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ABSTRACT

In [6], S. Bloch conjectures a formula for the Artin conductor of the �-adic etale cohomology of a regular model
of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch,
enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In
this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal
crossings.

0. Introduction

Let K be a discrete valuation field with perfect residue field F and let XK

be a proper smooth scheme over K of dimension d . We briefly recall the defin-
ition of the conductor. We give a detailed account in Section 6.1. The Swan
conductor Sw(XK/K) of XK is defined to be the alternating sum Sw(XK/K) =∑2d

q=0(−1)qSwHq(XK̄, Q �) of the Swan conductor of the �-adic etale cohomology
for a prime � different from the characteristic p of F. The Swan conductor of an
�-adic representation V is defined to be the intertwining number

Sw(V) = 1
[L : K]

∑

σ∈PL/K

swL/K(σ)Tr(σ : V)

by taking a sufficiently large finite Galois extension L of K, where swL/K(σ) denotes
the Swan character and PL/K denotes the wild inertia subgroup of Gal(L/K). For
a proper flat and regular scheme X over S = Spec OK such that X⊗OK K = XK,
the Artin conductor Art(X/OK) is defined by

Art(X/OK) = χ(XK̄)− χ(XF̄)+ Sw(XK/K).

In the right hand side, χ denotes the �-adic Euler number.
To state the conductor formula, Bloch introduces in [6] the localized self-

intersection class

(∆X,∆X)S = (−1)d+1cd+1
X
XF

(
Ω1

X/OK

) ∩ [X] ∈ CH0(XF)

where cd+1
X
XF

(Ω1
X/OK

) ∩ [X] denotes the localized Chern class of the coherent OX-
module Ω1

X/OK
and dim X = d + 1. We give an explicit computation in Proposi-

tion 5.1.6. Let deg : CH0(XF)→ CH0(F) = Z be the degree map. Bloch formulates
the following in [6].

� The work was partially supported by JSPS Grant-in-Aid for Scientific Research 11640013, 14340002

DOI 10.1007/s10240-004-0026-6



6 KAZUYA KATO, TAKESHI SAITO

Conjecture 6.2.1. — Let K be a discrete valuation field with perfect residue field F
and let X be a proper flat and regular scheme over OK with smooth generic fiber. Then we

have

Art(X/OK) = −deg(∆X,∆X)S.

If dim XK = 1, it is proved by him in the same paper [6]. If dim XK = 0,
it is nothing but the classical conductor-discriminant formula in algebraic number
theory. For an elliptic curve, the formula is known in [38] Corollary 2 of Theo-
rem 1 to be equivalent to the Tate-Ogg formula [31] for the relation between
the conductor and the discriminant. The Milnor formula ([10] Exp. XVI Conjec-
ture 1.9) for isolated singularities is shown to follow from the conductor formula
in [33].

The main result of this paper is the following.

Theorem 6.2.3. — Let K and X be as in Conjecture 6.2.1. Assume that the reduced

closed fiber (XF)red is a divisor of X with normal crossings. Then Conjecture 6.2.1 is true.

Under the stronger assumption that the multiplicities li in XF = ∑
i liDi are

prime to the residue characteristic, Theorem 6.2.3 is proved in [4] and [7] in-
dependently. In a geometric equi-characteristic situation, the conductor formula is
studied in [22] (cf. [13] Example 14.1.5).

If we could assume an embedded resolution in a strong sense for the reduced
closed fiber, Conjecture 6.2.1 would be a consequence of Theorem 6.2.3. Let X
be as in Conjecture 6.2.1 and assume that there exists a sequence of blowing-ups
X′ = Xm → · · · → X0 = X at regular closed subschemes supported in the closed
fibers such that the reduced closed fiber (X′

F)red has normal crossings. Then Theo-
rem 6.2.3 applied to X′ together with Proposition 6.2.2 implies Conjecture 6.2.1
for X.

We also prove a generalization involving an algebraic correspondence. Let XK

be a proper smooth scheme of dimension d over K and � be a prime number
different from the characteristic of the residue field F as above. For an algebraic
correspondence Γ ∈ CHd(XK ×K XK), its cycle class defines an endomorphism Γ∗

of H∗(XK̄, Q �). We put Sw(Γ, XK/K) = ∑2d
q=0(−1)qSw(Γ∗ : Hq(XK̄, Q �)). For an

endomorphism f of an �-adic representation V, its Swan conductor is defined by

Sw( f : V) = 1
[L : K]

∑

σ∈PL/K

swL/K(σ)Tr( f ◦ σ : V)

by taking a sufficiently large finite Galois extension L of K.
Let X be a proper and flat regular scheme over S = Spec OK such that

X ⊗OK K = XK and that the reduced closed fiber (XF)red has simple normal
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crossings. In Section 5.4, we define the logarithmic localized intersection product
[[X, ]] : GrF

•G(XK ×K XK) → GrF
•−dG(XF) (5.4.2.4) on the graded quotients of

the Grothendieck groups of coherent sheaves with respect to the topological filtra-
tion F•.

Theorem 6.3.1. — Let K be as above and � be a prime number different from the

characteristic of the residue field. Let XK be a proper smooth scheme of dimension d = dim XK

and Γ ∈ CHd(XK ×K XK) be an algebraic correspondence on XK.

1. The Swan conductor Sw(Γ, XK/K) is a rational number independent of �.

2. Let X be a proper and flat regular scheme over OK such that X⊗OK K = XK and

that the reduced closed fiber (XF)red is a divisor with simple normal crossings. Let [[X,Γ]] ∈
GrF

0G(XF) be the image of Γ by the composition map CHd(XK×K XK) → GrF
d G(XK×K

XK)
[[X, ]]→ GrF

0G(XF). Then we have an equality of integers

Sw(Γ, XK/K) = −deg[[X,Γ]].
Theorem 6.3.1.1 is a consequence of Theorem 1 of [41]. We will give an

independent proof. Theorem 6.3.1.2 is a generalization to higher dimension of
a logarithmic version of the formulas in [26] and [1]. The localized product in
the right hand side is studied in an unpublished preprint [24] when Γ is the
graph of an “admissible” automorphism (cf. Corollary 6.3.3).

The main ingredients of the proof of the two theorems are the following.

1. Equivalence of the conductor formula with its log version.
2. K-theoretic localized intersection theory.
3. Log Lefschetz trace formula.

An outline of the proof, completed in Sections 6.4 and 6.5, of the conductor
formula is summarized as follows. We show that Theorem 6.2.3 is equivalent to
its log version

Sw(XK/K) = −deg(∆X,∆X)
log
S

Theorem 6.2.5. The logarithmic self-intersection class (∆X,∆X)
log
S ∈ CH0(XF) is

defined by replacing Ω1
X/OK

in the definition of (∆X,∆X)S by the sheaf
Ω1

X/OK
(log / log) of differential 1-forms with log poles. We define the logarithmic

K-theoretic localized intersection product [[X, ]] : G(XK ×K XK) → G(XF) with
the log diagonal map X → (X ×S X)∼ in Definition 5.4.2. It is defined as the
difference of the classes of higher Tor-sheaves of even degree and odd degree. We
show the equality

(∆X,∆X)
log
S = [[X,∆X]]
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in Lemma 5.4.5.1. The log version, Theorem 6.2.5, is the special case of Theo-
rem 6.3.1 where Γ is the diagonal ∆X.

To prove Theorem 6.3.1, we take an alteration W → X where W is a pro-
jective and strictly semi-stable scheme over the integer ring T = Spec OL of a finite
normal extension L of K. Using this alteration, we compute the Swan conductor
as

[W : X]Sw(Γ, XK/K) = q
∑

σ∈PL/K

sw(σ)Tr
(
Γ∗σ ◦ σ∗ : H∗(WL̄, Q �)

)

in Corollary 6.4.5 where Γσ denotes the pull-back of Γ by WL×LWσ
L → XK×KXK,

Wσ denotes the conjugate of W by σ , and q is the inseparable degree of L over K.
On the other hand, we compute the localized intersection product as

[W : X] degXF
[[X,Γ]] = −q ·

∑

σ∈PL/K

sw(σ) · degWt
∆∗

Wt
(Γσ,t)(6.4.6.1)

in Proposition 6.4.6. In the right hand side, t denotes the closed point of T, Γσ,t ∈
G((W×T W)∼t ) denotes the reduction of Γσ and ∆∗

Wt
: G((W ×T W)∼t ) → G(Wt)

denotes the pull-back by the log diagonal map. For the proof of the equality
(6.4.6.1), we use associativity, Propositions 3.3.2 and 3.3.3 of the localized intersec-
tion product and an interpretation, Lemma 6.1.1.2, of the Swan character as the
localized intersection product. Finally, we complete the proof of Theorem 6.3.1 by
showing a log Lefschetz trace formula

Tr
(
Γ∗σ ◦ σ∗ : H∗(WL̄, Q �)

) = degWt
∆∗

Wt
(Γσ,t)

in Theorem 6.5.1.
The proof outlined above is compared to Bloch’s original proof in [6] as

follows. In the original proof, the main steps are the following.

1′. Computation of the Euler characteristic of the closed fiber.
2′. Projection formula for localized intersection product.
3′. Computation of the trace on etale cohomology.

Each of items 1′–3′ corresponds to each of items 1–3 above, respectively. In the
original proof, the step 1′ is carried out by a detailed combinatorial analysis pecu-
liar to the intersection product on surfaces. In this paper, by introducing the log
version, we avoid the difficulty in this step. The idea is that putting the log struc-
ture defined by the boundary has an effect similar to cutting off the boundary, the
closed fiber in our case. A prototype of this idea is the Lefschetz trace formula
for an open variety, Lemma 6.2.6. In this paper, it is realized as Theorem 5.4.3
which asserts that the logarithmic localized intersection product in fact depends
only on the generic fiber. Non-logarithmic localized intersection product does not
share this property in general. The step 2′ is generalized to the theory of local-
ized intersection product using K-theory. An advantage of the use of K-theory lies
in that the crucial associativity formulas, Propositions 3.3.2 and 3.3.3, are derived
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from the associativity of derived tensor product. The log Lefschetz trace formula,
Theorem 6.5.1, replaces the computation in the step 3′ in higher dimension.

The idea behind the definition of the localized intersection product is as
follows. If X is a smooth scheme over a field F, the intersection product of cy-
cles V and W on X is defined to be the pull-back of V×W in X×F X by the
diagonal embedding X → X×F X. Our aim is to generalize it to a regular flat
scheme X over a discrete valuation ring OK. The difficulty here is that, contrary
to the case over a field, the immersion X → X×OK X is not a regular immersion
unless X is smooth over OK. If we had a base field F of OK, the fiber product
X×OK X should be a divisor of a regular scheme X×F X. If D is a divisor of
a regular scheme P, one can almost recover the intersection product of cycles on
D with respect to P using Tor-sheaves on D, as in Proposition 3.2.3. Although
the product X×OK X may not be globally a divisor of a regular scheme, we can
make a suitable definition of product using Tor-sheaves, based on the fact that
it is locally a divisor of a smooth scheme over X with respect to a projection.
The product thus defined is in fact supported in the nonsmooth locus of X and
is called the localized intersection product. A relation with the localized intersec-
tion product in the setting of Chow groups defined by Abbes in [1] is given in
Theorem 3.4.3.

In the classical case, the Lefschetz trace formula is rather a formal conse-
quence of the Poincaré duality, the Künneth formula, the cycle map and the com-
patibility of trace map with degree map. For log etale cohomology, the Poincaré
duality and the Künneth formula are already established in [28]. We consider the
Chern character map to log etale cohomology in place of the cycle map. The
required compatibility is reduced to that for the usual etale cohomology.

The content of each section is as follows. In Section 1, we recall basic
facts on derived exterior powers, cotangent complexes and on the Atiyah class
map following [19]. We also introduce in 1.6 a spectral sequence computing
TorOX

q (OV,OW) under a certain hypothesis and study its relation with the Atiyah
class map in 1.7. We recall some basic facts on K-theoretic intersection product
and localized Chern classes and relate the derived exterior power to the localized
Chern class in a certain case in Section 2. In Section 3, we develop generality
on localized K-theoretic intersection product. In Section 4, we develop generality
on logarithmic product and its applications. In Section 5, we study localized in-
tersection product on schemes over a discrete valuation ring using the results in
Sections 3 and 4. In the final Section 6, we state the main result, Theorem 6.2.3,
and its log version, Theorem 6.2.5, and prove their equivalence. We formulate
Theorem 6.3.1, which contains Theorem 6.2.5 as a special case, in terms of log-
arithmic intersection product. In the final Subsection 6.5, we also state and prove
logarithmic Lefschetz trace formula, Theorem 6.5.1 and prove Theorem 6.3.1 and
thus complete the proof of Theorems 6.2.3 and 6.2.5.
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The results in Subsections 1.3, 1.6, 1.7, 2.3, 2.4 and 3.4 are used to prove
the equivalence of Theorems 6.2.3 and 6.2.5 and to show that Theorem 6.2.5 is
a special case of Theorem 6.3.1. A reader only interested in the proof of Theo-
rem 6.3.1 may skip them.

Some results in this paper are closely related to those in the paper [39].
In [39], there are mistakes in Definition (1.1), proof of Proposition (3.1), and
Proposition (4.1). Definition (1.1) is corrected as Definition 1.2.1 and Lemma 1.2.6.
Proposition (3.1) is reproved as Lemma 5.1.3. A corrected statement of Proposition
(4.1) is given in Proposition 5.1.4. The author of [39] apologizes for the mistakes
and inconvenience.
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1. Derived exterior powers and cotangent complexes

We recall generalities on derived exterior powers and cotangent complexes.
A basic reference is [19].

After recalling standard notations on simplicial modules in 1.1, we recall the def-
initions and some basic properties of derived exterior powers and symmetric powers
in 1.2. We introduce Koszul simplicial algebras in 1.3. We recall briefly the definition
of cotangent complexes and the Atiyah classes in 1.4 and the associativity and the pro-
jection formula for Tor in 1.5. We define the excess conormal complex and a spectral
sequence computing Tor in 1.6. We study its relation with the Atiyah class in 1.7.

1.1. Simplicial modules and chain complexes. — As a preliminary, we recall the
standard notations on simplicial objects. Basic references are [19] Chap. I 1 and [42]
Chap. 8.

For an integer n ≥ 0, let [0, n] denote the finite ordered set {0, 1, ..., n}. Let
∆ denote the category whose objects are [0, n], n = 0, 1, 2, ... and morphisms are
increasing maps. For 0 ≤ i ≤ n, let δi : [0, n − 1] → [0, n] be the increasing injection
skipping i and let σi : [0, n+ 1] → [0, n] be the increasing surjection repeating i. For
a category C , a simplicial object of C is a contravariant functor ∆o → C . A simplicial
object X : ∆o → C is determined by the objects Xn = X([0, n]) for n = 0, 1, 2, ...,
the maps di,n = δ∗i : Xn → Xn−1 and si,n = σ ∗i : Xn → Xn+1 for 0 ≤ i ≤ n. For an
object X of C , the constant simplicial object defined by Xn = X for all n ≥ 0 and
di,n = si,n = idX is denoted by KX. If there is no fear of confusion, we drop K and
write simply X. Let Simpl(C ) denote the category of simplicial objects of C .

For a category C , a bisimplicial object of C is a contravariant functor (∆×∆)o

→ C . Let Bisimpl(C ) denote the category of bisimplicial objects of C . The diagonal
functor ∆ : Bisimpl(C ) → Simpl(C ) is defined as the pull-back by the diagonal func-
tor ∆→ ∆×∆. For a bisimplicial object X, we let X∆ = ∆X denote the associated
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simplicial object. We identify a bisimplicial object (Xm,n)m,n with a simplicial simplicial
object ((Xn)m)m,n. The functor Bisimpl(C ) → Simpl(Simpl(C )) is an isomorphism of
categories.

Let A be an abelian category. A chain complex is a complex C = (Cn, dn : Cn

→ Cn−1)n satisfying Cn = 0 for n < 0. Let C•(A ) denote the full-subcategory of the
category C(A ) of complexes of A consisting of chain complexes. For an simplicial
object C = (Cn, di,n, si,n)i,n of A , the normal complex NC = (NCn, dn)n is the chain
complex defined by NCn = ⋂

1≤i≤n Ker(di,n : Cn → Cn−1) and dn = d0,n|NCn . We say
a map C → C′ of simplicial object is a quasi-isomorphism if the map NC → NC′

of normal complexes is a quasi-isomorphism. We define a functor N : Simpl(A ) →
C•(A ) by sending a simplicial object to its normal complex.

The Dold-Kan transform K : C•(A ) → Simpl(A ) gives a quasi-inverse of the
functor N : Simpl(A ) → C•(A ) ([19] Chap. I 1.3.1, [42] 8.4). Further, the functors
N and K are compatible with homotopies and induce quasi-inverse functors between
the corresponding categories up to homotopy [42] Theorem 8.4.1.

A double chain complex is a naive double complex C = (Cm,n, d ′m,n : Cm,n →
Cm−1,n, d ′′m,n : Cm,n → Cm,n−1)m,n satisfying Cm,n = 0 for n < 0 or m < 0 and d ′m,n−1d ′′m,n =
d ′′m−1,nd

′
m,n. Let C•,•(A ) denote the category of double chain complexes. For a double

chain complex C = (Cm,n, d ′m,n, d ′′m,n), the associated simple chain complex
∫

C is de-
fined by (

⊕
n=p+q Cp,q,

∑
n=p+q(d

′
p,q + (−1)pd ′′p,q))n. We have a functor

∫ : C•,•(A ) →
C•(A ). We identify a double chain complex (Cm,n)m,n with a chain complex of chain
complexes ((Cn)m)m,n. The functor C•,•(A ) → C•(C•(A )) is an isomorphism of cat-
egories.

For a bisimplicial object C of A , the normal complex NC is the double chain
complex consisting of NCm,n = ⋂

1≤i≤m Ker d ′i,(m,n) ∩
⋂

1≤j≤n Ker d ′′j,(m,n) and d ′m,n =
d ′0,(m,n)|NCm,n, d ′′m,n = d ′′0,(m,n)|NCm,n . The normal complexes define a functor N : Bisimpl(A )

→ C•,•(A ).
The diagram

Bisimpl(A )
N−−−→ C•,•(A )

∆



	

∫


	

Simpl(A ) −−−→
N

C•(A )

(1.1.0.1)

is commutative up to homotopy. Namely there exist a morphism N ◦ ∆ → ∫ ◦N of
functors called the Alexander-Whitney map and its inverse up to homotopy ([42] 8.5.4
and [19] I 1.2.2, 1.3.5). It induces an isomorphism of functors to the derived category.

The functor N for the abelian category Simpl(A ) defines a functor N′ :
Bisimpl(A ) = Simpl(Simpl(A )) → C•(Simpl(A )). The functor N : Simpl(A ) →
C•A induces a functor N′′ : C•(Simpl(A )) → C•(C•A ) = C•,•A . We have N =
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N′′ ◦ N′. Similarly, the partial Dold-Kan transforms K′ : C•(Simpl(A )) →
Simpl(Simpl(A )) = Bisimpl(A ) and K′′ : C•,•A = C•(C•A ) → C•(Simpl(A ))

are defined and the composition K = K′ ◦K′′ gives a quasi-inverse of N.

1.2. Derived exterior powers and derived symmetric powers. — We recall generalities
on derived exterior power complexes and derived symmetric power complexes. For
a chain complex of the form [L →M ] where M is put on degree 0, we give an ex-
plicit description of the exterior powers and the symmetric powers in Corollary 1.2.7.
A basic reference is [19] Chapitre I 1.3 and 4.2.

In this section, (X, AX) denotes a ringed topos. In practice, we consider the fol-
lowing two cases. Let (T, AT) be a ringed space. Besides (T, AT) itself, we also con-
sider the topos X = Simpl(T) of simplicial sheaves of sets on T with the constant
simplicial ring AX = KAT. In the second case, the category (AX-modules) is naturally
identified with the category Simpl(AT-modules) of simplicial AT-modules.

We say a simplicial AX-module M is flat if each component Mn is flat. We also
say a chain complex of AX-modules K is flat if each component Kn is flat. For sim-
plicial AX-modules M and N , let M⊗AX N denote the simplicial module defined by
(M⊗AX N )n =Mn⊗AX Nn and let M⊗b

AX
N denote the bisimplicial module defined

by (M⊗AX N )m,n =Mm⊗AX Nn. For chain complexes of AX-modules K and K ′, let
K ⊗d

AX
K ′ denote the double chain complex defined by (K ⊗d

AX
K ′)m,n = Km⊗AX K ′

n

and let K ⊗AX K ′ be the associated simple complex
∫
(K ⊗d

AX
K ′). Since M⊗AX N

= ∆(M ⊗b
AX

N ) and N(M ⊗b
AX

N ) = NM ⊗d
AX

NN , the Alexander-Whitney map
N ◦ ∆ → ∫ ◦N induces a quasi-isomorphism N(M ⊗AX N ) → ∫

(NM ⊗AX NN ).
Hence, we have quasi-isomorphisms

K ⊗AX K ′ = ∫ (
K ⊗d

AX
K ′)

−−−→ ∫ (
NKK ⊗d

AX
NKK ′) = ∫

N
(
KK ⊗b

AX
KK ′)

−−−→ N∆
(
KK ⊗b

AX
KK ′) = N

(
KK ⊗AX KK ′).

(1.1.0.1)

We briefly describe the idea of the definition of derived exterior powers and
derived symmetric powers for chain complexes on a ringed topos (X, AX) ([19] Chap.
I 4.2.2.2, Definition 1.2.1 below) before recalling it precisely. In 1.1, we have recalled
an equivalence

C•(AX-modules)
K→←
N

Simpl(AX-modules)

of the categories of chain complexes of AX-modules and of simplicial AX-modules. For
simplicial AX-modules, the exterior power and symmetric power are defined by simply
taking the exterior powers and the symmetric powers componentwise. For chain com-
plexes, the definitions are given by transferring the definitions for simplicial modules
by using the functors N and K.
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Let (X, AX) be a ringed topos and M be a simplicial AX-module. For an in-

teger p ≥ 0, the p-th symmetric power SpM is defined as the composition ∆o M→
(AX-modules)

S p→ (AX-modules) with the functor Sp : (AX-modules) → (AX-modules)
sending an AX-module to its p-th symmetric power. Similarly, for an integer q ≥ 0,

the q-th exterior power ΛqM is defined as the composition ∆o M→ (AX-modules)
Λq→

(AX-modules) with the functor Λq : (AX-modules) → (AX-modules) sending an AX-
module to its q-th exterior power. The simplicial module F∆

AX
M associated to the stan-

dard free resolution FAXM ([19] Chap. I (1.5.5.2)) has a canonical quasi-isomorphism
F∆

AX
M →M of simplicial modules.

Definition 1.2.1 ([19] Chap. I 4.2.2.2). — Let (X, AX) be a ringed topos and K be

a chain complex of AX-modules.

1. For an integer p ≥ 0, the p-th derived symmetric power LSpK is defined to be

NSpF∆
AX

KK .

2. For an integer q ≥ 0, the q-th derived exterior power LΛqK is defined to be

NΛqF∆
AX

KK .

For an integer q ≥ 0, we put LqSpK =HqLSpK . For an integer r ≥ 0, we also
put LrΛqK =HrLΛqK . If K ′ → K is a homotopy equivalence of chain complexes,
the induced maps LSpK ′ → LSpK and LΛqK ′ → LΛqK are also homotopy equiv-
alences. If each component of K is flat, the canonical maps LSpK → NSpKK and
LΛqK → NΛqKK are quasi-isomorphisms. For an AX-module F , we have canon-
ical isomorphisms L0SpF → SpF and L0ΛqF → ΛqF . If F is flat, the canonical
maps LSpF → SpF and LΛqF → ΛqF are quasi-isomorphisms.

For a simplicial AX-module M and an integer p ≥ 0, the diagonal map M →
M ⊕M induces a map

SpM → Sp(M ⊕M ) −−−→ ⊕
p=p′+p′′ S

p′M ⊗AX Sp′′M .(1.2.1.1)

For a chain complex K and integers p = p′ + p′′, it induces a canonical map

LSpK −−−→ LSp′K ⊗L
AX

LSp′′K .(1.2.1.2)

Similarly, canonical maps

ΛqM −−−→ ⊕
q=q ′+q ′′ Λ

q ′M ⊗AX Λq ′′M(1.2.1.3)

and

LΛqK −−−→ LΛq ′K ⊗L
AX

LΛq ′′K(1.2.1.4)

for q = q ′ + q ′′ are defined. The following elementary lemma is useful in the sequel.
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Lemma 1.2.2. — Let 0 → L → M → N → 0 be an exact sequence of flat AX-

modules. Then, the canonical maps (1.2.1.1) and (1.2.1.3) define commutative diagrams of exact

sequences

0 →L ⊗ Sp−1N → SpM/(S2L · Sp−2M )→ SpN → 0
‖ ↓ ↓

0 →L ⊗ Sp−1N → M ⊗ Sp−1N →N ⊗ Sp−1N → 0,

(1.2.2.1)

0 →L ⊗Λp−1N → ΛpM/(Λ2L ·Λp−2M )→ ΛpN → 0
‖ ↓ ↓

0 →L ⊗Λp−1N → M ⊗Λp−1N →N ⊗Λp−1N → 0.

(1.2.2.2)

Proof. — It suffices to show the exactness. By localization and a limit argument
(cf. [19] I 4.2.1), it is reduced to the case where L ,M and N are free of finite rank
and the sequence 0 → L →M → N → 0 splits. Then the assertion is clear. ��

For chain complexes M and N , we naturally identify the complexes M [1]⊗N
and (M ⊗N )[1].

Corollary 1.2.3. — 1. Let 0 → L → M → N → 0 be an exact sequence of flat

simplicial AX-modules. Then, for p ≥ 0, the upper exact sequence in (1.2.2.1) defines a distinguished

triangle

→ NL ⊗L
AX

NSp−1N → N(SpM/(S2L · Sp−2M )) → NSpN →.(1.2.3.1)

The boundary map NSpN → NL ⊗L
AX

NSp−1N [1] is the composition

NSpN
(1.2.1.1)−−−→ NN ⊗L

AX
NSp−1N −−−→ NL [1] ⊗L

AX
NSp−1N .

2. Let L be an invertible AX-module, E be a flat AX-module and → L → E → K →
be a distinguished triangle of chain complexes of AX-modules. For q ≥ 0, the upper exact sequence

in (1.2.2.2) defines a distinguished triangle

−−−→ L ⊗ LΛqK −−−→ Λq+1E −−−→ LΛq+1K −−−→ .(1.2.3.2)

The boundary map LΛq+1K → L ⊗ LΛqK [1] is the composition

LΛq+1K
(1.2.1.4)−−−→ K ⊗ LΛqK −−−→ L [1] ⊗ LΛqK .

It induces an isomorphism Lp+1Λq+1K → L ⊗ LpΛqK either if p > 0 or if E is locally free

of rank n ≤ q.
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Proof. — 1. It is sufficient to apply Lemma 1.2.2.
2. We may assume K is the mapping cone of L → E . Let C be the mapping

cylinder of L → E . Then, for the distinguished triangle (1.2.3.2) and the descrip-
tion of the boundary map, it is sufficient to apply Lemma 1.2.2 to the exact sequence
0 → KL → KC → KK → 0 of simplicial modules. The last assertion is clear from
the distinguished triangle (1.2.3.2). ��

To study explicitly the derived exterior power complex, we recall the divided
power modules ΓrM, see e.g. [16] Exp. XVII 5.5.2. Let A be a commutative ring and
M be an A-module. We regard M as a functor attaching to a commutative A-algebra
A′ the set A′ ⊗A M. For an integer r ≥ 0 and for A-modules M and N, a morphism
f : M → N of functors is called r-ic if f (ax) = arf (x) for an A-algebra A′, a ∈ A′

and x ∈ A′ ⊗A M. For an A-module M, the r-th divided power ΓrM represents the
functor attaching to an A-module N the set of r-ic morphisms M → N. The universal
r-ic morphism is denoted by γ r : M → ΓrM. We have Γ0M = A and the map M →
Γ1M : x �→ γ 1x is an isomorphism. If r = r1 + r2, the r-ic map M → Γr1M ⊗ Γr2M
sending x to γ r1(x)⊗γ r2(x) induces a map ΓrM → Γr1 M⊗Γr2M. If M = M1⊕M2, the
r-ic map M → ⊕

r1+r2=r Γ
r1 M1 ⊗ Γr2 M2 sending (x1, x2) to (γ r1(x1) ⊗ γ r2(x2)) defines

an isomorphism ΓrM → ⊕
r1+r2=r Γ

r1 M1 ⊗ Γr2 M2 ([16] Exp. XVII 5.5.2.6). If M is
a free (resp. flat) A-module, its r-th power ΓrM is also a free (resp. flat) A-module.
More precisely, if M is a free A-module and e1, ..., en is a basis of M, ΓrM is also
a free A-module and γ r1 e1 ⊗ · · · ⊗ γ rnen, (r1 + · · · + rn = r, r1, ..., rn ≥ 0) is a basis of
ΓrM. Similarly as (1.2.1.1) and (1.2.1.3), we have a canonical map

ΓrM −−−→ ⊕
r=r′+r′′ Γ

r′M⊗A Γr′′M.(1.2.4.1)

The definition of Γr and the properties as above are generalized to modules on a ringed
topos.

Definition 1.2.4. — Let (X, AX) be a ringed topos and v : L → M be a morphism of

AX-modules.

1. For an integer p ≥ 0, we define a chain complex

Sp(L
v→M ) = (

Sp−qM ⊗ΛqL , dq

)

by putting dq to be the composition

Sp−q−1M ⊗Λq+1L
1⊗(1.2.1.3)−−−−−→ Sp−q−1M ⊗L ⊗ΛqL



	1⊗ v⊗1

Sp−qM ⊗ΛqL
·⊗1←−−− Sp−q−1M ⊗M ⊗ΛqL .

(1.2.4.2)
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2. For an integer q ≥ 0, we define a chain complex

Λq(L
v→M ) = (

Λq−rM ⊗ ΓrL , dr

)

by putting dr to be the composition

Λq−r−1M ⊗ Γr+1L
1⊗(1.2.4.1)−−−−−→ Λq−r−1M ⊗L ⊗ ΓrL



	1⊗ v⊗1

Λq−rM ⊗ ΓrL
∧⊗1←−−− Λq−r−1M ⊗M ⊗ ΓrL .

(1.2.4.3)

The complex Sp(L
v→M ) is the same as the total degree p-part of the Koszul

complex Kos•(v) and the complex Λq(L
v→ M ) is the total degree q-part of the

Koszul complex Kos•(v) defined in [19] I 4.3.1.3.

Lemma 1.2.5. — Let L and E be locally free AX-modules of rank 1 and n. Let u :
L → E be an AX-linear map and u∗ : E ∗ → L ∗ be its dual. Let

Λn−pE ⊗L⊗p −−−→ HomAX(ΛpE ⊗L⊗n−p,ΛnE ⊗L⊗n)





L ∗⊗n−p ⊗ΛpE ∗ ⊗ΛnE ⊗L⊗n

be the isomorphism sending x⊗y to the map x ′⊗y′ �→ x∧x ′⊗y⊗y′ and the canonical isomorphism.

Then they induce an isomorphism

Λn(L → E ) −−−→ Sn(E ∗ → L ∗)⊗ΛnE ⊗L⊗n(1.2.5.1)

of chain complexes.

Proof. — The squares

Λn−p−1E ⊗L⊗p+1 −→ Λn−pE ⊗L⊗p



	



	

Hom(Λp+1E ⊗L⊗n−p−1, ΛnE ⊗L⊗n) −→ Hom(ΛpE ⊗L⊗n−p, ΛnE ⊗L⊗n)










L ∗⊗n−p−1 ⊗Λp+1E ∗ ⊗ΛnE ⊗L⊗n −→ L ∗⊗n−p ⊗ΛpE ∗ ⊗ΛnE ⊗L⊗n

are commutative up to (−1)p and the assertion follows. ��
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Lemma 1.2.6 (cf. [34] 7.34, [19] I 4.3.2). — Let 0 → L → M → N → 0 be

an exact sequence of flat AX-modules. Then, the natural maps

Sp(L
v→M ) −−−→ SpN ,(1.2.6.1)

Λq(L
v→M ) −−−→ ΛqN(1.2.6.2)

are quasi-isomorphisms.

Proof. — It is proved for the symmetric power in [19] I 4.3.2. The proof for the
exterior power is similar. We briefly sketch it. For the direct sum, we have a canonical
isomorphism

Λq(L ⊕L ′ (v,v ′)−→M ⊕M ′)

−−−→ ⊕
q=q ′+q ′′

∫
Λq ′(L

v→M )⊗Λq ′′(L ′ v ′→M ′).

Similarly as loc. cit., it is reduced to the case where L , M and N are free of fi-
nite rank and the sequence 0 → L → M → N → 0 splits. Hence, we may

identify L → M with L ⊕ 0
(1,0)−→ L ⊕ N . By induction on rank of L , we see

that Λq ′(L
id→ L ) is acyclic except for q ′ = 0. Thus we obtain a quasi-isomorphism

Λq(L
v→M )→ ΛqN and the assertion follows. ��

Corollary 1.2.7. — Let u : L → M be a map of flat AX-modules and let K =
[L u→M ] be the mapping cone. Then, the maps (1.2.6.1) and (1.2.6.2) induce isomorphisms

Sp(L
v→M ) −−−→ LSpK ,(1.2.7.1)

Λq(L
v→M ) −−−→ LΛqK(1.2.7.2)

in the derived category.

Proof. — Let C = [L (u,−1)→ M ⊕ L ] be the mapping cylinder. The exact
sequence of chain complexes 0 → L → C → K → 0 induces an exact se-
quence of simplicial modules 0 → KL → KC → KK → 0. By Lemma 1.2.6,
we obtain a quasi-isomorphism Sp(KL → KC ) → SpKK of complexes of sim-
plicial modules. It induces a quasi-isomorphism

∫
N′′Sp(KL → KC ) → NSpKK of

chain complexes. Since the canonical map M → C is a quasi-isomorphism, it induces
a quasi-isomorphism KM → KC of simplicial modules. It further induces a quasi-
isomorphism Sp(L → M ) = ∫

N′′Sp(KL → KM ) → ∫
N′′Sp(KL → KC ). Thus

we obtain an isomorphism (1.2.7.1). It is similar for the exterior power. ��



ON THE CONDUCTOR FORMULA OF BLOCH 19

Proposition 1.2.8 ([34] 7.21, [19] Chap. I Proposition 4.3.2.1). — Let K be a chain

complex of AX-modules and p ≥ 0 be an integer. Then, the map (1.2.6.1) induces an isomorphism

(LΛpK )[p] −−−→ LSp(K [1])(1.2.8.1)

in the derived category.

Proof. — We briefly recall the proof of loc. cit. Replacing K by a flat resolution,
we may assume K is flat. Let C be the mapping cone of the identity K →K .
Then, we have an exact sequence 0 → K → C → K [1] → 0. Applying
Lemma 1.2.6 to the exact sequence 0 → KK → KC → KK [1] → 0 of sim-
plicial modules, we obtain a quasi-isomorphism of complexes of simplicial modules
Sp(KK → KC ) → Sp(KK [1]). Since C is acyclic, the map of associated simple
complexes

∫
N′′Sp(KK → KC ) → NΛp(KK )[p] is a quasi-isomorphism. Thus the

assertion follows. ��
Lemma 1.2.9. — The isomorphism (1.2.8.1) and the maps (1.2.1.2) and (1.2.1.4) form

a commutative diagram

LΛpK [p] −−−→ LΛp′K [p′] ⊗L
AX

LΛp′′K [p′′]


	



	

LSp(K [1]) −−−→ LSp′(K [1])⊗L
AX

LSp′′(K [1]).
(1.2.9.1)

Proof. — We use the notation in the proof of Proposition 1.2.8. As in the proof
of Lemma 1.2.6, we obtain maps

Sp(KK → KC )→ Sp(KK ⊕2 → KC⊕2)

→ Sp′(KK → KC )⊗ Sp′′(KK → KC )

of complexes of simplicial modules. The composition is compatible with the map
ΛpKK [p] → Λp′KK [p′] ⊗Λp′′KK [p′′]. Hence the assertion follows. ��

1.3. Koszul algebras. — We introduce Koszul simplicial algebras. We will use
them in the proof of the degeneration, Proposition 1.6.7, of a spectral sequence com-
puting Tor.

Let (X, AX) be a ringed topos and u : M → AX be a morphism of AX-
modules. Let [M u→ AX] denote the chain complex where AX is put on degree 0.
The Dold-Kan transform K[M u→ AX] of the chain complex [M u→ AX] is a sim-
plicial AX-module. Let S(K[M u→ AX]) denote the symmetric algebra of the sim-
plicial AX-module K[M u→ AX]. The n-th component of S(K[M u→ AX]) is the
symmetric algebra over AX of the n-th component Kn[M u→ AX]. The simplicial al-
gebra S(K[M u→ AX]) is naturally an algebra over the constant simplicial AX-algebra
S(K[0 → AX]) = S(KAX) = KS(AX).
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Definition 1.3.1. — Let (X, AX) be a ringed topos and u :M → AX be a morphism of

AX-modules.

1. We define a simplicial AX-algebra A(M
u→ AX) by

A(M
u→ AX) = S(K[M u→ AX])⊗S(KAX) KAX(1.3.1.1)

with respect to the map S(KAX)→ KAX induced by id : KAX → KAX. We call the simplicial

AX-algebra A(M
u→ AX) the Koszul simplicial algebra of u : M → AX.

2. The chain complex K(M
u→ AX) = (ΛnM , un) defined by putting un to be the com-

position

ΛnM −−−→ M ⊗Λn−1M
u⊗1−−−→ Λn−1M

is called the Koszul complex of u : M → AX.

If Λn+1M = 0, we have

K(M
u→ AX) = Sn(M

u→ AX).(1.3.1.2)

In general, we have K(M
u→ AX) = lim−→ nSn(M

u→ AX) with respect to the natural
maps.

Lemma 1.3.2. — Let (X, AX) be a ringed topos and u : M → AX be a morphism

of AX-modules. We define an increasing filtration F• on A(M
u→ AX) by putting Fp to be the

image of
⊕

p′≤p Sp′(K[M u→ AX]). Then, we have a canonical isomorphism SpK(M [1]) →
GrF

p A(M
u→ AX) of simplicial modules.

Assume M is flat. Then, the spectral sequence

E1
p,q = Hp+qNGrF

p A(M
u→ AX)⇒ Hp+qNA(M

u→ AX)

satisfies E1
p,q = 0 except for q = 0. The complex E1

•,0 is naturally identified with the Koszul complex

K(M
u→ AX).

Proof. — The exact sequence 0 → A → [M → A] →M [1] → 0 of chain com-
plexes induces an exact sequence 0 → KA → K[M → A] → K(M [1]) → 0 of sim-
plicial A-modules. By definition, we have a commutative diagram of exact sequences

0 0
↓ ↓

KA⊗KA Sp−1K(M [1]) → Gr p−1
F A(M → A)

↓ ↓
SpK[M → A]/S2KA · Sp−2K[M → A] → F[p,p−1]A(M → A)

↓ ↓
SpK(M [1]) → Grp

FA(M → A)

↓ ↓
0 0.

(1.3.2.1)
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Since the map S(KAX)→KAX in Definition 1.3.1.1 is induced by the identity KAX→
KAX, the upper horizontal arrow maps 1⊗ a to the class of a. Thus, it is easy to see
that the horizontal arrows are isomorphisms.

Assume M is flat. Then, the bottom horizontal map in (1.3.2.1) induces an iso-
morphism ΛpM [p] → LSp(M [1]) → NGr p

FA(M → A) by Proposition 1.2.8. By the
diagram (1.3.2.1) and Corollary 1.2.3.1, we have a commutative diagram

LSp(M [1]) −−−→ NGrp
FA(M → A)



	

M [1] ⊗L
A LSp−1(M [1])



	

u⊗1



	

A[1] ⊗A LSp−1(M [1]) −−−→ NGr p−1
F A(M → A)[1].

(1.3.2.2)

Thus the assertion follows from Lemma 1.2.9. ��
Lemma 1.3.3. — Let 0 → L

f→ M
g→ N → 0 be an exact sequence of flat

AX-modules and u : N → AX be a map of AX-modules. We put AL = A(L
u◦g◦f→ AX),

AM = A(M
u◦g→ AX) and AN = A(N

u→ AX) and we identify AX = A(0 → AX). The

commutative diagram

M −−−→ N










L −−−→ 0

induces an isomorphism

AM ⊗AL
AX −−−→ AN .(1.3.3.1)

Proof. — We have an exact sequence 0 → K[L → 0] → K[M → AX] →
K[N → AX] → 0 of flat simplicial modules. Hence, we obtain an isomorphism
S(K[M → AX]) ⊗S(K[L→0]) AX → S(K[N → AX]) of simplicial algebras. It induces
the isomorphism (1.3.3.1). ��

We define a generalization for chain complexes.

Definition 1.3.4. — Let (X, AX) be a ringed topos and u : K → AX be a map of chain

complexes. We regard KK → KAX be a map of KAX-modules on the topos Simpl(X) and define

the Koszul bisimplicial algebra A(K → AX) to be the simplicial simplicial algebra A(KK →
KAX) regarded as a bisimplicial AX-algebra. Let A∆(KK → KAX) = ∆A(KK → KAX)

denote the diagonal simplicial AX-algebra.
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Lemma 1.3.5. — Let v : K ′ → K be a quasi-isomorphism of flat chain complexes of

AX-modules and u : K → AX be a map of chain complexes of AX-modules. We put u′ = u ◦ v :
K ′ → AX. Then the natural map A∆(K ′ u′→ AX)→ A∆(K

u→ AX) is a quasi-isomorphism

of simplicial AX-algebras.

Proof. — Let KK ′ → KK be the map of the Dold-Kan transforms. Let F• de-
note the filtrations on A(K

u→ AX) and A(K ′ u′→ AX) in Lemma 1.3.2. It is sufficient
to show that

∫
NGrn

FA(K ′ u′→ AX) → ∫
NGrn

FA(K
u→ AX) is a quasi-isomorphism

for each n ≥ 0. By Lemma 1.3.2, Grn
FA(K

u→ AX) and Grn
FA(K ′ u′→ AX) are iso-

morphic to SnK′((KK )[1]) and SnK′((KK ′)[1]) respectively. By Proposition 1.2.8,
N′SnK′((KK )[1]) and N′SnK′((KK ′)[1]) are quasi-isomorphic to ΛnKK [n] and
ΛnKK ′[n] respectively, as complexes of simplicial modules. Hence

∫
NSnK′((KK )[1])

and
∫

NSnK′((KK ′)[1]) are isomorphic to LΛnK [n] and LΛnK ′[n] respectively.
Thus the assertion follows. ��

Corollary 1.3.6. — Let M and L be flat AX-modules and let u : M → AX and

v : L → M be AX-linear maps. Let K = [L v→ M ] be the mapping cone and C =
[L (v,−1)→ M ⊕L ] be the mapping cylinder. We define a map c : C → AX by (u, u ◦ v).

1. The natural map M → C induces a quasi-isomorphism

AM = A(M
u→ AX) −−−→ AC = A∆(C

c→ AX)(1.3.6.1)

of simplicial AX-algebras.

2. Assume the composition u ◦ v : L → AX is the 0-map and let w : K → AX be the

map of chain complexes defined by u. We put AL = A(L
0→ AX) and AK = A∆(K

w→ AX).

Then the commutative diagram

C −−−→ K










L −−−→ 0

induces an isomorphism

AC ⊗AL
AX −−−→ AK(1.3.6.2)

of simplicial AX-algebras.

Proof. — 1. Since the map M → C is a quasi-isomorphism, the assertion follows
from Lemma 1.3.5.

2. We have an exact sequence 0 → KL → KC → KK → 0 of simplicial
AX-modules. By applying Lemma 1.3.3, we obtain an isomorphism
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A(C
c→ AX)⊗

KA(L
0→AX)

KAX −−−→ A(K
w→ AX)

of bisimplicial AX-algebras. Taking the diagonals, we obtain the isomorphism (1.3.6.2).
��

1.4. Cotangent complexes and the Atiyah classes. — We recall some definitions
and facts on cotangent complexes and the Atiyah classes. A basic reference is [19]
Chapitres II and IV.

Let (X, A) be a ringed topos. For an A-algebra B, a standard resolution PA(B)

→ B by a free simplicial A-algebra PA(B) is constructed in [19] I 1.5.5.6. The cotan-
gent complex LB/A is defined as the normal complex N(Ω1

PA(B)/A⊗PA(B) KB) ([19] Cha-
pitre II 1.2). There is a canonical isomorphism H0LB/A → Ω1

B/A (loc.cit. Proposi-
tion 1.2.4.2). If A → B is surjective and I = Ker(A → B), we have H0LB/A = 0
and a canonical isomorphism H1LB/A → I/I2 (loc.cit. Corollaire 1.2.8.1).

Let (X, A) be a ringed topos. We say a simplicial A-algebra P is weakly free if,
for each n ≥ 0, there exist a flat A-module Ln such that the n-th component Pn of P is
isomorphic to the symmetric algebra SALn. For an A-algebra B, we say a morphism
of simplicial A-algebra P → KB is a resolution P → B by a weakly free simplicial
A-algebra if P is weakly free and P → B is a quasi-isomorphism in the sense that
the map NP → NKB = B of normal complexes is a quasi-isomorphism. A resolution
P → B by a weakly free simplicial A-algebra induces an isomorphism LB/A → Ω1

P/A
in the derived category as follows. Let P∆

A (P) → P be the diagonal of the standard
resolution by free bisimplicial A-algebras as in loc.cit. (1.2.2.1). Then the quasi-iso-
morphisms PA(B)←P∆

A (P)→P induce quasi-isomorphisms Ω1
PA(B)/A←Ω1

P∆
A (P)/A

→Ω1
P/A.

Composing them with the quasi-isomorphism Ω1
PA(B)/A → Ω1

PA(B)/A⊗PA(B) B, we obtain
an isomorphism LB/A → Ω1

P/A.
For a map f : X → S of ringed toposes, the cotangent complex LX/S is defined

as LAX/f −1AS = Ω1
Pf−1AS

(AX)/f −1AS
⊗Pf−1AS

(AX) AX. We will recall an explicit computation

of the cotangent complex in Lemma 1.6.2 for some morphisms of schemes. For maps

X
f→ Y

g→ S of ringed toposes, a distinguished triangle

−−−→ Lf ∗LY/S −−−→ LX/S −−−→ LX/Y −−−→(1.4.0.1)

is constructed as follows (loc.cit. Proposition 2.1.2). Let PS(AY)→ AY be the standard
resolution by a free simplicial g−1AS-algebra and P∆

PS(AY)(AX)→ AX be the diagonal of
the standard resolution by a free bisimplicial f −1PS(AY)-algebra as in loc.cit. (1.2.2.1).
Then, we have quasi-isomorphisms

Ω1
P∆

PS(AY )
(AX)/( g◦f )−1AS

→ Ω1
PS(AX)/( g◦f )−1AS

,

Ω1
P∆

PS(AY )
(AX)/f −1PS(AY)

→ Ω1
PY(AX)/f −1AY
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and the distinguished triangle (1.4.0.1) is defined by the exact sequence

0 −→ f −1Ω1
PS(AY)/f −1AS

⊗f −1PS(AY) P∆
PS(AY)(AX)

−→ Ω1
P∆

PS(AY )(AX)/( g◦f )−1AS
−→ Ω1

P∆
PS(AY )(AX)/f −1PS(AY)

−→ 0.

Let f : X → S be a map of ringed toposes and F be an AX-module. The
Atiyah class map is a map

atX/S(F) : F −−−→ LX/S ⊗L
AX

F[1](1.4.0.2)

in the derived category defined in [19] Chapitre IV 2.3.6. We briefly recall the defin-
ition. We consider the graded AX-algebra AX ⊕F such that AX is put on degree 0
and F is put on degree 1. Then, for the maps (X, AX ⊕F) → (X, AX) → (S, AS)

of ringed toposes, the distinguished triangle (1.4.0.1) gives

→ LX/S ⊗L
AX

(AX ⊕F)→ L(X,AX⊕F)/S → L(X,AX⊕F)/X →.(1.4.0.3)

The degree 1-part of the map L(X,AX⊕F)/X → LX/S ⊗L
AX

(AX ⊕F)[1] gives the Atiyah

class map atX/S(F) : F → LX/S ⊗L
AX

F[1].
We recall another description of the Atiyah class map. Let PS(AX) = Pf −1AS(AX)

→ AX be the standard resolution of AX by free f −1AS-algebra and I be the kernel of
the surjection PS(AX)⊗f −1AS PS(AX)→ PS(AX). We have Ω1

PS(AX)/f −1AS
= I/I2. We put

P1
PS(AX)/f −1AS

= (PS(AX)⊗f −1AS PS(AX))/I2. The exact sequence

0 → Ω1
PS(AX)/f −1AS

−−−→ P1
PS(AX)/f −1AS

−−−→ PS(AX)→ 0(1.4.0.4)

of P1
PS(AX)/f −1AS

-modules splits as an exact sequence of PS(AX)-module with respect to
the ring homomorphism PS(AX) → P1

PS(AX)/f −1AS
sending a to 1⊗a. We regard the AX-

module F as a PS(AX)-module by the quasi-isomorphism PS(AX)→ AX. By applying
⊗PS(AX)F , we obtain an exact sequence

0 → Ω1
PS(AX)/f −1AS

⊗PS(AX) F → P1
PS(AX)/f −1AS

⊗PS(AX) F → F → 0.(1.4.0.5)

We regard it as an exact sequence of PS(AX)-modules by the ring homomorphism
PS(AX) → P1

PS(AX)/f −1AS
sending a to a ⊗ 1 (cf. [19] III (1.2.6.3)). Since LX/S =

N(Ω1
PS(AX)/f −1AS

⊗PS(AX) AX), we have N(Ω1
PS(AX)/f −1AS

⊗PS(AX) F) = LX/S ⊗L
AX

F . Thus
the exact sequence (1.4.0.5) gives a distinguished triangle

→ LX/S ⊗L
AX

F → N
(
P1

PS(AX)/f −1AS
⊗PS(AX) F

)→ F →(1.4.0.6)

of complexes of AX = N(PS(AX))-modules (cf. [19] I Corollaire 3.3.4.6). By [19] IV
Proposition 2.3.7.3, the Atiyah class map F → LX/S ⊗L

AX
F[1] is defined by the dis-

tinguished triangle (1.4.0.6).
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Let i : X → P be a map of ringed toposes such that i−1AP → AX is a sur-
jection. We put IX = Ker(i−1AP → AX). By the long exact sequence defined by the
short exact sequence 0 → IX → i−1AP → AX → 0, Tori−1AP

1 (AX, AX) is canonically
identified with the conormal sheaf NX/P = IX/I2

X = IX ⊗i−1AP AX. More generally,
for an AX-module F , the AX-module Tori−1AP

1 (AX,F) is canonically identified with
IX ⊗i−1AP F = NX/P ⊗AX F . We consider the distinguished triangle

→ NX/P ⊗AX F[1] → τ[−1,0]
(
AX ⊗L

i−1AP
F

)→ F →(1.4.1.1)

of AX-modules. Here and in the following, τ[a,b]K = τ≥aτ≤bK = τ≤bτ≥aK denotes
the canonical truncation for a complex K . In the middle, AX ⊗L

i−1AP
F is regarded

as a complex of AX-modules with respect to the AX-module structure of AX and is
computed by taking a resolution of F by flat i−1AP-modules. Note that it can be dif-
ferent from that with respect to the AX-module structure of F computed by taking
a resolution of AX by flat i−1AP-modules. The distinguished triangle (1.4.1.1) defines
a canonical map F → NX/P ⊗AX F[2].

Lemma 1.4.1 ([19] IV Corollary 3.1.9). — Let i : X → P be a map of ringed toposes

over a ringed topos S and F be an AX-module. Assume i−1AP → AX and i−1i∗F → F are

surjective. Let LX/S → LX/P → NX/P[1] be the canonical map. Then the composition

F
atX/S−−−→ LX/S ⊗L

AX
F[1] can⊗1−−−→ NX/P ⊗AX F[2](1.4.1.2)

is the same as the map defined by the distinguished triangle (1.4.1.1).

Proof. — We reproduce the proof of loc.cit. Replacing S by P, we may assume
S = P. Let L be the free AP-module A(i∗F)

P . The natural map i−1L → A(i−1i∗F)
X → F

is surjective. Let SAP(L ) = AP[i∗F] be the free AP-algebra generated by i∗F . Let XF

denote the graded ringed topos (X, AX ⊕ F) and PL denote (P, SAP(L )). We put
J = Ker(i−1SAP(L ) → AXF

) and G = Ker(i−1L → F). Since the canonical map
LPL /P → Ω1

PL /P = L ⊗AP SAP(L ) is an isomorphism ([19] II Proposition 1.2.4.4),
we obtain an isomorphism τ[−1,0]LXF/P → [ J/J2 → i−1L ⊗i−1AP AXF

]. Since J/J2 =
NX/P⊕ (G ⊗i−1AP AX)⊕ (deg ≥ 2), by taking the degree 1-part, we see that the Atiyah
class map atX/P : F → NX/P ⊗AX F[2] is induced by the distinguished triangle

→ NX/P ⊗AX F[1] → [
AX ⊗i−1AP G → AX ⊗i−1AP i−1L

] → F →.

Since the isomorphism [G → i−1L ] → F induces an isomorphism [AX ⊗i−1AP G →
AX ⊗i−1AP i−1L ] → τ[−1,0](AX ⊗L

i−1AP
F) in the derived category of AX-modules, the

assertion follows. ��
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1.5. Associativity, projection formula and the Atiyah class. — We recall spectral se-
quences for Tor arising from the associativity and the projection formula. We show
that a map induced by the Atiyah class map is the same as the boundary map of
a spectral sequence in Lemma 1.5.4. First, we introduce notations on tensor products.

For a scheme X, let D−(X) (resp. Db(X)) denote the derived category of com-
plexes of OX-modules bounded above (resp. bounded above and below). Let D−(X)qcoh

denote the full subcategory consisting of complexes whose cohomology sheaves are
quasi-coherent OX-modules. If X is locally noetherian, let D−(X)coh and Db(X)coh de-
note the full subcategories consisting of complexes whose cohomology sheaves are co-
herent OX-modules. Let f : W → X be a morphism of schemes. For F ∈ D−(X)

and G ∈ D−(W), we put F ⊗L
OX

G = Lf ∗F ⊗L
OW

G ∈ D−(W) (cf. [17] Exp. III Nota-
tion 1.6). For an integer q, let TorOX

q (F,G ) denote the homology sheaf Hq(F⊗L
OX

G ).
If F1 → F is a flat resolution, we obtain an isomorphism F ⊗L

OX
G → f ∗F1⊗OW G .

Locally, the sheaf TorOX
q (F,G ) is computed as follows. If X = Spec A and W =

Spec B are affine and if F = M∼,G = N∼ are quasi-coherent sheaves associated to
an A-module M and to a B-module N respectively, then TorOX

q (F,G ) is the quasi-
coherent sheaf associated to the B-module TorA

q (M, N).
Let i : V → X be a closed immersion and F be an OV-module. By abuse of

notation, we identify i∗F = F and regard F as an OX-module. We put T = V×X W.
Then, TorOX

q (F,G ) is an OT-module for each q. If X and W are locally noetherian, if
F is a coherent OV-module and if G ∈ D−(W)coh, then the OT-modules TorOX

q (F,G )

are coherent for all q.

Lemma 1.5.1. — Let X
f← W

g← W′ be morphisms of schemes and F ∈ D−(X),

G ∈ D−(W) and H ∈ D−(W′) respectively. Then,

1. The associativity isomorphism

(
F ⊗L

OX
G

)⊗L
OW

H → F ⊗L
OX

(
G ⊗L

OW
H

)
(1.5.1.1)

in D−(W′) induces an isomorphism

TorOW
q

(
F ⊗L

OX
G ,H

)→ TorOX
q

(
F,G ⊗L

OW
H

)
(1.5.1.2)

of OW′-modules.

2. The canonical filtrations on F ⊗L
OX

G and G ⊗L
OW

H define spectral sequences

E2
p,q = TorOW

p

(
TorOX

q (F,G ),H
)⇒ TorOW

p+q

(
F ⊗L

OX
G ,H

)
,(1.5.1.3)

E2
p,q = TorOX

p

(
F,TorOW

q (G ,H )
)⇒ TorOX

p+q

(
F,G ⊗L

OW
H

)
(1.5.1.4)

of OW′-modules, respectively. If V is a closed subscheme of X and if F is an OV-module, then they

are spectral sequences of OT′-modules where T′ = V×X W′.
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Proof. — 1. We recall the definition of the isomorphism (1.5.1.1). It suffices
to consider the case where each component of F and G are flat over OX and
over OW respectively. Then, we have isomorphisms g∗( f ∗F ⊗OW G ) ⊗OW′ H →
(F ⊗L

OX
G )⊗L

OW
H and ( f ◦ g)∗F ⊗OW′ ( g∗G ⊗OW′ H )→ F ⊗L

OX
(G ⊗L

OW
H ). Hence

the canonical isomorphism g∗( f ∗F⊗OW G )⊗OW′ H → ( g∗f ∗F⊗OW′ g
∗G )⊗OW′ H →

( f ◦ g)∗F ⊗OW′ ( g∗G ⊗OW′ H ) defines an isomorphism (1.5.1.1).
Clearly, the isomorphism (1.5.1.1) induces an isomorphism (1.5.1.2).
2. The canonical filtration on F ⊗L

OX
G defines a spectral sequence E1

p,q =
TorOW

2p+q(TorOX−p (F,G ),H ) ⇒ TorOW
p+q(F ⊗L

OX
G ,H ). We obtain the spectral sequence

(1.5.1.3) by decalage. The spectral sequence (1.5.1.3) is defined similarly. ��

Lemma 1.5.2. — Let X ← W → X′ be morphisms of schemes and F ∈ D−(X),

G ∈ D−(W) and F ′ ∈ D−(X′) respectively. Then,

1. The composition

F ⊗L
OX

(
F ′ ⊗L

OX′ G
)→ F ⊗L

OX

(
G ⊗L

OX′ F
′)→ (

F ⊗L
OX

G
)⊗L

OX′ F
′

→ F ′ ⊗L
OX′

(
F ⊗L

OX
G

)(1.5.2.1)

of the commutativity and the associativity isomorphisms in D−(W) induces an isomorphism

TorOX
q

(
F,F ′ ⊗L

OX′ G
)→ TorOX′

q

(
F ′,F ⊗L

OX
G

)
(1.5.2.2)

of OW-modules.

2. The canonical filtrations define spectral sequences

E2
p,q = TorOX

p

(
F,TorOX′

q (F ′,G )
) ⇒ TorOX

p+q

(
F,F ′ ⊗L

OX′ G
)
,(1.5.2.3)

E2
p,q = TorOX′

p

(
F ′,TorOX

q (F,G )
) ⇒ TorOX′

p+q

(
F ′,F ⊗L

OX
G

)
(1.5.2.4)

of OW-modules. If V and V′ are closed subschemes of X and X′ and if F is an OV-module

and F ′ is an OV′-module respectively, then they are spectral sequences of OT-modules where T =
V×X W×X′ V′.

Proof. — The proof is similar to Lemma 1.5.1 and left to the reader. ��

We also recall the projection formula.

Lemma 1.5.3. — Let X be a quasi-compact scheme and f : W′ → W be a quasi-

compact and quasi-separated morphism of quasi-compact schemes over X. Let F ∈ D−(X)qcoh

and G ∈ D−(W′). We assume that either of the following condition is satisfied.



28 KAZUYA KATO, TAKESHI SAITO

(i) ([17] Exp. III Proposition 3.7) The complex F is a perfect complex of OX-modules

and G ∈ Db(W′)qcoh.

(ii) ([18] II Proposition 5.6) The schemes W and W′ are noetherian schemes of finite

dimensions.

1. There exists a canonical and functorial isomorphism

F ⊗L
OX

Rf∗G → Rf∗
(
F ⊗L

OX
G

)
(1.5.3.1)

in D−(W). The isomorphism (1.5.3.1) induces an isomorphism

TorOX
q (F, Rf∗G )→ R−qf∗

(
F ⊗L

OX
G

)
(1.5.3.2)

of OW-modules.

2. The canonical filtrations define spectral sequences

E2
p,q = TorOX

p (F, R−qf∗G )⇒ TorOX
p+q(F, Rf∗G ),(1.5.3.3)

E2
p,q = R−pf∗TorOX

q (F,G ) ⇒ R−p−qf∗
(
F ⊗L

OX
G

)
(1.5.3.4)

of OW-modules. If V is a closed subschemes of X and if F is an OV-module, then they are spectral

sequences of OV-modules.

Let X → P be an immersion of schemes and F be an OX-module. Let
W → X be a morphism of schemes and G ∈ D−(W). Then the composition of F →
LX/P ⊗L

OX
F[1] → NX/P ⊗L

OX
F[2] (1.4.1.2) induces a map

αF,G ,X/P : F ⊗L
OX

G −−−→ NX/P ⊗L
OX

F ⊗L
OX

G [2](1.5.4.1)

in D−(W). It further induces a map

αF,G ,X/P : TorOX
p (F,G ) −−−→ TorOX

p−2(NX/P ⊗OX F,G )(1.5.4.2)

of OW-modules for p ≥ 0.

Lemma 1.5.4. — Let X → P be an immersion of schemes and F be an OX-module. Let

W → X be a morphism of schemes and G ∈ D−(W). Let

E2
p,q = TorOX

p

(
TorOP

q (F,OX),G
) �⇒ Ep+q = TorOP

p+q(F,G )(1.5.4.3)

be the spectral sequence (1.5.1.3) combined with the isomorphism (1.5.1.2). We identify NX/P⊗OX F
with F ⊗OX NX/P = TorOP

1 (F,OX) by the multiplication by −1. Then, the map αF,G ,X/P :
TorOX

p (F,G ) → TorOX
p−2(NX/P ⊗OX F,G ) (1.5.4.2) is equal to the boundary map E2

p,0 =
TorOX

p (F,G ) → E2
p−2,1 = TorOX

p−2(TorOP
1 (F,OX),G ) of (1.5.4.3).
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Proof. — The boundary map TorOX
p (F,G ) → TorOX

p−2(TorOP
1 (F,OX),G ) is the

boundary map defined by the distinguished triangle

−−−→ TorOP
1 (F,OX)[1] −−−→ τ[−1,0]

(
F ⊗L

OP
OX

) −−−→ F −−−→
of complexes of OX-modules where F⊗L

OP
OX in the middle is regarded as a complex

of OX-modules by the OX-module structure of OX. Under the identification
TorOP

1 (F,OX) = F ⊗OX NX/P and the commutativity isomorphism F ⊗L
OP

OX →
OX ⊗L

OP
F , it is identified with (1.4.1.1). Thus it follows from Lemma 1.4.1. ��

If the OX-module NX/P is flat, we identify TorOX
p−2(NX/P ⊗OX F,G ) = NX/P ⊗OX

TorOX
p−2(F,G ) and the map (1.5.4.2) defines a map

αF,G ,X/P : TorOX
p (F,G ) −−−→ NX/P ⊗OX TorOX

p−2(F,G ).(1.5.4.4)

For a spectral sequence E = (E2
p,q ⇒ Ep+q), let E[0, 2] denote the spectral sequence

E2
p,q−2 ⇒ Ep+q−2.

Lemma 1.5.5. — Let X → P be an immersion of schemes and F be an OX-module. We

assume that the conormal sheaf NX/P is flat over OX. Let f : W′ → W be a map of schemes

over X.

1. Let G ∈ D−(W) and H ∈ D−(W′) respectively. Let

E =
(

E2
p,q = TorOW

p

(
TorOX

q (F,G ),H
)⇒ TorOX

p+q

(
F,

(
G ⊗L

OW
H

)))
(1.5.5.1)

be the spectral sequence (1.5.1.3) combined with the isomorphism (1.5.1.2).
Then the map αF,G ,X/P : F ⊗L

OX
G → NX/P⊗OX F ⊗L

OX
G [2] (1.5.4.1) induces a map

E −−−→ NX/P ⊗OX E[0, 2](1.5.5.2)

of spectral sequences. The maps on E2-terms are induced by

αF,G ,X/P : TorOX
q (F,G ) → NX/P ⊗OX TorOX

q−2(F,G )

and the maps on the abutments are

αF,G⊗L
OW

H ,X/P : TorOX
n

(
F,

(
G ⊗L

OW
H

))

→ NX/P ⊗OX TorOX
n−2

(
F,

(
G ⊗L

OW
H

))
.

2. Let f : W′ → W be a morphism of schemes over X and G ∈ D−(W′). Assume either

of the condition (i) or (ii) in Lemma 1.5.3 is satisfied. Let
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E = (
E2

p,q = R−pf∗TorOX
q (F,G ) ⇒ TorOX

p+q(F, Rf∗G )
)

(1.5.5.3)

be the spectral sequence (1.5.3.4) combined with the isomorphism (1.5.3.2).
Then the map αF,G ,X/P : F ⊗L

OX
G → NX/P⊗OX F ⊗L

OX
G [2] (1.5.4.1) induces a map

E −−−→ NX/P ⊗OX E[0, 2](1.5.5.4)

of spectral sequences. The maps on E2-terms are induced by

αF,G ,X/P : TorOX
q (F,G ) → NX/P ⊗OX TorOX

q−2(F,G )

and the maps on the abutments are

αF,Rf∗G ,X/P : TorOX
n (F, Rf∗G ) → NX/P ⊗OX TorOX

n−2(F, Rf∗G ).

Proof. — 1. We consider the map αF,G ,X/P : F⊗L
OX

G → (NX/P⊗OX F[2])⊗L
OX

G
as a map of filtered complexes with respect to the canonical filtrations on F⊗L

OX
G and

on NX/P⊗OX F⊗L
OX

G [2]. It induces a map of filtered complexes F⊗L
OX

G ⊗L
OW

H →
NX/P⊗OX F ⊗L

OX
G ⊗L

OW
H [2]. By identifying TorOW

p+q(NX/P⊗OX F ⊗L
OX

G [2],H ) with
NX/P⊗OX TorOX

p+q−2(F,G⊗L
OW

H ) by using the isomorphism (1.5.1.2), we obtain a map
E → NX/P⊗OX E[0, 2] of spectral sequences. It is clear from the construction that the
maps on the E2-terms are induced by αF,G ,X/P and the maps on the abutments are
αF,G⊗L

OW
H ,X/P.

2. Proof is similar to 1 and left to the reader. ��

Lemma 1.5.6. — Let X → S be a flat morphism of schemes and F and G be complexes of

OX-modules bounded above. We define F⊗L
OS

G to be Lpr∗1F⊗L
OX×SX

Lpr∗2G . Then the adjunction

induces an isomorphism (F ⊗L
OS

G )⊗L
OX×SX

OX → F ⊗L
OX

G . It induces a spectral sequence

E2
p,q = Tor

OX×SX
p

(
TorOS

q (F,G ),OX

)⇒ TorOX
p+q(F,G ).(1.5.6.1)

Proof. — The proof is similar to Lemma 1.5.1 and left to the reader. ��

Corollary 1.5.7. — Let X → S be a smooth morphism of relative dimension n and F be

an OX-module. Assume F is of tor-dimension ≤ m as an OS-module. Then F is of tor-dimension

≤ m+ n as an OX-module.

Proof. — The diagonal map X → X×S X is a section of the smooth map X×S X
→ X of relative dimension n and hence is of tor-dimension n. We consider the spectral
sequence (1.5.6.1). Then, we have E2

p,q = 0 if p > n or q > m. Hence the assertion
follows. ��
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1.6. Excess conormal complex and Tor. — We construct a spectral sequence com-
puting TorOX

r (OV,OW) for certain morphisms V → X ← W of schemes in Proposi-
tion 1.6.4.

Definition 1.6.1. — 1. ([17] Exp. VII Definition 1.4) We say an immersion X → P
of schemes is a regular immersion if the following condition is satisfied.

For x ∈ X, there exist an open neighborhood U of x in P, a locally free OU-module EU of

finite rank and an OU-linear map EU → OU such that the Koszul complex K(EU → OU) is

a resolution of OX∩U.

2. ([17] Exp. VIII Definition 1.1) Let X → S be a morphism locally of finite presenta-

tion of schemes. We say X is locally of complete intersection over S if, for each x ∈ X, there exist

an open neighborhood U of x in X, a smooth scheme P over S and a regular immersion U → P
over S.

We do not require flatness in the definition of locally of complete intersection as
in [15] (19.3.6). By Lemma 1.3.2, the condition that the Koszul complex
K(EU → OU) is a resolution of OX∩U is equivalent to that the canonical surjection
A(EU → OU) → OX∩U is a resolution by a weakly free simplicial OU-algebra. The
quasi-isomorphism K(EU → OU) → OX∩U induces an isomorphism EU ⊗OU OX∩U

→ NX∩U/U to the conormal sheaf. If P is a noetherian scheme, the condition that
K(EU → OU) is a resolution of OX∩U is equivalent to that the image of a local basis
of EU is a regular sequence of OU. A map of finite type of regular noetherian schemes
is locally of complete intersection. If X → S is locally of complete intersection and if
P → S is smooth, then an immersion X → P over S is a regular immersion.

Lemma 1.6.2. — 1. ([19] III Proposition 3.1.2) Let X → S be a smooth morphism

of schemes. Then, the canonical map LX/S → Ω1
X/S is an isomorphism.

2. (loc.cit. Proposition 3.2.4) Let X → P be a regular immersion. Then, the canonical

map LX/P → NX/P[1] is an isomorphism.

3. (loc.cit. Proposition 3.2.6) Let X → P be a regular immersion and P → S be

a smooth morphism. Then, we have a distinguished triangle → NX/P → Ω1
P/S ⊗OP OX →

LX/S →.

Let i : V → X be an immersion of schemes and let

T
i′−−−→ W

g



	



	f

V −−−→
i

X

be a cartesian diagram of schemes. Assume that the immersion i′ : T → W is a regu-
lar immersion. We define the conormal complex MV/X, the excess conormal complex
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M′
V/X,W and the excess conormal sheaf N′

V/X,W. Recall that the standard resolution
PX(OV) = Pi−1OX(OV) → OV is a resolution of OV by a free simplicial i−1OX-algebra
and that the cotangent complex LV/X is defined as the normal complex
N(Ω1

PX(OV)/i−1OX
⊗PX(OV) OV).

Definition 1.6.3. — Let i : V → X be an immersion of schemes.

1. We call

MV/X = LV/X[−1] = N
(
Ω1

PX(OV)/i−1OX
⊗PX(OV) OV

)[−1](1.6.3.1)

the conormal complex of the immersion i : V → X.

2. Let

T
i′−−−→ W

g



	



	f

V −−−→
i

X

be a cartesian diagram of schemes and assume i′ : T → W is a regular immersion. We put

AV/X,W = g−1PX(OV)⊗(i◦g)−1OX i′−1OW

and define an ideal IV/X,W ⊂ AV/X,W by the exact sequence

0 −−−→ IV/X,W −−−→ AV/X,W −−−→ OT −−−→ 0.

We call the chain complex

M′
V/X,W = N

(
IV/X,W/I2

V/X,W

)[−1](1.6.3.2)

the excess conormal complex. We call the map

M′
V/X,W −−−→ Lg∗MV/X

induced by d : IV/X,W/I2
V/X,W → Ω1

AV/X,W/i′−1OW
⊗AV/X,W OT the canonical map.

We define the excess conormal sheaf N′
V/X,W by the exact sequence

0 −−−→ N′
V/X,W −−−→ g∗NV/X −−−→ NT/W −−−→ 0(1.6.3.3)

where g∗NV/X → NT/W is the canonical surjection of conormal sheaves.

The cohomology sheaf H0(MV/X) =H1(LV/X) is canonically isomorphic to the
conormal sheaf NV/X. If the immersion V → X is a regular immersion, the canonical
map MV/X → NV/X is an isomorphism.
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Proposition 1.6.4 (cf. [19] III Proposition 3.3.6, [35] Theorem 6.3). — Let

i : V → X be an immersion of schemes and let

T
i′−−−→ W

g



	



	f

V −−−→
i

X

be a cartesian diagram of schemes. Assume that the immersion i′ : T → W is a regular immersion.

We put AV/X,W = g−1PX(OV) ⊗(i◦g)−1OX i′−1OW and IV/X,W = Ker(AV/X,W → OT) as in

Definition 1.6.3.2. We define a decreasing filtration F• on AV/X,W by FpAV/X,W = Ip
V/X,W.

1. For p ≥ 0, the canonical map Sp(IV/X,W/I2
V/X,W)→ Grp

F(AV/X,W) = Ip
V/X,W/Ip+1

V/X,W

is an isomorphism and induces an isomorphism

LΛpM′
V/X,W[p] −−−→ NGrp

F(AV/X,W)(1.6.4.1)

in D−(T).

2. We have a distinguished triangle

−−−→ M′
V/X,W −−−→ Lg∗MV/X −−−→ NT/W −−−→ .(1.6.4.2)

In particular, if W = T is a scheme over V, the canonical map M′
V/X,W → Lg∗MV/X is an

isomorphism. If V → X is a regular immersion, the canonical map M′
V/X,W → N′

V/X,W is an

isomorphism.

3. The filtration F• defines a spectral sequence

E1
p,q = L2p+qΛ−pM′

V/X,W �⇒ TorOX
p+q(OV,OW)(1.6.4.3)

of OT-modules.

Proof. — 1. Since i′ : T → W is a regular immersion, the ideal IT =
Ker(i′−1OW → OT) of i′−1OW is weakly regular in the sense of [19] III 3.3.1. Hence
by loc.cit. Proposition 3.3.6, the i′−1OW-algebra OT is weakly of complete intersec-
tion in the sense of loc.cit. 3.3.4. Further, the ideal IV/X,W of AV/X,W is weakly regular
and the map Sp(IV/X,W/I2

V/X,W) → Grp
FAV/X,W is an isomorphism by loc.cit. Propo-

sition 3.3.6. It induces an isomorphism NSp(IV/X,W/I2
V/X,W) = NSp(M′

V/X,W[1]) →
N(Ip

V/X,W/Ip+1
V/X,W). Hence we obtain an isomorphism (1.6.4.1) by Proposition 1.2.8.

2. By the canonical isomorphism LT/W[−1] → NT/W, it suffices to apply fur-
ther loc.cit. Proposition 3.3.6 to the surjection AV/X,W → OT. If W = T, we have
NT/W = 0. If V → X is a regular immersion, the canonical map MV/X → NV/X is an
isomorphism.

3. We consider the spectral sequence E1
p,q = Hp+qN(Gr−p

F AV/X,W) ⇒
Hp+qN(AV/X,W) defined by F•. The quasi-isomorphism PX(OV)→ OV induces an iso-
morphism HrN(AV/X,W) → TorOX

r (OV,OW). The isomorphism (1.6.4.1) induces an
isomorphism L2p+qΛ−pM′

V/X,W → E1
p,q. Thus the assertion follows. ��
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Corollary 1.6.5. — Assume further that the immersion i : V → X is a regular immersion.

Then, the spectral sequence (1.6.4.3) degenerates at E1-terms and gives an isomorphism

Λr N′
V/X,W −−−→ TorOX

r (OV,OW)(1.6.5.1)

of locally free OT-modules. In particular, if W = T, we have an isomorphism

Λr g∗NV/X −−−→ TorOX
r (OV,OW).(1.6.5.2)

Proof. — By Proposition 1.6.4.2, the canonical map M′
V/X,W → N′

V/X,W is an
isomorphism. Since the conormal sheaf N′

V/X,W is a locally free OT-module under the
assumption, the assertion follows. ��

In Proposition 1.6.4, we may replace the resolution PX(OV)→ OV by any reso-
lution by a weakly free simplicial i−1OX-algebra.

Lemma 1.6.6. — Let the notation be as in Proposition 1.6.4. Let A → OV be a resolution

by a weakly free simplicial i−1OX-algebra. We put AW = g−1A ⊗(i◦g)−1OX i′−1OW and I =
Ker(AW → OT). We define filtrations F• on AW by FpAW = Ip. Let ET be the spectral sequence

(1.6.4.3) and EA be the spectral sequence E1
p,q = Hp+qNGr−p

F AW ⇒ Hp+qNAW defined by the

filtered complex (NAW, F•).
Then, the canonical map

Sp(I/I2) −−−→ Ip/Ip+1 = Gr p
FAW(1.6.6.1)

is an isomorphism. The quasi-isomorphism A → OV induces an isomorphism of distinguished tri-

angles

→ M′
V/X,W −−−→ g∗MV/X −−−→ NT/W →


	



	

∥
∥
∥

→ N(I/I2)[−1] −−−→ N
(
Ω1

AW/OW

)[−1] −−−→ NT/W →
(1.6.6.2)

and an isomorphism of spectral sequences

EA −−−→ ET .(1.6.6.3)

Proof. — Recall IV/X,W = Ker(AV/X,W = PX(OV) ⊗OX OW → OT) and
N(IV/X,W/I2

V/X,W) = M′
V/X,W[1] in the notation of Definition 1.6.3.2. In the notation

of [19] II 1.2.2, we have quasi-isomorphisms PX(OV) ← P∆
X(A) → A. They induce

a map

→ N
(
IV/X,W/I2

V/X,W

)[−1] −−−→ N
(
Ω1

AV/X,W/OW

)[−1] −−−→ NT/W →


	



	

∥
∥
∥

→ N(I/I2)[−1] −−−→ N
(
Ω1

AW/OW

)[−1] −−−→ NT/W →
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of distinguished triangles. Since A → OV is a resolution by weakly free simpicial
OX-algebra, the middle vertical arrow is an isomorphism. Thus, the left vertical map
N(IV/X,W/I2

V/X,W) = M′
V/X,W[1] → N(I/I2) is also an isomorphism and we obtain an

isomorphism (1.6.6.2).
By [19] Proposition 3.3.6, the ideals I ⊂ AW and IV/X,W ⊂ AV/X,W are weakly

regular. Thus by loc.cit. 3.3.1, the maps Sp(I/I2) → Ip/Ip+1 (1.6.6.1) and
Sp(IV/X,W/I2

V/X,W) → Ip
V/X,W/Ip+1

V/X,W are isomorphism.
We consider the maps PX(OV) ← P∆

X(A) → A. For p ≥ 0, they induce an
isomorphism Grp

FAV/X,W = N(Ip
V/X,W/Ip+1

V/X,W) → Grp
FAW = N(Ip/Ip+1) by the isomor-

phisms N(IV/X,W/I2
V/X,W)→ N(I/I2), Sp(IV/X,W/I2

V/X,W) → Ip
V/X,W/Ip+1

V/X,W and Sp(I/I2)

→ Ip/Ip+1. Hence they define an isomorphism N(AV/X,W, F•)→ N(AW, F•) in the de-
rived category of filtered complexes. It defines an isomorphism EA → ET (1.6.6.3) of
the spectral sequences. ��

The following result will be used only in the proof of Proposition 5.1.4 and will
not be used in the proof of the main result, Theorem 6.3.1.

Proposition 1.6.7 (cf. [5] Theorem 8). — Let i : V → X be an immersion. Assume

that, for each x ∈ X, there is an open neighborhood U and a regular immersion U → P such that

the composition V∩U → U → P is also a regular immersion. Then for a scheme W over V, the

spectral sequence (1.6.4.3) degenerates at E1-terms.

Proof. — We give a proof using the Koszul simplicial algebra defined in Sec-
tion 1.3. Since the question is local, we may assume that there exist locally free OP-
modules MP and LP of finite rank and OP-linear maps vP : LP → MP and uP :
MP → OP such that the Koszul complexes K(MP

uP→ OP) and K(LP
uP◦vP→ OP)

are resolutions of the OP-modules OV and OX respectively. By Lemma 1.3.2, AMP =
A(MP

uP→ OP)→ OV and ALP = A(LP
uP◦vP→ OP)→ OX are quasi-isomorphisms.

Let CP = [LP
(vP,−1)→ MP ⊕ LP] be the mapping cylinder and define a map

cP : CP → OP by (uP, uP ◦ vP). By Corollary 1.3.6.1, the natural map MP → CP

induces a quasi-isomorphism AMP → ACP = A∆(CP
cP→ OP). Thus, in the commutative

diagram

ACP −−−→ OV










ALP −−−→ OX,

the horizontal arrows are quasi-isomorphisms. Since ACP is flat over ALP , the map
ACP = ACP ⊗ALP

ALP → ACP⊗ALP
OX is a quasi-isomorphism by [19] I Lemme 3.3.2.1.

Thus we obtain a quasi-isomorphism ACP ⊗ALP
OX → OV.
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We put L = LP ⊗OP OX, M = MP ⊗OP OX and C = CP ⊗OP OX. Let K =
[L →M ] be the mapping cone and w : K → OX be the map defined by u = uP⊗1.
We put AL = A(L

u◦v→ OX), AC = A(C
c→ OX) and AK = A(K

w→ OX). Then,
we have ACP ⊗ALP

OX = AC ⊗AL
OX. Since the composition L → OX is the 0-map,

we have an isomorphism AC ⊗AL
OX → AK by Corollary 1.3.6.2. Thus we obtain

a resolution A = AK → OV by weakly free simplicial OX-algebra.
We consider the filtration F• on AW = A⊗OX OW defined by the powers of the

kernel of the surjection AW → OT = OW. By the assumption that W is a scheme
over V, the map wW : KW → OW defining AW = A(KW

wW→ OW) is the 0-map. Hence
the filtration F• on AW splits. Thus the assertion follows by Lemma 1.6.6. ��

The relation of Proposition 1.6.7 with [5] Theorem 8 is as follows. We
keep the notation in the proof of Proposition 1.6.7. Since the Koszul complex
K(MP

uP→ OP) is a resolution of the OP-modules OV, the Koszul complex
E = K(M

u→ OX) is isomorphic to OX ⊗L
OP

OV. Hence, by Corollary 1.6.5, the
OV-module H1(E) is isomorphic to TorOP

1 (OX,OV) and is locally free. Further,
the canonical map ΛpH1(E) → Hp(E) is an isomorphism for p ≥ 0. Thus the
ideal of OX defining OV has locally Free Exterior Koszul Homology property
in the sense of [5]. Therefore loc.cit. Theorem 8 together with the remark
following its proof implies Proposition 1.6.7.

1.7. Spectral sequence for Tor and the Atiyah class. — We give a relation between
the spectral sequence (1.6.4.3) and the Atiyah class map in Proposition 1.7.2.

In this subsection, we consider a commutative diagram

T
i′−−−→ W

g



	



	f

V
i−−−→ X −−−→ P

(1.7.0.1)

of schemes. We assume that the square is cartesian, the horizontal arrows are immer-
sions and that the immersions i′ : T → W and X → P are regular immersions.
Shifting the distinguished triangle (1.4.0.1) for the lower line in the diagram (1.7.0.1),
we obtain a distinguished triangle

−−−→ (i ◦ g)∗NX/P −−−→ MV/P −−−→ MV/X −−−→ .(1.7.0.2)

Throughout this subsection, we use the following notation. We consider the stan-
dard resolution P = PP(OX) = Pj−1OP(OX) → OX by free simplicial j−1OP-algebra
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and the diagonal of the standard resolution Q = P∆
P(OV) → OV by free bisimplicial

i−1P-algebra. We put J = Ker(P⊗j−1OP P →P). Further, we put

B = i−1OX ⊗( j◦i)−1OP Q,

A = i−1OX ⊗i−1P Q = B⊗i−1(P⊗j−1OP
P) i−1P,

JB = Ker(B → A) = Q⊗i−1(P⊗j−1OP
P) i−1J.

We put AW = A ⊗OX OW, BW = B ⊗OX OW and JBW = Ker(BW → AW). Further we
put I = Ker(AW → OT), Ĩ = Ker(BW → OT).

For each n, there exist flat ( j ◦ i)−1OP-modules Ln and Mn and isomorphisms
S( j◦i)−1OPLn → Pn and S( j◦i)−1OP(Ln ⊕ Mn) → Qn. We put Ln,X = Ln ⊗( j◦i)−1OP i−1OX

and Mn,X = Mn ⊗( j◦i)−1OP i−1OX. Then we obtain a commutative diagram

Si−1OX(Ln,X ⊕Mn,X) −−−→ Bn


	



	

Si−1OXMn,X −−−→ An

where the horizontal arrows are isomorphisms. The left vertical arrow is induced by
an i−1OX-linear form Ln,X → i−1OX. Thus, by modifying the isomorphism
Si−1OX(Ln,X ⊕ Mn,X) → Bn by the linear form Ln,X → i−1OX, we may assume that
the left vertical arrow is induced by the 0-map Ln,X → i−1OX. Thus, we obtain an
isomorphism

SAn(An ⊗i−1OX Ln,X) −−−→ Bn(1.7.0.3)

of An-algebras.

Lemma 1.7.1. — We keep the notation above. Then, the canonical maps defines a map

−−−→ (i ◦ g)∗NX/P −−−→ M′
V/P,W −−−→ M′

V/X,W −−−→
∥
∥
∥



	



	

−−−→ (i ◦ g)∗NX/P −−−→ MV/P −−−→ MV/X −−−→
(1.7.1.1)

of distinguished triangles, where the lower line is the distinguished triangle (1.7.0.2). In particular, if

the composition V → P is a regular immersion, the upper line gives a distinguished triangle

−−−→ (i ◦ g)∗NX/P −−−→ N′
V/P,W −−−→ M′

V/X,W −−−→ .(1.7.1.2)
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Proof. — We consider the commutative diagram

0 0


	



	

JBW/J2
BW
⊗AW OT −−−→ Ω1

PP(OX)/j−1OP
⊗PP(OX) OT



	



	

Ĩ/Ĩ2 −−−→ Ω1
BW/OW

⊗BW OT


	



	

I/I2 −−−→ Ω1
AW/OW

⊗AW OT


	



	

0 0.

(1.7.1.3)

Using the isomorphism (1.7.0.3), it is easy to see that the left column of (1.7.1.3) is
exact. It follows from the construction of the distinguished triangle (1.4.0.1) recalled
in Section 1.4 that the right exact sequence gives the lower distinguished triangle in
(1.7.1.1). By Lemma 1.6.6, the horizontal arrows in (1.7.1.3) induce the vertical arrows
in (1.7.1.1). Thus, we obtain a map of distinguished triangles (1.7.1.1).

If V → P is a regular immersion, the canonical map M′
V/P,W → NV/P,W is an iso-

morphism by Proposition 1.6.4.2. Thus the upper line of (1.7.1.1) implies (1.7.1.2). ��
Let M′

V/X,W → NX/P ⊗OX OT[1] be the map defining the distinguished triangle
→ NX/P ⊗OX OT → N′

V/P,W → M′
V/X,W →. We define a map

λV/X/P,W : LpΛqM′
V/X,W −−−→ NX/P ⊗OX Lp−1Λq−1M′

V/X,W(1.7.2.1)

to be that induced by the composition

LΛqM′
V/X,W→M′

V/X,W⊗OX LΛq−1M′
V/X,W→NX/P⊗OX LΛq−1M′

V/X,W[1].
For a spectral sequence E = (E1

p,q ⇒ Ep+q) and integers a and b, let E[a, b] denote the
spectral sequence (E1

p−a,q−b ⇒ Ep+q−(a+b)).
The following result will be used in the proof of the excess intersection formula,

Proposition 3.4.2.

Proposition 1.7.2. — Let

T
i′−−−→ W

g



	



	f

V
i−−−→ X

j−−−→ P
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be a diagram of schemes. We assume that the square is cartesian, the horizontal arrows are immersions

and that the immersions X → P and i′ : T → W are regular immersions. Let ET denote the

spectral sequence (1.6.4.3).
Then, there exists a map

α : ET −−−→ NX/P ⊗OX ET [−1, 3](1.7.2.2)

of spectral sequences such that the maps on the abutments are αOV,OW,X/P : TorOX
r (OV,OW) →

NX/P ⊗ TorOX
r−2(OV,OW) (1.5.4.4) and the maps on the E1-terms are the maps λV/X/P,W :

LpΛqM′
V/X,W → NX/P ⊗OX Lp−1Λq−1M′

V/X,W.

Proof. — Proof is divided into the following three steps.

1. Define a map ET → NX/P ⊗OX ET [−1, 3] of spectral sequences.
2. Compute the map on abutments.
3. Compute the map on E1-terms.

1. We keep the notation

B = i−1OX ⊗( j◦i)−1OP Q,

A = i−1OX ⊗i−1P Q = B⊗i−1(P⊗j−1OP
P) i−1P,

JB = Ker(B → A) = Q⊗i−1(P⊗j−1OP
P) i−1J,

AW = A ⊗OX OW, BW = B ⊗OX OW, JBW = Ker(BW → AW), I = Ker(AW → OT),
Ĩ = Ker(BW → OT) above. We define filtrations F• on AW, JBW/J2

BW
and on BW/J2

BW

by FpAW = IpAW, Fp( JBW/J2
BW

) = Ip( JBW/J2
BW

) and by Fp(BW/J2
BW

) = Ĩp(BW/J2
BW

). Let
EA and EJ be the spectral sequences E1

p,q = Hp+qNGr−p
F (AW) ⇒ Hp+qN(AW) and

E1
p,q = Hp+qNGr−p

F ( JBW/J2
BW

) ⇒ Hp+qN( JBW/J2
BW

) defined by the filtered complexes
(N(AW/A2

W), F•) and (N( JBW/J2
BW

), F•) respectively
The construction of ET → NX/P ⊗OX ET [−1, 3] is divided into the following

three substeps.

i. Define an isomorphism β : ET → EA of spectral sequences.
ii. Define a map γ : EA → EJ[−1, 2] of spectral sequences.
iii. Define an isomorphism δ : NX/P ⊗OX EA[0, 1] → EJ.

Transporting the composition δ−1◦γ by the isomorphism β : ET → EA, we will define
a map α : ET → NX/P ⊗OX ET [−1, 3].

i. We define an isomorphism ET → EA of spectral sequences. In the commuta-
tive diagram

Q −−−→ OV










i−1P −−−→ i−1OX,

(1.7.2.3)
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the horizontal arrows are quasi-isomorphisms. We show that the induced map A→OV

is a resolution by weakly free simplicial i−1OX-algebra. Since Q is a free simplicial
i−1P-algebra, the tensor product A = Q⊗i−1Pi−1OX is a free simplicial i−1OX-algebra.
Further, the quasi-isomorphism P → OX induces a quasi-isomorphism Q = Q⊗i−1P

i−1P → A = Q⊗i−1P i−1OX by [19] I Lemme 3.3.2.1. Thus the quasi-isomorphism
Q → OV induces a quasi-isomorphism A → OV. By applying Lemma 1.6.6, we ob-
tain an isomorphism β : ET → EA of spectral sequences.

ii. We define γ : EA → EJ[−1, 2]. Using the isomorphism (1.7.0.3), it is easy to
see that the sequence

0 → Grp−1
F

(
JBW/J2

BW

) −−−→ Grp
F

(
BW/J2

BW

) −−−→ Gr p
FAW → 0(1.7.2.4)

is exact for each p ≥ 0. Namely, the exact sequence 0 → JBW/J2
BW
→ BW/J2

BW
→

AW → 0 defines an exact sequence

0 → (
JBW/J2

BW
, F•−1

) −−−→ (
BW/J2

BW
, F•

) −−−→ (AW, F•)→ 0(1.7.2.5)

of filtered simplicial modules. The exact sequence (1.7.2.5) defines a map (NAW, F•)→
(N( JBW/J2

BW
), F•−1)[1] of filtered complexes in the derived category and hence a map

EA → EJ[1,−2] of spectral sequences.
iii. We define an isomorphism δ : NX/P ⊗OX EA[0, 1] → EJ. The natural map

AW⊗i−1P i−1( J/J2)→ JBW/J2
BW

is an isomorphism. Since J/J2 is flat over P, it defines
an isomorphism

i−1( J/J2)⊗i−1P (AW, F•) −−−→ (
JBW/J2

BW
, F•

)
(1.7.2.6)

of filtered modules. By the assumption that X → P is a regular immersion, we have
a canonical isomorphism LX/P → NX/P[1]. Since LX/P = N( J/J2 ⊗P OX), we have an
isomorphism

N
(
i−1( J/J2)⊗i−1P (AW, F•)

) −−−→ NX/P ⊗OX N(AW, F•)[1](1.7.2.7)

of filtered complexes in the derived category. The isomorphisms (1.7.2.6) and (1.7.2.7)
induce an isomorphism δ : NX/P ⊗OX EA[0, 1] → EJ.

2. We show that the maps on the abutments are induced by the map αOV,OW,X/P :
OV⊗L

OX
OW → NX/P⊗OV⊗L

OX
OW[2] (1.5.4.1). Applying the functors i−1( )⊗i−1P OV,

i−1( ) ⊗i−1P Q and OX ⊗i−1P i−1( ) ⊗i−1P Q to the exact sequence 0 → J/J2 →
(P⊗j−1OP P)/J2 →P → 0, we obtain a commutative diagram

0 → i−1( J/J2)⊗i−1P OV → i−1(P⊗j−1OP P)/J2 ⊗i−1P OV → OV → 0
↑ ↑ ↑

0 → i−1( J/J2)⊗i−1P Q → i−1(P⊗j−1OP P)/J2 ⊗i−1P Q → Q → 0
↓ ↓ ↓

0 → JB/J2
B → B/J2

B → A → 0.
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of exact sequences. We regard the upper two lines as exact sequences of i−1P-modules
with respect to the map P → P ⊗j−1OP P sending a to a ⊗ 1. The lower vertical
arrows are compatible with the surjection i−1P → OX.

Since LX/P=N(Ω1
P/j−1OP

⊗POX)=N( J/J2⊗POX), we may identify LX/P⊗OXOV

= N(i−1( J/J2)⊗i−1P OV) for the upper left term. Then, by the second description of
the Atiyah class map recalled in Section 1.4, the Atiyah class map OV →
LX/P⊗OX OV[1] is defined by the boundary map of the top sequence. Since the vertical
arrows are quasi-isomorphisms, we obtain a commutative diagram

OV
atX/P,OV−−−−→ LX/P ⊗OX OV[1]











NA −−−→ N
(

JB/J2
B

)[1]
in the derived category of OX-modules. Thus, applying ⊗OXOW, we obtain a commu-
tative diagram

OV ⊗L
OX

OW
αOV,OW,X/P−−−−−→ NX/P ⊗OX OV ⊗L

OX
OW[2]











NAW −−−→ N
(

JBW/J2
BW

)[1]
in the derived category of OW-modules. Thus the assertion follows from the definition
of the identifications β : ET → EA and δ : NX/P⊗OX EA[0, 1] → EJ in i and iii above.

3. We show that the maps on the E1-terms are given by λV/X/P,W : LpΛqM′
V/X,W→ NX/P⊗OX Lp−1Λq−1M′

V/X,W. By the assumption that T → W is a regular immersion,
the kernel of the surjection BW → OT is weakly regular. By the isomorphism (1.7.0.3),
it is easy to see that the isomorphism Sp(Ĩ/Ĩ2)→ Ĩp/Ĩp+1 induces an isomorphism

0 0

↓ ↓
Sp−1(I/I2)⊗ JBW/J2

BW
−−−→ Grp−1

F

(
JBW/J2

BW

)



	



	

Sp(Ĩ/Ĩ2)/
(
S2

(
JBW/J2

BW

) · Sp−2(Ĩ/Ĩ2)
) −−−→ Gr p

F

(
BW/J2

BW

)



	



	

Sp(I/I2) −−−→ Gr p
FAW

↓ ↓
0 0
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of exact sequences. The right column is the exact sequence (1.7.2.4). Hence by Corol-
lary 1.2.3.1, we obtain a commutative diagram

NSp(I/I2) −−→ NGr p
FAW



	



	

N(I/I2)⊗NSp−1(I/I2) NGr p−1
F

(
JBW/J2

BW

)[1]


	






N
(

JBW/J2
BW
⊗AW OT

)[1] ⊗NSp−1(I/I2) −−→ N
(

J/J2⊗OX Gr p−1
F AW

)[1].
The upper left vertical arrow is induced by the map (1.2.1.1) and the lower left and
the upper right vertical arrows are defined by the exact sequence (1.7.2.4). The rest
are the natural maps. Recall that the distinguished triangle → (i ◦ g)∗NX/P

→N′
V/P,W→M′

V/X,W→ (1.7.1.2) is defined by the exact sequence 0→ JBW/J2
BW
⊗AW OT

→ Ĩ/Ĩ2 → I/I2 → 0 in the proof of Lemma 1.7.1. Thus, by Lemmas 1.2.9 and 1.6.6,
we have a commutative diagram

LΛpM′
V/X,W[p] −−−→ NGrp

FAW


	



	

NX/P ⊗OX LΛp−1M′
V/X,W[p] −−−→ NGrp−1

F

(
JBW/J2

BW

)[1]
and the assertion follows. ��

2. K-theory and localized Chern classes

We briefly recall generalities on K-groups, Chow groups and Chern classes
in 2.1. We interpret intersection theory à la Fulton-MacPherson in terms of K-theory
in 2.2. We briefly recall generalities on localized Chern classes in 2.3. We compare
the localized Chern class and the class of the derived exterior power complex in 2.4
for a complex satisfying a certain condition.

2.1. K-theory and Chow groups. — We recall generalities on K-theoretic inter-
section theory. Basic references are [17] and [14].

For a scheme X, let K(X) be the Grothendieck group of the category of locally
free OX-modules of finite rank. It is the quotient of the free abelian group generated
by the isomorphism classes [E ] of locally free OX-modules of finite rank divided by
the relations [E ] = [E ′] + [E ′′] for exact sequences 0 → E ′ → E → E ′′ → 0.
For a noetherian scheme X, let G(X) be the Grothendieck group of the category of
coherent OX-modules. It is the quotient of the free abelian group generated by the
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isomorphism classes [F] of coherent OX-modules divided by the relations [F] =
[F ′] + [F ′′] for exact sequences 0 → F ′ → F → F ′′ → 0. For G ∈ Db(X)coh,
its class [G ] ∈ G(X) is defined as the alternating sum

∑
q(−1)q[Hq(G )]. For a distin-

guished triangle → G ′ → G → G ′′ → in Db(X)coh, we have [G ] = [G ′] + [G ′′].
We have a canonical map K(X)→ G(X) sending the class [E ] of a locally free

OX-module E to [E ]. If X is regular, noetherian and separated, then the canonical
map K(X) → G(X) is an isomorphism by the following lemma.

Lemma 2.1.1 ([17] Exp. II Corollary 2.2.7.1). — Let X be a separated regular noethe-

rian scheme of dimension n and F be a coherent OX-module. Then there exists a resolution

0 → En → · · · → E0 → F → 0 of F by locally free OX-modules of finite rank.

In this case, we identify G(X) = K(X). For a coherent OX-module F , the in-
verse image of [F] in K(X) is

∑n
q=0(−1)q[Eq] for a resolution (E•) as in Lemma 2.1.1.

The multiplication on K(X) is defined by the tensor product [E ] · [E ′] =
[E ⊗OX E ′]. If X is noetherian, G(X) is a K(X)-module by the multiplication
[E ] · [F] = [E ⊗OX F]. More generally, if f : W → X is a map of schemes and
W is noetherian, a bilinear map ( , )X : K(X) × G(W) → G(W) is defined by
([F], [G ])X = [F ⊗L

OX
G ]. If X is separated, regular and noetherian of dimension n,

the multiplication on G(X)=K(X) is given by [F]·[F ′]=∑n
q=0(−1)q[TorOX

q (F,F ′)].
The γ -filtration FnK(X) on K(X) is defined as follows. There is a canonical

map λt : K(X) → 1+ tK(X)[[t]] ⊂ K(X)[[t]]× sending the class [E ] of a locally free
OX-module E to

∑
q[ΛqE ]tq. For x ∈ K(X), we put γt(x) = λ t

1−t
(x) = 1+∑

n>0 γn(x)tn.
For a locally free OX-module E of rank n, we have

γt([E ] − n) =
n∑

q=0

[ΛqE ]tq(1− t)n−q =
n∑

r=0

(

r∑

q=0

(−1)r−q

(
n− q
r − q

)

[ΛqE ])tr .(2.1.1.1)

For r = n, we have

γn([E ] − n) =
n∑

q=0

(−1)n−q[ΛqE ].(2.1.1.2)

If L is invertible, we have γt([L ]−1) = 1+([L ]−1)t. For n = 1, F1K(X) is defined
to be the kernel of the map K(X) → Zπ0(X) sending E to rank E . For n ≥ 1, FnK(X)

is defined as the subgroup generated by the elements of the form γn1(x1) · · · γnr(xr)

where xi ∈ F1K(X) and
∑

i ni ≥ n. We put F0K(X) = K(X). We have FnK(X) ·
FmK(X) ⊂ Fm+nK(X).

In the rest of this section, S denotes an equidimensional regular noetherian
scheme of finite dimension. For a scheme X of finite type over S, the topological fil-
tration FnG(X) on G(X) is defined as follows. It is called the lower filtration in [14]
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Chapter VI §5. We recall that the dimension dim S is defined as the supremum of the
dimensions of the local rings dim OS,s. For a point s of S, we put dimS s = dim S −
dim OS,s. Let X be a scheme of finite type over S and f : X → S denote the structural
map. We put dimS x = tr. degκ( f (x))κ(x)+dimS f (x) for x ∈ X as in [16] Exp. XIV 2. If
S is the spectrum of a regular local noetherian ring and X is proper over S, we have
an equality dimS x = dim {x} for x ∈ X by loc.cit. Proposition 2.3. For a closed subset
V ⊂ X, we put dimS V = supx∈V dimS x. Note that the function dimS depends on the
base scheme S. For an integer n ≥ 0, let FnG(X) be the subgroup of G(X) generated
by the classes [F] of coherent OX-modules F such that the dimension of the support
of F is at most n.

The γ -filtration and the topological filtration are related as follows.

Lemma 2.1.2. — Let S be an equidimensional regular noetherian scheme of finite dimension

and X be a scheme of finite type over S.

1. ([14] Chapter V Theorem 3.9, Chapter VI Proposition 5.2) We have FnK(X) ·
FmG(X) ⊂ Fm−nG(X). In particular, if X is of dimension d , the canonical map K(X) → G(X)

sends FnK(X) into Fd−nG(X).

2. ([14] Chapter VI Proposition 5.5) If X is regular and equidimensional of dimension d
and if there exists an ample invertible OX-module, the induced map Grn

FK(X)Q → GrF
d−nG(X)Q

is an isomorphism.

Let f : X → Y be a morphism of schemes. The pull-back of locally free sheaves
defines a ring homomorphism f ∗ : K(Y) → K(X). We have f ∗FnK(Y) ⊂ FnK(X).
Assume X and Y are noetherian. If f is proper, there is a map f∗ : G(X) → G(Y)

sending the class of a coherent OX-module F to the class of the complex Rf∗F . If f
is flat, there is a map f ∗ : G(Y) → G(X) sending the class of a coherent OY-module
F to the class of f ∗F .

Lemma 2.1.3. — Let f : X → Y be a morphism of schemes of finite type over a regular

noetherian scheme S of finite dimension.

1. ([14] Chapter VI Proposition 5.6) If f is proper, we have f∗FnG(X) ⊂ FnG(Y).

2. ([14] Chapter VI Proposition 6.3) If f is flat of relative dimension m, we have

f ∗FnG(Y) ⊂ Fn+mG(X).

We recall the definition of Chow groups and bivariant Chow groups. Let S be
an equidimensional regular noetherian scheme of finite dimension, X be a scheme of
finite type over S and i ≥ 0 be an integer. Let Xi denote the set {x ∈ X| dimS x = i}.
The Chow group CHi(X) is defined as the cokernel Coker(

⊕
y∈Xi+1

κ( y)×
d→⊕

x∈Xi
Z).

The (x, y)-component dx, y : κ( y)× → Z of d is characterized as follows. Let Y be the
closure of { y} with the reduced subscheme structure. If x ∈ Y, the map dx, y satisfies
dx, y f = lengthOY,x/( f ) for f ∈ OY,x, �= 0 and, if x /∈ Y, it is the 0-map.
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Let S be an equidimensional regular noetherian scheme of finite dimension. Let
X be a scheme of finite type over S and Z be a closed subscheme of X. An elem-
ent of the bivariant Chow cohomology group CHi(Z → X) is a collection of maps
CHj(W) → CHj−i(Z×X W) defined for schemes W of finite type over X and for in-
tegers j ≥ i, satisfying certain natural functorial properties ([13] Chapters 17 and 20).
If Z = X, let CH∗(X) denote the bivariant Chow ring CH∗(X → X). If X is equidi-
mensional of dimension d , a canonical map ∩[X] : CHq(X) → CHd−q(X) is defined.
It is an isomorphism if X is smooth and S = Spec k for a field k [13] Corollary 17.4.

The filtrations on K-groups and Chow groups are related as follows. The map
ch : K(X) → CH∗(X)Q sending the class [E ] of a locally free OX-module E to its
Chern character (chi(E ))i ∈ CH∗(X)Q is a ring homomorphism.

Lemma 2.1.4. — Let S be an equidimensional regular noetherian scheme of finite dimension

and X be a scheme of finite type over S.

1. The Chern character map ch : K(X) → CH∗(X)Q is compatible with the γ -filtration

and induces a homomorphism ch : Gr∗FK(X)→ CH∗(X)Q of graded rings.

2. (cf. [13] Example 15.1.5) The map CH∗(X) → GrF
∗G(X) sending the class [V]

of an integral subscheme V to [OV] is well-defined and is a surjection.

3. Assume X is equidimensional of dimension n. Let E be a locally free OX-module of rank r.
Then for an integer i ≥ 0, the class in GrF

n−iG(X) of the image of γi([E ] − r) ∈ FiK(X) is

equal to the image of ci(E ) ∈ CHi(X). In particular, for i = r, the image of γr([E ] − r) =
(−1)r

∑
q(−1)q[ΛqE ] ∈ FrK(X) is equal to the image of cr(E ) ∈ CHr(X).

4. Assume X is equidimensional of dimension n. Then the composition

Gr∗FK(X)Q
ch−−−→ CH∗(X)Q

∩[X]−−−→ CHn−∗(X)Q −−−→ GrF
n−∗G(X)Q

is equal to the map induced by the canonical map K(X)→ G(X).

5. Assume X is quasi-projective and smooth of dimension n over a field. Then the three maps

in 4 are isomorphisms.

By Lemma 2.1.4, the intersection product on CH∗(X)Q for a smooth quasi-
projective scheme X over a field may be computed by the product on K(X)Q .

Proof. — 1. It follows from the splitting principle and the equality γt([L ]−1) =
1+ ([L ] − 1)t for an invertible sheaf L .

2. Let W be a closed subscheme of P1
X and let π : P1

X → X be the projection.
Then we have [OW0] − [OW∞] = π∗(([O(1)−O] − [O(1)−O]) · [OW]) = 0 in G(X).

3. It follows from the splitting principle and the equality (2.1.1.1).
4. It follows from the splitting principle and the equality ch1([O(D)] − 1) ∩ [X]

= [D] for a Cartier divisor D.
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5. The second arrow is an isomorphism by [13] Corollary 17.4. The composi-
tion is an isomorphism by 4 and by [14] Chapter VI Proposition 5.5. By Riemann-
Roch for the immersion V → X, we have chi[OV] = [V] for a closed subscheme
V of codimension i. Hence the composition map CHn−i(X)Q → GrF

n−iG(X)Q →
Gri

FK(X)Q → CHn−i(X)Q is the identity. Thus the assertion follows. ��

2.2. K-theory and intersection theory. — The intersection theory à la Fulton-
MacPherson is translated in terms of K-theory as follows. We introduce some notation.
Let i : V → X be a regular closed immersion of codimension c. Then the OX-module
OV is of finite tor-dimension. Let W be a noetherian scheme and

T −−−→ W

g



	



	f

V −−−→
i

X

be a cartesian diagram of schemes. For a coherent OW-module G , the Tor-sheaves
TorOX

q (OV,G ) are coherent OT-modules and are 0 except for 0 ≤ q ≤ c since OV is of
tor-dimension c. We define a map (V, )X : G(W) → G(T) by

(V, [G ]) =
c∑

q=0

(−1)q
[
TorOX

q (OV,G )
]

for a coherent OW-module G .

Lemma 2.2.1. — Let i : V → X be a regular closed immersion of codimension c and

f : W → X be a map of schemes. We put T = V ×X W and assume the closed immersion

i′ : T → W is a regular immersion of codimension c ′. Assume W is noetherian. Then, for the in-

tersection product (V, W)X ∈ G(T) defined as
∑

q(−1)q[TorOX
q (OV,OW)], we have an equality

(V, W)X =
c−c ′∑

q=0

(−1)q
[
ΛqN′

V/X,W

] = (−1)c−c ′γc−c ′
([

N′
V/X,W

]− (c − c ′)
)
.(2.2.1.1)

If W = T and g : W → V is the induced map, we have

(V, W)X =
c∑

q=0

(−1)q
[
Λqg∗NV/X

] = (−1)cγc

([
g∗NV/X

]− c
)
.(2.2.1.2)

Proof. — It follows from Corollary 1.6.5 and the equality (2.1.1.2). ��
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We study the relation of the K-theoretic intersection product with the intersec-
tion product using Chow groups. We recall the definition of the Segre class. Let S be
an equidimensional regular noetherian scheme of finite dimension. Let W be an inte-
gral scheme of finite type over S and T ⊂ W be a closed subscheme. If T = W, we
put s(T, W) = [W] ∈ CH∗(W) = ⊕

i CHi(W). Assume T �= W. Let π : W′ → W be
the blow-up at T and T′ = W′ ×W T be the inverse image of T. The subscheme T′

is a Cartier divisor of W′. Then, the total Segre class is defined by

s(T, W) =
∑

i>0

si(T, W) =
∑

i>0

(−1)i−1π∗(T′i−1 ∩ [T′])

∈ CH∗(T) =⊕
i CHi(T) (cf. [13] Corollary 4.2.2).

Let S be a regular scheme of finite equidimension as above. Let X be a scheme
of finite type over S and V → X be a regular immersion of codimension c. The inter-
section product (V, )X is defined as an element of the bivariant Chow cohomology
group CHc(V → X) as follows. Let W be an integral scheme of finite type over S
and W → X be a morphism over S. We put T = V×X W and let g : T → V be the
projection. Then the intersection product (V, W)X ∈ CHdim W−c(T) is defined by

(V, W)X = {c( g∗NV/X)∗ ∩ s(T, W)}dim W−c.(2.2.2.1)

Here c( g∗NV/X)∗ denotes
∑

i(−1)ici( g∗NV/X) and the subscript dim W−c means taking
the dimension dim W−c-part. If the closed immersion T → W is a regular immersion
of codimension c ′ and N′

V/X,W denotes the excess conormal sheaf, we have

(V, W)X = (−1)c−c ′cc−c ′(N′
V/X,W) ∩ [T].(2.2.2.2)

The equality (2.2.2.2) is called the excess intersection formula. Thus we obtain a collec-
tion of maps (V, )X : CHi(W) → CHi−c(T) sending the class of a closed integral
subscheme W′ to (V, W′)X for a morphism W → X of schemes of finite type over S.
They define an element [V] ∈ CHc(V → X) of the bivariant Chow group. The bi-
variant class [V] ∈ CHc(V → X) is characterized by the excess intersection formula
(2.2.2.2) and the projection formula (V, π∗W)X = π∗(V, W)X.

Proposition 2.2.2. — Let S be an equidimensional regular noetherian scheme of finite di-

mension and f : W → X be a morphism of schemes of finite type over S. Let i : V → X be

a regular closed immersion of codimension c and we put T = V×X W.

Then the map (V, )X : G(W) → G(T) sends the topological filtration FpG(W) to

Fp−cG(T). For the induced map, the diagram

CHp(W)
(V, )X−−−→ CHp−c(T)



	



	

GrpG(W) −−−→
(V, )X

Grp−cG(T)

(2.2.2.3)
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is commutative. In particular, if W is equidimensional of dimension p and if the immersion T → W
is a regular immersion of codimension c ′, we have an equality

([V], [W]) = (−1)c−c ′cc−c ′(N′
V,W/X) ∩ [T](2.2.2.4)

in Grp−cG(T).

The equality (2.2.2.4) is also called the excess intersection formula. We will later
show a localized version, Theorem 3.4.3.

Proof. — The topological filtration FpG(W) is generated by the classes [OY] for
integral closed subschemes Y ⊂ W of dimension ≤ p. We put Z = V×X Y. If Y = Z,
we put Y′ = Y and Z′ = Z. If otherwise, let π : Y′ → Y be the blow-up of Y at Z
and put Z′ = Z×Y Y′. In the latter case Z � Y, the exceptional divisor Z′ is a Cartier
divisor of Y′. Let πZ : Z′ → Z denote the induced map.

We show an equality (V, [Rπ∗OY′ ])X = πZ∗(V, [OY′ ])X in G(Z). Since OV is of
finite tor-dimension and π is quasi-compact, we have a projection formula
OV ⊗L

OX
Rπ∗OY′ = Rπ∗(OV ⊗L

OX
OY′) (1.5.3.1) in Db(X)coh. Thus, by the spectral se-

quences (1.5.3.3) and by the isomorphism (1.5.3.2), we have

(V, [Rπ∗OY′ ])X =
∑

p+q

(−1)p+q
[
TorOX

q

(
OV, Rpπ∗OY′

)]

=
∑

q

(−1)q
[
TorOX

q (OV, Rπ∗OY′)
] =

∑

q

(−1)q
[
Rqπ∗

(
OV ⊗L

OX
OY′

)]

=
∑

p,q

(−1)p+q
[
Rqπ∗TorOX

p (OV,OY′)
] = πZ∗(V, [OY′ ]).

The topological filtration FpG(W) is generated by the classes π∗[OY′ ] = [Rπ∗OY′ ]
for integral closed subschemes Y ⊂ W of dimension ≤ p. Hence it is reduced to show-
ing that (V, [OY′ ])X is in Fp−nG(Z′) and that its class in GrF

p−nG(Z′) is equal to the
image of (V, Y′) ∈ CHp−c(Z′) assuming dimS Y = p. Replacing W by Y and further
by Y′, we may assume W = Y = Y′ and T = Z = Z′. Thus we may assume Y = W
is of dimension p and either T is equal to W or T is a Cartier divisor of W. Let
g : T → V be the canonical map.

If W = T, we have (V, [OW])X = (−1)cγc([ g∗NV/X] − c) by Lemma 2.2.1.
Hence (V, [OW])X is in Fp−cG(T) and its class is equal to the image of (V, W)X =
(−1)ccc( g∗NV/X) by Lemma 2.1.4.3. If T is a Cartier divisor of W, we have
(V, [OW])X = (−1)c−1γc−1([N′

V/X,W]−(c−1)) by Lemma 2.2.1. Hence (V, [OW])X is in
F(p−1)−(c−1)G(T) and its class is equal to the image of (−1)c−1cc−1(N′

V/X,W) by Lem-
ma 2.1.4.3.

The excess intersection formula (2.2.2.4) follows from (2.2.2.2) and the commu-
tative diagram (2.2.2.3). ��
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Let f : X → Y be a morphism locally of complete intersection of noetherian
schemes. For a subscheme Z of Y, the pull-back map f ∗ : G(Z) → G(Z ×Y X) is
defined by sending the class of a coherent OZ-module G to

∑
q(−1)q[TorOY

q (OX,G )]
since the map f : X → Y is of finite tor-dimension.

Corollary 2.2.3. — Let S be an affine, equidimensional regular noetherian scheme of finite

dimension and X and Y be regular schemes of finite type over S. Let f : X → Y be a morphism

over S. Let Z ⊂ Y be a subscheme and put Z′ = Z×Y X. Assume X is quasi-projective over S.

1. Assume that X is equidimensional of dimension n and Y is equidimensional of dimension

m. Then the map f ∗ : G(Z)→ G(Z′) sends FpG(Z) into Fp+n−mG(Z′).
2. Assume further that f : X → Y is proper, surjective, generically finite of constant rank

[X : Y]. Then, we have n = m and the composition f∗ f ∗ : GrF
p G(Z) → GrF

p G(Z) is the

multiplication by [X : Y].

Proof. — 1. Take an immersion X → PN
S . The map X → Y is factorized as

X → PN
S×SY → Y. Since X and Y are regular, the immersion X → PN

S×SY is regular
of codimension m+N−n. Hence it follows from Lemma 2.1.3.2 and Proposition 2.2.2.

2. The direct image Rf∗OX is a perfect complex of OY-modules of rank [X : Y].
Hence we have [Rf∗OX] ≡ [X : Y] mod F1K(Y). Thus, for a coherent OZ-module
F such that dimS suppF = p, we have [Rf∗Lf ∗F] = [F ⊗OY Rf∗OX] ≡ [X : Y] ·
[F] mod Fp−1G(Z). ��

For a scheme over a discrete valuation ring, we have a reduction map. Let S =
Spec OK be the spectrum of a discrete valuation ring and X be a scheme of finite type
over S. Then, since the immersion s → S of the closed point is a regular immersion,
the intersection product (s, )S : G(X)→ G(Xs) is defined.

Corollary 2.2.4. — Let X be a scheme of finite type over a discrete valuation ring S =
Spec OK. Then

1. The map (s, )S : G(X) → G(Xs) induces a map (s, )S : G(XK)→ G(Xs).

2. The induced map (s, )S : G(XK) → G(Xs) sends the topological filtration FpG(XK)

into FpG(Xs).

Proof. — 1. We have an exact sequence G(Xs) → G(X) → G(XK) → 0. It is
sufficient to show that the composition G(Xs) → G(X) → G(Xs) is the 0-map. By
(2.2.1.2), for a closed subscheme W ⊂ Xs, we have (s, W)S = −([Ns/S⊗OW]− 1) = 0
and the assertion follows.

2. The map Fp+1G(X) → FpG(XK) is surjective. By Proposition 2.2.2, the map
(s, )S : G(X) → G(Xs) sends Fp+1G(X) to FpG(Xs). Thus the assertion follows. ��
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2.3. Localized Chern classes. — We recall the definition and basic properties of
localized Chern classes. Basic references are [13] Chapters 18 and 20 and [6] Sec-
tion 1.

Let S be an equidimensional regular noetherian scheme of finite dimension,
X be a scheme of finite type over S and Z be a closed subscheme of X. Let K =
(Kq, dq)q be a bounded complex of locally free OX-modules of finite ranks. Assume
that on the complement U = X−Z, the restriction K |U is acyclic except at degree 0
and the cohomology sheaf H0(K )|U is locally free of rank n− 1. Then for i ≥ n, the
localized Chern class ci

X
Z (K ) ∈ CHi(Z → X) is defined in [6] Section 1. We define

a ring CH∗(Z → X)(n) to be
∏

i<n CHi(X → X)×∏
i≥n CHi(Z → X) and regard the

total localized Chern class cX
Z (K ) = ((ci(K ))i<n, (ci

X
Z (K ))i≥n) as an invertible element

of the ring CH∗(Z → X)(n).
The localized Chern classes satisfy the following properties.

Proposition 2.3.1 ([6] Proposition (1.1)). — Let Z be a closed subscheme of X and

K be a bounded complex of locally free OX-modules of finite ranks. Assume that on the complement

U = X−Z, the restriction K |U is acyclic except at degree 0 and the cohomology sheaf H0(K )|U
is locally free of rank n− 1.

1. The image of cX
Z (K ) in CH∗(X) is

∏
q c(Kq)

(−1)q
.

2. For a quasi-isomorphism K → K ′, we have cX
Z (K ) = cX

Z (K ′).
3. Let E be a locally free OX-module of finite rank. Then for i ≥ n and for an integer i′,

we have ci
X
Z (K )ci′(E ) = ci′(E |Z)ci

X
Z (K ). Let K ′ be another bounded complex of locally free

OX-modules of finite ranks such that the restriction K ′|U is acyclic except at degree 0 and the

cohomology sheaf H0(K
′)|U is locally free of rank n′ − 1. Then for i ≥ n and i′ ≥ n′, we have

ci
X
Z (K )ci′(K ′) = ci′

X
Z (K ′)ci(K ).

4. ([2]) Let K ′ and K ′′ be bounded complexes of locally free OX-modules of finite ranks

such that the restriction K ′|U and K ′′|U are acyclic except at degree 0 and the cohomology sheaves

H0(K ′)|U and H0(K ′′)|U are locally free of rank n′ − 1 and n′′ − 1 respectively and let

K ′ → K → K ′′ → be a distinguished triangle. Then we have cX
Z (K ) = cX

Z (K ′)cX
Z (K ′′)

in CH∗(Z → X)(n).

5. Let Z
i⊂ Z′ ⊂ X be closed immersions. Let i∗ denote the collection of the induced maps

i∗ : CH∗(Z ×X X′) → CH∗(Z′ ×X X′) for schemes X′ of finite type over X. Then we have

i∗ ◦ cX
Z (K ) = cX

Z′(K ).

Let f : X′′ → X′ be a morphism of finite type over X and let g : Z′′ → Z′ be the base

change by Z → X.

6. Assume f is proper and let f∗ : CH∗(X′′) → CH∗(X′) and g∗ : CH∗(Z′′) →
CH∗(Z′) be the induced maps. Then we have cX

Z (K ) ◦ f∗ = g∗ ◦ cX
Z (K ).

7. Assume f is flat of relative dimension n and let f ∗ : CH∗(X′) → CH∗+n(X′′) and

g∗ : CH∗(Z′)→ CH∗+n(Z′′) be the induced maps. Then we have cX
Z (K ) ◦ f ∗ = g∗ ◦ cX

Z (K ).
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Let F be an OX-module such that the restriction F |U is locally free of rank n.
If F has a finite resolution E• → F by locally free OX-modules Eq of finite rank, the
localized Chern class ci

X
Z (F) for i > n is defined as ci

X
Z (E•). By Proposition 2.3.1.2, it

is independent of the choice of a resolution.
For a locally free sheaf on a divisor, its localized Chern class is computed as

a special case of Riemann-Roch without denominator as follows.

Lemma 2.3.2 (cf. [13] Theorem 15.3). — Let D be a Cartier divisor of a scheme X
and i : D → X be the immersion. Let E be a locally free OD-module of rank n. Assume there

exist a locally free OX-module Ẽ of finite rank and a surjection Ẽ → i∗E so that the localized

Chern class cX
D(i∗E (D)) ∈ CH∗(D → X)(1) is defined. We put aj(E ) = ∑n

k=j

(k
j

)
cn−k(E ) ∈

CH∗(D → D).

Then we have
∑n

k=0 ck(E ⊗ L ) = ∑n
j=0 aj(E )c1(L ) j for an invertible OD-module L

and we have equalities

(
cX
D(i∗E (D))− 1

) ∩ [X] = c(E )−1
n∑

j=1

aj(E )D j−1 ∩ [D]

in CH∗(D).

Proof. — We have

n∑

k=0

ck(E ⊗L ) =
n∑

k=0

(1+ c1(L ))n−k ck(E ) =
n∑

k=0

k∑

j=0

(
k
j

)

c1(L ) j cn−k(E )

=
n∑

j=0

aj(E )c1(L ) j .

By deformation to the normal bundle, we may assume X is a P1-bundle over D and
the immersion i : D → X is a section. Then E is the restriction to D of the pull-back
EX of E to X. Since the map i∗ : CH∗(D) → CH∗(X) is injective, it is reduced to
the equality for the usual Chern class c(i∗E (D)). By the locally free resolution 0 →
EX → EX(D) → i∗E (D)→ 0, we have c(i∗E (D))− 1 = c(EX)−1(c(EX(D))− c(EX)) =
c(EX)−1(

∑n
j=0 aj(E )D j − a0(E )). ��

Similarly as Lemma 2.3.2, the following formula is proved.

Corollary 2.3.3. — Let D be a Cartier divisor of X. Then we have

(
cX
D(OD)−1 − 1

) ∩ [X] = −[D].
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We compute the localized Chern class of a blowing-up.

Lemma 2.3.4. — Let X be a regular noetherian scheme of finite equidimension, C be a regu-

lar closed subscheme of codimension c and i : C → X be the immersion. Let π : X′ → X be the

blowing-up at C and πE : E = C×X X′ → C be the induced map. Then, we have an equality

πE∗
((

cX′
E

(
Ω1

X′/X

)− 1
) ∩ [X′]) = (−1)c(c− 1)c(NC/X)−1 ∩ [C]

in CH∗(C).

Proof. — The canonical map Ω1
X′/X → Ω1

E/C is an isomorphism. Since E is a
Pc−1-bundle P(NC/X) associated to the conormal sheaf NC/X, we have an exact se-
quence 0 → Ω1

E/C → π∗ENC/X(−1) → OE → 0. Hence, we have cX′
E (Ω1

X′/X) =
cX′
E (π∗ENC/X(−1))cX′

E (OE)−1. By Corollary 2.3.3 and Lemma 2.3.2, we have
(
cX′
E

(
π∗ENC/X(−1)

)
cX′
E (OE)−1 − 1

) ∩ [X′]
= (

cX′
E

(
π∗ENC/X(E)

)− 1
) ∩ [X′] − cE

(
π∗ENC/X

)−1
cE

(
π∗ENC/X(E)

) ∩ [E]

= cE

(
π∗ENC/X

)−1




c∑

j=1

aj

(
π∗ENC/X

)
E j−1 ∩ [E]−

c∑

j=0

aj

(
π∗ENC/X

)
E j ∩ [E]



 .

We have Ec = −∑c
j=1 π∗Ecj(NC/X)Ec−j since cc(Ker(π∗ENC/X → O(1))) = 0. Substitut-

ing this and using πE∗(E j ∩ [E]) = (−1)c−1[C] if j = c − 1 and is 0 for j < c − 1, we
have

πE∗
((

cX′
E

(
Ω1

X′/X

)− 1
) ∩ [X′])

= (−1)c−1c(NC/X)−1(ac(NC/X)− ac−1(NC/X)+ ac(NC/X)c1(NC/X)) ∩ [C].
Since ac(NC/X) = 1 and ac−1(NC/X) = c+ c1(NC/X), the assertion follows. ��

2.4. Localized Chern class and derived exterior power. — Let K be a complex of
OX-modules and n ≥ 0 be an integer. In this subsection, we compute the class of the
derived exterior power LΛnK assuming that K satisfies the following condition:

(L(n)) For each x ∈ X, there exist an open neighborhood U of x, a locally free
OU-module EU of rank n, an invertible OU-module LU, and a distinguished
triangle → LU → EU → K |U → in Db(U).

We put F = H0K and let i : Z → X be the closed immersion defined by the
annihilater ideal Ann ΛnF . We also relate the class [LΛnK ] to the localized Chern
class cn

X
Z (K ) ∈ CHn(Z → X) in Proposition 2.4.4 assuming K further satisfies the

condition:
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(G) There exist a locally free OX-module E of finite rank and a map E → K
in Db(X) such that the induced map E → F =H0K is a surjection.

Lemma 2.4.1. — Let X be a scheme, n ≥ 1 be an integer and K be a complex of OX-

modules satisfying the condition (L(n)) above. We put F = H0K and let i : Z → X be the

closed immersion defined by the annihilater ideal Ann ΛnF . Then,

1. The restriction F |X−Z is locally free of rank n− 1. The OZ-module LZ = L1i∗K is

invertible.

2. For an OX-module G , the Tor-sheaves TorOX
q (LΛnK ,G ) are OZ-modules for all q and

are 0 except for 0 ≤ q ≤ n. In particular, LqΛnK are OZ-modules for all q and are 0 except for

0 ≤ q ≤ n.

3. Let T be an OZ-module. Then the canonical map LZ[1] → Li∗K induces an ismor-

phism

LZ ⊗OZ T −−−→ TorOZ
1 (Li∗K ,T ) = TorOX

1 (K ,T ).(2.4.1.1)

For locally free OX-modules L and E of finite rank and a distinguished triangle → L → E →
K →, we have a commutative diagram

LZ ⊗OZ T −−−→ TorOX
1 (K ,T )



	



	

L ⊗OX T TorOX
1 (L [1],T ).

(2.4.1.2)

The vertical maps are induced by the map K → L [1]. If L is invertible, the vertical arrows are

isomorphisms.

4. If K further satisfies the condition (G) above, then there exist a locally free OX-module

L of finite rank and a distingushed triangle → L → E →K → in Db(X).

Proof. — 1. Since the question is local on X, we may assume that there is an
distinguished triangle → L → E → K → where L = OX and E = On

X. Let
(a1, ..., an) ∈ E = On

X be the image of 1 ∈ L = OX. Then the closed subscheme
Z ⊂ X is defined by the ideal (a1, ..., an). Hence, on the complement X \ Z, the map
L → E is a locally splitting injection. The natural map L1i∗K → L ⊗OX OZ is an
isomorphism.

2. The question is local on X and we keep the notation in the proof of 1. By
Lemma 1.2.5 and by the isomorphism (1.3.1.2), we have an isomorphism
Λn(L → E ) → Sn(E ∗ → L ∗) → K(E ∗ ⊗ L → OX). It induces an isomorphism
TorOX

q (LΛnK ,G ) → Hq(K(E ∗ ⊗L → OX) ⊗OX G ). Since Hq(K(E ∗ ⊗L → OX)

⊗OX G ) is an H0K(E ∗ ⊗L → OX) = OZ-module, the assertion follows.
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3. It is clear that the diagram (2.4.1.2) is commutative. It is clear from the defin-
ition of Z that the vertical arrows are isomorphisms if L is invertible. For the iso-
morphism (2.4.1.1), the question is local on X and hence the assertion follows from
(2.4.1.2).

4. There exists a distinguished triangle → K ′ → E → K → of complexes
of OX-modules. By the condition (L(n)), K ′ is acyclic except at degree 0 and hence
is identified with an OX-module L . In the notation of (L(n)), the restriction L |U is
isomorphic to the kernel of a surjection E |U ⊕LU → EU of locally free OU-modules
of finite rank and the assertion follows. ��

Lemma 2.4.2. — Let the notation be as in Lemma 2.4.1.

1. The homology sheaf LpΛqK = Hp(LΛqK ) is an OZ-module except for p = 0 and

0 ≤ q < n and is 0 except for max(0, q− n) ≤ p ≤ q.

2. Assume either q ≥ n, p > 0 or Z = X. Then the composition

λK : Lp+1Λq+1K −−→ TorOX
p+1(K , LΛqK ) −−→ TorOX

1 (K , LpΛqK )

−−→ LZ ⊗OZ LpΛqK
(2.4.2.1)

is an isomorphism. The first map is induced by the map LΛq+1K → K ⊗L
OX

LΛqK , the second

map is the boundary map of the spectral sequence E2
s,t = TorOX

s (K , LtΛqK ) ⇒
TorOX

s+t (K , LΛqK ) and the last map is the inverse of the isomorphism (2.4.1.1).
3. Assume Z = X. Then the OX-module E = H0K is locally free of rank n and

L = H1K is invertible. An iteration of the isomorphism λK (2.4.2.1) defines an isomorphism

LpΛqK → L⊗p ⊗Λq−pE .

4. Assume Z is a Cartier divisor of X. Then F =H0K is an extension of a locally free

OX-module E ′ of rank n − 1 by an invertible OZ-module L ′
Z = LZ(Z) = LZ ⊗OX OX(Z).

The canonical map K → F is an isomorphism in the derived category.

For q ≥ 0, the composition

L1Λq+1K −−→ TorOX
1 (K , LΛqK ) −−→ TorOX

1 (K ,ΛqF)

−−→ TorOX
1

(
K ,LZ(Z)⊗Λq−1E ′

) −−→ L⊗2
Z (Z)⊗Λq−1E ′

(2.4.2.2)

is an isomorphism of OZ-modules. The first map is induced by the map LΛq+1K →
K ⊗L

OX
LΛqK , the second map is induced by the canonical map LΛqK → ΛqF , the third

map is the inverse of the isomorphism induced by the map LZ(Z)⊗Λq−1E ′ → ΛqF and the last

map is the inverse of the isomorphism (2.4.1.1).

Proof. — Since the questions are local on X, we may assume that there is an
distinguished triangle → L → E → K → where L = OX and E = On

X as in the
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proof of Lemma 2.4.1. We put F = H0K . By Corollary 1.2.3.2, we have an exact
sequence

0 → L1Λq+1K −−−→ L ⊗ΛqF −−−→ Λq+1E −−−→ Λq+1F → 0(2.4.2.3)

and isomorphism

Lp+1Λq+1K → L ⊗ LpΛqK(2.4.2.4)

for q ≥ 0 and p > 0. If X = Z, we have an isomorphism (2.4.2.4) also for p = 0.
1. By the isomorphisms (2.4.2.4), it is reduced to the case q = n. Hence it follows

from Lemma 2.4.1.2.
2. The composition of λK : Lp+1Λq+1K → LZ⊗OZ LpΛqK with the isomorph-

ism LZ ⊗OZ LpΛqK → L ⊗OX LpΛqK is the isomorphism (2.4.2.4) either if q ≥ n,
p > 1 or X = Z. Hence the assertion follows.

3. If X = Z, we have an isomorphism K → E⊕L [1] and the assertion follows.
4. We show that F is an extension of a locally free OX-module E ′ of rank n−1

by an invertible OZ-module L ′
Z and K → F is an isomorphism. Let (a1, ..., an) ∈

E = On
X be the image of 1 ∈ L = OX. Shrinking further X and changing the iso-

morphism On
X → E , we may assume a1 is a non-zero divisor and a2 = ... = an = 0.

The assertion is clear from this.
We have a canonical isomorphism LZ = TorOX

1 (OZ,F) → Ker(F ⊗ OX(−Z)

→ F) → HomOX(OZ,F) ⊗OX OX(−Z) = L ′
Z ⊗OX OX(−Z). Thus we obtain an

isomorphism LZ ⊗ OX(Z) → L ′
Z.

We show that the map (2.4.2.2) is an isomorphism. By the exact sequence 0 →
LZ(Z) → F → E ′ → 0, we obtain an exact sequence 0 → LZ(Z) ⊗ Λq−1E ′ →
ΛqF → ΛqE ′ → 0. From this, we see that the kernel of the map L ⊗ ΛqF →
Λq+1E in (2.4.2.3) is L⊗2

Z (Z) ⊗ Λq−1E ′ and obtain an isomorphism L1Λq+1K →
L⊗2

Z (Z) ⊗ Λq−1E ′. It is easy to see that this isomorphism is the same as the map
(2.4.2.2). ��

We compute the class of the exterior derived power LΛnK in the K-group.

Corollary 2.4.3. — Let the notation be as in Lemma 2.4.1.

1. Assume Z = X. Let E = H0K be the locally free OX-module of rank n and L =
H1K be the invertible OX-module in Lemma 2.4.2.3. Then, we have an equality

[LΛnK ] = (−1)n
n∑

p=0

(−1)p[Λp(E ⊗L⊗−1)⊗L⊗n]

= γn([E ⊗L⊗−1] − n)[L ]n
(2.4.3.1)

in K(X).
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2. Assume X is a noetherian scheme and Z is a Cartier divisor of X. Let E ′ be the locally

free OX-module of rank n− 1 and LZ be the invertible OZ-module as in Lemma 2.4.2.4. Then,

we have an equality

n−1∑

p=0

(−1)p[LpΛnK ] = (−1)n−1
n−1∑

p=0

(−1)p
[
Λp

(
E ′ ⊗OX L⊗−1

Z

)⊗L⊗n
Z (Z)

]

= γn−1

([
E ′ ⊗OX L⊗−1

Z

]− (n− 1)
)[LZ]n[OZ(Z)]

(2.4.3.2)

in G(Z).

Proof. — 1. We have an isomorphism LpΛnK → Λn−pE ⊗ L⊗p by Lem-
ma 2.4.2.3. Thus the first equality of (2.4.3.1) follows. The second equality in (2.4.3.1)
follows from (2.1.1.2).

2. By the composition of an iteration of the isomorphisms (2.4.2.1) and the iso-
morphism (2.4.2.2), we obtain an isomorphism LpΛnK → Λn−1−pE ′ ⊗ L⊗p+1(Z).
Thus the first equality in (2.4.3.2) follows. The second equality in (2.4.3.2) follows from
(2.1.1.2). ��

We compare the localized Chern class and the class of the exterior derived power.
We introduce some notations. Let S be an equidimensional regular noetherian scheme
of finite dimension and X be a scheme of finite type over S. Let K be a complex of
OX-modules satisfying the condition (L(n)). Let Z be the closed subscheme of X as
in Lemma 2.4.1. For a coherent OX-module G , the Tor-sheaves TorOX

q (LΛnK ,G ) are
coherent OZ-modules and are 0 except for 0 ≤ q ≤ n by Lemma 2.4.1.2. Hence
the map ([LΛnK ], )X : G(X) → G(Z) sending the class [G ] of a coherent OX-
module G to

∑n
q=0(−1)q[TorOX

q (LΛnK ,G )] is defined. If K further satisfies the con-
dition (G) above, the localized Chern class cn

X
Z (K ) ∈ CHn(Z → X) is defined by

Lemma 2.4.1.4.

Proposition 2.4.4. — Let S be an equidimensional regular noetherian scheme of finite di-

mension and X be a scheme of finite type over S. Let n ≥ 1 be an integer and K be a complex

of OX-modules satisfying the condition (L(n)) above. Let i : Z → X be the closed immersion defined

by the annihilater ideal Ann ΛnH0K and LZ be the invertible OZ-module L1i∗K .

Then the map ([LΛnK ], )X : G(X) → G(Z) sends the topological filtration FpG(X) to

the topological filtration Fp−nG(Z). If K further satisfies the condition (G), the induced map makes

a commutative diagram

CHp(X)
cn

X
Z (K )∩−−−−→ CHp−n(Z)



	



	

GrF
p G(X) −−−−−−→

([LΛnK ], )X

GrF
p−nG(Z).
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Proof. — The proof is similar to that of Proposition 2.2.2. The topological filtra-
tion FpG(X) is generated by the classes [OW] for integral closed subschemes W ⊂ X
of dimension ≤ p. We put T = W ×X Z. If W = T ⊂ Z, we put W′ = W. If oth-
erwise, let π : W′ → W be the blow-up of W at T and put T′ = W′ ×W T. Then,
the topological filtration FpG(X) is generated by the classes π∗[OW′ ] = [Rπ∗OW′ ] for
integral closed subschemes W ⊂ X of dimension ≤ p.

Let KW and KW′ denote K ⊗L
OX

OW and K ⊗L
OX

OW′ respectively. We show
the equality ([LΛnK ], π∗[OW′ ])X = π∗[LΛnKW′ ] in G(T). Since LΛnKW is a per-
fect complex of OW-modules and π is quasi-compact, we have a projection formula
LΛnKW ⊗L Rπ∗OW′ � Rπ∗LΛnKW′ (1.5.3.1) in Db(X)coh. Thus, by the spectral se-
quences (1.5.3.3) and (1.5.3.4) and by the isomorphism (1.5.3.2), we have

([LΛnK ], [Rπ∗OW′ ])X =
∑

p,q

(−1)p+q
[
TorOX

p (LΛnK , Rqπ∗OW′)
]

=
∑

p

(−1)p
[
TorOX

p (LΛnK , Rπ∗OW′)
] =

∑

p

(−1)p
[
Rpπ∗LΛnKW′

]

=
∑

p,q

(−1)p+q
[
Rpπ∗LqΛnKW′

] = π∗
[
LΛnKW′

]
.

Hence it is reduced to showing that [LΛnKW′ ] is in Fp−nG(T′) and its class in
GrF

p−nG(T′) is equal to the image of cn
X
Z (K ) ∩ [W′] assuming dimS W = p. Replacing

X by W and further by W′ and K by KW′ , we may assume X = W = W′ and
Z = T = T′. Thus we may assume X = W is of dimension p and Z = T is either
equal to X or is a Cartier divisor of X.

First, we assume Z = X. In the notation of Corollary 2.4.3.1, we have

([LΛnK ], [OX])X = γn([E ⊗L⊗−1] − n)[L ]n
≡ γn([E ⊗L⊗−1] − n) mod Fp−n−1G(X).

Hence it is contained in Fp−nG(X) and its class in GrF
p−nG(X) is equal to the image

of cn(E ⊗L⊗−1) ∩ [X] by Lemma 2.1.4.3. Further, we have

cn
X
Z (K ) ∩ [X] = (c(E )c(L )−1 ∩ [X])deg n

=∑
i+j=n(−1) j ci(E )c1(L ) j ∩ [X] = cn(E ⊗L⊗−1) ∩ [X](2.4.4.1)

in CHd−n(W). Thus the assertion is proved in the case Z = X.
Next, we assume Z is a Cartier divisor of X. In the notation of Corollary 2.4.3.2,

we have
([LΛnK ], [OX]

)
X
= γn−1

([
E ′ ⊗L⊗−1

Z

]− (n− 1)
)[LZ]n[OZ(Z)]

≡ γn−1

([
E ′ ⊗L⊗−1

Z

]− (n− 1)
)

mod Fp−n−1G(Z).
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Hence by Lemma 2.1.4.3, it is contained in Fp−nG(Z) and its image in GrF
p−nG(Z) is

equal to the image of cn−1(E ′|Z ⊗L⊗−1
Z ) ∩ [Z]. We show the equality

cn
X
Z (K ) ∩ [X] = cn−1

(
E ′|Z ⊗L⊗−1

Z

) ∩ [Z](2.4.4.2)

in CHd−n(Z). By the exact sequence 0 → LZ ⊗OZ OZ(Z) → F → E ′ → 0, we have
cX
Z (K )∩[X] = c(E ′)cX

Z (LZ⊗OZOZ(Z))∩[X]. By Lemma 2.3.2, we have cX
Z (K )∩[X] =

c(E ′)([X]+ c(LZ)−1∩[Z]). Its degree n-part is equal to
∑

p+q=n−1(−1)qcp(E ′|Z)c1(LZ)q

∩ [Z] and further to the right hand side of (2.4.4.2). Thus the assertion is also proved
in the case Z is a Cartier divisor of X. ��

Corollary 2.4.5. — Let X be a separated regular noetherian scheme of finite dimension and

F be a coherent OX-modules such that K = F satisfies the condition (L(n)) for an integer n ≥ 0.

Let i : Z → X be the closed immersion defined by the annihilator ideal of ΛnF . Assume F is

locally free of rank n − 1 on a dense open subscheme of X. Let π : X′ → X be the blow-up

at Z, D = Z ×X X′ be the exceptional divisor and πD : D → Z be the restriction of π. Let

E ′X′ be the locally free quotient of rank n− 1 of the OX′-module π∗F by the invertible OD-module

π∗DLZ ⊗OD OD(D). Then, we have

cn
X
Z (F) ∩ [X] = πD∗

(
cn−1

(
E ′X′ |D ⊗ π∗DL⊗−1

Z

) ∩ [D])

in CHd−n(Z).

Proof. — The complex F satisfies the condition (G) by Lemma 2.1.1. Since
the cohomology sheaves Lqi∗K are locally free OZ-modules for all q, the OD-module
L1(πD ◦ i)∗K is the pull-back π∗DLZ. Thus it follows from the equality (2.4.4.2) for
Lπ∗F . ��

3. K-theoretic localized intersection product

In this section, we define and study K-theoretic localized intersection product,
which plays an essential role in the proof of the conductor formula. To define the lo-
calized intersection product in Section 3.2, we prove a periodicity of Tor-sheaves in
Theorem 3.1.3 using the Atiyah class map recalled in Section 1.4. We establish ba-
sic properties of the localized intersection product including the associativity formulas,
Proposition 3.3.2 and 3.3.3, the projection formula, Proposition 3.3.5 and the excess
intersection formula, Theorem 3.4.3. The excess intersection formula gives a relation
with the localized Chern class introduced in Section 2.3 and also with the localized
intersection theory defined by Abbes [1]. We prove the formula by using the map
(1.7.2.2) of the spectral sequence (1.6.4.3).
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3.1. Periodicity.

Definition 3.1.1. — Let S be a scheme. We say a scheme X locally of finite presentation

over S is locally a hypersurface of virtual relative dimension n− 1 if, for each x ∈ X, there exist

an open neighborhood U of x in X and a regular immersion U → P of codimension 1 over S into

a smooth scheme P over S of relative dimension n.

Clearly, if a scheme is locally a hypersurface, it is locally of complete intersection.
In this section, for a scheme X over S that is locally a hypersurface of virtual relative
dimension n−1, let i : Z → X denote the closed immersion defined by the annihilator
ideal Ann Ωn

X/S and let LZ denote the OZ-module L1i∗LX/S. Locally on X, the closed
subscheme Z is described as follows. Let the notation be as in Definition 3.1.1. Further
let P → An

S be an etale map defined by a coordinate t1, ..., tn and assume U is defined
by g ∈ Γ(P,OP). Then we have a distinguished triangle → NU/P → Ω1

P/S ⊗OP OU →
LX/S|U → and the map NU/P → Ω1

P/S ⊗OP OU sends the basis g to dg = ∂g
∂t1

dt1 + · · · +
∂g
∂tn

dtn. Thus the closed subscheme Z ∩U ⊂ U is defined by the ideal (
∂g
∂t1

, ...,
∂g
∂tn

).

Lemma 3.1.2. — Let X be a scheme over S that is locally a hypersurface of virtual relative

dimension n−1. Let i : Z → X be the closed immersion defined by the annihilator ideal Ann Ωn
X/S.

We put LZ = L1i∗LX/S.

1. The underlying set of Z is equal to the closed subset {x∈X :X is not smooth at x over S}.
2. The cotangent complex LX/S satisfies the condition (L(n)) in Section 2.4. For Ω1

X/S =
H0LX/S, the restriction Ω1

X/S|X\Z to the complement of Z is locally free of rank n− 1. The OZ-

module LZ = L1i∗LX/S is invertible.

3. Let P be a smooth scheme over S and X → P be a regular immersion over S. Then the

canonical map LX/S → LX/P → NX/P[1] induces a locally splitting injection

νX/P/S : LZ → NX/P ⊗OX OZ.(3.1.2.1)

If P → S is smooth of relative dimension n and X → P is a regular immersion of codimension 1,

the map νX/P/S : LZ → NX/P ⊗OX OZ is an isomorphism.

Proof. — 1. Clear from the local description above.
2. The condition (L(n)) is also clear from the local description above. The rest

follows from this and Lemma 2.4.1.1.
3. By the distinguished triangle → NX/P → Ω1

P/S ⊗OP OX → LX/S →, we have
an exact sequence 0 → LZ → NX/P ⊗OX OZ → Ω1

P/S ⊗OP OZ → Ω1
X/S ⊗OX OZ → 0.

Since Ω1
X/S ⊗OX OZ is locally free of rank n, the assertion follows. ��

In the following, for a scheme W over X, we put ZW = Z ×X W. By Lem-
ma 3.1.2.2, for an OZW-module T , the isomorphism (2.4.1.1) defines an isomorphism

τT ,X/S : TorOX
1 (LX/S,T )→ LZ ⊗OZ T(3.1.2.2)

of OZW-modules.
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The following periodicity result is crucial in the definition of the localized inter-
section product.

Theorem 3.1.3. — Let S be a scheme and X be a scheme over S that is locally a hyper-

surface over S of virtual relative dimension n−1. Let W be a scheme over X, F be an OX-module

and G be a complex of OW-modules. Assume that F is of tor-dimension ≤ m as an OS-module

and that Hq(G ) = 0 except for a ≤ q ≤ b. We put q0 = m+ n+ b.

Then we have the following.

1. The OW-module TorOX
q (F,G ) is an OZW-module for q ≥ q0.

2. For q− 2 ≥ q0, the composition

αF,G ,X/S : TorOX
q (F,G ) −−−→ LZ ⊗OZ TorOX

q−2(F,G )(3.1.3.1)

of the maps

TorOX
q (F,G )



	 LZ ⊗OZ TorOX

q−2(F,G )

TorOX
q

(
LX/S ⊗L

OX
F[1],G ) 





= TorOX
q−1

(
LX/S,F ⊗L

OX
G

) −−−→ TorOX
1

(
LX/S,TorOX

q−2(F,G )
)

(3.1.3.2)

is an isomorphism of OZW-modules. The first map is induced by the Atiyah class map atX/S,F : F
→ LX/S⊗L

OX
F[1] (1.4.0.2), the second map is the boundary map of the spectral sequence E2

p,q =
TorOX

p (LX/S,TorOX
q (F,G )) ⇒ TorOX

p+q(LX/S,F ⊗L
OX

G ) (1.5.1.4) and the last upward map

is the isomorphism τ
Tor

OX
q−2(F,G ),X/S (3.1.2.2).

3. Let P be a smooth scheme over S and X → P be a regular immersion over S. Let

αF,G ,X/P : TorOX
q (F,G ) → NX/P⊗OX TorOX

q−2(F,G ) be the map (1.5.4.4). Then the diagram

TorOX
q (F,G )

αF,G ,X/S−−−−→ LZ ⊗OZ TorOX
q−2(F,G )

∥
∥
∥



	νX/P/S⊗1

TorOX
q (F,G ) −−−−→

αF,G ,X/P

NX/P ⊗OX TorOX
q−2(F,G )

(3.1.3.3)

is commutative.

Proof. — 1 and 2. The assertions are local on X. Shrinking X, we take a smooth
scheme P over S and a regular immersion X → P over S. We consider the diagram
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Ω1
P/S ⊗OP TorOX

q−2(F,G )





TorOX
q (F,G )

αF,G ,X/P−−−−→ NX/P ⊗OX TorOX
q−2(F,G )



	






TorOX
q

(
LX/S ⊗L

OX
F[1],G )

= TorOX
q−1

(
LX/S,F ⊗L

OX
G

) −−−→ TorOX
1

(
LX/S,TorOX

q−2(F,G )
)






0.

(3.1.3.4)

The right column is the exact sequence defined by the distinguished triangle → NX/P

→ ΩP/S ⊗OP OX → LX/S →. The lower left part is the same as in (3.1.3.2). Since the
map αF,G ,X/P is induced by the composition of the Atiyah class map F →
LX/S ⊗F[1] and the map LX/S → NX/P[1], the square is commutative.

Now we assume X → P is a regular immersion of codimension 1. We show
that the map αF,G ,X/P : TorOX

q (F,G ) → NX/P ⊗OX TorOX
q−2(F,G ) is an isomorph-

ism for q− 2 ≥ q0. By Lemma 1.5.4, the map is the same as the boundary map d2
p,0 :

TorOX
p (F,G ) → NX/P ⊗OX TorOX

p−2(F,G ) of the spectral sequence E2
p,q =

TorOX
p (TorOP

q (F,OX),G ) ⇒ Ep+q = TorOP
p+q(F,G ) (1.5.4.3). Since X → P is a regular

immersion of codimension 1, the E2-term vanishes for q > 1. By Corollary 1.5.7, the
OP-module F is of tor-dimension ≤ m+n. Hence we have TorOP

r (F,G ) = 0 for r > q0

= b+ n+m. Therefore the map αF,G ,X/P : TorOX
q (F,G ) → NX/P⊗OX TorOX

q−2(F,G ) is
an isomorphism if q− 2 ≥ q0.

Since αF,G ,X/P : TorOX
q (F,G ) → NX/P ⊗OX TorOX

q−2(F,G ) is an isomorphism,
the top vertical map NX/P ⊗OX TorOX

q−2(F,G ) → Ω1
P/S ⊗OP TorOX

q−2(F,G ) in (3.1.3.4) is
the 0-map. Hence the assertion 1 follows by the definition of Z. Further, since νX/P/S :
LZ → NX/P ⊗OX OZ is an isomorphism, the assertion 2 follows.

3. Clear from the commutative diagram (3.1.3.4). ��

3.2. K-theoretic localized intersection product. — In this subsection, we keep the no-
tation in Theorem 3.1.3. Namely, X is locally a hypersurface of virtual relative dimen-
sion n− 1 over a scheme S, Z is the closed subscheme defined by Ann Ωn

X/S and LZ

is the invertible OZ-module L1i∗LX/S. For a noetherian scheme Y over Z, let G(Y)/LZ

denote the cokernel of the endomorphism 1 −LZ· : G(Y) → G(Y) sending [G ] to
[G ] − [LZ ⊗OZ G ].

Theorem 3.1.3.2 has the following consequence.
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Theorem 3.2.1. — Let S be a noetherian scheme and X be a scheme over S that is locally

a hypersurface of virtual relative dimension n − 1 over S. Let Z be the closed subscheme defined by

Ann Ωn
X/S and LZ be the invertible OZ-module L1i∗LX/S. Let V be a closed subscheme of X and

F be a coherent OV-module. Let W be a noetherian scheme over X and G ∈ Db(W)coh. Assume

that F is of tor-dimension ≤ m as an OS-module and that Hq(G ) = 0 except for a ≤ q ≤ b.

We put q0 = m+ n+ b and T = V×X W. Then,

1. For q ≥ q0, TorOX
q (F,G ) is a coherent OZT-module and the class [TorOX

q (F,G )] ∈
G(ZT)/LZ depends only on the parity of q modulo 2. The class

[[F,G ]]X = (−1)q
[
TorOX

q (F,G )
]+ (−1)q+1

[
TorOX

q+1(F,G )
]

(3.2.1.1)

∈ G(ZT)/LZ is independent of q.

2. For an exact sequence 0 →F ′ →F → F ′′ → 0 of coherent OV-modules, we have

[[F,G ]] = [[F ′,G ]] + [[F ′′,G ]].
3. Let F be an increasing filtration on G . Assume that FqG is acyclic for sufficiently small q,

G/FqG is acyclic for sufficiently large q and that GrF
q G ∈ Db(W)coh for all q. Then we have

[[F,G ]]X =
∑

q

[[
F, GrF

q G
]]

X
.

In particular, for an exact sequence 0 → G ′ → G → G ′′ → 0 of coherent OW-modules, we have

[[F,G ]] = [[F,G ′]] + [[F,G ′′]].
4. If W is also a closed subscheme of X, G is a coherent OW-module and if G is of finite

tor-dimension as an OS-module, we have [[F,G ]]X = [[G ,F]]X.

Proof. — 1. Clear from Theorem 3.1.3.
2. We have a long exact sequence

−−−→ TorOX
q (F ′,G )

a−−−→ TorOX
q (F,G ) −−−→ TorOX

q (F ′′,G )

−−−→ TorOX
q−1(F

′,G ) −−−→ TorOX
q−1(F,G ) −−−→ TorOX

q−1(F
′′,G )

−−−→ TorOX
q−2(F

′,G )
b−−−→ TorOX

q−2(F,G ) −−−→ .

Since the canonical map αF,G ,X/S is functorial, it induces an isomorphism Im a →
Im b⊗LZ. Hence the equality follows.

3. Assume FqG is acyclic for q ≤ a and G/FqG is acyclic for q ≥ b. By induction
on b − a, it is reduced to the case where a = −1 and b = 1. In other words, it is
sufficient to show an equality [[F,G ]] = [[F,G ′]]+ [[F,G ′′]] for an exact sequence
0 → G ′ → G → G ′′ → 0 of complexes. It is proved similarly as in 2.

4. Clear from the definition. ��
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Definition 3.2.2. — Let S be a regular noetherian scheme of finite dimension and X be

a scheme over S that is locally a hypersurface of virtual relative dimension n − 1 over S. Let Z be

the closed subscheme defined by Ann Ωn
X/S and LZ is the invertible OZ-module L1i∗LX/S. Let V

be a closed subscheme of X and W be a noetherian scheme over X and put T = V×X W.

We call the bilinear map

[[ , ]]X : G(V)×G(W) −−−→ G(ZT)/LZ(3.2.2.1)

sending ([F], [G ]) to [[F,G ]]X (3.2.1.1) the localized intersection product on X. We put

[[V, W]]X = [[OV,OW]]X.

The localized product is related to the usual intersection product in the following
way.

Proposition 3.2.3. — Let the notation be the same as in Definition 3.2.2. Let P be a smooth

scheme over S and X → P be a regular immersion of codimension 1. Let G(T)/NX/P denote the

cokernel Coker(1− [NX/P] : G(T) → G(T)).

Then, the canonical map G(ZT) → G(T) induces a map G(ZT)/LZ → G(T)/NX/P .

Further we have a commutative diagram

G(V)×G(W)
[[ , ]]X−−−→ G(ZT)/LZ

∥
∥
∥



	

G(V)×G(W)
( , )P−−−→ G(T)/NX/P .

Proof. — By the isomorphism νX/P/S : LZ → NX/P⊗OX OZ (3.1.2.1), the canonical
map G(ZT)→ G(T) induces a map G(ZT)/LZ → G(T)/NX/P .

We show the equality (F,G )P = [[F,G ]]X in G(T)/NX/P for a coherent OV-
module F and a coherent OW-module G . We consider the spectral sequence E2

p,q =
TorOX

p (TorOP
q (F,OX),G ) ⇒ TorOP

p+q(F,G ) (1.5.4.3). Since E2
p,q = 0 for q �= 0, 1, we

have a long exact sequence

→ TorOP
p (F,G ) → TorOX

p (F,G ) → TorOX
p−2(F,G )⊗NX/P →.

For p > m = n + dim S, we have TorOP
p (F,G ) = 0. Hence we have (F,G )P =∑m

p=0(−1)p[TorOP
p (F,G )] is equal to

m+1∑

p=0

(−1)p
[
TorOX

p (F,G )
]−

m−1∑

p=0

(−1)p
[
TorOX

p (F,G )⊗NX/P

]

= (−1)m
[
TorOX

m (F,G )
]+ (−1)m+1

[
TorOX

m+1(F,G )⊗ NX/P

]

= [[F,G ]]X
in G(T)/NX/P . ��
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For a flat hypersurface, the localized intersection product commutes with base
change in the following sense.

Lemma 3.2.4. — Let X be locally a flat hypersurface of virtual relative dimension n − 1
over a scheme S and V be a closed subscheme of X. Let i : Z → X be the closed immersion defined

by the ideal AnnΩn
X/S and LZ be the invertible OZ-module L1i∗LX/S as in Theorem 3.1.3. Let

S′ → S be a map of schemes.

1. The base change X′ = X ×S S′ is a flat hypersurface over S′. The closed immersion

i′ : Z′ → X′ defined by the ideal AnnΩn
X′/S′ is the base change of i : Z → X and the invertible

OZ′-module L1i′∗Ω1
X′/S′ is the pull-back of LZ.

2. Assume S and S′ are regular noetherian of finite dimension. Let V be a closed subscheme

of X and F be a coherent OV-module and assume F is flat as an OS-module, We put V′ =
V×X X′ and let F ′ be the OV′-module F ⊗OS OS′ . Let W be a noetherian scheme over X′ and

put T = V×X W. Then the two maps

[[F, ]]X, [[F ′, ]]X′ : G(W) −−−→ G(ZT)/LZ

are equal.

Proof. — 1. Clear.
2. Since F ′ = F ⊗L

OX
OX′ , we have F ⊗L

OX
G = F ′ ⊗L

OX′ G and the assertion
follows. ��

Corollary 3.2.5. — Let the notation be as in Lemma 3.2.4.2. Assume further that

W = X′, the map S′ → S is a closed immersion and that F = OV is flat as an OS-module.

Then, we have T = V′ and the diagram

G(X)
[[V, ]]X−−−−→ G(ZV)/LZ











G(X′) −−−−→
[[V′, ]]X′

G(ZV′)/LZ

is commutative.

Proof. — Clear from Lemma 3.2.4.2. ��
Lemma 3.2.6. — Let S be a regular noetherian scheme and N ≥ 1 be an integer. Then

X = µN,S is a flat hypersurface over S of virtual relative dimension 0. The invertible OZ-module

LZ = L1i∗LX/S on the closed subscheme i : Z → X defined by AnnΩ1
X/S is trivial. We regard

S as a closed subscheme of X = µN,S by the unit section i1 : S → X. Then, the composition

G(X)
[[S, ]]X−−−→ G(ZS)/LZ = G(ZS)

i∗−−−→ G(S)

is the 0-map.
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Proof. — The closed subscheme Z is defined by the ideal (N). To show LZ is
trivial, we may assume S = Spec Z by Lemma 3.2.4.1. The assertion is clear in this
case.

We show that the composition [[S, ]]X : G(X)→ G(S) is equal to the composi-

tion G(X) → G(Gm,S)
i∗1→ G(S) where i1 : S → Gm,S is the unit section. It is sufficient

to apply Proposition 3.2.3 by taking S → X → Gm,S → S as V → X = W → P → S.
We show that the composition G(X) → G(Gm,S) → G(S) is the 0-map. Let t

be the coordinate of Gm,S. Let F be a coherent OX-module. Since 0 → OGm,S

(t−1)×→
OGm,S → OS → 0 is a resolution of OS by free OGm,S-modules, we have a quasi-

isomorphism [F (t−1)×→ F] → F ⊗L
OGm,S

OS. Hence the class i∗[F] ∈ G(S) is equal to
the image of 0 = [F] − [F] ∈ G(X) by the push-forward map G(X) → G(S). Thus
the assertion follows. ��

Example. — Let G be a finite cyclic group of order N and let Z[G] be the
group algebra. We put S = Spec Z and X = Spec Z[G]. Then we have X =
µN,S = Spec Z[T]/(TN − 1). The unit section S → X is defined by the augmen-
tation Z[G] → Z. By Theorem 3.1.3, for a G-module M, there is an isomorphism
TorZ[G]

q (Z, M) → TorZ[G]
q−2 (Z, M) for q − 2 > 0. Since TorZ[G]

q (Z, M) is equal to the
homology group Hq(G, M), the isomorphism is equivalent to the periodicity of the
homology of cyclic group [36] Chapitre VIII Section 4.

The Grothendieck group G(ZS) = G(Z/NZ) � ⊕
p|N Z is naturally identified

with the subgroup of Q× generated by the prime divisors of N. Then the localized
intersection product [[Z, M]]SpecZ[G] ∈ Q× is identified with the Herbrand quotient
#Ĥ0(G, M)/#H1(G, M).

3.3. Associativity and projection formula. — We prepare a technical lemma for the
proof of the associativity formula and the projection formula. For a spectral sequence
E = (El

p,q ⇒ Ep+q), let E[s, t] denote the spectral sequence El
p−s,q−t ⇒ Ep+q−s−t .

Lemma 3.3.1. — Let W be a noetherian scheme, T be a closed subscheme of W and LT

be an invertible OT-module. Let E = (El
p,q ⇒ Ep+q) be a spectral sequence of coherent OW-

modules. Let r0 and t be integers. We assume that El
p,q are OT-modules for p+ q ≥ r0 and Er are

OT-modules for r ≥ r0. We also assume that there exist integers a ≤ b such that El
p,q = 0 unless

a ≤ (t + 2)p+ tq ≤ b.

Let αl
p,q : El

p,q → LT ⊗OT El
p+t,q−t−2 and αr : Er → LT ⊗OT Er−2 be isomorphisms of

OT-modules defined for p+ q− 2 ≥ r0 and r− 2 ≥ r0 respectively. Assume that, for each x ∈ W,

there exist an open neighborhood U ⊂ W of x, an invertible OU-module LU, an isomorphism

LU ⊗OU OT∩U → LT|T∩U and a map αU : E|U → LU ⊗OU E|U[−t, t + 2] of spectral

sequences compatible with the restrictions of the maps αl
p,q|T∩U and αr|T∩U for p+ q− 2 ≥ r0 and

r − 2 ≥ r0.
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Then, we have

∑

p+q=r,r+1

(−1)p+q
[
El

p,q

] = (−1)r[Er] + (−1)r+1[Er+1](3.3.1.1)

for r ≥ r0 in the cokernel G(T)/LT = Coker(1 −LT : G(T) → G(T)) of the map sending

[F] to [F] − [LT ⊗OT F].

Proof. — By the isomorphisms αl
p,q and αr , the both sides of (3.3.1.1) are inde-

pendent of r ≥ r0 and we may replace r by a larger integer if necessary. The difference
of the both sides is the sum for m ≥ l of

∑

p+q=r,r+1

(−1)p+q
([

Em
p,q

]− [
Em+1

p,q

])

=
∑

p+q=r,r+1

(−1)p+q
([

Im dm
p,q

]+ [
Im dm

p+m,q−m+1

])

= (−1)r




∑

p+q=r

[
Im dm

p,q

]−
∑

p+q=r+2

[
Im dm

p,q

]


 .

Hence it suffices to show that the isomorphisms αl
p,q induces isomorphisms Im dm

p,q →
LT ⊗ Im dm

p+t,q−t−2 for p+ q− 2 > m− l + r0.
The assertion is local on W. Hence, replacing W by U, we may drop the sub-

script U and identify LT = L ⊗OW OT. By induction on m ≥ l, the map αm
p,q :

Em
p,q → L ⊗ Em

p+t,q−t−2 is an isomorphism for p + q − 2 ≥ (m − l) + r0. Hence the
map Im dm

p,q → LT⊗ Im dm
p+t,q−t−2 is an isomorphism if p+ q > m− l+ r0 as required.

��

Proposition 3.3.2. — Let X be locally a hypersurface of virtual relative dimension n − 1
over a noetherian scheme S and i : Z → X be the closed immersion defined by Ann Ωn

X/S and let

LZ be the invertible OZ-module L1i∗Ω1
X/S. Let V be a closed subscheme of X and F be a coherent

OV-module. Assume F is of finite tor-dimension as an OS-module.

Let

V ←−−− T ←−−− T′


	



	



	

X ←−−− W ←−−− W′

be a cartesian diagram of noetherian schemes over S and G ∈ Db(W)coh and H ∈ Db(W′)coh.

Assume H is of finite tor-dimension as a complex of OW-modules. Then the map ( ,H )W :
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G(ZT) → G(ZT′) induces a map ( ,H )W : G(ZT)/LZ → G(ZT′)/LZ and we have an

equality

([[F,G ]]X,H )W = [[F, (G ,H )W]]X(3.3.2.1)

in G(ZT′)/LZ .

Proof. — For an OZT-module T , we have a canonical isomorphism LZ ⊗OZ

TorOW
q (T ,H )→ TorOW

q (LZ ⊗OZ T ,H ) of OZT′ -modules. Hence the map ( ,H )W :
G(ZT)/LZ → G(ZT′)/LZ is well-defined.

We show the equality (3.3.2.1). We consider the spectral sequence E = (E2
p,q =

TorOW
p (TorOX

q (F,G ),H ) ⇒ Ep+q = TorOX
p+q(F,G ⊗L

OW
H )) (1.5.5.1). We have

([[F,G ]]X,H )W =∑
p(−1)p+q[E2

p,q] +
∑

p(−1)p+q+1[E2
p,q+1] for a sufficiently large in-

teger q. Since [E2
p,q] = [E2

p−2,q] for a sufficiently large p, it is further equal to
∑

p+q=r,r+1(−1)p+q[E2
p,q] for sufficiently large r. For the left hand side, we have

[[F,G ⊗L
OW

H ]]X = (−1)r[Er]+(−1)r+1[Er+1] for a sufficiently large integer r. Hence
it is sufficient to verify that the assumption of Lemma 3.3.1 is satisfied with t = 0.

By the assumption that H is of finite tor-dimension, there exists an integer
b such that E2

p,q = 0 except for 0 ≤ p ≤ b. By Theorem 3.1.3.1, E2
p,q are OZT′ -

modules for sufficiently large q and Er are OZT′ -modules for sufficiently large r. We
consider the maps αF,G ,X/S,∗ : E2

p,q = TorOW
p (TorOX

q (F,G ),H )) → LZ ⊗OZ E2
p,q−2

induced by the Atiyah class maps and the Atiyah class maps αF,G⊗L
OW

H ,X/S : Er =
TorOX

r (F,G ⊗L
OW

H )→ LZ⊗OZ Er−2 themselves. Let U ⊂ X be an open subscheme,
P be a smooth scheme of relative dimension n over S and U → P be a regular im-
mersion of codimension 1. Then, by Lemma 1.5.5.1, the Atiyah class map defines
a map αU/P : E|U → NU/P ⊗ E|U[0, 2] (1.5.5.2) of spectral sequences. By the com-
mutative diagram (3.1.3.3), the map αU/P is compatible with the maps αF,G ,X/S,∗ :
E2

p,q → LZ ⊗OZ E2
p,q−2 and αF,G⊗L

OW
H ,X/S : Er → LZ ⊗OZ Er−2. Thus, it suffices to

apply Lemma 3.3.1 to show the equality (3.3.2.1). ��
Proposition 3.3.3. — Let

V −−−→ X ←−−− W −−−→ X′ ←−−− V′


	



	

S S′

be a diagram of noetherian schemes. Assume that V → X and V′ → X′ are closed immersions.

Assume further that X is locally a hypersurface of virtual relative dimension n − 1 over S and X′

is locally a hypersurface of virtual relative dimension n′ − 1 over S′. Let i : Z → X be the

closed subscheme of X defined by Ann Ωn
X/S and LZ be the invertible OZ-module L1i∗Ω1

X/S. Let
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i′ : Z′ → X′ be the closed subscheme of X′ defined by Ann Ωn′
X′/S′ and L ′

Z′ be the invertible

OZ′-module L1i′∗Ω1
X′/S′ .

Let Z1 be a closed subset of W. Assume that the underlying sets of ZT = Z ×X V×X W
and Z′T′ = Z′ ×X′ V′ ×X′ W are subsets of Z1 and let G(Z1)/LZ,L ′

Z′ be the cokernel of the map

(can ◦ ([LZ] − 1), can ◦ ([L ′
Z′ ] − 1)) : G(ZT) ⊕ G(Z′T′) → G(Z1) so that the canonical

maps induce G(ZT)/LZ → G(Z1)/LZ,L ′
Z′ and G(ZT′)/L ′

Z′ → G(Z1)/LZ,L ′
Z′ .

Let F be a coherent OV-module and F ′ be a coherent OV′-module. Assume F is of finite

tor-dimension as an OS-module and F ′ is of finite tor-dimension as an OS′-module. Let G ∈
Db(W)coh. Assume that the complex G is of finite tor-dimension as a complex of OX-modules and

as a complex of OX′-modules so that the maps ( ,G )X′ : G(X′) → G(W) and ( ,G )X :
G(X)→ G(W) are defined. Then we have an equality

[[F, (F ′,G )X′ ]]X = [[F ′, (F,G )X]]X′
in G(Z1)/LZ,L ′

Z′ .

Proof. — By Theorem 3.2.1.3, we have [[F, (F ′,G )X′ ]]X = [[F,G ⊗L
OX′ F ′]]

and [[F ′, (F,G )X]]X′ = [[F ′,F ⊗L
OX

G ]]. Hence it follows from the isomorphism
TorOX

r (F,F ′ ⊗L
OX′ G ) → TorOX′

r (F ′,F ⊗L
OX

G ) (1.5.2.2). ��
In the proof of conductor formula, we will use the following special cases of

Propositions 3.3.2 and 3.3.3.

Corollary 3.3.4. — Let S be a regular noetherian scheme of finite dimension and X be

a scheme of finite type over S that is locally a hypersurface over S. Let f : W → X be a morphism

of noetherian schemes.

1. Let g : W′ → W be a morphism of finite tor-dimension of noetherian schemes over X.

Then, for Γ ∈ G(X), we have an equality

g∗[[Γ, W]]X = [[Γ, W′]]X.

Here [[ , W]]X : G(X) → G(ZW)/LZ and [[ , W′]]X : G(X) → G(ZW′)/LZ denotes the

localized intersection product respectively and g∗ : G(ZW)/LZ → G(ZW′)/LZ in the left hand side

denotes the pull-back defined by Lg∗.
2. Let g : W′ → W be a morphism of noetherian scheme and V be a closed subscheme

of X. Assume W is regular of finite dimension so that the functor ⊗L
OW

induces an intersection

product ( , )W : G(ZT)/LZ ×G(W′) → G(ZT′)/LZ . Then, for Γ ∈ G(W′), we have

[[V,Γ]]X = ([[V, W]]X,Γ)W.

In each side, [[V, ]]X : G(W′) → G(ZT′)/LZ and [[V, ]]X : G(W) → G(ZT)/LZ denotes

the localized intersection product respectively and ([[V, W]]X, )W : G(W′) → G(ZT′)/LZ in the

right hand side denotes the intersection product above.
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3. Let S′ be another regular noetherian scheme and X′ be locally a hypersurface over S′. Let

g : W → X′ be a flat morphism, V′ be a closed subscheme of X′ and put W′ = W×X′V′. Assume

that f : W → X is a morphism of finite tor-dimension, that the closed subset ZW′ = Z×X W′ of

W′ is set-theoretically a subset of Z′W′ = Z′ ×X′ W′ and that we have G(ZW′)/LZ = G(ZW′)

and G(Z′W′)/L ′
Z′ = G(Z′W′). Then, for Γ ∈ G(X), we have

[[Γ, W′]]X = [[V′, f ∗Γ]]X′ .
In each side, [[ , W′]]X : G(X) → G(ZW′)/LZ and [[V′, ]]X′ : G(W) → G(Z′W′)/L ′

Z′
denotes the localized intersection product respectively and f ∗ : G(X) → G(W) in the right hand

side denotes the pull-back.

Proof. — 1. It is sufficient to show the equality g∗[[F, W]]X = [[F, W′]]X for
a coherent OX-module F . This is the special case of Proposition 3.3.2 where G = OW

and H = OW′ .
2. It is sufficient to show the equality [[V,H ]]X = ([[V, W]]X,H )W for a co-

herent OW′-module H . This is the special case of Proposition 3.3.2 where F = OV

and G = OW.
3. It is sufficient to show the equality [[F, W′]]X = [[V′, Lf ∗F]]X′ for a coher-

ent OX-module F . By the flatness of W → X′, we have Lg∗OV′ = OW′ . By the as-
sumption, G(Z′W′)/LZ,L ′

Z′ in the notation Proposition 3.3.3 is equal to G(Z′W′). Hence
this is the special case of Proposition 3.3.3 where G = OW and F ′ = OV′ . ��

Proposition 3.3.5. — Let X be locally a hypersurface of virtual relative dimension n − 1
over a noetherian scheme S. Let F be a coherent OV-module on a closed subscheme V of X. Assume

F is of finite tor-dimension as an OS-module. Let i : Z → X be the closed subscheme of X defined

by Ann Ωn
X/S and put LZ = L1i∗Ω1

X/S.

Let π : W′ → W be a proper morphism of noetherian schemes of finite dimension over X and

G ∈ Db(W′)coh. We put T = V×X W and T′ = V×X W′. Then the map π∗ : G(ZT′) →
G(ZT) induces a map π∗ : G(ZT′)/LZ → G(ZT)/LZ and we have an equality

[[F, Rπ∗G ]]X = π∗[[F,G ]]X(3.3.5.1)

in G(ZT)/LZ .

Proof. — For an OZT′ -module T , we have a canonical isomorphism LZ ⊗OZ

Rqπ∗T → Rqπ∗(LZ ⊗OZ T ) of OZT-modules. Hence the map π∗ : G(ZT′)/LZ →
G(ZT)/LZ is well-defined.

We show the equality (3.3.5.1). The proof is similar to that of (3.3.2.1). By the
assumption that W is a noetherian scheme of finite dimension, the condition (ii) in
Lemma 1.5.3 is satisfied. Applying Lemma 1.5.5.2, we obtain a spectral sequence
E2

p,q = R−pπ∗TorOX
q (F,G ) ⇒ TorOX

p+q(F, Rπ∗G ) (1.5.5.3). We have [[F, Rπ∗G ]]X =
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(−1)r[Er]+(−1)r+1[Er+1] for a sufficiently large integer r. We also have π∗[[F,G ]]X =∑
p(−1)p+q[E2

p,q]+
∑

p(−1)p+q+1[E2
p,q+1] for a sufficiently large integer q. Similarly as in

the proof of (3.3.2.1) it is sufficient to verify the assumption of Lemma 3.3.1.
We consider αF,G ,X/S,∗ : E2

p,q = R−pπ∗TorOX
q (F,G ) → LZ ⊗OZ E2

p,q−2 and
αF,Rπ∗G ,X/S : Er = TorOX

r (F, Rπ∗G ) → LZ ⊗OZ Er−2. Let U ⊂ X be an open
subscheme, P be a smooth scheme of relative dimension n over S and U → P be
a regular immersion of codimension 1. Then, by Lemma 1.5.5.2, the Atiyah class
map defines a map αU/P : E|U → NU/P ⊗ E|U[0, 2] (1.5.5.4) of spectral sequence.
By the commutative diagram (3.1.3.3), the map αU/P is compatible with the maps
αF,G ,X/S,∗ : E2

p,q → LZ ⊗OZ E2
p,q−2 and αF,Rπ∗G ,X/S : Er → LZ ⊗OZ Er−2. Thus, it

suffices to apply Lemma 3.3.1 to show the equality (3.3.5.1). ��

3.4. Excess intersection formula. — We prove the excess intersection formula Theo-
rem 3.4.3 and the self-intersection formula Corollary 3.4.4. First, we study the excess
conormal complex.

Lemma 3.4.1. — Let V → X be a closed immersion of schemes over S and

T
iT−−−→ W

g



	



	f

V −−−→
iV

X

be a cartesian diagram of schemes over S. Assume that X is locally a hypersurface of virtual relative

dimension n − 1, V is locally of complete intersection of virtual relative dimension n − c and that

the immersion iT : T → W is a regular immersion of codimension c ′.
Let i : Z → X be the closed subscheme defined by the ideal AnnΩn

X/S and put LZ =
L1i∗LX/S. Let M′

V/X,W be the excess conormal complex. Then,

1. The complex M′
V/X,W of OT-modules satisfies the condition (L(c − c ′)) in Section 2.4.

2. On the complement T − ZT of ZT = T ×X Z, the canonical map M′
V/X,W|T−ZT →

N′
V−ZV/X−Z,W−ZW

is an isomorphism and the excess conormal sheaf N′
V−ZV/X−Z,W−ZW

is a locally

free OT−ZT-module of rank c− c ′ − 1.

3. Assume p > 0 or q ≥ c − c ′. Then, the OT-module LpΛqM′
V/X,W is an OZT-module

and the map λM′
V/X,W

(2.4.2.1) defines an isomorphism

λV/X/S,W : Lp+1Λq+1M′
V/X,W −−−→ LZ ⊗OZ LpΛqM′

V/X,W(3.4.1.1)

of OZT-modules. Let P be a smooth scheme over S and X → P be a regular immersion over S.

Then, the isomorphisms λV/X/S,W and λV/X/P,W : Lp+1Λq+1M′
V/X,W → NX/P⊗OX LpΛqM′

V/X,W
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(1.7.2.1) form a commutative diagram

Lp+1Λq+1M′
V/X,W

λV/X/S,W−−−−→ LZ ⊗OZ LpΛqM′
V/X,W∥

∥
∥



	νX/P/S

Lp+1Λq+1M′
V/X,W −−−−→

λV/X/P,W

NX/P ⊗OX LpΛqM′
V/X,W.

(3.4.1.2)

Proof. — 1. The assertion is local on T. Hence, we may assume there exists
a smooth scheme P of relative dimension n over S and a regular immersion X → P
of codimension 1 over S. Then, we have a distinguished triangle → (i ◦ g)∗NX/P →
N′

V/P,W → M′
V/X,W → (1.7.1.2). Since the excess conormal sheaf N′

V/P,W is locally free
of rank c− c ′, the complex M′

V/X,W satisfies the condition (L(c− c ′)).
2. The map X → S is smooth on the complement of Z. Hence the immersion

V → X is a regular immersion of codimension c− 1 on the complement of ZV. Thus
the assertion follows from Proposition 1.6.4.2.

3. Let i′ : Z′ → T be the closed immersion defined by AnnΛc−c ′N′
V/X,W. We

show that Z′ is a closed subscheme of ZT and that the canonical map M′
V/X,W →

Lg∗MV/X → L(iV ◦ g)∗LX/S induces an isomorphism L1i′∗M′
V/X,W → LZ ⊗OZ OZ′ of

invertible OZ′-modules. The question is local on T. The inverse image ZT ⊂ T is
defined by the ideal Ann(iV ◦ g)∗ΛnΩ1

X/S. Let the notation be as in the proof of 1.
Then, the claim follows from the map

−−−→ NX/P ⊗OX OT −−−→ N′
V/P,W −−−→ M′

V/X,W −−−→
∥
∥
∥



	



	

−−−→ NX/P ⊗OX OT −−−→ Ω1
P/S ⊗OP OT −−−→ (iV ◦ g)∗LX/S −−−→

of distinguished triangles.
By Lemma 2.4.2.1, LpΛqM′

V/X,W is an OZ′-module and hence is an OZT-module
for p > 0. By the isomorphism L1i′∗M′

V/X,W → LZ⊗OZ OZ′ , the isomorphism λM′
V/X,W

:
Lp+1Λq+1M′

V/X,W → L1i′∗M′
V/X,W ⊗OZ′ LpΛqM′

V/X,W defines an isomorphism λV/X/S,W.
The commutative diagram (3.4.1.2) is clear from the commutative diagram (2.4.1.2).

��

We relate the localized intersection product with the derived exterior power of
the excess conormal complex.

Proposition 3.4.2. — Let S be a scheme and V → X be a closed immersion of schemes

over S. Assume that X is locally a hypersurface of virtual relative dimension n − 1 over S and V
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is locally of complete intersection of virtual relative dimension n− c over S. Let

T
iT−−−→ W

g



	



	f

V −−−→
iV

X

be a cartesian diagram of schemes over S. Assume that W is a noetherian scheme and that the

immersion iT : T → W is a regular immersion of codimension c ′. Let i : Z → X be the closed

subscheme defined by the ideal AnnΩn
X/S and put LZ = L1i∗LX/S. Let M′

V/X,W be the excess

conormal complex. We put [LΛc−c ′M′
V/X,W] =

∑c−c ′
p=0 (−1)p[LpΛc−c ′M′

V/X,W] in G(ZT).

Then, we have an equality

[[V, W]]X = (−1)c−c ′[LΛc−c ′M′
V/X,W

]
.(3.4.2.1)

in G(ZT)/LZ . In particular, if W = T is a scheme over V, we have

[[V, W]]X = (−1)c
[
LΛcLg∗MV/X

]
(3.4.2.2)

in G(ZW)/LZ .

Proof. — Proof is similar to Propositions 3.3.2 and 3.3.5. Let E be the spec-
tral sequence E1

p,q = L2p+qΛ−pM′
V/X,W ⇒ Ep+q = TorOX

p+q(OV,OW) (1.6.4.3). We have
(−1)c−c ′ [LΛc−c ′M′

V/X,W] =
∑

q(−1)c−c ′+q[E1
−(c−c ′),q]. Since LpΛqM′

V/X,W = 0 except for
max(0, q − (c − c ′)) ≤ p ≤ q, we have Ep,q

1 = 0 except for −(c− c ′) ≤ 3p+ q ≤ 0.
We have [E1

p,q] = [E1
p+1,q−3] for p ≤ −(c − c ′) by the isomorphism λV/X/S,W :

Lp+1Λq+1M′
V/X,W → LZ ⊗OZ LqΛqM′

V/X,W (3.4.1.1) for q ≥ c − c ′. Hence, it is fur-
ther equal to

∑
p+q=r,r+1(−1)p+q[E1

p,q] for sufficiently large r. On the other hand, we
have [[V, W]]X = (−1)r[Er] + (−1)r+1[Er+1] for sufficiently large r. Thus it suffices to
show that the assumption of Lemma 3.3.1 is satisfied with t = 1.

We have the isomorphisms αOV,OW,X/S : Er = TorOX
r (OV,OW) →

LZ ⊗OZ TorOX
r−2(OV,OW) (3.1.3.1) and λV/X/S,W : E1

p,q = L2p+qΛ−pM′
V/X,W →

LZ ⊗OZ L2p+q−1Λ−p−1M′
V/X,W (3.4.1.1). Let U ⊂ X be an open subscheme, P be

a smooth scheme of relative dimension n over S and U → P be a regular immersion
of codimension 1 over S. Then, we have a map of spectral sequences αU/P : E|U →
NU/P ⊗ E|U[−1, 3] (1.7.2.2). By the commutative diagrams (3.1.3.3) and (3.4.1.2), the
map αU/P is compatible with αOV,OW,X/S : Er → LZ ⊗OZ Er−2 and λV/X/S,W : E1

p,q →
LZ ⊗OZ E1

p+1,q−3. Thus it suffices to apply Lemma 3.3.1. ��
To state the excess intersection formula, Theorem 3.4.3, we introduce further

notation. We keep the notation in Proposition 3.4.2. We assume further that the regu-
lar noetherian scheme S is equidimensional of finite dimension. If the conormal com-
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plex MV/X satisfies the condition (G) in Section 2.4, then the excess conormal com-
plex M′

V/X,W also satisfies the condition (G) and the localized Chern class
cc−c ′

T
ZT

(M′
V/X,W) ∈ CHc−c ′(ZT → T) is defined.

We briefly recall the localized intersection product defined by Abbes in [1] De-
finition 4.4 after slight modification. Let W be a scheme of finite type over X. Assume
W is integral and is of dimension p. We put T = V×XW and ZT = Z×XT. If T � W,
let π : W′ → W be the blow-up at T and T′ = T ×W W′ be the exceptional divisor.
Since the immersion T′ → W′ is a regular immersion of codimension 1, the localized
Chern class cc−1

T′
ZT′ (M

′
V/X,W′) ∈ CHc−1(ZT′ → T′) of the excess conormal complex

M′
V/X,W′ is defined. Then the localized intersection product (V, W)X,loc ∈ CHp−c(ZT)

is defined by

(V, W)X,loc =
{

(−1)ccc
V
ZV

(MV/X) ∩ [W] if T = W
πZT∗

(
(−1)c−1cc−1

T′
ZT′ (M

′
V/X,W′) ∩ [T′]) if T � W.

(3.4.3.1)

If the closed immersion T → W is a regular immersion of codimension c ′ and M′
V/X,W

denotes the excess conormal complex, we have

(V, W)X,loc = (−1)c−c ′cc−c ′
T
ZT

(M′
V/X,W) ∩ [T].(3.4.3.2)

The equality (3.4.3.2) is called the localized excess intersection formula (cf. [1] Propo-
sition 4.11).

For an integer p ≥ 0, let Zp(W) be the free abelian group generated by the
classes of integral closed subscheme of dimension p. Thus we obtain a collection of
maps (V, )X,loc : Zp(W) → CHp−c(T) sending the closed integral subscheme W′ to
(V, W′)X,loc for morphisms W → X of finite type over S. The localized intersection
product (V, )X,loc is characterized by the localized excess intersection formula (3.4.3.2)
and the projection formula (V, π∗W)X,loc = π∗(V, W)X,loc.

Let T = V×X W and Fp(G(ZT)/LZ) denote the filtration on G(ZT)/LZ induced
by the topological filtration on G(ZT).

Theorem 3.4.3. — Let X be locally a hypersurface of virtual relative dimension n− 1 over

a equidimensional regular noetherian scheme S of finite dimension and j : V → X be a closed

subscheme of X. Let Z be the closed subscheme of X defined by the ideal Ann Ωn
X/S. Assume that

V is locally of complete intersection over S of relative dimension n− c.
Let W be a scheme over X and assume W is of finite type over a regular noetherian scheme

of finite dimension. We put T = V×X W → W.

1. The localized intersection product [[V, ]]X : G(W) → G(ZT)/LZ sends the topological

filtration FpG(W) to Fp−c(G(ZT)/LZ) for p ≥ 0.
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2. Assume further that the conormal complex MV/X satisfies the condition (G) in Section 2.4.

Then the map induced by [[V, ]]X on the graded quotients sits in the commutative diagram

Zp(W)
(V, )X,loc−−−−→ CHp−c(ZT)

can



	



	can

GrF
p G(W)

[[V, ]]X−−−−→ GrF
p−c(G(ZT)/LZ).

Proof. — The proof is similar to those of Propositions 2.2.2 and 2.4.4. We use
the notation of the proof of Proposition 2.2.2. By the same argument as loc.cit. and
by the projection formula Proposition 3.3.5 and [1] Proposition 4.6 (a), it suffices to
show the following: Assume that W is of dimension p and that either T is equal to W
or T is a Cartier divisor of W. Then, the localized intersection product [[V, W]]X is
in Fp−c(G(ZT)/LZ) and, if MV/X satisfies the condition (G), the class of [[V, W]]X in
GrF

p−c(G(ZT)/LZ) is equal to the image of (V, W)X,loc ∈ CHp−c(ZT)

First, we assume T = W. Then by (3.4.2.2), we have [[V, W]]X =
(−1)c[LΛcLg∗MV/X] in G(ZW)/LZ . Hence, by Proposition 2.4.4, [[V, W]]X is in
Fp−c(G(ZW)/LZ) and, if MV/X satisfies the condition (G), the class of [[V, W]]X in
GrF

p−c(G(ZW)/LZ) is equal to the image of (−1)ccc
V
ZV

(MV/X) ∩ [W]. Thus the assertion
follows from the first equality in (3.4.3.1) in this case.

Next, we consider the case where T is a Cartier divisor of W. Then by (3.4.2.1),
we have [[V, W]]X = (−1)c−1[LΛc−1M′

V/X,W] in G(ZT)/LZ . Hence, by Propos-
ition 2.4.4, [[V, W]]X is in F(p−1)−(c−1)(G(ZT)/LZ) and, if MV/X satisfies the con-
dition (G), the class of [[V, W]]X in GrF

p−c(G(ZT)/LZ) is equal to the image of
(−1)c−1cc−1

T
ZT

(M′
V/X,W) ∩ [T]. Thus the assertion follows from the excess intersection

formula in (3.4.3.2) in this case. ��
Corollary 3.4.4. — Let the notation be the same as in Theorem 3.4.3. Assume W is of

dimension p and that the closed immersion T → W is a regular immersion of codimension c ′. Assume

also that the conormal complex MV/X satisfies the condition (G).
Then for the class of [[V, W]]X ∈ Fp−c(G(ZT)/LZ) and for the image of

(−1)c−c ′cc−c ′
T
ZT

(M′
V/X,W) ∩ [T] ∈ CHp−c(ZT), we have an equality

[[V, W]]X = (−1)c−c ′cc−c ′
T
ZT

(M′
V/X,W) ∩ [T](3.4.4.1)

in GrF
p−c(G(ZT)/LZ).

If W is a scheme over V, the class of [[V, W]]X in GrF
p−c(G(ZW)/LZ) is equal to the

image of (−1)ccc
V
ZV

(MV/X)∩[W] ∈ CHp−c(ZW). In particular, if V = W, we have an equality

[[V, V]]X = (−1)ccc
V
ZV

(MV/X) ∩ [V](3.4.4.2)

in GrF
p−c(G(ZV)/LZ).
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We call the equality (3.4.4.1) the localized excess intersection formula and the
equality (3.4.4.2) the localized self-intersection formula

Proof. — Similarly as the proof of Theorem 3.4.3 above in the case T is a Cartier
divisor, the excess intersection formula (3.4.4.1) follows from Proposition 3.4.2.3 and
Proposition 2.4.4. The case W = T is proved in the proof above. ��

Corollary 3.4.5. — Let X be locally a flat hypersurface of virtual relative dimension n− 1
over a scheme S and V be a closed subscheme of X. Let i : Z → X be the closed immersion defined

by the ideal AnnΩn
X/S and LZ be the invertible OZ-module L1i∗LX/S as in Theorem 3.1.3. We

consider the self-product X×S X as a scheme over X with respect to the second projection.

1. The scheme X ×S X is locally a hypersurface of virtual relative dimension n − 1. Let

ĩ : Z̃ → X×S X be the closed subscheme defined by the ideal AnnΩn
X×SX/X. Then the intersection

Z̃×X×SX X with the diagonal ∆ : X → X×S X is Z ⊂ X and the pull-back of the invertible

OZ̃-module L1ĩ∗LX×SX/X is LZ. There is a canonical isomorphism LX/S → MX/X×SX.

2. Further if S is equidimensional regular noetherian and of dimension d , we have an equality

[[X, X]]X×SX = (−1)ncn
X
Z (LX/S) ∩ [X]

in GrF
d−1(G(Z)/LZ).

Proof. — 1. We obtain an isomorphism MX/X×SX → L∆∗LX×SX/X → LX/S by
the distinguished triangle → L∆∗LX×SX/X → LX/X → LX/X×SX →. The rest follows
immediately from Lemma 3.2.4.

2. It suffices to apply Corollary 3.4.4. ��

The image of [[V, W]]X in GrF
p−c(G(T)/LZ) may be computed using the Segre

classes. For a perfect complex K , we put c(K )∗ = c(K ∗) =∑
i(−1)ici(K ) as usual.

Corollary 3.4.6. — Let V ⊂ X → S and T = V×X W ⊂ W → X be as in Theo-

rem 3.4.3. Assume W is an integral scheme of dimension p of finite type over a regular noetherian

scheme of finite dimension and T �= W. Let g : T → V be the natural map, let G(T)/LZ denote

the cokernel of the map [LZ] − 1 : G(ZT) → G(T) and let F•(G(T)/LZ) denote the filtration

induced by the topological filtration. Then the class of the localized intersection product [[V, W]]X
in GrF

p−c(G(T)/LZ) is equal to the image of

{c(Lg∗MV/X)∗ ∩ s(T, W)}dim p−c =
c−1∑

i=0

(−1)ici(Lg∗MV/X)sc−i(T, W)

∈ CHp−c(T).
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Proof. — Let π : W′ → W be the blow-up at T and D = π−1(T) = W′ ×W T
be the inverse image of T as above. By Proposition 3.3.5.1, we have [[V, W]]X =
π∗[[V, W′]]X. Since D is a Cartier divisor of W′, by Theorem 3.4.3.2, the class of
[[V, W′]]X in GrF

p−c(G(D)/LZ) is equal to the image of (−1)c−1cc−1(M′
V/X,W′) ∩ [D] =

{c(MV/X)∗c(ND/W′)∗−1 ∩ [D]}dim p−c ∈ CHp−c(D). Hence the class of [[V, W]]X in
GrF

p−c(G(T)/LZ) is equal to the image of {c(Lg∗MV/X)∗π∗(c(ND/W′)∗−1 ∩ [D])}dim p−c.
Since ND/W′ = OD(−D), we have an equality π∗(c(ND/W′)∗−1 ∩ [D]) = s(T, W). Thus
we obtain the required equality. ��

4. Logarithmic products

We define and study logarithmic products. In 4.1, after recalling generalities on
log schemes, we define a functor [P] on the category of log schemes for an fs-monoid
P and introduce the notion of frames. We define log products in Definition 4.2.4 and
establish basic properties in 4.2. We study generality on properties of morphisms of
log schemes in 4.3 as an application of log products. In 4.4, we study morphisms log
locally of complete intersection.

For generalities on log schemes such as the definitions of log smooth morphisms,
exact immersions etc., we refer to [23], [25] and [20].

4.1. Frames. — We define a functor [P] for an fs-monoid P on the category of
fs-log schemes and introduce the notion of frames as a preliminary for the definition
of the logarithmic product in the next subsection. It is closely related to the toric stack
studied in [21] and [32]. First, we briefly recall generalities on log schemes. Basic ref-
erences are [23], [25] and [28] Section 1.

In this paper, a monoid means a commutative monoid. For a monoid P, Pgp

denotes the associated commutative group and P× denotes the subgroup of invertible
elements. A monoid P is called integral if the canonical map P → Pgp is injective. We
will identify an integral monoid P with its image in Pgp. A monoid P is called saturated
if it is integral and if it is equal to the saturation Psat = {x ∈ Pgp|xn ∈ P for some n ≥ 1}.
A monoid is called an fs-monoid if it is finitely generated and saturated. We regard
OX as a sheaf of monoids on the etale site of X with respect to the multiplication. An
fs-log structure on a scheme X is a morphism α : MX → OX of sheaves of monoids
on the etale site of X satisfying the following conditions (1) and (2).

(1) The induced map α−1(O×
X )→ O×

X is an isomorphism.
(2) For each geometric point x̄, there exist an etale neighboorhood U, an fs-

monoid P and a morphism of monoids β : P → Γ(U, MX) such that the
diagram
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β−1
(
M×

X|U
) ⊂−−−→ PU



	



	β

M×
X|U ⊂−−−→ MX|U

is co-cartesian in the category of sheaves of monoids. Here PU denotes the
constant sheaf.

A morphism β : P → Γ(U, MX) of monoids satisfying the condition (2) above is called
a chart of MX on U. The log structure on MX|U on U is called the log structure
associated to P → Γ(U, MX). A scheme with an fs-log structure is called an fs-log
scheme. In this paper, we only consider fs-log schemes and fs-log structures and we
simply call them log schemes and log structures respectively. The condition (1) implies
M×

X = α−1(O×
X ) and that the map M×

X → O×
X is an isomorphism. The log structure

MX = O×
X is called the trivial log structure.

For a monoid P, let P̄ denote the quotient P/P×. The quotient P̄ of an fs-monoid
P is also an fs-monoid. For a log scheme X, we put M̄X = MX/M×

X. The sheaf MX is
the inverse image of M̄X by Mgp

X → M̄gp
X . For a log scheme X, the monoid Γ(X, MX)

is integral and saturated. For a geometric point x̄ of X, the stalk M̄X,x̄ is an fs-monoid
and there exists a section M̄X,x̄ → MX,x̄ inducing an isomorphism M̄X,x̄ × M×

X,x̄ →
MX,x̄. We say a morphism f : X → Y of log schemes is strict if the induced map
f ∗M̄Y → M̄X is an isomorphism. If X → Y is strict, we say that the log structure MX

on X is the pull-back of the log structure MY on Y.
A typical example of log scheme is given by a divisor with normal crossings

on a regular locally noetherian scheme. Let X be a regular locally noethrian scheme.
Recall that we say a divisor D on X has simple normal crossings if its irreducible
components are regular and if they meet transversally. More precisely, let Di, i ∈ I
be the irreducible components of D. Then for any finite subset J = {i1, ..., is} ⊂ I, the
intersection DJ =⋂

i∈J Di = Di1×X · · ·×X Dis is a regular subscheme of codimension s.
In other words, for each x ∈ X, there exist a regular system t1, ..., tl of parameters
of the regular local ring OX,x and an integer 0 ≤ r ≤ l such that the divisor D is
defined by

∏r
i=1 ti in a neighborhood of x. We say D has normal crossings if, etale

locally on X, the divisor D has simple normal crossings. A divisor D with normal
crossings has simple normal crossings if and only if each of its irreducible components
is regular. If X is a regular noetherian scheme, D is a divisor with normal crossings
and j : U → X is the open immersion of the complement of D, we call the log
structure MX = OX ∩ j∗O×

U the standard log structure on X defined by D.
For an fs-monoid P, let

S[P] = Spec Z[P]
denote the log scheme with the log structure associated to P → Z[P]. For a log
scheme X, maps P → Γ(X, MX) of monoids correspond bijectively with maps
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X → S[P] of log schemes. In other words, the log scheme S[P] represents the func-
tor associating the set Hommonoid(P,Γ(X, MX)) of morphisms of monoids to a log
scheme X. A map P → Γ(X, MX) is a chart on X if and only if the correspond-
ing map X → S[P] is strict. By abuse of terminology, we call a strict map X → S[P]
a chart. We call a pair of a log scheme X and a chart P → Γ(X, MX) a charted log

scheme and will abbreviate it as (X, P). For charted log schemes (X, P) and (Y, Q ),
we call a pair of a morphism X → Y of log schemes and a morphism Q → P of
fs-monoids such that the diagram

X −−−→ Y


	



	

S[P] −−−→ S[Q ]
is commutative a morphism of charted log schemes and will abbreviate it as (X, P) →
(Y, Q ).

For maps of log schemes X → S and Y → S, we let X×log
S Y denote the fiber

product in the category of fs-log schemes. For maps f : N → P and g : N → Q of fs-
monoids, the saturation P⊕sat

N Q of the image of P⊕Q in Pgp⊕Ngp Qgp = Coker( f −g :
Ngp → Pgp ⊕Qgp) is the amalgamate sum of P and Q over N in the category of fs-
monoids. The canonical map S[P ⊕sat

N Q ] → S[P] ×log
S[N] S[Q ] is an isomorphism. If

(X, P) → (S, N) and (Y, Q ) → (S, N) are morphisms of charted log schemes, we
have

X×log
S Y = (X×S Y)×S[P⊕Q ] S

[
P⊕sat

N Q
]

(4.1.0.1)

and X×log
S Y is strict over S[P⊕sat

N Q ].

Definition 4.1.1. — Let P be an fs-monoid.

1. Let [P] denote the functor on the category of log schemes associating to a log scheme X the

set

[P](X) = Hommonoid(P,Γ(X, M̄X))

of monoid homomorphisms. We identify a map P → Γ(X, M̄X) of monoids with a map X → [P]
of functors.

2. Let S[P] → [P] be the map induced by the tautological map P → Γ(S[P], MS[P]). If

a map X → [P] is the composition of X → S[P] and the map S[P] → [P], we say the map

X → S[P] is a lifting of X → [P].
3. We say a map Q → P of fs-monoids is a quasi-isomorphism if Q̄ = Q /Q× →

P̄ = P/P× is an isomorphism.
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Lemma 4.1.2. — Let ϕ : Q → P be a morphism of fs-monoids.

1. If ϕ : Q → P is a quasi-isomorphism, the induced map [Q ] → [P] of functors is an

isomorphism.

2. Let P′ be the inverse image of P by the map Pgp ⊕ Qgp → Pgp sending (a, b) to

a + ϕ(b). Then the map Pgp ⊕ Qgp → Pgp ⊕ Qgp sending (a, b) to (a + ϕ(b), b) induces

an isomorphism P′ → P ⊕ Qgp. Hence the map P → P′ defined by a �→ (a, 0) and the map

P′ → P induced by (a, b) �→ a+ ϕ(b) are quasi-isomorphisms.

3. Let Q → Q ′ be a quasi-isomorphism of fs-monoids. Then the map P → P⊕sat
Q Q ′ is

a quasi-isomorphism.

4. Let (P⊕Q P)∼ ⊂ Pgp⊕Qgp Pgp be the inverse image of P by the map Pgp⊕Qgp Pgp → Pgp

sending (a, b) to a+ b. Then the map P⊕ P⊕ Pgp → (P⊕Q P)∼ sending (a, b, c) to (a+ c,
b− c) induce a surjection P⊕P⊕ (Pgp/ϕ(Qgp))→ (P⊕Q P)∼. Further the monoid (P⊕Q P)∼

is identified with the quotient of P ⊕ P ⊕ (Pgp/ϕ(Qgp)) by the equivalence relation generated by

(a, 0, 0) ∼ (0, a, ā) for a ∈ P.

Proof. — 1. Clear from the definition.
2. Clear.
3. It is reduced to the case Q ′ = Q̄ = Q /Q×. Then P′ = P⊕sat

Q Q ′ = P/Im Q×

and P̄ → P̄′ is an isomorphism.
4. The map P ⊕ P → P ⊕ (Pgp/ϕ(Qgp)) : (a, b) �→ (a + b, a) induces an iso-

morphism Pgp ⊕Qgp Pgp → Pgp ⊕ (Pgp/ϕ(Qgp)) of abelian groups. Hence, it induces
an isomorphism (P ⊕Q P)∼ → P ⊕ (Pgp/ϕ(Qgp)). The composition P ⊕ P ⊕ Pgp →
(P ⊕Q P)∼ → P ⊕ (Pgp/ϕ(Qgp)) maps (a, b, c) to (a + b, a+ c). Now the assertion is
clear. ��

Definition 4.1.3. — Let X be a log scheme and P be an fs-monoid.

1. We say a map X → [P] is strict if, for each geometric point x̄, there exist an etale

neighborhood U of x̄ and a strict morphism U → S[P] lifting the restriction U → [P].
2. We call a strict map X → [P] a frame. We call a pair of a log scheme X and a frame

X → [P] a framed log scheme and, by abuse of notation, let it denoted by (X, [P]). For framed

log schemes (X, [P]) and (Y, [Q ]), we call a pair of a morphism X → Y of log schemes and

a morphism Q → P of fs-monoids such that the diagram

X −−−→ Y


	



	

[P] −−−→ [Q ]
is commutative a morphism of framed log scheme and will abbreviate it as (X, [P]) → (Y, [Q ]).

The functor [P] is in fact a sheaf with respect to the classical etale topology.
In [21] and [32], the “toric stack” SP and a stack S log

P associated to it are intro-
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duced for a fine monoid P. For an fs-monoid P, the stack S log
P is identified with the

sheaf [P] by [32] Proposition 5.17. Moreover, a map to SP is strict if and only if the
corresponding map to [P] is strict in the sense of Definition 4.1.3.1 by loc.cit. Re-
mark 5.18.

By definition, a map X → [P] is a frame if and only if it is etale locally lifted to
a chart. A typical example of frames is given by a divisor with simple normal crossings
on a regular locally noetherian scheme.

Lemma 4.1.4. — Let X be a log regular ([25] Definition (2.1)) locally noetherian log

scheme and U be the maximum open subscheme of X where the log structure MX is trivial.

1. The following conditions are equivalent.

(1) The underlying scheme X is regular, the open subscheme U is the complement of a divisor

D with normal crossings and MX is the standard log structure defined by D.

(2) Etale locally on X, there exist a chart X → S[Nm] for some integer m.

2. If X is quasi-compact, the following conditions are equivalent.

(1) The underlying scheme X is regular, the open subscheme U is the complement of a divisor

D with simple normal crossings and MX is the standard log structure defined by D.

(2) There exist a frame X → [Nm] for some integer m.

Proof. — 1. Clear from the definition ([25] Definition (2.1)).
2. (1)⇒(2). Let D1, ..., Dm be the irreducible components of D. Then, the mon-

oid P = Γ(X, M̄X) is isomorphic to Nm. The tautological map X → [P] is strict.
(2)⇒(1). It follows from 1 (2)⇒(1) that X is regular, U is the complement of

a divisor with normal crossings and MX is the standard log structure defined by D.
We show that each irreducible component of X is regular. Let e1, ..., em be the standard
basis of Nm. For i = 1, ..., m, we define a closed subscheme Di of X by the image of
ei in OX by etale locally lifting the frame X → [Nm] to a chart. Then, D1, ..., Dm

are regular. Since an irreducible component of D is an irreducible component of one
of Di, the assertion follows. ��

We call the frame X → [P] in the proof of Lemma 4.1.4.2 (1)⇒(2) the standard
frame on X defined by D.

Lemma 4.1.5. — Let X be a log scheme, x̄ be a geometric point of X and P → M̄X,x̄ be

a map of fs-monoids.

1. There exist an etale neighborhood U of x̄ and a map P → Γ(U, MX) inducing P →
M̄X,x̄.

2. Let ϕ : Q → P be a map of fs-monoids and X
f→ Y → S[Q ] be morphisms of log

schemes such that the diagram
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Q −−−→ P


	



	

Γ(Y, MY) −−−→ M̄X,x̄

is commutative. Let P′ ⊂ Pgp ⊕Qgp be the inverse image of P as in Lemma 4.1.2.2. Then there

exist an etale neighborhood U of x̄ and a map P′ → Γ(U, MX) such that the diagram

Q −−−→ P′ −−−→ P


	



	



	

Γ(Y, MY) −−−→ Γ(U, MX) −−−→ M̄X,x̄

is commutative.

Proof. — 1. We may assume P = M̄X,x̄. Since there exists a section M̄X,x̄ → MX,x̄,
the assertion follows.

2. We take an etale neighborhood U and a map P → Γ(U, MX) as in 1. Let
Q → Γ(Y, MY) → Γ(U, MX) be the composition. Then, we have a commutative
diagram

P⊕Q −−−→ P


	



	

Γ(U, MX) −−−→ M̄X,x̄.

Since MX,x̄ is the inverse image of M̄X,x̄ by the canonical map Mgp
X,x̄ → M̄gp

X,x̄, the
composition P ⊕Q → Γ(U, MX) → MX,x̄ is extended to a map P′ → MX,x̄. Hence
shrinking U if necessary, we get the assertion. ��

Corollary 4.1.6. — Let X be a log scheme and x̄ be a geometric point of X.

1. Let X → [P] be a map. Then there exist an etale neighborhood U of x̄ and a map

U → S[P] lifting the restriction U → [P].
2. Let Q → P be a map of fs-monoids, X → Y be a map of log schemes and

X −−−→ Y


	



	

[P] −−−→ [Q ]
(4.1.6.1)

be a commutative diagram. Let P′ ⊂ Pgp ⊕Qgp be the inverse image of P as in Lemma 4.1.5.2.

Then there exist etale neighborhoods U of x̄ and V of ȳ = f (x̄) and a commutative diagram

U −−−→ V


	



	

S[P′] −−−→ S[Q ]
(4.1.6.2)

lifting the restriction of (4.1.6.1).
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Proof. — Clear from Lemma 4.1.5. ��

Lemma 4.1.7. — Let X be a log scheme, P be an fs-monoid and X → [P] be a map.

1. For a morphism f : X → S[P] of log schemes lifting X → [P], the map X → [P] is

strict if and only if X → S[P] is strict.

2. Let P′ → P be a quasi-isomorphism of fs-monoids. Then the map X → [P] is strict if

and only if the composition X → [P] → [P′] is strict.

3. There exist a log structure M′
X, a map X → X′ = (X, M′

X) of log schemes and a strict

map X′ → [P] such that X → [P] is the composition.

Proof. — 1. The if part is trivial. We show the only if part. Since the question
is etale local, we may assume there exists a strict map g : X → S[P] lifting X → [P].
Then the difference of the two maps P → Γ(X, MX) is a map to Γ(X, M×

X) and the
assertion follows.

2. We may assume P = P̄′. Then P′ is isomorphic to P× P′× and S[P′] → S[P]
is strict. Hence the assertion follows.

3. If there exists a map X → S[P] lifting X → [P], it is sufficient to define
a log structure M′

X on X by the chart P → MX → OX. If there are 2 such maps
X → S[P], the difference of the maps P → Γ(X, MX) is a map P → Γ(X,O×

X ) and
the log structure M′

X on X is indepenent of the choice of lifting. In general, we obtain
the log structure M′

X by patching by Lemma 4.1.5.1. ��

Corollary 4.1.8. — 1. Let P be an fs-monoid and X be a log scheme. Let X → [P]
be a map and x̄ be a geometric point of X. If the composition P → Γ(X, M̄X) → M̄X,x̄ is

a quasi-isomorphism, there exists an etale neighborhood U of x̄ such that the restriction U → [P]
is strict.

2. Let X → Y be a map of log schemes, x̄ be a geometric point of X and Y → [Q ]
be a frame. We put P = M̄X,x̄. Then there exist an etale neighborhood U of x̄ and a frame

U → [P] such that the composition Q → Γ(Y, M̄Y) → Γ(X, M̄X) → P = M̄X,x̄ defines

a map (U, [P]) → (Y, [Q ]) of framed log schemes.

3. Let f : X → Y be a map of log schemes and x̄ be a geometric point of X. We put

P = M̄X,x̄, ȳ = f (x̄) and Q = M̄Y,ȳ. Then there exist etale neighborhoods U of x̄ and V of ȳ
and frames U → [P] and V → [Q ] inducing the identities P → MX,x̄ and Q → MY,ȳ and

a map (U, [P]) → (V, [Q ]) of framed log schemes.

4. Let (X, [P]) → (Y, [Q ]) be a map of framed log schemes and x̄ be a geometric point

of X. Then the commutative diagram (4.1.6.2) in Corollary 4.1.6.2 defines a map (U, P′) →
(V, Q ) of charted log schemes lifting the restriction of (X, [P]) → (Y, [Q ]).

5. Let Y → [P] be a strict map. Then a map X → Y of log schemes is strict if and only

if the composition X → Y → [P] is strict.
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6. Let N → P and N → Q be morphisms of fs-monoids and let

X
f−−−→ S

g←−−− Y


	



	



	

[P] −−−→ [N] ←−−− [Q ]
(4.1.8.1)

be a commutative diagram. Then, the vertical maps induce a map X×log
S Y → [P⊕sat

N Q ]. If the

vertical arrows are strict, the induced map X×log
S Y → [P⊕sat

N Q ] is also strict.

Proof. — 1. Replacing P by P/P×, we may assume P = M̄X,x̄. There exist an
etale neighborhood U of x̄ and a chart P → Γ(U, MX) on U such that the diagram

P −−−→ Γ(U, MX)


	



	

Γ(X, M̄X) −−−→ M̄X,x̄

is commutative. Shrinking U, we may assume that the diagram

P −−−→ Γ(U, MX)


	



	

Γ(X, M̄X) −−−→ Γ(U, M̄X)

is commutative. Hence the assertion follows from Lemma 4.1.7.1.
2. By 1, there exist an etale neighborhood U and a frame U → [P]. Shrink-

ing U, if necessary, we obtain a map (U, [P]) → (Y, [Q ]) of framed log schemes.
3. By 1, there exist an etale neighborhood V and a frame V → [Q ]. Hence it

suffices to apply 2.
4. It follows from Lemma 4.1.7.1.
5. Since the question is etale local on Y, we may assume there is a map Y →

S[P] lifting Y → [P] by Corollary 4.1.6.1. Then the assertion follows from Lem-
ma 4.1.7.1.

6. Since M̄X×log
S Y is saturated, the map P⊕N Q → Γ(X×log

S Y, M̄X×log
S Y) induces

a map P⊕sat
N Q → Γ(X×log

S Y, M̄X×log
S Y).

We show that the induced map X ×log
S Y → [P ⊕sat

N Q ] is strict assuming that
the vertical arrows in the diagram (4.1.8.1) are strict. The question is etale local on
X, Y and S. Let P′ be the inverse image of P by the map Pgp ⊕ Ngp → Pgp and Q ′

be the inverse image of Q by the map Qgp ⊕ Ngp → Qgp as in Lemma 4.1.5.2. The
canonical surjections P′ → P and Q ′ → Q are quasi-isomorphism and hence the
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maps [P] → [P′] and [Q ] → [Q ′] are isomorphisms. By Lemma 4.1.5.2, we may
assume there exists a commutative diagram

X
f−−−→ S

g←−−− Y


	



	



	

S[P′] −−−→ S[N] ←−−− S[Q ′]
lifting the diagram (4.1.8.1). By Lemma 4.1.7.1, the verical maps are stricts. Hence the
map X×log

S Y → [P′⊕sat
N Q ′] is strict. By Lemma 4.1.2.3, the map P⊕sat

N Q → P′⊕sat
N Q ′

is a quasi-isomorphism and the assertion follows. ��
4.2. Logarithmic products. — Let X be a log scheme, Q → P be a map of fs-

monoids and X → [Q ] be a map. Then, let X×log
[Q ] [P] denote the functor associating

to a log scheme T the set X(T)×[Q ](T) [P](T).

Proposition 4.2.1. — Let Q → P be a map of fs-monoids and assume that the map

Qgp → Pgp is surjective. Then,

1. The map [P] → [Q ] is relatively representable, log etale and affine. Namely, if X is

a log scheme and if X → [Q ] is a map, the functor X ×log
[Q ] [P] is represented by a log scheme

log etale and affine over X.

2. Let X → S[Q ] be a map of log schemes and let P∼ denote the inverse image of P by

the surjection Qgp → Pgp. Then the log scheme X×log
S[Q ] S[P∼] is log etale over X and represents

the functor X×log
[Q ] [P].

Proof. — 1. We reduce the assertion 1 to the assertion 2. Let P∼ ⊂ Qgp denote
the inverse image of P by the map Qgp → Pgp. Since Qgp → Pgp is surjective, the
map P∼ → P is a quasi-isomorphism and hence [P∼] → [P] is an isomorphism by
Lemma 4.1.2.1. Thus, by replacing P by P∼, we may assume Q ⊂ P ⊂ Qgp = Pgp.

For an fs-log scheme T, a map T → [P] is determined by the induced map
Pgp = Qgp → Γ(T, M̄gp

T ), since the monoid Γ(T, M̄T) ⊂ Γ(T, M̄gp
T ) is integral. Hence,

for a log scheme X, the base change X×log
[Q ] [P] is the subfunctor of X associating to

a log scheme T the set {T → X| the composition Q → Γ(X, M̄X) → Γ(T, M̄T) is ex-
tended to P → Γ(T, M̄T)}. Thus the assertion is etale local on X. By Lemma 4.1.5.1,
we may assume that there exists a map X → S[Q ] lifting X → [Q ]. Thus the asser-
tion 1 is reduced to the assertion 2.

2. Similarly as above, we may assume P = P∼ and Qgp = Pgp. Further, it is
sufficient to prove the case X = S[Q ]. By the proof of 1, S[Q ]×log

[Q ] [P] is the functor
associating to a log scheme T the set {Q → Γ(T, MT)|Q → Γ(T, M̄T) is extended to
P → Γ(T, M̄T)}. A map Q → Γ(T, MT) is extended to P → Γ(T, M̄T) if and only if
it is extended to P → Γ(T, MT) since MT is the inverse image of M̄T by Mgp

T → M̄gp
T .

Thus the functor S[Q ] ×log
[Q ] [P] is represented by S[P] and the assertion follows. ��
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We let X ×log
[Q ] [P] denote the log scheme representing the functor X ×log

[Q ] [P].
The log etaleness of the map X×log

[Q ] [P] → X in Proposition 4.2.1.1 is a special case
of the log etaleness of the map of toric stacks induced by a map of fs-monoid, [32]
Corollary 5.29. The following Corollary 4.2.2.2 is a variant of the local exactification
in [23] Proposition (4.10).

Corollary 4.2.2. — Let Q → P be a map of fs-monoids such that Qgp → Pgp is

surjective.

1. Let Q → Q ′ be a map of fs-monoids. Let X be a log scheme and X → [Q ′] be

a frame. Then the map X ×log
[Q ] [P] → [Q ′ ⊕sat

Q P] is a frame. In particular, if X → [Q ] is

a frame, then the map X×log
[Q ] [P] → [P] is also a frame.

2. Let (X, [P]) → (Y, [Q ]) be a map of framed log schemes. Then X → Y is the

composition of the strict map X → Y×log
[Q ] [P] and the log etale map Y×log

[Q ] [P] → Y.

Proof. — 1. Since the assertion is etale local on X, we may assume there exists
a chart X → S[Q ′] lifting the frame X → [Q ′]. Then the assertion follows from
Proposition 4.2.1.2 and Corollary 4.1.8.6.

2. The map Y×log
[Q ] [P] → [P] is strict by 1. Hence the map X → Y×log

[Q ] [P] is
strict by the assumption that X → [P] is strict and by Corollary 4.1.8.5. By Proposi-
tion 4.2.1, the map Y×log

[Q ] [P] → Y is log etale. ��
To define logarithmic products, we introduce notations. Let X and Y be log

schemes over a log scheme S, let P be an fs-monoid and let X → [P] ← Y be
maps. Then, let X ×log

S,[P] Y denote the functor associating to a log scheme T the set
X(T)×(S(T)×[P](T)) Y(T). For a map N → P of fs-monoids and a commutative diagram

X −−−→ S ←−−− Y


	



	



	

[P] −−−→ [N] ←−−− [P],
let X ×log

S×[N] [P] Y denote the functor associating to a log scheme T the set
X(T) ×(S(T)×[N](T)[P](T)) Y(T). Since S(T) ×[N](T) [P](T) is a subset of S(T) × [P](T),
the natural map

X×log
S×[N] [P] Y −−−→ X×log

S,[P] Y

is an isomorphism. If P = 0, we have X×log
S,[0] Y = X×log

S Y.

Proposition 4.2.3. — Let X and Y be log schemes over a log scheme S. Let P be an fs-

monoid and X → [P] ← Y be maps. Then, the log scheme (X ×log
S Y) ×log

[P⊕P] [P] is log etale

over X×log
S Y and represents the functor X×log

S,[P] Y.
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Proof. — Clear from Proposition 4.2.1. ��
Definition 4.2.4. — We let X ×log

S,[P] Y denote the log scheme (X ×log
S Y) ×log

[P⊕P] [P]
representing the functor X×log

S,[P] Y and call it the log product of X and Y over S and [P].
Example. — Let m≥1 be an integer and (Nm⊕Nm)∼ be the submonoid {(a1,...,am,

b1, ..., bm) ∈ Z2m|ai+bi ≥ 0 for all 1 ≤ i ≤ m}. Then, we have S[Nm]×log
SpecZ,[Nm]S[Nm] =

S[(Nm ⊕Nm)∼]. In other words, we have

SpecZ[X1, ..., Xm] ×log
SpecZ,[Nm] SpecZ[Y1, ..., Ym]

= SpecZ
[
X1, ..., Xm, Y1, ..., Ym, (X1/Y1)

±1, ..., (Xm/Ym)
±1

]
.

Corollary 4.2.5. — Let X and Y be log schemes over a log scheme S, N → P be a map

of fs-monoids and

X −−−→ S ←−−− Y


	



	



	

[P] −−−→ [N] ←−−− [P]
be a commutative diagram. Assume S → [N] is strict.

1. Let P → P′ and P → P′′ be maps of fs-monoids and let X → [P′] and Y → [P′′] be

strict maps inducing X → [P] and Y → [P] respectively. Then, the induced map X×log
S,[P] Y →

[P′ ⊕sat
P P′′] is strict. In particular, if P → P′ is a quasi-isomorphism (resp. if P → P′ and

P → P′′ are quasi-isomorphisms), the induced map X×log
S,[P]Y → [P′′] (resp. X×log

S,[P]Y → [P])
is strict.

2. If (X, [P]) → (S, [N]) is a map of framed log schemes, then the projection X×log
S,[P] Y

→ Y is strict.

Proof. — 1. The map X×log
S Y → [P′⊕sat

N P′′] is strict by Corollary 4.1.8.6. Hence
X×log

S,[P] Y = (X×log
S Y)×log

[P⊕P] [P] is strict over [(P′ ⊕sat
N P′′)⊕sat

P⊕P P] = [P′ ⊕sat
P P′′] by

Corollary 4.2.2.1. The rest of assertion follows from Lemma 4.1.2.3.
2. Since the question is etale local on Y, we may assume there exist a map

(Y, [P′]) → (S, [N]) of framed log schemes by Corollary 4.1.8.2. Hence the assertion
follows from 1 and Corollary 4.1.8.5. ��

The log product may be explicitly computed as follows.

Corollary 4.2.6. — Let ϕ : N → P be a map of fs-monoid and

X −−−→ S ←−−− Y


	



	



	

S[P] −−−→ S[N] ←−−− S[P]
(4.2.6.1)
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be a commutative diagram of log schemes. Let αX : P → Γ(X,OX) and αY : P → Γ(Y,OY)

be the maps induced by X → S[P] ← Y. Let (P ⊕N P)∼ denote the inverse image of P by the

surjection (P⊕sat
N P)gp = Pgp ⊕Ngp Pgp → Pgp sending (a, b) to a+ b as in Lemma 4.1.2.5.

1. We have

X×log
S,[P] Y = (

X×log
S Y

)×log
S[P⊕sat

N P] S[(P⊕N P)∼].

2. Assume the vertical arrows in (4.2.6.1) are strict. Then, we have

X×log
S,[P] Y = (X×S Y)×S[P⊕P] S[(P⊕N P)∼].

On the right hand side, the underlying scheme is identified with the closed subscheme of (X ×S Y)

×SpecZ S[Pgp/ϕ(Qgp)] defined by the ideal (αX(a)⊗1−αY(a)⊗ ā : a ∈ P) and the log structure

is the pull-back of that of S[(P⊕N P)∼].

Proof. — 1. It is clear from Propositions 4.2.1.2 and 4.2.3.
2. By 1 and X×log

S Y = (X×S Y)×S[P⊕P]S[P⊕sat
N P] (4.1.0.1), we have X×log

S,[P]Y =
(X×log

S Y)×log
S[P⊕sat

N P] S[(P⊕N P)∼] = (X×S Y)×S[P⊕P] S[(P⊕N P)∼]. The assertion on
the underlying scheme follows from this and Lemma 4.1.2.4. ��

We give a global example where the closed immersion X ×log
S,[P] Y → (X×S Y)

×SpecZ S[Pgp/ϕ(Qgp)] in Corollary 4.2.6.2 is an isomorphism. We prepare some nota-
tions. Let P and N be fs-monoids and (S, [P⊕N]) → (S′, [N]) be a map of framed log
schemes. Assume that the map S → S′ of underlying schemes is the identity. Assume
further that P× = {1} and that the composition P → M̄S → OS/O

×
S sends P \ {1}

to 0. The assumptions imply that, etale locally on S′, there exists an isomorphism
MS′ ×P → MS inducing the map P → M̄S defining S → [P]. Thus the map P → M̄S

induces an isomorphism P → M̄S/M̄S′ = MS/MS′ . For a log scheme f : T → S′ over
S′, the set S(T) of log schemes T → S over S′ is identified with the set

{ϕ : f −1MS → MT| the composition P → f −1M̄S → OT/O×
T sends P \ {1} to 0

and the composition f −1MS′ → f −1MS → MT underlies the
map T → S′}.

Let G be the torus Hom(Pgp, Gm). We define an action of G on S over S′ as follows.
Namely, we define a functorial action of G(T) = Hom(P,Γ(T,O×

T )) on S(T) for
a log scheme f : T → S′ over S′. For u : P → O×

T and ϕ : f −1MS → MT, let
uϕ : f −1MS → MT denote the product of ϕ : f −1MS → MT and the composition
f −1MS → f −1MS/MS′ → P

u→ O×
T → MT. Then it is easy to see that, for u ∈

G(T) = Hom(P,Γ(T,O×
T )) and ϕ ∈ S(T), the product uϕ is in S(T) and that the

maps G(T)× S(T) → S(T) sending (u, ϕ) to uϕ define an action of G on S over S′.
This action is also compatible with the map S → [P⊕N].
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Lemma 4.2.7. — Let S → S′ ← X be maps of log schemes and P and N be fs-monoids.

Let

S −−−→ S′ ←−−− X


	



	



	

[P⊕N] −−−→ [N] ←−−− [P⊕N]
(4.2.7.1)

be a commutative diagram of maps. Assume the vertical arrows S′ → [N] and S → [P⊕N] are

strict and that the map S → S′ of underlying schemes is the identity. Assume further that P× = {1}
and that the compositions P → M̄S → OS/O

×
S and P → M̄X → OX/O×

X send P \ {1} to 0.

Then, the log product S ×log
S′,[P] X is strict over X. Further, the action of the torus G =

Hom(Pgp, Gm) on S induces an action on S ×log
S′,[P] X over X and S ×log

S′,[P] X is a G-torsor

over X.

Proof. — The map S×log
S′,[P]X → X is strict by Corollary 4.2.5.2. Since the action

of G on S is compatible with the maps S → S′ and S → [P], the action of G on
S ×log

S′,[P] X is defined. To show that S ×log
S′,[P] X is a G-torsor over X, first we show

that the map G × S → S ×log
S′,[P] S is an isomorphism. Let f : T → S′ be a log

scheme over S′ and ϕ,ψ : T → S be maps over S and over [P]. Then, since the
maps P → f −1M̄S → M̄T induced by ϕ and ψ are equal, there exists a unique map
u : P → O×

T such that ψ = uϕ. Thus, the map G×S → S×log
S′,[P] S is an isomorphism.

We show that S×log
S′,[P] X is a G-torsor over X. By the assumption that P \ {1} is

sent to 0 in OX/O×
X , there exists a commutative diagram

S′ ←−−− X


	



	

S[N] ←−−− S[P⊕N]
lifting the right square in (4.2.7.1) etale locally on S′ and on X. Hence there exists
a map X → S over S′ and over [P⊕N] etale locally on X. Thus, etale locally on X,
the scheme S×log

S′,[P]X is the pull-back of S×log
S′,[P]S by X → S and has a section over X.

Thus the assertion is proved. ��
We define the log diagonal map and study the relation with the sheaf of logarith-

mic differentials. Recall that, for a morphism f : (X, MX) → (S, MS) of log schemes,
the OX-module Ω1

(X,MX)/(S,MS) is defined in [23] (1.7). It is canonically isomorphic to

(
Ω1

X/S ⊕OX ⊗Z

(
Mgp

X /f ∗Mgp
S

))
/((dα(m),−α(m)⊗ m) : m ∈ MX).

For m ∈ MX, its image is denoted by d log m.
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Corollary 4.2.8. — Let X → S be a map of log schemes, P be an fs-monoid and

X → [P] be a map.

1. The diagonal map X → X ×log
S X is uniquely decomposed as the composition of an

immersion

∆ : X −−−→ X×log
S,[P] X

and the log etale map

X×log
S,[P] X −−−→ X×log

S X.

2. Let (X, [P]) → (S, [N]) be a map of framed log schemes. Then, the immersion

∆ : X → X ×log
S,[P] X is an exact immersion. Let NX/X×log

S,[P]X
be the conormal sheaf of the

exact immersion ∆ : X → X×log
S,[P] X. Then, there is a canonical isomorphism

NX/X×log
S,[P]X

−−−→ Ω1
(X,MX)/(S,MS).(4.2.8.1)

Proof. — 1. Clear from Proposition 4.2.3.1.
2. Since the projection X ×log

S,[P] X → X is strict by Corollary 4.2.5.2, the im-
mersion ∆ : X → X×log

S,[P] X is an exact immersion. Hence the immersion ∆ : X →
X×log

S,[P] X is an exactification of the diagonal map X → X×log
S X. Thus, taking it as

Z in [23] (5.6), we obtain an isomorphism (4.2.8.1) as a special case of loc.cit. (5.8.1).
Here, we give more detail. We regard X ×log

S,[P] X as a scheme over X by the second
projection p2 : X×log

S,[P]X → X. The canonical map X×log
S,[P]X → X×log

S X is log etale
and the projection p2 : X×log

S,[P] X → X is strict by Corolllary 4.2.5.2. Hence we have
canonical isomorphisms p∗1Ω

1
(X,MX)/(S,MS) → Ω1

(X×log
S,[P]X,M

X×log
S,[P]X

)/(X,MX)
→ Ω1

X×log
S,[P]X/X

and

Ω1
(X,MX)/(S,MS) → ∆∗Ω1

X×log
S,[P]X/X

. Since the canonical map NX/X×log
S,[P]X

→ ∆∗Ω1
X×log

S,[P]X/X

is an isomorphism, the assertion follows. ��

Definition 4.2.9. — Let f : X → S be a morphism of log schemes, P be an fs-monoid

and X → [P] be a map. We call the immersion ∆ : X → X×log
S,[P] X the log diagonal map.

We may describe the modification associated to a subdivision using the construc-
tion above in the following way (cf. [25] Proposition (9.9)). Let P be an fs-monoid and
N = Hommonoid(P, N) be the dual monoid. We say a submonoid N′ ⊂ N is a face of
N if there exists a ∈ P such that N′ = { f ∈ N| f (a) = 0}.

Lemma 4.2.10. — Let P be an fs-monoid and N′ be a face of N. Let X be a log scheme

and X → [P] be a map. Then
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1. The monoid P′ = {x ∈ Pgp| f (x) ≥ 0 for f ∈ N′} is an fs-monoid and the canonical

map N′ → Hommonoid(P′, N) is an isomorphism. The natural map X ×log
[P] [P′] → X is an

open immersion.

2. Let N′′ be another face of N. Then the intersection N′′′ = N′ ∩ N′′ is a face of N. We

define P′′, P′′′ ⊂ Pgp similarly as in 1. Then the natural map X×log
[P] [P′′′] → (X×log

[P] [P′])×X

(X×log
[P] [P′′]) is an isomorphism.

Proof. — 1. Assume N′ = { f ∈ N| f (a) = 0} for a ∈ P. Then, we have P′ =
〈P, a−1〉 ⊂ Pgp and P′ is an fs-monoid. The isomorphism N′ → Hommonoid(P′, N) is
clear.

We show that the map X×log
[P][P′] → X is an open immersion. Since the question

is etale local on X, we may assume there is a map X → S[P] lifting X → [P]. Since
Z[P′] = Z[P][a−1], we have X×log

[P] [P′] = X⊗Z[P] Z[P][a−1] and the assertion follows.
2. Assume N′ = { f ∈ N| f (a) = 0} for a ∈ P and N′′ = { f ∈ N| f (a′) = 0}

for a′ ∈ P. Then N′′′ = { f ∈ N| f (aa′) = 0} is a face. Since P′′′ = P′ ⊕sat
P P′′, the

isomorphism follows. ��

We say a sub fs-monoid N′ ⊂ N is saturated in N if N′ = {x ∈ N|xn ∈ N′

for some n ≥ 1}. A sub fs-monoid N′ is saturated in N if and only if N′gp is a direct
summand of the free abelian group Ngp. We identify a sub fs-monoid N′ saturated in
N with the dual Hommonoid(P′, N) of P′ = {x ∈ Pgp| f (x) ≥ 0 for f ∈ N′}. We say
a finite set Σ of submonoids of N is a subdivision of N if the following conditions 1.–3.
are satisfied:

1. If N′ is in Σ, N′ is saturated in N.
2. If N′ ∈ Σ and N′′ is a face of N′, then N′′ ∈ Σ.
3. If N′, N′′ ∈ Σ, the intersection N′ ∩N′′ is a face of N′ and of N′′ and hence

is in Σ.

We call an element σ ∈ Σ a face in Σ. If a subdivision Σ further satisfies the following
condition 4 (resp. 5), we say Σ is proper (resp. regular).

4. N =⋃
σ∈Σ Nσ .

5. There exists an isomorphism Nσ → Nr(σ) for each σ ∈ Σ.

Let P be an fs-monoid and Σ be a subdivision of the dual monoid N =
Hommonoid(P, N). In the following, we write Σ = {Nσ |σ ∈ Σ}. Let X be a log scheme
and X → [P] be a map. Then we define a log scheme XΣ log etale over X as fol-
lows. For σ ∈ Σ, we put Pσ = {x ∈ Pgp| f (x) ≥ 0 for f ∈ Nσ}. Then the log scheme
Xσ = X ×log

[P] [Pσ ] log etale over X is defined. For σ ⊂ τ , we have an open immer-
sion Xσ → Xτ by Lemma 4.2.10.1. Patching Xσ for σ ∈ Σ, we define a log scheme
XΣ =⋃

σ∈Σ Xσ log etale over X.
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For a face τ in Σ, a closed subscheme Vτ ⊂ XΣ is defined by patching the closed
subschemes Vτ ∩ Xσ of Xσ defined by the ideal generated by Pσ \ {x ∈ Pσ | f (x) = 0
for all f ∈ Nτ} for σ ⊃ τ .

Lemma 4.2.11. — Let P be an fs-monoid and Σ be a subdivision of the dual monoid N.

Let X be a log scheme and X → [P] be a map.

1. ([25] Proposition (9.11)) If Σ is proper, the map XΣ → X is proper.

2. Assume X is log regular ([25] Definition (2.1)) locally noetherian, X → [P] is a frame

and the subdivision Σ is regular. Then, the scheme XΣ is regular and the log structure on XΣ is

defined by a divisor with simple normal crossings.

3. Let σ and σ ′ be faces in Σ. If there exists τ ∈ Σ such that σ, σ ′ ⊂ τ , the intersection

Vσ ∩ Vσ ′ is equal to Vτ for the smallest τ satisfying σ, σ ′ ⊂ τ . If there exists no such τ ∈ Σ,

the intersection Vσ ∩Vσ ′ is empty.

Proof. — 2. Since the map XΣ → X is log etale, the log scheme XΣ is log regu-
lar. Hence it follows from Lemma 4.1.4.2.

3. Clear from the definition. ��

Lemma 4.2.12. — Let X be a regular locally noetherian scheme of dimension n and D
be a divisor with normal crossings. Let D̄ be the normalization of D and Vi be the closed subset

{x ∈ X| degx D̄x ≥ n− i} with the reduced closed subscheme structure. We put X0 = X and, for

0 ≤ i ≤ n− 2, define Xi+1 → Xi inductively to be the blow-up at the proper transform V′
i of Vi.

Then,

1. The scheme Xi is regular. The reduced inverse image Di of D in Xi is a divisor with

normal crossings. The subscheme V′
i is regular for 0 ≤ i ≤ n− 1.

2. The divisor Dn−1 has simple normal crossings.

Proof. — 1. Since the assertion is etale local, we may assume that the divisor
D has simple normal crossings. Let MX be the standard log structure of X and put
P = Γ(X, M̄X). Let D1, ..., Dr be the irreducible components of D and we identify
P = Nr . We describe the blow-up Xi → X in terms of a partial barycentric subdivision
of a simplex as follows.

We regard ∆ = {1, ..., r} as the set of vertices { f1, ..., fr} of the simplex |∆|
spanned by the standard basis f1, ..., fr of Rr . We define a subdivision of |∆| as follows.
For a subset τ ⊂ ∆, let bτ =∑

j∈τ fj/Card τ be the barycenter of the face spanned by
fj, j ∈ τ . For each 0 ≤ i < n, let ∆i = ∆ {bτ |τ ⊂ ∆, #τ > n− i} be the set of vertices
of |∆| together with the barycenters of faces with dimension ≥ n− i. We say a subset
σ ⊂ ∆i is a face of ∆i if the following condition is satisfied: There exists a sequence
σ0 � ... � σk such that Cardσ0 ≤ n − i, Cardσ1 > n − i and σ = σ0  {bσ1, ..., bσk}.
Let Σi be the set of faces of ∆i. We define a regular and proper subdivision Σi of
the dual monoid N = Hommonoid(P, N). Let e1, ..., er be the standard basis of P = Nr
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and f1, ..., fr be the dual basis of N. For a subset τ ⊂ ∆, we put fτ =∑
j∈τ fj ∈ N. For

a face σ in Σi, we put Nσ = 〈 fτ |τ ∈ σ〉. Then (Nσ )σ∈Σi is a regular proper subdivision
of N. We have Xi = XΣi . By Lemma 4.2.11.2, Xi is regular and the divisor Di has
simple normal crossings.

For a subset τ ⊂∆, let Dτ be the intersection
⋂

i∈τ Di. We have Vi =⋃
#τ=n−i Dτ .

For a subset τ ⊂ ∆ satisfying #τ = n−i, the proper transform of Dτ in Xi is the closed
subscheme Vτ of XΣi defined by the face τ ∈ Σi. Since Vτ is regular and Vτ∩Vτ ′ = ∅
if τ �= τ ′ by Lemma 4.2.11.3, the closed subscheme V′

i =
∐

#τ=n−i Vτ is regular.
2. By 1, V′

n−1 is a regular divisor. Since the exceptional divisors are also regular,
every irreducible components of the divisor Dn−1 is regular. Therefore Dn−1 has simple
normal crossings. ��

4.3. Log products and properties of morphisms of log schemes. — In [32], for a prop-
erty P of morphisms of algebraic spaces, Olsson gives a definition for a morphism of
log schemes to have property log P, using algebraic stacks. We give an interpretation
of the definition without using algebraic stack under the condition (P1) below, after
briefly recalling the main result and the definition in [32].

For a log scheme S, a stack LogS over S is defined. An object of LogS is a log
scheme X over S and a morphism is a strict morphism over S. The natural map
LogS → S is defined by sending a log scheme X to the underlying scheme. The main
result, Theorem 1.1, of [32] asserts that the stack LogS is an algebraic stack locally of
finite presentation over S. In the following, we identify an object X of LogS with the
induced morphism X → LogS. The identity of S defines a section S → LogS. The
section S → LogS is an open immersion (loc. cit. Proposition 3.19 (ii)). A map X → S
of log schemes induces a natural map LogX → LogS. The map LogX → LogS is
relatively representable. Namely for an arbitrary object T → LogS, the fiber product
LogX ×LogS T is representable by an algebraic space.

For a property P of morphisms of algebraic spaces, we say a morphism X → S
of log schemes is log P (resp. weakly log P) if the induced morphism LogX → LogS

(resp. the composition X → LogX → LogS) of algebraic stacks is P. Namely for an
arbitrary object T → LogS, the base change LogX×LogS T → T (resp. the composition
X×LogS T → LogX ×LogS T → T) is P (loc. cit. Definition 4.1). Let P be a property
of morphisms of schemes satisfying the condition:

(P1) Let (Ui → X)i∈I be an etale covering of X. Then X → S is P if and only
if the compositions Ui → X → S are P for all i ∈ I.

Then we say a morphism X → S of algebraic spaces is P if, for any scheme U etale
over X, the composition U → X → S is P. Thus, for a morphism of log schemes,
we have the following.

Lemma 4.3.1. — Let P be a property of morphisms of schemes satifying the condition (P1).
Then, for a morphism X → S of log schemes, the following conditions are equivalent.
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(1) X → S is log P (resp. weakly log P).

(2) For an arbitrary commutative diagram

W −−−→ T


	



	

X −−−→ S

(4.3.1.1)

of log schemes, if W → X×log
S T is log etale and if W → T is strict (resp. and if W → T and

W → X are strict), then the underlying map W → T is P.

Proof. — First, we show the assertion for log P. By the definition, an object of
LogX ×LogS T is a commutative diagram (4.3.1.1) of log schemes such that W → T is
strict. Thus, it is sufficient to show that, for a scheme W over LogX ×LogS T, the map
W → LogX ×LogS T of algebraic spaces is etale if and only if the map W → X×log

S T
of log schemes is log etale. The algebraic space LogX ×LogS T is naturally endowed
with the pull-back log structure of that on T. Then, it suffices to show that the map
LogX×LogS T → X×log

S T is log etale. The underlying map LogX×LogS T → X×log
S T is

locally of finite presentation by the main result of [32]. Hence, it is sufficient to show
that the map LogX ×LogS T → X×log

S T is formally log etale by loc.cit. Theorem 4.6.
We consider a commutative diagram

W0 −−−→ LogX ×LogS T


	



	

W −−−→ X×log
S T

of log schemes such that the map W0 → LogX ×LogS T is strict and that the map
W0 → W is a nilpotent exact closed immersion. Then, since W0 → T is strict, the
map W → T is also strict. Thus, there exists a unique map W → LogX×LogS T making
the two triangles commutative. Hence the map LogX ×LogS T → X×log

S T is formally
log etale and is log etale further by loc.cit. Theorem 4.6. Thus the assertion is proved.

Similarly, an object of X ×LogS T is a commutative diagram (4.3.1.1) of log
schemes such that W → T and W → X are strict. Since X → LogX is an open
immersion, the composition X×LogS T → LogX×LogS T → X×log

S T is log etale. Thus
the assertion for weakly log P is proved similarly. ��

By Lemma 4.3.1, for a property P of morphisms of schemes satisfying the con-
dition (P1), we may regard the condition (2) in Lemma 4.3.1 as a definition for a mor-
phism of log schemes to be log P. By [32] Theorem 4.6, we recover the definition of
log etale, log smooth and log flat in the literature by taking P to be etale, smooth
and flat respectively.

We also consider the following conditions on a property P of morphisms of
schemes:
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(P2) If X → S is P, its base change X′ = X ×S S′ → S′ is also P for an
arbitrary map S′ → S.

(P3) Let X → S′ be a map and S′ → S be an etale morphism. Then the com-
position X → S is P if and only if X → S′ is P.

(P4) Let X → S be a morphism of schemes and S′ → S be a faithfully flat map.
Then X → S is P if the base change X′ → S′ is P.

(P5) If f : X → Y and g : Y → S are P, the composition g ◦ f : X → S is P.
(P6) If X → S is P, its base change X′ = X ×S S′ → S′ is also P for a flat

map S′ → S.

The following is clear from Lemma 4.3.1.

Corollary 4.3.2. — Let P be a property of morphisms of schemes satisfying the condition

(P1). Let f : X → S be a morphism of log schemes.

1. Assume P satisfies (P2). If f : X → S is log P, its base change f ′ : X′ → S′ is also

log P for an arbitrary morphism of log schemes S′ → S.

2. If X → S is log P and if U → X is log etale, the composition U → S is log P.

3. Assume P satisfies (P2) and f : X → S is strict. Then f is log P (resp. weakly

log P) if and only if the underlying morphism is P.

4. Assume P satisfies (P3). Then, the following conditions are equivalent.

(1) The map f : X → S is log P (resp. weakly log P).

(2) There exist an etale covering (Ui → X)i∈I of X, etale maps Vi → S and log P (resp.

weakly log P) maps gi : Ui → Vi such that the diagrams

Ui
gi−−−→ Vi



	



	

X
f−−−→ S

are commutative for i ∈ I.

We give a criterion for a morphism of log schemes to be log P using log prod-
ucts and Lemma 4.3.1.

Proposition 4.3.3. — Let P be a property of morphisms of schemes satisfying the condition

(P1). Let (X, [P]) → (S, [N]) be a map of framed log schemes. We consider the conditions:

(1) f : X → S is log P.

(2) f : X → S is weakly log P.

(1′) (resp. (2′)) For an arbitrary map T → S of log schemes and an arbitrary map (resp.

an arbitrary strict map) T → [P] such that the diagram



ON THE CONDUCTOR FORMULA OF BLOCH 95

T −−−→ S


	



	

[P] −−−→ [N]
(4.3.3.1)

is commutative, the strict map X×log
S,[P] T → T is P.

We have (1)⇒(2) ⇒(1′) ⇔(2′). If P further satisfies the condition (P3), the four conditions

are equivalent.

Proof. — (1)⇒(2) and (1′)⇒(2′). Clear.
(2)⇒(2′) We consider the commutative diagram

X×log
S,[P] T −−−→ T


	



	

X −−−→ S.

(4.3.3.2)

Since X → [P] is strict, the map X ×log
S,[P] T → T is strict by Corollary 4.2.5.2. If

further T → [P] is strict, the map X×log
S,[P] T → X is also strict by Corollary 4.2.5.2.

Since X×log
S,[P] T → X×log

S T is log etale, (2) implies (2′) by Lemma 4.3.1.
(2′)⇒(1′). We consider the commutative diagram (4.3.3.2). Assuming (2′), we

show the map X×log
S,[P] T → T is P. Let T′ be the log scheme as in Lemma 4.1.7.3

such that the map T → [P] is the composition of a strict map T′ → [P] and a map
T → T′ whose underlying map is the identity of T. The diagram (4.3.3.1) with T
replaced by T′ is commutative. Since X×log

S,[P] T = (X×log
S,[P] T′)×log

T′ T and the maps
X×log

S,[P] T → T and X ×log
S,[P] T′ → T′ are strict by Corollary 4.2.5.2, the underlying

morphism X×log
S,[P] T → T of schemes is the same as that of X×log

S,[P] T′ → T′. Since
T′ → [P] is strict, the map X×log

S,[P] T′ → T′ is P by (2′). Thus (2′) implies (1′).
(1′)⇒(1). We consider the commutative diagram (4.3.1.1). We assume W →

X×log
S T is log etale and W → T is strict and we show W → T is P. Since we assume

(P1) and (P3), the question is etale local on W and on T by Corollary 4.3.2.4. Let w̄
be a geometric point of W and put P′ = M̄W,w̄. The composition W → X → [P]
induces a map P → P′ of fs-monoids. Replacing T by an etale neighborhood of the
image t̄ of w̄, we may assume there exists a strict map T → [P′] such that the com-
position W → T → [P′] induces the identity P′ → M̄W,w̄ since M̄T,t̄ → M̄W,w̄ is an
isomorphism. We define a map T → [P] as the composite T → [P′] → [P].

We may assume the diagram (4.3.3.1) is commutative by shrinking T if neces-
sary. Shrinking W if necessary, we may assume that the two compositions W → X
→ [P] and W → T → [P] are equal. Hence, we obtain a map W → X ×log

S,[P] T
of log schemes log etale over X ×log

S T. Thus the map W → X ×log
S,[P] T is log etale.
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The map X×log
S,[P] T → T is strict by Corollary 4.2.5.2 and the map W → T is strict

by the assumption. Hence the map W → X ×log
S,[P] T is also strict and hence is etale.

By (1′), the map X×log
S,[P] T → T is P. Hence by (P1), the map W → T is P. Thus

the assertion follows by Lemma 4.3.1. ��
Corollary 4.3.4. — Let P be a property of morphisms of schemes satisfying the condition

(P1).
1. Assume P satisfies (P3). Then a morphism f : X → S of log schemes is log P if and

only if it is weakly log P.

2. Assume P satisfies (P3) and (P5). Then, if morphisms f : X → Y and g : Y → S of

log schemes are log P, the composition g ◦ f : X → S is also log P.

3. Assume P satisfies (P2) and (P5). Let X → Y and X′ → Y′ be maps of log schemes

over a log scheme S, N → Q → P be maps of fs-monoids and

X −−−→ Y −−−→ S ←−−− Y′ ←−−− X′


	



	



	



	



	

[P] −−−→ [Q ] −−−→ [N] ←−−− [Q ] ←−−− [P]
be a commutative diagram. Assume X → [P], Y → [Q ] and S → [N] are strict, X → Y is

log P and the underlying map of X′ → Y′ is P. Then the underlying map of X ×log
S,[P] X′ →

Y×log
S,[Q ] Y′ is P.

Proof. — 1. By Corollary 4.3.2.4, the assertion is etale local on X and S. Hence
we may assume there exists a morphism (X, [P]) → (S, [N]) of framed log schemes by
Corollary 4.1.6.2. Thus the assertion follows from the equivalence (1)⇔(2) in Propo-
sition 4.3.3.

2. Since the question is etale local, we may assume that there exist maps (X, [P])
→ (Y, [Q ]) → (S, [N]) of framed log schemes. Let (T, [P]) → (S, [N]) be a map
of framed log schemes. We consider the diagram (4.3.3.2) and show that the strict
map X ×log

S,[P] T → T is P. By the assumption and Proposition 4.3.3 (1)⇒(2′), the
strict maps X ×log

Y,[P] (Y ×log
S,[Q ] T) → Y ×log

S,[Q ] T and Y ×log
S,[Q ] T → T are P. Since

X×log
Y,[P] (Y×log

S,[Q ] T) = X×log
S,[P] T, the assertion follows by (P5) and Proposition 4.3.3

(2′)⇒(1).
3. We show the maps X×log

S,[P] X′ → Y×log
S,[Q ] X′ and Y×log

S,[Q ] X′ → Y×log
S,[Q ] Y′

are P. In the diagram

X×log
S,[P] X′ −−−→ Y×log

S,[Q ] X′


	



	

X −−−→ Y,

(4.3.4.1)
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the top arrow X ×log
S,[P] X′ → Y ×log

S,[Q ] X′ is strict since X ×log
S,[P] X′ and Y ×log

S,[Q ] X′

are strict over X′ by Corollary 4.2.5.2. The log scheme X ×log
S,[P] X′ is log etale over

X×log
Y (Y×log

S,[Q ]X
′) = X×log

S,[Q ]X
′. Since X → Y is log P, the strict map X×log

S,[P]X
′ →

Y×log
S,[Q ] X′ is P.

In the diagram

Y×log
S,[Q ] X′ −−−→ Y×log

S,[Q ] Y′


	



	

X′ −−−→ Y′,

(4.3.4.2)

the vertical arrows are strict since Y → [Q ] is strict. Hence the diagram of underlying
scheme is cartesian. Since the underlying map of X′ → Y′ is P, the underlying map
of Y×log

S,[Q ] X′ → Y×log
S,[Q ] Y′ is P by (P2). Thus we conclude by (P5). ��

In particular, for log flat morphisms, we have the following.

Corollary 4.3.5. — 1. (cf. [32] Corollary 4.12 (i)) If X → S is log flat and S′ → S
is a map of log schemes, the base change X×log

S S′ → S′ is log flat.

2. (cf. [32] Corollary 4.12 (ii)) If X → Y is log flat and Y → S is log flat, the

composition X → S is log flat.

3. If X and Y are log flat log schemes over S, the log fiber product X ×log
S Y is log flat

over S.

4. Let X and Y be log schemes over S and N → P be a map of fs-monoids. Let

X −−−→ S ←−−− Y


	



	



	

[P] −−−→ [N] ←−−− [P]
be a commutative diagram and assume X → [P] and S → [N] are strict. If X → S is log flat,

the strict map X×log
S,[P] Y → Y is flat.

5. Let X → Y and X′ → Y′ be maps of log schemes over a log scheme S and let

N → Q → P be maps of fs-monoids. Let

X −−−→ Y −−−→ S ←−−− Y′ ←−−− X′


	



	



	



	



	

[P] −−−→ [Q ] −−−→ [N] ←−−− [Q ] ←−−− [P]
be a commutative diagram and assume X → [P], Y → [Q ] and S → [N] are strict. If X → Y
is log flat and if the underlying map of X′ → Y′ is flat, the underlying map of X ×log

S,[P] X′ →
Y×log

S,[Q ] Y′ is flat.
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Proof. — 1 and 2. It suffices to apply Corollaries 4.3.2.1 and 4.3.4.2 respectively.
3. It follows from 1 and 2.
4. It suffices to apply Proposition 4.3.3 (1)⇒(1′).
5. It follows from Corollary 4.3.4.3. ��
In Section 4.4, we define morphisms log locally of complete intersection as a spe-

cial case of the following definition.

Definition 4.3.6. — Let P be a property of morphisms of schemes satisfying the condition

(P1). We say a morphism of log schemes X → S is very weakly log P if the following condition

is satisfied.

For an arbitrary commutative diagram

W −−−→ T


	



	

X −−−→ S

(4.3.6.1)

of log schemes, if T → S is log flat, W → X×log
S T is log etale and if W → T and W → X

are strict, then the underlying map W → T is P.

For a property P satisfying (P1), a weakly log P morphism is very weakly
log P.

Similarly as in Corollary 4.3.2.4, if P satisfies (P1) and (P3), the following con-
ditions are equivalent.

(1) The map f : X → S is very weakly log P.
(2) There exist an etale covering (Ui → X)i∈I of X, etale maps Vi → S and

very weakly log P maps gi : Ui → Vi such that the diagrams

Ui
gi−−−→ Vi



	



	

X
f−−−→ S

are commutative for i ∈ I.
The following lemma is useful in the study of very weakly log P morphisms.

Lemma 4.3.7. — Let N → P be an injection of fs-monoids. Then the induced map

S[P] → S[N] of log schemes is log flat. More precisely, for an arbitrary log schemes T over S[N]
and an arbitrary strict map T → [P] such that the diagram

T −−−→ S[N]


	



	

[P] −−−→ [N]
is commutative, the strict map T×log

S[N],[P] S[P] → T is faithfully flat.
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Proof. — Since flatness satisfies (P1) and (P3), it is sufficient to show the second
assertion by Proposition 4.3.3 (2′)⇒(1). The assertion is etale local on T. Hence by
Corollary 4.1.6.2, we may assume there exists a map (T, P′) → (S[N], N) of charted
log schemes where P′ ⊂ Pgp ⊕ Ngp is the inverse image of P as in Lemma 4.1.5.2.
Thus it is reduced to the case T = S[P′]. In this case, we have T ×log

S[N],[P] S[P] =
S[(P′ ⊕N P)∼] where (P′ ⊕N P)∼ ⊂ P′gp ⊕Ngp Pgp is the inverse image of P. The iso-
morphism Pgp ⊕ Ngp → Pgp ⊕ Ngp : (a, b) �→ (a + ϕ(b), b) induces an isomorphism
P′ → P⊕Ngp and the isomorphism P′gp⊕Ngp Pgp = (Pgp⊕Ngp)⊕Ngp Pgp → Pgp⊕ Pgp :
((a, b), c) �→ (a + ϕ(b)+ c, ϕ(b)+ c) induces an isomorphism (P′ ⊕N P)∼ → P⊕ Pgp.
These isomorphisms make a commutative diagram

P′ −−−→ (P′ ⊕N P)∼


	



	

P⊕Ngp (1,ϕgp)−−−→ P⊕ Pgp.

Since ϕgp : Ngp → Pgp is injective, the map Z[Ngp] → Z[Pgp] is faithfully flat. Thus
the map T×log

S[N],[P] S[P] = S[(P′ ⊕N P)∼] → S[P′] is faithfully flat. ��

Proposition 4.3.8. — Let P be a property of morphisms of schemes satisfying the condi-

tion (P1). Let f : (X, [P]) → (S, [N]) be a morphism of framed log schemes. We consider the

conditions:

(3) f : X → S is very weakly log P.

(3′) For an arbitrary map (T, [P]) → (S, [N]) of framed log schemes such that T → S
is log flat, the strict map X×log

S,[P] T → T is P.

1. We have (3)⇒(3′). If P satisfies the condition (P3), the two conditions are equivalent.

2. Let S → S[N] be a chart lifting the frame S → [N]. Assume N → P is injective. We

consider the condition:

(3′′) For TP = S×S[N] S[P], the strict map X×log
S,[P] TP → TP is P.

Then we have (3′)⇒(3′′). If P satisfies the conditions (P4) and (P6), we have (3′′)⇔(3′). If

P satisfies the conditions (P2) and (P4), the condition (3′′) implies the condition (2′) in Proposi-

tion 4.3.3.

Proof. — The proof is similar to that of Proposition 4.3.3. The implications
(3)⇒(3′)⇒(3′′) are clear. The proof of (3′)⇒(3) is the same as that of (1′)⇒(1) except
that here we need to notice that the constructed map T → [P] is strict after shrinking
T if necessary.

We show (3′′)⇒(3′). Let (T, [P]) → (S, [N]) be a map of framed log schemes
such that T → S is log flat. We show that the strict map X ×log

S,[P] T → T is P. We
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consider the cartesian diagram

X×log
S,[P] T ←−−− X×log

S,[P] T×log
S,[P] TP −−−→ X×log

S,[P] TP


	



	



	

T ←−−− T×log
S,[P] TP −−−→ TP

(4.3.8.1)

of strict morphisms. By (3′′), the right vertical map X×log
S,[P] TP → TP is P. The strict

map T ×log
S,[P] TP → TP is flat since T → S is assumed log flat. Hence by (P6), the

middle vertical map X×log
S,[P] T ×log

S,[P] TP → T ×log
S,[P] TP is P. Since T×log

S,[P] TP → T
is faithfully flat by Lemma 4.3.7, the assertion follows by (P4).

The implication (3′′)⇒(2′) is proved similarly by replacing (P6) by (P2). ��
Corollary 4.3.9. — Let P be a property of morphisms of schemes satisfying the condition

(P1).
1. Assume P satisfies (P2), (P3) and (P4). Then a morphism f : X → S of log schemes

is log P if and only if it is very weakly log P.

2. Assume P satisfies (P3) and (P5). Then, if morphisms f : X → Y and g : Y → S of

log schemes are very weakly log P, the composition g ◦ f : X → S is also very weakly log P.

3. Assume P satisfies (P6) and (P5). Let X → Y and X′ → Y′ be maps of log schemes

over a log scheme S, N → Q → P be maps of fs-monoids and

X −−−→ Y −−−→ S ←−−− Y′ ←−−− X′


	



	



	



	



	

[P] −−−→ [Q ] −−−→ [N] ←−−− [Q ] ←−−− [P]
be a commutative diagram. Assume X → [P], Y → [Q ] and S → [N] are strict, X → Y is

very weakly log P, the underlying map of X′ → Y′ is P and X′ → S and Y → S are log flat.

Then the underlying map of X×log
S,[P] X′ → Y×log

S,[Q ] Y′ is P.

Proof. — 1. It is sufficient to show that a very weakly log P morphism X → S
is log P. By (P3) and Corollary 4.1.8.2, we may assume there is a map (X, [P]) →
(S, [N]) of framed log schemes. By replacing P by the inverse image P′ ⊂ Pgp ⊕ Ngp

of P as in Lemma 4.1.5.2, we may assume that the map N → P is injective. Hence
the assertion follows from Proposition 4.3.8 (3′′)⇒(2′) and Proposition 4.3.3 (2′)⇒(1).

2. The proof is similar to that of Corollary 4.3.4.2. We only indicate the points
where a modification is required. Let (T, [P]) → (S, [N]) be a log flat map of framed
log schemes. Then, the projection (Y×log

S,[Q ]T, [P])→ (Y, [Q ]) is also log flat. Hence,
by the assumption and Proposition 4.3.8 (3)⇒(3′), the strict maps X×log

Y,[P] (Y×log
S,[Q ]T)

→ Y ×log
S,[Q ] T and Y ×log

S,[Q ] T → T are P. Thus we conclude by (P5) and Proposi-
tion 4.3.8 (3′)⇒(3).
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3. The proof is similar to that of Corollary 4.3.4.3. We only indicate the points
where a modification is required. In the diagram (4.3.4.1), since further Y ×log

S,[Q ] X′

→ Y is log flat, the strict map X×log
S,[P]X

′ → Y×log
S,[Q ]X

′ is P. In the diagram (4.3.4.2),
since further the strict map Y×log

S,[Q ]Y
′ → Y′ is flat, the map Y×log

S,[Q ]X
′ → Y×log

S,[Q ]Y
′

is P by (P6). Thus we conclude by (P5). ��
For log flat morphisms, we have the following criterion.

Proposition 4.3.10 ([32] Theorem 4.6). — For a morphism f : X → S of log schemes,

the following conditions are equivalent.

(1) f : X → S is log flat.

(2) For an arbitrary commutative diagram

W −−−→ T


	



	

X −−−→ S

of log schemes, if W → X ×log
S T is log etale and W → T is strict, then the underlying map

W → T is flat.

(3) f : X → S is very weakly log flat.

(4) For an arbitrary point x ∈ X, there exist an injection N → P of fs-monoids and

a commutative diagram

X ←−−− U −−−→ S[P]


	



	



	

S ←−−− V −−−→ S[N]
(4.3.10.1)

of log schemes satisfying the following conditions: The map U → X is strict and flat, the image of

U → X contains an open neighborhood of x, V → S is an open immersion, the maps U → S[P]
and V → S[N] are strict and the strict map U → V×log

S[N] S[P] is flat.

Here, we give a proof using Proposition 4.3.8.

Proof. — (1)⇔(2). Since flatness satisfies the condition (P1), it is clear from Lem-
ma 4.3.1.

(1)⇔(3). Since flatness further satisfies the conditions (P2), (P3) and (P4), it is
clear from Corollary 4.3.9.1.

(3)⇒(4). Assume X → S is very weakly log flat. We show that X → S satisfies
the condition (4). The question is etale local on X and S. Hence by Corollary 4.1.8.3
and 4, we may assume there exist an injection N → P of fs-monoids and a map
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(X, P) → (S, N) of charted log schemes since the map Q → P′ loc.cit. is injective.
We put U = X×log

S[N],[P] S[P] and consider the commutative diagram

X ←−−− U −−−→ S[P]


	



	



	

S S −−−→ S[N].
By Lemma 4.3.7, the strict map U → X is faithfully flat. We show that the strict map
U → TP = S×log

S[N] S[P] is flat. We consider the commutative diagram

U = X×log
S,[P] TP −−−→ TP



	



	

X −−−→ S.

Then, since TP → S is log flat by Lemma 4.3.7 and X → S is very weakly log
flat by the assumption, the strict map X ×log

S,[P] TP → TP is flat. Hence the assertion
follows.

(4)⇒(3). We assume X → S satisfies the condition (4) and show that the map
X → S is very weakly log flat. We assume there exist an injection N → P of fs-
monoids and a commutative diagram (4.3.10.1) satisfying the condition in (4). Since
the question is etale local on X, we may further assume that the map U → X is
faithfully flat and V = S. Then we obtain a commutative diagram

U −−−→ TP


	



	

X −−−→ S.

(4.3.10.2)

The map U → X is strict and faithfully flat and the map U → TP is strict and flat.
Since U → X is strict and surjective, by shrinking them if necessary, we may assume
there is a strict map X → [P] such that the diagram

U −−−→ TP


	



	

X −−−→ [P]
(4.3.10.3)

is commutative.
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We show the condition (3′′) in Proposition 4.3.8 is satisfied. Namely, we show
that the strict map X×log

S,[P] TP → TP is flat. We consider the commutative diagram

U×log
S,[P] TP −−−→ TP ×log

S,[P] TP


	



	

X×log
S,[P] TP −−−→ TP

(4.3.10.4)

induced by the diagrams (4.3.10.2) and (4.3.10.3). The strict map U ×log
S,[P] TP →

TP ×log
S,[P] TP is flat since it is a base change of the strict and flat map U → TP. By

Lemma 4.3.7, the strict map TP ×log
S,[P] TP → TP is flat. The strict map U×log

S,[P] TP →
X×log

S,[P]TP is faithfully flat since it is a base change of the strict and faithfully flat map
U → X. Hence the strict map X×log

S,[P] TP → TP is flat. ��
For a morphism f : X → S locally of finite presentation of schemes and x ∈ X,

we put s = f (x) and

dimx f −1( f (x)) = dim OXs,x + tr. deg κ(x)/κ( f (x)).

The fiber dimension dimx f −1( f (x)) at x is equal to the maximum of the dimensions
of components of the fiber Xs = f −1( f (x)) containing x. We also define a log version.
Let f : X → S be a map of log schemes whose underlying map is locally of finite
presentation. For x ∈ X, we put

dimlog
x f −1( f (x))

= dim OXs,x̄/
(
α
(
MX,x̄ \ O×

X,x̄

))+ tr. deg κ(x)/κ(s)+ rank M̄gp
X,x̄/M̄gp

S,s̄

by taking geometric points x̄ and s̄ above x and s = f (x).

Proposition 4.3.11 (cf. [3] Lemma 3.10). — Let f : X → S be a morphism of log

schemes such that the map of underlying schemes is locally of finite presentation. Let

W
g−−−→ T



	



	

X
f−−−→ S

be a commutative diagram of log schemes such that W → X×log
S T is log etale and W → T and

W → X are strict. Then, for w ∈ W and its image x ∈ X, we have

dimlog
x f −1( f (x)) = dimw g−1( g(w)).
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Proof. — By replacing S and T by geometric points on the images s = f (x) and
t = g(w), we may assume S and T are the spectrums of algebraically closed fields with
the pull-back log structures. We put N = M̄S,s̄ and P = M̄X,x̄. Let P′ ⊂ Pgp ⊕ Ngp be
the inverse image of P as in Lemma 4.1.5.2. Since the question is etale local on X, by
replacing X by an etale neighborhood of x̄, we define a map of charted log schemes
(X, P′) → (S, N) as in Corollary 4.1.8.3 and 4. The chart X → P′ induces a chart
W → P′ and hence a chart T → P′. Since the question is etale local on W and the
strict map W → X ×log

S,[P′] T is etale, we may assume W = X ×log
S,[P′] T. By replacing

S by T with the pull-back log structure of that of S, we may assume the underlying
map T → S is the identity.

By Proposition 4.2.3.3, we have X ×log
S,[P′] T = X ×S[P′⊕P′] S[(P′ ⊕N P′)∼]. Let

α : P′ → Γ(X,OX) and αt : P′ → κ(t) denote the maps defining the charts X → P′

and T → P′. Then by Corollary 4.2.6.2, the underlying scheme of X×log
S,[P′] T is iden-

tified with the closed subscheme of X ×Spec Z S[P′gp/Ngp] defined by the ideal I =
((α(a) − αt(a)) ⊗ ā; a ∈ P′). Since αt(a) = 0 for a /∈ P′×, the ideal I is the sum of
I1 = (α(a) ⊗ 1; a ∈ P′ \ P′×) and I2 = (1 ⊗ ā − (αt(a−1)α(a)) ⊗ 1; a ∈ P′×). Since
P = P′/P′×, the closed subscheme of X ×Spec Z S[P′gp/Ngp] defined by the ideal I2 is
identified with X×Spec Z S[Pgp/Ngp]. Hence X×log

S,[P′]T is identified with the closed sub-
scheme of X×Spec Z S[Pgp/Ngp] defined by the image of the ideal I1 = (α(a)⊗ 1; a ∈
P′ \ P′×). Thus the assertion follows. ��

4.4. Log locally of complete intersection morphisms. — We briefly recall the definition
and some facts on morphisms locally of complete intersection. Let X → S be a mor-
phism locally of finite presentation of schemes. As we have recalled in Definition 1.6.1,
we say X is locally of complete intersection over S if, for each x ∈ X, there exist an
open neighborhood U of x in X, a smooth scheme P over S and a regular immer-
sion U → P over S. Assume X is locally of complete intersection over S. For x ∈ X,
the difference dx = rankΩ1

P/S,x − rankNU/P,x in the notation above is independent of
U → P → S ([17] Exp. VIII Proposition 1.8) and is called the virtual relative dimen-
sion at x. If dx is a constant d on X, we say X is of virtual relative dimension d over S.
The function dx is locally constant on X and is different from dimS x in Section 2.1.
We have the following criterion for a locally of complete intersection morphism to be
flat in terms of a relation between dx and dimx f −1( f (x)).

We give a criterion for a locally of complete intersection morphism to be flat in
terms of the relative dimension. A flat and locally of complete intersection morphism
is called a syntomic morphism.

Proposition 4.4.1. — Let f : X → S be a locally of complete intersection morphism of

virtual relative dimension d . Then, the following conditions are equivalent.

(1) f : X → S is flat.

(2) For each point x ∈ X, we have dimx f −1( f (x)) = d .
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Proof. — Since the question is local on X, we may assume there exist a smooth
scheme Y over S purely of relative dimension n and a regular immersion X → Y of
codimension c = n − d . Let x be a point of X and ( g1, ..., gc) be a regular sequence
of OY,x generating the ideal defining the immersion X → Y at x. By [15] Théorème
(11.3.8) b)⇔c), the condition (1) at x is equivalent to that the image (ḡ1, ..., ḡc) is a regu-
lar sequence of OYf (x),x. Since OYf (x),x is of Cohen-Macaulay, it is further equivalent
to that dim OXf (x),x = dim OYf (x),x − c by [15] Chap. 0 Corollaire (16.5.6). Since n =
dim OYf (x),x + tr. deg κ(x)/κ( f (x)), the assertion follows. ��

Following Definition 4.3.6, we make the following definition. Note that mor-
phisms locally of complete intersection satisfy the properties (P1) and (P3)–(P6) in Sec-
tion 4.3.

Definition 4.4.2. — We say a morphism of log schemes X → S is log locally of com-
plete intersection (resp. log locally of complete intersection of virtual relative dimension d) if

the underlying map is locally of finite presentation and if the following condition is satisfied.

For an arbitrary commutative diagram

W −−−→ T


	



	

X −−−→ S

(4.4.2.1)

of log schemes, if T → S is log flat, W → X×log
S T is log etale and if W → T and W → X are

strict, then the underlying map W → T is locally of complete intersection (resp. locally of complete

intersection of virtual relative dimension d).

Let X → S be a log smooth map. Then we say X is purely of relative dimen-
sion d , if, for an arbitrary commutative diagram (4.4.2.1) of log schemes such that
W → X×log

S T is log etale and W → T is strict, the underlying smooth map W → T
is purely of relative dimension d . A log smooth scheme X is purely of relative dimen-
sion d if and only if the locally free OX-module Ω1

(X,MX)/(S,MS) is of constant rank d .

Lemma 4.4.3. — 1. A log smooth morphism (resp. purely of dimension d) is log locally of

complete intersection (resp. of virtual relative dimension d).

2. The composition of log locally of complete intersection morphisms (resp. of virtual relative

dimension d and d ′) is log locally of complete intersection (resp. of virtual relative dimension d+ d ′).

Proof. — 1. If P is the property “smooth”, the property log P is “log smooth”
by [32] Theorem 4.6. Hence the assertion follows by Lemma 4.3.1.

2. Clear from the corresponding property ([17] Exp. VIII Propositions 1.5 and
1.10) in the non-log case and Corollary 4.3.9.2. ��
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Proposition 4.4.4. — Let X → S be a map of log schemes and assume the underlying map

is locally of finite presentation.

1. The following conditions are equivalent.

(1) X → S is log locally of complete intersection.

(2) For an arbitrary geometric point x̄ of X, there exist an etale neighborhood U and a com-

mutative diagram

U −−−→ V


	



	

X −−−→ S

of log schemes such that V → S is log smooth and U → V is an exact and regular closed

immersion.

2. Let Y → S be a log smooth morphism of relative dimension n and X → Y be an exact

closed immersion. Then the following conditions are equivalent.

(1) X → S is log locally of complete intersection of virtual relative dimension d .

(2) X → Y is a regular immersion of codimension n− d .

Proof. — 1. We reduce the assertion 1 to 2. Let X → S be a morphism of log
schemes whose underlying map is locally of finite presentation and x̄ be a geometric
point of X. It is sufficient to show that there exist an etale neighborhood U of x̄,
a log smooth log scheme Y over S and an exact closed immersion U → Y over S. By
Corollary 4.1.8.3 and 4, shrinking X and S if necessary, we may assume there exist
a map N → P of fs-monoids such that Ngp is a direct summand of Pgp and a map
(X, P) → (S, N) of charted log schemes. Then, we obtain a strict map X → TP =
S×log

S[N] S[P]. Since TP is log smooth over S, by replacing S by TP, it is reduced to the
case X → S is strict. Now the assertion is clear.

2. The question is etale local on X and on S. By Corollary 4.1.8.3 and 4, shrink-
ing Y and S if necessary, we may assume there exist a map N → P of fs-monoids
such that Ngp is a direct summand of Pgp and a map (Y, P) → (S, N) of charted log
schemes. Let TP = S ×log

S[N] S[P] be as in Proposition 4.3.8. We consider the commu-
tative diagram

X×log
S,[P] TP −−−→ Y×log

S,[P] TP −−−→ TP


	



	



	

X −−−→ Y −−−→ S

(4.4.4.1)

and the condition:
(1′) The strict map X×log

S,[P]TP → TP is locally of complete intersection of virtual
relative dimension d .
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By Proposition 4.3.8.2, the condition (1) is equivalent to (1′). Hence it is sufficient to
show that (1′) is equivalent to (2).

(1′)⇒(2). Since the strict map Y ×log
S,[P] TP → TP is smooth purely of relative

dimension n, the immersion X×log
S,[P] TP → Y×log

S,[P] TP is a regular immersion of codi-
mension n − d . Since the left square of (4.4.4.1) is cartesian and the middle vertical
arrow Y ×log

S,[P] TP → Y is faithfully flat by Lemma 4.3.7, the immersion X → Y is
a regular immersion of codimension n− d .

(2)⇒(1′). Since the middle vertical arrow Y ×log
S,[P] TP → Y is flat, the immer-

sion X ×log
S,[P] TP → Y ×log

S,[P] TP is a regular immersion of codimension n − d . Hence
the strict map X ×log

S,[P] TP → TP is locally of complete intersection of virtual relative
dimension d . ��

Corollary 4.4.5. — 1. Let f : X → S be a log locally of complete intersection morphism of

log schemes and Y → S be a log flat morphism of log schemes. Let N → P be a map of fs-monoids

and (X, [P]) → (S, [N]) and (Y, [P]) → (S, [N]) be maps of framed log schemes. Then, the

strict map X×log
S,[P] Y → Y is locally of complete intersection.

2. Let X → Y and X′ → Y′ be maps of log schemes over a log scheme S and let

N → Q → P be maps of fs-monoids. Let

X −−−→ Y −−−→ S ←−−− Y′ ←−−− X′


	



	



	



	



	

[P] −−−→ [Q ] −−−→ [N] ←−−− [Q ] ←−−− [P]
be a commutative diagram and assume X → [P], Y → [Q ] and S → [N] are strict. Assume

X → Y is log locally of complete intersection, the underlying map of X′ → Y′ is locally of complete

intersection and X′ → S and Y → S are log flat. Then the underlying map of X ×log
S,[P] X′ →

Y×log
S,[Q ] Y′ is locally of complete intersection.

Proof. — It suffices to apply Proposition 4.3.8.2 (3)⇒(3′) and Corollary 4.3.9.3
respectively. ��

Similarly to Proposition 4.4.1, we have a criterion for a log locally of complete
intersection morphism to be log flat.

Proposition 4.4.6 (cf. [3] Lemma 3.10). — Let X → S be a log locally of complete

intersection morphism of virtual relative dimension d . Then, the following conditions are equivalent.

(1) The map f : X → S is log flat.

(2) For each x ∈ X, we have an equality dimlog
x f −1( f (x)) = d .

Proof. — By Propositions 4.4.1 and 4.3.11, the condition (2) is equivalent to the
condition that the map f : X → S is very weakly log flat. Hence the assertion follows
by Corollary 4.3.9.1. ��
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Corollary 4.4.7. — Let X and S be regular noetherian schemes and DX and DS be divisors

with simple normal crossings. Let f : X → S be a morphism of finite type and assume we have an

inclusion f −1(DS) ⊂ DX of the underlying sets. Let X and S also denote the log schemes with the

standard log structures and f : X → S be the induced map of log schemes. Then

1. (cf. [3] Lemma 3.9) The map f : X → S is log locally of complete intersection.

2. We put U = S\DS and D1,U, ..., Dm,U be the irreducible component of DX∩ f −1(U).

Assume dim S = 1, the underlying map X → S is flat and the irreducible components D1,U,

..., Dm,U and their intersections Di1,U ∩ · · · ∩ Dik,U for 1 ≤ i1 ≤ ... ≤ ik ≤ m are flat over U.

Then the map f : X → S is log flat.

Proof. — 1. We put N = Γ(S, M̄S) and P = Γ(X, M̄X). The assertion is etale
local on X and on S. Shrinking them, we may assume there exists a map of charted
log schemes (X, P′) → (S, N) by Corollary 4.1.8.3 and 4 where P′ ⊂ Pgp ⊕ Ngp is
as in Lemma 4.1.5.2. The map S′ = S ⊗log

Z[N] Z[P′] → S is log smooth and the map
X → S is the composition X → S′ → S. Since P′ is isomorphic to P⊕ Ngp and S′ is
log regular, the underlying scheme S′ is regular and the log structure is the standard
one defined by a divisor with simple normal crossings. Thus it is reduced to the case
where X → S is strict. Now the assertion is well-known.

2. We may assume X and S are connected. Let d be the relative dimension of
X over S. It is sufficient to show that dimlog

x f −1( f (x)) = d for each x ∈ X. We put
rank M̄gp

X,x = r and let D1, ..., Dr be the irreducible component of D containing x. We
put V = D1 ∩ · · · ∩Dr and put s = f (x).

First, we consider the case s ∈ DS. Then, V is in f −1(s) and we have
OXs,x/(α(MX,x − O×

X,x)) = OV,x. Hence, we have dim OXs,x/(α(MX,x − O×
X,x))

+ tr. deg κ(x)/κ(s) = dim V = dim X− r = d+ 1− r and rank M̄gp
S,s = 1. Next, we as-

sume s is a closed point not in DS. Then V is flat over S and we have OXs,x/(α(MX,x−
O×

X,x)) = OVs,x. Hence we have dim OXs,x/(α(MX,x − O×
X,x)) + tr. deg κ(x)/κ(s) =

dim V − 1 = dim X − r − 1 = d − r and rank M̄gp
S,s = 0. Finally, we assume s is the

generic point of S. Then we have OXs,x/(α(MX,x−O×
X,x)) = OVs,x, dim OXs,x/(α(MX,x−

O×
X,x)) + tr. deg κ(x)/κ(s) = d − r and rank M̄gp

S,s = 0. In each case, we obtain
dimlog

x f −1( f (x)) = d as required. ��

5. Localized intersection product on schemes over a discrete valuation
ring

We study localized intersection theory for regular schemes over a discrete valu-
ation ring and its logarithmic version. In 5.1, we study the non-logarithmic case. We
define and study the logarithmic localized intersection product in 5.4. We prove the
crucial property Proposition 5.4.3 that it is factored through the generic fiber. As a pre-
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liminary, we study the log self-products and the sheaves of logarithmic 1-forms in 5.2
and 5.3 respectively.

In this section, K denotes a discrete valuation field with perfect residue field F,
S denotes Spec OK, s ∈ S denotes the closed point and π denotes a prime element
of K.

5.1. Non-logarithmic case. — We study non-logarithmic localized intersection
product. In this subsection, X denotes a scheme over S = Spec OK satisfying the
following condition:

(R(n)) X is a regular and flat equidimensional scheme of finite type over OK of
relative dimension n− 1. The generic fiber XK is smooth.

Lemma 5.1.1. — Let X be a scheme over OK satisfying the condition (R(n)) and x be

a point of X in the closed fiber. Then there exist an open neighborhood U of x and a regular immer-

sion U → P of codimension 1 into a smooth scheme P of relative dimension n over OK. Namely,

X is locally a hypersurface of virtual relative dimension n− 1 over OK.

Proof. — Let t1, ..., tm ∈ OX,x be a minimal system of generators of the maximal
ideal mx of the local ring OX,x. Let tm+1, ..., tn ∈ OX,x be a lifting of a transcendental
basis of the residue field κ(x) over F such that κ(x) is a finite separable extension of
F(tm+1, ..., tn). We take an open neighborhood U of x and define a map U → An

OK
=

Spec OK[T1, ..., Tn] by sending Ti to ti. Then we have Ω1
U/An

OK
,x = 0. By shrinking U

if necessary, we may assume Ω1
U/An

OK
= 0, namely U → An

OK
is unramified. By [15]

Corollaire (18.4.7), further shrinking U if necessary, there exist a closed immersion
U → P and an etale morphism P → An

OK
such that the composition is the map

U → An
OK

. The scheme P is smooth over OK of relative dimension n. Hence it is regu-
lar of dimension n+ 1. Therefore the immersion U → P is regular of codimension 1.

��

We give a local description of the sheaf Ω1
X/S using an immersion as in Lem-

ma 5.1.1.

Corollary 5.1.2. — Let X be a scheme over OK satisfying the condition (R(n)). Then

1. The canonical map LX/S → Ω1
X/S is an isomorphism.

2. Let U → P be an immersion as in Lemma 5.1.1. Then we have an exact sequence

0 −−−→ NU/P −−−→ Ω1
P/S ⊗OP OU −−−→ Ω1

U/S −−−→ 0.(5.1.2.1)

The OU-module Ω1
P/S⊗OP OU is locally free of rank n and the conormal sheaf NU/P is invertible.

3. The cotangent complex LX/S satisfies the conditions (L(n)) and (G) in Section 2.4.
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Proof. — 1. It follows immediately from Lemma 1.6.2.3 and from the assertion 2.
2. For the exact sequence (5.1.2.1), it is sufficient to show the injectivity of NU/P

→ Ω1
P/S ⊗OP OU. Since the generic fiber is smooth, it is injective there. Since X is

normal, the map is injective. The rest of assertion is clear.
3. It follows from 2 and Lemma 2.1.1. ��
Lemma 5.1.3. — Let X be a scheme over OK satisfying the condition (R(n)). Let i : Z→X

be the closed immersion defined by the ideal Ann Ωn
X/S and LZ be the invertible OZ-module

L1i∗Ω1
X/S.

1. Let W be a normal scheme of finite type over s = Spec F and ϕ : W → Z be

a morphism over S. Then, there exists a canonical isomorphism ϕ∗LZ = L1(i ◦ ϕ)∗Ω1
X/S →

Ns/S ⊗ OW � OW of invertible OW-modules.

2. The bivariant Chern class c1(LZ) ∈ CH1(Z → Z) is 0.

3. For a scheme T of finite type over Z, the map ·LZ : G(T) → G(T) sending [F]
to [F ⊗OZ LZ] is the identity. The canonical map G(T) → G(T)/LZ = Coker(1 − ·LZ :
G(T)→ G(T)) is an isomorphism.

Proof. — 1. The OW-module ϕ∗LZ = L1(i ◦ ϕ)∗Ω1
X/S is invertible by Corol-

lary 5.1.2.2. Therefore, to define an isomorphism L1(i ◦ ϕ)∗Ω1
X/S → Ns/S ⊗ OW of in-

vertible OW-modules, we may shrink W to an open subset containing all the points of
codimension 1. Shrinking W, we may assume W is smooth over s. The distinguished
triangle (1.4.0.1) gives us distinguished triangles

→ L(i ◦ ϕ)∗Ω1
X/S −−−→ LW/S −−−→ LW/X −−−→(5.1.3.1)

and → Ls/S ⊗ OW → LW/S → LW/s →. Since Ls/S = Ns/S[1] and LW/s = Ω1
W/s, we

have H0(LW/S) = Ω1
W/s and H1(LW/S) = Ns/S⊗F OW. Taking the cohomology sheaves

H1 of the distinguished triangle (5.1.3.1), we obtain an exact sequence

0 −−−→ L1(i ◦ ϕ)∗Ω1
X/S

a−−−→ Ns/S ⊗F OW
b−−−→ H1(LW/X).

We show that the map a is an isomorphism. Since W is locally of complete intersection
over X, the OW-module H1(LW/X) is locally a subsheaf of a locally free OW-module
and hence is torsion free. On the other hand, since a is injective, the cokernel of a is
torsion. Hence the map b is 0 and a is an isomorphism.

2. For a scheme T of finite type over Z, the Chow group CHi(T) is generated
by π∗[W] where π : W → T runs through the normalization of integral closed sub-
schemes of T of dimension i. By 1, we have c1(LZ) ∩ π∗[W] = π∗(c1(π

∗LZ) ∩ [W])
= 0 and the assertion follows.

3. For a scheme T of finite type over Z, the K-group G(T) is generated by
π∗[OW] where π : W → T runs through the normalization of integral closed sub-
schemes of T. By 1, we have LZ · π∗[OW] = π∗[LZ ⊗OZ OW] = π∗[OW] and the
assertion follows. ��
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Proposition 5.1.4. — Let X be a scheme over S = Spec OK satisfying the condition (R(n))
and let Z ⊂ X be the closed subscheme defined by the ideal Ann Ωn

X/S.

Then the spectral sequence

E1
p,q = L2p+qΛ−pΩ1

X/S ⇒ Tor
OX×SX

p+q (OX,OX)

(1.6.4.3) degenerates at E1-terms. It defines an increasing filtration F• on Tor
OX×SX
n (OX,OX)

satisfying Fn = Tor
OX×SX
n (OX,OX) and F−1 = 0 and isomorphisms LpΛqΩ1

X/S →
GrF

p Tor
OX×SX
n (OX,OX) for p+ q = n. The OX-modules LpΛqΩ1

X/S are OZ-modules for p > 0.

Proof. — We have an isomorphism MX/X×SX → Ω1
X/S by Corollaries 5.1.2

and 3.4.5. By applying Proposition 1.6.7 to the diagonal embedding X → X×S X, we
see that the spectral sequence (1.6.4.3) degenerates at E1-terms. It defines a filtration
F• satisfying the condition up to decalage. The OX-modules LpΛqΩ1

X/S are OZ-modules
for p > 0 by Lemma 2.4.2.1. ��

We define the non-logarithmic localized intersection product. Let X be a scheme
over OK satisfying the condition (R(n)) as above. Let i : Z → X be the closed immer-
sion defined by the ideal Ann Ωn

X/S and LZ be the invertible OZ-module L1i∗Ω1
X/S as

in Lemma 5.1.3. Then, by Lemmas 5.1.1 and 3.2.4, the projection pr2 : X×S X → X
is locally a hypersurface of virtual relative dimension n−1 over X and the closed sub-
scheme of X×S X defined by the ideal AnnΩn

X×SX/X is the pull-back Z×X (X×S X)

of Z ⊂ X by the first projection. Let W be a noetherian scheme over X ×S X and
let V be a closed subscheme of X×S X. We put T = V×X×SX W and ZT = Z×X T
be the pull-back by the composition T → X×S X → X with the first projection. By
Lemma 5.1.3.3, we have G(ZT)/LZ = G(ZT). Thus, the localized intersection product
(3.2.2.1) defines a map [[ , ]]X×SX : G(V)×G(W) → G(ZT). Since the generic fiber
is smooth, the subscheme Z is supported on the closed fiber Xs and we have a natural
map G(ZT)→ G(Ts).

Definition 5.1.5. — Let X be a scheme over S = Spec OK satisfying the condition (R(n))
and Z → X be the closed subscheme defined by the ideal Ann Ωn

X/S. For a closed subscheme V
of X ×S X and a noetherian scheme W over X ×S X, we put T = V ×X×SX W and call the

composition

G(V)×G(W)
[[ , ]]X×SX−−−−−→ G(ZT)/LZ = G(ZT) −−−→ G(Ts)(5.1.5.1)

the localized intersection product. We also define

[[ , W]]X×SX : G(X×S X) −−−→ G(Ws)(5.1.5.2)
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as the localized intersection product with the class [OW] ∈ G(W) by taking V = X ×S X. If

V = X → X×S X is the diagonal map, we call the localized intersection product

[[X, ]]X×SX : G(W) −−−→ G(Ts)(5.1.5.3)

with the class [OX] ∈ G(X) the localized intersection product with the diagonal.

By Theorem 3.4.3.1, the map [[X, ]]X×SX : G(W) → G(Ts) induces

FpG(W) −−−→ Fp−nG(Ts),

GrF
p G(W) −−−→ GrF

p−nG(Ts).
(5.1.5.4)

By abuse of notation, we use the same notation [[X, ]]X×SX for them. For W =
X×S X, we have

[[X, ]]X×SX : G(X×S X) −−−→ G(Xs).(5.1.5.5)

For the self-intersection, we have an equality

[[X, X]]X×SX = (−1)ncn
X
Z

(
Ω1

X/S

) ∩ [X] = (∆X,∆X)S(5.1.5.6)

in GrF
0G(Xs) by Corollaries 5.1.2.1 and 3.4.5.
The localized Chern class cn

X
XF

(Ω1
X/S) ∩ [X] ∈ CH0(XF) is computed explicitly

as follows.

Lemma 5.1.6. — Let X be a scheme over OK satisfying the condition (R(n)) and let Z be

the closed subscheme defined by the ideal Ann Ωn
X/S as in Lemma 5.1.3. Let π : X′ → X be the

blow-up at Z and D = Z×X X′ be the exceptional divisor.

Then the pull-back π∗Ω1
X/S is an extension of a locally free OX′-module E ′ of rank n− 1

by an invertible OD-module and we have

cn
X
Z

(
Ω1

X/S

) ∩ [X] = π∗(cn−1(E
′) ∩ [D]).

Another computation of deg(∆X,∆X)S in terms of the torsion parts of Ω
q
X/S is

given in [39].

Example. — Let the notation be as in Lemma 5.1.6. Assume x ∈ X is an isolated
non-degenerate quadratic singularity of the map X → S and assume X−{x} is smooth
over S. Then Z = {x} with reduced scheme structure, D � Pn−1

x is the exceptional
divisor and E ′ ⊗OX OD is a quotient of On

D by OD(−1). Hence cn−1(E ′) ∩ [D] is the
class [x ′] of a κ(x)-rational point x ′ of D and cn

X
Z (Ω1

X/S) ∩ [X] = π∗[x ′] = [x].
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Proof. — By Corollary 5.1.2.3, we may apply Corollary 2.4.5. The assertion fol-
lows by Lemma 5.1.3.2. ��

We prove a K-theoretic version of the projection formula conjectured in [1] Sec-
tion 6 formula (20).

Lemma 5.1.7. — Let X and Y be schemes over OK satifying the condition (R(n)) and

f : X → Y be a morphism over OK. Then, for a closed subscheme Γ of X×S X of dimension n,

we have an equality

[[Γ, ( f × f )∗∆Y]]X×SX = [[Y,Γ]]Y×SY

in F0G((X×Y X)s).

Proof. — We apply Corollary 3.3.4.3 by taking Y ← Y ×S Y ← X ×S X =
X ×S X → X, [∆Y] ∈ G(Y ×S Y) and Γ ⊂ X ×S X as S ← X ← W → X′ → S′,
Γ ∈ G(X) and V′ ⊂ X′. Then, since the map X×S X → Y×S Y is locally of complete
intersection, it is of finite tor-dimension. Thus the assumption of Corollary 3.3.4.3 is
satisfied and we obtain the equality in G((X×Y X)s).

We show the right hand side is in F0G((X ×Y X)s). Since dim Γ = n, we have
[OΓ] ∈ FnG(X×S X). Thus the assertion follows from Theorem 3.4.3.1. ��

5.2. Logarithmic self-products. — We keep the notation that K is a discrete valu-
ation field with perfect residue field. In this subsection, X denotes a scheme over OK

satisfying the following condition:

(S′(n)) X is a regular and flat equidimensional scheme over OK of finite type of
relative dimension n− 1. The reduced closed fiber Xs,red is a divisor with
simple normal crossings.

For a regular and flat equidimensional scheme X over OK of relative dimension n−1,
the condition (S′(n)) is equivalent to the following condition:

For each closed point x in the closed fiber Xs, there exist a minimal system
(t1, ..., tn) of generaters of the maximal ideal mx of the local ring OX,x,
a unit u ∈ O×

X,x and integers l1, ..., ln ≥ 0 such that π = u
∏

i tli
i for a prime

element π of K.

We consider a scheme X satisfying (S′(n)) as a log scheme with the standard log
structure MX defined by the reduced closed fiber. Unless we say otherwise, we also
consider S = Spec OK as a log scheme with the standard log structure MS defined
by the closed point. We put P = Γ(X, M̄X) and let X → [P] denote the standard
frame. If D1, ..., Dm are the irreducible components of Xs = ∑m

i=1 liDi, the monoid
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P = Γ(X, M̄X) is identified with Nm. We identify Γ(S, M̄S) = N. The canonical map
N → P = Nm sends 1 to (l1, ..., lm). We define the log self-product (X ×S X)∼ to
be X×log

S,[P] X defined in Definition 4.2.4. For schemes X and Y over S satisfying the
condition (S′(n)), a morphism f : X → Y over S induces a morphism ( f × f )∼ :
(X×S X)∼ → (Y ×S Y)∼. In the following, we regard the log product (X×S X)∼ as
a scheme over X with respect to the second projection.

Lemma 5.2.1. — Let X be a scheme over S satisfying the condition (S′(n)).
1. The map X → S is log flat and log locally of complete intersetion. The projection

(X×S X)∼ → X is strict and flat.

2. Let X and Y be schemes over S satisfying the condition (S′(n)) and f : X → Y be

a morphism over S. Let ( f × f )∼ : (X×S X)∼ → (Y×S Y)∼ be the map induced by f . Then,

the underlying map (X×S X)∼ → (Y×S Y)∼ is locally of complete intersection.

3. Further assume X → Y is log flat and its underlying map is flat. Then, the underlying

map of (X×S X)∼ → (Y×S Y)∼ is flat.

Proof. — 1. The map X → S is log flat and log locally of complete intersetion
by Corollary 4.4.7. The map (X ×S X)∼ → X is strict by Corollary 4.2.5.2. Since
X → S is log flat, the strict map (X×S X)∼ → X is flat by Corollary 4.3.5.4.

2 and 3. It suffices to apply Corollaries 4.4.5.2 and 4.3.5.5 respectively. ��

We study the closed fiber of log self-product (X ×S X)∼. An irreducible com-
ponent Di of the closed fiber Xs is smooth of dimension n−1 over the residue field F.
We consider two log structures on Di and introduce two log self-products. Let MDi be
the pull-back log structure on Di of MX and let M′

Di
be the log structure defined by

the divisor
⋃

j �=i(Dj ∩Di) with simple normal crossings. Let Di denote the log scheme
(Di, MDi ) and D′

i denote the log scheme (Di, M′
Di

). There is a canonical map Di → D′
i

of log schemes. Similarly, let s denote the log point SpecF with the pull-back log struc-
ture from S and let s ′ denote SpecF with the trivial log structure. The canonical map
P = Γ(X, M̄X) → Γ(Di, M̄Di) defines a frame Di → [P]. We identify P = Nm and
let Pi ⊂ P = Pi ⊕ Ni be the submonoid obtained by omitting the i-th component Ni.
Then, we have a frame D′

i → [Pi]. We consider the log self-products Di ×log
s,[P] Di and

D′
i ×log

s ′,[Pi] D′
i. The canonical map Di → D′

i induces a map Di ×log
s,[P] Di → D′

i ×log
s ′,[Pi] D′

i.
The following lemma will be used in the proof of Theorem 5.4.3.

Lemma 5.2.2. — Let X be a scheme over S satisfying the condition (S′(n)). Let Di be an

irreducible component of Xs and li be the multiplicity of Di in Xs. Then,

1. The map Di ×log
s,[P] Di → X×log

S,[P] X = (X×S X)∼ is a closed immersion and induces

an isomorphism to the inverse image (X×S X)∼×X Di of Di by the projection (X×S X)∼ → X.

2. The underlying scheme Di ×log
s,[P] Di is a µli -torsor over D′

i ×log
s ′,[Pi] D′

i.
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Proof. — 1. Since the map Di → X is strict, the inverse image (X×SX)∼×XDi is
equal to the log product X×log

S,[P]Di. The log product X×log
S,[P]Di represents the functor

sending a log scheme T over S to the set {( f : T → X, g : T → Di)| f and g are maps
over S and induce the same map P = Γ(X, M̄X)→ Γ(T, M̄T)}. The condition that f
and g induce the same map P → Γ(T, M̄T) implies that the map f : T → X factors
through Di. Thus the canonical map Di×log

s,[P]Di → X×log
S,[P]Di is an isomorphism and

the assertion follows.
2. Since the projections Di ×log

s,[P] Di → Di and D′
i ×log

s ′,[Pi] D′
i → D′

i are strict by
Corollary 4.2.5.2, it is sufficient to show that Di ×log

s,[P] Di is a µli -torsor over
(D′

i ×log
s ′,[Pi] D′

i)×log
D′i

Di = D′
i ×log

s ′,[Pi] Di. We consider the commutative diagram

Di ×log
s,[P] Di −−−→ Di ×log

s ′,[P] Di −−−→ D′
i ×log

s ′,[Pi] Di


	



	



	

s −−−→ s ×log
s ′,[N] s −−−→ s.

We have Di ×log
s ′,[P] Di = Di ×log

D′i ,[Ni] (D′
i ×log

s ′,[Pi] Di). Hence by applying Lemma 4.2.7

to Di → D′
i ← D′

i ×log
s ′,[Pi] Di, we see that Di ×log

s ′,[P] Di is a Hom(Ngp
i , Gm)-torsor over

D′
i×log

s ′,[Pi] Di. Similarly, we see that s×log
s ′,[N] s is a Hom(Ngp, Gm)-torsor over s. Further,

it is easy to see that the middle vertical map Di×log
s ′,[P]Di → s×log

s ′,[N] s is compatible with
the map Hom(Ngp

i , Gm) → Hom(Ngp, Gm) induced by the composition N → P → Ni.
Namely, it is compatible with the li-th power map Gm = Hom(Ngp

i , Gm) → Gm =
Hom(Ngp, Gm). Since the left square is cartesian, the assertion follows. ��

We construct a compactification of log products of strictly semi-stable schemes.
A scheme X locally of finite type over the integer ring OK is said to be strictly semi-

stable, if the following conditions 1–3 are satisfied.

1. X is regular and flat over S.
2. The generic fiber XK is smooth.
3. The closed fiber is a divisor with simple normal crossings.

A scheme X is strictly semi-stable over S, if and only if Zariski locally it is etale over
Spec OK[T1, ..., Tn]/(T1 · · · · · Tr − π) for some 1 ≤ r ≤ n. For a scheme over S
satisfying the condition (S′(n)), the condition 3 is equivalent to that the closed fiber is
reduced. The standard log structure on a strictly semi-stable scheme X over S is that
defined by the closed fiber.

Lemma 5.2.3. — 1. For a log smooth scheme X of finite type over S, the following condi-

tions are equivalent.

(1) X is strictly semi-stable and the log structure is the standard log structure.

(2) There exist a map (X, [P]) → (S, [N]) of framed log schemes and a quasi-isomorphism

P → Nr such that the composition N → P → Nr sends 1 to (1, ..., 1).
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2. Let X and Y be strictly semi-stable schemes with the standard log structures and let

(X, [P]) → (S, [N]) and (Y, [P]) → (S, [N]) be maps of framed log schemes. Then the log

product X×log
S,[P] Y is strictly semi-stable. The projections X×log

S,[P] Y → X and X×log
S,[P] Y → Y

are smooth. When X = Y and [P] = Γ(X, M̄X), the log diagonal map X → (X ×S X)∼ is

a regular immersion.

Proof. — 1. (1) ⇒ (2), It is sufficient to take the standard frame.
(2) ⇒ (1). By Lemma 4.1.7.2, we may replace P by P̄ = P/P× and hence we

may assume P = Nr . Since X is log regular, it follows from Lemma 4.1.4.2 that the
underlying scheme X is regular, the open subscheme U is the complement of a divisor
D with simple normal crossings and MX is the standard log structure defined by D.
By the assumption that 1 is sent to (1, ..., 1), the divisor D is equal to the closed fiber.
Since X is log smooth and the log structure is trivial on the generic fiber, the generic
fiber is smooth.

2. The projections are strict and log smooth. Hence the underlying map is
smooth. Since X×log

S,[P] Y is smooth over a strictly semi-stable scheme, it is also strictly
semi-stable. The log diagonal map is a section of a smooth map and is a regular im-
mersion. ��

Let N → Nr be the map sending 1 to (1, ..., 1) and P = Nr ⊕N Nr be the
amalgamate sum. We define a regular proper subdivision of the dual monoid N =
Hommonoid(P, N) as follows. We regard ∆ = {1, ..., r}×{1, ..., r} as a partially ordered
set with the product order. We identify an element (i, j) ∈ ∆ with an element fi,j ∈ N
characterized by fi,j(ei′) = δii′ and fi,j(e′j ′) = δjj ′ where ei′ and e′j ′ denote the images of
the standard basis of Nr and δ denotes Kronecker’s delta. We say a subset σ of ∆ is
a face if it is a totally ordered subset. Let Σ be the set of faces of ∆. For a face σ , let
Nσ be the submonoid 〈 fi,j, (i, j) ∈ σ〉 of N. The family (Nσ)σ∈Σ is a regular proper
subdivision of N.

Lemma 5.2.4 (cf. [41] Lemma 1.2.2). — Let X and Y be strictly semi-stable schemes

over S. Let N → Nr be the map sending 1 to (1, ..., 1) and (X, [Nr]) → (S, [N]) and

(Y, [Nr]) → (S, [N]) be maps of framed schemes. Let P = Nr⊕NNr be the amalgamate sum and

X×S Y → [P] be the induced frame. Let Σ be the subdivision of the dual N = Hommonoid(P, N)

defined above and (X ×S Y)Σ be the associated modification. For i = 1, ..., r, let ei (resp. e′i ) be

the image in P of the i-th standard basis of the first (resp. second) factor Nr and Ii (resp. I ′
i ) be

the ideal locally generated by a lifting of the image of ei (resp. ei) in M̄X×SY.

Then the underlying scheme of (X ×S Y)Σ is strictly semi-stable and equal to the blow-

up of X ×S Y by the ideal
∏

1≤i,i′≤r(
∏

1≤j≤i Ij + ∏
1≤j ′≤i′ I

′
j ′). There is an open immersion

X×log
S,[Nr ] Y → (X×S Y)Σ.

Proof. — To show that (X ×S Y)Σ is strictly semi-stable, it is sufficient to show
that (X×S Y)×[P] [Pσ ] is strictly semi-stable for each face σ . There is an isomorphism
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Nk → Nσ for k = Cardσ and the composition Nk → Nσ → N = Hom(N, N) sends
each element of the standard basis to 1. It induces a quasi-isomorphism Pσ → Nk such
that the composition N → Pσ → Nk maps 1 to (1, ..., 1). Hence by Lemma 5.2.3.1,
the underlying scheme (X×S Y)×log

[P] [Pσ ] is strictly semi-stable.
For the proof of the isomorphism from (X ×S Y)Σ to the blow-up, we refer

to [41] Lemma 1.2.2. For the face σ0 = {(i, i)|i = 1, ..., r}, the monoid Pσ0 is the
inverse image (Nr ⊕N Nr)∼ of Nr as in Proposition 4.2.3.2 and (X×S Y)×log

[P] [Pσ0] =
X×log

S,[Nr ] Y is an open subscheme of (X×S Y)Σ. ��

5.3. Differentials with log poles. — We keep the notation that K is a discrete
valuation field with perfect residue field. In this subsection, X denotes a scheme over
OK satisfying the following condition:

(S(n)) X satisfies the condition (R(n)) in Section 5.1 and the condition (S′(n)) in
Section 5.2.

We consider a scheme X satisfying (S(n)) as a log scheme with the standard log
structure MX defined by the reduced closed fiber. Let MS be the standard log structure
on S defined by the closed point.

Lemma 5.3.1. — Let X be a scheme over OK satisfying the condition (S(n)) and let x be

a point of X in the closed fiber. We consider X as a log scheme with the standard log structure MX.

Let D1, ..., Dr be the irreducible components of the closed fiber of X containing x and l1, ..., lr be

the multiplicities of D1, ..., Dr in the closed fiber Xs.

1. We consider S = Spec OK as a log scheme with the standard log structure MS. We

define a ring homomorphism Z[N] → OK by sending 1 to π and a map N → Nn × Z of

monoids by sending 1 to (l1, ..., lr, 0, ..., 0, 1). We define a log smooth scheme Y0 over OK by

Y0 = Spec OK⊗Z[N] Z[Nn ×Z] = Spec OK[T1, ..., Tn, W±1]/(π −W
∏r

i=1 Tli
i ) with the

log structure defined by the chart Nr → OK ⊗Z[N] Z[Nn ×Z] sending the standard basis ei to Ti

for 1 ≤ i ≤ r.
Then there exist an open neighborhood U of x and a regular immersion U → Y of codi-

mension 1 into a log scheme Y etale over Y0 such that the divisor Di is defined by the image

ti ∈ Γ(U,OX) of Ti for 1 ≤ i ≤ r. The map X → S is log flat and log locally of com-

plete intersection.

2. We consider S = Spec OK as a log scheme with the trivial log structure O×
S . We regard

An
S = Spec OK[T1, ..., Tn] as a log smooth log scheme over OK, with the log structure defined by

the chart Nr → OK[T1, ..., Tn] sending the standard basis ei to Ti for 1 ≤ i ≤ r.
Then there exist an open neighborhood U of x, a regular immersion U → V of codimension

1 into a log scheme V etale over An
S and a unit v ∈ Γ(V,O×

V ) such that the divisor Di is defined

by the image ti ∈ Γ(U,OX) of Ti for 1 ≤ i ≤ r and the closed subscheme U → V is the divisor

defined by π − v
∏r

i=1 Tli
i . The map X → S is log locally of complete intersection.
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Proof. — 1. Let ti be an element of OX,x defining Di at x for 1 ≤ i ≤ r. We
define a unit w ∈ O×

X,x by π = w
∏r

i=1 tli
i . Let t1, ..., tm be a minimal system of gener-

ators of the maximal ideal mx extending t1, ..., tr and let tm+1, ..., tn ∈ OX,x be a lifting
of a transcendental basis of the residue field κ(x) over F such that κ(x) is a finite sep-
arable extension of F(tm+1, ..., tn). We take an open neighborhood U of x and define
a map U → Y0 by sending Ti to ti and W to w. Shrinking U if necessary, we define
a regular immersion U → Y of codimension 1 and an etale morphism Y → Y0 as
in the proof of Lemma 5.1.1. The map X → S is log flat and log locally of complete
intersection by Corollary 4.4.7.

2. Let t1, ..., tn ∈ OX,x and w = π/
∏r

i=1 tli
i ∈ O×

X,x be as in the proof of 1. We
take an open neighborhood U of x and define a map U → An

OK
by sending Ti to ti.

Shrinking U if necessary, we define a regular immersion U → V of codimension 1 and
an etale morphism V → An

OK
as in the proof of Lemma 5.1.1. Shrinking U and V if

necessary, we take a unit v ∈ Γ(V,O×
V ) lifting w. Then the function f = π− v

∏r
i=1 Tli

i
vanishes in OX,x. Since f is not in m2

P,x, we have OX,x = OV,x/( f ). Hence shrinking U
and V if necessary, the subscheme U of V is defined by the equation f = 0. The map
X → S is log locally of complete intersection by Corollary 4.4.7.1. ��

Let Ω1
X/S(log) and Ω1

X/S(log / log) denote the OX-modules Ω1
(X,MX)/(S,O×S )

and

Ω1
(X,MX)/(S,MS) respectively. The OX-module Ω1

X/S(log) is canonically isomorphic to

(
Ω1

X/S ⊕
(
OX ⊗Z j∗O×

XK

))
/
(
da− a⊗ a : a ∈ OX ∩ j∗O×

XK
, 1⊗ b : b ∈ K×)

and we have an exact sequence

OXs · d log π −−−→ Ω1
X/S(log) −−−→ Ω1

X/S(log / log) −−−→ 0

for a prime element π of K. The canonical maps Ω1
X/S→Ω1

X/S(log)→Ω1
X/S(log / log)

induce isomorphisms Ω1
XK/K = Ω1

X/S|XK → Ω1
X/S(log)|XK → Ω1

X/S(log / log)|XK on the
generic fiber.

We give a local description of Ω1
X/S,Ω

1
X/S(log) and Ω1

X/S(log / log) using immer-
sions as in Lemma 5.3.1.2.

Corollary 5.3.2. — Let X be a scheme over OK satisfying the condition (S(n)). Let U → V
be an immersion as in Lemma 5.3.1.2. Then we have a commutative diagram of exact sequences

0→ NU/V → Ω1
V/S ⊗OV OU → Ω1

U/S → 0
‖ ↓ ↓

0→ NU/V → Ω1
V/S(log)⊗OV OU → Ω1

U/S(log) → 0
↓ ‖ ↓

0→ NU/V ⊗OK m−1
K → Ω1

V/S(log)⊗OV OU → Ω1
U/S(log / log)→ 0.

(5.3.2.1)
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The OU-modules Ω1
V/S ⊗OV OU and Ω1

V/S(log) ⊗OV OU are locally free of rank n and NU/V

and NU/V ⊗OK m−1
K are invertible.

2. The OX-modules Ω1
X/S(log / log) and Ω1

X/S(log) satisfy the conditions (L(n)) and (G)
in Section 2.4.

Proof. — 1. The top line is the same as in Corollary 5.1.2. The exactness of
the middle line is proved similarly as in Corollary 5.1.2. To get the bottom exact se-
quence, we show that the map NU/V → Ω1

V/S(log) ⊗OV OU is extended uniquely to
an injection NU/V ⊗OK m−1

K → Ω1
V/S(log)⊗OV OU. The generator π − v

∏
i Tli

i of NU/V

is mapped to d(v
∏

i Tli
i ) = π · (v−1dv+∑

i lid log Ti) in Ω1
V/S(log)⊗OV OU. Since it is

divisible by π, the map NU/V → Ω1
V/S(log)⊗OVOU is uniquely extended to an injection

NU/V ⊗OK m−1
K → Ω1

V/S(log) ⊗OV OU sending the generator (π − v
∏

i Tli
i )/π to

v−1dv +∑
i lid log Ti. Since the image of v−1dv +∑

i lid log Ti in Ω1
U/S(log) is d log π,

the lower sequence is also exact. The rest of assertion is clear.
2. It follows from 1 and Lemma 2.1.1 immediately. ��
We study relations between Ω1

X/S,Ω
1
X/S(log) and Ω1

X/S(log / log). We use the fol-
lowing generalization of the Poincaré residue map [9] II (3.7.2).

Lemma 5.3.3. — Let X be a locally noetherian regular scheme, D be a divisor of X with

simple normal crossings and MX be the standard log structure on X defined by D. Let Di, (i ∈ I)
be the irreducible components of D. Then, the map d log : OX ⊗ M̄gp

X → Ω1
(X,MX)/(X,O×X)

induces

an isomorphism
⊕

i∈I ODi −−−→ Ω1
(X,MX)/(X,O×X)

.(5.3.3.1)

Proof. — The map d log : MX → Ω1
(X,MX)/(X,O×X )

induces an isomorphism OX⊗ZX

M̄gp
X → Ω1

(X,MX)/(X,O×X)
. Since M̄gp

X =
⊕

i∈I ZDi , we obtain an isomorphism
⊕

i∈I ODi →
Ω1

(X,MX)/(X,O×X )
. ��

Lemma 5.3.4. — Let X be a scheme over OK satisfying the condition (S(n)). Let

D1, ..., Dm be the irreducible components of the reduced closed fiber Xs,red and li be the multiplicity

of Di in Xs. Then,

1. We identify Ω1
(X,MX)/X with

⊕m
i=1 ODi by the isomorphism (5.3.3.1). Then, the exact

sequence Ω1
X/S → Ω1

(X,MX)/S → Ω1
(X,MX)/X → 0 gives an exact sequence

0 −−−→ Ω1
X/S −−−→ Ω1

X/S(log) −−−→ ⊕m
i=1 ODi −−−→ 0.(5.3.4.1)

2. We identify Ω1
(S,MS)/S with F by the isomorphism (5.3.3.1). The exact sequence OX⊗OK

Ω1
(S,MS)/S → Ω1

(X,MX)/S → Ω1
(X,MX)/(S,MS) → 0 gives an exact sequence

0 −−−→ OXs −−−→ Ω1
X/S(log) −−−→ Ω1

X/S(log / log) −−−→ 0.(5.3.4.2)
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3. The kernel and cokernel of the map Ω1
X/S → Ω1

X/S(log / log) are isomorphic respectively

to the kernel and cokernel of the map OXs →
⊕m

i=1 ODi sending 1 to (l1, ..., lm).

Proof. — 1. By Lemma 5.3.3, it is sufficient to show the injectivity of Ω1
X/S →

Ω1
X/S(log). The question is local on X. Let U → V be as in Lemma 5.3.1.2. Then the

assertion follows from the injectivity of the upper middle vertical arrow Ω1
V/S ⊗OV OU

→ Ω1
V/S(log)⊗OV OU in (5.3.2.1) by the snake lemma.
2. Similarly, by Lemma 5.3.3, it suffices to show that the surjection OXs →

Ker(Ω1
X/S(log) → Ω1

X/S(log / log)) is an isomorphism. Hence, it is reduced to show-
ing that Ker(Ω1

X/S(log)→ Ω1
X/S(log / log)) is an invertible OXs-module. The question

is local on X. The assertion follows from the lower half of the commutative diagram
(5.3.2.1) by the snake lemma.

3. The image of 1 by the composition OXs→Ω1
X/S(log)→⊕m

i=1 ODi is (l1, ..., lm).
The assertion 3 follows from this and the assertions 1 and 2 by the snake lemma. ��

Lemma 5.3.5. — Let X be a scheme over OK satisfying the condition (S(n)). Let i : Z
→ X be the closed immersion defined by the ideal Ann ΛnΩ1

X/S(log / log) and let LZ =
L1i∗Ω1

X/S(log / log). Let Z̄ = Zred and ī : Z̄ → X be the immersion.

1. There is a canonical isomorphism LZ ⊗OZ OZ̄ = L1ī
∗
Ω1

X/S(log / log) → OZ̄ of

invertible OZ̄-modules.

2. The bivariant Chern class c1(LZ) ∈ CH1(Z → Z) is 0.

3. For a scheme T of finite type over Z, the map ·LZ : G(T) → G(T) sending a class

[F] to [F⊗OZ LZ] is the identity. The canonical map G(T) → G(T)/LZ = Coker(1−·LZ :
G(T)→ G(T)) is an isomorphism.

Proof. — 1. Applying Lī
∗

to the exact sequence (5.3.4.2), we obtain a long exact
sequence

0 → OZ̄ −−→ L1ī
∗
Ω1

X/S(log) −−→ L1ī
∗
Ω1

X/S(log / log) −−→
OZ̄ −−→ Ω1

X/S(log)⊗OX OZ̄ −−→ Ω1
X/S(log / log)⊗OX OZ̄ → 0.

It follows from the lower half of the commutative diagram (5.3.2.1) that the map
Ω1

X/S(log) ⊗OX OZ̄ → Ω1
X/S(log / log) ⊗OX OZ̄ is an isomorphism and the map

L1ī
∗
Ω1

X/S(log) → L1ī
∗
Ω1

X/S(log / log) is the 0-map. Hence the boundary map

L1ī
∗
Ω1

X/S(log / log)→ OZ̄ is an isomorphism.
2 and 3. Similarly as in the proof of Lemma 5.1.3, it follows from 1. ��
Similarly, we have the following analogue for Ω1

X/S(log).

Lemma 5.3.6. — Let X be a scheme over OK satisfying the condition (S(n)), D1, ..., Dm

be the irreducible components of D = (XF)red and let J ⊂ {1, ..., m} be a non-empty subset
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of the index set of the irreducible components of the closed fiber. We put DJ = ⋂
i∈J Di and let

iJ : DJ → X denote the closed immersion.

1. The scheme DJ is smooth over F of dimension n−#J and the divisor BJ = DJ∩⋃
i/∈J Di

has simple normal crossings.

2. The ODJ-module i∗J Ω
1
X/S(log) = Ω1

X/S(log)⊗OX ODJ is locally free of rank n and we

have an exact sequence

0 → Ω1
DJ/F(log BJ) −−−→ i∗J Ω

1
X/S(log) −−−→ ⊕

i∈J ODJ → 0.(5.3.6.1)

3. The first map in the exact sequence (5.3.4.2) induces an isomorphism ODJ � L1i∗J OXs →
L1i∗J Ω

1
X/S(log). We have Lqi∗J Ω

1
X/S(log) = 0 for q �= 0, 1.

Proof. — 1. Clear.
2. Let M′

DJ
be the standard log structure on DJ defined by BJ and MDJ be the

pull-back log structure of MX. First, we show that the exact sequence Ω1
(DJ,M′

DJ
)/F →

Ω1
(DJ,MDJ )/F → Ω1

(DJ,MDJ )/(DJ,M′
DJ

)
→ 0 gives an exact sequence

0 → Ω1
(DJ,M′

DJ
)/F −−−→ Ω1

(DJ,MDJ )/F −−−→
⊕

i∈J ODJ → 0.(5.3.6.2)

A canonical isomorphism
⊕

i∈J ODJ → Ω1
(DJ,MDJ )/(DJ,M′

DJ
)

is defined similarly as in Lem-

ma 5.3.3. Hence, it is sufficient to show that the canonical map Ω1
(DJ,M′

DJ
)/F →

Ω1
(DJ,MDJ )/F is injective. Locally on DJ, the log scheme (DJ, MDJ) is isomorphic to the

product of (DJ, M′
DJ

) with the log point F with the chart N J → F sending the non-0
elements to 0. Thus we obtain a locally splitting exact sequence (5.3.6.2).

We have Ω1
DJ/F(log BJ) = Ω1

(DJ,M′
DJ

)/F and Ω1
DJ/F(log BJ) is locally free of rank

n − #J by 1. Hence Ω1
(DJ,M′

DJ
)/F is locally free of rank n. Since Ω1

X/S(log) satisfies the

condition (L(n)) in Section 2.4 by Corollary 5.3.2.2, the pull-back i∗J Ω
1
X/S(log) is locally

generated by n-sections. Hence the canonical surjection i∗J Ω
1
X/S(log) → Ω1

(DJ,M′
DJ

)/F is

an isomorphism and the assertion follows.
3. Since Ω1

X/S(log) satisfies the condition (L(n)) in Section 2.4, we have
Lqi∗J Ω

1
X/S(log) = 0 for q �= 0, 1. Further, since i∗J Ω

1
X/S(log) is locally free of rank n,

the ODJ-module L1i∗J Ω
1
X/S(log) is invertible. By the exact sequence 0 → OX → OX →

OXs → 0, we obtain an isomorphism ODJ → L1i∗J OXs . We show the map L1i∗J OXs →
L1i∗J Ω

1
X/S(log) is an isomorphism. By the exact sequence (5.3.4.2), we get an exact se-

quence

0 −−−→ L1i∗J OXs −−−→ L1i∗J Ω
1
X/S(log) −−−→ L1i∗J Ω

1
X/S(log / log).

The first two ODJ-modules are invertible. The last one is locally a submodule of an
invertible ODJ-module and is torsion free. Hence the cokernel of the injection ODJ �
L1i∗J OXs → L1i∗J Ω

1
X/S(log) is 0 and the map is an isomorphism. ��
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The relation between the localized Chern classes cn
X
XF

(Ω1
X/S) ∩ [X] and

cn
X
XF

(Ω1
X/S(log / log)) ∩ [X] is as follows.

Corollary 5.3.7. — Let X be a scheme over S satisfying the condition (S(n)). Then we have

an equality

(
cn

X
Xs

(
Ω1

X/S

)− cn
X
Xs

(
Ω1

X/S(log / log
))) ∩ [X]

= cn−1

(
Ω1

X/S(log / log)
) ∩ [Xs]

+
n∑

r=1

∑

J⊂{1,...,m},#J=r

(−1)rcn−r

(
Ω1

DJ/F(log BJ)
) ∩ [DJ]

(5.3.7)

in CH0(Xs).

Proof. — We have equalities

cX
Xs

(
Ω1

X/S

) = cX
Xs

(
Ω1

X/S(log)
) m∏

i=1

cX
Xs

(ODi)
−1,

cX
Xs

(
Ω1

X/S(log / log)
) = cX

Xs

(
Ω1

X/S(log)
)
cX
Xs

(OXs)
−1

in CH∗(Xs → X)(n) by the exact sequences (5.3.4.1) and (5.3.4.2) and by Lem-
ma 2.3.1.4. Further we have

m∏

i=1

cX
Xs

(ODi)
−1 ∩ [X] =

m∏

i=1

(1− [Di]) =
n∑

r=0

∑

J⊂{1,...,m},#J=r

(−1)r[DJ]

and cX
Xs

(OXs)
−1 ∩ [X] = [X] − [Xs] by Corollary 2.3.3. Hence we have an equality

(
cn

X
Xs

(
Ω1

X/S

)− cn
X
Xs

(
Ω1

X/S(log / log)
)) ∩ [X]

= cn−1

(
Ω1

X/S(log / log)
) ∩ [Xs]

+
n∑

r=1

∑

J⊂{1,...,m},#J=r

(−1)rcn−r

(
Ω1

X/S(log)
) ∩ [DJ]

in CH0(Xs). We have c(Ω1
X/S(log)) ∩ [DJ] = c(Ω1

(DJ,MDJ )/F) ∩ [DJ] by Lemma 5.3.6.
Thus the assertion follows. ��

5.4. Logarithmic localized intersection product. — We define logarithmic localized
intersection product for a scheme X over OK satisfying the condition (S(n)) in the last
subsection. We prove that the logarithmic localized intersection product has an advan-
tage that it is factored through the generic fiber in Theorem 5.4.3.
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Lemma 5.4.1. — Let X be a scheme over OK satisfying the condition (S(n)). Let i : Z→X
be the closed immersion defined by the ideal Ann Ωn

X/S(log / log) and LZ be the invertible OZ-

module L1i∗Ω1
X/S(log / log). Let L(X×SX)∼/X be the cotangent complex, ∆ : X → (X×S X)∼

be the log diagonal map and MX/(X×SX)∼ be the conormal complex. Then,

1. The projection pr2 : (X×S X)∼ → X is flat and locally a hypersurface of virtual relative

dimension n− 1 over X. The canonical map L(X×SX)∼/X → Ω1
(X×SX)∼/X is an isomorphism.

2. The canonical maps MX/(X×SX)∼ → L∆∗L(X×SX)∼/X → Ω1
X/S(log / log) are isomor-

phisms. The composition induces the isomorphism NX/(X×SX)∼ → Ω1
X/S(log / log) (4.2.8.1).

3. The closed subscheme ĩ : Z̃ → (X ×S X)∼ defined Ann Ωn
(X×SX)∼/X is equal to

the pull-back of Z by the first projection (X ×S X)∼ → X. The invertible OZ̃-module L̃ Z̃ =
L1ĩ∗Ω1

(X×SX)∼/X is equal to the pull-back of LZ.

Proof. — 1. Let X → [P] be the standard frame. By Lemma 5.3.1.1 and by
Corollaries 4.3.5.4 and 4.4.5.1, the strict map (X×S X)∼ = X×log

S,[P]X → X is flat and
locally of complete intersection of virtual relative dimension n − 1. Let x be a point
in the closed fiber and U → Y be an exact regular immersion as in Lemma 5.3.1.1.
Shrinking Y if necessary, we obtain a frame Y → [P] lifting the restriction U → [P].
Then, since the strict map Y ×log

S,[P] X → X is smooth of relative dimension n, the
strict map U ×log

S,[P] X → Y ×log
S,[P] X is a regular immersion of codimension 1 by

Proposition 4.4.4.2. Since U ×log
S,[P] X for each x gives a covering of the closed fiber

of (X ×S X)∼ = X ×log
S,[P] X and the generic fiber is assumed smooth, the scheme

(X×S X)∼ is locally a hypersurface of virtual relative dimension n− 1 over S.
We show L(X×SX)∼/X → Ω1

(X×SX)∼/X is an isomorphism. Since (X ×S X)∼ → X
is locally of complete intersection, it is sufficient to show that H1L(X×SX)∼/X = 0. The
restriction of H1L(X×SX)∼/X on the generic fiber is 0 since the generic fiber is smooth.
Since (X×SX)∼ is flat over X, it is flat over S. Since H1L(X×SX)∼/X is locally a subsheaf
of locally free module, it is π-torsion free and the assertion follows.

2. We obtain an isomorphism MX/(X×SX)∼ → L∆∗L(X×SX)∼/X by the distinguished
triangle → L∆∗L(X×SX)∼/X → LX/X → LX/(X×SX)∼ →. Since (X×S X)∼ → X×log

S X is
log etale, the canonical map p∗2Ω

1
X/S(log / log)→ Ω1

(X×SX)∼/X is an isomorphism. Sim-
ilarly as in 1, we see that it induces an isomorphism Lp∗2Ω

1
X/S(log / log)→ Ω1

(X×SX)∼/X
by using the assumption that the generic fiber is smooth. By the isomorphism in 1,
it induces an isomorphism L∆∗L(X×SX)∼/X → Ω1

X/S(log / log). The assertion on the
composition is clear from the definition.

3. It follows from the isomorphism Lp∗2Ω
1
X/S(log / log) → Ω1

(X×SX)∼/X in the
proof of 2. ��

We define the logarithmic localized intersection product. Let X be a scheme
over S satisfying the condition (S(n)). Let i : Z → X be the closed immersion and
LZ be the invertible modules as in Lemma 5.4.1. Let W be a noetherian scheme over
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(X×S X)∼ and let V be a closed subscheme of (X×S X)∼. We put T = V×(X×SX)∼ W
and ZT = Z ×X T be the pull-back by the composition T → (X ×S X)∼ → X with
the first projection. By Lemmas 5.4.1.3 and 5.3.5.3, we have ZT = T×(X×SX)∼ Z̃ and
G(ZT)/L̃ Z̃

= G(ZT) in the notation loc.cit. Thus, the localized intersection product
(3.2.2.1) defines a map [[ , ]](X×SX)∼ : G(V) × G(W) → G(ZT). Since the generic
fiber is smooth, the subscheme Z is supported on the closed fiber Xs and we have
a natural map G(ZT)→ G(Ts).

Definition 5.4.2. — Let X be a scheme over S = Spec OK satisfying the condition (S(n))
and Z → X be the closed subscheme defined by the ideal Ann Ωn

X/S(log / log). For a closed sub-

scheme V of (X×SX)∼ and a noetherian scheme W over (X×SX)∼, we put T = V×(X×SX)∼ W
and we call the composition

G(V)×G(W)
[[ , ]](X×SX)∼−−−−−−−→ G(ZT)/LZ = G(ZT) −−−→ G(Ts)(5.4.2.1)

the logarithmic localized intersection product. We define

[[ , W]](X×SX)∼ : G((X×S X)∼) −−−→ G(Ws)(5.4.2.2)

as the logarithmic localized intersection product with the class [OW] ∈ G(W) by taking V =
(X ×S X)∼. If V = X → (X ×S X)∼ is the log diagonal map, we call the log localized

intersection product

[[X, ]](X×SX)∼ : G(W) −−−→ G(Ts)(5.4.2.3)

with the class [OX] ∈ G(X) the logarithmic localized intersection product with the log diagonal.

By Theorem 3.4.3.1, the map [[X, ]](X×SX)∼ : G(W) → G(Ts) induces maps

FpG(W) −−−→ Fp−nG(Ts).(5.4.2.4)

By abuse of notation, we use the same notation [[X, ]](X×SX)∼ for them. If there is no
fear of confusion, we drop the suffix (X×SX)∼ . For W = (X×S X)∼, we have

[[X, ]](X×SX)∼ : G((X×S X)∼) −−−→ G(Xs).(5.4.2.5)

For the self-intersection, we have an equality

[[X, X]](X×SX)∼ = (−1)ncn
X
Z

(
Ω1

X/S(log / log)
) ∩ [X](5.4.2.6)

in GrF
0G(Xs) by Lemma 5.4.1.2 and Corollary 3.4.5.
The advantage of the logarithmic localized intersection product against the non-

logarithmic one is the following Theorem 5.4.3. It claims that the logarithmic localized
intersection product is factored through the generic fiber. The non-logarithmic product
does not share this property in general.
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Theorem 5.4.3. — Let OK be a discrete valuation ring with perfect residue field and X
be a scheme over S = Spec OK satisfying the condition (S(n)). Then the map [[X, ]](X×SX)∼ :
G((X×S X)∼)→ G(Xs) is factored by the surjection G((X×S X)∼)→ G(XK ×K XK).

Proof. — Let D1, ..., Dm be the irreducible components of Xs. Let Ei = (X×SX)∼

×X Di be the inverse image of Di by the second projection (X×S X)∼ → X. Since the
open subscheme XK×K XK of (X×S X)∼ is the complement of the union

⋃m
i=1 Ei, we

have an exact sequence
⊕m

i=1 G(Ei)→ G((X×S X)∼)→ G(XK×K XK)→ 0. Hence

it is reduced to showing that the composition G(Ei) → G((X×S X)∼)
[[X, ]]→ G(Xs) is

the 0-map for each i. The projection (X ×S X)∼ → X is flat by Lemma 5.2.1.1.
Hence by applying Corollary 3.2.5 to Di → X → (X ×S X)∼ → X ← Di as
T → V → X → S ← S′ loc.cit., we obtain a commutative diagram

G((X×S X)∼)
[[X, ]]−−−→ G(Xs)











G(Ei) −−−−→
[[Di , ]]Ei

G(Di)

where the vertical arrows are the push-forward. Thus it is reduced to showing that the
localized intersection product [[Di, ]]Ei : G(Ei)→ G(Di) is the 0-map.

By Lemma 5.2.2, the scheme Ei=Di×log
s,[P]Di is a µli -torsor over E′i=D′

i×log
s ′,[Pi]D

′
i.

Let Di → E′i be the log diagonal map. Since the log diagonal map Di → Ei gives
a section Di → Ei×E′i Di of the µli -torsor Ei×E′i Di over Di, we obtain an isomorphism
µli,Di → Ei ×E′i Di. We identify µli,Di = Ei ×E′i Di in the following.

We show that the immersion ji : µli,Di = Ei ×E′i Di → Ei is a regular immersion.
Since the projection E′i → Di is log smooth and strict, it is smooth. Since the log
diagonal map Di → E′i is a section, it is a regular immersion. Since the µli -torsor Ei

is flat over E′i, the immersion Ei ×E′i Di → Ei is also a regular immersion.
The localized intersection product [[Di, ]]µli ,Di

: G(µli,Di) → G(Di) is defined
and is the 0-map by Lemma 3.2.6. To complete the proof, it is sufficient to show that
the map [[Di, ]]Ei : G(Ei)→ G(Di) is equal to the composition

G(Ei)
j∗i−−−→ G(Ei ×E′i Di) = G(µli,Di)

[[Di , ]]µli ,Di−−−−−−→ G(Di).

We apply Corollary 3.3.4.3 by taking Di ← Ei ← Ei ×E′i D′
i → D′

i and the log diago-
nals Di → Ei and D′

i → Ei×E′i Di as S ← X ← W = X′ → S′, V → X and V′ → X′

in Corollary 3.3.4.3. Then, since the immersion ji : Ei×E′i D
′
i → Ei is a regular immer-

sion, the assumption is satisfied. Hence [[Di, ]]Ei : G(Ei)→ G(Di) is the composition
G(Ei)→ G(Ei ×E′i Di)→ G(Di) and is the 0-map. ��
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Lemma 5.4.4. — Let X and Y be schemes over S satisfying the condition (S(n)) and let

f : X → Y be a morphism over S. Then we have a commutative diagram

G(YK ×K YK)
[[Y, ]]−−−→ G(Ys)

( fK× fK)∗


	



	f ∗

G(XK ×K XK) −−−→
[[X, ]]

G(Xs).

Proof. — The map ( f × f )∼ : (X ×S X)∼ → (Y ×S Y)∼ is locally of com-
plete intersection by Lemma 5.2.1.1. Hence it is of finite tor-dimension and the map
( f × f )∼∗ : G((Y ×S Y)∼) → G((X ×S X)∼) is defined. Similarly, f : X → Y is lo-
cally of complete intersection and the map f ∗ : G(Ys) → G(Xs) is defined. By Theo-
rem 3.2.1.4, we have [[X, ]] = [[ , X]] and [[Y, ]] = [[ , Y]]. Hence it is enough to
show that the diagram

G((Y×S Y)∼)
[[ ,Y]]−−−→ G(Ys)

( f× f )∼∗


	



	f ∗

G((X×S X)∼) −−−→
[[ ,X]]

G(Xs)

is commutative since G((Y×S Y)∼)→ G(YK ×K YK) is surjective.
We show that both of the compositions are equal to [[ , X]](Y×SY)∼ by apply-

ing Corollary 3.3.4. First, we consider the composition via the upper right. We ap-
ply Corollary 3.3.4.1 by taking X → Y → (Y ×S Y)∼ → Y and the log diagonal
Y → (Y ×S Y)∼ as W′ → W → X → S and V → X in Corollary 3.3.4.1. Since
f is of finite tor-dimension, the assumption of Corollary 3.3.4.1 is satisfied. Thus the
composition f ∗ ◦ [[ , Y]] is equal to [[ , X]](Y×SY)∼ . Next, we consider the composi-
tion via the lower left. We apply Corollary 3.3.4.3 by taking X ← (X ×S X)∼ →
(Y ×S Y)∼ → Y and the log diagonals Y → (Y ×S Y)∼ and X → (X ×S X)∼ as
S′ ← X′ = W → X → S, V → X and V′ → X′ in Corollary 3.3.4.3. Since ( f × f )∼

and f are of finite tor-dimension, the assumption of Corollary 3.3.4.3 is satisfied. Thus
the composition [[ , X]]◦ ( f × f )∼∗ is also equal to [[ , X]](Y×SY)∼ . Hence the diagram
is commutative. ��

Lemma 5.4.5. — Let X be a scheme over S satisfying the condition (S(n)).
1. The logarithmic self-intersection product [[X, X]](X×SX)∼ ∈ F0G(Xs) is equal to the

image of the logarithmic self-intersection cycle (∆X,∆X)
log
S = (−1)ncn

X
Z (Ω1

X/S(log / log)) ∩ [X]
∈ CH0(Xs):

[[X, X]](X×SX)∼ = (−1)ncn
X
Z

(
Ω1

X/S(log / log)
) ∩ [X] = (∆X,∆X)

log
S .(5.4.5.1)
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2. Let n be the dimension of X. Then the map [[X, ]] : G((X×S X)∼) → G(Xs) sends

the topological filtration FpG((X×S X)∼) into Fp−nG(Xs).

3. Let d = n−1 be the dimension of XK. Then the induced map [[X, ]] : G(XK×K XK)

→ G(Xs) sends the topological filtration FpG(XK ×K XK) into Fp−dG(Xs).

Proof. — 1. Applying Corollary 3.4.4.1 to the log diagonal map X → (X×S X)∼,
we obtain [[X, X]](X×SX)∼ = (−1)ncn

X
Z (MX/(X×SX)∼) ∩ [X] in F0G(Xs). Thus it follows

by the isomorphism MX/(X×SX)∼ → Ω1
X/S(log / log) in Lemma 5.4.1.2.

2. It suffices to apply Theorem 3.4.3.1 to the map [[X, ]](X×SX)∼ : G((X×SX)∼)

→ G(Z).
3. Clear from 2. ��

The induced map GrF
p G(XK×K XK)→ GrF

p−dG(Xs) is also denoted by [[X, ]].

Lemma 5.4.6. — Let X be a scheme over S satisfying the condition (S(n)) and Z ⊂ X be

the closed subscheme defined by AnnΛnΩ1
X/S(log / log) as in Lemma 5.4.1. Let π : X′ → X be

the blow-up at Z and D = Z ×X X′ be the exceptional divisor. Then the pull-back

π∗Ω1
X/S(log / log) is an extension of a locally free OX′-module E ′ of rank n− 1 by an invertible

OD-module and we have

cn
X
Z

(
Ω1

X/S(log / log)
) ∩ [X] = π∗(cn−1(E

′) ∩ [D]).

Proof. — The proof is the same as that of Lemma 5.1.6 except that we use Corol-
lary 5.1.2.3 and Lemma 5.3.5.2 in place of Corollary 5.3.2.2, Lemma 5.1.3.2. ��

Definition 5.4.7. — Let X be a scheme over S satisfying the condition (S(n)) and σ be an

automorphism of X over S. Then, we say σ is admissible if the following condition is satisfied.

For each irreducible component Di of the reduced closed fiber Xs,red, we have either

σ(Di) = Di or σ(Di) ∩Di = ∅.

For an admissible automorphism σ of X over S, the localized intersection prod-
uct [[X,Γσ ]] is computed using the Segre classes as follows.

Lemma 5.4.8. — Let X be a scheme over S satisfying the condition (S(n)) and σ be an

admissible automorphism of X over S. Let D1, ..., Dm be the irreducible components of Xs and put

U = X−⋃
i:σ(Di)∩Di=∅ Di. Then,

1. The pair (1, σ) : U → X of maps induces a closed immersion U → (X×S X)∼.

2. Let Γσ denote U regarded as a closed subscheme of (X ×S X)∼ by the immersion in

1 and let ∆U ⊂ (U ×S U)∼ denote the log diagonal. Define the logarithmic fixed part Xσ
log by

Xσ
log = X×(X×SX)∼ Γσ . Then we have Xσ

log = ∆U ×(U×SU)∼ Γσ .
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3. Assume that σ does not have a fixed point in the generic fiber XK. Then the localized

intersection product [[X,Γσ ]](X×SX)∼ ∈ F0G(Xσ
log) is equal to the image of

{
c
(
Ω1

X/S(log / log)
)∗ ∩ s

(
Xσ

log, X
)}

dim 0

=
n−1∑

i=0

(−1)ici

(
Ω1

X/S(log / log)
)
sn−i

(
Xσ

log, X
)
.

In particular, if the logarithmic fixed part Xσ
log is a Cartier divisor of X, we have

[[Γσ , X]](X×SX)∼ =
{
c
(
Ω1

X/S(log / log)
)∗ ∩ (

1+Xσ
log

)−1 ∩ [
Xσ

log

]}
dim 0

.

Proof. — 1. We set (X×SX)0 = X×SX−⋃
(i,j):Di∩Dj=∅ Di×Dj. By the definition of

(X×S X)∼, we have pr−1
1 (Di) = pr−1

2 (Di) in (X×S X)∼. Hence (X×S X)∼ is a scheme
over (X×SX)0. By the definition of U, it is the inverse image of (X×SX)0 ⊂ X×SX by
the map (1, σ) : X → X×S X. Hence the map U → (X×S X)0 is a closed immersion.
Since σ is admissible, the map (1, σ) : X → X×S X induces a map U → (X×S X)∼.
Since U → (X ×S X)0 is a closed immersion, the induced map U → (X ×S X)∼ is
also a closed immersion.

2. Since U is stable under σ , Γσ is a subscheme of (U ×S U)∼ ⊂ (X ×S X)∼.
The assertion follows from ∆U = X×(X×SX)∼ (U×S U)∼.

3. By the assumption that σ does not have a fixed point in the generic fiber XK,
the underlying set of Xσ

log is a subset of the closed fiber Xs. We apply Corollary 3.4.6,
by taking X → (X×S X)∼ → X to be V → X → S in Corollary 3.4.6 and Xσ

log →
Γσ → (X ×S X)∼ to be T → W → X. Since MX/(X×SX)∼ = Ω1

X/S(log / log), we
obtain [[X,Γσ ]](X×SX)∼ = {c(Ω1

X/S(log / log))∗ ∩ s(Xσ
log,Γσ )}dim 0. By the automorphism

(x, y) �→ ( y, σ(x)) of (U ×S U)∼, the closed subschemes ∆U and Γσ are switched.
Hence by 2, we have s(Xσ

log,Γσ ) = s(Xσ
log,∆U) = s(Xσ

log, X). Thus the assertion is
proved. ��

Lemma 5.4.9. — Let K be a discrete valuation field with perfect residue field and X be

a scheme over S satisfying the condition (S(n)). Let K′ be a discrete valuation field with perfect residue

field. Assume that K′ is an extension of K, the valuation of K′ is an extension of that of K and

that a prime element of K is a prime element of K′. Put S′ = Spec OK′ and let s ′ be the closed

point of S′. Then,

1. X′ = X×S S′ is regular and the reduced closed fiber X′
s ′,red has simple normal crossings.

2. We have a commutative diagram

G((X×S X)∼)
[[X, ]](X×SX)∼−−−−−−−→ G(Xs)



	



	

G((X′ ×S′ X′)∼) −−−−−−−−→
[[X′, ]](X′×S′X′)∼

G(X′
s ′)

where the vertical arrows are the pull-backs.
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Proof. — The assertion 1 is checked easily using Lemma 5.3.1.2. We show 2.
We have (X′ ×S′ X′)∼ = (X ×S X)∼ ×S S′ and the vertical arrows are defined. We
show that the both compositions are equal to the map [[X′, ]](X×SX)∼ : G((X×S X)∼)

→ G(X′
s ′) by applying Corollary 3.3.4. For the composition via G(Xs), it suffices to

apply Corollary 3.3.4.1 by taking (X ×S X)∼ ← X ← X′ as X ← W ← W′ in
Corollary 3.3.4.1. For the composition via G((X′ ×S′ X′)∼), we take (X ×S X)∼ ←
(X′ ×S′ X′)∼ as X ← W → X′ in Corollary 3.3.4.3. Then since (X′ ×S′ X′)∼ =
(X×S X)∼×S S′ → (X×S X)∼ is flat and hence of finite tor-dimension, the assumption
in Corollary 3.3.4.3 is satisfied. Hence the assertion follows. ��

6. Conductor formula

We recall the precise formulation of the conductor formula and give the ex-
act statements of the main result, Theorem 6.2.3, and its log version, Theorem 6.2.5,
in 6.2. We state a generalization, Theorem 6.3.1, of Theorem 6.2.5 to an algebraic
correspondence in 6.3. We recall the definition of conductor and give an interpreta-
tion Lemma 6.1.1 in terms of localized intersection product in 6.1.

The proof of Theorem 6.3.1 is given in 6.4 and 6.5. The both sides of the
equality in Theorem 6.3.1 is computed using an alteration in 6.4. In the final sub-
section 6.5, we complete the proof of Theorem 6.3.1 by combining the computations
with the logarithmic Lefschetz trace formula, Theorem 6.5.1.

6.1. Artin and Swan conductors. — We recall generalities on conductor. Basic
references are [36] Chapitres IV, VI and [37] Partie III §3.4.

Let K be a discrete valuation field with perfect residue field F. Let � be a prime
number different from the characteristic p of F and GK → GLQ �

(V) be a continuous
�-adic representation of the absolute Galois group GK = Gal(K̄/K). We recall the
definition of the Artin conductor Art(V) and the Swan conductor Sw(V) of V.

In this subsection, L denotes a finite separable extension of K and we assume
that the integral closure OL of OK is a discrete valuation ring. Let E be the residue
field of L. Assume that L is a finite Galois extension of K of Galois group GL/K. The
Artin character aL/K and the Swan character swL/K of GL/K are defined by

aL/K(σ) =
{

lengthOK
Ω1

OL/OK
if σ = 1,

−lengthOK
OL/(σ(x)− x : x ∈ OL) if σ �= 1,

swL/K(σ) =
{

lengthOK
Ω1

OL/OK
− ([L : K] − [E : F]) if σ = 1,

−lengthOK
OL/

(
σ(x)

x − 1 : x ∈ L×
)

if σ �= 1

for σ ∈ GL/K. We call the p-Sylow subgroup PL/K of the inertia subgroup IL/K of
GL/K the wild inertia subgroup. If σ ∈ IL/K and πL is a prime element of L, the
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ideals (σ(x) − x, x ∈ OL) and (σ(x)/x − 1 : x ∈ L×) are generated by σ(π) − π and
by σ(π)/π − 1 respectively. Hence we have a(σ) = −ordL(σ(π) − π) and sw(σ) =
−ordL(σ(π)/π − 1) for σ �= 1,∈ IL/K. For σ ∈ GL/K, the condition −swL/K(σ) > 0
is equivalent to σ ∈ PL/K − {1} and the condition −aL/K(σ) > 0 is equivalent to
σ ∈ IL/K − {1}.

We give an interpretation, Lemma 6.1.1, of the Artin and Swan characters as
a localized intersection product, which plays a crucial role in the proof of the conduc-
tor formula. Let L be a finite separable extension of K such that the integral closure
OL is a discrete valuation ring. We put S = Spec OK and T = Spec OL and regard
them as log schemes with the standard log structures. We define the log self-product
(T×ST)∼ and the log diagonal map T → (T×ST)∼ as in Section 5.2. On a neighbor-
hood of the log diagonal T ⊂ (T×S T)∼, the log self-product (T×S T)∼ is isomorphic
to the blow-up of T×S T at the image of the closed point of T. We also consider the
diagonal map T → T ×S T. We introduce further notation assuming L is a Galois
extension. For σ ∈ GL/K, let T = Tσ → T ×S T be the graph of σ : T → T. It is
defined by the surjection OL⊗OK OL → OL : a⊗b �→ aσ(b). Let T = T̃σ → (T×S T)∼

be the map defined by the pair (id : T → T, σ ∗ : T → T). If σ = 1, the immersion
T1 → T×S T is the diagonal map and T̃1 → (T×S T)∼ is the log diagonal map.

Lemma 6.1.1. — Let K be a discrete valuation field with perfect residue field and L be

a finite separable extension of K such that the integral closure OL of OK is a discrete valuation ring.

Regard S = Spec OK and T = Spec OL as log schemes with the standard log structures. Let

f : T → S be the canonical map and s and t denote the closed points of S and T respectively. We

identify G(s) = Z and G(t) = Z. The push-forward map f∗ : G(t) = Z → G(s) = Z is the

multiplication by the residual degree [E : F]. Then,

1. We have

[[T, T]]T×ST = −lengthOT
ΩOL/OK,

[[T, T]](T×ST)∼ = −lengthOT
ΩOL/OK(log / log).

2. Assume L is a Galois extension of K. Then for an element σ ∈ GL/K of the Galois

group, we have

aL/K(σ) = −f∗[[T, Tσ ]]T×ST and swL/K(σ) = −f∗[[T, T̃σ ]](T×ST)∼

in G(s) = Z. If σ ∈ GL/K − PL/K, the intersection T̃σ ∩ T in (T×S T)∼ is empty.

3. ([36] Chapitre IV Proposition 3) Further, let M ⊂ L be a sub Galois extension

over K. Then for an element σ ∈ GM/K, we have

[L : M]aM/K(σ) =
∑

τ �→σ

aL/K(τ) and [L : M]swM/K(σ) =
∑

τ �→σ

swL/K(τ).
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Proof. — 1. It is a special case of the equalities (5.1.3.1) and (5.4.5.1).
2. If σ = 1, it follows from 1 and Lemma 5.3.4.3.
We assume σ �= 1. Then the intersection Dσ = T ×T×ST Tσ is a divisor of T

and we have ODσ
= OL/(σ(x) − x : x ∈ OL). Hence, by Theorem 3.4.3, we have

[[T, Tσ ]]T×ST = lengthOT
ODσ

= −aL/K(σ). Since the log self-product (T ×S T)∼ is
isomorphic to the blow-up of T ×S T at the closed point on a neighborhood of the
log diagonal T ⊂ (T×S T)∼, similarly as above, the intersection D̃σ = T×(T×ST)∼ T̃σ

is a divisor of T and we have OD̃σ
= OL/(σ(x)/x−1 : x ∈ L×). By Theorem 3.4.3, we

have [[T, Tσ ]](T×ST)∼ = lengthOT
OD̃σ

= −swL/K(σ). If σ /∈ PL/K, we have swL/K(σ) = 0
and hence D̃σ = T ∩ T̃σ is empty.

3. We put U = Spec OM and let g : T → U be the induced map. Let u ∈ U
be the closed point. Since the maps g : T → U and g × g : T ×S T → U ×S U
are locally of complete intersection, they are of finite tor-dimension and the pull-back
maps g∗ : G(u) → G(t) and ( g× g)∗ : G(U×S U) → G(T×S T) are defined. We have
an equality ( g × g)∗[Uσ ] = ∑

τ �→σ [Tτ] in GrF
1G(T×S T). We apply Proposition 3.3.3

by taking U ⊂ U×S U ← T×S T = T×S T ⊃ Tσ as V ⊂ X ← W → X′ ⊃ V′. Then
we obtain [[Uσ , T]]U×SU = [[T, ( g × g)∗Uσ ]]T×ST = ∑

τ �→σ [[T, Tτ]]T×ST in F0G(t) =
G(t). By the projection formula, Proposition 3.3.5, we have g∗[[Uσ , T]]U×SU =
[L : M][[Uσ , U]]U×SU. Thus the assertion follows from 2.

For the equality for the Swan character, we replace g × g : T ×S T → U×S U
in the above proof by ( g × g)∼ : (T ×S T)∼ → (U ×S U)∼. Since the map ( g × g)∼

is also of finite tor-dimension by Lemma 5.2.1.2, the same argument as above proves
the equality. ��

Let K′ be the completion of K. Taking an embedding K̄ → K̄′ we identify the
absolute Galois group GK′ with a subgroup of GK. Let IK = Gal(K̄/K′ur) ⊂ GK be the
inertia group of K corresponding to the maximum unramified extension K′ur of K′.
We call the pro-p Sylow subgroup PK = Gal(K̄/K′tr) ⊂ IK the wild inertia group of K.
It corresponds to the maximum tamely ramified extension K′tr = K′ur(π1/m; p � |m)

of K′ where π is a prime element of K.
Let GK → GLQ �

(V) be an �-adic representation. The image of the wild inertia
PK is finite. Let L be a finite Galois extension of the completion K′ such that PL =
PK ∩ Gal(K̄/L) acts trivially on V. We identify PL/K′ = PK/PL as a subgroup of the
Galois group GL/K′ . The action of PL/K′ on V is well-defined by the assumption on L.
The Swan conductor Sw(V) is defined as the intertwining number

Sw(V) = 1
[L : K′]

∑

σ∈PL/K′

swL/K′(σ)Tr(σ : V).

Note that swL/K′(σ) = 0 unless σ ∈ PL/K′ and the sum is taken over the subgroup
PL/K′ ⊂ GL/K′ . It is a theorem that Sw(V) is a non-negative integer. It is 0 if and only
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if the action of PK is trivial. The Artin conductor is defined by the equality Art(V) =
dim V − dim VI + Sw(V) where VI denotes the I-fixed part. The fact that the right
hand side is independent of the choice of L is a consequence of Lemma 6.1.1.3.

For an endomorphism f : V → V of an �-adic representation of GK, we define
the Swan conductor Sw( f : V) as follows. Take a finite Galois extension L of the
completion K′ such that PL acts trivially on V as above. Then we put

Sw( f : V) = 1
[L : K′]

∑

σ∈PL/K′

swL/K′(σ)Tr( f ◦ σ : V).

It also follows from Lemma 6.1.1.3. that the right hand side is independent of the
choice of L. For f = id, we have Sw(V) = Sw(id : V).

6.2. Conductor formula. — Let K be a discrete valuation field with perfect residue
field F. In the rest of the paper, S will denote Spec OK and s = Spec F denotes
the closed point. Let X be a proper scheme over OK satisfying the condition (R(n)) in
Section 5.1. We define the conductors of X. Let d = n − 1 be the dimension of the
generic fiber XK. The Swan conductor is defined to be the alternating sum

Sw(XK/K) =
2d∑

q=0

(−1)qSwHq(XK̄, Q �).

The cohomology in the right hand side is the �-adic etale cohomology for a prime �

different from the characteristic p of F. It is known that the alternating sum is inde-
pendent of the choice of � [30]. The Artin conductor Art(X/OK) is defined by

Art(X/OK) = χ(XK̄)− χ(XF̄)+ Sw(XK/K).

In the right hand side, χ denotes the �-adic Euler number which is known to be in-
dependent of � as a consequence of the Weil conjecture.

Recall that the localized self-intersection class (∆X,∆X)S ∈ CH0(XF) is defined
as the localized Chern class (−1)ncn

X
XF

(Ω1
X/OK

) ∩ [X]. We consider its image
deg(∆X,∆X)S ∈ Z by the degree map deg : CH0(XF)→ CH0(F) = Z.

Conjecture 6.2.1 ([6] Conjecture). — Let K be a discrete valuation field with perfect

residue field F and let X be a proper scheme over OK satisfying the condition (R(n)) in Section 5.1.

Then we have

Art(X/OK) = −deg(∆X,∆X)S.(6.2.1)

The formula (6.2.1) is called the conductor formula for X. The conductor for-
mula in the case dim X = 1 is the classical conductor-discriminant formula. In the
case dim X = 2, it is proved by Bloch in the same paper [6].
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Proposition 6.2.2. — Let X be a proper scheme over S satisfying the condition (R(n)) in

Section 5.1. Let C be a regular closed subscheme of X supported in the closed fiber Xs and π :
X′ → X be the blow-up at C. Then, the conductor formula (6.2.1) for X is equivalent to that

for X′.

Proof. — Let E = X′ ×X C be the exceptional divisor. Then we have

−(Art(X′/S)− Art(X/S)) = χ(X′
s̄)− χ(Xs̄) = χ(Es̄)− χ(Cs̄).

Since E is a Pc−1-bundle over C, we have χ(Es̄) = cχ(Cs̄). On the other hand, by
Lemma 2.3.4, we have

π∗
(
cX′
X′s

(
Ω1

X′/S

) ∩ [X′])− cX
Xs

(
Ω1

X/S

) ∩ [X]
= cX

Xs

(
Ω1

X/S

)
πE∗

((
cX′
E

(
Ω1

X′/X

)− 1
) ∩ [X′])

= (−1)c(c − 1)c
(
Ω1

X/S

)
c(NC/X)−1 ∩ [C]

where πE : E → C denotes the restriction of π : X′ → X. Let i : C → X denote the
immersion and fs : C → s denote the canonical map. By the distinguished triangles
→ Li∗Ω1

X/S → LC/S → NC/X[1] → and → Lf ∗s Ns/S[1] → Ω1
C/F → LC/S → 0, we

have c(Ω1
X/S)c(NC/X)−1 ∩ [C] = c(LC/S) ∩ [C] = c(Ω1

C/F) ∩ [C]. Thus it follows form
the Lefschetz trace formula χ(Cs̄) = deg(−1)n−ccn−c(Ω

1
C/F) ∩ [C]. ��

Our first main result is the following.

Theorem 6.2.3. — Let OK be a discrete valuation ring with perfect residue field F and let

X be a proper scheme over OK satisfying the following condition

(N(n)) X satisfies the condition (R(n)) in Section 5.1 and the reduced closed fiber (XF)red is

a divisor with normal crossings.

Then we have

Art(X/OK) = −deg(∆X,∆X)S.

By Proposition 6.2.2 and Lemma 4.2.12, Theorem 6.2.3 is equivalent to the
following weaker version.

Corollary 6.2.4. — Let K be a discrete valuation field with perfect residue field F and let

X be a proper scheme over OK satisfying the condition (S(n)) in Section 5.3. Then we have

Art(X/OK) = −deg(∆X,∆X)S.

We show that Corollary 6.2.4 is equivalent to the following logarithmic version.
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Theorem 6.2.5. — Let the assumption be the same as in Corollary 6.2.4. Then we have

Sw(XK/K) = − deg(∆X,∆X)
log
S .

Proof of equivalence of Corollary 6.2.4 and Theorem 6.2.5. — The proof of equivalence
is similar to that of the conductor formula in the tame case in [4]. Let D1, ..., Dm be
the irreducible components of D = Xs,red. For a subset J ⊂ {1, ..., m}, let DJ be the
intersection

⋂
i∈J Di and BJ be the divisor

⋃
i/∈J Di ∩ DJ with simple normal crossings

as in Lemma 5.3.6. By the definition of Artin conductor and Corollary 5.3.7, it is
sufficient to show the equalities

χ(XK̄) = (−1)n−1 deg cn−1

(
Ω1

X/S(log / log)
) ∩ [Xs],(6.2.5.1)

χ(XF̄) = (−1)n
n∑

r=1

∑

J⊂{1,...,m},#J=r

(−1)r deg cn−r

(
Ω1

DJ/F(log BJ)
) ∩ [DJ].(6.2.5.2)

Since deg cn−1(Ω
1
XK/K) ∩ [XK] = deg cn−1(Ω

1
X/S(log / log)) ∩ [Xs], the equality (6.2.5.1)

follows from the Lefschetz trace formula (−1)n−1 deg cn−1(Ω
1
XK/K) ∩ [XK] = χ(XK̄).

Since χ(XF̄) =
∑n

r=1

∑
J⊂{1,...,m},#J=r χ((DJ − BJ)s̄), the equality (6.2.5.2) is reduced to

the equalities

χ((DJ − BJ)s̄) = (−1)n−r deg cn−r

(
Ω1

DJ/F(log BJ)
) ∩ [DJ],(6.2.5.3)

for a subset J ⊂ {1, ..., m} of cardinality r. Thus it suffices to show the following
lemma.

Lemma 6.2.6. — Let V be a proper smooth scheme of dimension n over a perfect field F
and D be a divisor of V with simple normal crossings. Then we have

χ(VF̄ −DF̄) = deg(−1)ncn

(
Ω1

V/F(log D)
)
.

Proof. — Let D1, ..., Dr be the irreducible components of the divisor D and resi :
Ω1

V/F(log D) → ODi be the residue map. For a subset J ⊂ {1, ..., r}, we define BJ ⊂
DJ ⊂ V as above. Then we have an exact sequence

0 −−−→ Ω1
V/F −−−→ Ω1

V/F(log D)
⊕iresi−−−→ ⊕r

i=1 ODi −−−→ 0.

Hence we have

c
(
Ω1

V/F

) ∩ [V] = c
(
Ω1

V/F(log D)
) r∏

i=1

c(ODi )
−1 ∩ [V]

= c
(
Ω1

V/F(log D)
) r∏

i=1

(1− [Di]) ∩ [V]

=
n∑

m=0

∑

J⊂{1,...,r},#J=m

(−1)mc
(
Ω1

V/F(log D)
) ∩ [DJ].
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By the exact sequence

0 −−→ Ω1
DJ/F(log BJ) −−→ Ω1

V/F(log D)|DJ −−→
⊕

i∈J ODJ −−→ 0,

we have c(Ω1
V/F(log D)) ∩ [DJ] = c(Ω1

DJ/F(log BJ)) ∩ [DJ]. Hence we have

(−1)ncn

(
Ω1

V/F

) ∩ [V]
=

n∑

m=0

∑

J⊂{1,...,r},#J=m

(−1)n−mcn−m

(
Ω1

DJ/F(log BJ)
) ∩ [DJ].(6.2.6.1)

On the other hand, we have

χ(VF̄) =
n∑

m=0

∑

J⊂{1,...,r},#J=m

χ((DJ − BJ)F̄).(6.2.6.2)

By the Lefschetz trace formula χ(VF̄) = (−1)ncn(Ω
1
V/F)∩[V], the left hand sides of the

equalities (6.2.6.1) and (6.2.6.2) are equal. Hence the assertion follows by induction on
dim V. ��

We prove Theorem 6.2.5 together with its generalization Theorem 6.3.1 in Sec-
tions 6.4 and 6.5.

By Proposition 6.2.2, Theorem 6.2.3 has the following consequence.

Corollary 6.2.7. — Let X be as in Conjecture 6.2.1. Assume there exists a sequence of

blowing-ups X′ = Xm → · · · → X0 = X at regular closed subschemes supported in the closed

fibers such that X′ satisfies the condition (S(n)) in Section 5.3. Then Conjecture 6.2.1 is true for X.

By Corollary 6.2.7, if the reduced closed fiber (XF)red has an embedded reso-
lution in a strong sense, Conductor formula for X is true. In particular when
dim X = 2, the assumption of Corollary 6.2.7 is satisfied and hence we obtain a new
proof of Conjecture 6.2.1 in this case.

6.3. Correspondences. — We formulate a generalization, Theorem 6.3.1, of Theo-
rem 6.2.5 for an algebraic correspondence. To state it, we prepare some terminology
and notations on the cycle map and algebraic correspondences.

Let XK be a proper smooth scheme over a field K and � be a prime number
different from the characteristic of K. Then, for an integer r ≥ 0, we have a cycle
map cl : CHr(XK) → H2r(XK̄, Q �(r)). For Γ ∈ CHr(XK), the image cl(Γ) is also
denoted by [Γ]. It is compatible with the product and the pull-back. It also makes
the degree map deg : CH0(XK)→ Z compatible with the trace map. Its composition
with the Chern character map ch : Grr

FK(XK) → CHr(XK)Q is the Chern character
map ch : Grr

FK(XK)→ H2r(XK̄, Q �(r)).
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Let YK be another proper smooth schemes over a field K and assume XK and
YK are purely of dimension d . We call an element Γ ∈ CHd(XK ×K YK) an algebraic
correspondence from XK to YK. An algebraic correspondence Γ ∈ CHd(XK ×K YK)

defines a GK-equivariant map Γ∗ : H∗(YK̄, Q �)→ H∗(XK̄, Q �) as the composition

H∗(YK̄, Q �)
pr∗2−→ H∗(XK̄ ×K̄ YK̄, Q �)

[Γ]∪−−→ H∗+2d(XK̄ ×K̄ YK̄, Q �(d))

pr1∗−→ H∗(XK̄, Q �).

When XK = YK, an algebraic correspondence Γ on XK defines an endomorphism Γ∗

of the �-adic representation Hq(XK̄, Q �) of GK.
Assume K is a discrete valuation field with perfect residue field F and � is dif-

ferent from the characteristic of F. We put

Sw(Γ, XK/K) =
2d∑

q=0

(−1)qSw
(
Γ∗ : Hq(XK̄, Q �)

)
.

For an endomorphism f : XK → XK over K, similarly we put

Sw( f , XK/K) =
2d∑

q=0

(−1)qSw
(

f ∗ : Hq(XK̄, Q �)
)
.

If Γf ∈ CHd(XK×K XK) denotes the class of the graph of f , we have Sw( f , XK/K) =
Sw(Γf , XK/K). In particular, for f = id and Γf = ∆XK , we have Sw(id, XK/K) =
Sw(XK/K).

As in the last subsection, let K be a discrete valuation field with perfect residue
field F, S = Spec OK and s = Spec F be the closed point of S. Let X be a proper and
flat regular scheme over S = Spec OK satisfying the condition (S(n)) in Section 5.3. For
Γ ∈ CHd(XK×K XK), let [[X,Γ]] ∈ GrF

0G(Xs) be the image by the composition map

CHd(XK ×K XK) → GrF
d G(XK ×K XK)

[[X, ]]→ GrF
0G(Xs). We define the degree map

degXs
: G(Xs)→ G(s) = Z to be the push-forward for Xs → s.

Theorem 6.3.1. — Let OK be a discrete valuation ring with perfect residue field and � be

a prime number different from the characteristic of the residue field. Let XK be a proper smooth scheme

over K of dimension d . Let Γ ∈ CHd(XK×K XK) be an algebraic correspondence on XK. Then,

1. Sw(Γ, XK/K) is a rational number independent of �.

2. Let X be a proper scheme over S satisfying the condition (S(n)) in Section 5.3 such that

X⊗OK K = XK. Then we have an equality of integers

Sw(Γ, XK/K) = −degXs
[[X,Γ]].
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Proof will be completed in Section 6.5. Theorem 6.2.5, which is shown to be
equivalent to Theorem 6.2.3, is the special case of the following Corollary where
f = id, by Lemma 5.4.5. Theorem 6.3.1.1 also follows from [41] Theorem 0.1.

Corollary 6.3.2. — Let K, XK and � be as in Theorem 6.3.1. Let f : XK → XK be

an endomorphism over K. Then,

1. Sw( f , XK/K) is a rational number independent of �.

2. Let X be a proper scheme over S satisfying the condition (S(n)) in Section 5.3 such that

X⊗OK K = XK. Let Γf ∈ CHd(XK ×K XK) be the class of the graph of f . Then we have an

equality of integers

Sw( f , XK/K) = −degXs
[[X,Γf ]].

Proof. — It is enough to apply Theorem 6.3.1 to Γf . ��
If the relative dimension of X over S is 1 and if f is an automorphism of X

over S, analogous formula is proved in [1].

Corollary 6.3.3. — Let X be a proper scheme over S satisfying the condition (S(n)) in

Section 5.3 and σ be an admissible automorphism of X over S. Assume that σ does not have

a fixed point in the generic fiber XK. Then we have

Sw(σ, XK/K) = − deg
{
c
(
Ω1

X/S(log / log)
)∗ ∩ s

(
Xσ

log, X
)}

dim 0

= − deg
n−1∑

i=0

(−1)ici

(
Ω1

X/S(log / log)
)
sn−i

(
Xσ

log, X
)
.

In particular, if the logarithmic fixed part Xσ
log = X ×(X×SX)∼ Γσ is a Cartier divisor of X, we

have

Sw(σ, XK/K) = − deg
{
c
(
Ω1

X/S(log / log)
)∗ ∩ (

1+Xσ
log

)−1∩ [
Xσ

log

]}
dim 0

.

Proof. — It follows from Theorem 6.3.1.2 and Lemma 5.4.8. ��
We show that Theorem 6.3.1 is reduced to the case where K is complete.

Corollary 6.3.4. — Let X, K and Γ be as in Theorem 6.3.1 and let K′ be the completion

of K. Then Theorem 6.3.1 for X and Γ is equivalent to that for X′ = X⊗OK OK′ and the pull-

back Γ′ of Γ to X′
K′ ×K′ X′

K′ .

Proof. — We have Sw(Γ, XK/K) = Sw(Γ′, XK′/K′). By Lemma 5.4.9, we have
degXs

[[X,Γ]] = degX′s ′
[[X′,Γ′]]. ��
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6.4. Alteration. — To prove the main result, Theorem 6.3.1, we compute the
Swan conductor Sw(Γ, XK/K) and the logarithmic localized intersection product
[[X,Γ]](X×SX)∼ using an alteration. First, we recall results on alteration.

Theorem 6.4.1. — Let K be a complete discrete valuation field.

1. ([27]) Let XK be a separated scheme of finite type over K. Then there exist a proper

scheme X over OK and an open immersion XK → X over OK.

2. ([8] Theorem 6.5) Let X be a flat integral and separated scheme of finite type over

OK. Then there exist a finite extension L of K, a projective, strictly semi-stable and geometrically

connected scheme W̄ over the integer ring OL, an open subscheme W ⊂ W̄ and a proper, surjective

and generically finite morphism f : W → X over OK.

Lemma 6.4.2 ([41] Lemma 1.2.4). — Let L be a finite extension of K and W be

a strictly semi-stable scheme of finite type over the integer ring OL. Let L′ be a finite extension of L.

Then there exist a strictly semi-stable scheme W′ of finite type over the integer ring OL′ and a projec-

tive and surjective morphism W′ → W over OL such that the induced map W′
L′ = W′ ⊗OL′ L

′ →
WL = W⊗OL L is an isomorphism.

By Lemma 6.4.2, Theorem 6.4.1 has the following consequence.

Corollary 6.4.3. — Let K be a complete discrete valuation field.

1. Let XK be a proper irreducible scheme over K. Then there exist a finite normal extension

L of K, a projective, strictly semi-stable and geometrically connected scheme W over the integer ring

OL and a proper, surjective and generically finite morphism WL → XK over K.

2. Let X be a proper and flat irreducible scheme over K. Then there exist a finite normal

extension L of K, a projective, strictly semi-stable and geometrically connected scheme W over the

integer ring OL and a proper, surjective and generically finite morphism W → X over OK.

We compute the trace using an alteration. We introduce some notation. Let K
be an arbitrary field for the moment. Let XK be a proper smooth scheme purely of
dimension d over a field K, σ ∈ GK be an element of the absolute Galois group and
Γ ∈ CHd(XK ×K XK) be an algebraic correspondence. We assume XK is irreducible.
Let L ⊃ K be a finite normal extension of K, WL be a proper, smooth and geo-
metrically irreducible scheme over L and f : WL → XK be a proper, surjective and
generically finite morphism over K.

We fix an embedding K̄ → L̄ of separable closures and extend σ to automor-
phisms of L̄ and of L. For an automorphism τ ∈ AutKL, let Wτ

L = WL ×L↙τ∗ L
be the base change by τ and fτ denote the composition f × 1 : Wτ

L → XK. For
τ ∈ AutKL, let Γτ,στ ∈ CHn(Wτ

L ×L Wστ
L ) be the pull-back ( fτ × fστ)

∗Γ of Γ by
fτ×fστ : Wτ

L×LWστ
L → XK×KXK. It induces a homomorphism Γ∗τ,στ : H∗(Wστ

L̄
, Q �) →

H∗(Wτ

L̄
, Q �). If τ = id, we put Γ∗σ = Γ∗id,σ : H∗(Wσ

L̄
, Q �) → H∗(WL̄, Q �). The
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isomorphism σ ∗ = 1 × σ ∗ : Wστ

L̄
→ Wτ

L̄
induces an isomorphism σ∗ = (σ ∗)∗ :

H∗(Wτ

L̄
, Q �) → H∗(Wστ

L̄
, Q �). The composition Γ∗τ,στ ◦ σ∗ is an endomorphism of

H∗(Wτ

L̄
, Q �).

Lemma 6.4.4 ([41] Lemma 3.3). — Let XK be a proper and smooth irreducible scheme of

dimension d over a field K, σ ∈ GK be an element of the absolute Galois group and

Γ ∈ CHd(XK ×K XK) be an algebraic correspondence. Let L be a finite normal extension of

K of inseparable degree q, WL be a proper, smooth and geometrically irreducible scheme over L and

f : WL → XK be a proper, surjective and generically finite morphism of degree [WL : XK]
over K.

Then, we have an equality

[WL : XK] · Tr
(
Γ∗ ◦ σ∗ : Hr(XK̄, Q �)

)

= q ·
∑

τ∈AutKL

Tr
(
Γ∗τ,στ ◦ σ∗ : Hr

(
Wτ

L̄
, Q �

))
.

Now we assume K is a discrete valuation field and compute the Swan conductor
Sw (Γ∗, XK/K) using an alteration as in Corollary 6.4.3.1.

Corollary 6.4.5. — Let XK be a proper and smooth irreducible scheme of dimension d over

a complete discrete valuation field K and Γ ∈ CHd(XK ×K XK) be an algebraic correspondence.

Let L be a finite normal extension of K of inseparable degree q, W be a proper, strictly semi-stable

and irreducible scheme over OL and f : WL = W ⊗OL L → XK be a proper, surjective and

generically finite morphism of degree [WL : XK] over K. Then,

1. The restriction to the wild inertia subgroup PL ⊂ GL of the action of GK on Hr(XK̄, Q �)

is trivial.

2. Let L0 be the separable closure of K in L, G0 = Gal(L0/K) be the Galois group and

P0 ⊂ G0 be the wild inertia subgroup. Then we have an equality

[WL : XK] · Sw
(
Γ∗, XK/K

)

= q ·
∑

σ∈P0

sw(σ) · Tr
(
Γ∗σ ◦ σ∗ : Hr(WL̄, Q �)

)
.

Proof. — 1. We identify G0 = Gal(L0/K) with AutKL. For σ ∈ G0, the conju-
gate Wσ = W ⊗OL↗σ∗ OL is also strictly semi-stable over OL. Hence the wild inertia
PL ⊂ GL acts trivially on H∗(Wσ

L̄
, Q �) for σ ∈ G0. Since the composition f∗ ◦ f ∗ :

H∗(XK̄, Q �)→⊕
σ∈G0

H∗(Wσ

L̄
, Q �)→H∗(XK̄, Q �) is the multiplication by [WL : XK],

the GL-equivariant map f ∗ : H∗(XK̄, Q �) → ⊕
σ∈G0

H∗(Wσ

L̄
, Q �) is injective. Hence

the action of PL on H∗(XK̄, Q �) is also trivial.
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2. For σ ∈ PK, the action σ∗ on H∗(XK̄, Q �) depends only on the image in
P0 = PK/PL by 1. By the definition of Swan conductor and Lemma 6.4.4, we have

[WL : XK]Sw
(
Γ∗, XK/K

)

= q
|G0| ·

∑

σ∈P0

∑

τ∈AutKL

sw(σ)Tr
(
Γ∗τ,στ ◦ σ∗ : Hr

(
Wτ

L̄
, Q �

))
.

Since sw(σ) = sw(τστ−1) and Tr (Γ∗τ,στ ◦ σ∗ : Hr(Wτ

L̄
, Q �)) = Tr (Γ∗

τ−1στ
◦ τ−1στ∗ :

Hr(WL̄, Q �)), the assertion follows. ��
We compute the logarithmic localized intersection product [[X,Γ]] using an al-

teration as in Corollary 6.4.3.2. To state it, we introduce some notation. Let K be
a complete discrete valuation field and X be a proper scheme over OK satisfying the
condition (S(n)) in Section 5.3 and Γ ∈ CHn−1(XK ×K XK) be an algebraic corres-
pondence. Let L be a finite normal extension of K and t be the closed point of T =
Spec OL. Let W be a proper, strictly semi-stable and geometrically irreducible scheme
over T = Spec OL and f : W → X be a proper, surjective and generically finite mor-
phism. Let P0 ⊂ G0 = Gal(L0/K) be the wild inertia subgroup of the Galois group
of the separable closure L0 in L.

We regard W and Wσ as log schemes with the standard log structures
defined by the closed fiber. For σ ∈ P0, we have a canonical isomorphism Wt → Wσ

t
of log schemes. We identify Γ(Wσ , MWσ ) with P = Γ(W, MW) by the isomorphism
Γ(W, MW) → Γ(Wt, MW) → Γ(Wσ

t , MWσ ) → Γ(Wσ , MWσ ). We define the log prod-
uct (W×T Wσ)∼ to be W×T,[P] Wσ . Since W is strictly semi-stable, Wσ is also strictly
semi-stable over OL and the projection (W×T Wσ)∼ → W is strict and smooth. The
canonical isomorphism Wt → Wσ

t induces a map ∆Wt : Wt → (W ×T Wσ )∼t . Since
∆Wt : Wt → (W ×T Wσ)∼t is a section of the smooth map (W ×T Wσ )∼t → Wt, it is
a regular immersion.

We have a map CHn−1(XK×KXK) → GrF
n−1G(XK×KXK) by Lemma 2.1.4.2. By

Lemma 5.4.5.2, the logarithmic localized intersection product defines a map
GrF

n−1G(XK ×K XK) → F0G(Xs). Let σ ∈ P0. By Corollary 2.2.3, the pull-back map
( f × fσ)∗ : G(XK ×K XK) → G(WL ×L Wσ

L) induces a map GrF
n−1G(XK ×K XK)

→ GrF
n−1G(WL ×L Wσ

L). By Corollary 2.2.4, the reduction map G(WL ×L Wσ
L) →

G((W×T Wσ)∼t ) induces a map GrF
n−1G(WL×L Wσ

L)→ GrF
n−1G((W×T Wσ )∼t ). Since

the immersion ∆Wt : Wt → (W ×T Wσ)∼t is a regular immersion, the pull-back
∆∗

Wt
: G((W ×T Wσ)∼t ) → G(Wt) is defined. By Proposition 2.2.2, it induces a map

GrF
n−1G((W×T Wσ)∼t )→ F0G(Wt).

Proposition 6.4.6. — Let K be a complete discrete valuation field, X be a proper scheme

over OK satisfying the condition (S(n)) in Section 5.3 and Γ ∈ CHn−1(XK×K XK) be an algebraic

correspondence. Let L be a finite normal extension of K of inseparable degree q and t be the closed
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point of T = Spec OL. Let W be a proper, strictly semi-stable and irreducible scheme over T =
Spec OL and f : W → X be a proper, surjective and generically finite morphism of degree [W : X]
over OK.

Let [[X, ]] : CHn−1(XK ×K XK) → GrF
n−1G(XK ×K XK) → F0G(Xs) denote the

logarithmic localized intersection product. For an element σ ∈ P0 ⊂ G0 = Gal(L0/K) of the wild

inertia subgroup of the separable closure L0, let Γσ,t ∈ GrF
n−1G((W×T Wσ)∼t ) denote the reduction

of the pull-back Γσ = ( f × fσ)∗Γ ∈ GrF
n−1G(WL×L Wσ

L) and ∆∗
Wt
: GrF

n−1G((W×T Wσ)∼t )

→ F0G(Wt) denote the pull-back by the regular immersion ∆Wt : Wt → (W×T Wσ)∼t . Then,

we have an equality

[W : X] deg[[X,Γ]] = −q ·
∑

σ∈P0

sw(σ) · degWt
∆∗

Wt
(Γσ,t).(6.4.6.1)

Proof. — Since the map FnG((X ×S X)∼) → Fn−1G(XK ×K XK) is surjective,
we may assume the image of Γ in GrF

n−1G(XK ×K XK) is the image of an element
Γ̃ ∈ FnG((X×SX)∼). By abuse of notation, we drop ˜ and write Γ ∈ FnG((X×SX)∼).

Since f∗ ◦ f ∗ : F0G(Xs) → F0G(Wt) → F0G(Xs) is the multiplication by the
degree [W : X] by Corollary 2.2.3, it is sufficient to show the equality

q · f ∗[[X,Γ]] = −q2 ·
∑

σ∈P0

sw(σ) ·∆∗
Wt

(Γσ,t)(6.4.6.2)

in G(Wt) for Γ ∈ G((X×S X)∼).
We have [[X,Γ]] = [[Γ, X]] by Theorem 3.2.1.4. We show the equalities

f ∗[[Γ, X]](X×SX)∼ = [[Γ, W]](X×SX)∼ = ∆∗
W[[Γ, (W×T W)∼]](X×SX)∼(6.4.6.3)

by applying the associativity, Corollary 3.3.4.1. In the middle and the right,
[[ , W]](X×SX)∼ : G((X×S X)∼)→ G(Wt) and [[ , (W×T W)∼]](X×SX)∼ : G((X×S X)∼)

→ G((W×T W)∼t ) denote the localized intersection product respectively. In the right
hand side, ∆∗

W : G((W×TW)∼t )→ G(Wt) denotes the pull-back by the regular immer-
sion W → (W×T W)∼. Since (W×T W)∼ is flat over W by Lemma 5.2.1.1, the map
∆∗

W : G((W×T W)∼t )→ G(Wt) is the same as the pull-back by the regular immersion
∆Wt : Wt → (W ×T W)∼t . For the first equality, we apply Corollary 3.3.4.1 by taking
W → X → (X×S X)∼ → X as W′ → W → X → S. Since W and X are regular, the
map f : W → X is of finite tor-dimension. Hence the assumption of Corollary 3.3.4.1
is satisfied and the first equality is proved. For the second equality, we apply the same
Corollary 3.3.4.1 by taking W → (W ×T W)∼ → (X ×S X)∼ → X as W′ → W →
X → S. Since W is strictly semi-stable over T, the map (W×T W)∼ → W is smooth.
Hence (W×T W)∼ is regular and the log diagonal map ∆ : W → (W ×T W)∼ is of
finite tor-dimension. Thus the assumption of Corollary 3.3.4.1 is also satisfied and the
second equality follows.
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Since OWt = O(W×TW)∼t ⊗L
O(W×TW)∼ OW, we further have

∆∗
W[[Γ, (W ×T W)∼]](X×SX)∼ = ∆∗

Wt
[[Γ, (W×T W)∼]](X×SX)∼.(6.4.6.4)

Hence, it is reduced to showing the equality

q · [[Γ, (W×T W)∼]](X×SX)∼ = −q2 ·
∑

σ∈P0

sw(σ)Γσ,t(6.4.6.5)

in G((W×T W)∼t ).
To go from G((W ×T W)∼t ) to G((W ×T0 W)∼t 0

), we use the following lemma.
If L is separable over K, we have T0 = T and this step is trivial. Since the action of
σ ∈ P0 on the log point t is trivial, we naturally identify Wσ

t and (W ×T Wσ )∼t with
Wt and (W×T W)∼t for σ ∈ P0 respectively.

Lemma 6.4.7. — 1. The immersion (W×T W)∼ → (W×T0 W)∼ induces an isomorph-

ism G((W×T W)∼t )→ G((W×T0 W)∼t 0
).

2. We identify G((W ×T W)∼t ) and G((W ×T0 W)∼t 0
) by the isomorphism in 1. Then,

for Γ ∈ G((X×S X)∼), we have the equality

q · [[Γ, (W×T W)∼]](X×SX)∼ = [[Γ, (W×T0 W)∼]](X×SX)∼

of the localized intersection products [[ , (W ×T W)∼]](X×SX)∼ : G((X ×S X)∼) →
G((W×T W)∼t ) and [[ , (W×T0 W)∼]](X×SX)∼ : G((X×S X)∼) → G((W×T0 W)∼t 0

).

3. For Γ ∈ G(XK ×K XK) and σ ∈ P0, let Γσ,t ∈ G((W ×T W)∼t ) and Γσ,t 0 ∈
G((W×T0 W)∼t 0

) be the images by the compositions G(XK×KXK)
( fK×fσ,K)∗→ G(WL×LWσ

L)
( ,t)T→

G((W ×T W)∼t ) and G(XK ×K XK)
( fK×fσ,K)∗→ G(WL ×L0 Wσ

L)
( ,t 0)T0→ G((W ×T0 W)∼t 0

)

respectively. Then, we have

q2 · Γσ,t = Γσ,t 0 .

Proof. — 1. The diagram

(W×T0 W)∼ ←−−− (W×T W)∼


	



	

(T×T0 T)∼ ←−−− T

(6.4.7.1)

is cartesian. The purely inseparable extension L of L0 is generated by the q-th root πL

of a prime element π0 of L0. The map OL[x]/(xq) → (OL ⊗OL0
OL)

∼ : x �→ 1− 1⊗πL
πL⊗1

is an isomorphism. Hence the immersion T → (T×T0 T)∼ is a nilpotent immersion.
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Thus the closed immersion (W×T W)∼ → (W×T0 W)∼ induces an isomorphism on
the K-groups of coherent sheaves.

2. Let I be the kernel of the surjection (OL ⊗OL0
OL)

∼ → OL. Then, in
G((T ×T0 T)∼), we have [O(T×T0 T)∼] = ∑q−1

i=0 [Ii/Ii+1] = q[OT]. The vertical arrows
of the diagram (6.4.7.1) are flat by Lemma 5.2.1.3. Hence we have [O(W×T0 W)∼] =
q[O(W×TW)∼]. Thus the assertion follows by Theorem 3.2.1.3.

3. Similarly, we have [OWL×L0 Wσ
L
] = q[OWL×LWσ

L
] in G(WL ×L0 Wσ

L). Further for
a coherent O(W×OL Wσ )∼-module F , we have [F ⊗L

OL0
OL0/mL0] = [F ⊗L

OL
OL/mq

L] =
q[F ⊗L

OL
OL/mL]. Thus the assertion follows. ��

By Lemma 6.4.7, the equality (6.4.6.5) is equivalent to

[[Γ, (W ×T0 W)∼]](X×SX)∼ = −
∑

σ∈P0

sw(σ)Γσ,t 0(6.4.6.6)

in G((W×T0 W)∼t 0
).

We show the equality

[[Γ, (W ×T0 W)∼]](X×SX)∼ = [[T0, ( f × f )∼∗Γ]](T0×ST0)∼.(6.4.6.7)

by applying the associativity, Corollary 3.3.4.3. We take X ← (X×SX)∼ ← (W×SW)∼

→ (T0 ×S T0)
∼ ∆← T0 to be S ← X ← W → X′ ← V′ in Corollary 3.3.4.3. We

verify that the assumption in Corollary 3.3.4.3 is satisfied. The map (W ×S W)∼ →
(T0 ×S T0)

∼ is flat by Lemma 5.2.1.3 and the map ( f × f )∼ : (W ×S W)∼ →
(X×S X)∼ is of finite tor-dimension by Lemma 5.2.1.2. The subscheme W′ in loc.cit.
is (W×S W)∼ ×(T0×ST0)∼ T0 = (W×T0 W)∼. The closed subsets ZW′ and Z′W′ in loc.cit.
are (W ×T0 W)∼ ×X Z and (W ×T0 W)∼ ×T0 t0 respectively. Since the closed sub-
scheme Z ⊂ X is supported on the closed fiber, the condition that ZW′ is Z′W′ set-
theoretically a subset in loc.cit. is satisfied. Further by Lemma 5.3.5.3, the condition
G(ZW′)/LZ = G(ZW′) and G(Z′W′)/L ′

Z′ = G(Z′W′) is satisfied. Hence the assumption in
Corollary 3.3.4.3 is satisfied. Since (W×S W)∼ ×(T0×ST0)∼ T0 = (W×T0 W)∼, applying
Corollary 3.3.4.3, we obtain the equality.

Remark. — If L is assumed separable over K and hence if T = T0, there is an
alternative proof of the equality (6.4.6.7). By Corollary 3.3.4.3, we have equalities

[[Γ, (W ×T0 W)∼]](X×SX)∼ = [[(W×T0 W)∼, ( f × f )∼∗Γ]](W×SW)∼

= [[T0, ( f × f )∼∗Γ]](T0×ST0)∼

and the equality (6.4.6.7) follows.
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By (6.4.6.7), the equality (6.4.6.6) is equivalent to

[[T0, ( f × f )∼∗Γ]](T0×ST0)∼ = −
∑

σ∈P0

sw(σ)Γσ,t 0(6.4.6.8)

in G((W×T0 W)∼t 0
). Hence it suffices to apply the following lemma to ( f × f )∼∗Γ ∈

G((W×S W)∼).

Lemma 6.4.8. — Let L0 be the separable closure of K in L and let t0 be the closed point

of T0 = Spec OL0 . Let P0 be the wild inertia subgroup of the Galois group G0 = Gal(L0/K).

For Γ ∈ G((W ×S W)∼) and σ ∈ P0, let Γσ ∈ G(WL ×L0 Wσ
L) be the restriction and

Γσ,t 0 ∈ G((W×T0 W)∼t 0
) be the reduction of Γσ . Then, we have

[[T0,Γ]](T0×ST0)∼ = −
∑

σ∈P0

sw(σ)Γσ,t 0

in G((W×T0 W)∼t 0
).

Proof. — The map
∐

σ∈G0
T0,σ → T0 ×S T0 is surjective and (W ×T0 Wσ)∼ =

(W×S W)∼×(T0×ST0)∼ T0,σ . Hence the map
∐

σ∈G0
(W×T0 Wσ)∼ → (W×S W)∼ is sur-

jective and consequently the sum of the push-forward map
⊕

σ∈G0
G((W×T0 Wσ )∼) →

G((W×S W)∼) is surjective. Thus it is sufficient to show the equality

[[T0,Γ]](T0×ST0)∼ =
{
−sw(σ)Γσ,t 0 if σ ∈ P0

0 if σ ∈ G0 \ P0

for σ ∈ G0 and Γ ∈ G((W×T0 Wσ)∼).

In Corollary 3.3.4.2, we take T0
∆→ (T0 ×S T0)

∼ ← T0,σ ← (W ×T0 Wσ)∼ as
V → X ← W ← W′. Since T0,σ = T0 is regular, the assumption of Corollary 3.3.4.2
is satisfied. By Lemma 6.1.1.2, we have [[T0, T0,σ ]](T0×ST0)∼ = −sw(σ) ∈ G(t0) = Z
for σ ∈ P0 and T0,σ ∩ T0 = ∅ for σ ∈ G0 − P0. Hence the equality follows. ��

6.5. Log Lefschetz trace formula. — We state and prove logarithmic Lefschetz
trace formula. To state it, we fix some notations. Let K be a complete discrete valu-
ation field with perfect residue field. Let L be a finite extension of K and σ be an
automorphism L over K. We assume that σ acts trivially on the residue field E and
that the order of σ is a power of the characteristic p of E. In other words, the action
of σ on the log point t = Spec E is trivial. We extend σ to an element σ̃ ∈ PK.

Let W be a projective and strictly semi-stable scheme purely of relative dimen-
sion d over T = Spec OL. The conjugate Wσ → T is defined as the base change
pr2 : W ×T↙σ∗ T → T. For a prime number � different from p = char E, we
define a map σ∗ : H∗(WL̄, Q �) → H∗(Wσ

L̄
, Q �) to be the pull-back by the map
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1 × σ̃ ∗ : Wσ

L̄
= W ×L↙σ∗ L ×L L̄ = W ×L↙σ∗ L̄ → WL̄. Since we assume W is

proper and strictly semi-stable and � �= p, the action of the wild inertia PL′ is trivial
on H∗(WL̄, Q �). Hence the map σ̃∗ : H∗(WL̄, Q �) → H∗(Wσ

L̄
, Q �) depends only on

σ and is independent of the choice of a lifting σ̃ .
We put P = Γ(W, M̄W) and N = Γ(T, M̄T) = N. Then the map P = Γ(W, M̄W)

→ Γ(Wσ , M̄Wσ ) defines a frame and the canonical map N → P defines maps (W, [P])
→ (T, [N]) and (Wσ , [P]) → (T, [N]) of framed log schemes. We put (W×T Wσ)∼ =
W ×T,[P] Wσ . Since σ is the identity on the log point t, we have Wσ

t = Wt as log
schemes over t. Hence the closed fiber (W ×T Wσ)∼t = (W ×T Wσ)∼ ×T t is canoni-
cally identified with (W×T W)∼t .

For an algebraic correspondence Γ ∈ CHd(WL ×L Wσ
L), let Γ also denote its

image in GrF
d G(WL ×L Wσ

L) by abuse of notation and let Γt ∈ GrF
d G((W ×T W)∼t )

denote the specialization (Γ, t)T. Since the immersion ∆Wt : Wt → (W ×T W)∼t is
a regular immersion by Lemma 5.2.3.2, the pull-back ∆∗

Wt
(Γt) ∈ GrF

0G(Wt) is defined.
We define the degree map degWt

: G(Wt) → G(t) = Z to be the push-forward for
Wt → t.

Theorem 6.5.1. — Let L be a discrete valuation field with perfect residue field E of char-

acteristic p and � �= p be a prime number. Let σ be an automorphism of OL of order a power of

p which induces the identity on the residue field E. Let W be a projective and strictly semi-stable

scheme of relative dimension d over T = Spec OL.

Then for an algebraic correspondence Γ ∈ CHd(WL×L Wσ
L), we have an equality of integers

Tr (Γ∗ ◦ σ∗ : H∗(WL̄, Q �)) = degWt
∆∗

Wt
(Γt).(6.5.1.1)

Proof. — We show the formula (6.5.1.1) by using log-etale cohomology of the
closed fiber. Basic references for log-etale cohomology are [12], [28], [29] and [20].

We regard t as a log scheme with the log structure induced by the standard one
on T. The assumption on σ means that σ acts trivially on the log point t. Let t̄ be
a log geometric point over the log point t and Wt̄ be the geometric closed fiber. Let
H∗

log(Wt̄, Q �) be the log-etale cohomology. By [29] Proposition (4.2), there is a canon-
ical isomorphism H∗(WL̄, Q �)→ H∗

log(Wt̄, Q �).

We fix an isomorphism Nr → Γ(W, M̄W). It induces an isomorphism Nr →
Γ(Wσ , M̄Wσ ). We put P = Nr ⊕N Nr and let Σ be the subdivision of the dual monoid
N = Hommonoid(P, N) as in Lemma 5.2.4. Let (W ×T Wσ)− be the log blow-up
(W ×T Wσ )Σ of W ×T Wσ studied loc.cit. It contains (W ×T Wσ)∼ as an open sub-
scheme.

We reduce Theorem 6.5.1 to a statement, Lemma 6.5.2 below, for an elem-
ent in Grd

FK((W×T Wσ)−). Since WL and Wσ
L are projective and smooth, the Chern

character map ch : Grd
FK(WL ×L Wσ

L)Q → CHd(WL ×L Wσ
L)Q is an isomorphism

by Lemma 2.1.4.3. Since (W ×T Wσ)− is regular by Lemma 5.2.3.2, the canonical
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map K((W ×T Wσ )−) → G((W ×T Wσ)−) is an isomorphism. Hence the maps
K((W ×T Wσ)−) → K(WL ×L Wσ

L) and Grd
FK((W ×T Wσ)−) → Grd

FK(WL ×L Wσ
L)

are surjective. Thus, there exists an element Γ̃ ∈ Grd
FK((W×T Wσ )−)Q such that the

image of Γ in CHd(WL×L Wσ
L)Q is equal to ch(Γ̃|WL×LWσ

L
). Since the equality (6.5.1.1)

is an equality in Q �, we may assume that the image of Γ in CHd(WL×L Wσ
L)Q is the

images of Γ̃ ∈ Grd
FK((W×T Wσ)−) by replacing Γ by a multiple.

The diagram

Grd
FK

(
WL ×L Wσ

L

) ch−→ CHd

(
WL ×L Wσ

L

)
Q
→ GrF

d G
(
WL ×L Wσ

L

)
Q








	( ,t)

Grd
FK

((
W×T Wσ

)−) −−→
( ,t)

Grd
FK

((
W×T Wσ

)−
t

)can◦res→ GrF
d G

((
W×T Wσ

)∼
t

)
Q

∆∗Wt



	



	∆∗Wt

Grd
FK(Wt)

can→ GrF
0G(Wt)Q

is commutative, since the composition of the top horizontal arrows is the canonical
map by Lemma 2.1.4.3. Hence the image of ∆∗

Wt
(Γt) ∈ GrF

0G(Wt)Q is the image of
∆∗

Wt
(Γ̃t) ∈ Grd

FK(Wt) where Γ̃t ∈ Grd
FK((W×T Wσ)−t ) is the reduction of Γ̃.

Thus Theorem 6.5.1 is reduced to the following lemma. Let deg : Grd
FK(Wt)

→ Z denote the composition map Grd
FK(Wt)→ GrF

0G(Wt)
deg→ Z.

Lemma 6.5.2. — Let Γ̃ be an element of Grd
FK((W ×T Wσ)−). Let Γ ∈

CHd(WL ×L Wσ
L)Q be the Chern character ch(Γ̃|WL×LWσ

L
) of the restriction and let ∆∗

Wt
(Γ̃t) ∈

Grd
FK(Wt) be the pull-back of the reduction Γ̃t ∈ Grd

FK((W×T Wσ)−t ) of Γ̃. Then we have an

equality of integers

Tr (Γ∗ ◦ σ∗ : H∗(WL̄, Q �)) = degWt
∆∗

Wt
(Γ̃t).

We show that Γ̃t ∈ Grd
FK((W ×T Wσ)−t ) defines an endomorphism of

H∗
log(Wt̄, Q �) corresponding to Γ∗ ◦ σ∗ on H∗(WL̄, Q �). We define an endomorphism

Γ̃∗t of H∗
log(Wt̄, Q �) as follows. The Chern character map ch : K((W ×T Wσ)−t ) →

H2d
log((W ×T Wσ)−t̄ , Q �(d)) induces a map ch : Grd

FK((W ×T Wσ )−t ) →
H2d

log((W ×T Wσ)−t̄ , Q �(d)). It is the composition of the Chern character map ch :
Grd

FK((W ×T Wσ)−t ) → H2d((W ×T Wσ)−t̄ , Q �(d)) with the canonical map
H2d((W×T Wσ )−t̄ , Q �(d))→ H2d

log((W×T Wσ)−t̄ , Q �(d)).
First, we show that the projections (W×T Wσ)− → W, (W×T Wσ )− → Wσ and

the cup-product induce an isomorphism
⊕

p+q=r Hp
log(Wt̄, Q �(d))⊗Hq

log(Wσ,t̄, Q �) →
Hr

log((W×TWσ)−t̄ , Q �(d)). Since (W×TWσ )−, W and Wσ are semi-stable, the log etale
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cohomology of the closed fibers are canonically isomorphic to the etale cohomology of
the generic fibers by [29] Proposition (4.2). Since the canonical isomorphism is com-
patible with the pull-back and the cup-product, it is reduced to the Künneth formula
for the generic fibers.

Recall that we have Wσ,t = Wt as log schemes over t. By Poincaré duality
loc.cit. Theorem (7.5) for log-etale cohomology, we have a canonical isomorphism⊕

q End(Hq
log(Wt̄, Q �)) → H2d

log((W ×T Wσ )−t , Q �(d)). Taking the composition of the
maps, we obtain a map Grd

FK((W ×T Wσ)−t ) → ⊕
q End(Hq

log(Wt̄, Q �)). Thus an
element Γ̃t ∈ Grd

FK((W×T Wσ)−t ) defines an endomorphism Γ̃∗t of Hq
log(Wt̄, Q �). It is

the composition of

Hq
log(Wt̄, Q �) = Hq

log

(
Wσ

t̄ , Q �

) p∗2−−−→ Hq
log

((
W×T Wσ

)−
t̄
, Q �

) ∪ch(Γ̃t)−−−→
H2d+q

log

((
W×T Wσ

)−
t̄
, Q �(d)

) p1∗−−−→ Hq
log(Wt̄, Q �).

We show that the endomorphism Γ∗ ◦ σ∗ of H∗(WL̄, Q �) corresponds to the
endomorphism Γ∗t on H∗

log(Wt̄, Q �).

Lemma 6.5.3. — Let the notation be the same as in Lemma 6.5.2. Let Γ̃∗t be the endo-

morphism of Hq
log(Wt̄, Q �) defined above and let ch(∆∗

Wt
(Γ̃t)) ∈ H2d

log(Wt̄, Q �(d)) be the Chern

character of the pull-back ∆∗
Wt

(Γ̃t) ∈ Grd
FK(Wt). Then,

1. The diagram

H∗(WL̄, Q �)
Γ∗◦σ∗−−−→ H∗(WL̄, Q �)

can



	



	can

H∗
log(Wt̄, Q �) −−−→

Γ∗t
H∗

log(Wt̄, Q �)

(6.5.3.1)

is commutative and we have an equality

Tr (Γ∗ ◦ σ∗ : H∗(WL̄, Q �)) = Tr (Γ̃∗t : H∗
log(Wt̄, Q �)).(6.5.3.2)

2. We have an equality

Tr (Γ̃∗t : H∗
log(Wt̄, Q �)) = Tr (ch(∆∗

Wt
(Γ̃t))).

Proof. — 1. For the commutative diagram (6.5.3.1), it is sufficient to show the
commutativity of the diagram
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Hq(WL̄, Q �)
σ∗−−−→ Hq

(
Wσ

L̄
, Q �

) p∗2−−−→ Hq
(
WL̄ ×L̄ Wσ

L̄
, Q �

)



	



	



	

Hq
log

(
Wt̄, Q �

)
Hq

log

(
Wσ

t̄ , Q �

) p∗2−−−→ Hq
log

((
W×T Wσ

)−
t̄
, Q �

)

∪[Γ]−−−→ H2d+q
(
WL̄ ×L̄ Wσ

L̄
, Q �(d)

) p1∗−−−→ Hq(WL̄, Q �)


	



	

∪ch(Γ̃t)−−−→ H2d+q
log

((
W×T Wσ

)−
t̄
, Q �(d)

) p1∗−−−→ Hq
log(Wt̄, Q �).

The vertical maps are the canonical isomorphisms. The commutativity of the first two
squares is the functoriality of the canonical isomorphisms. The commutativity of the
last square follows from the functoriality and the compatibility with the Poincaré du-
ality. We show the remaining square is also commutative. The diagram

Grd
FK

((
WT ×T Wσ

)−) −−−→ Grd
FK

(
WL ×L Wσ

L

)



	



	ch

Grd
FK

((
W×T Wσ

)−
t

)
CHd

(
WL ×L Wσ

L

)
Q

ch



	



	cl

H2d
log

((
W×T Wσ

)−
t̄
, Q �(d)

) ←−−− H2d
(
WL̄ ×L̄ Wσ

L̄
, Q �(d)

)

is commuatitive, since the composition of the right vertical arrows is the Chern char-
acter map. Hence it follows from the compatiblity of the canonical isomorphism with
the cup-product.

The equality (6.5.3.2) is an immediate consequence of the commutative diagram
(6.5.3.1).

2. By the functoriality of the Chern character map, Künneth formula and Poin-
caré duality, we have a commutative diagram

Grd
FK

((
W×T Wσ

)−
t

) ∆∗−−−→ Grd
FK(Wt)

ch



	 ch



	

H2d
log

((
W×T Wσ

)−
t̄
, Q �(d)

) ∆∗−−−→ H2d
log(Wt̄, Q �(d))



	



	Tr

⊕
q End

(
Hq

log(Wt̄, Q �)
)

∑
q(−1)qTr−−−−−→ Q �.

The equality follows from this immediately. ��
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To complete the proof of theorem, we compare the trace map with the degree
map.

Lemma 6.5.4. — Let Γ be an element in Grd
FK(Wt) and let ch(Γ) be the image by

the Chern character map ch : Grd
FK(Wt) → H2d

log(Wt̄, Q �(d)). Then we have Tr (ch(Γ)) =
deg Γ. In other words, we have a commutative diagram

Grd
FK(Wt)

ch−−−→ H2d
log(Wt̄, Q �(d))

deg



	



	Tr

Z −−−→ Q �.

Proof. — Let π : W̄t → Wt be the normalization of Wt. The scheme W̄t is
projective and smooth over t. We show that the diagram

Grd
FK(Wt)

ch−−−→ H2d(Wt̄, Q �) −−−→ H2d
log(Wt̄, Q �)

π∗


	 π∗



	



	Tr

Grd
FK(W̄t) −−−→

ch
H2d(W̄t̄, Q �) −−−→

Tr
Q �

(6.5.4.1)

is commutative. Let W◦
t̄ denote the smooth locus of Wt̄ . Then the canonical map

H2d
c (W◦

t̄ , Q �) → H2d(Wt̄, Q �) is an isomorphism. The composition H2d
c (W◦

t̄ , Q �) →
H2d(W̄t̄, Q �)→ Q � is the trace map for W◦

t̄ . The other composition H2d
c (W◦

t̄ , Q �) →
H2d

log(Wt̄, Q �) → Q � is also equal to the trace map for W◦
t̄ by the definition of the

trace map for log etale cohomology in [28] Proof of Proposition (7.8.2). Hence the
right square is commutative. The left square is commutative by the functoriality of
the Chern character map.

We show the equality Tr (ch(Γ)) = deg Γ. Since the composition of the up-
per line of the commutative diagram (6.5.4.1) is the Chern character map, we have
Tr (ch(Γ)) = Tr (π∗(ch(Γ))). On the other hand, we have Γ = π∗π∗Γ ∈ GrF

0G(Wt)

since π∗[OW̄t
] = [OWt ] mod Fd−1G(Wt). Hence we have degWt

Γ = degWt
π∗π∗Γ =

degW̄t
π∗Γ. Thus it is reduced to the well-known equality Tr (ch(π∗Γ)) = degW̄t

π∗Γ
for the projective smooth scheme W̄t. ��

We complete the proof of theorem. We have Tr (Γ∗ ◦ σ∗ : H∗(WL̄, Q �)) =
Tr ch(∆∗

Wt
(Γ̃t)) by Lemma 6.5.3. Further, applying Lemma 6.5.4 to ∆∗

Wt
(Γ̃t) ∈

Grd
FK(Wt), we obtain an equality Tr ch(∆∗

Wt
(Γ̃t)) = deg ∆∗

Wt
(Γ̃t). ��

Proof of Theorem 6.3.1. — By Corollary 5.4.9, we may assume K is complete. We
may further assume XK is irreducible. By Corollary 6.4.3, we have an alteration W as
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in loc. cit. By the computation, Corollary 6.4.5.2, and the log Lefschetz trace formula,
Theorem 6.5.1, we have

[WL : XK] · Sw (Γ∗, XK/K) = q ·
∑

σ∈P0

sw(σ) · degWt
∆∗

Wt
(Γσ,t).

Thus the assertion 1 follows. The assertion 2 follows from this equality and Proposi-
tion 6.4.6. ��
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