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ABSTRACT

Given a scheme in characteristic p together with a lifting modulo p*, we construct a functor from a category

of suitably nilpotent modules with connection to the category of Higgs modules. We use this functor to generalize the
decomposition theorem of Deligne-Illusie to the case of de Rham cohomology with coefficients.
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Introduction

Let X/C be a smooth projective scheme over the complex numbers and let

X be the associated analytic space. Classical Hodge theory provides a canonical iso-
morphism:

0.0.1) H'(X, Q,¢) = H'(X", €) = (P H'(X, % ¢).

i+j=n

DOI 10.1007/510240-007-0010-z



2 A. OGUS, V. VOLOGODSKY

Carlos Simpson’s “nonabelian Hodge theory” [36] provides a generalization of this
decomposition to the case of cohomology with coefficients in a representation of
the fundamental group of X“. By the classical Riemann—Hilbert correspondence,
such a representation can be viewed as a locally free sheaf E with integrable con-
nection (E, V) on X. If (E, V) satisfies suitable conditions, Simpson associates to it
a Higgs bundle (E',0), e, a locally free sheaf E' together with an Ox-linear map
0:F — E ® Qg such that 0 A0 F/ — E'® Q%{/C vanishes. This integrability
implies that the iterates of 6 are zero, so that 6 fits into a complex (the Higgs complex)

E®Qe=E—>EQ®Q > E®Q,

As a substitute for the Hodge decomposition (0.0.1), Simpson constructs a natural iso-
morphism:

(0.0.2) H'(X, E ® Qy ¢, d) = H'(X", V) = H'(X, E'® Qy/c 0.

In general, there is no simple relation between E and E’; and in fact the correspon-
dence E = E’ is not holomorphic.

Our goal in this work is to suggest and investigate an analog of Simpson’s theory
for integrable connections in positive characteristics, as well as an extension of the
paper [8] of Deligne and Illusie to the case of de Rham cohomology for modules with
an integrable connection. Let X be a smooth scheme over the spectrum S of a perfect
field £, and let F: X — X' be the relative Frobenius map. Assume as in [8] that there
is a lifting X of X’ to Wy(k). Our main result is the construction of a functor Cg (the
Cartier transform) from the category MIC(X/S) of modules with integrable connection
on X to the category HIG(X'/S) of Higgs modules on X'/S, each subject to suitable
nilpotence conditions.

The relative Frobenius morphism F and the p-curvature

v:E— E®FQL

of a module with integrable connection (E, V) play a crucial role in the study of
connections in characteristic p. A connection V on a sheaf of Ox-modules E can be
viewed as an action of the sheaf Dy of PD-differential operators [3, (4.4)]' on X. This
sheaf of rings has a large center Z%: in fact, F,Z% is canonically isomorphic to the
sheaf of functions on the cotangent bundle T%;:

(0.0.3) ¢ STy F, 2,

and F,Dx is an Azumaya algebra over S"T'xs [4]. The map ¢ takes a vector field &
(i.e., a derivation of Ox) to & —&” € Dy, where £ € Der(0x) is the pth iterate of &

! The name “differential operators” is perhaps misleading: although Dx acts on O, the map Dy — End(&0x)

is not injective.



NONABELIAN HODGE THEORY IN CHARACTERISTIC p 3

and & is the pth power of & in Dx. If V is an integrable connection on E, then by
definition v is the Ox-linear endomorphism of E given by the action of V,g,.

Let X be a lifting of X. Our construction of the Cartier transform Cx is based
on a study of the sheaf of liftings of the relative Frobenius morphism F: X — X'
For each open subset U € X, the set Z%(U) of all Frobenius liftings F:U—- Uis
naturally a torsor under the group I*T'x.. Key to our construction is the fact that the
F*T'x-torsor ¢: % — X has a canonical connection

V: %% — FTy ® QL,

compatible with the Frobenius descent connection on the vector bundle F*Tx. If I is
a local section of %k, V(F) € #m(F*Qy,, %) is given by

G FFQy, — Q4

where g := p~'dF is the lifting of the inverse Cartier operator defined by F. Thus the
sheaf of functions 2% := ¢, 0y, acquires a connection, as does its Ox-linear dual %x.
The torsor structure on Z% induces an action of the completed PD symmetric alge-
bra I F*Ty on % and %x. We show that the induced action of S'Tx coincides with
the action of the center S"T'yy C Dx defined by the p-curvature of the connection V.
Thus %% becomes a module over the algebra D% := Dx Qg 1y, I Tx.

We define the Cartier transform Cx from the category of D¥-modules to the cate-
gory of I Tx-modules by the formula:

Cx(B) = t, Himpy (Ps, B),

where ¢ is the involution of Ty sending & to —&'.? In fact, B is a splitting module for
the Azumaya algebra D%, and from this point of view, the Cartier transform is, up
to the twist by ¢, just the equivalence of categories between the category of modules
over a split Azumaya algebra and the category of &-modules on the underlying space
defined by the choice of a splitting module. In particular, the Cartier transform gives
an equivalence between the category MIC,_, (X) of nilpotent D-modules of level less
then or equal to p — 1 and the category HIG,_,(X’) of Higgs modules supported on
the (p — 1)” infinitesimal neighborhood of the zero section X' — T%,. The larger
categories of locally nilpotent D%-modules and I".Tyx-modules have the advantage of
being tensor categories, and the Cartier transform is in fact compatible with the tensor
structures.

We also obtain an analog of Simpson’s isomorphism (0.0.2): if (E', 6) is the
Cartier transform of a module with connection (E, V) whose level is less than the

2 The role of the involution ¢ is to insure that our constructions are compatible with the standard Cartier
operator and with the decomposition of the de Rham complex constructed by Deligne and Illusie [8].
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p minus the dimension of X, then we construct an isomorphism in the derived cate-
gory between the de Rham complex of (E, V) and the Higgs complex of (E, 8"). This
result generalizes the decomposition theorem of Deligne-Illusie [8].

Let us describe the structure and content of the paper in more detail. We work
with a smooth morphism X/S of schemes in characteristic p. We shall see that the
Cartier transform depends on a lifting X'/S of X'/S modulo p? rather than a lifting
of X/S, and we write 2"/ for the pair (X/S,X'/S). In Theorem 1.1 of Section 1.1
we construct the torsor £y of liftings of Frobenius and compute its connection
in Proposition 1.10 and its p-curvature in Proposition 1.5, using the geometric lan-
guage of the crystalline site and in particular Mochizuki’s geometric description of the
p-curvature, which we recall in Proposition 1.7. We also discuss in Section 1.3 the re-
lationship between %75 and some more familiar constructions in the literature.

Section 2 is devoted to the construction of the Cartier transform. We begin by
reviewing in Theorem 2.1 the Azumaya property of the algebra of differential oper-
ators and the canonical fppf splitting module described in [4]. Then we discuss the
global Cartier transform Cy, 5 as well as a local version which depends on a lifting
F of the relative Frobenius morphism Fx/s. Theorem 2.7 constructs from such a lift-
ing T, or just the corresponding splitting ¢ of the inverse Cartier operator, a surjective
étale endomorphism o, of Ty, and a splitting module %, of a;Dx/s. The restric-
tion @g of %, to the formal completion of T%, along its zero section splits the ring
ﬁx/s = Dxs ®S'Tx//s g'TX/ ss of HPD differential operators, and this splitting module
defines an equivalence, which we call in Theorem 2.11 the local Cartier transform, be-
tween the category of modules over ﬁx/s and the category of modules over the ring
STy ss- In fact, 93?{ is naturally isomorphic to the dual of the divided power envelope
of @/ along the ideal of the section of Z, defined by F. This gives the compati-
bility between the local and global Cartier transforms.

In Theorem 2.23 we explain how the Cartier transform can be viewed as an
analog of the Riemann—Hilbert correspondence, with the sheaf of Ox-algebras <7y »
playing the role of Ox«. We also discuss a filtered version of the construction, in which
we study filtered D;/(/S—modules (E, N.), where N. is a filtration on E such that

(0.0.4:) (FjTX//S)NkE - Nk_jE

for all £ and j. The algebra %75 has a canonical filtration with this property, and we
show that the filtered object C 4~ (E, N.), can be computed from the tensor product
filtration on &7y, ® E, which again satisfies (0.0.4). This construction will become
important in our analog, Theorem 2.26, of the cohomological theorems of Simpson
and Deligne-Illusie and in particular to our study of the “conjugate filtration” in co-
homology.

Section 3 investigates the compatibility of the Cartier transform with direct and
inverse images with respect to a morphism of smooth S-schemes /: X — Y. We begin
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with a review of the construction of the Gauss Manin connection on the relative de
Rham cohomology R/, (E ® €2y y) when 7 is smooth and discuss its analog for Higgs
fields. Our review culminates with Theorem 3.4, which shows that R%, increases the
level of nilpotence of a connection by at most the relative dimension & of 4, strength-
ening the result [18, 5.10] of Katz. In particular, we show that if N. is a filtration
of E such that Gr™ E has zero p-curvature, then the filtration of R/, (E ® Qy/y) n-
duced by Deligne’s “filtration décalée” N* of E ® Qy sy has the same property. The-
orem 3.8 shows that the Cartier transform is compatible with direct image by con-
structing, given a lifting 7' of of #': X' — Y’, an isomorphism in HIG(Y'/S)

0.0.5 R/AMCC, oFE = Cy, o RIPRE
* / / *

if the level of E is less than p—d; we also show that this construction is compatible with
the filtrations N This result can be regarded as a relative version of the cohomology
comparison Theorem 2.26.

The remainder of Section 3 is devoted to derived versions of these results in
a certain filtered derived category of Dy s-modules. The first important ingredient of
this approach is a new construction, described in Proposition 3.12, of the functors
LA, and RAPR in characteristic p, due to Bezrukavnikov and Braverman [5], based
on the Azumaya property of the algebra Fx/s,.Dx/s. This construction allows us to
work locally over the cotangent bundle. Another ingredient is the comjugate filtration

(0.0.6) c C S C o C Iy C FxysiDxs,
where % = STxs(Fx/s:Dxs)
and the concept of the S-filtered derived category DF (Fx/s.Dx/s, -#x) of modules over

the filtered algebra Fx;s,Dx/s. Objects of this category are filtered complexes (E’, N")
of Fx/s.Dx/s-modules such that for every integer ¢

INE c NT'E,

or equivalently, such that the associated graded module has vanishing p-curvature. We
lift the functors RAP® and LAj, to functors between the .#filtered derived categories
and prove in Proposition 3.16 that, for a smooth morphism %4 : X — Y of relative
dimension d, the functor RAPR increases the range of the .#filtration at most by d:

RhBR(DF[k,Z](FX/S*DX/Ss Ix)) C DFy—ysn(Fy/s«Dyys, ).

A different filtered derived category of Dy s-modules was defined by Laumon
in [20]. Instead of the conjugate filtration (0.0.6) he considers the order filtration

Ox = Dxys,0 C Dxys) C --- C Dxys C -+ C Dxys.
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An object of Laumon’s category D(MF(Dy/s)) is a complex E* of Dyx/s-modules to-
gether with a filtration

- CFE CF'EC---CE
by Ox-submodules satisfying Griffiths transversality:
Dy/s:(IVE") C F/7'E".

It is shown in [20] how the functors RAP® and LA}, lift to functors between Laumon’s
filtered derived categories. Laumon’s construction makes sense over any base S, not
necessarily of characteristic p.

We observe in Section 3.4 that the graded Azumaya algebra Gry, Fx/s.Dx/s has
a canonical splitting which then defines an equivalence of categories

CYys - D(Mod (Gry Fx/s,Dx/s)) = D(HIG (X'/S)).

We explain in Remark 3.19 how this observation combined with the formalism of fil-
tered derived categories leads to a generalization of Katz’s formula [19, Theorem 3.2]
relating the p-curvature to the Kodaira—Spencer mapping. Namely, for any smooth
morphism /4, we have canonical quasi-isomorphisms

Cys Gry RAPR(Ox) = RIYC(Ox) ~ Gry RE)N(Ox),  where
C}, ¢ Grx . .
DF(Fys.Dy;s, #4) ————> D(HIG' (Y'/S)) «—“— D(MF(Dy,s)).

(The second quasi-isomorphism is constructed in [20].)
In Section 3.5 we explain how, when [/ — £ < p, the Cartier transform lifts to an
equivalence of triangulated categories

Cays : DFyn(Fx/seDxysy Ix) = DFy (S Txs, Zx)

between the category DF (Fx/s:Dx/s, #x) and the _Z-filtered derived category
DFy. (S Tx s, #x) of Higgs modules, where #x C STxys is the ideal generated
by Tx/s. We then show in Theorem 3.22 that, for a smooth morphism 4 : X — Y,
a lifting 7 : X’ — Y’ induces a filtered quasi-isomorphism

Cos o RIPR=ZREMC 0 Cyys, for [—k4+d<p.

The exposition of Sections 3.3-3.5 does not depend on Sections 3.1-3.2, which obtain
many of the same results on the level of cohomology by more explicit methods.
Section 4 is devoted to applications and examples. First we give a characteri-
zation of the local étale essential image of the p-curvature functor from the category
MIC(X/S) to the category of F-Higgs sheaves. We show in Theorem 4.1 that if E is
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coherent and ¥: E — E® F§‘</SQ>1(, ;s 1s an F-Higgs field, then, étale locally on X,
(E, ¥) comes from a connection if and only if; étale locally, (E, ¥) descends to X'.
This can be regarded as a nonabelian analog of the exact sequence [23, 4.14]

g ¥ ,«—Cx/s
" X/S dlog 1 X/S T VX/S
0 —— ﬁX’ —— Fx/s*ﬁ;Z E— FX/S*ZX/S

1
QL s —=0,

where Cx/s is the Cartier operator and mxs: X' — X is idx X Fs. Next in The-
orem 4.5 and Proposition 4.4 come a comparison of the gerbes of liftings of X’ and
of splittings of Fx/s.D% /s and a cohomological formula for the class of Fx/s.Dx/s in
the Brauer group. We prove in Theorem 4.14 that if X is an abelian variety, then
Fx/s«Dx/s always splits over the formal completion of the zero section of its cotangent
bundle, and in Section 4.5 we construct an example of a liftable surface for which
Fx/s«Dx/s does not have this property. Section 4.6 contains a discussion of p-torsion
Fontaine modules, especially as developed in [11] and [28], from the point of view of
the Cartier transform. As an application, we give a reduction modulo p proof of the
semistability of the Higgs bundles arising from Kodaira—Spencer mappings. Finally, in
Section 4.7, we show how our nonabelian Hodge theory can be used to give a reduc-
tion modulo p proof of a celebrated recent theorem of Barannikov and Kontsevich,
answering a question of Sabbah [34].

We conclude with an appendix devoted to generalities about Higgs fields, and in
particular to the study of the tensor product structure on the category of Higgs mod-
ules. This structure can be viewed as convolution with respect to the additive group
law on the cotangent space and makes sense when restricted to the formal and divided
power completions of the zero section. The tensor category of Higgs modules has an
internal Hom, and an object # of HIG(X) defines what we call a “Higgs transform”
E +— Jlmyc(%, E) from the category of Higgs modules to itself. Our key techni-
cal result 1s Proposition 5.16, which shows that the Higgs transform with respect to
a character sheaf on the cotangent space defines (after a change of sign) an mvolutive
autoequivalence of tensor categories. In the last part of the appendix we introduce,
using Dx/s as a model, the notion of a tensor structure on an Azumaya algebra .o/
over a group scheme. Such a structure makes the category of .&/-modules a tensor
category.

Both authors would like to express their gratitude to Roman Bezrukavnikov. The
second author would like to say that he learned the main idea of this work from him:
in particular, he explained that the ring of differential operators in characteristic p is
an Azumaya algebra over the cotangent bundle and suggested that it might split over
a suitable infinitesimal neighborhood of the zero section. The first author was blocked
from realizing his vision (based on [29]) of a nonabelian Hodge theory in positive
characteristics until he learned of this insight. Numerous conversations with Roman
also helped us to overcome many of the technical and conceptual difficulties we en-
countered in the course of the work. The authors also benefited greatly from Pierre
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Berthelot, who in particular explained to the first author years ago how a lifting of
Frobenius makes ﬁX/S into a matrix algebra. Special thanks go to the referee who
pointed out a mistake in an early draft as well as a simplification in our argument
which offered a way around it. This led us to the realization that we could greatly
strengthen one of our main results and allowed us to develop the filtered Cartier trans-
form in the context of cohomology and derived categories. We are also extremely
grateful to the referee for pointing out an enormous number of misprints and ambi-
guities in an early draft. We would also like to thank Alexander Beilinson, Alexander
Braverman, Luc Illusie, and Ofer Gabber for the interest they showed and the ad-
vice they provided. Finally, we would like to alert the reader to a forthcoming work
by Daniel Schepler which extends this theory to log geometry:®

1 The torsor of Frobenius liftings

1.1 Liftings of Frobenius

If X is a scheme in characteristic p, let Fx denote its absolute Frobenius en-
domorphism, ze., the map which is the identity on the underlying topological space
and which takes each section of Ox to its pth power. For any morphism f: X — S
of schemes in characteristic p, I's o f/ = f o Fx, and one has the relative Frobenius
diagram:

Fx/s TX/S

X® X

X
\ lﬂs) lf
Fs

S —S.

The square in this diagram is Cartesian, and the map Fyx/s is the unique morphism
over S such that mx/s o Fx)s = Fx. If no confusion seems likely to result, we may
simplify the notation, writing X' for X®_ F for Fy/s, etc. We also often write X/S for
the morphism f: X — S, viewed as an S-scheme.

If f: X — S is any morphism of schemes in characteristic p > 0 and 7z is a pos-
itive integer, by a lifting of f modulo p" we shall mean a morphism f: X — S of flat
Z/p"Z-schemes, together with a Cartesian diagram

X—X

fl l ’.:

S—=5,
3 Both authors would like to acknowledge the support this collaboration received from the Committee on
Research at the University of California at Berkeley. The second author was partially supported by NSF grant

DMS-0401164, but support for the team effort was denied by the National Science Foundation and the Miller
Institute for Basic Research.



NONABELIAN HODGE THEORY IN CHARACTERISTIC p 9

where S — S is the closed subscheme defined by p. Note that if X/ S is such a lifting
and X/S is flat (resp. smooth), then so is X/ S. We shall be primarily interested in
the case n = 2, and if 7 is not specified, this is what we shall mean. If the absolute
Frobenius endomorphism Fy lifts to S, then / X XFg S — S lifts X'/S. For example,
if S is the spectrum of a perfect field £ and S the spectrum of its truncated Witt ring,
then there is a unique such Fg, but in general there is no reason for a lifting of Fg or
of X' to exist even locally on S, unless S is smooth over a perfect field.

Throughout the rest of this section, let us fix a smooth X/S as above. We assume
that a lifting X'/S of X'/S modulo p? exists, and we denote the pair (X/S,X'/S) by
%'/ Note that, given a lifting X of X, it is very rare for there to exist a global
lifting of Fx/s: X — X'. (For example, no such lift can exist if X is a smooth proper
curve of genus at least two over a perfect field, as is well known.) However it follows
from the smoothness of X'/S that such lifts do exist locally, and we shall see that the
sheaf of such liftings is crystalline in nature.

Let us fix a divided power structure on the ideal p05 and consider the crys-
talline site Cris(X/S). If (U, T) is an object of Cris(X/ S), let T be the reduction of
T modulo p. The ideal J1 of the inclusion i: U — T is a divided power ideal, and so
a’ = 0 for every local section a of Jy. Then the relative Frobenius map Fy/s factors
through U’, and there is a unique and canonical morphism fr/s: T  — X' such the
following diagram commutes

Fry/s

T——T

(1.0.1) f/ lf/

/ lﬂ(/

X =——U.
Let us note for future reference that the differential of fr/s vanishes:
(1.0.2) 0= dftys: Q5 = Sr/se Qs

Indeed, dff /s o di’ = d¥Fr;s = 0, and since di’ is an epimorphism, dff s = 0.
If g: Ty — Ty is a morphism in Cris(X/S), then fr,/s 0 g = fr,/s. Hence if E is
a sheaf of Ox-modules, there is a natural isomorphism

0, é’VTE/SE/ ;fT*l/sE/’

and the collection {f7sE', 6,} defines a crystal of Oxs-modules. The corresponding
object of MIC(X/S) 1is F;‘(/SE’ with its Frobenius descent connection. (This is the

unique connection V on Iy /SE’ which annihilates the sections of F;}SE’ C % /SE’.)
An extension of crystals

(1.0.3) 0> E—H20¢—0
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gives rise to a sheaf 27" (1) C H of E-torsors on Cris(X/S); this construction defines an
equivalence between the category of E-torsors and the category of extensions (1.0.3).
Recall that giving a crystal E amounts to giving a quasi-coherent sheaf of Ox-modules
with an integrable connection Vi : E — E ® Qy ss- Similarly, giving an E-torsor &’
on Cris(X/S) is equivalent to giving an E-torsor .Z on Zar(X) together with a map

Vy: 2 — E® Q)

such that Vg (/+¢) = Vg(/) + Vg(e) and such that the composition
L E®QL —5 E@ QL

is equal to zero.
If E is a locally free crystal of Ox,s-modules, we shall denote by E the corres-
ponding c¢rystal of affine group schemes over Cris(X/S). That 1s, for each T € Cris(X/S),

E; := Spec S'Qr,

where @ is the crystal of Ox/s-modules dual to E. In particular, a vector bundle E’
over X' defines a crystal of affine schemes Iy (E'. More generally, for an E-torsor &
on Cris(X/S), we denote by L the corresponding crystal of affine schemes, which has
a natural action E x L — L.

Now let us fix a pair Z7/.7 := (X/S,X'/S) as above. By a lifling of fr/s to T
we shall mean a morphism F: T — X' lifting f;5. The sets of such liftings on open
subsets of T form a sheaf Zy,#.1 on the Zariski topology of T (which coincides with
the Zariski topology of T). Since X'/S is smooth, such liftings exist locally, and by
standard deformation theory, the sheaf £, 4 1 of such liftings forms a torsor under

the abelian sheaf %m(ff‘/sﬁé(,/s,pﬁf) = f1s (Txys)-

Theorem 1.1. — Let 2.7 = (X/S,X'/S) be as above. Then there is a unmique crystal
of F% /STX/ ss-torsors Loy on X/S with the following properties.

1. For each object T of X/S admitting a flat lifting T € Cris(X/S), £ 27,1 15 the sheaf

of biftings of frss 10 T. i i
2. For each morphism g: Iy — Lo of flat objects i Cris(X/S) and each lfting
F: Ty — X' of frys, the transition map 0,: ¢* Ly )91, = Lo)o 1, satisfies

Qg(F) = Fog: T, - X.

We denote by Ly the crystal of relatively affine schemes Spec oy corresponding to the
F s Txys-torsor Lo .z; thus Do) 15 a crystal of quasi-coherent Ox js-algebras.

Remark 1.2, — We~ should point out that if T, and T2 are two flat liftings of
an object T of Cris(X/S), then the set of liftings of fr/,s to T; and to Ty can be
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canonically identified. More precisely, let T, and T, be flat objects of Cris(X/S), and
let § and g’ be two morphisms T, — T, with the same reduction modulo p. Then
Ly 17(&) = Lo)#(&) as maps Ly)9(T9) — Ly 7(T)). This will follow from the
proof of the theorem, but it can also be deduced from the following elementary argu-
ment. Let g: T, — Ty be the common reduction modulo p of g; and g. Then there
1s a map h: QIT2/S — g,0r, such that 3" (@) = g*(a) + [pli(da) for every section a
of Oy, lifting a section a of Or,. Then if ' € Zp,,(Ty) is any lift of fr,s and b is
a section of Og with image b in Oy,

Fog) (B = (F 02 (d) + [pVu(dfr,s(db)).
But we saw in (1.0.2) that dfy,;s = 0, hence Fog=Foj.

Proof of Theorem 1.1. — We will need the following easy technical result.

Lemma 1.3. — Let Cris;(X/ S) denote the full subsite of Cris(X/ S) consusting of those
objects which are flat over S. Then the morphism of sites a: Cris (X/ S) — Cris(X/S) induces

an equivalence between the respective categories of crystals of Oy js-modules.

Proof. — Indeed, the question is local on X, so we may assume the existence
of a lifting X/S. Then both categories can be identified with the category of pairs
(E, €), where E is a quasi-coherent ¢-module and € is an isomorphism between the
two pullbacks of E to the divided power completion of X x X along the diagonal,
satisfying the cocycle condition [3, §6]. O

Thus we can identify the category of crystals of Ox/s-modules on Cris(X/S) and
the category of p-torsion crystals of & s-modules on Cris (X/ S). The same is true for
torsors over crystals of Oy s-modules.

It is clear that the family {.Z; 1 : T € Cris;(X/S)}, together with the family
of transition maps 6, described in the theorem, forms a sheaf of sets on Cris (X/ S).
Furthermore, as we saw above, this family naturally forms a sheaf of Iy, /STX/ /s-torsors.
This proves the theorem. ]

Let us record some basic facts about vector groups which we will need later. Let
mp: T — X be a vector group over X and let T be its sheaf of sections. Thus T is
a locally free sheaf of Ox-modules of finite rank and T = Specy S'2, where 2 is the
dual of T. The pairing T x @ — Ox extends to a pairing T x S'Q2 — S'Q, where
sections of T act as derivations of S'€2. This action defines a map:

S = Dg}: T — T[T*TT/Xa

which identifies T with the sheaf of translation invariant vector fields of T relative
to X. It also induces an isomorphism 77T — Try,x. Moreover, there is a canonical
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pairing of Ox-modules:
FnT ® Sn-i-mQ — S"Q

which is perfect when m = 0; see Section 5.4 and [3, A10]. If we endow I'.'T" with the
topology defined by the PD-filtration of I''T and S'Q2 with the discrete topology, this
action is continuous. Thus it extends to a continuous action of the completion [".T
and identifies #mg (S Q, Ox) with the completed divided power algebra [T of T.*
This action identifies the sheaf of divided power algebras I'.'T" [33] with the subring
of translation invariant elements in the fu/l ring of differential operators [3, 2.1] of T
relative to X.

A section & of T can be thought of as a section of the map 7wp: T — X let
e: T — T be translation by &. Then the derivation D¢ belongs to the divided power
ideal of I'.'T, exp(Ds) makes sense as a differential operator of infinite order, and one
has the formula (Taylor’s theorem):

(1.3.1) t; () = (expDe)(f)

for the action of £ on S'€2. The increasing filtration

NS Q=) §QcCsQ
i<n
is invariant under £ furthermore £ acts trivially on the successive quotients.
Now let .Z be a T-torsor over X and let m¢: L — X be the corresponding
relatively affine scheme. It follows from the translation invariance of D¢ that the action

of I'T on S'Q carries over to an action on 7, 0y. Similarly, there is a canonical
filtration N. on 74,0y, and a canonical isomorphism

(1.3.2) GrN(m g, Op) = S'Q.

Note that N;r &0 can also be characterized as the annihilator of ]_[j>i I'/T. The
bottom level NyS €2 of S'Q2 corresponds to the translation invariant sections, so there

is a canonical exact sequence
00— Ox—>&— QL— 0,

where & := N 7,0y is the set of affine functions on L.
A section £ of £ determines an isomorphism s;: L — T: 5(¢') :=¢ — € € T
for all sections €' over all X-schemes. This isomorphism determines an isomorphism

oy :=5,:SQ — 1,01

* Thus the Cartier dual of T is the formal scheme 'i‘; associated to the PD-algebra [.T with the topology
defined by the divided power filtration {]_[ [T :n e N}

jzn
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This is the unique isomorphism of filtered Ox-algebras with the property that
o)) = (w, ' — £) for all local sections £ of £ over X and w of Q. (The unique-
ness comes from the fact that any polynomial o € Alt, ..., #;] of degree less than or
equal to 1 is determined by its values on all A-valued points.) Note in particular that,
as a [.T-module, 74,0}, is locally coinvertible, i.e., its Ox-linear dual is, locally on X,
free of rank one over I".T.

Finally, let us remark that if T — 1" is an Ox-linear map of locally free sheaves,
and 2" is the T’-torsor deduced from .Z by pushout, then the morphism & — ¢’
induces an isomorphism

(1.3.3) T Oy = Homp (0.1, w0, 0y).

Let us summarize these remarks for our crystal of torsors 5.

Proposition 1.4. — Let 2. = (X, X') and Loy be as above, and let V5 )y
denote the corresponding crystal of Ox-algebras.

1. There s a natural horizontal action of f‘F; /STX/ /s on Ay, compatible with the
action of ¥% sTxvs by translation, as described i formula (1.3.1) above. As a sheaf
of lc‘F;"( /S(TX/ /s)-modules on X, 2y s locally coinvertible.

2. There is a natural horizontal filtration N. on Sy, tnvariant under the action of
F;‘(/STX//S. In fact Nyoly ;o is the anmihilator of ]_[] F~F§/STX//S, and there 1s

it
a canonical 1somorphism:

GrY o) = FL 8 Qs
3. Let T be a flat object of Cris(X/S) and let ¥: T — X' be a lift of frss. Then there
is a unique 1somorphism of (fillered) O-algebras
O—F:ﬁ/SS'Q;(’/S = Ay 7.1

with the following property. For every section @ of Ok lfting a section d' of Ox,
Up(ﬁ/sda/) € N\Ay o1 is the Ov-valued function on Ly (1) such that for
each ¥,

[plow(fsdd) () = F*(@) — F*(@).
Furthermore Gry oy s the isomorphism of (2). |
In particular we have a fundamental exact sequence:’
(1.4.1) 0= Ox— Ex)y — F;(/SQ)I(’/S — 0,
where

Er1y :=N1dy)z.

> The first explicit construction of this sequence was given in [37].
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A section T of Zy,» determines as above a homomorphism of which induces a split-
ting (not compatible with the connections) of this sequence, and in fact the set of split-
tings is bijective with the set of sections.

Since 7 g Ly — X is an F{ /gTX/ s-torsor over X, there is a natural identi-
fication ! ox = kX /%Q;c ss- (Here we are omitting the distinction between 2" and
L in the notation.) The following result is the key to our theory; it shows that the
p-curvature of the connection on &7y, is very rich.

Proposition 1.5. — The action described in part (1) of Proposition 1.4 of ¥ ,sTxys ©
FFX ;s Ixiys on Ay is the same as the action given by the p-curvature r of the connection V
on Ay . That is, the diagram

2
Ay )y —> Dy )9 @ F?(/SQ;(//S

;i |-

1
nf*ﬁ.f EZ*Qg/X,

where d s the usual exterior derivative and s the p-curvature of the connection on Ay )5, Us
commutative.

This formula can be proved by explicit calculation (see Remark 1.11 below).
We prefer to give here a conceptual proof based on a geometric construction of the
p-curvature due to Mochizuki and communicated to us by Brian Osserman; see [30].
This construction begins with the following crystalline interpretation of Iy /582;(, /s

Proposition 1.6, — Let X/S be a smooth morplism of schemes in characteristic p, lel
X(1) = X xs X, and let (D(1),1,y) denote the divided power envelope of the ideal 1 of the
diagonal immersion X — X(1). Then there 1s a umique and functorial isomorphism

& F;/SQ;(’/S I/d +10v))
such that, for every local section a of O,

5 (@) = d(@) == (1®a) — (@@ 1) (mod I

~p+11

+1]
LAt 1Ob)).
Progf. — TYor each section a of Ox, let é(a) ' =1Q@a—a® 1 €10 C I. Note
that £(¢) annihilates 1/ (T[Hl] + 10p1y), and hence that the actions of (¢ ® 1) and of
(1®a) on I/ (I[p+ ]+IﬁD(1)) are the same. Thus this quotient can be viewed as a sheaf
of Ox-modules. If b is another section of 0%, then
-1

Ea+ D) = E@ +EONY = E@V + ) E@EB) + &b) !

=1

=@ + &) (mod 10p)).



NONABELIAN HODGE THEORY IN CHARACTERISTIC p 15

Furthermore, £(ab) = (1 @ )&(b) + (b ® 1)&(a), so a similar calculation shows that
E(ab)'? = a’&(b)! + bPE@ (mod 10p)).

Finally, if a is a local section of f~'(0s), §(a) = 0. These properties imply that d,

is a derivation Ox — FX*(T/ (TMH] + IﬁD(l))), and hence that d, factors through an
Ox-linear &, as claimed. To see that &, is an isomorphism, we may work with the aid
of a system of local coordinates ¢, ..., 4, for X/S. Let & := &(4), so that, in multi-
index notation, {M : T € N"} forms a basis for h« Oy, where oy D(1) — X is
the first projection. Note that T € [ I0p) and that &M € 10y if any I < p. Tt
follows that I/ (TMH] + 10p(1)) is freely generated by gl”J L g7 and hence that &, is

an isomorphism. O

Proposition 1.7 (Mochizuki). — Let E. be a crystal of Ox-modules on X/S, Let hy and hy
be the canonical maps D(1) — X, and let €: l5E — hYE be the canonical 1somorphism. Then
the p-curvature Y of ¥ identifies, via the isomorphism &, of Proposition 1.6, with the map sending

each local section e of Ex o the class of €(hi(e)) — hi(e) m T/(TUJH] +10h)) ® E.

Proof. — We verify this formula with the aid of a system of local coordinates
(4, ..., t,), using the notation above. Then if D, := 9/9¢,

e(iz(0) =Y EMVE(o);
I

note that DE” ) = 0. Thus, modulo R

+ 10p), €(h3(e)) — ki(e)) reduces to
D EVL R =) E@T (1)) Vi k(o) = (id ® &) (Y(e)).

O

Remark 1.8. — Let 2: X — Y be a morphism of smooth S-schemes, let
E € MIC(Y/S) be a module with an integrable connection, and let ¥y: E —
E ®g Fy /5924 ;s be its p-curvature. Then the p-curvature of /*E is the composition:
* PPy * ¥ W 4 %
KE — I'E ®g Fi sl Qs —> FE ®py F 5% s-
This follows immediately from Proposition 1.7; it was first proved years ago by O. Gab-
ber, using an indirect method.

Proof of Proposition 1.5. — Let F: X — X' be a local lift of Fx/s. Let (D(1),], )
denote the PD-envelope of the diagonal idgalj of X(1), let (DSl),I, Y) (Elenote its
reduction modulo p, and denote again by F the induced maps X(1) — X'(1) and
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D(1) — D’(1). Since J is flat over S, multiplication by p induces an injective map
[p): /1000y = J/1) O

1] 1]

Since J/77 is flat over S, (WJOp, ") N Oy = p(JOs0, +]

plication by p induces an injective map

), so multi-

[p): 1/ (10p0) + TMH]) — J/(8)Opa) +

If @ is a local section of O, we let £&(a) =1 ®a—a® 1.

—[P-H]).

Claim 1.9. — Let F: X — X’ be a local lift of Frobenius, let 4 be a local section
of Ox, let d := m*(a), and let @’ be a local lift of ' to O%. Then

£F™(@)) = —[plE@""  (mod pJOp 1))
= —[pld,(a) (modpjﬁﬁ(l) —I—j[pH]).

Proof. — We may prove this claim with the aid of a local lifting a of a. Then
F*(@') = a’ + pb for some section b of O. Since p&(b) € pJOp),

gf@N=1®a—a®1 (mod p0p)).
Now | ® a=a® | + &), so
1@d=adQ1+p;+ (@),

where p¢ = Y71 ()@&@)"" € pJOp,. Since (£(@)" = pl(E@)HY and (p — 1)!
—1 (mod p), this proves the claim.

o i

Let of be the splitting associated with ' described in Proposition 1.4, and let
o = op(dn*(a)) € Hy ). Then Y(@) € Ty sy @ F;"(/SQ;(,/S, and by the p-curvature
formula of Proposition 1.7, (id ® &,)¥/(a) is the class of Aj(a) — Aj(a) in )y &
_[Hl]). IFF: D) - X' is any section of fggyy(f)(l)) and F, :=F ok,

(A/10p ) + 1
[p1Gd ® &)W(a)(F') = [p] (3 () (') — hj () (F'))

= [plog, (F% sdd ) (F') — [ plog, (F sda’) (F)
= (I"@) - F;@)) — (@) — F1@))
= IFH@) — BF(@)
= —&(* (@)
= [p1(d,a)
= [pl€,(dn*a).
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Since [p] is injective, it follows that Y(«) = dm(a). This proves the formula for elem-
ents of the form o = o3(dd’). The general case follows from the fact that both ¥
and the action described in Proposition 1.4.1 annihilate Ox € %75, and both are
compatible with the algebra structure. O

It is helpful to have at our disposal an explicit formula for the connection on
Ay 7. Recall from [18] that the inverse Cartier isomorphism C;(}s is a canonical Ox-
linear map:

(1.9.1) Cylst Qs = A (FxyseQ%5):
if =1 and « is a local section of Ox, then Ci}s(dn;*( /S(a)) is the cohomology class of

a’'da. Let 7\ 4 denote the sheaf of closed i-forms on X/S. Then the Cartier operator
is the composite

CX/S: FX/S*ZQ(/S —> %Z(FX/S*Q;(/S) — Q 'S

where the first map is the natural projection and the second is the inverse of C;(}s-
Since 4, /s 1s locally free, locally on X there exists a section of Cx/s (in degree one),
giving rise to a commutative diagram:

FX/S*Q)I(/S

e

FX/S*Z;(/S

~—1 ~—1

%1(FX/S*Q;(/5)

Cx/s

(1.9.2) Qs Qs

Mazur’s formula [21] shows that a lifting T of the relative Frobenius morphism
Fx/s: X — X' determines such a splitting ¢. Suppose that I': X — X' is a lifting of
Fx/s modulo p*. Since

. 1 1

is divisible by p, there is a unique map ¢ making the following diagram commute:

1 dF T 1
Qg5 —FQg 4

1.9.3) l mT
i

Then ¢5 1s a splitting of the inverse Cartier operator in the sense of diagram (1.9.2).
Let us recall the proof. Let a be lift of a section a of Ox and let @ be a lift of 7*a.
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Then (@) = @ + pb for some b € O%. Hence
[plep(dn*a) = dF*(@) = [pla’ " da + [ p)db,

where 4 is the image of b in Ox. Then Ci(dm*a) = a’~'da—+db is closed, and its image
in 7! (FX/S*Q;(/S) is the class of a*~'da, as required.

_ Proposition 1.10. — Let 2/ be as above and let U be a lifi of some open subset of X,
let ¥ be an element of L5 (U), and let o be the corresponding splitting of g9 v described
in Proposition 1.4. Then for any local section o' of 0, /s

V(o1 ® o)) = =)

where NV is the connection (1.4.1) on g ).

Progf. — Since both sides are linear over O, it suffices to prove the formula if
o' = dd, where d is a section of Ox. Let T be the first infinitesimal neighborhood of
U in U x5 U with its two natural projection %: T — U, and let T be the reduction
of T modulo b, so that Op = Oy @ Q) ss- The crystal structure on Ex )y gives us
isomorphisms

hEy 190 —> Exygr <— 2,90

reducing to the identity modulo the ideal Q¢ of @r. Using the resulting identifica-
tions,

V(op(dd)) =
(07 (F 5 dd)) — I} (03 (F sdd)) € )00 ® Qk s € Ay

Let us evaluate this section on an arbltrary section F': T — X' of Ly, #(T). Let
Fii=TFToke Ly17(T). If @ is a lift of &, then by Proposition 1.4,

[IV (05 (K sdd ) (F) = [ plhis (07 (FK, 5da ) (F) — [ plh; (07 (F% jgda)) (F)
= [plog, (F% sda) (') — [ plog, (F sda ) ()
= (I"(@) - F3(@)) — (F*(@) — (@)
= IiF(@) — 57 (@)

= —dF*(@)
= (1t (dd). .
Remark 1.11. — Somewhat more generally, let ¢ be a section of C;(}s as in

(1.9.2), and let
(&, V) :=0x® FX/SQ)I(’/S’
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where V: & — & ® Q>l</s is the map
(/@) > (df —g® o), ® dy).

Then V is an integrable connection on &, and one can simply compute that its
p-curvature is the map

Y 6 = & @ F% s (f,e®aw) > (g.0) Q.

(See for example [26, 2.10].) If I is a lift of Frobenius, then o provides a splitting of
the fundamental exact sequence (1.4.1) and hence an isomorphism &%, = &; induc-
ing the identity maps on Ox and FY /5951(, ss- The formula of Proposition 1.10 shows
that this morphism is horizontal, and hence provides another proof of Proposition 1.5.

1.2 Functoriality

The geometric construction of £, we have given makes it quite straight-
forward to check its functoriality. Note first that a morphism /#: X — Y of smooth
S-schemes induces a morphism of schemes #': X’ — Y’, a morphism of Oy -modules
Tx/s = h*Tys, and hence a morphism of crystals of vector bundles:

Th’: F;(/STX’/S — /Z*F;F{/STyf/s.

Proposition 1.12. — Let h: X — Y be a morplusm of smooth S-schemes and lel ' be
a lft of i'. Then the pair h := (h, I') induces a morphism of crystals of torsors:
ST
Loy = WLy,

compatible with the actions of ¥y /STX/ /s and h*FS /STY/ /s via the morphism Ty . This induces an
womorphism of crystals of h*¥y Ty s-torsors,

2
/Z*F;/STY’/S XFQ/STX’/S g%/y—) }l*fg/y,

a horizontal morphism of filtered Ox-algebras:
Op: (Ko, N.) — (D97, N.)

and a horizontal isomorplusm of IS, T Ty s-algebras

Wity s —> Homp (WFy D Tyys, o))

sl Txos

Proof. — Recall from [3, 6.5] and [3, 5.11] that if E is a crystal on Y/S, then
h*E 1s the unique sheaf such that for each morphism g: T; — Ty from an object
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in Cris(X/S) to an object in Cris(Y/S), (#*E)r, = g"(Er,). Now if T is an object of
Cris;(X/S), Kofrs is amap T — Y’, and the set %1 of its liftings T — Y’ is a torsor
under ff /Sh’*TY/ ss- We claim first of all that T — f /Sh’*TY/ /s can be identified with
I*F5 s Tyys and that T > &) 1 can be identified with /"%, ». Indeed, if ¢: T} — T,
is as above, then

(/Z*F;F(/STY’/S)Tl = g*((F?(/sTY//s)TQ) = g*fT*z/sTY/s =fT*l }l/*TY/S,

proving the first part of the claim. Suppose further that T, € Cris; (X/ S), T, €
Cris (Y/ S), and 7 g: T, — Ty is a PD- -morphism, compatible with %, and let g T, — T,
be its reduction modulo p. If F is a local section of % w71y, then Fo g: T, > Y is
a lift of fr, 0 g = /' o fr,/s, and the sheaf of such lifts forms a g*/ff, s Ty/s-torsor. Thus
F> Foj g defines an isomorphism of torsors from % Y91y XT2T1 to the torsor of such
liftings, proving the second part of the claim. Now if F;: T, — X' is a local section of
Ly,7.1,, then # oF, is such a lifting. Thus composition with ' defines a morphism
Ly)s1, — &Ly 1,, which is evidently compatible with the torsor actions. O

__ Corollary 1.13. — Let h: X — Y 15 a morphism of smooth S-schemes. Then a bfi
KX — Y of I induces an exact sequence

If h 15 smooth, this sequence is short exact (and locally split). O

1.3 Further remarks

If Fs lifts to S and X/S lifts X/S, then X' := X xS lifts X'. In this case there
is a lifting #': X' — X of m: X’ — X, and the following proposition applies.

Proposition 1.14. — Suppose that 7t : X' — X lifis w: X' — X. Then for each section a
of O, there is a unique section 87 (@) of o)y S Aoy such that for every lifing F: U — X'
of Fxys over some open subset U of X,

(182 (@) (F) = F*7*(a) — &
on U. Furthermore, 85 has the following properties.
1. The following diagram commutes:

ﬁf( ﬁx

Ff(l lafz ldon*

where the bottom row 1is the fundamental extension (1.4.1).
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2. The set of all §z(a) for a € O generates &y as an Ox-module.
3.f F: X — X' is a lft of I,

8:(@) = 8z (a)(F) + op(Fida),

where oy s the splitting defined in Proposition 1.4.
4. For every local section a of Ok lifting some a € Ox,

Vé:(a) = —1Q®a 'da e Do)y @ Qég/s and
Véz(a) =1 @F(da) € Hy )9 ® F;qu;(’/s-
5.1f @ and b are sections of Ox reducing to sections a and b of O,
87 (ab) = a8z (b) + b'85(a),

87(A+5) = 8:(@) + 8(b) + Y

0<i<p

a b

N(p—0)l

Progf. — First of all, note that o Fx,s = Fx, which takes any section a of Ox
to a’. Hence if F is a lift of Fx/s and a is a lift of a, F*7*(a) — & is divisible by p.
Thus the formula defining 85 as a function gg{/(y(ﬁ) — (x makes sense. Now if I
is another lift of Fx/s,

[p18:(0)(F) = F*7*@@) — &
= 7)) — & + 7% 2) — F*#%(2)
= [p18z(@)(F) + [ plow(F (da) (F),

by Proposition 1.4. This proves that, as functions on f%/y(fj),
8:(a) = 8z (@) (F) + oy (Fida).

This proves that &z is well defined and satisfies (3). If @ = [p]b for some b € Ox, then
a’ =0, and [p]8z @) () = I /Sfr*( pb) = [p]b?. This proves the commutativity of the
first square in the diagram, and shows that the sub-Ox-module of &5, generated by
the image of §; contains Ox. We have already proved (3), which implies the commu-
tativity of the second square and the fact the set of images of all the 6;(a)’s generates
&y9. To prove (4), we may assume that a lifting I of Fx/s exists. Then by (3) and
Proposition 1.10,

V85 (@) = déz(a)(F) 4+ VopFi (da)
= d8:(2)(F) — ¢p(dm*(a))
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hence
[p1V8:(@) = d([p18x @) () — [plEs(dn*(a))
=d(I*7* @) — & — (F o 7)*(a))
= —da’
= —[/)]a”_lda.
This proves the first equation in (1.14.4). The second follows from the formula for the
p-curvature ¥ in Proposition 1.5; see also Remark 1.11.

The proofs of the formulas of (1.14.5) are straightforward calculations which we
leave to the reader. ]

Remark 1.15. — We have seen that if Fg: S — Slifis Fs and X' =X XFg S, then
the projection X’ — X is a natural global choice of a lifting & as above. If X' is some
other lifting of X', then such a lift 7 will exist locally on X. However in general there
may be no lift of Fg even locally on S, and consequently there may be no lift 7 even
locally on X. However, if @ € Ox is a local lift of a € Ok, then we can choose a local
lift @ € Ox of m*(a). Then the analogs of the formulas in Proposition 1.14 hold with
@ in place of 85 (a).

Let us describe another construction of the fundamental exact sequence (1.4.1).
For each T € Cris(X/S), let I' be the graph of fris: T — X', and for each lifting
IF: T — X' of fr/s let I be the graph of I. Let J1 be the ideal of the of the immersion
(1.15.1) Ji T ST xs X 2% T xg X
A morphism g: T, — Ty in Cris (X/ T) induces a corresponding morphism of conor-
mal sheaves: g"]1, /J%2 — J1, /J%, and so the family {J+ /JQT : T € Cris(X/T)} forms
a sheaf on Cris;(X/S). If F: T — X' is a lifting of fr;s and 7 is a section of Ji,
['*(¢) € O3 vanishes on T, and hence is divisible by .

Proposition 1.16. — For each T € Cris; (X/ S), there is a unique morphism
~ ﬂ o ~
B:Ji = Jilli =>Ep1on i B
such that_for every local lifi ¥ of fr)s and every section ¢ of Ji,
[P1BAF) = T3(@) € Oy
In fact, B defines an tsomorphism of crystals of Ox s-modules and fits into a commutative diagram:

0—> Or 5 3o /12 1/12 0

| b

0—Or—— &9/ —>f"1f/SQ;(’/S —0,

where 1 ts the ideal of T':'T C T x X' and the bottom row s the exact sequence (1.4.1).
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Proof. — Suppose for example that @ is a local section of Og and that 4 is a local
section of O such that fjs(«) = inc*(b). Then §:=1® @ — b® 1 is a section of J1,
and J7 is locally generated by such elements. If T is any local lift of fr/s, [p]1B8:(F) =
F*(@) — b. If & is a local section of £ Txys and ' = & + I, then B.(F') = B(F) +
(&', dd’). This shows that ,35 defines a section of &y » 1. It is clear that Bz depends
only on the class of ¢ mod J?P and so ¢ — B; defines a map ,B:JT/J% — Ex)9m.

Let us check that the diagram commutes. We may assume that a lifting I of
Jiys exists. By definition I := J;/(p) is the ideal of I'. Then 1/1? gﬁ/sgéws’ and the
image of oj(da’) in I/I? is the class of

1®d —fis@)®1 = (frs xid)'(1®d—d®1),

which corresponds to fy'(dd') in fT*/SQg, /s so that the right square of the diagram
commutes. Furthermore, if @ is a local section of Of, then pa € Ji and EPE(F) =
['7(pa) = [pla, where a is the image of @ in Oy. This shows that the left square of
the diagram also commutes. This implies that the arrow [p] in the diagram is injec-
tive. The exactness of the rest of the top row is formal, and it follows that 8 is an
isomorphism. O

Remark 1.17. — The isomorphism class of the extension of connections in (1.4.1)
is an element of ExtiHC(Fg“( /SQ>1<, /s Ox), and there is a spectral sequence with

Ey/ = H'(X, &t{pe (s Ox)) = H(X, Txrps ® Qo jg)-
In particular, there is an exact sequence
0 - H'(X', Txs) = Exty (F*Q)l(’/S’ Ox) — H'(X', Txys ® 951(,/5),

The extension (1.4.1) has the property that its image in H*(X/, Tx/s ® Qy ss) 1s the
identity, and the above exact sequence shows that the set of extension classes with
this property is a (pseudo)-torsor under H' (X', Tx//s). Note that the same is true of
the set of isomorphism classes of liftings of X'/S. We shall investigate this further in
Section 4.2.

It 1s perhaps worthwhile to elucidate the relationship between the fundamental
extension (1.4.1) and some more familiar exact sequences. Since the relative Frobenius
morphism Fyx;s: X — X' is a homeomorphism, (1.4.1) remains exact when pushed
forward by Fx/s. Pulling the resulting sequence back by means of the canonical map
Qs = Fxysl% s (2% 5), one gets an exact sequence

(1.17.1) 0 = Fxsi(Ox) = &)y = Qg = 0
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of locally free sheaves on X'. Each local section ¢’ of &7, , maps to a horizontal sec-
tion of I <2y, /s, and hence V(¢) lies in Ox ® Qs € Ezyv ® Q5. Since V s
integrable, in fact V(¢') € Zy, ss- Thus, the connection V on &y induces an Ox-
linear map & :@/y — FX/S*Z;( /s which fits into the commutative diagram below:

0 —— Fx/s: Ox ——Fx/5:82.9 Fx/s- Q% 0
(1.17.2) 0 —— Fx/s.Ox Ey)y Q%{//s 0

-1 -1
dl (‘%/yl Cxrs l

00— FX/S*Bég/s — FX/S*Zég/s — Fyx /s 05 (X/S) — 0.

Here the middle row is the pullback of the top row along ¢ and the familiar
bottom row is the pushout of the middle row along d: Fx/s.(0x) — Fx/s.Bx/s. Recall
that the bottom row is rarely split. Indeed, a splitting would induce an injective map
Q>1<//s — FX/S*ZQ/S — FX/S*Qéi/S and in particular a nonzero map F§/SQ>1<,/S — Qég/s'
For example, no such map can exist on a complete curve of genus at least two over
a field.

Note that there is also an exact sequence

(1.17.3) 0 — Ox — Fx/s.0x — Fxys:Bx/s — 0.
When pulled back to X this sequence is split by the natural map
S F;(/SFX/S*ﬁX —> ﬁx.

Thus F;‘(/SFX/S*(ﬁX) = Ok @ F§‘</SF*(BX/S). Furthermore, (1.4.1) is the pushout by s
of the pullback by FY g of (1.17.1) along 5. Warning: the map s is not compatible
with the natural connections on the source and target. An S-scheme X/S for which
sequence (1.17.3) splits is called F-split [16].

2 Connections, Higgs fields, and the Cartier transform

2.1 Dxys as an Azumaya algebra

Let X/S be a smooth morphism of schemes in characteristic p > 0. Let Q%{/s
be its sheaf of Kahler differentials, let Tx,s be its dual, and let Dy/s denote the ring
of PD-differential operators of X/S [3, §2]. A section D of Tx/s can be viewed as
a derivation of Ox relative to S and hence as a PD-differential operator of order less
than or equal to 1, and Dx/s is generated as a sheaf of rings over Ox by Tx/s. If E
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is a sheaf of Ox-modules, then to give an integrable connection V: E — E ® Qy /s
is the same as to give an extension of the action of Ox on E to an action of Dx/s
[3, 4.8], which we continue to denote by V. The pth iterate D) of a derivation is
again a derivation, hence a section of Tx,s and an operator of order less than or
equal to 1. This is in general not the same as the pth power D? of D, which is an
operator of order less than or equal to p, even though D’ and D’ have the same
effect on sections of Ox. For each derivation D, let

(2.0.1) ¢«(D) := D’ — DV,

One can show either by calculating in local coordinates [4] or by means of tech-
niques from noncommutative algebra [18], that ¢ is an Fg-linear map from Tx/s to
the center Zx/s of Dx/s. By adjunction, one deduces from ¢ an Ox/g-linear map

(2.0.2) d:Txys = FxsZis @ D> (D) :=(1@D) —(1QD)".

Let V be an integrable connection on E and y: E — E® F§(/SQ>1<,/S be its
p-curvature. It follows from the definitions that for every local section D’ of Tx//s, Yy
is the endomorphism of E induced by the differential operator ¢/(D’). This mapping
satisfies the linearity and integrability conditions of a Higgs field with F%SQ;{, ss In
place of Qy . We refer to such a map as an F-Higgs field on E, and we denote by

W MIC(X/S) — F-HIG(X/S)

the functor taking (E, V) to (E, ¥).

Since ¢ maps to the center of Fx,s.Dx/s, it extends to a map from the sym-
metric algebra S"Tx/s to Zs, and in particular makes Fyx/s.Dx/s into a sheaf of
S"Tx/s-modules. Let Ty, 5 := Specy, S"Tx/s be the cotangent bundle of X'/S. Since
Fx/s«Dx/s 1s quasi-coherent as a sheaf of Ox-modules, it defines a quasi-coherent sheaf
.@X/g on T;k(,/s.

Recall that an Azumaya algebra over a scheme Y is a sheaf of associative algebras
A such that locally for the fppf topology, A is isomorphic to Endg, (0%). More gen-
erally, if Y is a topological space, R is a sheaf of commutative rings on Y, and A is
a sheaf of associative R-algebras which is locally free and finite rank as an R-module,
we say that A is an Azumaya algebra over R if the canonical map AQA” — Endg (A)
is an isomorphism. One can show that if Y is a scheme and R = Oy, then these def-
nitions agree. (See Chapter 4 of [23] for a quick review.)

Our starting point in this section is the following theorem of [4], which asserts
that Zx/s is an Azumaya algebra on Ty, .

Theorem 2.1. — Let X/S be a smooth S-scheme of relative dimension d. Then the map
(2.0.2) induces an isomorphism:

S Txs = Fxyse Z5s-
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This morphism makes Fx s, Dx s an Azumaya algebra over S U /s of rank p**. The corresponding
sheaf Dx ;s of ﬁT;’/S ~algebras on Ty, 5 is canomically split (isomorphic lo a matrix algebra) when
pulled back via the map mwr in the diagram below:

= T
TS — X xx Ty s —= T s

(2.1.1) \ l - l

X—X.

Proof. — We recall here only the main idea of the proof, referring to [4] for
the details. Let Mx/s := Fx/s:Dx/s which we can view as a module over ﬁng/S =
Fx/s«Zx/s ®o,, Fx/s«Ox via right multiplication and the inclusion Ox — Dy/s as well
as a left module over itself. These left and right actions agree on the center Z5/s, and
hence they define a homomorphism of sheaves of rings

FX/S*DX/S ®S'Tx/ /5 Oy, — éa”dﬁf;/s (MX/S),

X/S
which one can check is an isomorphism in local coordinates. |

Observe that if dimX/S > 0, then %x/s is not split locally in the Zariski top-
ology of Ty, . It suffices to check this when S is the spectrum of a field and X is
affine. Then I'(X, Dx/s) has no zero divisors, because its associated graded sheaf with
respect to the filtration by order is canonically isomorphic to the symmetric algebra
S"Tx/s. Since T%, /s 18 integral and Zx/s is locally free as an ﬁTg,/S-module, it also has

no zero divisors and hence is not split.

Remark 2.2. — The power of Theorem 2.1 can be seen from its application to
Cartier descent [18]. Consider the action of Dx;s on Ox. Since D? and D) agree
on O, this action kills the ideal S*Tx/ s of S"Tx//s. Thus Fx/s.(0x) can be viewed
as a sheaf of *%x,s modules, where 7: X' — T s is the zero section. Since *Dx s
is an Azumaya algebra over X' of rank p** and Fx/s.(0x) has rank p?, this shows
that *Zx/s is split, and that tensoring with the splitting module Fxs,(0x) induces an
equivalence between the category of Ox--modules and the category of Dx/s-modules
for which the action of STTyx/ s is zero. This is just the category of Ox-modules en-
dowed with an integrable connection whose p-curvature is zero.

Let D{ ;s be the commutative subalgebra of Dx/s generated by the left inclusion
Ox — Dx/s and its center. Then FX/S*D§< /s defines a quasi-coherent sheaf of algebras
.@f(/s on Tg 4. In fact, it is easy to check that the natural map F;}/SS'TX//S — .@f(/s
is an isomorphism, so that SpecT§/ . D s = T (see Diagram (2.1.1)). In particular,
a sheaf M of Dy s-modules which is quasi-coherent over X can be viewed as a quasi-
coherent sheaf of ﬁTg/s-modules.
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Proposition 2.3. — Let [+ Z — Ty, ;s be a morphism and suppose L. is a sphitting module
Jor [*Dxs. Then L, viewed as a sheaf of J* Dx; Js~modules, is locally free of rank one.

Progf. — First let us prove this when f = 7y and L = Mx/s. Our claim is that
My s 1= Dx/s is locally free of rank one over ”T"@%/s = Ox®S Tx s ® Ox, where the
first Ox acts by multiplication on the left and the second on the right and the tensor
products are taken over Oy . We may assume that we have a system of local coordi-
nates (4, ..., {;) for X/S, with a corresponding set of generators D; for Dx/s. Then the
product Df_l x ~D§_1 generates Mx/s as a module over 7 2% /s» as one sees from the
fact that [D;, 4] = §;. This generator defines a surjective map 75 %% ;s = Mxys, and
since the source and target of this map are locally free Ox,-modules of the same rank,
it 13 an isomorphism.

To deduce the general statement, note that it is enough to prove the claim about
L after a faithfully flat cover, and in particular after a base extension induced by 7.
Thus we can replace Z by Z Xty ¢ TS /s = 7 xx X. The pullback of Mx/s to this
space has the desired property, and L is necessarily locally isomorphic to Mx/s. This
concludes the proof. a

Let us recall that the category of left Dx/s-modules is equipped with a tensor
structure. In Section 5.5 we will discuss this structure from the point of view of Azu-
maya algebras.

2.2 An étale splitting of Dxys

The proof of Theorem 2.1 gives an explicit flat covering of Ty, s which splits
PDxys. It follows from the general theory of Azumaya algebras that there exist étale
coverings over which it is split. In this section we will give an explicit construction
of such a covering, which in fact is a surjective étale endomorphism of the group
scheme Ty, .

The construction of the splitting depends on a choice ¢ of a splitting of the
Cartier operator Cx/s, as exhibited in Diagram (1.9.2). In order to express the formu-
las we shall encounter geometrically, we introduce the following notation. The map ¢
induces by adjunction a map F§‘</SQ}1<,/S — Q;(/S whose dual is a map ¢ : Txs —
FY s Txs. Pulling back by mx/s, we find an Ox-linear map ¢": Tx s — I Tx 5. We
let 4, be the composite of the map of vector bundles induced by ¢ with the relative
Frobenius map for the X'-scheme TY, 4, as displayed in the diagram below.

F £ !
% . Tk /X *(X')

2.3.1) X lspwp/

T /8
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This morphism i1s a homomorphism of affine group schemes over X', but it is not
compatible with the vector bundle structures. We shall see that o, := A —id is sur-
jective and étale and that the Azumaya algebra ;s splits when pulled back
via o.

Recall from Remark 1.11 that associated to a splitting ¢ there is an object (&;,V)
of MIC(X/S), where &, = Ox ® I sQy,s. The connection V on &; induces a con-
nection on each S"&;, compatibly with the inclusion maps S"8; — S"*'&; induced by
the map Ox — &, and hence also on the direct limit & := limS"&;. The split-
ting 0: & — Ox defines an isomorphism of Ox-algebras o, = F% ¢S'Qy ¢ and
the submodule F;‘(/SQ;(, /s generates an ideal I, of @7, which we can identify with
S+F§</SQ§<, ss- By [3, 6.2], the completed PD-envelope (52%2/ of this ideal has a natural
structure of a crystal of Ox/s-modules, so the connection V on 4 extends canon-
ically to a connection V, on JZ%;V. Furthermore, if @ is a local section of Tg, then
V. d" = a1V, (a), and V, maps T[;] to TEH] ® Qy 5. The algebra o7 = T S'Q
also has a canonical F-Higgs field 6: if & is a local section of Tx//s and " a local sec-
tion of Qy, /50 Os (@) = (£, o), and the action of 8¢ on the higher symmetric powers
1s determined by the Leibnitz rule. In fact, as we saw in Remark 1.11, this F-Higgs
field is also the p-curvature of the connection @7, = S'F% /5951(, ss- This field extends to

the divided power envelope @7 and its completion sz;y: the pairing
(2.3.2> S”F;/STX//S (024 F?H-mF;(/SQ;(’/S d FmF;(/SQ;(’/S

comes from the multiplication on the symmetric algebra and the duality between the
symmetric and divided power algebras explained for example in [3, A10]. In particu-
lar, if § € Tx/)s and w € Q;i,/s, one has

(2.3.3) £ = (£, 0} and hence & = (&, w) o™
Let
: =]
B, =iy Hom (77 /T, %),

be the topological dual of o, " equipped with the dual connection and F-Higgs
field (5.5.1). Thus %, = @ S"Fx s Txs as an Ox-module. Because of the sign in the
definition of the dual Higgs field, a section of & of Tx/s acts on B, as multiplication
by —&. The Fy S Tx/s-structure of B, corresponding to this field identifies it with
L% S Txys, where o2 TS, o — Ty g 1s the involution ¢ — —t of the vector group
Tx/s. Note that V is compatible with the algebra structure of % and with the di-
vided power algebra structure of 427?/. It is not, however, compatible with the algebra
structure of %, but rather with its coalgebra structure.



NONABELIAN HODGE THEORY IN CHARACTERISTIC p 29

Remark 2.4. — If ¢ comes from a lifting F of Fx/s as m (1.9.1), we can give
a geometric interpretation of the construction of %, as follows. Let (,iny,i) be the
divided power envelope of the the ideal I of the section of £ corresponding to F.
Recall from Proposition 1.4 that &7, has a connection V as well as an action of
I /SS'TX/ /s, the latter via its identification with the ring of translation invariant PD-
differential operators. Both the connection V and the action of FY /STX/ ss extend nat-
urally to 7] and to its PD-completion o7 77 Then , 77 can be identified with the . i
and %, w1th its topological dual. It is clear from the definitions that these 1dent1ﬁ—
cations are compatible with the F§/SS'TX//g-module structure, and Proposition 1.10
shows that they are also compatible with the connections.

Proposition 2.5. — Let X/S be a smooth morphism of schemes in characteristic p > 0 with
a splitting ¢ of C;(}s: and let by and B, := ¥ ;sS Txvys with the connection V. described above.

1. The map:
(Xé- = ld — }ZC . T; = T;{’/S — T;k(//s

is a surjective étale morphism of affine group schemes over X'.

2. The action of an element &' of S "T'xi/s on PB; defined by its p-curvature is multiplication
by (&),

Proof. — We have already observed that %, is a morphism of group schemes,
and consequently so is «,. Since /4, factors through the relative Frobenius map, its
differential vanishes, and it follows that «, is étale. Then the images under o, of the
geometric fibers of T;/X' are open subgroups of the fibers of Ty, s/X'. Hence the
image of each fiber of T7 /X' must contain the entire corresponding fiber of Ty, /X,
and so o, 13 surjective. Thus o, is an étale covering (but not necessarily an étale cover,
since it need not be a finite morphism).

We must next compute the p-curvature of the divided power envelope sz{y =
F.F;‘(/SQ;(,/S of 7. Let ' be a local section of Q;(,/S, so that x := (0, 1 ® @) belongs
to the divided power ideal of 7. Let D be a local section of Txs and let &
75D € Txyys. Then ¢(D) € I /s Txs, and we shall need the following formula.

Claim 2.6. — §(D)! = F% k() € S'F% s Txs.

To check this, 1~et T* := Specy, S"T'x/s and let T* denote its pullback to X via the
map Fxs, e, T" = Specy Fy g8 Tx/s. Then there is a commutative diagram:

T* T*(X)

S
br pr

T* ™/ T*(X ) N T*
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where the morphism ¢ is the projection

X =T Xp, X = T x,.. X — T

TX/S

Let us view ¢(D) as a section of Of.. Then ¢*¢p(D) = ¢'(&'), so

(D))" = F1.(¢(D))
— Py o 5 (@(D))
= Py po " (' §)
= /77*F5;“*/X/ (¢'(&")
= prip(&).
Since the map pr in the diagram corresponds to pullback by Fx/s, the claim is proved.

By the definition of the connection on &; C o7 given in Remark 1.11 and of
the morphism ¢,

Vb (x) = Vp(0, 1 ® o) = ((D, =¢(1 ® &), 0)
= —((¢(D), 1 @ &), 0)
= —¢)(D)X S eﬁy{y.

The formula [29, 6.1.1] for the p-curvature of divided powers and the compu-
tation of the p-curvature of &; (Proposition 1.5), then say:

Yo () = 21 @ Y (0) 4+ AV ()
= (&, )71 = A PD) )
= £ — (¢D)) (1)
= (&' — K€"
= —a ().
Since %, C %m(&f{y, Ox) as a module with connection, the second part of

Proposition 2.5 follows from the formula for the p-curvature of the dual of a con-
nection; see for example Lemma 5.27. |

We can now show that Zx/s splits when pulled back by a;. Since T} = Ty,
Fx/s+%; can also be viewed as a quasi-coherent sheaf on T;.

Theorem 2.7. — There is a unique action of a?(.@x/s) on Fx/s«HB; extending the actions
of 0{;1( Dxys) and of ﬁT§' The resulting module splits the Azumaya algebra a;‘(@x/s).

Proof: — Proposition 2.5 shows that the actions of S"T'x//s on Fx/s.%; defined on
the one hand through the p-curvature homomorphism S"T'xs — Dx/s and through
o, agree, and hence that the action of %5 extends canonically to an action
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of o Yxss. Since B, = ¥ A, and B, = STxys, B is locally free of rank 7’
over T;. Hence it is a splitting module for the Azumaya algebra of Zx/s. ]

2.3 The Cartier trangform

In this section we explain how a lifting of Fx,s: X — X’ or just of X'/S mod-
ulo p* determines splittings of Zx/s on suitable neighborhoods of the zero section of
Ty 5. We then use these splittings to define characteristic p analogs of the Simpson
correspondence.

Let us begin with the global construction. Suppose we are given a lifting X'/S
of X'/S; and as before, let 2°/.% denote the pair (X/S, X'/S). The sheaf T'.Tx/s has
a canonical divided power structure and can be identified with the divided power en-
velope T;)f/s of the zero section of the cotangent bundle TY, s of X'/S. Its completion
[Ty ss with respect to the PD-filtration {T[n] : n € N} can be viewed as the sheaf of
functions on the formal scheme 'i';’f/s. The topology on the structure sheaf is defined
by the PD-filtration and is admissible [14, 7.1.2] but not adic, and its underlying topo-
logical space is X'. It inherits the structure of a formal group scheme from the group
structure of Ty, g, and the group law is a PD-morphism. If T}” is the closed sub-
scheme defined by T[HH], the group law factors through maps T x T** — T,},, for
all n, m. We shall denote by HIG, (X'/S) the category of sheaves of Ty ss-modules
and by HIG, (X'/S) the full subcategory of locally PD-nilpotent modules, ie., those
with the property that each local section is annihilated by some " As explained in
Definition 5.3 and (more abstractly) in Section 5.5 of the appendix, the group law on
'i';?f/s defines a tensor structure (convolution) on the category HIG, (X'/S). If HIG]
denotes the category of Orp+-modules, the convolution factors through functors

HIG;‘(X’/S) x HIG] X'/S) — HIG’;“L”(X//S).

If E; and E, are objects of HIG, (X/S) and § is a local section of Txs, then the total
PD-Higgs field on the tensor product satisfies

(2.7.1) Ve = Z Vet @ Yeli.
i+j=n

Note that Y:s can be nonzero even if E; and E,; have level less than p. Note also
that this total PD-Higgs field commutes with the Higgs fields id ® ¥ and ¢ ® id. If
E; € HIG)(X'/S) and E, € HIG)(X'/S), then Hmg, (K, Ey) € HIG)™(X/S), with
the unique PD-Higgs field satistying:

wé:[n] (/z) = Z (— l)ng[i] oho wg[j].

i+j=n
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See Section 5.5 for a geometric explanation of this formula. More generally, if E; is
locally PD-nilpotent, then E; = li_r)nNkEl, where N,E; is the subsheaf of sections an-

nihilated by I, and if E, € HIG(X/S) for some n, then
‘%mﬁx(El’ EQ) = L&n‘%mﬁx(NkEl’ E?)

has a natural structure of a I Ty ;s module, but it may not be locally PD-nilpotent.
Let D;/(/S denote the tensor product

D])/(/s = Dxys Qs Ty ﬁ-(TX’/S)

via the map S"Tx/s — Dx/s induced by the p-curvature mapping ¢ (2.0.2). The cat-
egory MIC,, (X/S) of D} ;ssmodules on X is equivalent to the category of sheaves of
Ox-modules E equipped with a connection V and a horizontal homomorphism

¥ D.(Txys) = Fxysibidpy (E, V)
which extends the Higgs field
S.TX’/S — FX/S*@@ndﬁX(E, V)

given by the p-curvature of V. We write MIC (X/S) for the full subcategory of locally
nilpotent objects, those for which each local section is locally annihilated by
I"Txs for i > 0. For example, Ox has an obvious structure of a D;/(/S—module. More
generally, if (E, V) is a module with integrable connection whose p-curvature is nilpo-
tent of level less than p, (E, V) can be viewed as an object of MIC;/(X/ S) by letting
the pth divided power of the ideal ' Tx//s act as zero.

The convolution product on HIG, (X'/S) allows us to make the category
MIC (X/S) into a tensor category. If E; and E; are objects of MIC (X/S) and §
is a local section of Tx/s, then the total PD-Higgs field on the tensor product satisfies
Equation (2.7.1). Since these endomorphisms are horizontal and since this formula
agrees with the p-curvature of a tensor product when n = 1, it does indeed define
an object of MIC (X/S). If E; € MIC (X/S) and Ey € MIC}(X/S) for some n,
then Jme, (E,, Ey) € MIC, (X/S), with the usual connection rule and the action of
f‘.(TX/ ss) defined above.

In order to keep our sign conventions consistent with other constructions®, we
have found it convenient to introduce a twist. Let ¢: T, g — Ty be the inverse
operation in the group law. Then ¢* = ¢, is an involutive autoequivalence of the tensor
category HIG(X'/S). If (E/, ¥') € HIG(X'/S),

(2.7.2> (E/’ w/)L = L*(E/’ w/) — L*(E/’ w/) — (E/’ _w/).

% See for example Remark 2.15 below.
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Recall that in Theorem 1.1 we constructed an algebra %75, from the torsor
of Frobenius liftings %, ». We have seen in Proposition 1.5 that the p-curvature of
(#9197, Vo) coincides with the action of STx/s coming from the torsor structure
and hence that it extends naturally to a continuous divided power Higgs field v,.
Thus &7y, can be regarded as an element of MIC (X/S). Let By s be its Ox-
linear dual, which makes sense as an object of MIC,, (X/S) (although it does not lie
in MIC_ (X/S)).

Theorem 2.8, — Lot X'). = (X/S,X'/S) be a smooth morphism together with a lifi
of X'/S modulo p°.
1. The DY ss-module By described above is a splitting module for the Azumaya algebra
FX/S*(D%'(/S) over f’.(TX//S).
2. The functor
Cy,9: MIC, (X/S) — HIG,(X'/S)
E+— * %”o;an(/S (B9, E)

defines an equivalence of categories, with quasi-inverse

C3,: HIG,(X'/S) — MIC, (X/S)
E — %Qf/y‘ ®f-Tx’/s CE
Furthermore, C g7/ induces an equivalence of lensor calegories:

MIC (X/S) — HIG,, (X//S).

3. Let (E, V) be an object of MIC,, (X/S), let v be its p-curvature, and let (E/, ') :=
Ca9(E, V). A lfting F of Fxss, of it exists, induces a natural 1somorphism

it (B, 9) = Fy s (B, —y).

Progf. — To prove that B4 is a splitting module for DY , it suffices to show
that it is locally free of rank ¢ over the center . Ty ss of DY s As we have already
observed, the action of this center coincides with the action coming from the torsor
structure as described in Proposition 1.4. Since <7y, is coinvertible by op. cit., B v
is locally free of rank one over F{ /Sf'.TX/ ss, and hence is locally free of rank p? over

f‘.TX//S. It then follows from the general theory of matrix algebras that
%mD;/S(%’%/y, ) and %3{/(y®f~.TX,/S are quasi-inverse equivalences of categories.

Since t, is an involutive equivalence, the functors Cy» and C;;/ & are also quasi-
inverse equivalences.

The algebra structure of @7y, endows %4, with the structure of a coalge-
bra with counit. As explained in Proposition 5.29, this gives %45 the structure of
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a tensor splitting and makes J@m(% 4,7, ) a tensor functor; the compatibility iso-
morphism

Co/9(E) @ Cyyv(Ey) — Coyv(E) ® Ey)
comes from the diagram:

Aoy, (By)7, En) @ Hompyy (Br)z, Ea)

| T

Hompy, (B a7 @ Bz, By @ Bo) — s Hompy, (B, Br @ Eo).

Since ¢ is a group morphism, ¢, is also compatible with the tensor structure.
A lifting F of Fy/s defines a trivialization of the torsor %%, » and hence iso-
morphisms of I".Tx//s-modules

A1 = Fy S Qs B = Fy sl Tys.
Then

E=LE ®f‘.TX//S %&V/Y =k ®f‘.TX//S F§/5F~TX’/S = F;(/SL*E/’
as I /Sf"TX/ ss-modules. Statement (3) follows. ]

Corollary 2.9. — With the notation of Theorem 2.8, the Azumaya algebra Fx s.Dx/s
splits on the (p — 1)st infinitesimal neighborhood of the zero section of T3, .

Remark 2.10. — Although the source and target of the isomorphism 7 in part
(3) of Theorem 2.8, are independent of F, Ny itself is not. Indeed, let Fy and F, be
two liftings of Fxs, differing by a section § of Fy ¢Tx/s. Then one can form ¢ in
the completed divided power envelope F’)‘}/Sf'TX//S. Since E' € HIG, (X'/S), ¢ acts
naturally on Fy (F/, and we have the formula

771:“2 = eé o r’i]'

This follows from the fact that the isomorphism of Theorem 2.8 is induced by the
section of £ » defined by I and the formula (1.3.1) for the action by translation of
F;k(/sTxl/s on dg{/y

A lifting F of Fx/s, if it exists, allows us to extend the equivalence of The-
orem 2.8 to the category MIC’ (X/S) of all locally nilpotent connections. As explained
in [3, 4.4, 4.12], objects of this category give rise to modules over the ring Dx/s of
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hyper-PD-differential operators. This ring can be identified with the tensor product of
Dx/s with the completion S'TX//S of S"Tx/s along the ideal of the zero section, and
FX/S*ﬁX/S can be viewed as an Azumaya algebra over the sheaf of rings S'TX/ /S5 OF
equivalently, over the formal completion Ty ss of the cotangent space of X'/S along its
zero section. Let MIC o (X/S) denote the category of sheaves of ﬁx/s—modules on 0%,
and let HIG,,(X'/S) denote the category of sheaves of S'TX//S-modules on Ox. The
subcategories MIC"(X/S) and HIG" (X'/S) are tensor categories. The natural map
S'TX/ /s —> f’.TX//S induces a pair of adjoint functors

Y« : HIG, (X'/S) = HIG,(X'/S)

y*: HIG(X'/S) — HIG,(X'/S),
and similarly for MIC(X/S).

Let <% be the divided power envelope of the augmentation ideal of @y de-
fined by the section of £5,» given by I, and let %’F be its Ox-linear dual. Recall

from Remark 2.4 that it has a natural DX/S -module structure. There are natural maps

_ Theorem 2.11. — Let X/S be a smooth morphism of schemes endowed with a ljfl
F: X — X' of the relative Frobenius morphism ¥y s.

1. The @X/S -module ,@F described above 1s a splitting module for the Azumaya algebra

FX/Q*DX/S over ils center FX/S*QFX/Q = S Tx//s
2. The _functor

Ci: MIC,(X/S) — HIG,, (X//S)
E > 1, Homp, (B, E)

defines an equivalence of categories, with quasi-inverse

C:': HIG, (X'/S) = MIC(X/S)
F — %?p ®@x’/5 L*E/.

Furthermore, Ci: induces an equivalence of tensor categories
MIC' (X/S) — HIG (X'/S).
3. The map 953@ — By (2.10.1) induces isomorphisms of functors

Cioyue=9.0Cy,y and Cy yoy™ = y*oCy.
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Proof: — Let §: Q5 = FxsQY g be the splitting of Cartier associated to F
(1.9.3). Recall that we constructed in Proposition 2.5 a module with connection %,
together with a horizontal action of I /SS'TX/ ss; as a module over this sheaf of rings,
%’C is free of rank one. As we have already noted in Remark 2.4, we can identify
%y with the formal completion %’; of A,; this identification is compatible with the
connections and the actions of FX/SS Tx//s. In particular, %’; is an invertible (even
free) sheaf of FX/SS Tx//s-modules, and hence is locally free of rank p? over S Txs.
Recall from Proposition 2.5 that there is a surjective étale group morphism
o =id — f;: Ty, s = Ty s, and note that its restriction &, to TY, ¢ is an isomorph-
ism, with inverse

=id + h; + I} +

According to Proposition 2.5, the p-curvature action of S"T'x/s on @; is given by &}
followed by the standard action. Since &, is an isomorphism, &;*g%gg is locally free
of rank p?. Thus A is an Fx/s.Dx/s-module which is locally free of rank " over

the center S'Tx//s, and hence is a splitting module. This proves (1), and (2) follows as
before. The compatibilities stated in (3) follow immediately from the constructions and
the morphisms (2.10.1). O

Let us give a more explicit description of the local Cartier transform Cj. Given
a splitting ¢ and a Higgs module (E', ¥') we define a module with integrable con-
nection

(2.11.1) W, YY) = (F 5B, V)
(2.11.2) V =V, + (idy ® 9 o Fy 5 (¥),

where Vj is the Frobenius descent connection and (idy ® ¢) o F% /g(‘ﬁ) is the Ox-linear
map

‘(/S '// ldh/®{

Fe b —— F B ® FX/SQ}li’ — B ® Q /S
Let 93%/5 = 1,5 Tx/s, viewed as an object of HIG(X'/S).
Lemma 2.12. — The isomorphism B, = *S'¥y ;s T'xvys induces an isomorphism
‘I’Zl(%;(/s) = *%C

compatible with the connections.

Progf. — Tor each n, the ideal {5 = P, S/Txs also defines an object of
HIG(X'/S), as does the quotient &, of %y s by H)s. Let &) denote the dual of
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%, in HIG(X'/S) and let & ¢ := li_r)n,ﬂzfn’y. For example,

'52{1/)/ = é{))/(/s = Ox ® Q, 189
and if § € Txs, d € Ox, and o' € Q;C/s:
&(d, o) = ((§ ), 0).
Furthermore, (52%52;5 = F-Qéc/s: and if w; € Q%{//s forj =1, ..., then each x := (0, »))

belongs to the divided power ideal of @4/, and

. . . . . 1] rs
S(XP]X&Q] . xy,]) — Z<S’ wj)x[lll]X£22] . xj[?/ ]XEZ,]'

J

It follows from the definitions that (&, V) = \Dzl(é&{( ss). Then by the formula
above for the action of Tx//s on divided powers and the similar formula for the action
of a connection on divided powers, it follows that (<7, V) = \Ilzl(,ﬂzf)g;s). Hence by
the compatibility of \1151 with duality, (%, V) = \IJC_I(%’% /s)- O

Let (E', ¥') be an object of HIG(X'/S). Then the isomorphism in the previous
lemma induces isomorphisms:
(2.12.1) WL E) = v ®s-1y 5 B/s)
=F ®s Ty 5 ‘I’Zl(%(/s) = ®s 1y s B
Recall from Theorem 2.7 that Fx/s.%; splits the Azumaya algebra a?@x/s over

g
T? = T;}//S — T*//S.

This, together with (2.12.1), implies the following result.

Theorem 2.13. — Let ¢ be a bfi ofC;(}S, let
(X;: FX/S*gX/S = S.TX’/S — S.Tx//s = %—
be the map described in Proposition 2.5, and let
D, :=S"Tx/s Qqp Fx/s:Dxys.

Let MIC,(X/S) denote the category of sheaves of D.-modules on X. For each & € Txs, the
p-curvature Yre on \I’ZI(L*E/ ) 15 induced by the action of a;(§) on ¥/, ie., Yre = Fx s(—a7 (§).
This makes \Ilzl(t*E’ ) a D¢-module. Furthermore, the functors
HIG(X'/S) — MIC,(X/S)
E Y = B ®sy B
(EL ) > U (LE)
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are isomorphic equivalences of categories, with quasi-inverse given by
E — Jomgy, (%, , E).

Corollary 2.14. — Let (E, V) be an object of MIC(X/S), let W be itf p-curvature,
and let (E', ") := Cp(E, V), and let & be the splitting of Cartier determined by Y. Then there

is canonical isomorphism:

(E, V) =W o (B, ¢).

Remark 2.15. — The appearance of the involution ¢ in Definition 2.8 insures the
compatibility of the Cartier transform with the usual Cartier operator. Let us explain
this in the context of extensions. The group Exty(Ox, Ox) of isomorphism classes of
the category EXTII\HC(ﬁX, Ox) of extensions of Ox by Ox in the category MIC/(X/S)
is canonically isomorphic to the de Rham cohomology group H)y (X/S). Similarly,
the group Extyy,(Ox/, Ox/) of isomorphism classes of the category EXTk,(Ox/, Ox')
of extensions of Ox by Ox in HIG(X'/S) is canonically isomorphic to

Hgdg(X//S) =H' (X, Ox @ Qy 5[—1D).
The inverse Cartier transform defines an equivalence of categories
Co oyt EXTyy6(Ox, Ox) — EXT 0 (Ox, Ox),
and hence an isomorphism of groups
¢ Hy(X'/S) = Hyp (X/8).
Let us consider the following diagram.

Hy,,, (X'/S) HY(X, Q)

—1 —1
l%‘/:f lCX/S

H}p (X/S) — H(X, 4 (X/9)).

Thanks to our definition, the diagram is commutative. It suffices to verify this when
Fx/s lifts and for extensions Ox» — E — Ox which split in the category of Ox-
modules. Then E’ has a basis (¢}, ¢;) such that ¥(¢)) = 0 and ¥(¢]) = ¢y ® o, where
o € Q%,/S. Then one can check that E = C}}/y‘(E/) has a basis (¢, ¢) such that
V(e) = 0 and V(e)) = ¢ ® {(@'), where ¢ is the splitting of ngl- 1 defined by the
lifting of Fx/s. This implies that the diagram commutes.
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2.4  The Cartier transform as Riemann—Hilbert

In the previous section we defined a pair of inverse quasi-equivalences of cate-
gories:
Coyo: MIC (X/S) — HIG,(X'/S) : Em 0" Hom@}v(/s(,@gg-/y, E)
C3»: HIG, (X'/S) — MIC, (X/S) : E'— %Byy@p oy, E.

/S

Our goal here is to show how the ring structure on the dual %7y, » of %4, can
be used to give an alternative and more symmetric description of these functors. This
viewpoint sharpens the analogy between the Cartier transform and the Riemann
Hilbert and Higgs correspondences, with the sheaf of Ox-algebras 275, playing the
role of the sheaf of analytic or C* functions. This construction of the Cartier trans-
form relies on the “Higgs transforms” described in (5.9) and ordinary Frobenius de-
scent instead of the theory of Azumaya algebras.

Roughly speaking, the idea is the following. The algebra 75,5 is endowed with
a connection V. and a PD-Higgs field 6. If (E, V) is an object of MIC;/(X/ S), the
tensor product connection on E ® %755 commutes with the PD-Higgs field id ® 6,,.
Hence id ® 6, induces a PD-Higgs field on the sheaf of horizontal sections of
E ® 77,7, and it turns out that the corresponding object of HIG)'/ (X'/S) 1s Cy) v (E).
Similarly, if’ (E',6) is an object of HIG (X'/S), then the total PD-Higgs field 6,
of E' ® @75, commutes with the connection induced by V.. Hence the subsheaf
of sections annihilated by 6, inherits a connection, and the corresponding object of
MIC (X/8) is C;;/y(E’).

To make this precise, we begin with some notation and a slightly more general
setting. Let € be a locally free sheaf of Ox-modules, let T be its dual, and let T be the
vector group Specy S'Q. Let ¢ be the group scheme Specy I'.'T, and let us write Oy
for the sheaf I'.'T, .# for the divided power ideal ', T of I.'T, and Oy, := 04/ F"!]
if n € N. Recall from the discussion preceding Proposition 1.4 that if m¢: £ — X is
any T-torsor, then there is natural action of Oy on the filtered algebra (2/¢, N.) :=
(.04, N.), and that N,/ is the annihilator of the ideal .#"*!. Thus there is
a natural map

(2.15.1) ﬁg” X Nnﬂg — N,,Mg

We shall find it both useful and convenient to study filtered Og-modules. We

denote by .#" the divided power filtration on Oy (although we should perhaps really
write #1).

Definition 2.16. — Let E be an Oy-module. An increasing (resp. decreasing) filtration N.
(resp N°) of E by sub Og-modules s said lo be .# -saturated, or just an & -filtration, if for
all j and k,
IVIN;E € Ny E,  fresp. IVINFE € NFVE),
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For example, the filtrations N. of @7y and ¢ of Oy are . -filtrations. If E is
any Og-module, then the canonical filtration

(2.16.1) NE:={eecE: M =0}

is & -saturated, and E is locally nilpotent if and only if this filtration is exhaustive. If
(E;,N.) and (E9, N.) are Oy-modules with .# -saturated filtrations, then the tensor
product filtration

(2.16.2) N.(E1 ® Ey) := ) " Im(N,E; ® N;Ey — E; @ Ey)

a+b=c

is again .# -saturated, because the group law induces maps

JTARES ANA N Z Im(AM @ A - 0, Oy).

at+b=j

If E is any Ox-module, let 6, denote the Og-module structure on E for which
the ideal .# acts as zero. That is, (E, 6)) = ,E, where *: 0y — Ox is restriction
along the zero section. If E any Ox-module and 6 is an 0y-module structure on E,
let

E9 = %mﬁg(l* ﬁX’ E)’

ie, E? is the sub Ox-module of E consisting of all the elements annihilated by the
ideal .7.

Now let E be an Ox-module equipped with an Oy-module structure 6 and an
& -saturated filtration N.. The Ox-module

JZZ@(E) =Lk ®ﬁx JZZg

has three natural Oy-module structures: the action by transport of structure via L,
the action by transport of structure via &7, and the convolution structure defined in
(2.7.1). We shall denote these by

QE = QE ® lde = QE ® 90
9@/ = ldE ® 9@/ = 90 ® eﬁy
O = 0Op ® 0.

We endow it with the total (tensor product) filtration N. (2.16.2). It follows from For-
mula (2.7.1) that ., and 6,, commute. Define

Ty(B) := (y(E)™,
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with the Og-structure 64 induced by 6., and the filtration induced by N. We have
natural maps, compatible with the Og-structures shown:

(2'16'3) (E7 90’ QE) l_h> (MK(E)’ 9@/’ etm‘) <]F— (gf(E)s 9:77 90),

where 7;(¢) ;= 1®e and jy; is the inclusion. Note that i, factors through («7(E))% and
Jji factors through (¢ (E))%. Endow 74 (Z¢(E)) with the tensor product filtration,
and let

h: (T (E)) - o (E)
be the map defined by the commutative diagram:

JE®id

Ao (TyE) =T4(E)® dy —=EQ oy @ dy

(2.16.4) hl %

Proposition 2.17. — Let E be an Ox-module with a locally nilpotent Oq-module structure
0 and an I filtration N. which is bounded below.

1. The map 1w of (2.16.3) s wjective and strictly compatible with the filtrations, and s
. . 9;//
image 1s (A (E))™.

2. The map jp, of (2.16.3) s wnjective and strictly compatible with the filtrations, and its
image is (<75 (E))™.

3. The map h of (2.16.4) fits i a commutative diagram

I T (E®)

T(Ty(K)) — Ao (T (L))

o,k

E 4 (E).

Furthermore, h and k are strict filtered isomorphisms, compatible with Oy-module structures

as shown:

h: (A (T2(E)), O, 01) = (A (E), O, 0r)
ki (T2(T2(E)), 07) — (E, ).

4. If s is a section of L, then s* oy induces a strict isomorphism
URE (93(13)7 97) g (Ea L*GE),

where ¢ is the inversion mapping of the group scheme 9.
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Proof. — 'This result can be interpreted and proved in many ways. For example,
it is a special case of the theory of Higgs transforms on affine group schemes as ex-
plained in Section 5. Here we give a simpler version. Indeed, all of the statements of
the proposition can be verified locally on X, and so we may and shall assume without
loss of generality that .’ has a section s defining an isomorphism . = T and hence
Ay =S Q.

Note that the Oy-module structure (2.15.1) on @7y and the map

s Ay — Ok
defined by the section s of £ together define a perfect pairing
(2.17.1) Og4 x N, oy — OXx.
If E is any Ox-module, let

H(Oy, E) = lim Hmep, (Oy,, E) S Homo, (Oy, E).
Then the pairing (2.17.1) defines an isomorphism:
(2.17.2) Ay (E) =y @ E= (O, E).

Let us denote by 6, and 6,, the Oy-module structures on . (0y, E) deduced from
the corresponding structures on @7 (E). These can be described explicitly as follows. If
E; and Ey are two Oy-modules, then J%mg, (E;, Eo) can be give an 0y ® Oy-module
structure by the rule

(b1, b2) (@) (e1) = bop(byey).

Then 6,, corresponds to the Oy-structure induced by p, and 6, to the structure in-
duced by priy.” The total filtration N. of &7 (E) corresponds to the filtration N. of
H(Oy, E) defined by

N (Oy, E) = {¢ oIV C Nk—jE}-
Now if E is a locally nilpotent Og-module, let us consider the following maps:

i E— H(Oy, E) w(e)(b) == 1y(b)e
0: (04, E) > E ¢ ¢(1).

The map i is the identity section of ¢ and the map #; corresponds to the map i
defined in (2.16.3). Similarly the map o corresponds to the map 7, of statement (4) of

7 In the systematic treatment in the appendix, we use p/, instead of fi,.
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Proposition 2.17. Note that o is compatible with the filtrations and that o o 73 = idg.
This shows that 7 is injective and strictly compatible with the filtrations. The image
of iz is just the set of homomorphisms which factor through Oy = iy.(0x), which
corresponds to (& (E))?. This proves (1) of Proposition 2.17, and (2) is a tautological
consequence of the definitions.

Define

1 E— (04 E) by w(e)(b) := *(b)e,

where 11 ¢ — ¢ is the inverse mapping in the group ¥. If ¢ € E, then a pror
7(¢) is just an element of Hme, (Oy, E), but if ¢ is annihilated by I"*!! then 1(¢) €
Hom(Oy,, E). Thus t is well-defined if E is locally nilpotent. Note that 6ot = idg, so T
is also injective. If ¢ € N;E and b € SVl then (*(b)e € N,E, so 1(¢) € N, (Oy, E).
Thus 7 1s compatible with the filtrations, and in fact is strictly compatible because o
is also compatible.

It is clear that the image of T consists precisely of the elements of S (04, E)
which are t-linear. We claim that these are the elements which correspond to elem-
ents of J¢(E) C &/4(E). Indeed, if ¢: Oy — E is t-linear then it follows from the
commutativity of the diagram

pr

% X
(id,t)l liy
G xG—Lsg

that 6,,(¢) = 0, and the converse follows from the fact that the diagram is Cartesian.

Thus we can write T = J o T, where T: E - J%(E) is an isomorphism of Ox-
modules, inverse to the mapping o oj. It is clear from the definitions of T and 6, that
T takes Oy to 1,0, and this proves (4) of Proposition 2.17.

It remains for us the prove statement (3). First let us check that £ is compatible
with the Higgs fields as described there. As we have observed in equation (2.16.3),
Jr takes 6y to 6,,. More precisely, but perhaps somewhat cryptically: 6, o jp =
Ji © 6y, where for example we are writing 6,, for the endomorphism of E ® 474 in-
duced by some element of Oy corresponding to the 0y-module structure given by 6.
Hence:

(Ot ®0o) 0 (Jr ®idey) = (Jr ®idy) o (6 ® 6.)
(idg ® m) o (B ® 0.7) 0 (Jr ® idy)
= (idg ® m) o (Jr ® idyy) o (6 ® 0.)
i 0 (idg ® m) o (Jrp ® idyy) = (idg @ m) o (Jr ® idy) 0 Oy
Opoh="ho0,.
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Similarly, (6y ® 0./) o =Jp 0 67, so

(B ®0, ®0,) 0 (Jp®idy) = (Jp ®idy) o (07 ® 0.,)
(idg ® m) 0 () ® 0y ® 0.7) 0 (Jr @ 1d)
= (idg ®m) o (Jp ®idy) 0 (07 ®0,,)
(6 ®60,) o (idg ® m) o (Jp ®1dy) = ho (07 ®60,)
Oy0h="hob,.

Thus 4 takes 0., to 6,, and 8,, to 8, as claimed. Since 4 takes 6,, to 0., it induces
the map £:

9!0!
T(Tz(E)) = (A (T)(B)) " — oy ()’ = L.
Let us check that 4 is compatible with the filtrations. By definition,

Ny (Ty(E)) = Y Im (N, T2(E) ® N,y — T4(E) @ 4 (F)).

The definition of N,.7¢(E) shows that its image under ji is contained in the sum of
the images of N,E ® N,_,o7». Hence & maps N".o7»(74(E)) into the sum of the
images of

NbE ® Na—bdf ® Nc—adf 1)E ® ‘QZ?(E)’

which is contained in N”.@7y(E).

Note that if 7 is a strict isomorphism, then it induces a strict isomorphism from
the annihilator of 6,, to the annihilator of 6, i.e., from J»(7¢(E)) to E. Thus £ is
also a strict isomorphism.

Thus it remains only to show that 4 is a strict isomorphism. Suppose first that
Gr;E = 0 for all 7 # k. Then the Og-structure on E factors through iy, so 0, = 6,,
and E = J4(E) € &/4(E). Then the map £ is:

eQRatr> @1 P@ar> e a,

r.e., the identity map. Now we can proceed by dévissage. Statement (4) shows that the
functor E > J%(E) preserves strict exact sequences, and since Gr.@Zy is locally free,
the same is true of the functors E +— /¢ (E) and E — &Z4»(J¢(E)). Now suppose
that N,E = 0 and that 4 induces an isomorphism for E' := N, E. Then we have
a strict exact sequence

0—E —-NE—E —0,
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where E” := N,E/N,_;E. We have seen above that the theorem is true for E”, and
it holds for E’ by the induction assumption. Then it also holds for N,E by the strict
exactness of the functors @4 ( ) and 4 (T¢( )). It follows by induction that 4 is
a strict isomorphism whenever the filtration on E is bounded, and, by taking direct
limits, whenever the filtration is bounded below and exhaustive. This completes the
proof. |

Remark 2.18. — 1t is easy to see that the filtration of J¢(E) induced by the
total filtration N,, on ¢ (E) is the same as the filtration induced by the filtration
oy @ N.E. The total filtration has the advantage of being again .# -saturated, a fact
we will exploit in our cohomology computations in the next section.

Remark 2.19. — A similar result holds for standard Higgs fields if one works
with the divided power completion of .74 along the ideal of a section. More abstractly,
suppose that T and 2 be as above, let : E — E ® Q be a locally nilpotent T-Higgs
field on E. Let I be the ideal of the symmetric algebra S”I" generated by T. Then an
I-saturated filtration on E is just a filtration N such that IN;E € N, | E. Let .2/, be the
divided power algebra I'.Q2, and define @7, (E) := E ® o/ and J5(E) 1= (JZ%Q(E))G“".
Then the evident analog of Proposition 2.17 holds.

We will sometimes want to consider graded Higgs fields and PD-Higgs modules,
ve., graded modules over the graded ring Oy, where Oy = I'.'T or S'T. There is an
evident functor Gr from the category of .# filtered (resp. .#-filtered) modules to the
category of graded Og-modules, compatible with the convolution tensor product. In
particular, if .Z is a T-torsor, then Gr./y = S'Q = S, as a graded I'.'T-modules
(note that the multiplication sends I, T ® S’Q to S, ,Q); furthermore its divided
power envelope I'.€2 is in a natural way a graded S'Q-module. If E is an . -filtered
Og-module, the natural map

GrE® o4 = GrE ® Gr oy — Gr o/y(E)

is an isomorphism, since Gr @7y is locally free over O, and it is compatible both
with 6, and 6,,. In particular, if E satisfies the hypothesis of Proposition 2.17, the
map J¢(E) - /4 (E) induces a map

Gr 7¢(E) — Gr(«4(E)) = Gr(E) ® o/¢(E)
whose image is annihilated by 6,, and hence induces a map
Gr Y¢(E) — J¢(Gr(E)).

Corollary 2.20. — Let (E, 0, N.) be an Ox-module ¥. equipped with an Oy-module struc-
ture 0 and an I filtration N., as i Proposition 2.17.
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1. The map Gr T4(E) — Fx(Gr(E)) above is an isomorphism. In fact there is a com-
mutate diagram of isomorphisms:

J1(GrE) @ oy <— Gr T¢(E) @ oy — Gr F (T4 (E))

| o

id

GI‘(E) X MT GrE ® JZ{T Gr JZZ%(E),
compatible with the Og-module structures as in op. cit.
2. There 1s a natural isomorphism of graded Og-modules:
Gr 7¢(E) =1, GrE.
Proof. — The existence and the commutativity of the diagram is clear, as is

the fact that the arrows are compatible with the Og-module structures. Furthermore,
it follows from Proposition 2.17 that 4 and Gr(h) are isomorphisms. It follows that
the middle vertical arrow is an isomorphism, and that the image of Gr J%(E) in
GrE ® 7t is exactly the annihilator of 6,,, e, J3(Gr(E)). This proves (1). Then (2)
follows by applying (4) of Proposition 2.17 with E replaces by GrE and .Z replaced
by T. O

There is a useful cohomological complement to the construction of Remark 2.19.
Recall that associated to a T-Higgs module (E, 0) is its Higgs (Koszul) complex
E5>EQRQ—>EQRQ>— -,
where Q' := A'Q.
Proposition 2.21. — Let E be a graded Ox-module with a graded 'T-Higgs field 0:
0:E— EQQ,
where 2 is in degree 1. Using the notation of Remark 2.19, let
Ay (B) 1= Ao(B) ® Q' @
and let
do: g’ (B) — 5™ (E)
di: A (B) — o' ()

be the boundary maps associated to the fields 6., and 0, respectively, tensored with the identity. Then
these maps fit into a graded double complex <7 (E), and the maps @ and j of Remark 2.19 define
augmentations of the double complex

EQQ — o (E)
Ta(B) ® @ — o, (E).

For each 1, JZ/;Z(E) is a resolution of B @ Q' and for each j (52%9] (E) @ a resolution of
Ta(E) ® Q.
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Proof. — It 1s immediate to verify that the boundary maps commute and hence
define a double complex. The fact that 275 (E) is a graded resolution of EQQ' follows
from the filtered Poincaré lemma [3, 6.13] for the divided power algebra I'.(£2). Since
h is an isomorphism transforming 6, into 6., the second statement follows. O

Let us now return to our discussion of the Cartier transform. Recall that the
center of DY g can be identified with the divided power algebra I'.Txs. Let .#
denote the divided power filtration of the divided power ideal #x of I'.'Tx/s. Let
MICN, (X/S) denote the category of D;/(/S—modules E equipped with an exhaustive,
horizontal, and bounded below filtration .# -filtration N. (see Definition 2.16). Simi-
larly, let HIGN, (X'/S) denote the category of I''T'x//s-modules E' equipped with an
exhaustive and bounded below % -saturated filtration N.

If (E, V,N.) is an object of MICN,,(X/S), let

EV7Y = %WD;’(/S(ﬁX, E), and
EY := Ker (E > E® Q).

The action of the center I''Tx//s of D%'(/S defines a PD-Higgs field on Fy/s,.E and
hence an F-PD Higgs field ¥ on E; note that EY is invariant under the connection
V:E — E®QY . Furthermore, EV7 = EVY, since DY ss Is generated as a topological
ring by Tx/s and I'.Tx/s.

We endow &/¢(E) := E ® o/, with the tensor product D% s;smodule structure
V coming from the given structures on E and on &/, and with the tensor product
filtration coming from the filtrations N. of E and #75,». We also endow it with the
F-PD-Higgs field 6, := id ® 6., where 0, is the F-PD-Higgs field of @7y .

Lemma 2.22. — The action 0. of T'.(Tx/s) on 9 (E) commutes with the action of
DY /s corresponding lo the tensor product D% ss-module siructure.

Proof. — As we have already observed, it follows from the formula (2.7.1) that the
p-curvature PD-Higgs field of @75, »(E) commutes with id ® 6,,. That is, the action
of I'Txs € D%;/S commutes with id ® 6,,. Furthermore, if D € Tx/s, & € I'.'Tx/s,
¢ecE,and @ € ¥y,

(ld ® 95/)VD(6 ® CZ) = VD(E) X 95/(&) +e® QE/VD(CZ)
= VD (6) X 95/(61) +e® VDQS/(a)
= VD(id®9&_,)(€ ® d).

Since D;’(/S is generated by Tx/s and I'.'Tx/s, it follows that Vp commutes with 6
for every D € DY s. |
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Now recall that, by definition, (,Cy,»(E) = %mD)V{/S((%’%/y, E), with the
I".Tx//s-module structure coming from E, where B4, := Jome (2,9, Ox) in the
category of D s-modules. Thus when E is locally nilpotent,

1.Coy 7 (B) 1= Hompg, (B B) = (BE® A7)
= ((W%/QV(E))W)V-

Of course, the total PD-Higgs field on Cy~(E) is zero, but because of the commu-
tation of DY /s and id ® 0/, 1,C 9 »(E) is stable under the PD-Higgs field id ® 6, of
Ay ,». In fact, the induced PD-Higgs field induced by 6., on is ¢, of the PD-Higgs
field induced by ;. A geometric explanation of this fact is given in the appendix after
Definition 5.9; it can also be checked by direct computation. Thus it follows that

(2.22.1) Cor(B) = 1, Hompy, (B, B) = (T2 (E))”

where Zy,4(E) := (9 ,7(E))? as in Proposition 2.17.
It is clear from the construction that there are natural maps, compatible with
the connections and F-PD-Higgs fields shown:

2.22.2)  (E.60, V) (o) (E), 6, V) <~ (FsCor(E), 6, Vo).

Here V, is the Frobenius descent connection on F;‘(/SC 27(E). Since N. is an
& iltration on E, the filtration on F{/sCa/7(E) induced by the total filtration of
9, #(E) is horizontal and is also an % -filtration with respect to the action of 6,,.
It follows that it descends to an % filtration on Cy,»(E). Thus we obtain a filtered
version of the Cartier transform:

(2.22.3) Cz/7: MICN (X/S) — HIGN;/(X’/S).
On the other hand, if (E/, 6, N") i1s an object of HIGN;,(X’/S), we can endow
(2.22.4) A1 (E) =Yy s E Qo Aoy

with the tensor product F-PD-Higgs field 6;,. It follows as in Lemma 2.22 that 6,,
commutes with the tensor product connection on Fy (E' ® @5, where Fy (E is

given the Frobenius descent connection V. Thus
(2.22.5) Clyy (B 1= (), ()
inherits a nilpotent D% ;s"module structure from %74, which we denote by V. We

have natural maps

> Ttot?

(2.22.6) Fi s (B, 0, Vo) S () (), 0, Vo) <= (Cly) p (), 6, V)
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where 7' takes the PD-Higgs field of E’ As before, the .# -filtration N’ on E’ induces
an ¢ filtration on C',- /ES,(E’ ), and we get a functor:

(2.22.7) "7+ HIGN (X'/S) — MICN_ (X/S).
The commutative diagram

FsCay7(E) @ o) L o Dy )9 Q Do)

}ll %

E® Ay
defines a horizontal map
(2.22.8) h: (o) o (Coryr(E)), 0.r, 01, No) = (A0 (E), Oy, 07, NL).
A similar construction defines a horizontal map

(2.22.9) 1 (A (Clyy y (B), 60,60, N) = (o, (E), 6], 6., N)).

tot?
Theorem 2.23. — Let 2/ = (X/S,X'/S) be a smooth morphism with a lifting of
X' mod p* as described above.

1. Let (E,V,N.) be an object of MICN (X/S) and let (E',0',N.) denote
Cg 9 (E, V,N.). Then the map h (2.22.8) s a fillered isomorphism, and fits into a com-
mutate diagram:

Ty (E) A LB < g

L1

E—' ~ Ay 7(E) <L—Cy(E).
2. Let (E',0',N.) be an object of HIGN;/(X’/S), and let (E, V,N.) denote
Cly) (B 0" N0, Then the map ' (2.22.9) is a filtered isomorphism and fils into

a commutative diagram:

Cyr(B) —L> oty »(E) =<——F

0k

By (E) <L ().
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Consequently, C'y-, o, 15 quasi-inverse to the Cartier transform Gy and is therefore isomorphic to
the functor C} ) of Theorem 2.8 (ignoring the filtrations).

Progf. — This theorem is an immediate consequence of Proposition 2.17 and
Cartier descent. The p-curvature of the connection on &, +(E) is the total Higgs
field 6,,. Hence

E' = Cyys(B) = (Ao EN™)Y = Ty (B)Y,

in the notation of gp. cit.. Since the p-curvature of the connection Zy,»(E) vanishes,
standard Cartier descent implies that the natural map

F;/SE/ — yg/y(E)

is a filtered isomorphism. Thus we have a commutative diagram

FL B @ Aoy —=> Ty17(E) ®oy T )7

T

E® oy

Proposition 2.17 implies that / is a filtered isomorphism and hence so is /, and it
is also horizontal. The vertical left arrow in the diagram of (1) corresponds to the
map k of Proposition 2.17 and is also a horizontal filtered isomorphism, compatible
with the PD-Higgs fields, i.c., an isomorphism in the category MICN (X/S). A similar
argument works if we start with an object (E', 6, N’) of HIGN;, (X'/S). This shows
that Gy~ and €y, are quasi-inverse equivalences. ]

Corollary 2.24. — Let (E, V,N.) be an object ofMICN;/ (X/S) and let
(E',0',N)) :=Cy,s(E, V,N.).
Then there is a natural isomorphism in the category of graded T". T'x: s-modules:
(Gr(E,0',N)) = ¢, (Gr(E, ¥, N.))7,
where  is the action of T. Txys € D& ss and L s the mversion involution of T'."Ixs.
Proof. — Using Corollary 2.20, we have

GrE = Gr ((:%r/y(E))v)
= (Gr Ty 9 (E)Y
= (1, Gr(E)Y.
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Remark 2.25. — A similar formalism works when there is a lifting F of Fx/s.
Let MICN(X/S) denote the category of modules with connection (E, V) endowed
with a horizontal filtration N. such that Gr(E) is constant. We assume also that N.
is exhaustive and bounded below. As before, let @% be the nilpotent divided power

completion of <7y, along the ideal of the corresponding augmentation %7y,» — 0.
Then if (E, V,N.) is an object of MICN(X/S), its p-curvature ¥ gives (Fx/s.E, N.)
an I-saturated Higgs field as discussed in Remark 2.19. Then we define:

#(E) :=E Qg @ and F5(E) = (o4(E)™
where Z3(E) has the Higgs field 65 induced by 6,,. Then
Ci(E) == (o4 (E)” = (F(E)”
with it inherits a Higgs field and filtration. Thus we obtain a functor
Ci: MICN(X/S) — HIGN(X'/S).
On the other hand, if (E', 0", N') is an object of HIGN(X'/S), let
S (E) = F Qp, .
Then the total Higgs field 6" on o%4(E’) commutes with the connection id ® V. Let
Ci' = (A E)

which inherits a connection from the action of id ® V,, and a filtration N. from the
total filtration N/ ,. Thus CF_ ''is a functor

C:': HIGN(X'/S) — MICN(X/S).

These functors are quasi-inverse equivalences, compatible with the tensor structures
and with the global functors C 4~ considered above.

2.5 De Rham and Higgs cohomology

Let us continue to denote by 2Z7/.# a smooth morphism X/S of schemes in
characteristic p, together with a lifting X'/S of X'/S. Let (E, V) be a module with
integrable connection on X/S, nilpotent of level £. Our goal in this section is to com-
pare the de Rham cohomology of (E, V) with the Higgs cohomology of its Cartier
transform (E’, 6"). We shall do this by constructing a canonical filtered double com-
plex (&, ,(E), N.) of Ox-modules and quasi-isomorphisms

F/s.(E® Qi 5, &) = N7y, () < (B ® Q5. 0),
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whenever £ +d < n < p, where &7, is the total complex associated to the double
complex &7 .
In fact,

ngg/y(E) = FX/S*(E ® Dy)9 @ FX/SQ%//S ® Q{(/S)
= FX/S*(E &® M%LV &® Qx/s) X Qi s
with boundary maps constructed from the de Rham differentials of (E, V) and the

p-curvature of &7y, ». In the case (E, V) = (O, d) we obtain an isomorphism in the
derived category

between the de Rham complex of X/S and the Hodge complex of X'/S, when d < p.
This is the result of Deligne and Illusie [8] (with a loss of one dimension). For general
E it can be regarded as an analog of Simpson’s “formality” theorem [36].

We shall find it convenient to work with filtered connections and their de Rham
complexes. Let (E, V) be a module with integrable connection endowed with a ho-
rizontal filtration N. such that (Gry(E), V) is constant, u.e., has zero p-curvature. We
assume that N_JE = 0 and N,_|E = E, so that (E, V,N.) defines an object of
MICN (X/S). Let N be the tensor product filtration on E ® 4755 induced by N.
and the filtration N. of @y, . Let (E', N’) be the Cartier transform of (E, N.) with
the filtration induced by N as explained in Theorem 2.23. For fixed 7, the de Rham
complex of the module with connection &7y, »(E) ® F§ /SQ%, /s 1s the complex:

(2.25.1) o5, ,(B) T ;z%jgl/y(E) L

Similarly, for fixed 7, the Higgs complex of (75, 6.) tensored with E® Q§< /s> 1s the
complex

. 0,j
(2.25.2) Ay (E) 1= y/y(E) %/y(E) LA
It follows from Lemma 2.22 that the differentials 4 and 4' commute. Thus we can
form the double complex JZZ[/ »(E) and the associated simple complex ,va;(-/ S(B).
For each 7 there is a natural map from E' ® Qf, /s o Ker(d"?), which can be
regarded as a morphism of filtered complexes,

(2.25.3) (' ® Q5. N) > (5, (E), N"),
compatible with the Higgs boundary maps:
(© X)) — (75, ), N

l l

(E' ® Qs NI) — (o575 (E), N™).



NONABELIAN HODGE THEORY IN CHARACTERISTIC p 53
In the same way we find for each j a morphism
(2.25.4) Fxs:(E ® %5, N.) — (7,7 ,(E), N

compatible with the de Rham boundary maps
Fx /s« (E Q Qgé, N.) - (%ﬂf; (F), N{oz)_
These assemble into morphisms of filtered Complexes;

(2.25.5) (E ® Q. N) 5 (5 N") L2 (B Qs NL).

If there is a lifting F of Fx/s, we can make the analogous construction with 27 in
place of @7y, , and we use the analogous notation. Then there is a natural morphism
of double complexes &@/L/y(E) — QfF "(E). Taking associated simple complexes, we
find a commutative diagram:

(C oy (B) ® Q50 N L5 (e, NU) <212 St (E® Q. N.)

(2.25.6) l ) l l

. , o by .
(Cr(E) ® Q5. NO) (%, N") <—— (E ® Q5. N.).

Before stating the main theorem, let us recall that if C” is a complex with an in-
creasing filtration N., then as explained in [7], the filtration décalée N* on C' is defined
by

(2.25.7) N C? = N O + d (N G171,

Theorem 2.26. — Let X/S be a smooth morphism in characteristic p. Let . := (E, V, N)
be an object of MICN(X/S) with N_E =0 and N,_E = E.

1.If Z'|S s a bifting of X/S, then the maps ay ) and by s (2.25.5) induce filtered

quast-isomorphisms:

(N;,difl (Cf/y(E) ® QX’ S) N/der) — FX/S* (Nder %/V(E) Nder)
FX/S* (Ndecl(E ® QX/G) Ndfc) (Ndec J/y(E) Ndm)

Consequently they assemble into an isomorphism n the filtered derived category of
O'xo-modules:

Fy/se (N2 (B ® Qi 9), N, d) = (N (Cpyr () ® Qi 5). N, 6).
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2.If T is a lifing of Fx/s, then the maps ap and by (2.25.6) induce filtered quasi-iso-

morphisms:
(Cr(B) ® Qi s, N'™) — Fxys( (B), N¥)
Fysi(E ® Q5. N*) — (7 (E), N¥).

These assemble into an isomorphism in the filtered derived category of Ox-modules
(Fxyse(E ® Q5 9), N*) = (Cp(B) ® Qi 5, NI).

Corollary 2.27. — Let (E, V) be an object of MIC(X/S) which s nilpotent of level
< p. Then a bifting Z |7 induces isomorphisms in the derived category:

FX/S* (T<p_e (E ® QX/S)) ; T<p—€ (C%/Y(E) ® Q;{’/S)’
and if £ + dim(X/S) < p,
Fx/s:(E® Qg /5) = (Cayr(E) @ Q2 5)-

Applying (2) of Theorem 2.26 to the canonical filtration (2.16.1) of a locally
nilpotent connection, we obtain the following result.

Corollary 2.28. — Let (E, V) be an object of MIC(X/S). Assume f/zat the connection
V s locally nmilpotent (quasi-nilpotent in the terminology of /3]). Then a lfiing ¥ of Fx,s induces

womorphisms in the deriwed category

Before beginning the proof of Theorem 2.26, let us remark that it is not true
that the maps
(2.28.2) bt Fxse(BE® Qy /5, N.) = (4 (E),N.)
are filtered quasi-isomorphisms. However, these maps induce maps of spectral se-
quences, which on the E; level are maps of complexes of sheaves:
(2.28.3) H(Grap): (H(GrE @ Qy ), d) — Fxys(H(Gr i (R)), d))
(2.28.4) H(Grbg): (Fxse 2 (GrE® Qy 5), di) — (H(Gr o (E)), dy)
where d) is the differential of the spectral sequences. We shall prove that these maps

are quasi-isomorphisms (not isomorphisms), and hence induce isomorphisms on the
Eo-terms of the spectral sequence.
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Lemma 2.29. — In the situation of (2) in Theorem 2.26, the maps (2.28.3) and (2.28.4)
above are quasi-isomorphisms.

Proof. — Since the p-curvature of GrE vanishes, the classical Cartier isomorph-
ism induces a canonical isomorphism:

E{(E® Q. N) = #7(GrE ® Q) = (GrE)" ® QY .

Corollary (5.1.1) of [29] allows us to compute the differential d, of this spectral se-
quence. It asserts that the diagram below is anticommutative, thus identifying the
(negative of) the differential ¢! with the graded map Gr(¥) induced by the p-curvature
of E:
q
AN CrE® Q) —= A (Gr,y E® Q)
(2.29.1) l l

(GriB)Y ® Qs — > (Gri B)Y @ Q4.

Thus there 13 an isomorphism of complexes
(Fx/se B (B @ Q55 NL), 1) = (GrE @ Qg 5, Gr(¥)).

We apply the same method to analyze the E; term of the spectral sequence of
the filtered complex (,QfF' (E), N.). The total differential of the double complex %'(E)

induces a map
L o
Nuoy! — Ny @ N7

so the differential on Gr,ﬂzfi'(E) is just the de Rham differential of the module with
connection

Gr.oZ, " (B) = @ Gr #(F) ® F 5% s-
Since this connection has vanishing p-curvature, the classical Cartier isomorphism pro-
vides an isomorphism:

H'(Gr ;" (E) ® F g% 5. d) = (Gr(a4(E)Y ® Qs ® Qs
The differential @, of the spectral sequence is then a sum of maps

(Gr(e4(E)Y ® Qs ® Qs = (Gr(a4(E)Y @ Qs ® Q)
(Gr(4(E)” @ Qs ® Qs = (Gr(e4(E)Y ® Qs @ Qs
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The first of these is the map induced by differential 4" of % "(E), which comes from
the p-curvature of o7, and [29] identifies the second as the map coming from the
p-curvature of the connection V on % (E). Thus we have an isomorphism of com-
plexes:

(El(%(E)’ N.,d) = (GTJZ{F(E)V ® Q;(’/S ® Q;(’/S’ d),

where the differential on the right is the differential of the simple complex associated
to the double complex whose term in degree i, is

(Gr #h(E)” ® Qs ® s

and whose differential is the graded map induced by the Higgs fields 6, and 6,,.
In fact, by Corollary 2.20, Gr 2%4(E) = GrE ® Gr.«%4(E), compatibly with the con-
nections and Higgs fields. Furthermore,

(GrE® Grat)¥ = (GrE)Y ® (Grag)” = (GrE)Y @ I'.Qy 5.

Let us write Q for Q1 ss and T for its dual. According to Corollary 2.20, GrE' is the
Higgs transform of GrE with respect to the T-Higgs module I'.€2. Thus the maps
Grap and Grbp become identified with maps of complexes which term by term are
the mappings
(GrE)Y ® Q' — (GrE)'Tr.Q Q @ Q/
Gr(E)® Q' - GrE)@r.Qe Q' e Q

constructed in the same way as ap and bp. This is exactly the situation discussed in
Proposition 2.21, so the lemma follows. ]

Proof of Theorem 2.26. — To prove that the arrows in (1) of the theorem are iso-
morphisms is a local question, so we may without loss of generality assume that there
is a lifting F of Frobenius. For 7 < b, the map Ny — N,o% is an isomorphism.
Furthermore, since N_E = 0,

=0 g
when 7 < p. Thus the map
(3, (E),N") — (" (E), N“)

is a filtered isomorphism when restricted to N,_;. Thus statement (1) will follow from
statement (2).
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Since the filtration N. on E is exhaustive and formation of direct limits in the
category of sheaves on X 1s exact, we may and shall assume that N. is finite. It will
suffice for us to prove that the maps of complexes

Fyyse GIV (B ® Q) — G (o (B))
GrN(M(CF(E) ® Q;(,/S) N Grl\‘(lm.(f% (E))

are quasi-isomorphisms. Recall from [7] that there are natural injections H/(Gr™ C")
— G €7 which assemble to form a quasi-isomorphism

(2.29.2) (E(C,N), d) = (H (G C), d) — GO = (Eo(C™,N), d).
Thus the theorem follows from Lemma 2.29. O

Remark 2.30. — Let (E, V) be an object of MIC.(X/S), suppose that there ex-
ists a global lifting of Fx/s, and let (E', ¥') denote the Cartier transform of (E, V). By
Remark 2.10, there is a canonical isomorphism Fy /S(E’ ,U) = (E, =), where ¥ is
the p-curvature of V. This induces isomorphisms

Fy s (B Y') = A (B, )

for all 7. Recall from [29] that the sheaves of Ox-modules 7 (E, —) carry a canon-
ical integrable connection V whose p-curvature is zero, induced by the given con-
nection on E and the Frobenius descent connection on F;‘(/SQ;’(, ss- 1t follows easily
that the above isomorphisms are horizontal and hence descend to isomorphisms of
Ox-modules

%i(E/7 I///) = %i(Es —1/f)v

On the other hand, (2.26) gives us isomorphisms 7 (E/, ¢') = 5 (E, V). Combining
these, we find the “generalized Cartier isomorphism”

JCE, V)= HE, —y)Y.

Another construction of such an isomorphisms was given in [29], independent of any
lifting of X or Fx/s or nilpotence condition on V. One can easily see that these two
isomorphisms are the same, because they agree when ¢ = 0 and because both sides
are effaceable cohomological delta functors in the category MIC.(X/S).

Suppose that X is noetherian and E is coherent. A consequence of the isomor-
phisms discussed in Remark 2.30 is the fact that the de Rham complex of (E, V) with
an integrable connection V is determined, as an object in the derived category, by its
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formal completion along a closed subset determined by its p-curvature . Recall that
(E, ¥) gives rise to a coherent sheaf E on T%, ss- Define the essential support of (E, V) to
be the set-theoretic intersection of the support of E with the zero section of T%, ss- We
should perhaps recall that Fyx,s: X — X' is a homeomorphism and from [29, 2.3.1]
that the essential support of (E, V) corresponds via Fx/s to the support in X of the
Higgs cohomology sheaves of the p-curvature of (E, V). (In fact, the dth cohomology
sheaf suffices.)

Proposition 2.31. — Let X/S be a smooth morphism of noetherian schemes in characteristic
p > 0 of relative dimension d. Let (E, V) be a coherent sheaf with integrable connection on X/S,
and let 7. C X be a closed subscheme containing the essential support of (E, V). Let i7: X,7 — X
denote the natural map from the formal completion of X along 7. to X. Then the natural map of

de Rham complexes:
a.E® QX/S —> iZ*E/Z X QX/S
s a quast-isomorphism.

Proof. — It suffices to prove that the map above induces an isomorphism on
cohomology sheaves. The generalized Cartier isomorphism [29] is an isomorphism of
sheaves of Ox-modules

H'(FxsE @ Q. )5) = Fxysu (B @ F;F(/SQ;('/S)V

where the complex on the right is the Higgs complex of the F-Higgs field given by
the p-curvature of V. Now one has a commutative diagram

A (Fxs.E ® Q) Hiz Bz ® Qg )s)

;l l;

AL @ FY s Qx5)Y —— Az Bz @ Fy 505 6)Y -
Thus it suffices to prove that the natural map
HONE @ ¥y s /s) = A1z 7 @ Fy sQ/5)

is an isomorphism of Ox-modules. Since the completion functor is exact, and since
the cohomology sheaves #7(E ® Fy €2y, 5) have support in Z, this is clear. ]

Let us also remark that in the situation of Proposition 2.31, we can define a_for-
mal Cartier transform as follows. Let I € Oy be an ideal of definition of the essential
support Z of E. For each n, let E, := E/¥y sI"E, which inherits an integrable con-
nection from the connection on E. Then the p-curvature of (E,, V) is nilpotent and
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hence, given a lifting F of Fx/s, it has has Cartier transform Cg(E,). These Cartier
transforms are compatible with change in 7, and they fit together to define a coherent
sheaf on the formal scheme X/, which we (slightly abusively) still denote by Cg(E).
The double complex constructions used in the proof of Theorem 2.26 also fit together
into a formal double complex. The following statement is a consequence of this and
the previous proposition.

Proposition 2.32. — Suppose that X s noetherian and that (E, V) s a coherent sheaf on X
with integrable connection. Let ¥ be a lifting of F x/s and let Ci(E) denote the formal Cartier trans-
Jorm of E described above. Then the maps of Proposition 2.31 and statement (2) of Theorem 2.26
it together 1o define an isomorphism in the derived category of Ox-modules

Fyse(E ® Qi 5, d) = (C(E) ® Q5 6).

3 Functoriality of the Cartier transform

3.1  Gauss—Manin connections and Higgs fields

In this section we review the definitions of higher direct images of modules with
connections and Higgs fields. We show that their formation with respect to a smooth
morphism of relative dimension ¢ increases the level of nilpotence of a connection
(resp. of a Higgs field) by at most . This result strengthens the nilpotence theorem of
Katz [18, 5.10] and will be used in our discussion of the compatibility of the Cartier
transform with higher direct images.

Recall that if 2: X — Y is a smooth morphism of smooth S-schemes and if
(E, V) is a module with integrable connection on X/S, then the sheaves

R'AR(E, V) := R4 (E Q Q . d)

are endowed with a canonical connection, called the Gauss—Manin connection. By the
same token, if (E, ) is a module with a Higgs field 8, then the sheaves

KZ}ZHIG* (E, 9) = Rz/l* (E ® Q;{/Y’ 9)

are endowed with a canonical Higgs field, which we shall call the Gauss—Manin field.
Each of these can be constructed in many ways. For the reader’s convenience we ex-
plain one of these here; a variant of the “explicit” construction explained in [18, 3.4].
We write out the details in the de Rham case only; the Higgs case is analogous but
easier.

Let (E, V) be a module with integrable connection on X/S and let § be a local
section of Tx/s. Then interior multiplication by & defines a map of graded sheaves

l.gl E®QX/S — E®Q;(/s’
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of degree —1. The Lie deriwative with respect to & is by definition the map
Lg =] dls -+ l;’&d,

which has degree zero. By construction Lg is a morphism of complexes, homotopic to
zero. Now recall that a smooth morphism % induces exact sequences

(3.0.1) 0— K'Qy )5 = Qs = Qy = 0
3.0.2) 0 — Txyy = Txys = A Ty;s — 0.

Pull the second of these sequences back via the map £~ ' Tys — #*Ty/s to obtain
an exact sequence of sheaves of 4~ !(0y)-modules:

(3.0.3) 0 — Txyy = T = k' Tys — 0.

Let us note that T;((/S C Txs 1s closed under the bracket operation and that the
inclusion Tx,y — T is compatible with the bracket operations. Morcover, if g is
a local section of 4~ '(0y) and £ is a local section of T ss» then §(g) also belongs to
h'(Oy), and if i is a local section of Ty, then

[17,§1(9) = n(&(9) —&EMm(9) = 0.

It follows that [n, §] € Tx,y, so that Tx/,y is an ideal in the Lie algebra T;(( /s and the
map Tx 5> 7 'Tys is a Lie algebra homomorphism.

Lemma 3.1. — If & is a local section of T ss» then Lg preserves the Roszul filtration
K" of E® S5 induced by the exact sequence (3.0.1). In particular, L induces a morphism of

complexes
Le: E® Qyy > E® Q-
Furthermore, if & and &' are local sections of Tx ss» then [Le, Ll = Lig e i End(E® €2 y).
Proof. — By definition,
KI(E® Q% 5) =Im (F"Qy s @ E® QY 5) > E® Q% s.

Let & be a local section of Tg((/s- Since Lg acts as a derivation with respect to multi-
plication by €2y g, it suffices to check that if @ is a local section of 72, /s> then L (@)
also belongs to /*Q, ss- Again using the fact that Lg is a derivation, we see that it suf-
fices to check this when w lies in /2_1931{/8. But if w € h_lQ\l(/s and if the image of &
in ¥ Tyys lies in A~ Tys, Le(w) = dig () + idw € k' Qy 5.

The fact that the action of Tx/s on E by Lie derivative is compatible with the
bracket follows from the integrability of V, and it is well-known that the same is true
for its action on €2y 4. Since Lg, Lg and Lig gy act as derivations with respect to multi-
plication by forms, it follows that [Lg, Lg] = Ligg) on E ® €2y s and hence also on
E® Qy )y m]
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Now let
. o d Ty
Ty i=Txyy =Ty,

regarded as a complex in degrees —1 and 0, where the boundary map is the inclu-
sion. We can give T _ , the structure of a differential graded Lie algebra by defining

7,71 := 0if n,n" € Txyy, [n,8] := [dn, €] € Txyy if n € Txyy and & € Ty,
and [&, &'] the usual bracket if & &' € Tg((/Y. The exact sequence (3.0.3) defines an
isomorphism in the derived category of /' &y-modules:

(3.1.1) Tiy — h ' Tys.

which is compatible with the bracket structure on £~ Tx)y.

If n is a local section of Tx,y, then 7, defines a section of degree —1 of the
complex &nd(E ®@ Q0 sv), which we denote by V~(n). If £ is a local section of T /s
then Lemma 3.1 tells us that L¢ defines a section VY(&) of degree 0 of &nd(E® Q¢ /Y).
Let us observe that V™! and V" assemble into a morphism of complexes:

VT Ly = &nd(E ® Qg y).
Indeed, if & € TY /80 then V°(&) is a morphism of complexes, so it is annihilated by
the total differential of &nd(E @ Q0 ). I € Tx)y, then V~'(n) has degree —1, so
AV ) =do V' N+ V') od=doi,+i0d=1L,=V"dn).

Let us also check that V' is a morphism of differential graded Lie algebras. If
£ & e T;{(/s: then we saw in Lemma 3.1 that

[VO@), VO(S’)] = [Le, Lyl = Ligey = VO([? £').

We must also check that if & € ng/s and 1 € Ty, then

V=", VI©1 = V7 ([, &D), vee.,

that [z, Le] = 45.6). Observe first that both sides are derivations of E® €2y y, of degree
—1 with respect to multiplication by forms, and in particular are Ox-linear. Thus it
suffices to check the formula for closed 1-forms. In fact, if @ € Q% ss 1s closed, then

V7', VI(®(@) = i;Le(@) — Leiy ()
= 1)(d(§, ®)) — Lg(n, w)
=n(§ o) — &, v)
= ([n.§], »)
= V= ([n, £D),

as required. Finally, let us observe that V' is a derivation with respect to multiplication
by sections of £~ (Oy).
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Defimition 3.2, — Let h: X — Y be a smooth morphism of smooth S-schemes and let
(E, V) (resp. (E, 0)) be a module with integrable connection (resp. Higgs field) on X/S. Then the
Gauss—Manin connection (resp. Higgs field) on R'4.(E ® €2y y) is the map

Tys = End R'(E ® Qg y)

obtained by composing the adjunction map
Tyss = hh™ ' Tys = R4 Ty s

with the inverse of the isomorphism RO Ty y — RO ™" Ty s defined by (3.1.1) and the maps
R4, (V') : R (Ty ) — RA,Ed(E ® Qyy) = EndR2(E ® Qg y).

Remark 3.3. — 'The integrability of the Gauss—-Manin connection defined here
follows from the compatibility of the maps (3.1.1) and V" with the bracket operations.
A similar construction defines the Gauss—Manin Higgs field, and thus we obtain se-
quence of functors

R'APR: MIC(X/S) — MIC(Y/S)
R'AHIS: HIG(X/S) — HIG(Y/S).

It is straightforward to check that these fit into sequences of exact effaceable §-functors
and hence are derived functors. This makes it easy to compare this construction with
the many others which appear in the literature and in particular with the derived cat-
egory constructions appearing in Section 3.3.

Now suppose that N. is an increasing filtration on E which 1s stable under the
connection (resp. Higgs field). Then the filtrations N. and N* of E ® Qx sy are stable
under the action of Ty .y, and hence the higher direct images of the corresponding
filtered pieces and the graded objects inherit Gauss—Manin connections.

Theorem 3.4. — Let h: X — Y be a smooth morphism of smooth S-schemes. Let . be

a sheaf of Ox-modules endowed with an integrable connection NV (resp. a Higgs field 6). Suppose that

N. is a filtration on ¥ such that Gx™ ¥V is constant (resp., such that Gr™ 0 = 0). Then for each
Jdec

n and 1, the action of the Gauss—Manin connection (resp. Haiggs field) on Rk, (Gr? (E® Qg /Y))
is constant (resp. trivial).®

Proof. — If 6 1s a Higgs field such that Gr¥() = 0, then 0 maps N,E to
N_E® Q>1< /s It follows that the actions of Tx,y and T;((/S on E® Qg P by interior
multiplication and Lie derivative map N% to N% . Hence T,y acts trivially on

Jdec

Gr(E ® Qx -

& We should point out that the statement for connections, but not for Higgs fields, requires that S have
characteristic p > 0.
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Now suppose that V is a connection on E and N is a horizontal filtration on E.
Recall that we have a natural quasi-isomorphism (2.29.2) of complexes

a: (E)/(E® Q. N), i) = G (B ® Q% . d).

Here EY(E ® Qi v, N) = #77(Gr) E ® Q% y). Note that if & € Txy € TY g, then
g is well-defined on E ® €y y, and hence L¢ = dig + d acts as zero on A1(E ®
Q%/y). Thus the action of T _,y factors through h~'Ty/s; the boundary maps d; are
compatible with this action. Thus R”h*(E'I’j , d) has a connection also, and we claim
that R"%,(a) 1s compatible with the connections. To see this, it is convenient to recall
the “dual” version of the filtration décalée:

NA(E® Q%) =N EQQLyNd ' (N, E® Q% ).
Then there is also a natural quasi-isomorphism
@ (GIN (B ® Q). d) > (E)7(E® Q. N). dy).

Then ¢* and aa* are compatible with the actions of Ty _ . Although a is not compat-
ible with the action of Ty _ y on the level of complexes, it follows that it zs compatible
with the induced action of Ty/s on hyper direct images.

Now suppose that GrE := Gr" E is constant. The theorem will follow if we
prove that the Gauss—-Manin connection on Rz (E;(E ® Qﬁ(/Y’ N.), d)) is constant.
Let us consider the relative Frobenius diagram:

Fxyy ) TX/Y/S

X 5 x X'

(3.4.1) x lhm l,,
Fyss

Y —Lsy

Here Fx/s = mx/y;s o Fx/y and he square is Cartesian, so Q;]((Y)/Y = JT}*(/Y/SQ;](’/Y"
The morphism of filtered complexes

(E® Q5 N) = (E® Q. N

induces a morphism of spectral sequences, which on the E;-level corresponds to the
top row of the following commutative diagram:

HN(GrE ® Q) H(GrE ® Q5 )

A(GrE® Qf5) ® QY s — A (GrE® Qg y) ® 2

XMy

A (GrE® Qi) ® iy
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The vertical maps ¢s and ¢y induced by the inverse Cartier isomorphism are isomor-
phisms because GrE is constant, the map « is surjective, and the map b is injective.
Thus #"(GrE® Q4 5) ® QL sy can be identified with the image of the arrow at the
top of the diagram. Since the differentials of the spectral sequence leave this image
invariant, they induce maps

A (GrE @ Q4 5) ® Qi y — A (GrE® Q5 5) ® Q.

and define a complex #°(GrE ® Q% 5) ® Qy/y of sheaves of Ox-modules on X',
Since the natural map

78,y s (A (GrE @ Q4 5) ® Q% y) = A (GrE® Q) ® Q%

™y

is an isomorphism, we see that the complex E;(E,N.) descends to a complex of
O'x-modules on X'.

Note that if § € Tx;y C T;{(/s> then ¢ is well-defined on E ® Q2 y, and hence
Le = dir + id acts as zero on JF(E ® Q). Thus the action of Ty y on
H1(E ® Q;(/Y) factors through /Z_lTy/s. For the same reason, h_lTY/S acts as zero
on the image of #(GrE® Qy/s) in H1(GrE® Qy,y) and it follows that the action
of h'"Ty)s on E;(E,N.) is nothing but the Frobenius descent connection. It follows
that the Gauss—Manin connection on R”hka) (" GINE ® Q¢ /Y), dy) 1is the Frobenius
descent connection. O

The following result is an improvement of the result [18, 5.10] of Katz, which
gives a multiplicative instead of an additive estimate for the level of nilpotence of
higher direct images.

Corollary 3.5. — In the situation of the previous theorem, suppose that h: X — Y has
relative dimension d, and denote by MICN,((X/S) the category of objects of MICN(X/S) of
level £, 1.e., such that there exists an wnteger k such that NJE = 0 and Ny E = E. Then for
each q, R"/z]*)R(E ® Qg e N%) lies in MICN4¢(Y/S), and the analogous statement for Higgs

modules also holds.

Remark 3.6. — In the case of connections, we can use the diagram (2.29.1),
which computes the boundary maps of the complex E;”(E ® Qi v NN, to see that

R'%, GIN (B ® Q5 1y, d) = Fy (RGN (E ® Qo pys )
where ¥ is the map induced by the p-curvature.

Example 3.7. — Let k be a field of characteristic p, S := Speck, Y := Speck[¢]. If
d is a positive integer, let m := d+2, assume (p, m) = 1, and consider the hypersurface
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X in P"*! over S defined by Xo+X0 4+ X0+ XX - - - Xggp. Once Y is replaced
by a suitable affine neighborhood of the origin, X/Y will be smooth, and the iterated

Kodaira—Spencer mapping
(Ka/a:)di H’ (X, Q§</Y) g Hd(X, Ox)

is an isomorphism [27, 3.4]. Then Katz’s formula [19, Theorem 3.2] implies that the
iterated p-curvature mapping

(Wapar)": H(X, %d(gi/y)) — H'(X, %O(Qi/\())

1s also an isomorphism. This implies that the level of the Gauss—Manin connection on
R, (2% ) is d. Moreover, if d > p, the action of the center of Dy, on R%%,(Qy /Y)
does not factor through the divided power neighborhood of the zero section.

3.2  The Cartier transform and de Rham direct images

Let 2: X/S — Y/S be a smooth morphism of smooth S-schemes, endowed with
liftings X'/.# and Y'/.. We shall explain how a lifting #/: X' — Y’ of /' defines
a compatibility isomorphism between the Cartier transform of the de Rham direct
image of a module with connection and the Higgs direct image of its Cartier trans-
form.

It is convenient to work with filtered categories as described in Corollary 3.5.
If £ < p, an object (E,V,N.) of MICN,(X/S) can be viewed as an object of
MICN_ (X/S) and we apply the filtered Cartier transform of Theorem 2.23 to ob-
tain an object (E/, 6’, N") of HIGN,(X'/S).

Theorem 3.8. — Let h: X/S — Y/S be a smooth morphism of smooth S-schemes, en-
dowed with lifings X').7 and X' /.. Let £ be an integer less than p— d, where d is the relative
dimension of h. Then a lifting } : X'/S — Y'/S of I X'/S = Y'/S induces an isomorphism
of functors (made explicit below):

@Z, : th;HIG o ng‘/y = Coy/y o thER
making the diagram below 2-commutative:

Cays

MICN,(X/S) HIGN,(X/S)

thi)R l quh;HIG
Coy 9

MICN44(Y/S) — HIGN,,(Y'/S).
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We shall construct the compatibility isomorphism of Theorem 3.8 from a canon-
ical filtered double complex, a relative version of the double complex we used in the
construction of the comparison isomorphism in Theorem 2.26. For any (E, V,N) €
MICN(X/S), define

%;-/W/Y(E) = Fxyse (B ® Ty @ FY s Q0 pp ® Q{(/Y)
= Fx/s« (E &® 4273(‘/5/ 029 Qg{/Y) ® Q;’/Y"

The de Rham and Higgs boundary maps then form a double complex
(;ngg-/g/s(E), d',d), which we endow with the total filtration N. := N?. There is
a canonical morphism

(55 (). N) = (55,(E), N').

Let us recall from the diagram (3.4.1) that we have a morphism A : X — Y and
a homeomorphism 7y y/s: X® — X', which we will sometimes allow ourselves to
view as an identification to simplify the notation. The terms of the complex
,Qf%/y y #(E) are Fx/s.Ox-modules and the boundary maps are mx y/s.Oxm-linear.

Recall from Proposition 1.12 that the lifting 7 of £ defines a morphism of filtered
algebras with connection

95/ . (/Z*JZ{@/y, N) — (,52%5{/5/, N)
Then we have a morphism of filtered relative de Rham complexes:
(E ® h]*)REQ{QLV ® Qgg/y, Nfl)t) — (E ® 52{5{/5’ ® Q;{/Ya N{oz)~

Since hjyg ;. » comes from Y, its p-curvature relative to Y vanishes, so for each j, the
map

(3.8.1) E® Ny s ® WUy —> E® Aoy ® Uy
is annihilated by the differential:
d:E® Ay ® Uy = E® oy ® Uy @ Fi Q-

Let %y, 9(E) == E @ Ijypow,» € MIC(X/S). It follows that the maps (3.8.1) define
a morphism of filtered complexes:

(3.8.2) b: Fxysi() 7 (B) @ Qs NY) = ()5, (E), N).

Let E’ be the Cartier transform of E. Since formation of p-curvature is compat-
ible with de Rham pullback (see Remark 1.8), the map 6; is also compatible with the
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F-Higgs fields. Thus we have a morphism of filtered relative F-Higgs complexes:
(B ® Koty @ F s Qs N) = (E® A9 @ Fy 4% s N).
Note that there is an isomorphism of Oxm-modules
x5l ey 0 = W Fy sty .

Since h(Y)*,ﬂzf@/y and the Cartier transform E’ of E are both annihilated by the relative
de Rham differential 7y »(E) — 5, #(E) @ Qx Jy> the same is true of the tensor
product

Ay 7(E) = E @ mxyvsih* Ay 5.
Thus we find a morphism of filtered complexes:
(3.8.3) a: (A »(E) ® Qi NY) = (10, (E), NY).

We shall deduce Theorem 3.8 from the following result on the level of com-
plexes.

Theorem 3.9. — Suppose that E s an object of MICN(X/S) such that N,_|E = E
and N_|E = 0. Then the morphisms a and b above induce filtered quasi-isomorphisms

a: (N3 () 7 (E) ® Q5 py) N&) = (N .oy, (B), NI
b: Fxse(NI ()7 (B) @ Qi y), NI°) = (NI, o (E), N,

The map a is compatible with the Gauss—Manin connections and the map b is compatible with the
Gauss—Mamin Higgs fields defined i (3.2). Moreover, the Gauss—Manin connection annihilates the
map

E® Qv — Dy 9 5E)
and the Gauss—Manin Higgs field annihilates the map

Proof. — The compatibilities with the Gauss—Manin connections and fields are
straightforward. To prove that the maps in the theorem are filtered quasi-isomorph-
isms, we follow the outline of the proof of Theorem 2.26. In particular, we may work
locally on X and Y, and we may assume that there are compatible Frobenius lifts
G:Y—-Y and I': X — X'. Then we work with the local Cartier transforms, using

complexes o7, /G y y,(E) & y(E), and JZ%C y y,(E/ ). It will suffice to show that the maps



68 A. OGUS, V. VOLOGODSKY
of complexes
a: ()7, ,(B), N, di) — (E)7( g, (E), N.), d))
br By (e 4 (B). N, d) = (B7(5,,(E). N.). dy)
are quasi-isomorphisms. As in the proof of Theorem 2.26, we find that these become
maps
Gra: (GrE @ T.Qy s ® Qy v i) — Gr(E @ T'.Qxs ® Qs d)
Gro: (GrE® I Qyys ® Qyyry di) = Gr(EQ T'.Qxys @ Qi jyrs d1)-
Working locally on X, we may assume that the sequence 0 — £*QJ, 5 > QL e

Qi ;y —> 0 splits. Then we can idenufy I.Qy ss with the tensor product W*T. €, /s ®
I.Qy ;y» and the result follows from the filtered Poincaré lemma, as in Propos-
ition 2.21. O

Proof of Theorem 3.8. — We may assume without loss of generality that N_jE = 0.
For each ¢, let (Efz, N.) := R7%PRE with the filtration induced by the filtration N
of E® Q y, and let (Effjg, N.) := RIZ}CE with the filtration induced by N'*“.

Since the pieces of Gr.oZy,» consists of locally free sheaves of finite rank, the
projection formula gives filtered isomorphisms

()7 @ Ep, N*') = (R oy, #(E), N.)
(FY/S*(Q{’&V/Y & E;-QHG, Nt.w) = (Rq}l*HIGle(y/y(E/), N-)
where the filtrations on the right are induced by the filtration N, Furthermore, these

maps are compatible with the Higgs fields and connections. Theorem 3.9 then gives
us an isomorphism

(N;(}il (“Z@/Y ® Elq.)R)’ Nt-w) = (Nfil (‘2@/5’ ® E;ZHG)’ Nt-w)

compatible with the filtrations, connections, and Higgs fields. Since Ef; has level at
most p — 1, its Cartier transform is obtained by taking the horizontal sections of
N,_19,+(E7), which by the above isomorphism is (B, N O

Remark 3.10. — When Y = S, the categories MIC,(Y/S) and HIG,(Y'/S)
reduce to the category of Os-modules, and Theorem 3.8 above reduces to The-
orem 2.26.

3.3  Derwed direct and inverse images

Let S be a noetherian scheme of finite Krull dimension, 4: X — Y a morphism
of smooth schemes over S. Let TY, .y, be the pullback of Ty, to X', which fits into
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the following diagram:

Note that 7, is a closed embedding if and only if /" is smooth.
Let HIG(X' — Y’) denote the category of sheaves of /S Ty /s-modules on X'.
We define the derwed inverse image

LAty : DHIG(Y'/S)) - D(HIG(X'/S))
to be the composition

— M
Ly U

DHIG(Y'/S)) — DHIGX — Y') — DHIG(X//S)).

Since /' is a morphism between smooth S-schemes, 7" has bounded cohomological
dimension, and so takes D’(HIG(Y'/S)) to D*(HIG(X'/S)).
Similarly, for a smooth morphism h, the derwed direct tmage

R/ DHIG(X'/S)) — D(HIG(Y'/S))

is the composition

DHIG(X'/S)) ﬁ) DHIGX — Y)) 2 D(HIG(Y'/S)),
where R7" sends a complex E in D(HIG(X'/S)) to
Ri'(E) = R Hmgr, (S'H " Tys, E).

It is again true that this functor takes bounded complexes to bounded complexes. Note
that RZMY is right adjoint to LY HIG

Let us pass to the direct and inverse images of D-modules. Proposition 3.12 be-
low is a reformulation, based on the Azumaya property of the algebra of differential
operators in characteristic p, of the usual definition of the functors

Lz, - DOIMIC(Y/S)) — D(MIC(X/S))
RAPR - D(MIC(X/S)) — D(MIC(Y/S)).

Recall that Zx /s is the sheaf of algebras on the cotangent space of X'/S associated to
Fx/s«Dx/s. We first need the following result.
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Theorem 3.11 ([5]). — Let h: X — Y be a morphism of smooth S-schemes. Then
the Dy /s ® h_lsz/S—moa’ule Dx_y := h*Dys induces an equivalence of Azumaya algebras
on TS e

. -k
Z/Z‘@X/S ~ K gy/s.
Proof. — 'To prove the theorem consider Dy/s as a left module over itself. Re-

mark 1.8 shows that the left action of Dx,s on A*Dy/s and the right action of /z_lDy/s
together define a left action of

FX/S*DX/S ®S.Tx’/s }l/*FY/S*Dz)/S’

where STy acts on h’*FY/S*Dg'/S via ¢, and the evident action of #*S Tys. This
. . —%
gives us a module over the Azumaya algebra i'; Zx /s Rop. (W Dys)”. Alocal com-
XY
putation shows that this module is locally free over Or;,  of rank md (1, Dxs) -
ind (K" Dy s). O

As a corollary, we get an equivalence of categories:
(3.11.1) CX’—>Y’ . MOd(l.}/l*FX/S*DX/s) ~ MOd(}l/*FY/S*DY/S)’

where Mod(&) denotes the category of .«/-modules. Note that, since Fx/s is a homeo-
morphism, the functor

Fx/s«

MIC(X/S) = Mod(Dx,s) — Mod(¥Fx/s.Dx/s)
is an equivalence of categories. Thus the following result determines L4y, and RAPR.
Proposition 3.12 ([3]). — For any morphism h : X — Y there s a canonical isomorphism:
Fx/se 0 LAy = i/ 0 Cy) Ly 0 LA™ 0 Fy s,
If b is smooth we also have
Fys, o RIPR = R 0 Cxrmyr 0 Ril 0 Fy g,
Proof — We shall just explain the second formula. By definition, for any
E € DIMIC(X/S)), we have

.1
Cxoy o RZ;/I (FX/S*E)
= %mi/zFx/g*Dx/g (FX/S*}Z*DY/S’ R%mFx/s*Dx/g (l./ZFX/S*DX/S’ FX/S*E))
= R Homy, 5,y s Fx /s Dyys, FxysE).

It follows then that
R, 0 Cxoy 0 Rij (FxsuF) = Fy/s, R (R Homp, (K Dyys, B)).

When / is smooth this is the standard definition of Fy/s, o RAPK, O
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As an application of the new construction of RAP® let us observe that if
E € MIC(X/S) and the Zariski closure of suppFxs.E C T%, does not intersect
T% .y C T%, then RAPRE = 0. (This follows also from Proposition 2.31).

3.4  The comugate filtration on ¥x;s,.Dx/s

The algebra of differential operators in characteristic p, besides the order filtra-
tion, has another natural filtration by ideals:

(3.12.1) - C ff< Cc---C f;( C Fx/s«Dxys,
Sy = SiTX’(FX/S*DX/S)~

We shall call (3.12.1) the comjugate filtration since, as we will explain in (3.17) below,
it induces the conjugate filtration on the de Rham cohomology groups. The associ-
ated graded algebra Gr(Fx,s.Dx/s) is a canonically split tensor Azumaya algebra. In
this section we shall study a certain filtered derived category of modules over the fil-
tered algebra Fyx/s,Dx/s. We will see how the splitting property of Gr(Fx,s.Dx/s) to-
gether with some general results in homological algebra lead to generalizations and
simple proofs of some of the fundamental results of Katz, including the p-curvature
formula for the Gauss—Manin connection. Our main application is the functoriality of
the Cartier transform with respect to the direct images.
The following construction plays a central role in this subsection.

Definition 3.13. — Let o/ be a sheaf of algebras over a scheme Z. and .9 C of be a two-
sided ideal. Denote by CY¥ (o, ) the category of (unbounded) filtered complexes of <7 -modules

- C(NM'Ed) c (NE',d) C --- C (E', d),

satisfying the following conditions:
1. U,z NE =FE and (,.,N'E/ =0,
2. The filtration N on each Y7 is an % filtration, that is:
(3.13.1) INE C NHE/,
(see also Definition 2.16).
The F-iltered derived category DF(o7, &) is the Verdier quotient of the homotopy category
Ho(CF(«, .9)) of CF¥(Z,.Z) by the subcategory Ho(CF“(f, 7)) of acyclic complexes.

In the context of this definition, a filtered complex is said to be acyclic if for
every i the complex (N'E’, d) is acyclic. Recall that by the definition of the Verdier
quotient there is a triangulated functor

L: Ho(CF¥(«, .#)) — DF(«, .¥),
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such that L (Ho(CF“(«7, .#))) = 0. The pair (DF(<7, %), L) has the following uni-
versal property: for every triangulated category T, the composition with L induces an
equivalence of categories between the full subcategory of triangulated functors
®: Ho(CF(«, .#)) — T, such that ® (Ho(CF“(«7, .#))) = 0, and the category
of triangulated functors @' : DF(«7,.#) — T. Explicitly, DF(<7, .#) can be con-
structed as the category whose objects are those of Ho(CF(<7, .#)) and morphisms
Hompp, (X, Y) are represented by diagrams

X 25 Y <Y,

where @ and s are morphisms in Ho(CF(#7, .#)) and cones € Ho(CF“(«7, .#)). We
refer the reader to [25] for a detailed discussion. In the case when . = 0, the filtered
derived category DF (%) := DF (7, 0) was first considered by Illusie in his thesis [15].

Given a filtered complex E’, we denote by E'(r) the same complex but with
the shifted filtration: N'(E'(r)) = N'"E". Let CF-/(«, .%) be the full subcategory of
CF(«, .#) whose objects are filtered complexes with N'E" = 0, let CF. (7, %)
be the full subcategory whose objects satisfy N'E" = E°, and let be CF (<7, %) the
intersection of CF_ (7, .#) and CFs(, .#). Denote by D¥_ (7, .#), DFs (<, .7),
and DF; (o7, Z) the quotients of the corresponding homotopy categories.

Lemma 3.14. — The functor ¢~ : D¥s (o, I) — DF(o, F) has a right adjoint
functor

wsy : DF(e, F) — DFo (o, .7) w1 (E) =NE".
The functor c<; : DY (&, ) — DF(A, .F) has a lefi adjoint functor
we,: DR, F) — DF_ (o, F) : wo(E)=E/NE,
Moreover, wspesp = 1d, w2 Id.
The proof is straightforward.

Corollary 3.15. — The functors ¢y, ¢<; and ¢y @ D¥Fy (e, F) — DF(, F)
are fully faithful. The essential image of ¢y consists of those objects (E°, N'E") such that each
N'E — E is a quasi-isomorphism for all j < k, and the essential image of c<; consists of those
objects such that N'E’ is acyclic for all j > 1.

Progf. — Indeed, for E', E'" € DF. (7, .#) we have

Hochzk(W,f) (E', E/') = HomDsz(ﬂ,ﬂ) (E', wzkczkE/‘)

>~ Homppw, 7 (e E, CzkE/.),
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where the first isomorphism is induced by w-;cs; =~ Id and the second one comes
from the adjointness property from the lemma. The proofs for ¢-; and ¢ are similar.
If (E',N'E’) is an object of DF(A, .#) and each N'E' — E’ is a quasi-isomorphism
for all y < £, then the natural map ¢, w-;(E", N'E") — (E', N'E") is an isomorphism
in DF(A, .#), so that (E',N'E") is in the essential image of ¢~;. The proof for ¢, is
similar. a

Let p : V— Z be a vector bundle over a scheme Z, V the corresponding sheaf
of sections (thus, V is a locally free sheaf of &7-modules), and let &7 be a flat sheaf
of algebras over p,Oy = S'V*. Let .# be the sheaf of ideals in &/ generated by V*.
Denote by Gr./ = @jzo S| F7! the sheaf of graded algebras over S'V*. Since &/

1s flat over S'V* the morphism:

(3.15.1) SV* g, ]I — Grd, [Ra—> fa

is an isomorphism and Gr.«/ is a flat S"V*-module. Denote by D(Mod (Gr.«/)) the
derived category of graded Gr.oZ-modules. We then have a functor:

Gr: DF(«, %) — D(Mod (Gr #))
(E) EB NE"/NHE'.
—00<j<400
Let ¢ : W — Z be another vector bundle over Z and : : W — V a linear
embedding. Set # = & gy« SW* and ' = WA C #. Then £ is a sheaf of
algebras over SW* and ¥’ C £ is a subsheat of ideals.
Proposition 3.16. — Assume that 7. is a noetherian scheme of finite Krull dimension.
1. The functor i, : D¥(AB, I') — D¥ (A, ) has a night adjoint
Ri' : DF(</, %) — DF(%, .9")
and the functor i, : D(Mod (Gr B)) — D(Mod (Gr <)) has a right adjoint:
R : DMod (Gr, &7)) — D(Mod (Gr A)).

2. The funclor Ri' takes the essential image of DF/(</, &) into the essential image of
DF_ (A, I") and the essential image of DY, (', .F) into the essential image of
DF.;_ (A, "), where d := 1kV — 1k W.

3. For every I filtered </ complex ¥, the morphism GrRié'E™ — Ri' GrE defined by
adjunction:

Id € Hom(E', E') - Hom(Gri,R/'E’, GrE")

— Hom(GrR/E", R/ GrE")

is an isomorphism.
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4. Re' commules with the forgetful functors
¥ : DF(«, #) - D(Mod(#)) and V' : DF(A, ¥") — D(Mod(A)),

i.e. the canonical morphism WRIE — Ri&WE', defined by adjunction, is an isomorph-
sm.

Proof. — TYor (1) we use the technique from [24]. The Brown representability the-
orem (loc.cit., Theorem 4.1.) asserts that the existence of the adjoint functor
R : DF(«, %) — DF(%, .#") would follow if we prove that

1. the categories DF(&7, .#) and DF(#, .#’) have arbitrary direct sums
2. the functor 7, commutes with arbitrary direct sums
3. the category DF(4, .#") is compactly generated’.

The first two properties are immediate. Let us check the third. Given an open subset
j: U< Z, denote by Ay the filtered Z-module such that N'%Zy = % for i < 0 and
N'%By = j(SW*PB) for i > 0. Yor any E € DF(%, #"), one has

Hompy, 5 (Bu(l), E'[j) ~ RT(U,NE).

It follows that DF(Z, #) is generated by objects of the form Ay (/). It is known that
for any noetherian space U of finite Krull dimension the functor RI'(U, ) commutes
with arbitrary direct sums (see, for example [38]). Thus the objects Hy(/) are com-
pact.

The second claim in (1) is proven by a similar argument.

For (2), let E° € DF_ (7, .#). We want to show that w-;;,Ri'(c<;E") = 0. In-
deed, for every E” € DF. (4, .#") we have

Hom(E", w14 Ri'(e</ EN)) =~ Hom(czpy B, Ri(eey E)
~ Hom(w<ii (cs11 E7), E)
>~ Hom(w< ¢> 41 4 (E"),E")
= 0.
To prove the second statement consider the forgetful functor

® : DF(4, .#') — DF(0,) := DF(0,, 0)

to the filtered derived category of &-modules. By Corollary 3.15, we will be done if
we show that ®R7'(E) € DF-;_,(0,) for every object E' of DF. (7, .#). Consider

9 Recall that an object X € DF(%#, .#") is called compact if for every set of objects {Y,} one has
P Hom(X,Y,) >~ Hom(X, ®Y,). A category is said to be compactly generated if there exists a set T of com-
pact objects such that for every nonzero Y € DF(Z, .#") there exists X € T such that Hom(X,Y) # 0.
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the Koszul complex
(3.16.1) 0— NTQp, Z(—d) — - — TQg, (—1) > o — i,i*o — 0,
where T := ker (V* i)W*), and where the Z-filtration on A"T ®g, o7 (—m) is defined
by
N'(A"T ®g, ' (—m)) = N'T @, I "

Then (3.16.1) is an acyclic complex in CF(«7,.#). It yields a functorial iso-
morphism

(3.16.2) ORI (E) >~ Hom, (AT ®g, o (—), E).

This is the filtered complex C* whose term in degree ¢ is
Cl = @ NT* ®g4, E(p).
ptg=i

Since E/(p) € DFs,_,(#7, #) and T* has rank d, this completes the proof.

For the last two statements, it will be enough to prove that GrR/'E" — R¢' GrE’
(resp. WRI'E" — R#'WE’) becomes an isomorphism after the projection to the derived
category of graded &z-modules (resp. the derived category of &y-modules). In turn,
this follows from the Koszul computation in (2). ]

Let # : X — Y be a smooth morphism of relative dimension ¢ of smooth
schemes over a noetherian scheme S of finite Krull dimension. We shall apply the
above construction to the linear morphism

G

k k
Ty v — Tk,

and to &/ D & being either STx D Zx = @, S Tx or the Azumaya algebra
Fx/s:Dx/s D HIx = Tx (Fx/s:Dx/s). We then have the filtered derived image functors

RAT = RE o Ri)': DE(S Ty, #x) — DF(S Ty, _#v)
Rth = R}l; oCxy o Rl}/l!i DF(FX/S*DX/S, Ix) —> DF(FY/S*DY/S, )
and by the previous proposition

Rh/iHGi DF[k,l](S‘TX’a /X’) - DF[k—d,l](S‘TY’a /Y')
RhERi DFy n(Fx/s«Dx/s, IX) = DF_sn(Fy/s«Dy/s, ).

In particular, this gives another proof of Corollary 3.5.
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Example 3.17. — Consider the Dx/s-module Ox € DF(Fx/s.Dx/s, -/x) endowed
with the trivial filtration. Then the filtration on

R}lfRﬁX < DF[—d,O](FY/S*DY/S’ jy)

coincides with the “conjugate” filtration. Indeed, we will construct a canonical quasi-
isomorphism in the filtered derived category DF (7" (Fx/s:Dx/s)):

(Ri} (Fx/s:0x), N') = (R} (Fx/s.0x), T"),

where for any complex C’,

C if g < —i
T'CH:= {Im(d?) ifg=—i+1
0 ifg>—i+1.

That is, T'C" = t-_,C", where 1< is the canonical filtration. Note that by (3.16.2),
Gr™" Rij (Fx /s, 0x) =~ Q% v ® Fx s, Ox[—m].
Thus the result follows from the following lemma, whose proof is straightforward.

Lemma 3.18. — Let (E', N") be a filtered complex in an abelian category. Assume that the
Siltration s finite and that for every m

H(Gr™E)=0, foreery i7#m.
For each i, let T\E := T'N'E" C N'E". Then the morphisms
(E,N) <« (E, Ty — (E,T)
are filtered quasi-isomorphisms. O
Observe that the graded Azumaya algebra
GrFx/s.Dx/s = Fx/seDx/s/Ix) o, S Tx

over S"Tx splits canonically: Fx/s,0x ®g,, STk is the graded splitting module. This
defines an equivalence of categories:

L D(HIG (X'/8)) — D(Mod (Gr Fy/s.Dy;s))
C.X_/ls(E.) = E'. ®S.Tx’/s (FX/S*ﬁX ® S.TX’/S)
ZE” ®g, Fx/s:Ox.
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Observe that CX_/IS and its quasi-inverse Cy 5 commute with Ri;. By Part (3) of Prop-
osition 3.16 we have a functorial isomorphism

(3.18.1) Cy,s GrRy(E) ~ R (Cy s GrE)
and its direct image to Y’
(3.18.2) Cy s GrRAJM(E) ~ RAFTC(CY 5 GrE).

Let E° be an object of DFy ;;(Fx/s:Dx/s, #x). Then the filtered complex
RAPR(E") yields a spectral sequence:

BN = H( G/ RIPR(E)) = HF (RIPR(E)).

We shall call it the conjugate spectral sequence' (c.f. Example 3.17).
Assume that the conjugate spectral sequence degenerates at E;. Then the quasi-
isomorphism (3.18.2) induces an isomorphism of graded Higgs modules:

(3.18.3) Cyjs GrRIADVE) >~ RIEMO(CY 5 GrE).
Remark 3.19. — Let us explain how formulas (3.18.2) and (3.18.3) can be viewed
as generalizations of Katz’s formula [19, Theorem 3.2] relating p-curvature and the

Kodaira-Spencer mapping. Recall from [20] that the complex M' = RV (Ox) of
Dy s-modules has another natural filtration

CFM CcF M c---CcM,
where FPM* C M* are Oy-submodules satisfying Griffiths transversality:
Tys(FMF) € 7'M

The last property makes Gry M* a Higgs module on Y’ and there is canonical quasi-
isomorphism

(3.19.1) Grp RPN (Ox) ~ RITC (Ox)

in the derived category of graded Higgs modules [20, Construction 5.6.1]. If the mor-
phism /4" is smooth and proper, the filtration I induces the Hodge filtration on

10 Let us note that, when E = O the E,-terms of our spectral sequence correspond to the E,y; terms of the
usual conjugate spectral sequence, after a suitable renumbering
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Rh’ER(ﬁxx) and the spectral sequence associated to I is the Hodge spectral sequence.
Combining Laumon’s formula (3.19.1) with (3.18.2) (for E" = 0x) we obtain a canon-
ical quasi-isomorphism

(3.19.2) Cys Gry REPR(Ox) = Gry RIS (Ox)

in D(HIG (Y'/S)).

Assume that £ i1s smooth, proper, and that the Hodge spectral sequence and the
conjugate spectral sequence for the de Rham direct image of Ox degenerate at E;.
Then (3.19.2) yields an isomorphism of Higgs modules

(3.19.3) Cy s Gry REPR(Ox) = (Gry RIS (0x), k),

where Gry denotes the associated graded object with respect to the Hodge filtration
on Rj/l’]:R(ﬁX/) and « is the Kodaira—Spencer operator viewed as a Higgs field on
Grp RIPR(Oy). This is Katz’s p-curvature formula!'. See Example 3.17 for an explica-
tion of the left side which relates it to Katz’s original formulation. We refer the reader
to Section 4.6 (Formula (4.16.2)) for a generalization of this remark.

Remark 3.20. — Example 3.17 can be generalized as follows. Let &7 be sheaf of
algebras flat over S'V* and ¢ : W < V a linear embedding. Consider the functors

DF(</, .9) ——>DF(* o, i*.7)

L

DF(&/) — = DF(i*<7).

This diagram is not commutative. However, we will show that for every 27-module
E with a finite .#filtration (E = N°E D --- D N'E D N""'E = 0) the .#filtration
(R'E = N“R/'E D -+ D N"R/E D N"MR'E = 0) is the filtration décalée of (Ri'E. =
R/NE D --- D RI/N'E D Ri/N"M'E = 0). To see this we, first, recall an interpretation
of the filtration décalée convenient for our purposes.

Let DF(%) be the filtered derived category of an abelian category %, and let
DF=K(€) C DF(%) (resp. DF=(%) C DF(%)) be the full subcategory whose objects
are filtered complexes (E', F'E") such that, for every integer n, Gr" E" has vanishing
cohomology in degrees greater than n + £ (resp. less then n 4 £). It is known [1, Ap-
pendix], that the subcategories DF=#(%4) and DF=(%’) define a t-structure on DF(%)
whose heart is the abelian category of complexes C(%). In particular, the embedding

" In loc.cit. Katz considers also the log version of his formula. We shall not do so here.
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DF=(¢) — DF(%) has a right adjoint functor

7., : DF(¥) — DF4%).

Explicitly,

F(ro (B, FED)) = B g 4 4B,
if >k and

F(r< (7, F'E)) =F'E
otherwise.

The canonical filtration
- Ct4ELFE)C---Cc(EL,FE).
makes E" a bifiltered complex. We shall denote this bifiltered complex by
(E,FE)*:=(E ,NFE),

so that (E', N*FE") = 7(E’, F'E’). We then have the following generalization of
Lemma 3.18.

Lemma 3.21. — Let (E',N'F'E") be a bifiltered complex. Assume that the filtration N s
finite, i.e. there exist integers a and b such that N°F'E" = 0 and N°F'E" = N'"'F'E" for every
i > 0. Set F'E := N'F'E’". Assume also that, for every m,

Gry"(E',N'F'E’) € DF="(%) N DF="(%),

ie. H/ (Gr’li Gr"(E",N'F'E")) =0, for every j # k+ m. Then the canonical morphism
(B NFE) - (£, FE)®

defined as i Example 3.17 is a bifiltered quasi-isomorphism.

We omit the proof.
We apply the lemma to the bifiltered complex (R/'E,NFR{E), where
NF"RIE = NFR 7' e 0=, E 2. By (3.16.2),

Grl Gry" Ri'E ~ A" T* ® 4, Gr'* E[—k — m].

12 Precisely, (RI'E, N'F'Ri'E) is defined as Ri*(E, N'F'E), NF"E = N™®"F, in the bifiltered derived category
of @7-modules (E', N'F'E) such that #/NF"E" C N*FE”.
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Thus we get a canonical bifiltered quasi-isomorphism

(RI'E, N'F'R/'E) ~ (R/'E, FRIE)™.

3.5 The derwved Cartier transform

Let Z°/S be a lifting. For any £ and [ with [—# < p, the Cartier transform vyields
equivalences of categories

Cays

DFy; i (Fx/s«Dxys, IX) —— DFy (S Tx, fx’)
C%‘/,S”(E'a NE) = (C%‘/SE', C%/SN.E').

Theorem 3.22. — a) Let h: X — Y be a morphism of smooth schemes over S. Then, for
any wnlegers k and [ with | — k< p, a bfting I : X' — Y’ of k' induces an isomorphism:

Lijy 0 Gyl = C5) o o L :
DFyn(S Ty, #v) — DFy(Fx/sDxys, Ix).
b) If i addition h is smooth of relative dimension d and | — k — d < p, then
R0 C3l L, = Cpl L o RAMC:
DFy (S Txr, Zx) = DFjin(FysDys, Hy).

Proof. — a) Define an equivalence of categories

(%)
DFy (7 (S Tx), Fx) ——> DFy (@ (FxyseDxys)s Fx)

to be the composition
Y -1,
(C%/y) = %ﬂ‘/y‘o Ly,

where Lyt DF[k‘]](l.}/l*(S.TX/), /%/) — DF[k‘]](l.}/l*(S.Tx/), /%/) is the involution defined
in (2.7.2) and .# /s is the tensor product with the splitting module Fx/s.%4.:

My is(E,NE) = (E b1y Fx/s«Ba9, N E b1y s Fx/s«Ba o).
Similarly, the splitting module #*Fy /s, %z, yields an equivalence of categories

(€,
DF . (K" (S"Ty), i Fy) ——— DF ("™ (Fys:Dy,s), By).
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Lemma 3.23. — A morphism (b, H): X | — ¥ | induces an isomorphism of func-

tors

Y ~ (X
Clrr = Cyyy 0 Cxny

Ve / Cxroy I% /%
DF[k,l](Z/l (FX/S*DX/S)y fx) Akl DF[k,z](/l (FX/S*DY/S), h fy)
c/l lc/

DFy. (5 (S"Tx), %) = DFy. (7 (S"Ty), ™ o).

Progf — Recall from Proposition 1.12 that a morphism (b, #): 2. — #|.%
induces an isomorphism

Wity —> Aoy g (BFS T Tvys, oy.7).
Dualizing this isomorphism, we find an isomorphism of Dx/s-modules
FS sl U lvys @i oy, g Boyr S W By
With the notations of Theorem 3.11, we have
Fx/sih* B = FxyseDxoy @ity sidyss B Fy 5B ).

Thus we get an isomorphism of splitting modules for T Ty /S ®S'Tx//s Fx/s«Dx/s:

(3.23.1) n* I'Tys ®fTX, 5 FX/S*«%%/y = FxseDxov Qn*Fy s:Dy)s /l/*FY/s*«%?}/y-

By definition, the functor (CY, / )" is the composition of the involution t, and the

tensor product over /L’*f‘TY//S with the left-hand side of (3.23.1), and the functor
(G, 0 Cxy)™" is the composition of ¢, and the tensor product with the right-
hand side of (3.23.1). Thus, (3.23.1) induces the desired isomorphism (CY,,,)~" =~
(Cé/y o Cxy) ™l O

Let us return to the proof of the theorem. Observe the natural isomorphisms of
functors:

LK 0 (Cayr) ' = (CX,,) o Lk*  and
i o (CY ) = (Ca) o,
Hence, by Lemma 3.23
Lipyg 0 Coly =4, 0 (Cxmy) o LA* 0 Gy,
~ il o (Cxoy) o (CY,,) o Li”
~ il o (CY,) o L™ 2 C3},, o Lifi.

This proves part a) of the theorem.
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b) By Lemma 3.23 it remains to construct an isomorphism of functors:
(3.23.2) Ri'Cyry = CY ,Ri)
DFy i (Fx/seDxys, #x) = DFjgn (@ (S Txo), Fx).
Let E° € DFy ;;(Fx/s«Dx/s, #x) and E" € DF_, (7 (S Tx), #%). We then have

functorial isomorphisms
Hom (E", Ri;'Cy#(E)) = Hom (C3} i, E", E')
~ Hom (i},(CY,,,) 'E", E)
~ Hom (E", CY,, ,Ri) (E)).
By the Yoneda lemma this yields (3.23.2). O

Remark 3.24. — In the absence of the lifting of /" the theorem can be modi-
fied as follows. Let .Zj, be the #*Ty/ s-torsor of liftings of /' and let exp.Z), be the
pushforward of %) via the homomorphism

exp i Ty — (BT Ty)*.

Thus exp.%, is an (K*T'Ty)*torsor. We denote by %, the corresponding invertible
module over #*I"Ty.. Define an autoequivalence

7y : Mod(A“I'Ty)) — Mod(?*T'Ty)
7(E) = E ®,epy, S
Then, with the notations from the proof of Theorem 3.22, one has
Ky ®pry, s Fx/seB a7 = FxyseDxoy ®uerysnys ' VyjseBy ),
Lifyp 0 Coly =C3 y 04y, 01, o LA™
DF[k,l](S.TY’y /Y’) — DFy 1 (Fx/sDxys, IX)
and if 7 is smooth of relative dimension d and [ —k+d<p
RA® 0 C3 = Q) o RE, 0 7y o Ry
DFyn(S"Tx, Zx) = DFjyn(FysDys, Fy).

Corollary 3.23. — Let h : X — Y be a smooth morphism of relative dimension d and
let ¥ be an object of D(HIG'[,{’ l](X’/ S)). Assume that | — k — d < p and that there exusts

W X' — Y. Then the conjugate spectral sequence for H* (RAPR(C} 1o E7)) degenerates at E,.
Proof. — We have
RAMG(E) ~ REC(GrE) >~ GrRATC(E).

Here the first isomorphism comes from the grading on E’ and the second one from
(3) of Proposition 3.16. It follows that the spectral sequence of the filtered complex
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RAMCS(E") degenerates at E;. Then by Theorem 3.22 the same is true for
RAPR(CS L E). O

4 Applications and examples

4.1 Local study of the p-curvature

Let X/S be a smooth morphism of schemes in characteristic p > 0 and let
(4.0.1) v: MIC(X/S) — F-HIG(X/S)

denote the functor taking a module with integrable connection to the corresponding
module with F-Higgs field. This functor is not an equivalence or even fully faithful. For
example, the category of pairs (€ V) with vanishing p-curvature is equivalent to the
category of invertible sheaves L. on X' together with a trivialization ¥y (L. = Ox. How-
ever, we show that if (E;, V|) and (Es, Vy) are two noetherian objects of MIC(X/S)
with isomorphic images in F-HIG(X/S), then Zariski locally on X, (E;, V|) and
(Eg, Vy) are isomorphic. Moreover, we can characterize the image of the functor W,
étale locally on X: if ¢ is an F-Higgs field on a coherent E, then étale locally on
X/S, ¥ comes from a connection if and only if (E, ¥) descends to a Higgs field on
X'/S. Taken together, these results can be interpreted as a nonabelian analog of the
well-known exact sequence [23, 4.14]

§(/S dlog 7*—Cx/s

F
1

0— ﬁ;/ — Fx/s*ﬁ;( — FX/S*ZX/S Q}li’/S — 0,

where Cy/s is the Cartier operator and w: X' — X the projection. Indeed, one can

recover this sequence by considering the category of connections of the form

(Ox, d + w), where o is a closed one-form, and recalling that the p-curvature of such

a connection is precisely 7*(w) — Cx/s(w).

Theorem 4.1. — Let X/S be a smooth morphism of noetherian schemes in characteristic p.

1. Let (E;,V)), 1 = 1,2, be objects of MIC(X/S), with E; coherent, and let ; denote
their p-curvatures. Suppose that there exists an isomorphism h: (Eq, Y1) — (Eo, ¥9)
F-HIG(X/S). Then Zariski locally on X, (Ey, V\) and (Eq, Vy) are isomorphic in
MIC(X/S).

2. Let E be a coherent sheaf with an F-Higgs field : E — E & Fy /SQ;C /s Then étale
locally on X, the following are equivalent:

(a) There exists a connection on ¥ whose p-curvature is .
(b) There exist a coherent sheaf with a Higgs field (E/, ") on X'/S and an isomorphism

(E, ¥) = F s (B, 9.
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Proof. — To prove (1), let H := Hom(E;, E), with the internal Hom connection
and p-curvature. Let HY C H be the subsheaf annihilated by ¥, and let Fx/s,(H) be
the subsheaf annihilated by V. Then by Cartier descent, the natural map
F% /SFX/S*HV — HY is an isomorphism of &x-modules.

Let x be a point of X, and let " be its image in X'. Then £(x) is a finite and
purely inseparable extension of k(x'). The fiber V' := (Fx;s.HY)(¥) of Fx/s,H" at
' is a finite dimensional k(x')-vector space, the fiber V := HY(x) of H” at x is a fi-
nite dimensional £(x)-vector space, and the natural map k(x) ®;.) V' — V is an iso-
morphism. There is also a natural map V — Homy,)(E,(x), Es(x)). Let V be the
affine space over k(x) corresponding to the £(x)-vector space V, and let U denote the
Zariski open subset of V corresponding to those elements which define isomorphisms
Ei(x) = Eg(x). The isomorphism £ lies in H? and hence its image A(x) in V corres-
ponds to a k(x)-rational point of U. Let V' be the affine space over £(x’) corresponding
to V. Then V is the base change of V' to Spec k(x), and since k(x') — k(x) is a purely
inseparable extension, the projection mapping V— V' is a homeomorphism and the
image U’ of U in V' is a nonempty open subset. If £(x) is infinite, it follows that the
k(x')-rational points of V' are Zariski dense, so U’ has a k(x')-rational point. If £(x")
1s finite, it is perfect, and it follows that £(x) = A(x'). Thus in either case there is an
element ¢ in V' which induces an isomorphism E;(x) — Ey(x). Then there exists an
element g’ in the stalk of the Ox-module Fxs,HY at ¥ whose image in V' is ¢/. Let
I = ¥ (g'), which defines a horizontal morphism E; — E, in some neighborhood
of x. The fiber of /" at x is an isomorphism. We know that E, , and E, , are isomorphic
as Ox ,-modules, and in particular their reductions module any power of the maximal
ideal have the same finite length. It follows from Nakayama’s lemma that /" is sur-
jective modulo any power of the maximal ideal, and hence is also an isomorphism
modulo any such power. Then it follows that /' is an isomorphism in a neighborhood
of x. This proves (1).

We should remark that (1) could also have been proved from the theory of Azu-
maya algebras; we preferred to explain the elementary proof above. We do not know
of such an elementary proof of (2). Note first that since (2) is a local statement, we
may assume that there exists a spitting ¢ of C;(}s as in (1.9.2).

Suppose that (E/,¢¥’) is an object of HIG(X'/S), with E' coherent as an
Ox-module. Let E/ denote the coherent sheaf on T% s corresponding to (E', ¥'). Let
i't 7/ — Txys be the closed immersion defined by the annihilator of E' in ﬁT;Z//S'
Since E’ is coherent as a sheaf of Ox-modules, 7’ is finite over X', and hence the
étale covering o, : Txrs — Tx/s splits over 7/, étale locally on X'. Thus, after replac-
ing X’ by an étale localization, we may assume that there exists a map j': Z' — T,
such that o, o' = 7. Let E” := j/#"F/, which corresponds to an object (E”, %) of
HIG(X'/S). Then E' Z {i"F = o ji"E = o, B Let (B, V) := W' (E", ¢) (see
Theorem 2.13). By op. cit., the p-curvature of (E, V) is FX s E", ¢y = F§‘</S(E’, v').
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Conversely, suppose that (E, V) is an object of MIC(X/S), with E coherent as
an Ox-module. Its p-curvature defines an object (E, ¥) of F-HIG(X/S), and hence

a coherent sheaf E on T3 = VFj ¢Tx/s (see diagram (2.1.1)). The claim is that

there exists a coherent sheaf E/ on Ty /s such that JT;(E’) >~ E. Since Fx/s«E is coher-
ent as an Oyx-module, the scheme-theoretic support Z' of 7y, is finite over X', and
there exists a section ;' of a, over Z'. If we view E as a module over S; Tx/s via J*,
then the action of SgTX/ ss agrees with the action of S"T'x//s, and so the action of Dx/s
on E extends to an action of D;. Let E' := #my, (%;, E), corresponding to an object
(E/, ¢') € HIG(X'/S). Then (E, V) = \Ilzl(E’, V'), so (B, ) = Fy s(a.(E, ¥)) in
F-HIG(X/S), by Theorem 2.13. O

4.2 Stacks of bftings and splittings

In this subsection we discuss relationships between and geometric interpretations
of some of the liftings and splittings used in our constructions. In particular, we show
that there 1s a natural equivalence between the gerbe of liftings of X" and the gerbe of
tensor splittings of Zx /s over the completed divided power envelope 'i';?f/s of the zero
section of Ty, .

First we shall study the gerbe of splittings of the Azumaya algebra Zx,s on
T - Recall from [23] and [9] that the equivalence class of this gerbe can be viewed
as the image of Zx/s in the cohomological Brauer group H?(T%, /s ﬁi;« S). Our first
goal 1s to provide a simple description of this cohomology class. !

Recall from [23, 4.14] that for any smooth Y/S there is an exact sequence of
étale sheaves on Y":

F:’/S dlog 7T;F’/S_CY/S

(4.1.1) 0= O% =5 Fys.0% = FysZy Qg5 — 0.

Here FY/S*Z@S C FY/S*QSI(/S is the subsheaf of closed one-forms, Cy/s is the Cartier
operator, and my,s : Y — Y is the morphism induced by the Frobenius on S. As we
observed in Section 4.1, the morphism 775 s — Cy/s : Fy/siZy ;s = Q4 can be viewed
as the map sending the line bundle Oy with integrable connection V = d 4+ o to its
p-curvature. The exact sequence (4.1.1) induces a morphism:

¢ H(Y, QL s) = H'(Y, Fys.(63)/0%) — HAY', 0%) = Br(Y).

As we shall recall below, the cotangent bundle of X'/S has a canonical global one-
form (the “contact form”). We shall see in Proposition 4.4 below that the Brauer class
of Px,s can be identified with the image of this one-form under the map ¢. We begin
with the following convenient geometric description of the map ¢.

Proposition 4.2. — Let o' € H(Y, 3, ss) be a one-form. For each élale U —-Y,
let U := F§/IS(U’ ) = Y and let %D (U") be the groupowd of invertible sheaves with integrable
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connection on U whose p-curvature is equal to o'. Then, %D Jorms a fibered category which is in
Jact a gerbe under O35, on Y'. The class of %F i HA(Y', %) is equal o ¢p(o).

Proof. — It 1s clear that %F forms a stack and that the automorphism group
of each object is O3, The local surjectivity of 7y,s — Cy/s implies that the class of

objects of %,ﬂ is locally not empty. If L; and Ly are two objects of %n over some U,
then the p-curvature of 7om(L;, Ly) is zero, and hence locally has a horizontal basis.
This implies that any two objects of &/ are locally isomorphic, so that 2, is indeed
a gerbe.

The boundary map associated to the exact sequence

. . diog | n;‘,/S—CY/s 1
0 = Fys.(O9) /Oy — Fysily )y ——> Qg > 0

takes @' to the (Fys.0%)/ 0% ~torsor 7, of closed one-forms 1 such that 7y n —
Cy/s(n) = @'. The boundary map associated to the exact sequence

0— ﬁ;/ — FY/S*(ﬁ;) — FY/S*(ﬁ;)/ﬁ*’ — 0

takes 7, to the gerbe G, of Fys,(0%)-torsors £ equipped with an isomorphism
o L — T, where Z is the (Fy/s.0%)/ 0% -torsor associated to Z. Hence
¢(@) = Gy, and it will suffice to prove that G, is equivalent to %F Let .Z be
an object of G, over U', let L. be the associated invertible sheaf over U, and let ¢
be a local section of £, e, a basis for L. on some open subset V of U. There is
a unique connection V on L such that V(e) = ¢ ® a(e). It follows from the fact that
a is a morphism of torsors that V is independent of the choice of ¢, and it is clear
that the p-curvature of V is @'. This construction defines a functor from the gerbe G,
to %F, which is easily seen to be an equivalence. O

Remark 4.3. — In the context of the above proposition, the form @ gives a mor-
phism ¢ : Y — 1, and %F is the gerbe of splittings of the Azumaya algebra * %y s
onY'.

Let us write T* for Ty 5, and recall that there is an exact sequence
*Ol 1 1
(4.3.1) 0 — pri€ig,s — QTE‘;/S/S — QT*;;/s/X — 0.
Furthermore, T* = Specy S"Tx/s, so that there is a canonical global section of
prprQy s = Qs ® S Txys, corresponding to the identity element of QY ¢ ® Txs =

End Tx/s. The image of this section in Q1. ss 1s the well-known “contact form” on the
cotangent bundle.



NONABELIAN HODGE THEORY IN CHARACTERISTIC p 87

Proposition 4.4 ([5]). — Let o' € T'(Tx s, Qe ) be the contact form and let %D be
X'/s

the corresponding G,,~gerbe on T, g described in Proposition 4.2. Then the gerbe %F ws equivalent
to the gerbe . of splittings of the Azumaya algebra Dx;s on Ty, 5. In particular, the class of Dx s

in Br(Ty, 5) is o(w').
Proof. — We have a diagram:

Frs x T
* /% T k *
s — TS s — T s — T s

N

X —=—=X,

in which both squares are Cartesian and Fr+/s = mt o Fr«/x. We identify the pullback
of Ty s by Fs with Ty, s and use abbreviations:

- /. Ik /
T =T, T =T, T =T

Let U — T* be étale, let U — T* (resp. U”) be its pullback via Fy+ /g, (resp. via 7).
Let (L, V) be an object of %F (U), ze., an invertible sheaf with integrable connection
on U/S whose p-curvature is «'. The connection V defines an action of Dy+/s and
hence of the subalgebra Dy«/x on L. Since the projection of ' to Q. 18 equal
to 0, the p-curvature of the corresponding object of MIC(T*/X) vanishes. Let

L= A (L® Q. ) == Ker (L 5 L® Q. s = L®pr QL. ).

Then L' has a natural structure of a sheaf of Op--modules on U”, and it follows from
Cartier descent that the natural map Fr. L' — L is an isomorphism. Furthermore,
V induces a map V': I — L' ® pr*Qy , which defines a pr~'Dx/s-module structure
on L. (This 1s essentially the Gauss—Manin connection for the morphism T* — X.)
The p-curvature of this module is still given by the contact form @', which means that
the action of sections of O+ via the p-curvature is the same as the action via the
map T* — T* and the given Op»-structure. This means that we can safely view the
pr‘lDX/s-rnodule structure and the Op+-module structure as defining a %x s-module
structure on L. Since I is an invertible sheaf on T, it has rank p? over T¥, and
thus defines a splitting module for the Azumaya algebra %x /5. Thus we have defined
a functor &, — 7. It is clear that this functor is fully faithful, since the automor-
phisms of objects in either category are just give by units in Op+~. On the other hand,
suppose that M is a splitting module for Zx/s. Then viewing Ox — Px/s via the ac-
tion on the left, we can view M as a module over T™, and by Proposition 2.3 it then
becomes an invertible sheaf of Op~-modules. Since the Orp--module structure of M
comes from its p-curvature, the p-curvature of M is just the contact form @'. A local
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calculation shows that there is a unique extension of the action of %x,s on M to an
action of Dr+/s on Fr. <M with the property that M is the annihilator of Dr+/x. This
shows that the functor %ﬂ — .7 is an equivalence. The statement about the Brauer
group then follows, as explained in [23]. |

In this following discussion we will assume that the reader is acquainted with
the notion of tensor structure on an Azumaya algebra introduced in Section 5.5. In
particular, we explain there that the algebra %5 has a canonical symmetric tensor
structure. Let us consider the following stacks on XJ,.

1. The stack £ of liftings of X'.

2. The stack J7Z of tensor splittings of Px;s over the completed divided
power envelope 'i';]f/s of the zero section of T%, /5.13

3. The stack .72, of pairs (M, o), where M, is a splitting of Pxs over the
first infinitesimal neighborhood T of the zero section of Ty, g and & : "M, =~
Fx/s+Ox is an isomorphism between the restriction of M; to the zero section
and the canonical splitting over X'.

4. The stack &Z of extensions of F% /5951(, /s by Ox in MIC(X/S) such that the
graded p-curvature mapping ¥: I sQ4, s = Ox ® F§ sQy s is the identity.

In the discussion preparing for Theorem 2.8 we constructed a functor % asso-
ciating a tensor splitting %4~ to a lifting X’ of X'. Furthermore, recall that X' de-
termines an extension (1.4.1) as in (4), so that we also have a functor &: & — &Z.
Recall that for any tensor splitting M there is a canonical isomorphism « : *M 2>~
Fx/s+Ox, and hence there is a restriction functor ¢f : 7Y — . The dual of an
extension in &% is an object of .2, so there is also a functor from &Z — SZ).
This functor is easily seen to be an equivalence. The following theorem, shows that in
fact all the above functors are equivalences.

Theorem 4.3. — The stacks above are in fact gerbes, and the functors
B L — TSP, TSP — SP, and E: L — EX

are equivalences.

Progf. — It is clear that .2 and .27, are gerbes. The fact that i} is an equiv-
alence is proven in Proposition 5.30, and it follows that 7% is also a gerbe. Thus,
it suffices to prove that the composition ¢f 0 £ : £ — S is an equivalence. Let
us show that, for any lifting X/, the group of automorphisms of X’ reducing to the
identity on X’ maps isomorphically to the group of automorphisms of (i{ %4/, a).
Indeed, the first group can be identified with the group of vector fields on X', and

"% Note that the étale topologies of X, X', and 'i';y,/s are the same.
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the second one with the group of invertible functions on X/ equal to 1 on X', and
the map is the obvious isomorphism between this two groups. The following easy and
well known result completes the proof.

Lemma 4.6. — Let ¥ : M — N be a morphism of gerbes on Y. Assume that for every
étale morphism U — Y and every object C € # (U) the induced map

F, : Aut(C) — Aut(F(C))

i an somorphism. Then ¥ is an equivalence of gerbes. -

Let 6 € Tx/s(U) be a vector field on U C X'. We may view 6 as a linear
function on the cotangent space Ty 5. Then the exponential exp(6) = Z(j—: makes
sense as an invertible function on the completed PD envelope TEV/S C T;’f/s. Thus we
get 2 homomorphism of sheaves:

€X[) . TX’/S —> ﬁ;;;;/q = (l—VTX’/S)ﬂ<

This, in turn, gives a map:

exp HZz(X/§ Txs) = HZf(X/; ﬁ;;y’/s)'

In the following corollary we use f'F;"( /STX/ ss-module structure on Xy, » as in-
troduced in Subsection 2.

Corollary 4.7

1. Let 0 € H (X', Tx/s) be an automorphism of a lifting X/ reducing to the identily
on X'. Then the induced morphism

Os: By)y — Ba)s

i the multiplication by F;‘(/S(exj) 0) e (f‘F;‘(/STX//S)*.

2. Let (X)), (X))o be lftings, and let LAq be the Tx: s-torsor of isomorphisms
between X, and 5(/2 reducing o the identity on X'. Denote by exp Liq the correspond-
ing Uy -lorsor and by Hiq the corresponding invertible sheaf on T;?f/s. Then the iso-

X//s

morphism of ¥y, s U ys-torsors Ly )7,
wsomorphism of splitting modules

k ~ N
T s F /Sﬂd ~ Ly, nduces a lensor

B9 Bt 1y s FxysHld = By,

X/sTX’/S
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3. The class of the Azumaya algebra Px s restricted to T;?f/s in the cohomological Brauer
group Br(T /g) = zz(X’; ﬁ,’l“,*y ) s equal to exp S, where § € sz(X’; Txys) is the
X//S

obstruction to lifting of X' over S.

Progf. — Since 6, and exp 6 are tensor automorphisms of 4,5, by Theorem 4.5
it is enough to check that 6, and exp 6 are equal when restricted to { %4, 5. In turn,
this follows from the fact that the automorphism of %%, » induced by the automorph-
ism of the lifting Z/.7 coincides with the translation by Fi 50 € H(X, F% s Txrys).
This proves (1). The proof of the second claim is similar, and the last claim follows
from Proposition 5.32. o

Remark 4.8. — 'The construction of the tensor splittings in the proof of Prop-
osition 5.32 can be viewed in the present setting as follows. Let exp £, » be the push-
forward of the F% /STX/ ss-torsor Ly, via the homomorphism

exp . F;/STX’/S — (f‘F;/sTX’/S)*-

The (FFX ss Ixvys)*-torsor exp Ly, acquires the induced connection, as does the as-

sociated invertible ['F* Tx/s-module exp Ly o ® (frz FFX/STx//g We then have

Xys Txrys)*
a horizontal isomorphism

PBs ~ exp.iﬂy/y Q(frz

XysTxrys)*

[FY s Txjs.

Let us end by explaining the relationships between the various liftings, split-
tings, and extensions we have been considering. Consider the exact sequence of Ox-
modules:

0— FX/S*B;(/S d FX/S*Z;(/S g FX/Q*%R(X/S) — 0.

A splitting of this sequence amounts to lifting ¢ of C;(}s as in (1.9.2). Let My/s denote
the sheaf on X which to every open set U assigns the set of liftings of C;(}S over U.
If U is an open subset of X, let Lx,s(U) denote the category whose objects are mor-
phisms F:U->U lifting the relative Frobenius morphism Fy,s: U — U’ and whose
morphisms ', — T, are commutative diagrams

|

where f and f” reduce to the identity modulo p. In particular, / and /" are necessarily
isomorphisms, and Ly/s defines a stack over S. As a variant, consider the stack Jx/s
which over each U is the category whose objects are pairs (U’, s), where U’ is a lift of

F ~

_>U/
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U’ and s is a section of the torsor .£%,» defined by U’ as in Theorem 1.1 and whose
morphisms are those reducing to the identity and compatible with s5. If we are given
a fixed lifting X'/S of X'/S, then we can also consider the fibered category Ly
which to every open set U in X assigns the category of pairs (U, T), where U is a lift
of Uand F: U — X' is a lift of Juss. Morphisms in this category are diagrams as
above, in which /" is the identity. If U is a fixed lifting of U, recall that gg{/(y(U)
is the set of all liftings of fi;/s, so there is a natural map from £+ to the sheaf of
objects of L. Finally, if Fs: S — S is a lift of the Frobenius endomorphism of S
we can define a more rigid version of Ly/s. If U is an open subset of X, let Kx/s(U)
denote the subcategory of Ly/s(U) whose objects are liftings F:U— U of Fy/s with
U =S x; i U and whose morphisms are diagrams as above with /' = f X g 1ds.

Proposition 4.9. — Let Ly s denole the sheaf associated o the presheaf of isomorphism
classes of objects of Lix;s, and use the analogous notation for Ly 5.

1. The stack Jx/s is rigid, and the natural map Lyx/s — Jx/s induces an isomorphism
Lx/s = Jx/s- _ _

2.The map (1.9.3) ¥ +> &g induces an isomorphism Ly;s — Mys and hence also
Jx/s = Mxs. _

3. The~natuml map Ly 17 x — La)o is an isomorphism. N

4. If ¥g Ufis ¥, then Kx s s ngid, and if' S is the spectrum of a perfect field, then ¥ +
induces an 1somorphism Ky s — Mx/s.

Proof. — The following lemma follows from standard deformation theory and
Remark 1.2; we omit its proof.

Lemma 4.10. — Let X and X' be liflings of X and X' respectively. Then
1. The sheaf of liftings F: X — X' of Fx /s is a lorsor under ¥y ;' ys, under the standard

action.
2.1f ¥, and Fy: X — X' lifi Fxys and differ by a section I of )5 Txyss then Fy is
isomorphic to Ty in Lyx/s of and only if ' comes from a section of Txvys.
3.0 f s an awdomorphism of X lifling the identit v, then Fof = F f S s an auto-
morphism of X' lifting the identity such that ' o F =T, then [ =
4. The sheaf of automorphisms of an object ¥ of Ly s is canonically isomorphic to Txys.
O

Suppose that (U/ s) 1s a section of Jx,s over U. Then, locally on U, there exist
alit UofUandalit F: U —» U 1nduc1ng s. Then an automorphism / of (U s§) cor-
responds to an automorphism of U’ reducing to the identity and such that
foF =T. By Lemma 4.10, f is the identity, .., J is rigid. It follows that the nat-
ural functor Lx;s — Jx/s factors through fx/s, and the above argument makes it
clear that this morphism is surjective. The injectivity follows from the definitions.
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It follows from the lemma that fx/s 1S a torsor under
C:.= COk(Tx//s — FX/S*F;(/STX’/S) = Hom (Q;(’/S’ FX/S*B;(/S)’
since

(Fx/s:0x)/ Ox = Fxs.By s € FY sQ% s

where as before By/s is the sheaf of locally exact one-forms. The sheaf Mx/s is also
naturally a torsor under %m(Q;(, /s FX/S*B;( /S), and the map F — ¢ factors through

ix/si
ix/s d Mx/s . F = {f:.

This map 1s a morphism of torsors, hence a bijection. Now suppose that Ty exists
and suppose that I is an object of Kx/s(U). Then an automorphism of I is an auto-

morphism / of U lifting idy such that /'F = Ff. where /' := f Xf, id. But then it
follows from the lemma that / = id, so Ky/s is rigid and its presheaf of isomorph-
ism classes is a sheaf. Let F, and Fy be two objects of Ky /s(U). After shrinking U,
U, and U, become isomorphic; let us assume they are equal. Then F1 is 1sornorph1c
to Iy if and only if there exists a lifting / of the identity such that F, = /'F /.
But /'F /' = /'F, and if f corresponds to an element D of Tx/k,f’Fl differs from F,
by the action of 7*D. This shows that Kx/s is a torsor under the cokernel of the map

Tk
JTITx/S — TX’/S —> FX/S*F;((/STX’/S'

When S is the spectrum of a perfect field, 7* is an isomorphism, and it follows that
Ky /s is also a torsor under C.

Statement (3) can be checked at the stalks. Let x be a point of U € X and
let U, be a liftings of U. Then the stalk of Ly, yv = Ly, s, at x is the set of
germs at x of lifts of fi/s to U,, and the stalk of L 277 at x is the set of germs of iso-
morphism classes of of lifts (Uy, F) of Juss. Let F: Uy — X' be a lift of Juss in some
neighborhood of x. Then there is an isomorphism U, = U, near «, and this shows
that the map is surjective. For the injectivity, observe that if I and I are elements
of Ly »(U)) which become equal in L, 1.7,Us then there is an automorphlsm of U1
which is the identity mod p and which takes T to I. But then by Remark 1.2, F = T".
This shows the injectivity. ]

4.3 Line bundles with connection

We use the following notation. If X is a scheme over a field £, E is a coherent
sheaf of Ox-modules on £, and S is a k-scheme,

H (X, E)(S) := H(S, O5) ®, H(X, E).
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If H(X, E) is finite dimensional, the functor H'(X, E) is represented by the (vector)
k-scheme SpecS'H'(X, E)V.

Let X/k be a smooth proper geometrically connected scheme over a perfect
field of characteristic p > 0, with a k-rational point x,. Let Pick(S) denote the set
of 1somorphism classes of triples (L, V, ), where L i1s an invertible sheaf on X x S,
V is an integrable connection on L relative to S, and « is an isomorphism
L = Ox over x; x S. Forgetting V defines a morphism & from Picy to the Picard
scheme Picx of X. If LL is an invertible sheaf on X x S, the set of integrable con-
nections on L is either empty or a torsor under the group H(X, Z} ¢ ss) of closed
one-forms on X x S/S. Note that formation of the latter commutes with base change
and that H'(X, Zy ) = H'(X', F.Zy ). Thus H'(X, Zy s s) = H'(X, F.Z5 ) (S).
The Chern class map dlog: 0% — Zi n defines a morphism ¢: Picx — H'(X, Zy /k),
and there 1s thus an exact sequence:

0 — H(X, Zk ;) — Pick = Picx - H'(X, Z} ).

The proof of the following is then immediate (and well-known).

Proposition 4.11. — The above sequence s exact as a sequence of sheaves in the flat top-
ology. Furthermore, the functor Pick is representable, and its tangent space at the origin is canonical
isomorphic to H}p (X/k). O

If (L, V) is an object of PiCi(S), its p-curvature can be viewed as an elem-
ent of H'(X" x S, Q,,/5). This defines a morphism of group schemes Picy, —
H' (X, Qg w1 L' is an invertible sheaf on X’ x S trivialized along x; x S, then
(Fx/s x 1dg)*Li is an invertible sheaf on X x S, and we can equip it with its canonical
Frobenius descent connection to obtain an element of Picg((S). This defines a mor-
phism of group schemes ¢: Picx: — Pick. An element in the kernel of 4 is given by
an integrable connection on Ox,s, relative to S ie., a closed one-form @ € Qy /s
and the p-curvature of the corresponding connection is 7y, g /5(@) — Cxxs/s(@), where
Cxxsys 1s the Cartier operator [19, 7.22]. Thus there is a commutative diagram:

PiCx/
l ® F;(/S
(4.11.1) H'(X, Z} ;) —— Pic}, —— Picx
\ l“’
7% —Cx
H'(X, Q%)

where 75, 1s the composition:
(4.11.2) H'(X, Z;i/k) - H'(X, Qé{//ﬁ)
- H'(X,Qy,) =H'(X, Q) xi: k=H"(X, Q)"
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Here the map H(X, Q;(/k) — H(X, Q;(/k)’ is the relative Frobenius map of the
k-scheme H’(X, Qy ,)- The map Cx/; in the diagram is the map of group schemes
induced by the linear map of vector spaces

CX/k: HO(X, Z;(/k) g HO(X/, Q;(’/k)'

Recall that there are two spectral sequences converging to de Rham cohomo-
logy: the Hodge spectral sequence, with EY = H/ (X, QL /k), and the conjugate spec-
tral sequence, with By = H'(X, ;) = H'(X, @4, ).

Lemma 4.12. — In the diagram of tangent spaces corresponding to Diagram (4.11.1),

H'(X, 0%)

F*
“ l X

H(X, Z ) —“— H)x (X/k) —"—= H'(X, 0%)

dy
M\ l

HI(X. 2,

db (resp. —d\r) is the edge homomorphism coming from the Hodge (resp. comjugate) spectral sequence,
and dyr o da = —Cx ;.

Progf. — Since 7y, in Diagram (4.11.1) factors through the relative Frobenius
map in Formula (4.11.2) above, its differential is zero. Since Cx/; is -linear, it follows
that dyy o da = —Cx;. To compute dyr, let S := Speckle], let n € Hiz (X/k) and let
(L, V) be the corresponding line bundle with connection over X x S. Then dy/(n) is
a section of H(X/, Q3 s and is determined by its restriction to any nonempty open
subset of X'. We can choose an open subset on which L is trivial, and hence reduce
to the previous calculation. This proves the claim. ]

As we have seen, Fx/.Dx/ defines an Azumaya algebra Yy, over T¥%, 5 we
shall study the splitting of the pullback of this Azumaya algebra along the canoni-
cal map ¢: X' x H(X/, Q1 ) = T The universal (L, V) defines a module over
the pullback of %, to X' x Picl, and since it is locally free of rank pmX it is
a splitting module. More generally, suppose we are given a morphism of -schemes
J17 — H X[k Q) and a splitting module L over the pullback of Zx to X' x Z
via the map idy x f. Then L is a coherent sheaf on X' x Z equipped with an ac-
tion of the differential operators Fx,z,7+(Dxxz/z), and in particular can be regarded
as a coherent sheaf with integrable connection on X x Z/Z whose p-curvature is equal
to the section of Q4. , /7 defined by f. By Proposition 2.3, L is an invertible sheaf on

X x Z. By a ngidified splitting of Zx, along f we shall mean a pair (L, o), where L is
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a splitting module for (idx X f)*¢*Zx/; and « is a trivialization of the restriction of L
to x9 X Z. Thus the universal (L, V, o) is a rigidified splitting of Zx ;. along .

Proposition 4.13. — Let f: 7 — H'(X/, Q>1</k) be a morphism and let (L, V, o) be
the universal rigidified line bundle with connection on X x Pick.
1. The map [ +— f*(L, V,«) is a byection between the set of isomorphism classes of rigid-
tfied splittings of Dx ;. and the set of maps f:7— P1CX such that yf = f.

2.1 f as above is a morphism of commutative group schemes, then under the the byection
above, the tensor sphitings of (d x f)*¢*F.Dx; correspond to the group morphisms f

with Yf = f.

Proof. — We have seen that a rigidified splitting of (id x f)*¢*F, DX/k gives an
invertible sheaf (M, V, a) with connection on X x Z whose p-curvature is given by
J and a tr1v1ahzat10n of M on xy x Z. Hence there is a unique map /: Z — P1CX
such that f (L, V,a) = (M, V, &), and necessarily ¥/ = f. This completes the proof
of (1), and (2) follows immediately. O

4.4 Abelian varieties

Theorem 4.14. — Let A be an abelian variety over a perfect field k of characteristic p.

1. The Azumaya algebra ¥,Dyj.  splits  (non-canonically) over the formal —comple-
tion 'i':‘;,/k.m

2. There exists a tensor splitting of ¥, Dy, over 'i'::, s Y and only of A is ordinary. For an
ordinary A, the lensor splitting is unique.

Proof. — It 1s known [22] that Hodge and conjugate spectral sequences for A
degenerate and that PicluA 1s smooth. Thus Lemma 4.12 implies that the differential of
U PicluA — H'(A/, @), s 1s surjective, and it follows that ¥ is smooth. This implies
that ¥ has a lifting over the formal completion of H°(A/, Q}Vk) at the origin, and
therefore by Proposition 4.13 that 9, splits over A’ x HY (A, QJ, PE T .

It follows from Proposition 4.13 that giving a fensor splitting of I, D, over A s
equivalent to giving a group homomorphism

U VHO(A’ QA,) — Pic},
such that Yoy = id. The map bo 1//~necessarily factors through Pic%, and since the lat-
ter is p-divisible, boyy = 0. Hence ¢ factors through « in diagram (4.11.1) and can be
viewed as a morphism VHO(A Q) — H(A, VA /k) Since H(A, Z! /k) =H%A, Q! /k),
the groups VHO(A, Z A/k) and VHO(A’, Q),) are smooth of the same dimension. Thus

" This result is due to Roman Bezrukavnikov.
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the existence of ¥ is equivalent to the differential of ¥ oa at 0 being an isomorphism.
It follows from Lemma 4.12 that this restriction is the negative of the Cartier operator

Can: H(A, Q) ) — H(A, Q) ).
One of the equivalent definitions of an ordinary abelian variety is that C,/; is an iso-
morphism. This proves that lifting /4 exists if and only if A is ordinary. Moreover, for an
ordinary A the morphism v : VHO(A, Q}\) — VH’ (A, Q}A,) is an isomorphism. Thus,
in this case, the lifting is unique. We could also remark that an ordinary abelian var-
iety over a perfect field of characteristic p has a canonical lifting, together with a lifting
of F, and this gives a tensor splitting of 'i'j; s by Theorem 2.11. O

4.5 A counterexample: Px . need not split on 'i‘X/ /s

In this section, we will construct an example of a smooth proper surface X/
over a perfect field £ which lifts to W(k) but such that %x/; does not split over the
formal completion of T, ; along the zero section, or even over the formal completion
of X' x H (X', 1, /) along the zero section.

Lemma 4.15. — Let X/k be a smooth and proper scheme with a rational point xy. Assume
that the following properties hold:

1.dimH"(X, Q4 ) = dimH' (X, 0%),

2. Fx acts as zero on H' (X, O%),

3. The Hodge spectral sequence of X /k degenerates at E;,

4. ¢F Dy splits over the formal completion of X' x H*(X', Qs 1) along the zero section.

Then Picx s reduced.

Proof. — It follows from assumption (3) that the Hodge and conjugate spectral
sequences of X/k degenerate at E; and E, respectively [19, 2.32], and so the row
and column of the commutative diagram of Lemma 4.12 are short exact. The map
h = ¥y, in the diagram below vanishes by assumption (2). This implies that the
map d¢ factors as shown below through da. By (1) and (3) the induced map 4" is an
isomorphism, and it follows that Cx/; is zero, and hence that dy/ factors through an
arrow /" as shown.

H' (X', Ox)

e %l |

(X Z%{//f —>H}1R(X/k) —>H X, Ox)

dy
m l P "

H'(X', Q)
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Now suppose that Fx/.Dx/ splits over X' x H° X, Qy /k). Choosing a rigidifi-
cation of the splitting module, we get a lifting ¥ of ¥ over H’ X, Qy 1)s 80 dro dr
=1id. Then %" o db o di{y = id, so

dbodyr: H'(X, QY,,) - H' (X, Ox)
is injective. By (1), the source and target have the same dimension, so the differential

of the morphism bol/f 1s an isomorphism. Since VH? X, Qy /k) 1s smooth, this implies
that Picx is smooth. m|

Let £ be a perfect field of odd characteristic and let W be its Witt ring. We con-
struct an example of a smooth projective surface X/W whose special fiber X over
k satisfies (1)—(3), but whose Picard scheme is not reduced, using the technique of
Serre and its generalization by Raynaud [31, 4.2.3]. Let E be an elliptic curve over W
with supersingular reduction and denote by G the kernel of multiplication by p in E.
By [op. ¢it], there exists a projective complete intersection Y, flat of relative dimen-
sion two over W, with a free action of G and whose quotient X := Y/G is smooth
over W. By the weak Lefschetz theorem, Pic% = 0, and it follows that Picg~< is the
Cartier dual of G, which can be identified with G itself. Since Pic commutes with
base change, the Picard scheme of the special fiber X is the special fiber Gy of G. In
particular Gy is not smooth. Replacing £ by a finite extension, we may assume that
X has a rational point. Thus to produce our counterexample, it will suffice to prove
that X satisfies (1)~(3) of Lemma 4.15. The degeneration of the Hodge spectral se-
quence of X/k follows from its liftability. The endomorphism of H'(X, &) induced
by Fx corresponds via its identification with the tangent space of Gy to the Cartier
dual of the endomorphism induced by the Frobenius of G; which in our case van-
ishes. Since Picx = Gy, H'(X, Ox) is one-dimensional, and so to prove (1), it will suf-
fice to prove that H) (X/k) is two-dimensional. We use Faltings’ comparison theorem
[12 5.3] which relates the de Rham cohomology H) (X/£) to the étale cohomology

(XK, F,). In particular, this theorem 1mphes that these have the same dimension.
Slnce Xg = Yg/Gg, Gg = F,®F,, and Yx is simply connected, He;(XK’ F,) = F,0F,.
Thus H}x (X/k) is two dimensional, and (2) follows.

4.6 Fontaine modules

Throughout this section we assume that S is a smooth scheme over a field of
characteristic p.

Definition 4.16. — Let X/S be a smooth scheme and let X | be a lifting. Fix integers
k <l with | —k < p. Then a Fontaine module on 2/ consists of a coherent sheaf with
wntegrable connection (M, V) of MIC(X/S) and a Hodge filtration

0O=F*'MCFMC..-CFM=M
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satispying Griffiths transversality, together with an isomorphism

(4.16.1) ¢ : Cy 7l s (Grp M, k) = (M, V),

where the Higgs field k s given by the Kodaira—Spencer operator
Gr V:Gry M — Gri' M ® Qy .

We will denote the category of Fontaine modules by Z.% ;) (2 /.7). Although we
shall not do so here, one can check that if' S is the spectrum of a perfect field £, and
the lifting X - S = Spec Wy(k) comes from a smooth formal scheme Xy over
W(k), the category A.F ;. (X /%) is equivalent to the full subcategory of p-torsion
objects in Faltings’ category ..F) (Xwe) [11].

The formula N"(Gry M, k) = P Gr;M C GryM defines a _#xfiltration on
(Grp M, k). Applying the isomorphism ¢ we obtain an #x-filtration on M:

i<—m

N"M = C3!, 7% s(€P Gy M) ¢ M

i<—m

together with an isomorphism of Higgs modules:

(4.16.2) Cys (Gry M, Gr ) = 75 (Gre M, Gr V).

Theorem 4.17. — Let (M, V,F'M, ¢) and (M', V', ¥, ¢') be Foniaine modules
over X. Then

1. For every integer i, the Ox-module Grly M is locally fiee. In particular, M is a locally
Jree Ox-module [11, Theorem 2.1].

2. Every morphism [+ M — M’ of Fontaine modules ts strictly compatible with the Hodge
Siltraton Y. In particular, the category MF . (XS is abelian [op. cit].

3. Let h: X — Y be a smooth proper morphism of relative dimension d, let i = X' — Y’
be a lifting of I, and let (M, V,¥", ) € MFyn(Z ]S be a Fontaine module.
Assume that | — k + d < p. Then, the Hodge spectral sequence for RAPR(M, F"M)
degenerates at Y. Thus, by Theorem 3.22 b), for every integer i, we have a canonical
wsomorphism

(4.17.1) ¢ : C s s (Gry REM, k) = (R'A)M, V),

which makes (R'APRM, V, F'RIAPRM, ¢) a Fontaine module over Y. In particular, if
d < p, the Dy s-module RithﬁX s a Fontaine module [11].
4. The Chern classes ¢;(M) € Hé;(X, Q,), L #p, 1> 0 are all equal to 0.

Proof. — The key to parts a) and b) is the following general result, whose proof
can be found in [28, 8.2.3].
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Lemma 4.18. — Let 7. be a smooth scheme over a field of characteristic p and let
0=F"M CFM C---CFM =M

be a bounded fillered complex of coherent Oz-modules. Assume that there exists a (not necessarily
filtered) quasi-isomorphism

F:Gry M~ M.

Then the differential M' — M't! g5 strictly compatible with the filtration and, for every pair of
integers i and j, the Oz-module H (Gry M) >~ Grl, H/(M") is locally fice.

Let us return to the proof of the theorem. Since the claims in parts (1) and (2)
are local on X we may assume that there exists a lifting F of the Frobenius Fx/s. By
Theorem 2.11, such a lifting induces a natural isomorphism of Ox-modules

(4.18.1) N €5 (B) = FY 4K,

for every E € HIG,_,(X'/S). Composing this with (4.16.1) we obtain an isomorphism
of Ox-modules

F% Grp M ~ M.

Then the statements (1) and (2) follow from the lemma.
By Theorem 3.22 the lifting /' induces an quasi-isomorphism

(4.18.2) Cyy s s R (Grp M, k) = RAJM.

Applying (4.18.1) we obtain locally on Y an isomorphism in the derived category of
Oy-modules

FiRAMC(Gry M, ) = RAPRM.

We can compute RAME(Grp M, k) as follows. Endow the relative de Rham complex
Q% /y ® M with the filtration

FZ(QX/Y ® M) = (FZM —> Q;{/Y ® Fi—lM — el > Qg{/Y ® Fi—dM),

and let (RthM, F) be the filtered derived direct image of (£2y y @M, F'). We then
have an isomorphism in the derived category of Oy-modules

Grp RAPEM >~ RIS (Gry M, ).
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Thus by Lemma 4.18, applied to the filtered complex of coherent Oy-modules
(RAPRM, F), the Hodge spectral sequence for RAPR(M, F7), (RAPRM, F7), degener-
ates at E;. Hence we get a canonical isomorphism of Oy-modules

(4.18.3) Gry RAPRM >~ RS (Gry M, k).

It is well known' that this isomorphism is compatible with the Higgs fields. Thus pass-
ing to the cohomology sheaves in (4.18.2) we obtain the desired isomorphism (4.17.1).
This completes the proof of statement (3).

For statement (4), we will first prove that for any Ox-coherent N € HIG,_; (X/S),

[C;}/Sn;g /SN] = F%[N],

where [] denotes the class of a coherent Ox-module in K{(X) = K((X). Indeed,
choose any filtration N = N D N' D ... D N" = 0 by Higgs submodules such that
Ni/N“*! € HIG((X/S). Then

(C}}/s”;(/sNi)/(CE;/s”)*(/sNiH) = C}/l/s”;(/s(Ni/NM)
~ FL(N'/N*) o~ FYN'/FEN™

This implies the claim.
In particular, for a Fontaine module (M, V, F'M, ¢) it follows that [M] = F{[M].
Thus

¢(IM]) = ¢(Fx[M]) = p'e;(IM]),
and we are done. a

. Proposition 4.19. — Let X be a smooth projective curve of genus g over a field speck =S,
X' — S a bfting, and let (M, V, ¥, @) belong to the category MF . Assume that

n(kM — 1)max{2g — 2,1} <p— 1.
Then (Grp M, k) s a semistable Higgs bundle.
Proof. — We have to show that (Gr; M, k) has no Higgs subbundles
(L, 0) = (Gry M, «)

of positive degree. Replacing (L, ) by A*N(L,0) and M by A*LM (this is again
a Fontaine module) we reduce proposition to the following claim:

15 This fact should be compared with Katz’s formula (3.18.3). A conceptual proof of this result can be
obtained using an appropriate filtered derived category of D-modules. See, for example [35].
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For any Fontaine module (M, V,0 = F"''"M C F'M C --- C F'M = M, ¢),
with 7 (2¢ —2) < p — 1 the Higgs bundle (Gr; M, k) does not have one-dimensional
Higgs subbundles

(4.19.1) (L, 0) = (Gr; M, «)

of positive degree.

Assume that this is not the case and consider such an L of the largest possible
degree d > 0. Then any morphism (L', 0) — (Gr; M, k), where L' is a line bundle of
degree > d, is equal to zero. Consider the morphism

* — * — * . ¢
FLL >~ C%l/SJTX/S(L, 0) — C%l/SJTX/S(GrF M, k) =M
induced by (4.19.1). We will prove by induction on m that the composition
(4.19.2) F;L—->M— M/F'M

is 0. Let us, first, check this for m = 1. Observe that the Higgs field « restricted to
M/F'M < Gr; M is 0. Thus

(FiL, 0) = (M/F'M, 0) — (Gr; M, &)

is a morphism of Higgs bundles. Since deg F{L = pd > d, this morphism must be equal
to zero.

Assume that the composition FxI. — M — M/F"'M is 0. Then (4.19.2) factors
through F5L. — F""'M/F"M. For any j, 0 <j < m, consider the composition

L o P/ s M (@)

and let j, be the smallest integer less then m, such that pj # 0. Then p; induces
a nonzero map of Higgs bundles

(FxL ® (Tx/s)", 0) > (@ F"~'"M/F""M, k) — (Gry M, x).
>0

However

deg (FxL ® (Tx/s)™) = pd — jo(2g — 2) = pd — n(2g — 2) > d.
This contradiction completes the proof. O

Remark 4.20. — Let £ © Y — X be a smooth proper morphism of relative

dimension d, and let /' : Y — X’ be a lifting. Then, for d < p, M = R'"PROY is
a Fontaine module on X. Thus, by Proposition 4.19, if n (A M — 1) max{2g — 2, 1} <

p— 1, (Gry M, k) is semistable. By the standard technique this implies the following
result over the complex numbers.
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Theorem 4.21. — Let X be a smooth projective curve over G and let h : Y — X be
a smooth proper morphism. Then (Grp R"hPR Oy, k) is a semistable Higgs bundle.

This result was proved by analytic methods (for any polarizable variation of
Hodge structure) by Beilinson and Deligne (unpublished) and later, in a greater gen-
erality, by Simpson [36] using a similar technique.

4.7  Proof of a theorem of Barannikov and Kontsevich

Let us recall the following striking result of Barannikov and Kontsevich, of which
the only published proof we know is due to Sabbah [34].

Theorem 4.22. — Let X/C be a quasi-projective smooth scheme over G. Suppose that
f € T(X, Ox) defines a proper morphism to A'/C. Then the hypercohomologies of the complexes

d+ndf d+ndf

Ox BN Qé{/c BACA Q?{/c <vo  and
TSI

ﬁX QX/C QX/C

have the same finite dimension in every degree.

We shall show how our version of nonabelian Hodge theory can be used to
give a proof of this theorem by the technique of reduction modulo p. Since any pair
(X/GC,f) as in Theorem 4.22 comes from some “thickened” situation, it is clear that
the following result implies Theorem 4.22 by base change R — C.

Theorem 4.23. — Let ¥ = SpecR be an affine, integral, and smooth scheme over Z, let
X)L be a smooth quasi-projective S-scheme, and let f be a global section of Oy which defines
a proper morphism: X — Al,. Then, afler replacing .7 by some élale neighborhood of ils generic
point, the following results are true.

1. The hypercohomology groups
HY(Z, Q) d+df) and H(Z,Q,,,.— Adf)

are finitely generated free R-modules whose formation commutes with base change.

2. Let p be a prime, let X/S denote the reduction of X[ modulo p, and let X Doy
X' 55 X be the usual factorization of Fx. Then for every p, the complexes of Ox-

modules
d+ndf d+ndf
FX/S*ﬁX E— FX/S*Q;(/S — FX/s*Qfg/s
—Nd*f 1 —NdT*f 9
Oxr ——> QX’/S QX’/S

are quasi-isomorphic.
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The rest of this section will be devoted to a proof of Theorem 4.23. Along the
way we shall prove some auxiliary results which may be of independent interest, for
example the finiteness criterion given in Proposition 4.26 and Corollary 4.27. We be-
gin with a “cleaning” lemma.

Lemma 4.24. — With the notation of Theorem 4.23, let & € 2 be the reduced zero
locus of df. Then afler replacing . by some élale neighborhood of its generic pownt, the following
conditions are satisfied.

1. The morphism Z — 7 s proper, flat, and generically smooth, and for every p the re-
duction modulo p of Z is reduced.

2. The restriction of [ to each connected component Z' of Z lies in the image of the map
(Y, Oy) — T(Z, Oy).

Progf. — Note that formation of 2 commutes with étale base change . — .7,
so that our statement is not ambiguous. Let o be the generic point of .. The state-
ments are trivial if the generic fiber of 2, of Z'/.% is empty, so let us assume that
this is not the case. By the theorem of generic flatness [13, 6.9.1], we may assume
that 2 is flat over .. Then the map from each irreducible component Z; of Z to
& is dominant and the generic fiber of % is an irreducible component of Z,. Lo-
calizing further if necessary, we may assume that if 2 and Zj intersect, then so do
their generic fibers. There is a finite extension £ of k(o) such that all the connected
components of %, are geometrically connected and have a £’-rational point. Replac-
ing . by an étale neighborhood of o, we may assume that £ = k(o). Since Z, is
reduced and k(o) is a field of characteristic zero, %, /o is generically smooth. Since
the differential of /, vanishes, its restriction to the smooth locus Z." of Z; is locally
constant. Thus for each irreducible component Z; of %, there exists an element ¢
in k(o) (the value of / at a rational point) such that f/ = ¢; on 2. Since Z is re-
duced, this holds on all of 2. If 27 and Z; intersect, so do 2, and Z},, and it follows
that ¢; = ¢;. Thus ¢; depends only on the connected component of Z; containing Z;.
Furthermore, localizing on S, we may assume that each ¢ belongs to R. Thus (2) is
proved. Now if 2 is a connected component of %, the composite 2" — 2~ — Al,
factors through the section of A,/.# defined by the appropriate element of R, Since
X — Al is proper, so is each 2’ — . and hence the same is true of 2 — ..

We have now attained all the desired properties of %, except for the reduced-
ness of its reductions modulo p, which is a consequence of the following (probably
standard) lemma.

Lemma 4.25. — Let 2 be a reduced scheme of finite type over SpecZ. Then for almost
all primes p, the reduction modulo p of Z is reduced.

Proof. — 1In the course of the proof, we may without loss of generality replace
Z by the open subset defined localization by any positive integer. In particular, by
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the theorem of generic flatness, we may assume that 2 is flat over Z. Since Zo/Q
is reduced and of finite type, it is generically smooth over Z. Let n: % — % be
the normalization mapping. Then % is also generically smooth over Z. Thus each
irreducible component % of % contains a proper closed subscheme %" such that
WO\ — & is smooth. For almost all p, the reduction modulo p of Z! has strictly
smaller dimension than that of the reduction modulo p of #°, and we may assume
this is true for all p. Then the map % — SpecZ remains generically smooth mod-
ulo p for every p. By [13, 7.7.4], n is finite, and hence the cokernel Q of n*: Oy —
N+0Oy s a coherent sheaf of Ox-modules. Again by the lemma of generic flatness,
Tor?(Q,F,) = 0 for all but finitely many p. Shrinking, we may assume that this is
true for all p. It then follows that the reduction modulo p of n* remains injective for
all p. Since % is normal, it satisfies Serre’s condition Sy, and since each p defines
a nonzero divisor on % the fiber Y of % over p satisfies S;. Since Y is generically
smooth over F,, it is generically reduced, and since it satisfies S;, it is reduced. Since
n® is injective mod p, the fiber Z of & over p is also reduced. O

O

Let & := (Oy,d +df) € MIC(Z /%) and let £ := (Oy, df ) € HIG(Z/.7);
we denote by just E and L their respective reductions modulo a prime p of Z. Let
J € Oy be the ideal of the scheme-theoretic zero locus of df. This is just the ideal
generated locally by the set of partial derivatives of / in any set of local coordinates for
2’/ The Higgs complex Z QK , of Z can be locally identified with the Koszul
complex of this sequence of partials, and it follows that the cohomology sheaves of
2 ® Qy,,, are annihilated by J [10, 17.14]. Since the closed subscheme of 2 de-
fined by the radical of J is 2, which is proper over .7, the hypercohomology groups
H(Z ® Qy /y) are finitely generated R-modules. Since R is reduced, they are free
in some neighborhood of the generic point of ., which we may assume is all of .7.
Since the terms in the complex £ ® 2y, are flat over ., the formation of its hy-
percohomology will then commute with all base change. This completes the proof of
Theorem 4.23.1 for the Higgs complex.

The proof for the de Rham complex is more difficult; in general, the de Rham
cohomology groups of a coherent sheaf with integrable connection on a smooth
scheme of finite type over Z are not finitely generated. (For example, the de Rham
cohomology of the trivial connection on A} is not finitely generated.) We will use the
technique of logarithmic geometry to study the irregularity of the connection d 4+ df
to obtain the finiteness we need.

Let Y/S be a smooth morphism of fine saturated and noetherian log schemes.
We just write €2y ¢ for the logarithmic de Rham complex of Y/S [17]. If m is a sec-
tion of My, the set Y,, of all » € Y such that m, € Mg 5 is open in Y. In fact, since
a: My — Oy is a log structure, y € Y, if and only if ay(m) € 0% > Let us assume
that ay(m) is a nonzero divisor of Oy, so that it defines a Cartier divisor D of Y and
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Y,, = Y \ D. Suppose we are given a torsion free coherent sheaf E on Y and an in-
tegrable connection V on j*E, where j: Y, — Y is the inclusion. Then V induces
a connection on J,7*E = E(x) = li_r)nE(nD). If Vmaps Eto E® Q\l(/s, then E has
regular singular points along D; we wish to measure the extent to which this fails.
Since E is coherent, V maps E to E ® Q5 ss(nD) for some n; replacing m by m" we
may assume that n = 1. Since da € IDQ%(/S(D) for all « € Oy, the map

¢9DZ E ® ﬁD — E ® QlY/S(D)|D

induced by V is Op-linear. It follows from the integrability of V that 8 defines an ac-
tion of the symmetric algebra S"(InTy/s) on E;, so that E;; can be viewed as a mod-
ule over V(IpTy/s).

The following result is inspired by of a result of Deligne [6, II, 6.20] which was
pointed out to us by H. Esnault.

Proposition 4.26. — Suppose that in the above situation Oy 1is noncritical, t.e., that the
support of the V(Ip'Ty s)-module By defined by (Ep, 0p) s disjoint from the zero section. Suppose
Surther that Y /S is proper and that S = SpecR. Then for every i, H(Y \ D, E ® Q5 /s) U8
a finitely generated R-module.

Progf. — Let QY 5(*) 1= j,j*Qy s and for each natural number z, let

F,(E® QY 5)(#) = E® Qs((n+ D) S jj" (E ® Q4 5)-

Then F. defines an exhaustive filtration of the complex E ® €2y /() by coherent
sheaves. Since Y/S is proper, for each n and i, H(F,E ® Qy/5(*)) is finitely gener-
ated over R. Thus it will suffice to show that for each n > 0, the natural map

F.E® Qy5(x) = E® Q%)

is a quasi-isomorphism, and for this it will suffice to prove that for each n > 0, the
map

FoE ® Q;(/S(*) - FE® Q;(/S(*)
is a quasi-isomorphism. This will follow by induction if for every n > 0, Gr! E ®
Q2y/s(*) 1s acyclic.

Multiplication by g" defines an isomorphism F,E(x) — FyE(*) which induces
an isomorphism

E(mD),, = G E(x) = Gl E(x) = E, .

If e € F,E, then V() €e FFE® QSI(/S(D) and V(g") € E® QSIK/S(D). Since g = a(m)
and dg = gdlogm,

V(g"e) = ng"e ® dlog(m) + g"V(e) € E® Qxl(/s(D)'
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Since g"¢ ® dlog(m) € E ® Q%US, V(g"e) reduces to g"V(e) in E ® Q%{/S(D)m. Thus
multiplication by g" identifies Gr! V with 6y, for all » > 0. This identification extends
to an isomorphism of complexes

Grl'(E ® Qy 5(+)) = Grh (E ® Q4 (%)).

But Grj(E ® Qy/5(x)) 1s just the Higgs (Koszul) complex of p, whose cohomology
sheaves can be identified with Ext}v (1.Ox, Ep), where 1: X — V is the zero section
of V:=V(IpTy/s). These vanish since 6}, is noncritical. O

The following corollary then completes the proof of statement (1) of The-
orem 4.23: take (E, V) to be the constant connection on Z/.7.

Corollary 4.27. — Let X/S be a smooth quasi-projective scheme over S = Spec R, where
R is a flat and finitely generated Z-algebra. Let (E., V') be a coherent sheaf with integrable connection
on X/S whose restriction to the generic fiber of X/S has regular singularities at infinity. Suppose
that [ € Ox(X) is a global _function which defines a proper morphism X — AL, and let (E/, V')
be the df -twist of (E,V): B = E, and V' := V + Adf. Then afier replacing S by some
affine neighborhood of the generic point of S, the de Rham cohomology H* (X, ' @ Q /s) s finitely
generated and free over R.

Proof. — Let o be the generic point of S. We may find a projective compact-
ification X, of X,, and after blowing up X, outside of X, we may assume that
extends to a morphism X, — P! which we still denote by /. After a further blowing
up outside of X, we may assume that X, is smooth over o and that the complement
of X, in X, is a divisor with strict normal crossings. Then the log scheme Y, obtained
by endowing X, with the log structure corresponding to the inclusion X, — X, is
(log) smooth. Furthermore, f extends to a morphism of log schemes Y, — P!, where
P! is the log scheme P! obtained by endowing P with the log structure corresponding
to the inclusion Al — P!.

Let ¢ be the coordinate of Al and let s := 7!, which is a local generator of the
ideal of 0o0. There is a unique local section m of the sheaf of monoids Mp1 over V
with s := api (m), and dlogm is basis for the stalk of Qlﬂ}r at 0o. Let y be a point of
D := f7'(00). Then in an étale neighborhood of y, there exists a system of coordi-
nates ({1, - - -, {,) and natural numbers 7, ¢, ..., ¢, such that such that /*(s) = ¢' --- .
Then f*(dm) = ), ¢ dlogt;, which is nonvanishing in the fiber of €5 o atp. (This
implies that f is log smooth at y.) Since (E, V) has regular singularities at infinity,
there is a coherent (even locally free) extension E of E to Y, and a log connection
V:E — E@ Q_\la,/a extending V. Now df =f*(a’t)_= —s‘@s = —s ' f*dlogm. Thus
V' maps E to E® Qxla,/a(D)» and 0p is the map E, — E; ® Q#o/a sending ¢ to
—e A s 'dlogm. This is an isomorphism, so @y is noncritical. There exists an affine
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neighborhood of the generic point of S over which all this remains true, and without
loss of generality we may assume they are true for Y/S. Then Proposition 4.26 implies
that the de Rham cohomology groups of (E, V) over Y\ D = X are finitely generated
over R; shrinking further we may assume they are free. O

We now turn to the proof of statement (2) of Theorem 4.23. Assume that Z"/.%
satisfies the conditions in (1) of Theorem 4.23 and in Lemma 4.24. Fix a prime p, let
X/S be the reduction of Z/.# modulo p, and let ./} be the reduction of . mod-
ulo /*. Since .¥/Z is smooth and affine, there exists a lifting F o of the absolute Frobe-
nius endomorphism of S to .#] and hence a Cartesian square:

(4.27.1) l l

gy
We shall abuse notation and write Cy» for the Cartier transform defined by the
lifting 2/ of X'/S.

Let (E, V) be the restriction of (&, V) to X/S. According to [19, 7.22], the
p-curvature ¥ : E — E® F{ /852}1(, /s 1s multiplication by

FL(df) — ¥y sCxys(df) = ¥y s (df).
Since this is not nilpotent, we cannot apply our Cartier transform to it directly. Our
approach will be to approximate E by nilpotent connections, and we shall see that the
Cartier transform of these approximations approximate L.

In general, if (E,V) is a connection on a smooth X/S in characteristic p,
Fx/s«(E) becomes an S"Tx/s module via the p-curvature ¥, and since ¥ acts hori-
zontally, the quotient E(,) of E by the nth power of the ideal S*Tx/s of STx/s in-
herits a connection. In fact, this quotient is the maximal quotient of E on which the
connection is nilpotent of level » — 1. In the situation at hand, we can be quite ex-
plicit. Let ] € Ox be the ideal of the zeroes of df, i.e., the ideal generated by the
partial derivatives of / in any local system of coordinates. Then E, is the quotient of
E by F{(J"). Our next goal is the computation of the Cartier transform of a suitable
quotient of E,.

Proposition 4.28. — Suppose that X and f satisfy the conditions of Lemma 4.24,
and let 7. be the reduction of Z modulo p. Let n be a natural number and

E = (Ox, d + df) € MIC(X/S)

E, := (E/F{(I})E, d + df ) € MIC(X/S)
L := (Ox, —df) € HIG(X/S)

L, := L/I,L € HIG(X/S)

L, := n*L, € HIG(X'/S).
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Finally, let v be the maximum codimension of 2 i 2. Then iof p > m, the Cartier transform
Cos(E,) of E, with respect to 27/ is wsomorphic to L.

Proof. — Note that, by definition, 14 is the radical of the ideal ], so E, is indeed
a quotient of E(,) and Cy,~(E,) is defined. It is enough to prove the proposition after
restricting to each connected component of 2. To simplify the notation, we shall as-
sume that 2 is connected. Replacing / by f — Z, for a suitable 7 € ['(0) as in (2) of
Lemma 4.24, we may assume that the restriction of / to 2 vanishes.

Recall from Proposition 1.14 that the lifting 7 of 7: X’ — X determines a map
8,7,1 ﬁgy — 2|

Claim 4.29. — Let o := 8ﬁ(f) € oy, and let
o2 ol

B —1+a+§+ + o

€ JZ{gLV/y.

Then:
l.o" € F;((Iz)eg{gg/yll
2. 9(B) = (ﬁ — &5) ® Fidf, and
3. VQ/(:B) = (‘;/) 11)' fjJ 1 R qlf

Proof — By (1) of Lemma 4.24, Z is reduced and in particular satisfies
Serre’s condition S;. Since X is regular, its absolute Frobenius endomorphism is flat,
and hence the inverse image Z” of Z by Fx still satisfies S,. (To see this, let j: U — Z
be the inclusion of any dense open subset of Z and observe that the map 0, — j.;*0;
is injective, and remains so after pullback by Fx.) Since Specy &%/~ is smooth over X,
the inverse image of Z”) in Specy @y also satisfies S;. Thus it suffices to check (1)
at the generic points of Z, and since Z/S is generically smooth, we may assume that it
is smooth. We may work in a neighborhood of a point of Z with the aid of a system of
local coordinates (71, ..., 7,) for Z°/.% such that Iy = (7, ..., 7,). Let F: 2] — Z] be
the lift of Fx/s sending 7*7; to i’ for all 7. This defines a splitting of the fundamental
exact sequence (1.4.1), and hence an isomorphism

Ny 9 =Er)9 = Ox @ F§</s9>l<//s-

Proposition 1.14 says that, in terms of this splitting, o = (g, F{df), where F 7% ( f ) =
f? 4+ [plg. Since f € Iy f belongs to I]}, and since I*7* maps I» to I]}, it follows
that [plg € I’,. It follows from the smoothness of 2 and 2~ over .# that the closed
subscheme of 2~ defined by I, is flat over ., and hence that g € I. Then g’ € I,
and since I has s generators, IS C F{I,0x, so in fact ¢’ € F{1;0x. Since df € IZQéi/S
by hypothesis, F{df € FL(IDFY ,/S(Q1 ,/g) Thus o' € ¥ (I,) 2 ,», and since s < 7, the
same 13 true of o’. This proves (1).
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Recall from Proposition 1.14 that ¥ (o) = F{df. Hence

a o al™?
Vs (B) ( Tt = 2)!> ¥(@)
=
=(B8- ) ® FLdf.
(p=D1)
This proves (2). Proposition 1.14 also says that V() = —f?"'df, so a similar calcu-
lation proves (3). O

Recall from Theorem 2.23 that
— / / Wit
Co o) = (L, ® Fxysu /7).

As an Ox-module, L, @ Fx 5.9 9 = Ay )7 /¥ 1)y ). Since a™ € FL(I) by (1)
of the claim, this module is annihilated by @/~ if p > m. Hence

V(B =BOFd in L ®dyr®F Qs
Hence if we view § as a global section of L) ® <75, we find
Viu(B) = vL(DB+ V() =—BRa"df +BRr"df =0.

Thus B € ngl-/ L) = (L, ® 43,7)", and in fact B is a basis for 7' /(L) since it
is a unit modulo I. Furthermore, it follows from (3) of the claim that

Viu(B) = =B ®S1df € E, ® Q.
Now consider the Artin—Hasse exponential of f, which is given formally by
g=exp(f S p+ST 0 ),
and which in fact has p-adically integral coeflicients. Then
§llg= A+ 47 40
Since f € I, and p > n, /""" = FL(f7") /7~ € FL(IL), so
dg = g(1 4+ f7~Ndf mod F (I12).
Since g 1s a unit, ¢ 1= gf is also a basis for C;;/y(L;), and

V() =gV +B®de
=—gBRf ' df +eg(1+ ' d)BRdf
=e®df.

In other words, C}/y(L;) 1s isomorphic to E,, as claimed. O
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We shall also need the following general result about morphisms in the derived
category.

Proposition 4.30. — Let X be a noetherian scheme or formal scheme, let K™ be a perfect
complex of coherent sheaves of Ox-modules, and let ] be a sheaf of ideals annihilating the cohomology
sheaves of K. Then there exists a natural number n such that for all m > 0, the map in the derived
category

+ L . L .
J” m ® K ﬁ J”L ® K
induced from the inclusion J"™" — J" is zero.

Proof. — TFirst we prove the statement for the induced maps on cohomology
sheaves. We may cover X by a finite number of open affines on each of which K’ is
quasi-isomorphic to a bounded complex K of locally free &x-modules. and it suffices
to prove the local statement on each of these open sets. Thus we may assume that

- L
X = SpecA and replace K" by I'(X, K"). Then J” ® K" = J" ® K" for all m. Let
B? € Z7 € K be the boundaries, (resp. cycles, resp. chains) of K" in degree ¢. By
the Artin—Rees lemma, there exists an integer r such that Z7 N J**K? C J"Z¢ and
B7NJ"K? C J"BY for all m > 0. The hypothesis on J implies that JZ? € B?. Hence if
n>r, ZINJ"K! C JZ¢ € BY, so

71 me-l-nK(] g B? me-l-an ngBq.
Since K7 is free, Z/(J"™K?) = Z/ N J"™K? and J"B? = B/(J"K). It follows that the
map H(J"™K) — H’(J"K) is zero.
The following lemma then completes the proof of the proposition.

Lemma 4.31. — Let K, o, K, =i K, ERINEN K,11 be a sequence of morphisms
i the derwved category of an abelian category. Suppose that each XK; has cohomological amplitude in
la, a + n] and that the maps H*(K;) — H*(K;y1) are all zero. Then the composition Ky —
K11 s zero.

Proof. — The proof is by induction on n. If n = 0, there is nothing to prove, since
K; = HYK,) for all . Let < denote the canonical filtration [2], let /" 1= fi ... fus1,
and consider the following diagram:

Hetn ( jo)
_—

H™"(Ko)[—a —n] H™"(K)[—a —n]

! |

KO Kl Kn+ 1

! 1, ]

T<a+nK0 T<a+”K1

T kg



NONABELIAN HODGE THEORY IN CHARACTERISTIC p 111

Since H*"(f5) = 0, afy = 0 and since B and o comprise a distinguished triangle, it
follows that f; factors through 8. The induction hypothesis implies that /" = 0, and it
follows that ff) = 0. This proves the claim. ]

O

Corollary 4.32. — Let L = (Oy, —df) € HIG(Z |.7), let L denote its formal
completion along Z, and let b: L — L, denote the projection to the restriction of L o the nth
mfinatesimal neighborhood of Z. Then jfor sufficiently large n, there exists a map s in the derived
category making the diagram below commute.

LRy, —=L @Ry,

|

LRy,

Progf: — Let us write £ for the complex £ ® Q- ,, and consider for each
natural number 7 the exact sequence of complexes

01,72 - & - % —0.
There 1s then a corresponding exact sequence of abelian groups
Ex(Z, Z) - Ex(Z, Z) - Ex’ (1,2, 2,

where Ext’ means hyperext, or equivalently, the group of morphisms in the derived
category. It will thus suffice to prove that the identity element of Ext’(.#", #") maps

to zero in ExtO(If;gj *,.Z"). But the image of the identity element is just the class of
the inclusion mapping, which vanishes for » sufficiently large by Proposition 4.30. O

Proof of Theorem 4.23. — Choose n as in Corollary 4.32 and localize .# so that all
primes less than the maximum of m and n+dim(Z°/.%), become invertible. Let X/S
and Z/S denote the reductions of Z'/.¥ and Z/.” modulo one of the remaining
primes p. Let X,; denote the formal completion of X along Z, let E = E,; and
[ = L/),, and consider the following diagram:

Fy /(B ® Q) — > Fy (B ® Qy/s) L Fysa(E, ® Qy/s)

) y . . y , )
L' ® Qs {7 ® Qs L, ® Qs

Y
s
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Here a, p,d, and b" are the obvious maps, ¢, is the quasi-isomorphism coming from
Theorem 2.26, s" is the pullback via m of the map s of Corollary 4.32, and & =
s'c,p. Note that we do not know if ¥4 = ¢,p. The arrow « is a quasi-isomorphism
by Proposition 2.31 and 4 is a quasi-isomorphism by a similar (easier) argument. We
shall show that /4 is a quasi-isomorphism, completing the proof of Theorem 4.23.

Since our statement is local, we may restrict to an open affine subset U of X and
then choose a lifting F of Fx/s mod p?. Let C#(E) be the formal Cartier transform of
E described in Proposition 2.32 with respect to this lifting,

Claim. — There exists an invertible sheaf A on X’/Z such that CF(E) = LQ®g, A,
where A is given the trivial Higgs field.

Indeed, the F-Higgs module corresponding to the p-curvature of Ci NIy s
F;‘(/Sf], and hence the p-curvature of %m(ﬁl, Cz 1(I:’)) 1s zero. Hence there exists an
invertible sheaf A on X' such that Jm(E, C5'(I/)) = F sA with the Frobenius de-
scent connection. Then CF(E) =1L'®g, A, where A has the trivial Higgs field.

By the compatibility of Cg and Cy», the isomorphism «,: Cy o (E,) = L, of
Proposition 4.28 defines a trivialization of A,. Restricting to smaller affine if necessary,
we may assume that A is trivial, and choose an extension « of @, to an isomorphism
Ci(E) — 1. Now consider the commutative diagram of maps in the derived category:

Fx/su(E ® Q5 5) — > Fx/su(B, ® Q)

CF(E) ® Q;(’/S L) C%/,S’(En) ® Q;(’/S

L' ® Qs L L@ Qs

The arrows ¢ and ¢ are quasi-isomorphisms by Proposition 2.32 and Theorem 2.26,
respectively, and o and «, are quasi-isomorphisms by construction. Furthermore,
€y = QC, SO

h=scp=sach=sa,b'e=sbae=ae

and hence is a quasi-isomorphism. ]

5 Appendix: Higgs fields and Higgs transforms

5.1 Higgs fields over group schemes

Let X/S be a smooth morphism of schemes, let x5 be its sheaf of Kahler dif-
ferentials and Tyx,s the dual of Q2x/s. Recall that a Higgs field on a sheaf E of
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Ox-modules is any of the following equivalent sets of data:

1. an Ox-linear map 0: E — E® Qx/s such that the composition of € with the
map E ® Qx5 > E® A?Qx/s induced by 6 vanishes

2. alinear map 0: Txs — &ndy (E) with the property that the endomorphisms
associated to any two sections of Tx,s commute

3. an extension 0 of the Ox-module structure on E to an S"Tx/s-module struc-
ture.

If E is quasi-coherent, then associated to the S'Tx/s-module E is a quasi-coherent
sheaf E of Op--modules on the cotangent bundle T s of X/S. Conversely, if E is
such a shealf] its direct image on X is a quasi-coherent sheaf of x-modules equipped
with a Higgs field.

These definitions make sense with any locally free sheaf T in place of Tx/s and
with the vector bundle VT := Specy ST in place of cotangent bundle. In fact, it
will be useful for us to work in an even more general context, in which the vector
bundle T ¢ is replaced by any commutative affine group G scheme over X. Abus-
ing notation, we shall denote by O the sheaf of Ox-bialgebras on X corresponding
to G.

Definition 5.1. — Let G be a commutative flat affine group scheme over X and let E. be
a sheaf of Ox-modules on X. A G-field on E is a structure 0 of an O-module on ., compatible
with the given Ox-module structure via the map Ox — 0.

We denote by G-HIG the category whose morphisms are sheaves of &x-modules E
equipped with a G-field 6 and whose objects are morphisms compatible with the
G-fields. We will often omit the 6 from the notation when no confusion seems likely
to result. As before, there is an evident equivalence between the category of quasi-
coherent objects in this category and the category of quasi-coherent sheaves on G.
Since we will have to deal with sheaves which are not quasi-coherent, we will not
make use of the topological space Specy 0. Nevertheless we will try to use geo-
metric notation whenever possible. Thus, if o7 is a sheaf of Ox-algebras, we denote
by Mod(&?) the category of sheaves of .@/-modules on the topological space X. If
y*: &/ — 2 is a homomorphism of sheaves of Ox-algebras, we have functors:

y*: Mod(&) > Mod(#): M+—> B, M
Ys: Mod(#) — Mod(#): N — N, with an:= y*(a)n
y': Mod(«7) — Mod(#) : M > omy(y. %, M),
with (bh)(0') := h(bD),
together with the standard adjunction isomorphisms:
Homy (M, y.N) =y, Homz(y*™M, N)
Hom (N, M) = y, Homz(N, y'M).
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Note that even if &/ and 4 are quasi-coherent, the functor y' does not preserve quasi-
coherence, in general.

In our context we shall consider the following morphisms of X-schemes and the
corresponding morphisms of sheaves of Ox-algebras. Here all fiber products are taken
in the category of X-schemes and all tensor products in the category of Ox-modules.

Notation 5.2.

pi:GxG— G: (g1, 2) — g, p?:ﬁgaﬁG@)ﬁG
0:GxG—=>GxG: (g,2) (2.2), 60°: 000, — O;Q O
1:G—>G: g g, O — Og
w:GxG—>G: (g,9) v an W:0;— 0sQ 0
W:GxG—G: (g,0) o', W':l;— 0, 0

X > G: x> 0, # O — O
p: G = X (g1, g) = p(g), PP Ox — G
j:G—G: g0, JOg — Og

These are the projections p;, the inversion mapping ¢, the group law pu, the
twisted group law @' := @ o o o (¢ x id), the augmentation given by the zero sec-
tion of G, the structure map G" — X, and the map p o i. Note that since ¢* = idg,
t, = *. If E is any object of G-HIG, we let E' := (,E = *E.

5.2  Convolution

Defimition 5.3. — Let (Ey, 0)) and (Eq, 65) be two objects of G-HIG. Then
1.E, X Ey := piE| Qe p3E0, as an object of G x G-HIG.
2.E, ® Ey := pu, (E) X Ey), as an object of G-HIG.

For example, if (E;, 8;) and (Eo, ;) are objects of HIG(X/S), then E; ® E, is
the tensor product of E; and E, in the category of Ox-modules, with the Higgs field
0 defined by

9 = 91 ® ldE2 + ldE1 ® 92.

Geometrically, the object (E; & Eg, ) corresponds to the convolution of E; and E,
with respect to the group structure of the cotangent space of X/S.
The associative law for G implies that the standard isomorphism

(E1 ®E) ®E; = E; ® (Ex ® Es)
induces an isomorphism

(E,®Ey) ®Es = E; ® (Ey ® Es).
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Similarly, the commutativity of G implies that the standard isomorphism E; ® Ey, =
E, ® E; induces an isomorphism

E,®E, =E, ® E,.
Furthermore, if we let
U :=1,0x € G-HIG,

then the fact that ¢ is the identity section implies that the natural isomorphism
Ox ®p E = E induces an isomorphism in G-HIG:

U®E=E.

Thus ® makes the category G-HIG into an Ox-linear tensor category [9] (ACU ten-
sor category in the terminology of [32]), and U is its unit object.

Definition 5.4. — Let Ey and Ey be objects of G-HIG. Then

Hex(Ey, By) = ey, (pE1, pyEs)
%(Ela EQ) = M; %x(Els EQ)

We call 72ex(E,, Ey) the external Hom of E; and Es. Its underlying Ox-module is
given by

Fome (pEy, pEo) = pi omg, (p*pEq, Eo) = po Homg, (pospiEq, Eo)
= D« %mﬁ(;xc (pTEl’p'QEQ) = D« %X(El, EQ)
= p, (B, Ey)

and the 0g ® O structure on J%x(E;, Eo) is given by:
(a® b)h: Ey —> Ey ¢ — bh(ae).

Lemma 5.5. — Let B, Ey, and Es be objects of G-HIG. Then the standard adjunction
isomorphism i the category of Ox-modules

‘%mﬁx(El ®ﬁx EQ’ E3) ; ‘%mﬁx(El’ ‘%mﬁx(EQ’ E3))
induces 1somorphisms

Homyg, (E; ® Eo, E3) = Homy, (E1, 7€ (Eo, E3))  (of groups)
H(Ey ® By, By) = H(E,, #(Ey, Eg))  (in G-HIG).
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Proof. — By definition,
Homyg, (K, 7 (Ey, E3)) = Homyg, (El, W, Homeg,, (l)TEz,l)!QE3))
= Homﬁcxc (/’L/*El’ ‘%mﬁcxc (pTEZ’p'QE5))
= Homﬁcxc (/’L/*El Qb6 pTEZ’p'QE5))

Let : G x G — G x G denote the map (i, p1), e, the map sending (g1, g) to
(gggl_l, g1). Note that o 1s an isomorphism, whose inverse 8 = (pq, ) sends (a, b) to
(b, ab). Thus B, = a*, and furthermore u'*(E;) ® piEy = o*(E; X Ey). Hence

Homyg, (Ey, #(Es, E5)) = Homg,, (" (E; K Ey), p,E3))
= Homg,,, (B:(Ei K Ey), pyEs))
= Homyg,,, (Ei X Ey, B'pEs5))
= Homyg,,, (Ei X Eq, u'E3))
= Homg,, (1. (E; X Ey), E3))
= Homyg, (E; ® Es, E3).

This proves the first statement. The second statement just asserts that the standard
adjunction morphism is compatible with the G-Higgs fields. It follows formally from
the first. Indeed, it will suffice to check that for all E, the adjunction isomorphism
induces isomorphisms:

Homg,, (E, 7°(E, @ Ey, E3)) = Homg,, (E, 7°(E,, 7 (Ey, Ey))).
This follows from the first statement and the associativity of ®. ]

Lemma 5.5 shows that ¢ is the internal Hom functor of the tensor category
(G-HIG, ®) in these sense of [9]. As usual, the dual of an object E of G-HIG is de-
fined by

(5.5.1) EY := (K, U).
The map
ew: EY®E - U
is by definition the element of
Hom,, (E¥ ® E, U) = Homy, (E", 7 (E, U)) = Homg, (E", EY)
corresponding to idpv; it corresponds to the usual evaluation map

jfomﬁx(E, ﬁx) ® E — ﬁx.
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For any E,, one gets by functoriality maps

E, = (U, Ey) — H#(E) ® £, Ey)
Homy, (Eo, #(U, Ey)) — Homg,, (Es, #(EY ® Ey, Ey))
Homg,, (E; ® U, Ey) — Homyg, (E; ® EY ® E;, Ey)
Homg,(Eo, Ey) — Homg,, (E; ® EY, #(E,, Ey))
Homg,(Eo, Ey) = Homg,, (EY ® Eq, #(Ey, Ey)).

The element of Hom(E, ® E;, 7 (E,, Ey)) corresponding to idg, is the map
(5.5.2> Elv @ EQ —> %(Ela EQ)

corresponding to the usual map EY ® Ey — Jme (E, Ey) in the category of Ox-
modules. In particular it is a homomorphism in G-HIG and commutes with any en-
domorphism of E; or Ey in the category G-HIG. For example, any local section of
O¢ defines such an endomorphism on each E;. Note that if E; is locally free and E,
or E, is of finite presentation as an Ox-module, (5.5.2) an isomorphism. For example,
when G is the cotangent space of X and 6 is a Higgs field on X, then the Higgs field
0" on EY is given by the usual rule, so that

for sections & of T, ¢ of E¥ and ¢ of E.

Remark 5.6. — If E; and E, are objects of G-HIG, the Ox-module underly-
ing S (K, Ey) is Home, (Eq, Ey) and the Ox-module underlying E; ® E, is E; ® g Eo.
These Ox-modules also inherit Og-structures by “transport of structure” from the O-
module structures of E; and Ey. When necessary we denote by 6y, the structure com-
ing from E; in this way and by 6,, the structure defined in (5.3) and (5.4). Thus 6, is
the structure on JZ(E;, Ey) (resp. E; ®Ey) obtained from the structure on .72x(E,, Eo)
(resp. E; X Ey) by letting O act via the morphism p;,. Note in particular that the Og-
module structure on EY is not the structure 6y corresponding to the action by trans-
port of structure on Homyg, (E, O), rather it is given by (0. Indeed, the 0g ® O-
module J#%x(E, Ox) is annihilated by the ideal of the graph I'; of the zero morphism
J:G—G,and ' oI =1

Remark 5.7. — A morphism #: G' — G of affine X-schemes induces a pair of
adjoint functors

r*: G-HIG — G’-HIG and #4,: G-HIG — G-HIG.

If # is a homomorphism of group schemes, these are compatible with ® and JZ.
For example, let f: X — Y be a morphism of schemes, let G” be a commutative
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affine group scheme over Y, and let /~'G” be its pullback to X. If (E, #) is an object
of G”-HIG, then f*E has a natural f~'G”-field /*0. If G is an affine group scheme
over X equipped with a map 4: f~'G’ — G, then one gets by composition with 4*
a G-field on f*E. For example, this construction applied to the cotangent bundles,
with % the differential of f, defines a functor f*: HIG(Y/S) — HIG(X/S). Finally,
note that since t: G — G is a group homomorphism, we find a canonical isomorph-
1sm

(E; ® Ey)' = B! @ .

Remark 5.8. — Let E; and Ey be object of G-HIG. Then there is a natural
isomorphism of sheaves of Ox-modules

i!%(El’ EQ) = ]7* %mﬁc, (El’ EQ)
This follows from the adjointness properties of .7”:

1 A (B, By) i= Homg, (i.0x, A (Ey, Ep))
= f%mﬁG(U @ Ela EQ) = f%mﬁG(Ela EQ)

We find a natural map of Ox-modules
(5.8.1) Homg, (B, Ey) = il (B, Ey) C p (B, Ey).

This map is compatible with the actions of 0 induced by transport of structure
via its actions on E; and E,.

3.3  Higgs transforms

We can use an object of G-HIG as a kernel for what we shall call a Higgs trans-
Jorm, of which we consider the following variants.

Definition 5.9. — Let F be an object of G-HIG. Define functors from G-HIG to itself
by:
Hz(E) 1= Homo,(F, E)
QQ(E) = <gf®5’(; E
TrE) :=i'(F ®L).
We view these objects as G-Higgs modules, with the Higgs field induced by

transport of structure from the field on .#. Note that this is the same as the field
induced from E in the first and second cases, and differs by ¢ in the third. Indeed,

i(F ® E) = Homy, (i, Ox, 1, (F K E)) = Homg,,, (1", Ox, F K E).
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This is an G;xg-module, and the action of &g by transport of structure via .%# corres-
ponds to the action induced by the first projection, while the action via E is induced
by the second projection. We claim these differ by ¢. In fact it is enough to check this
for the @ yxg-module ¢, u*(Ox). But this is clear, since the latter is annihilated by the
ideal of the graph of «.

The map (5.5.2) induces a natural map of Og-modules

(5.9.1) *Th,(B) — i (A (F,E)) = #5(E)

which is an isomorphisms if .# is finitely generated and projective as an Ox-module.
The presence of the ¢ is due to the fact that O acts on .7, I'qv (E) by transport of struc-
ture via . and on J¢7(E) via %, and these structures differ by ¢, as we saw in
Remark 5.6.

Let % be any object of G-HIG. Observe that there are natural transformations:
Na: Tpo Hy —id and (g:id —> Hp o Ty,
where for any E,
Nar: B Qe Homp, (A, E) - E
sends b ® £ to A(b) and
(o E— Fome (B, B Q4 E)
sends ¢ to the homomorphism b + 6 @ e. Then the following result is immediate.

Proposition 5.10. — Let B be an object of G-HIG which is invertible as an Og-module.
Then ng and Lz are mverse isomorphisms. In particular, 7 and Tz are quasi-inverse equiva-
lences of categories. O

In our main application, % will be equipped with the structure of a cocommu-
tative coalgebra with counit in the category G-HIG. That is, it will be provided with
morphisms

(5.10.1) ViAB—>AB®A and B: B—U

satisfying the usual compatibilities. These data give the corresponding Higgs transform
additional structure. We shall be especially interested in the following case.

Definition 5.11. — A character sheaf!'® in G-HIG s a coalgebra (B, v, B) such that
the map v: * B — BRI corresponding to v is an isomorphism of g x-modules and the map
B: *B — Ox induced by B s an isomorphism of Ox-modules.

16 This terminology is borrowed from G. Lusztig.
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Lemma 5.12. — Let ($, v, B) be a character sheaf in G. The map v nduces an iso-
morphism of Oc-modules B R, KB = Og. In particular, B is invertible as an Og-module, with
mverse B

Progf. — Definition (5.11) implies that *% = Ox, hence j*# = 0. Let T',:
G — G x G denote the graph of «. Pulling the isomorphism ¥ back via I',, we find
an isomorphism:
BRo, KB =T (BRB) =T W (B) =% = 0. O
Remark 5.13. — Giving a character sheaf is equivalent to giving a commutative
extension of the group G by the multiplicative group G,,. Assume G is finite and flat
over X and denote by G its Cartier dual. Then a G"-torsor gives rise to a character
sheaf. Indeed, G" can be identified with the group of automorphisms of the trival
extension E of G. Then if L is a G"-torsor, we can form the “twist” L ®qv E of E
by L. This defines an extension of G by G, and hence a character sheaf #. The
functor L > £ is an equivalence from the category of G"-torsors to the category of
character sheaves which are, locally on X, isomorphic to 0 as character sheaves.

Proposition 5.14. — Let (A, v, B) be a character sheaf on G. If E, and Ey are objects
of G-HIG, the standard tensor product map & on homomorphisms and the comultiplication v define
a commutative diagram:

Ay (E)) ® Hy(Ey) — > Hpen(Er ® Ey)

(L) ® Eo).
Thus the functor 7 is an auto-equivalence of the tensor category G-HIG.

Proof. — 'The diagram above can be expanded as follows.

s (A (Ey) B A (E))

T

Hp(E1) ® H(Ey) M*(ﬁT Home, (B, K1) Qo P3 Home, (B, E2))
l |
Hy(B) ® Ey) r [y Homg,, (BR B, Ey K Ey)

The right vertical map is an isomorphism because % is invertible, and the map »*
is an isomorphism because v is an isomorphism. The cocommutativity of the coalge-
bra % implies that .77 preserves the commutativity constraint of the tensor category
G-HIG. O
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A change of sign allows us construct an mvolutive auto-equivalence of G-HIG.

Definition 5.15. — Let B be an object of G-HIG. Then 7€, s the functor G-HIG —
G-HIG sending an object E to v, Homg, (4, E).

For example, %%’b can be identified with the mvolutive functor t,. More gener-
ally, if (%, v, B) is a character sheaf, then by Lemma 5.12:
A (HH(B)) = v Homeg, (B, . Homg, (B, L))
= Lyly g, (U B, Hom(HB, E))
= Home, (B Qp, B, E) = Homg,(Og, E) = E.

The natural inclusion of Ox-modules Homg, (%, E) € Homg (%, E) defines
morphisms of Jg-modules:

(5.15.1) vi: A NE) - (A, jE) and [, H,E) - H (B, E).
The morphism B: % — U and the isomorphism 57 (U, E) = E induce maps of -

modules:
(5.15.2) Br: E— (A, E) and J.E— H(A,.E).

Finally, let us consider the following diagram:
(B, H(R)) = (B, H(B,},E))
" lz
KRB A B & B,],E)
H(B,j A E)) s H (B, H (B, E))
| lg
%QV%’, E)<~—"— (B ®BL).

Here the top horizontal arrow is induced by the morphism yy (5.15.1), the right arrow
is the adjunction map of Lemma 5.5, and the bottom horizontal arrow is induced
by v; the diagram defines the arrow vg.

(5.15.3)

Theorem 5.16. — Let (B, v, B) be a character sheaf for G (5.11). Then for any object E.
of G-HIG, the arrow vy, is an isomorphism and induces an isomorphism «y,: (J (€ 4H(E)) — E
Sfitting into the following commutative diagram.

Wty o
A A (B) — H(B, j (L))

KE, l l VE
Be

E H (B, L)
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Proof. — Since (%, v, B) is a character sheaf, the map ¥ is an isomorphism, and
so induces an isomorphism of &;-modules:

Do (D)1 po W B — po, (BN B).

Since the diagram

GxG—Lt>G
P?l lﬁ
G—1>X

is Cartesian, the natural map p*p. % — pyu*% is an isomorphism. Composing this
map with py_ (V), we find that v induces an isomorphism

P PP — po, (B B).

Taking #me,,( , E) we find that the top arrow in the diagram below is an isomorph-
ism.

Do Homg, (ps, (B R B), B) —= p, Hom, (p*p B, E)

at{jT lat{j

%mﬁx ('@’ P* %mﬁc (%’ E)) - = %mﬁx (%’ p*E)

The vertical arrows are the adjunction isomorphisms and the bottom horizontal arrow
is p.(vp). It follows that vg is an isomorphism of Ox-modules, and it is compatible
with the two pairs of Og-module structures shown in the diagrams (5.15.3). Applying
the functor ¢ to the isomorphism vy in the left diagram, we find an isomorphism of
Ox-modules:

ki (4 (E)) — E.

But py is also compatible with the Og-module structures in the right diagram. This
implies that kp, is also a homomorphism of Og-modules. O

Remark 5.17. — If 28 — %' is a surjection of invertible &;-modules and E is
an object of G-HIG which is annihilated by the annihilator of %', then the natural
map 4 (E) — 5%(E) is an isomorphism.

It is sometimes convenient to use the dual point of view to that taken in The-
orem 5.16. With the notation there, let {I, : # € N} denote an inverse system of ideals
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of U defining closed subschemes G, of G whose support is the zero section Gg. Sup-
pose further that each ¢, is a locally free Ox-module of finite rank and that for all
m, n, the comultiplication map fits into commutative diagrams:

ﬁG I ﬁG ® ﬁG
G, — O, @ G,
Let B, := $/1,% and let &, := F(H,, Ox) Thus the map (5.9.1) induces an iso-

morphism:

m+n

T, — Ay =1,
Let .o/ be the direct limit of the directed system 7, so that we find an injection
(5.17.1) T, = lim ﬁg;, — A,

The comultiplication maps on 2. induce multiplication maps 7, ® %7,, — 1,
and o7 inherits the structure of an algebra in the category G-HIG. The identity elem-
ent 1, is the dual of the identity section #* of .

Let us say that an object E of G-HIG is I.-continuous if each local section ¢ of E
is annihilated by I, for some 7, and let us denote the full subcategory of G-HIG con-
sisting of such objects by G.-HIG. If E is I.-continuous, then any Og-linear homo-
morphism 4: 8 — E factors through %, for some n, so that (5.17.1) becomes an
isomorphism. Then Theorem 5.16 can be reformulated as follows.

Theorem 5.18. — Let B. and <. be as described above, and let G.-HIG denote the full
subcategory of G-HIG consisting of the 1.-continuous objects.
1. For any object E of G.-HIG,
ap: E—> 7 ®E e~ 1Q®e¢

defines a locally split igection whose vmage is the annibalator of 1 with respect to the Higgs
Sield induced from the Higgs field on <7 .
2. The _functor

7.: G.-HIG — G.-HIG

is an involutive equivalence. Furthermore, the isomorphism T, o 7', = id fits into the
Jollowing commutative diagram

id®ine

TATLE) "> d ® TL(E) 2% /@ o/ ®F

.

E — o ®E.
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Here kg, is compatible with the G-Higgs fields, and vy, is a homomorphism with respect to
the following fields:

A ®j, T (E)—> o ®E ad o ® T, (E)— o ®],L.

3. The functor T, is compatible with convolution products in the following sense. For any
two objects £y and By of G.-HIG, one has a canonical commutative diagram

T(E) ® T, (By) —2> T, () @ Ep)

lu*

TL(E; ® Ey).

Proof. — The first statement is clear. The diagram in the second statement is
equivalent to the diagram in Theorem 5.16, and hence it follows that the maps indi-
cated are isomorphisms. Let us note, however, that this can also be proved directly by
dévissage. When E is annihilated by .# this is clear. Since the sources and targets of
both arrows are exact functors, a dévissage argument implies that the maps are iso-
morphisms if E is nilpotent. But any .#. continuous E is, locally on X, a direct limit
of nilpotent objects, so the general result follows. Similarly, (3) is a translation of Prop-
osition 5.14, and can also be proved by dévissage. a

5.4  Examples and formulas

Let us return to the case in which the group scheme is the group underlying
a vector bundle VT, where T is a locally free sheaf of Ox-modules of finite rank, so
Oyr is the symmetric algebra ST'. The group law in this case is given by the unique
algebra homomorphism

WiST—ST®ST

such that 1> 1@ ¢+t ® 1. Let V,'T := SpecI".(T) [3, Al] be the divided power en-

velope of the ideal of the zero section and VVT := Spec I'.(T) its completion with re-
spect to the divided power filtration. These are also group schemes, and the group law

W T.(T) = I'.(T) @ I.(T)

is the unique divided power homomorphism sending 1 to 1 ® t +¢® 1.
Let © be the dual of T and recall from [3, A10] that there is a natural iso-
morphism

Ln - Sn(Q) - ‘%m(rn(T)a ﬁX)
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for all n, and hence an isomorphism
S(Q) — Hm' (T'.(T), Ox),

where the 7 signifies the Matlis dual. The following proposition is essentially contained
in Theorem V.1 of [33]; we give a slightly simpler proof here for the reader’s conve-
nience.

Proposition 5.19. — With respect to the pairing p, S" x T',, = Ox defined above,

1. the algebra multiplication S'(2) ® S/() — S (RQ) is dual to the comultiplication of
I'.(T) followed by projection:

Iy (T) — EB (1) @ I',(T) — (1) @ I';(1).
a+b=i+j

2. The algebra multiplication T';(2) ® I'j(2) — I'i;(2) 15 dual to the comultiplication
Jollowed by projection:

SH(T) - @ ST ®@S(T) — S(T) ® S/(T).
a+b=i+j
Proof — Let £;: T — T,(l) be the universal polynomial law of degree 7 [3,

A4]. Then if k£ = 1+, {; ® {; defines a polynomial law T — I';(T) ® I';('T), and
hence a linear map ,LL;J: [(T) — I'i(T) ® I';(T). Adding these up we find a map

w:T(T) - T (T)®TI.(T).
This is the unique Ox-linear map whose restriction to I'y(T) sends each £;() to
> ik £;(1) ® £;(1). On the other hand, the comultiplication u* of I".(T) is a divided
power homomorphism sending ¢t to 1 ® t 4+t ® 1, so

W) =p M =e1+10n"=">» Mgl

i+j=k

Thus, #’ = p*. Now recall that p; is just the standard duality map and that one
deduces from p; a unique morphism of algebras

p: S() — P(T, Ox) = Hom(I'.(1), Ox),

where P(T, Ox) means the ring of polynomial laws T — Ox. Thus if x € S'(R) and
9 € SHR), pr(w) is pi(x)p;(»), where this product is taken in the algebra P(T, O).
In other words, the following diagram commutes:

Pi(x)

I'+(T) Ox

g |

I(T) @ T(T) L%V 6 & 6.

Since p' = p* this proves (1).
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Reversing the roles of € and T, we conclude from (1) that the multiplication
map my of the algebra S'(T) is the dual of the comultiplication map g of the group
law of T'.(€2). Since the latter commutes with algebra structure mgq of the alge-
bra I'.(€2), it follows that the dual m’ of mg, also commutes with my. Thus m' is an al-
gebra homomorphism S (T) — S (T)®S'(T). The same is true of the group law .
We claim that these two homomorphisms are equal, and it suffices to check that this
is true for elements of degree one. In other words, we have to check that the map
wi:'T =T Ox® Ox ®T is dual to the map mg: Ox @ QB 2 ® Ox — Q. But
this 1s trivially true. o

It will perhaps be helpful to make everything explicit. We shall do this in the
case B = O and o = 1,A". Note that & — —&; induces an isomorphism &/ = 1,.o7.

Corollary 3.20. — Let T and 2 be as above. Suppose that also that 'T' is free, and that
&1, ...,&,) s a basis for T and (w, ..., w,,) the dual basis for 2. Let 1. be the 1-adic filtration
of ST (resp., the PD-filtration of T""'T).

1.IfG=VT:
O;=ST; Eg&l=¢gV
LOgG = Q= 1_[ r,Q; gol =gl

n\ . ;
Ople ®e) = Y (l,)eg(el) ®0/(er)  for ¢ ®e€E ®E,

i+j=n

O () = Z (’Z)(—l)fe; oho 9;’ for he AL, L.

i+j=n
2.1/ G=V,T:
. 1+]))!
_ . MeglJl ( [I+]]
O =TT, &7V = il £
J!
O =5Q; gy = —L )1
(J—D!dh
Oun(er ® ) = Y Oei(e)) ® Oea(er)  for o @ ey € By ®Ey
i+j=n
Oga(h) = Y (=1)0ga o ho O for he A (Ey, Ey).
i+

It is also of some interest to give an explicit formula for the inverse to the map
h of Theorems 5.16 and 5.18. Let us do this when G = V, T. Let «; (the “Casimir
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operator”) be the element of S' QT corresponding to the identity homomorphism.
In terms of the bases above,

[ 1, I I
K; 3:Zwl®$m = Za)ll "'a’dl®§1[l]"' [5[1]‘

1= =i

If 6 1s a G-field on E, «; defines an endomorphism

Kip = Za)I g‘ﬁj : SQ®E— SQ®E.

=i

If 6 1s locally nilpotent, so is 6,,, and in this case

Kg = Z(— l)iKi,E
i=0

is a well-defined endomorphism of S'Q2®E. The following result is essentially classical;
we shall omit the amusing and elementary proof.

Proposition 5.21. — Let (E, 0) be a locally milpotent T".' T-module.
1. The Casumr operator kp: S'Q2 Q@ E — S'Q @ E defined above s a projection operator

with tmage
J(E) =S QE)™

and factors through the map o: S'Q2 @ E — E defined by the the augmentation
S'Q— ﬁx.
2. The map

B o= Za)J ® (keobl) : SQ®E—SQ® I(E)
J
is the wverse of the map h of Theorem 5.18.
3. The map

kg E— J(E)

induced by Kk 15 an isomorphism, inverse to the map
ni := 07 ojg: Ja9(E) — E.

These isomorphisms take the field 6 on E to 1,0 7. That is,
O ok = (— 1)Ky 0 O

Jor all 1.



128 A. OGUS, V. VOLOGODSKY
3.5 Azumaya algebras over group schemes

Recall that if M is a locally free sheaf of finite rank on a scheme Z, then the
(matrix) algebra & := éndy, (M) is a quasi-coherent sheaf of &-algebras whose cen-
ter is 0. Furthermore, the functor E — M ® E from the category of sheaves of
Oz-modules to the category of sheaves of left &-modules is an equivalence, with quasi-
inverse #omg(M, ). A sheaf of algebras over ¢, which locally for the fppf topology
is isomorphic to éndg, (M) for some locally free M is called an Azumaya algebra. Note
that an Azumaya algebra, viewed as &z-module, is locally free of rank ¢?, where d is
a locally constant function on Z. The function 4 is called the ndex of the Azumaya
algebra. An Azumaya algebra & is said to be splt if it is isomorphic to &ndg, (M) for
some such M; in this case M is said to be a splitting module. 1If </ is an Azumaya al-
gebra of rank ¢* and M is a sheaf of left &/-modules which is locally free of rank d
over Oy, then the natural map &/ — &ndgs, (M) is necessarily an isomorphism, so &7
is split and M i1s a splitting module [23].

Let us note for future reference that if M is an .&/-module which is locally free
and of finite rank as an &;-module, then MY := Jm,,(M, 0) is a naturally a right
&/-module, and for any &/ module N there is a natural isomorphism of &z-modules:

(5.21.1) Hom, (M, N) C Homy,(M,N) —> M"Y ®,, N > M’ ®,, N.

We have found it convenient to use the language of 2-categories to describe the rela-
tions among Azumaya algebras.

Definition 5.22. — Let &7 and B be Azumaya algebras over a scheme Z.

1. A 1-morphism M : &/ — A is a module M over o/’ ® B which is locally free over
Oy of rank (inde?)(indAB), i.e., a splitting of the Azumaya algebra A" @ AB.

2.If M: &f — B and N: B — € are 1-morphisms, then N o M := N @4 M.

3.1f M and N are 1-morphisms &/ — 9B, a 2-morphism: M — N is an isomorphism
of /" Q@ PB-modules M — N, with the obvious notion of composition.

For any object 7, id,, is just the bimodule 7.

If M is a 1-morphism &/ — %, then MY = Jomg, (M, Oy) is a B”? Q of -
module, e, a 1-morphism % — o/, and the natural maps MY o M = Endy(M) =
&/ = idy. Thus all 1-morphisms are equivalences (and all 2-morphisms are isomor-
phisms).

If & is an Azumaya algebra over Z, let Mod(?) denote the category of .o/~
modules, which we may view as a stack over Z. A l-morphism M: &/ — % gives
rise to an equivalence of categories:

Cy : Mod(#) = Mod(%) : E+— M ®,, L,
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together with functorial isomorphisms
(5.22.1) Cy (E®g, L) — Cyf (B) ®4, L

for every Oy -module L. Conversely, every equivalence of stacks, together with such
a family of isomorphisms (satisfying suitable compatibilities), comes from a 1-morph-
1sm.

Recall that the category of Dx/s-modules has a tensor structure: the tensor prod-
uct of Dy/s-module M and N is M ®4, N, where the action of the vector fields on
M ®g4, N is given by the Leibniz rule: Vp(m®n) := V(m) @ n+m® V(n). We will see
that in characteristic p, the tensor structure on MIC(X/S) comes from a more rigid
structure on the Azumaya algebra Zx,s which we will explain below. First we will
give an abstract definition on an Azumaya algebra over a group scheme, and then in
Example 5.26 we will construct a canonical tensor structure on Zx/s.

Definition 5.23. — Let G be a flat affine group scheme over a scheme X and let o7 be
an Azumaya algebra over Og. In the notation of (5.2), a tensor structure on o/ consists of the
Jollowing data:

1. A 1-morphism of Azumaya algebras on G x G:
§:uwrd — P @ pya.

2. An associatioity 2-morphism o as _follows. Note that p o (, ps) = o (p1, ) s the
multiplication morphism s G X G X G — G. Then o is a 2-morphism between the
1I-morphasms [ and g shown below:

wied —L s prot @ ot @ it

\ TS@id
(1,3)* (8)

Wl Q pyd
wid = pid @ pid ® piad

VDR Tid@s
P @ ure.
The above data should satisfy the pentagon condition [9, 1.0.1].

If G is commutative, then a symmetric tensor structure on &/ is a tensor struc-
ture as above together with an additional datum y. Note that o*(p]&/ ® p52/) =
(p59 @ pi), so that the standard commutativity isomorphism for ® can be viewed
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as an isomorphism yg: 0" (p| @ pyof/) = piad @ ps/. Since G is commutative,
poo = u, and hence the commutative square below exists. Then y is a 2-morphism

o et 2Ok ot (prad @ pad)
] e
WAl - (1 @ pyad)

such that y? = id. The associativity morphism & and the commutativity morphism y
should also satistfy the hexagon axiom [9, 1.0.2].

Azumaya algebras with (resp. symmetric) tensor structure also form a 2-category:
a l-morphisms &/ — 2 is by definition a pair (M, A), where M is a 1-morphism of
the underlying Azumaya algebras as before and A is a 2-morphism

prid =2 prod @ prot WA
\ iPT(M)%(M) 2 M*(M)l \
DB QA WB—— B R ;P

compatible with the associativity (resp. and the commutativity) 2-morphisms.

Let (<7, 8, ) be an Azumaya algebra with a tensor structure. Then the category
Mod () of modules over o7 is endowed with tensor structure: given .27-modules M,
and My we define the tensor product

(9.23.1) M; @ My = 1, (87 (piM; ® p5My)).

Recall from [9] that a unit object of a category .# with a tensor structure is a pair
(U, &), where U is an object of .# and % is an isomorphism

h:U~U®U,

such that the functor ® U : # — .# sending an object M to M®U is an equivalence
of categories. It is shown in (loc. cit.) that the unit object is unique up to a unique
isomorphism and that for any object M there is a functorial isomorphism M®U >~ M.

Lemma 5.24. — Let o/ be an Azumaya algebra over G equipped with a tensor structure
(8, @) (5.23). Then the restriction 1*.9/ of &/ to the zero section has a canonical splitting Ny.
Moreover, there 1s an isomorphism h @ 1, Ny =~ ,No ® ,No, and the pair U := (1,Ny, h) s the
unit object of Mod ().

Progf. — Since ot = p; o1 = 1, the restriction 8, : "o/ — *& Qg "o/ of
8 to the zero section of G is an *(&” ® &/ ® .@7/)-module P. Then the 7*.<7-module
Ny := Fom(oyme.a) ("9, P) gives a splitting of 7*.a7.
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Next we construct the isomorphism /. By definition,

U®U=u (5" (piU®p1))
= z'*(Sal(No ® No) = Homp (g0 (P, Nog @ No).

Evaluation of homomorphisms defines an isomorphism of *(A” ® A ® A)-modules
*o/ ® Ny — P. Thus

U ® U = Z* %ml‘*(&y@&{) (Z*M ® NOy NO ® NO)
= 4, Hom;, (", Ny) = U.

Finally, we have to prove that the functor ® U : Mod(%/) — Mod(&/) is an
equivalence of categories. Let I';: G — G x G be the graph of the zero section. Since
pol;=id, I'(8) is a 1-morphism: §, : g — o Q. If M € Mod(&),

M® U :=§"M® p*Ny).

Since p*Nj is a splitting of j*7, the functor ®p*N, : Mod(/) — Mod(« ® j*7) is
an equivalence. Since 87! : Mod(«/ ® j*/) — Mod(#) is also an equivalence, the
lemma is proved. o

Observe that a tensor structure on %/ induces a canonical 1-morphism (*.o/' =
/", obtained by pulling back § by the graph of ¢, since by Lemma 5.24, *& is
canonically split. It follows that the category Mod(./) has inner Homs. Let

8w — prd” Q pyd

be the pullback of 8 by (¢, id) composed with the 1-morphism "%/ ® o — /" Q o .
If E; and E, are objects of Mod(/), J#x(E,, Ey) is naturally a p7.%7” ® p3.o/-module,
and

H(Ey, Ey) = (87" Hex(Ey, Ey)).

If G is commutative and the tensor structure is endowed with a commutativity
morphism, then Mod(&”) becomes a tensor category in the sense of [9]. From now
on, we assume this to be the case.

Definition 5.25. — A tensor splitting of an Azumaya algebra <7 equipped with a ten-
sor structure over G 15 a I-morphism (in the category of Azumaya algebras with symmetric tensor
structure): Og — < .

Note that, in general, a 1-morphism M: &/ — % gives rise to equivalence of
tensor categories:

Cyf : Mod(#) ~ Mod(#), Cy'(M; ® My) = Cif (M) ® Cyf (My).
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In particular, a tensor splitting M gives an equivalence between the tensor categories:
CKII : Mod(0;) ~ Mod(«7). Observe that g is a commutative coalgebra with counit
in the category Mod(&). Thus, by “transport of structure” the splitting module M =
Cgf(ﬁc) becomes a commutative coalgebra with counit in Mod(7). In other words,
we have canonical morphisms:

M—->M®M, ¢: M — U.

In the case of the split Azumaya algebra &f' = 0 with the obvious tensor structure,
the notion of a tensor splitting boils down to the notion of a character sheaf intro-
duced in Definition 5.11.

Example 5.26. — Let us explain how the above formalism works in the case of
the Azumaya algebra of differential operators. First recall the following lemma.

Lemma 5.27. — Let M and N be objects of MIC(X/S), and let Yy and Y be thewr

p-curvatures. Then the p-curvature of the tensor product and internal Hom:

Ymen: M Qo N > M Qs N® F;(/SQ;(’/S
Y Home, (M, N) — Homg, (M, N) ® FY Q4

are given respectively by the formulas

Ynen(m @ n) = Yn(m) @ n+m Q Yx(n)
Vw(h) = Yxoh—hoyy. -

By definition, giving a tensor structure on %5 amounts to giving a 1-morphism
of the Azumaya algebras on Ty, g Xx T g

81 W Dxys = )y Dxss ® Py Dxys

together with the associativity and commutativity 2-morphisms o and y. We will con-
struct § as follows. View Zx;s as a left module over itself, and endow A :=
Dx s Qo Pxys with the left Zx s-module structure defined by the Leibnitz rule above.
Note that the right action of Zx/s on itself makes A a right module over the alge-
bra Zx/s ®F§;/s oy Dx s or, equivalently, a left module over Zx s ®F>';/s Oy (Dx /s Oy

PDxss)?. Lemma 5.27 shows that the action factors through s By 5 Ty ss

X/sOx

(Dxs ®F£</s Oy Dx;s)”, where the FY 55 Txr/s-module structure on Dx s ®F£</s Oy Dx s

is given by comultiplication:

[T Fy S Txys = Fy s (S Txys oy, S Txys)-



NONABELIAN HODGE THEORY IN CHARACTERISTIC p 133

Thus, A gives rise to a module over the Azumaya algebra u*%x;s ® (p7%x/s ®
PsPxs)?. It is easy to see using local coordinates that as a module over the center
ﬁTQ/s it is locally free of rank p**sX which is equal to the index of the Azu-
maya algebra. Therefore we get a I-morphism §.

Next, let us construct the commutativity 2-morphism y. Consider the auto-
morphism X of the algebra Zx/s ®F§;/SS"TX//S (Dxs ®F§;/sﬁx/ PDxs)” which sends

D, ® Dy ® Ds to D; ® D3 ® Dy. Then, giving ¥ amounts to giving an isomorphism

*
XX/ TX’/S

Dxss Qo Dxys = (Dxys ®ox Dxys)™

of modules over Zx /s ®-
X

the trick.
To construct the associativity morphism o, we note that the two 1-morphisms:

STy (Dxs ®F>';/s Oy Px,s)”. The obvious permutation does

Wi Dxss = P Dxs @ pyPxys @ p3Dxs

in Definition (5.23) are given by the same module Zx s ® o, Zx/s @o Dx/s. With this
identification, we let o be the identity morphism.

It remains to show that o and y satisty the pentagon and hexagon axioms. To
save space, we may use the following trick. First, one can easily check the axioms
for the restriction of %x/s to the zero section X' — T%, /s Furthermore, since the
statement is local on X and stable under a base change T'— S, we may assume that
S 1s reduced. Then any 2-morphism over Ty, g Xx T g X -+ Xx Ty /g 1s uniquely
determined by its restriction to zero section. This completes the proof.

Remark 5.28. — 1f the base S is normal and reduced, one can prove that the
tensor structure on %x,s equipped with an isomorphism ¢ : Ny 2~ Fx/s.0x between
the canonical splitting module over the zero section X' — T, described in
Lemma 5.24 and the splitting Fx/s,0x of Remark 2.2 is unique (up to a unique iso-
morphism).

Next we shall discuss tensor Azumaya algebras over the formal and PD comple-
tion of a group scheme G along its zero section.

Let G (resp. ) denote the formal (resp. PD) completion of G along its zero sec-
tion, viewed as a locally ringed space. Let G (resp. ¢4") be the formal (resp. PD) com-
pletion of G" along its zero section. Then the definition a tensor structure for Azumaya
algebras over G (resp. ) is the same as before, with these completed fiber products
in place of G".

Denote by ¢ : G, — G (resp. 7 1 9, — ¥) the subscheme defined by the (k4 1)st
power (resp. divided power) of the ideal of the zero section; if M is an Op-module
(resp. Oy-module), M, := 7,4y M. The multiplication map p gives rise to morphisms
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of schemes: u : G, x G; = Gyyy (resp. 1 @ 9, X 4 — 9.,)). The category of /-
modules with the convolution product defined in Formula (5.3) is not a tensor category,
since the associativity constraint fails in general. However, the subcategory Mod (.27
of I.-continuous modules is stable under the convolution product and is a tensor cat-
egory. (Recall that a module is said to be I.-continuous if each local section is locally
supported on Gy (resp. %), for some £.)

Let M : Oy — 7 be a tensor splitting. The splitting module M inherits a struc-
ture of a topological commutative coalgebra with counit, that is, a family of maps
M, - M;®M,, for any n > [+, and ¢ : M — U satisfying the obvious compatibilities.

Proposition 5.29. — Let o/ be a tensor Azumaya algebra over G (resp. G ). Then the
Jollowing data are equivalent.

1. A tensor splitting of <.
2. A splitting module M for <7 with the structure of a topological coalgebra with counit.
3. A splitting module M _for o7 whose topological dual h_r)nff M, U) s endowed with the

structure of an algebra with unit in the tensor category Mod (7).

Progf. — We will prove the result for ¢; the formal case is similar. The equiva-
lence of (2) and (3) is clear, and we have already shown how the data of (1) give the
data of (2). It remains to explain how the data of (2) give (1). Let M be a splitting with
a coalgebra structure: M, — M;®M,. By definition, M;®M, = M*S_l(pTMk(@p;M[).
Thus, using the adjointness property of w, and p*, we get a morphism: w*M;,, —
ST (M, @ psM,). Let us consider the restriction of the above morphism to %, x ¥

(5.29.1) (> 1) WM = G i) Mgy = 87 (PM, ® p3M)
= (1. 1)*8 " (PM @ p;M).

These morphisms are compatible with change of £ and /, and we claim that
they are all isomorphisms. Indeed, both (i, i)*u*M and (3, i)*§~' (pIM ® psM) are
splittings of the Azumaya algebra u*<7 over ¢, x %, and, in particular, they are lo-
cally free over ¥, x ¢,. Also, the existence of counit: M — My >~ U implies that, for
k= 1= 0, the morphism (5.29.1) is an isomorphism. Hence (5.29.1) is an isomorph-
ism, for any & and /. Thus, we get an isomorphism: u*M =~ §~' (M ® psM). O

Let &/ be an Azumaya algebra on ¢ with a symmetric tensor structure. Let
TSP be the stack on X assigning to a scheme U étale over X the groupoid of tensor
splittings of the Azumaya algebra 27, over ¢ x U (i.e. l-morphisms from @4, to the
trivial Azumaya algebra Oy, ). Let .72 be be the stack sending U to the groupoid
whose objects are pairs (N, ¢), where N is a splitting of the restriction 7;.24; and e is
an isomorphism e : *N =~ N,,.
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Proposition 5.30. — Let G be a smooth commutative group scheme and </ be an Azumaya
algebra on G with a symmetric tensor structure, which admits a tensor splitting étale locally on X.
Then the obuvious restriction functor:

i TSP — SP
i an equivalence of stacks.

Remark 5.31. — The stack %) is, in fact, a gerbe. That is, there exists an
étale covering of U; of X such that, for each i, %y, is non-empty, and, for any
étale morphism U — X, any two objects of .#Z; are locally isomorphic. Thus, the
proposition implies that the stack 7.7 is also a gerbe.

Proof. — Recall that, for a smooth commutative group scheme G, the exponen-
tial map induces an isomorphism:

exp: T =Y

where 7 is the completed PD envelope of the zero section X < T of the Lie alge-
bra T. Thus, without loss of generality we can replace G by the vector group T.

To prove that ¢, is an equivalence we will construct the inverse functor exp :
ISP — TSP explicitly. The reason we call it the exponential will be clear in a mo-
ment. Given a <7-module M we denote by I'*M the &/-submodule of the tensor power
M®" which consists of S;-invariant sections.

Let (N, ¢) be an object of .| over U. Define

M1 - il*N, Mk - Fle.

We claim that M; is a splitting of @7, over ¢,. Indeed, since the statement is local on
U we may assume that ./ has a tensor splitting. A tensor splitting, in turn, gives an
equivalence between the tensor category of I.-continuous 27;-modules and I -continu-
ous Oy y-modules. This equivalence takes M; to a line bundle over ¢; xx U. Shrink-
ing the base, if necessary, we may assume that the line bundle is trivial. Then the claim
follows from the fact that, for smooth G, the S;-invariant multiplication morphism

gllc:glngX"'Xgl—)%

induces an isomorphism [0y >~ Oy,.
The morphism ¢ : M, — U gives the map:

M; — M,_,

and, moreover, ;| M; >~ M;_,.
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We define exp(N) to be
exp(N) = lim M.

First of all, it is clear that M := exp(N) is a splitting of 2%;. Furthermore, it is a coal-
gebra with counit. The coalgebra structure comes from the canonical morphism:

My, = "M, — I'™, ® I'M, = M, ® M,.

By Proposition 5.29 it gives a tensor splitting,

It is clear that 7 (exp(N)) = N, so it remains to construct a canonical isomorph-
ism
(5.31.1) M 2= exp(i; (M)),

for any tensor splitting M over U. But this is immediate: the splitting M gives an
equivalence of tensor categories: Cy; : Mod(27;) >~ Mod(Oyy.u), which takes M to
Ogxu- We define (5.31.1) to be the morphism corresponding under the above equiv-
alence to the canonical isomorphism

ﬁg ~ h(r_n Fkﬁ%. 0O

Denote by ¢* the sheaf on X whose section over a scheme U étale over X is
the group of homomorphisms: Homy (¥4 x U; G,).

Let o/ be an Azumaya algebra on ¢ with a symmetric tensor structure, which
admits a tensor splitting étale locally on X. We assign to &7 a class [«7] in H,(X, ¥*)
as follows. Choose an étale covering of U, of X together with tensor splittings N;
on each U; and tensor isomorphisms ¢; : N; >~ N;. Then ¢,¢;¢; is a Cech co-
cycle with coefficients in ¢*. Similarly, given an Azumaya algebra over ¥ together
with a splitting over the zero section we can construct an element of H,(X, Ofy) =
H; (X, T§ /x)> Where 07, denotes the group of invertible functions on ¢, equal to 1
on X — 9.

Recall that for any smooth commutative group scheme G over X we have the
isomorphism:

exp: O g =T x —> 9"
The inverse map is the restriction ;. Passing to cohomology we get a morphism:
exp : H3,(X, T x) = H.,(X, 9" — H(X, OF).

Proposition 5.32. — Let o/ be an Azumaya algebra on G with a symmetric tensor structure,
which admits a tensor splitting étale locally on X. Then

expli; ] = [A].

Since the restriction & : HZ/(X, 9*) — HZ(X, T /x) 1s an isomorphism, the prop-
osition follows from the obvious fact: [¢f.e/] = if[</].
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