG, the arrow νE is an isomorphism and induces an isomorphism κE : (H ′

B(H ′
B(E)) → E

fitting into the following commutative diagram.

H ′
B(H ′

B(E)

��
κE

��
γH ′

B(E)

H (B, j∗H ′
B(E))

��
νE

E ��βE
H (B, E)
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Proof. — Since (B, ν, β) is a character sheaf, the map ν̃ is an isomorphism, and
so induces an isomorphism of OG-modules:

p2∗(ν̃) : p2∗µ
∗B → p2∗(B �B).

Since the diagram

G × G

��
p2

��µ
G

��
p

G ��p
X

is Cartesian, the natural map p∗p∗B → p∗
2µ

∗B is an isomorphism. Composing this
map with p2∗(ν̃), we find that ν induces an isomorphism

p∗p∗B → p2∗(B�B).

Taking HomOG( , E) we find that the top arrow in the diagram below is an isomorph-
ism.

p∗ HomOG(p2∗(B �B), E) ��∼= p∗ HomOG(p∗p∗B, E)

��
adj

HomOX(B, p∗ HomOG(B, E))

OO

adj

�� HomOX(B, p∗E)

The vertical arrows are the adjunction isomorphisms and the bottom horizontal arrow
is p∗(νE). It follows that νE is an isomorphism of OX-modules, and it is compatible
with the two pairs of OG-module structures shown in the diagrams (5.15.3). Applying
the functor i! to the isomorphism νE in the left diagram, we find an isomorphism of
OX-modules:

κE : H ′
B(H ′

B(E)) → E.

But µE is also compatible with the OG-module structures in the right diagram. This
implies that κE is also a homomorphism of OG -modules. ��

Remark 5.17. — If B → B′ is a surjection of invertible OG-modules and E is
an object of G-HIG which is annihilated by the annihilator of B′, then the natural
map HB′(E) → HB(E) is an isomorphism.

It is sometimes convenient to use the dual point of view to that taken in The-
orem 5.16. With the notation there, let {In : n ∈ N} denote an inverse system of ideals
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of OG defining closed subschemes Gn of G whose support is the zero section G0. Sup-
pose further that each OGn is a locally free OX-module of finite rank and that for all
m, n, the comultiplication map fits into commutative diagrams:

OG

��

�� OG ⊗ OG

��
OGm+n

�� OGm ⊗ OGn .

Let Bn := B/InB and let An := H (Bn,OX) Thus the map (5.9.1) induces an iso-
morphism:

T !
An

→ H ′
Bn

:= ι∗HBn .

Let A be the direct limit of the directed system A·, so that we find an injection

T !
A

∼= lim−→T !
An

→ H ′
B.(5.17.1)

The comultiplication maps on B· induce multiplication maps An ⊗Am → An+m,
and A inherits the structure of an algebra in the category G-HIG. The identity elem-
ent 1A is the dual of the identity section i� of B.

Let us say that an object E of G-HIG is I·-continuous if each local section e of E
is annihilated by In for some n, and let us denote the full subcategory of G-HIG con-
sisting of such objects by G·-HIG. If E is I·-continuous, then any OG-linear homo-
morphism h : B → E factors through Bn for some n, so that (5.17.1) becomes an
isomorphism. Then Theorem 5.16 can be reformulated as follows.

Theorem 5.18. — Let B· and A· be as described above, and let G·-HIG denote the full

subcategory of G-HIG consisting of the I·-continuous objects.

1. For any object E of G·-HIG,

αE : E → A � E e �→ 1 ⊗ e

defines a locally split injection whose image is the annihilator of I with respect to the Higgs

field induced from the Higgs field on A .

2. The functor

T !
A : G·-HIG → G·-HIG

is an involutive equivalence. Furthermore, the isomorphism T !
A ◦ T !

A
∼= id fits into the

following commutative diagram

T !
A (T !

A (E))

��
κE

��inc
A �T !

A (E)

��
νE

��id⊗inc
A �A � E

vv m⊗id
nnn

nnn
nnn

nnn
n

E ��αE
A � E.
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Here κE is compatible with the G-Higgs fields, and νE is a homomorphism with respect to

the following fields:

A � j∗T !
A (E) → A � E and A �T !

A (E) → A � j∗E.

3. The functor T !
A is compatible with convolution products in the following sense. For any

two objects E1 and E2 of G·-HIG, one has a canonical commutative diagram

T !
A (E1)�T !

A (E2)




∼= SSS

SSS
SSS

SSS
SS

��⊗
T !

A�A (E1 � E2)

��
µ∗

T !
A (E1 � E2).

Proof. — The first statement is clear. The diagram in the second statement is
equivalent to the diagram in Theorem 5.16, and hence it follows that the maps indi-
cated are isomorphisms. Let us note, however, that this can also be proved directly by
dévissage. When E is annihilated by I this is clear. Since the sources and targets of
both arrows are exact functors, a dévissage argument implies that the maps are iso-
morphisms if E is nilpotent. But any I· continuous E is, locally on X, a direct limit
of nilpotent objects, so the general result follows. Similarly, (3) is a translation of Prop-
osition 5.14, and can also be proved by dévissage. ��

5.4 Examples and formulas

Let us return to the case in which the group scheme is the group underlying
a vector bundle VT, where T is a locally free sheaf of OX-modules of finite rank, so
OVT is the symmetric algebra S·T. The group law in this case is given by the unique
algebra homomorphism

µ∗ : S·T → S·T ⊗ S·T
such that t �→ 1 ⊗ t + t ⊗ 1. Let Vγ T := Spec Γ·(T) [3, A1] be the divided power en-
velope of the ideal of the zero section and V̂γ T := Spec Γ̂·(T) its completion with re-
spect to the divided power filtration. These are also group schemes, and the group law

µ∗ : Γ·(T) → Γ·(T) ⊗ Γ·(T)

is the unique divided power homomorphism sending t to 1 ⊗ t + t ⊗ 1.
Let Ω be the dual of T and recall from [3, A10] that there is a natural iso-

morphism

ρn : Sn(Ω) → Hom(Γn(T),OX)
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for all n, and hence an isomorphism

S·(Ω) → Hom
′
(Γ·(T),OX),

where the ′ signifies the Matlis dual. The following proposition is essentially contained
in Theorem V.1 of [33]; we give a slightly simpler proof here for the reader’s conve-
nience.

Proposition 5.19. — With respect to the pairing ρn Sn × Γn → OX defined above,

1. the algebra multiplication Si(Ω) ⊗ S j(Ω) → Si+j(Ω) is dual to the comultiplication of

Γ·(T) followed by projection:

Γi+j(T) →
⊕

a+b=i+j

Γa(T) ⊗ Γb(T) → Γi(T) ⊗ Γj(T).

2. The algebra multiplication Γi(Ω) ⊗ Γj(Ω) → Γi+j(Ω) is dual to the comultiplication

followed by projection:

Si+j(T) →
⊕

a+b=i+j

Sa(T) ⊗ Sb(T) → Si(T) ⊗ S j(T).

Proof. — Let 
i : T → Γi(T) be the universal polynomial law of degree i [3,
A4]. Then if k = i + j, 
i ⊗ 
j defines a polynomial law T → Γi(T) ⊗ Γj(T), and
hence a linear map µ′

i, j : Γk(T) → Γi(T) ⊗ Γj(T). Adding these up we find a map

µ′ : Γ·(T) → Γ·(T) ⊗ Γ·(T).

This is the unique OX-linear map whose restriction to Γk(T) sends each 
k(t) to∑
i+j=k 
i(t) ⊗ 
j(t). On the other hand, the comultiplication µ∗ of Γ·(T) is a divided

power homomorphism sending t to 1 ⊗ t + t ⊗ 1, so

µ∗(
k(t)) = µ∗(t[k]) = (t ⊗ 1 + 1 ⊗ t)[k] =
∑

i+j=k

t[i] ⊗ t[ j ].

Thus, µ′ = µ∗. Now recall that ρ1 is just the standard duality map and that one
deduces from ρ1 a unique morphism of algebras

ρ : S·(Ω) → P(T,OX) ∼= Hom(Γ·(T),OX),

where P(T,OX) means the ring of polynomial laws T → OX. Thus if x ∈ Si(Ω) and
y ∈ S j(Ω), ρk(xy) is ρi(x)ρj( y), where this product is taken in the algebra P(T,OX).
In other words, the following diagram commutes:

Γk(T)

��
µ′

i, j

��ρk (xy)
OX

Γi(T) ⊗ Γj(T) ��
ρi(x)⊗ρj( y)

OX ⊗ OX.

OO

Since µ′ = µ∗ this proves (1).
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Reversing the roles of Ω and T, we conclude from (1) that the multiplication
map mT of the algebra S·(T) is the dual of the comultiplication map µ∗

Ω of the group
law of Γ·(Ω). Since the latter commutes with algebra structure mΩ of the alge-
bra Γ·(Ω), it follows that the dual m′ of m∗

Ω also commutes with mT. Thus m′ is an al-
gebra homomorphism S·(T) → S·(T)⊗S·(T). The same is true of the group law µ∗

T.
We claim that these two homomorphisms are equal, and it suffices to check that this
is true for elements of degree one. In other words, we have to check that the map
µ∗

T : T → T ⊗ OX ⊕ OX ⊗ T is dual to the map mΩ : OX ⊗ Ω ⊕ Ω ⊗ OX → Ω. But
this is trivially true. ��

It will perhaps be helpful to make everything explicit. We shall do this in the
case B = OG and A = ι∗B∨. Note that ξi �→ −ξi induces an isomorphism A ∼= ι∗A .

Corollary 5.20. — Let T and Ω be as above. Suppose that also that T is free, and that

(ξ1, ..., ξm) is a basis for T and (ω1, ..., ωm) the dual basis for Ω. Let I· be the I-adic filtration

of S·T (resp., the PD-filtration of Γ·T).

1. If G = VT:

OG = S·T; ξ Iξ J = ξ I+J

ι∗O∨
G = Γ̂·Ω =

∏
ΓnΩ; ξ Iω[ J] = ω[ J−I]

θξn(e1 � e2) =
∑

i+j=n

(
n
i

)
θ i

ξ(e1)� θ
j
ξ (e2) for e1 � e2 ∈ E1 � E2

θξn(h) =
∑

i+j=n

(
n
i

)
(−1) jθ i

ξ ◦ h ◦ θ
j
ξ for h ∈ H (E1, E2).

2. If G = V̂γ T:

OG = Γ̂·T; ξ [I]ξ [ J] = (I + J)!
I!J! ξ [I+J]

ι∗O∨
G = S·Ω; ξ [I]ω J = J!

( J − I)!(I!)ω
J−I

θξ [n](e1 � e2) =
∑

i+j=n

θξ [i](e1)� θξ [ j ](e2) for e1 � e2 ∈ E1 � E2

θξ [n](h) =
∑

i+j

(−1) jθξ [i] ◦ h ◦ θξ [ j ] for h ∈ H (E1, E2).

It is also of some interest to give an explicit formula for the inverse to the map
h of Theorems 5.16 and 5.18. Let us do this when G = V̂γ T. Let κi (the “Casimir
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operator”) be the element of SiΩ⊗ΓiT corresponding to the identity homomorphism.
In terms of the bases above,

κi :=
∑

|I|=i

ωI ⊗ ξ [I] :=
∑

|I|=i

ω
I1
1 · · · ωId

d ⊗ ξ
[I1]
1 · · · ξ [Id ]

d .

If θ is a G-field on E, κi defines an endomorphism

κi,E :=
∑

|I|=i

ωIθ tot
ξ [I] : SiΩ ⊗ E → Si ⊗ E.

If θ is locally nilpotent, so is θtot, and in this case

κE :=
∞∑

i=0

(−1)iκi,E

is a well-defined endomorphism of S·Ω⊗E. The following result is essentially classical;
we shall omit the amusing and elementary proof.

Proposition 5.21. — Let (E, θ) be a locally nilpotent Γ·T-module.

1. The Casimir operator κE : S·Ω ⊗ E → S·Ω ⊗ E defined above is a projection operator

with image

T (E) := (S·Ω ⊗ E)θtot

and factors through the map σ : S·Ω ⊗ E → E defined by the the augmentation

S·Ω → OX.

2. The map

h′ :=
∑

J

ω J ⊗ (
κE ◦ θ tot

t[ J]
) : S·Ω ⊗ E → S·Ω ⊗ T (E)

is the inverse of the map h of Theorem 5.18.

3. The map

κE : E → T (E)

induced by κ is an isomorphism, inverse to the map

ηF̃ := σ ∗
F̃ ◦ jE : TX /S (E) → E.

These isomorphisms take the field θ on E to ι∗θT . That is,

θt[I] ◦ κE = (−1)IκE ◦ θt[I]

for all I.
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5.5 Azumaya algebras over group schemes

Recall that if M is a locally free sheaf of finite rank on a scheme Z, then the
(matrix) algebra E := EndOZ(M) is a quasi-coherent sheaf of OZ-algebras whose cen-
ter is OZ. Furthermore, the functor E → M ⊗ E from the category of sheaves of
OZ-modules to the category of sheaves of left E -modules is an equivalence, with quasi-
inverse HomE (M, ). A sheaf of algebras over OZ which locally for the fppf topology
is isomorphic to EndOZ(M) for some locally free M is called an Azumaya algebra. Note
that an Azumaya algebra, viewed as OZ-module, is locally free of rank d2, where d is
a locally constant function on Z. The function d is called the index of the Azumaya
algebra. An Azumaya algebra E is said to be split if it is isomorphic to EndOZ(M) for
some such M; in this case M is said to be a splitting module. If A is an Azumaya al-
gebra of rank d2 and M is a sheaf of left A -modules which is locally free of rank d
over OZ, then the natural map A → EndOZ(M) is necessarily an isomorphism, so A
is split and M is a splitting module [23].

Let us note for future reference that if M is an A -module which is locally free
and of finite rank as an OZ-module, then M∨ := HomOZ(M,OZ) is a naturally a right
A -module, and for any A module N there is a natural isomorphism of OZ-modules:

HomA (M, N) ⊆ HomOZ(M, N)
∼=−→ M∨ ⊗OZ N → M∨ ⊗A N.(5.21.1)

We have found it convenient to use the language of 2-categories to describe the rela-
tions among Azumaya algebras.

Definition 5.22. — Let A and B be Azumaya algebras over a scheme Z.

1. A 1-morphism M : A → B is a module M over A op ⊗B which is locally free over

OZ of rank (indA )(indB), i.e., a splitting of the Azumaya algebra A op ⊗ B.

2. If M : A → B and N : B → C are 1-morphisms, then N ◦ M := N ⊗B M.

3. If M and N are 1-morphisms A → B, a 2-morphism: M → N is an isomorphism

of A op ⊗ B-modules M → N, with the obvious notion of composition.

For any object A , idA is just the bimodule A .
If M is a 1-morphism A → B, then M∨ := HomOZ(M,OZ) is a Bop ⊗ A -

module, i.e., a 1-morphism B → A , and the natural maps M∨ ◦ M ∼= EndB(M) ∼=
A = idA . Thus all 1-morphisms are equivalences (and all 2-morphisms are isomor-
phisms).

If A is an Azumaya algebra over Z, let Mod(A ) denote the category of A -
modules, which we may view as a stack over Z. A 1-morphism M : A → B gives
rise to an equivalence of categories:

C−1
M : Mod(A )

∼−→ Mod(B) : E �→ M ⊗A E,
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together with functorial isomorphisms

C−1
M (E ⊗OZ L)

∼−→ C−1
M (E) ⊗OZ L(5.22.1)

for every OZ-module L. Conversely, every equivalence of stacks, together with such
a family of isomorphisms (satisfying suitable compatibilities), comes from a 1-morph-
ism.

Recall that the category of DX/S-modules has a tensor structure: the tensor prod-
uct of DX/S-module M and N is M ⊗OX N, where the action of the vector fields on
M⊗OX N is given by the Leibniz rule: ∇D(m ⊗ n) := ∇(m)⊗ n+m ⊗∇(n). We will see
that in characteristic p, the tensor structure on MIC(X/S) comes from a more rigid
structure on the Azumaya algebra DX/S which we will explain below. First we will
give an abstract definition on an Azumaya algebra over a group scheme, and then in
Example 5.26 we will construct a canonical tensor structure on DX/S.

Definition 5.23. — Let G be a flat affine group scheme over a scheme X and let A be

an Azumaya algebra over OG. In the notation of (5.2), a tensor structure on A consists of the

following data:

1. A 1-morphism of Azumaya algebras on G × G:

δ : µ∗A → p∗
1A ⊗ p∗

2A .

2. An associativity 2-morphism α as follows. Note that µ ◦ (µ, p3) = µ ◦ (p1, µ) is the

multiplication morphism µ3 : G × G × G → G. Then α is a 2-morphism between the

1-morphisms f and g shown below:

µ∗
3A

��(µ,p3)
∗(δ) NN

NN
NN

NN
NN

N
��f
p∗

1A ⊗ p∗
2A ⊗ p∗

3A

µ∗A ⊗ p∗
3A

OO

δ⊗id

��
α

µ∗
3A

��
( p1,µ)∗(δ) OOO

OOO
OOO

OOO
O

��g
p∗

1A ⊗ p∗
2A ⊗ p∗

3A

p∗
1A ⊗ µ∗A .

OO

id⊗δ

The above data should satisfy the pentagon condition [9, 1.0.1].

If G is commutative, then a symmetric tensor structure on A is a tensor struc-
ture as above together with an additional datum γ . Note that σ ∗(p∗

1A ⊗ p∗
2A ) =

(p∗
2A ⊗ p∗

1A ), so that the standard commutativity isomorphism for ⊗ can be viewed
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as an isomorphism γ⊗ : σ ∗(p∗
1A ⊗ p∗

2A ) ∼= p∗
1A ⊗ p∗

2A . Since G is commutative,
µ ◦ σ = µ, and hence the commutative square below exists. Then γ is a 2-morphism

σ ∗µ∗A

��
=

��σ∗(δ)
σ ∗(p∗

1A ⊗ p∗
2A )

��
γ⊗

µ∗A �� (p∗
1A ⊗ p∗

2A )

	γ (
µ∗A ��δ p∗

1A ⊗ p∗
2A

)

such that γ 2 = id. The associativity morphism α and the commutativity morphism γ

should also satisfy the hexagon axiom [9, 1.0.2].
Azumaya algebras with (resp. symmetric) tensor structure also form a 2-category:

a 1-morphisms A → B is by definition a pair (M, λ), where M is a 1-morphism of
the underlying Azumaya algebras as before and λ is a 2-morphism

µ∗A

��LL
LL

LL
LL

LL
��δA p∗

1A ⊗ p∗
2A

��
p∗

1(M)⊗p∗
2(M)

µ∗A

��
µ∗(M)

��LL
LL

LL
LL

LL

p∗
1B ⊗ p∗

2B

	λ

µ∗B ��
δB

p∗
1B ⊗ p∗

2B

compatible with the associativity (resp. and the commutativity) 2-morphisms.
Let (A , δ, α) be an Azumaya algebra with a tensor structure. Then the category

Mod(A ) of modules over A is endowed with tensor structure: given A -modules M1

and M2 we define the tensor product

M1 �M2 = µ∗
(
δ−1(p∗

1M1 ⊗ p∗
2M2)

)
.(5.23.1)

Recall from [9] that a unit object of a category M with a tensor structure is a pair
(U, h), where U is an object of M and h is an isomorphism

h : U � U�U,

such that the functor �U : M → M sending an object M to M�U is an equivalence
of categories. It is shown in (loc. cit.) that the unit object is unique up to a unique
isomorphism and that for any object M there is a functorial isomorphism M�U � M.

Lemma 5.24. — Let A be an Azumaya algebra over G equipped with a tensor structure

(δ, α) (5.23). Then the restriction i∗A of A to the zero section has a canonical splitting N0.

Moreover, there is an isomorphism h : i∗N0 � i∗N0 � i∗N0, and the pair U := (i∗N0, h) is the

unit object of Mod(A ).

Proof. — Since µ ◦ i = pi ◦ i = i, the restriction δ0 : i∗A → i∗A ⊗OX i∗A of
δ to the zero section of G is an i∗(A op ⊗ A ⊗ A )-module P. Then the i∗A -module
N0 := Homi∗(A op⊗A )(i∗A , P) gives a splitting of i∗A .
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Next we construct the isomorphism h. By definition,

U�U = µ∗
(
δ−1(p∗

1U ⊗ p∗
2U)

)

∼= i∗δ−1
0 (N0 ⊗ N0) ∼= Homi∗(A ⊗A )(P, N0 ⊗ N0).

Evaluation of homomorphisms defines an isomorphism of i∗(Aop ⊗ A ⊗ A)-modules
i∗A ⊗ N0 → P. Thus

U�U ∼= i∗ Homi∗(A ⊗A )(i∗A ⊗ N0, N0 ⊗ N0)

∼= i∗ Homi∗A (i∗A , N0) ∼= U.

Finally, we have to prove that the functor �U : Mod(A ) → Mod(A ) is an
equivalence of categories. Let Γj : G → G×G be the graph of the zero section. Since
µ ◦ Γj = id, Γ∗

j (δ) is a 1-morphism: δ1 : A → A ⊗ j∗A . If M ∈ Mod(A ),

M�U := δ−1
1 (M ⊗ p∗N0).

Since p∗N0 is a splitting of j∗A , the functor ⊗p∗N0 : Mod(A ) → Mod(A ⊗ j∗A ) is
an equivalence. Since δ−1

1 : Mod(A ⊗ j∗A ) → Mod(A ) is also an equivalence, the
lemma is proved. ��

Observe that a tensor structure on A induces a canonical 1-morphism ι∗A ∼=
A op, obtained by pulling back δ by the graph of ι, since by Lemma 5.24, i∗A is
canonically split. It follows that the category Mod(A ) has inner Homs. Let

δ′ : µ′∗A → p∗
1A

op ⊗ p∗
2A

be the pullback of δ by (ι, id) composed with the 1-morphism ι∗A ⊗A → A op ⊗A .
If E1 and E2 are objects of Mod(A ), Hex(E1, E2) is naturally a p∗

1A
op ⊗ p∗

2A -module,
and

H (E1, E2) = µ′
∗
(
δ′−1 Hex(E1, E2)

)
.

If G is commutative and the tensor structure is endowed with a commutativity
morphism, then Mod(A ) becomes a tensor category in the sense of [9]. From now
on, we assume this to be the case.

Definition 5.25. — A tensor splitting of an Azumaya algebra A equipped with a ten-

sor structure over G is a 1-morphism (in the category of Azumaya algebras with symmetric tensor

structure): OG → A .

Note that, in general, a 1-morphism M : A → B gives rise to equivalence of
tensor categories:

C−1
M : Mod(A ) ∼ Mod(B), C−1

M (M1 �M2) ∼= C−1
M (M1)� C−1

M (M2).
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In particular, a tensor splitting M gives an equivalence between the tensor categories:
C−1

M : Mod(OG) ∼ Mod(A ). Observe that OG is a commutative coalgebra with counit
in the category Mod(OG). Thus, by “transport of structure” the splitting module M ∼=
C−1

M (OG) becomes a commutative coalgebra with counit in Mod(A ). In other words,
we have canonical morphisms:

M → M�M, e : M → U.

In the case of the split Azumaya algebra A = OG with the obvious tensor structure,
the notion of a tensor splitting boils down to the notion of a character sheaf intro-
duced in Definition 5.11.

Example 5.26. — Let us explain how the above formalism works in the case of
the Azumaya algebra of differential operators. First recall the following lemma.

Lemma 5.27. — Let M and N be objects of MIC(X/S), and let ψM and ψN be their

p-curvatures. Then the p-curvature of the tensor product and internal Hom:

ψM⊗N : M ⊗OX N → M ⊗OX N ⊗ F∗
X/SΩ

1
X′/S

ψ : HomOX(M, N) → HomOX(M, N) ⊗ F∗
X/SΩ

1
X′/S

are given respectively by the formulas

ψM⊗N(m ⊗ n) = ψM(m) ⊗ n + m ⊗ ψN(n)
ψH (h) = ψN ◦ h − h ◦ ψM. ��

By definition, giving a tensor structure on DX/S amounts to giving a 1-morphism
of the Azumaya algebras on T∗

X′/S ×X′ T∗
X′/S

δ : µ∗DX/S → p∗
1DX/S ⊗ p∗

2DX/S

together with the associativity and commutativity 2-morphisms α and γ . We will con-
struct δ as follows. View DX/S as a left module over itself, and endow ∆ :=
DX/S ⊗OX DX/S with the left DX/S-module structure defined by the Leibnitz rule above.
Note that the right action of DX/S on itself makes ∆ a right module over the alge-
bra DX/S ⊗F·X/SOX′ DX/S or, equivalently, a left module over DX/S ⊗F·X/SOX′ (DX/S ⊗F·X/SOX′
DX/S)

op. Lemma 5.27 shows that the action factors through DX/S ⊗F·X/SS·TX′/S

(DX/S ⊗F·X/SOX′ DX/S)
op, where the F·

X/SS·TX′/S-module structure on DX/S ⊗F·X/SOX′ DX/S

is given by comultiplication:

µ∗ : F·
X/SS·TX′/S → F·

X/S(S
·TX′/S ⊗OX′ S·TX′/S).
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Thus, ∆ gives rise to a module over the Azumaya algebra µ∗DX/S ⊗ (p∗
1DX/S ⊗

p∗
2DX/S)

op. It is easy to see using local coordinates that as a module over the center
OT∗

X′/S×X′ T∗
X′/S

it is locally free of rank p3dimSX which is equal to the index of the Azu-
maya algebra. Therefore we get a 1-morphism δ.

Next, let us construct the commutativity 2-morphism γ . Consider the auto-
morphism Σ of the algebra DX/S ⊗F·X/SS·TX′/S

(DX/S ⊗F·X/SOX′ DX/S)
op which sends

D1 ⊗ D2 ⊗ D3 to D1 ⊗ D3 ⊗ D2. Then, giving γ amounts to giving an isomorphism

DX/S ⊗OX DX/S → (DX/S ⊗OX DX/S)
Σ

of modules over DX/S ⊗F·X/SS·TX′/S
(DX/S ⊗F·X/SOX′ DX/S)

op. The obvious permutation does
the trick.

To construct the associativity morphism α, we note that the two 1-morphisms:

µ∗
3DX/S → p∗

1DX/S ⊗ p∗
2DX/S ⊗ p∗

3DX/S

in Definition (5.23) are given by the same module DX/S ⊗OX DX/S ⊗OX DX/S. With this
identification, we let α be the identity morphism.

It remains to show that α and γ satisfy the pentagon and hexagon axioms. To
save space, we may use the following trick. First, one can easily check the axioms
for the restriction of DX/S to the zero section X′ → T∗

X′/S. Furthermore, since the
statement is local on X and stable under a base change T → S, we may assume that
S is reduced. Then any 2-morphism over T∗

X′/S ×X′ T∗
X′/S × · · · ×X′ T∗

X′/S is uniquely
determined by its restriction to zero section. This completes the proof.

Remark 5.28. — If the base S is normal and reduced, one can prove that the
tensor structure on DX/S equipped with an isomorphism φ : N0 � FX/S∗OX between
the canonical splitting module over the zero section X′ → T∗

X′/S described in
Lemma 5.24 and the splitting FX/S∗OX of Remark 2.2 is unique (up to a unique iso-
morphism).

Next we shall discuss tensor Azumaya algebras over the formal and PD comple-
tion of a group scheme G along its zero section.

Let Ĝ (resp. G ) denote the formal (resp. PD) completion of G along its zero sec-
tion, viewed as a locally ringed space. Let Ĝn (resp. G n) be the formal (resp. PD) com-
pletion of Gn along its zero section. Then the definition a tensor structure for Azumaya
algebras over Ĝ (resp. G ) is the same as before, with these completed fiber products
in place of Gn.

Denote by ik : Gk ↪→ Ĝ (resp. ik : Gk ↪→ G ) the subscheme defined by the (k+1)st
power (resp. divided power) of the ideal of the zero section; if M is an OĜ-module
(resp. OG -module), Mk := ik∗i∗k M. The multiplication map µ gives rise to morphisms
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of schemes: µ : Gk × Gl → Gk+l (resp. µ : Gk × Gl → Gk+l ). The category of A -
modules with the convolution product defined in Formula (5.3) is not a tensor category,
since the associativity constraint fails in general. However, the subcategory Mod·(A )

of I·-continuous modules is stable under the convolution product and is a tensor cat-
egory. (Recall that a module is said to be I·-continuous if each local section is locally
supported on Gk (resp. Gk), for some k.)

Let M : OG → A be a tensor splitting. The splitting module M inherits a struc-
ture of a topological commutative coalgebra with counit, that is, a family of maps
Mn → Mk�Ml , for any n ≥ l+k, and e : M → U satisfying the obvious compatibilities.

Proposition 5.29. — Let A be a tensor Azumaya algebra over Ĝ (resp. G ). Then the

following data are equivalent.

1. A tensor splitting of A .

2. A splitting module M for A with the structure of a topological coalgebra with counit.

3. A splitting module M for A whose topological dual lim−→H (Mn, U) is endowed with the

structure of an algebra with unit in the tensor category Mod·(A ).

Proof. — We will prove the result for G ; the formal case is similar. The equiva-
lence of (2) and (3) is clear, and we have already shown how the data of (1) give the
data of (2). It remains to explain how the data of (2) give (1). Let M be a splitting with
a coalgebra structure: Mk+l → Mk�Ml . By definition, Mk�Ml = µ∗δ−1(p∗

1Mk⊗p∗
2Ml).

Thus, using the adjointness property of µ∗ and µ∗, we get a morphism: µ∗Mk+l →
δ−1(p∗

1Mk ⊗ p∗
2Ml). Let us consider the restriction of the above morphism to Gk × Gl :

(ik, il)∗µ∗M = (ik, il)∗µ∗Mk+l → δ−1(p∗
1Mk ⊗ p∗

2Ml)(5.29.1)
= (ik, il)∗δ−1(p∗

1M ⊗ p∗
2M).

These morphisms are compatible with change of k and l, and we claim that
they are all isomorphisms. Indeed, both (ik, il)∗µ∗M and (ik, il)∗δ−1(p∗

1M ⊗ p∗
2M) are

splittings of the Azumaya algebra µ∗A over Gk × Gl , and, in particular, they are lo-
cally free over Gk × Gl . Also, the existence of counit: M → M0 � U implies that, for
k = l = 0, the morphism (5.29.1) is an isomorphism. Hence (5.29.1) is an isomorph-
ism, for any k and l. Thus, we get an isomorphism: µ∗M � δ−1(p∗

1M ⊗ p∗
2M). ��

Let A be an Azumaya algebra on G with a symmetric tensor structure. Let
TSP be the stack on X assigning to a scheme U étale over X the groupoid of tensor
splittings of the Azumaya algebra AU over G × U (i.e. 1-morphisms from AU to the
trivial Azumaya algebra OG×U). Let SP1 be be the stack sending U to the groupoid
whose objects are pairs (N, e), where N is a splitting of the restriction i∗1AU and e is
an isomorphism e : i∗N � N0.
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Proposition 5.30. — Let G be a smooth commutative group scheme and A be an Azumaya

algebra on G with a symmetric tensor structure, which admits a tensor splitting étale locally on X.

Then the obvious restriction functor:

i∗1 : TSP → SP1

is an equivalence of stacks.

Remark 5.31. — The stack SP1 is, in fact, a gerbe. That is, there exists an
étale covering of Ui of X such that, for each i, SP1Ui is non-empty, and, for any
étale morphism U → X, any two objects of SP1U are locally isomorphic. Thus, the
proposition implies that the stack TSP is also a gerbe.

Proof. — Recall that, for a smooth commutative group scheme G, the exponen-
tial map induces an isomorphism:

exp : T � G

where T is the completed PD envelope of the zero section X ↪→ T of the Lie alge-
bra T. Thus, without loss of generality we can replace G by the vector group T.

To prove that i∗1 , is an equivalence we will construct the inverse functor exp :
SP1 → TSP explicitly. The reason we call it the exponential will be clear in a mo-
ment. Given a A -module M we denote by ΓkM the A -submodule of the tensor power
M�k

which consists of Sk-invariant sections.
Let (N, e) be an object of SP1 over U. Define

M1 = i1∗N, Mk = ΓkM1.

We claim that Mk is a splitting of AU over Gk. Indeed, since the statement is local on
U we may assume that A has a tensor splitting. A tensor splitting, in turn, gives an
equivalence between the tensor category of I·-continuous AU-modules and I·-continu-
ous OG×U-modules. This equivalence takes M1 to a line bundle over G1 ×X U. Shrink-
ing the base, if necessary, we may assume that the line bundle is trivial. Then the claim
follows from the fact that, for smooth G, the Sk-invariant multiplication morphism

G k
1 = G1 × G1 × · · · × G1 → Gk

induces an isomorphism ΓkOG1 � OGk .
The morphism e : M1 → U gives the map:

Mk → Mk−1,

and, moreover, i∗k−1Mk � Mk−1.
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We define exp(N) to be

exp(N) = lim
←

Mk.

First of all, it is clear that M := exp(N) is a splitting of AU. Furthermore, it is a coal-
gebra with counit. The coalgebra structure comes from the canonical morphism:

Mk+l = Γk+lM1 ↪→ ΓkM1 � ΓlM1 = Mk �Ml.

By Proposition 5.29 it gives a tensor splitting.
It is clear that i∗1(exp(N)) = N, so it remains to construct a canonical isomorph-

ism

M � exp(i∗1(M)),(5.31.1)

for any tensor splitting M over U. But this is immediate: the splitting M gives an
equivalence of tensor categories: CM : Mod(AU) � Mod(OG×XU), which takes M to
OG×XU. We define (5.31.1) to be the morphism corresponding under the above equiv-
alence to the canonical isomorphism

OG � lim← ΓkOG1. ��
Denote by G ∗ the sheaf on X whose section over a scheme U étale over X is

the group of homomorphisms: HomU(G × U; Gm).
Let A be an Azumaya algebra on G with a symmetric tensor structure, which

admits a tensor splitting étale locally on X. We assign to A a class [A ] in H2
ét(X,G ∗)

as follows. Choose an étale covering of Ui of X together with tensor splittings Ni

on each Ui and tensor isomorphisms φij : Ni � Nj . Then φkiφjkφij is a Cech co-
cycle with coefficients in G ∗. Similarly, given an Azumaya algebra over G1 together
with a splitting over the zero section we can construct an element of H2

ét(X,O∗
1,G1

) =
H2

ét(X, T∗
G/X), where O∗

1,G1
denotes the group of invertible functions on G1 equal to 1

on X ↪→ G1.
Recall that for any smooth commutative group scheme G over X we have the

isomorphism:

exp : O∗
1,G1

= T∗
G/X → G ∗.

The inverse map is the restriction i∗1 . Passing to cohomology we get a morphism:

exp : H2
ét(X, T∗

G/X) � H2
ét(X,G ∗) → H2

ét(X,O∗
G ).

Proposition 5.32. — Let A be an Azumaya algebra on G with a symmetric tensor structure,

which admits a tensor splitting étale locally on X. Then

exp[i∗1A ] = [A ].
Since the restriction i∗1 : H2

ét(X,G ∗) → H2
ét(X, T∗

G/X) is an isomorphism, the prop-
osition follows from the obvious fact: [i∗1A ] = i∗1[A ].
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