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ABSTRACT

In [6], S. Bloch conjectures a formula for the Artin conductor of the £-adic etale cohomology of a regular model
of a variety over a local field and proves it for a curve. The formula, which we call the conductor formula of Bloch,
enables us to compute the conductor that measures the wild ramification by using the sheaf of differential 1-forms. In
this paper, we prove the formula in arbitrary dimension under the assumption that the reduced closed fiber has normal
crossings.

0. Introduction

Let K be a discrete valuation field with perfect residue field F and let Xk
be a proper smooth scheme over K of dimension 4. We briefly recall the defin-
ition of the conductor. We give a detailed account in Section 6.1. The Swan
conductor Sw(Xk/K) of Xk is defined to be the alternating sum Sw(Xg/K) =
Zjio(—l)quHq(XK, Q,) of the Swan conductor of the f-adic etale cohomology
for a prime £ different from the characteristic p of F. The Swan conductor of an
£-adic representation V is defined to be the intertwining number

: > swik(@)Ti(o : V)

SW(V) = —[L : K] P

by taking a sufficiently large finite Galois extension L of K, where swy k(o) denotes
the Swan character and Pp x denotes the wild inertia subgroup of Gal(L/K). For
a proper flat and regular scheme X over S = Spec Ok such that X ®4, K = Xk,
the Artin conductor Art(X/0x) is defined by

Art(X/0x) = x(Xg) — x(Xp) + Sw(Xk/K).
In the right hand side, x denotes the £-adic Euler number.
To state the conductor formula, Bloch introduces in [6] the localized self-
intersection class

(Ax, Ax)s = (_1)d+16d+1§t-(9;(/ﬁk) N [X] € CHy(Xy)

where 6d+1§y(9;</ﬁk) N [X] denotes the localized Chern class of the coherent Ox-

module 52)1(/@3]( and dimX = d 4 1. We give an explicit computation in Proposi-
tion 5.1.6. Let deg : CHy(Xy) — CHy(F) = Z be the degree map. Bloch formulates
the following in [6].
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Comjecture 6.2.1. — Let K be a discrete valuation field with perfect residue field ¥
and let X be a proper flat and regular scheme over Oy with smooth generic fiber. Then we
have

Art(X/0g) = —deg(Ax, Ax)s.

If dimXg =1, it is proved by him in the same paper [6]. If dimXg = 0,
it is nothing but the classical conductor-discriminant formula in algebraic number
theory. For an elliptic curve, the formula is known in [38] Corollary 2 of Theo-
rem | to be equivalent to the Tate-Ogg formula [31] for the relation between
the conductor and the discriminant. The Milnor formula ([10] Exp. XVI Conjec-
ture 1.9) for isolated singularities is shown to follow from the conductor formula
in [33].

The main result of this paper is the following

Theorem 6.2.3. — Let K and X be as in Comjecture 6.2.1. Assume that the reduced
closed fiber (Xy)iea @5 a diwisor of X with normal crossings. Then Comjecture 6.2.1 s true.

Under the stronger assumption that the multiplicities / in Xp = ). /D; are
prime to the residue characteristic, Theorem 6.2.3 is proved in [4] and [7] in-
dependently. In a geometric equi-characteristic situation, the conductor formula is
studied in [22] (cf. [13] Example 14.1.5).

If we could assume an embedded resolution in a strong sense for the reduced
closed fiber, Conjecture 6.2.1 would be a consequence of Theorem 6.2.3. Let X
be as in Conjecture 6.2.1 and assume that there exists a sequence of blowing-ups
X =X, = - — Xy, =X at regular closed subschemes supported in the closed
fibers such that the reduced closed fiber (X}).q has normal crossings. Then Theo-
rem 6.2.3 applied to X' together with Proposition 6.2.2 implies Conjecture 6.2.1
for X.

We also prove a generalization involving an algebraic correspondence. Let Xk
be a proper smooth scheme of dimension ¢ over K and ¢ be a prime number
different from the characteristic of the residue field I as above. For an algebraic
correspondence I' € CH,(Xkx xk Xk), its cycle class defines an endomorphism I'*
of H*(Xg, Q). We put Sw(l, Xg/K) = Y2 (=1)’Sw(I™ : H/(Xg, Q). For an
endomorphism f of an £-adic representation V, its Swan conductor is defined by

1

SW(/ V) =

> swik(@)Tr(f o0 : V)

O’EPL/K

by taking a sufficiently large finite Galois extension L of K.
Let X be a proper and flat regular scheme over S = Spec Ok such that
X ®pc K = Xk and that the reduced closed fiber (Xg),q has simple normal
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crossings. In Section 5.4, we define the logarithmic localized intersection product
[, 11 : GrfG(XK Xg Xg) — Grf_dG(XF) (5.4.2.4) on the graded quotients of
the Grothendieck groups of coherent sheaves with respect to the topological filtra-
tion F,.

Theorem 6.3.1. — Let K be as above and £ be a prime number different from the
characteristic of the residue field. Let Xx be a proper smooth scheme of dimension d = dim Xk
and T € CHY(Xg xx Xk) be an algebraic correspondence on Xg.

1. The Swan conductor Sw(I', X /K) is a rational number independent of €.

2. Let X be a proper and flat regular scheme over Ox such that X @4 K = Xk and
that the reduced closed fiber (Xgp)ieq s a diwvisor with sumple normal crossings. Let [[X, I']] €
GrgG(XF) be the wmage of T' by the composition map CHy(Xg xg Xg) — GrgG(XK XK

Xk) [, 1 GryG(Xy). Then we have an equality of integers

Sw(T', Xk /K) = —deg[[X, I']].

Theorem 6.3.1.1 is a consequence of Theorem 1 of [41]. We will give an
independent proof. Theorem 6.3.1.2 is a generalization to higher dimension of
a logarithmic version of the formulas in [26] and [1]. The localized product in
the right hand side is studied in an unpublished preprint [24] when I' is the
graph of an “admissible” automorphism (cf. Corollary 6.3.3).

The main ingredients of the proof of the two theorems are the following.

1. Equivalence of the conductor formula with its log version.
2. K-theoretic localized intersection theory.
3. Log Lefschetz trace formula.

An outline of the proof, completed in Sections 6.4 and 6.5, of the conductor
formula is summarized as follows. We show that Theorem 6.2.3 is equivalent to
its log version

Sw(Xi/K) = —deg(Ax, Ax)'*

Theorem 6.2.5. The logarithmic self-intersection class (Ax, AX)ISOg € CHo(Xy) 1s
defined by replacing Q;i/(]k in the definition of (Ax, Ax)s by the sheaf
Q;i/ﬁK(log/log) of differential 1-forms with log poles. We define the logarithmic
K-theoretic localized intersection product [[X, ]] : G(Xg xx Xg) = G(Xp) with
the log diagonal map X — (X xg X)™ in Definition 5.4.2. It is defined as the
difference of the classes of higher Jor-sheaves of even degree and odd degree. We
show the equality

(Ax, Ax)SE = [[X, Ax]]
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in Lemma 5.4.5.1. The log version, Theorem 6.2.5, is the special case of Theo-
rem 6.3.1 where I' is the diagonal Ax.

To prove Theorem 6.3.1, we take an alteration W — X where W is a pro-
jective and strictly semi-stable scheme over the integer ring T = Spec 0, of a finite
normal extension L of K. Using this alteration, we compute the Swan conductor
as

[W: XISw(I', Xk /K) = ¢ Y sw(o)Tr (I o0, : H'(Wp, Q)
oePr /K
in Corollary 6.4.5 where I'; denotes the pull-back of I' by Wy, x; WY — X xg Xk,
W? denotes the conjugate of W by o, and ¢ is the inseparable degree of L. over K.
On the other hand, we compute the localized intersection product as

(6.4.6.1) (W X]degy [[X,T]] = —¢- Z sw(o) - degy Ay, (I's,)
o€PL /K

in Proposition 6.4.6. In the right hand side, ¢ denotes the closed point of T, I';, €
G((W x1 W);") denotes the reduction of I, and Aj, : G((W x1 W);) = G(W))
denotes the pull-back by the log diagonal map. For the proof of the equality
(6.4.6.1), we use associativity, Propositions 3.3.2 and 3.3.3 of the localized intersec-
tion product and an interpretation, Lemma 6.1.1.2, of the Swan character as the
localized intersection product. Finally, we complete the proof of Theorem 6.3.1 by
showing a log Lefschetz trace formula

Tr (F:’; oo, : H"(Wj, Q()) = degy, Ay, (Ts.)
in Theorem 6.5.1.

The proof outlined above is compared to Bloch’s original proof in [6] as
follows. In the original proof, the main steps are the following.

I’. Computation of the Euler characteristic of the closed fiber.
2'. Projection formula for localized intersection product.
3’. Computation of the trace on etale cohomology.

Each of items 1'-3" corresponds to each of items 1-3 above, respectively. In the
original proof, the step 1’ is carried out by a detailed combinatorial analysis pecu-
liar to the intersection product on surfaces. In this paper, by introducing the log
version, we avoid the difficulty in this step. The idea is that putting the log struc-
ture defined by the boundary has an effect similar to cutting off the boundary, the
closed fiber in our case. A prototype of this idea is the Lefschetz trace formula
for an open variety, Lemma 6.2.6. In this paper, it is realized as Theorem 5.4.3
which asserts that the logarithmic localized intersection product in fact depends
only on the generic fiber. Non-logarithmic localized intersection product does not
share this property in general. The step 2’ is generalized to the theory of local-
ized intersection product using K-theory. An advantage of the use of K-theory lies
in that the crucial associativity formulas, Propositions 3.3.2 and 3.3.3, are derived
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from the associativity of derived tensor product. The log Lefschetz trace formula,
Theorem 6.5.1, replaces the computation in the step 3’ in higher dimension.

The idea behind the definition of the localized intersection product is as
follows. If X is a smooth scheme over a field F, the intersection product of cy-
cles V.and W on X is defined to be the pull-back of VX W in X xyX by the
diagonal embedding X — X xpX. Our aim is to generalize it to a regular flat
scheme X over a discrete valuation ring Ok. The difficulty here is that, contrary
to the case over a field, the immersion X — X X4 X is not a regular immersion
unless X is smooth over Ok. If we had a base field F of Ok, the fiber product
X X g X should be a divisor of a regular scheme X xpX. If D is a divisor of
a regular scheme P, one can almost recover the intersection product of cycles on
D with respect to P using Jor-sheaves on D, as in Proposition 3.2.3. Although
the product X X4 X may not be globally a divisor of a regular scheme, we can
make a suitable definition of product using Jor-sheaves, based on the fact that
it 1s locally a divisor of a smooth scheme over X with respect to a projection.
The product thus defined is in fact supported in the nonsmooth locus of X and
1s called the localized intersection product. A relation with the localized intersec-
tion product in the setting of Chow groups defined by Abbes in [l] is given in
Theorem 3.4.3.

In the classical case, the Lefschetz trace formula is rather a formal conse-
quence of the Poincaré duality, the Kiinneth formula, the cycle map and the com-
patibility of trace map with degree map. For log etale cohomology, the Poincaré
duality and the Kinneth formula are already established in [28]. We consider the
Chern character map to log etale cohomology in place of the cycle map. The
required compatibility is reduced to that for the usual etale cohomology.

The content of each section is as follows. In Section 1, we recall basic
facts on derived exterior powers, cotangent complexes and on the Atiyah class
map following [19]. We also introduce in 1.6 a spectral sequence computing
f%rfx(ﬁv, Ow) under a certain hypothesis and study its relation with the Atiyah
class map in 1.7. We recall some basic facts on K-theoretic intersection product
and localized Chern classes and relate the derived exterior power to the localized
Chern class in a certain case in Section 2. In Section 3, we develop generality
on localized K-theoretic intersection product. In Section 4, we develop generality
on logarithmic product and its applications. In Section 5, we study localized in-
tersection product on schemes over a discrete valuation ring using the results in
Sections 3 and 4. In the final Section 6, we state the main result, Theorem 6.2.3,
and its log version, Theorem 6.2.5, and prove their equivalence. We formulate
Theorem 6.3.1, which contains Theorem 6.2.5 as a special case, in terms of log-
arithmic intersection product. In the final Subsection 6.5, we also state and prove
logarithmic Lefschetz trace formula, Theorem 6.5.1 and prove Theorem 6.3.1 and
thus complete the proof of Theorems 6.2.3 and 6.2.5.
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The results in Subsections 1.3, 1.6, 1.7, 2.3, 2.4 and 3.4 are used to prove
the equivalence of Theorems 6.2.3 and 6.2.5 and to show that Theorem 6.2.5 is
a special case of Theorem 6.3.1. A reader only interested in the proof of Theo-
rem 6.3.1 may skip them.

Some results in this paper are closely related to those in the paper [39].
In [39], there are mistakes in Definition (1.1), proof of Proposition (3.1), and
Proposition (4.1). Definition (1.1) is corrected as Definition 1.2.1 and Lemma 1.2.6.
Proposition (3.1) is reproved as Lemma 5.1.3. A corrected statement of Proposition
(4.1) 1s given in Proposition 5.1.4. The author of [39] apologizes for the mistakes
and inconvenience.
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1. Derived exterior powers and cotangent complexes

We recall generalities on derived exterior powers and cotangent complexes.
A basic reference 1s [19].

After recalling standard notations on simplicial modules in 1.1, we recall the def-
initions and some basic properties of derived exterior powers and symmetric powers
in 1.2. We introduce Koszul simplicial algebras in 1.3. We recall briefly the definition
of cotangent complexes and the Atiyah classes in 1.4 and the associativity and the pro-
jection formula for Zor in 1.5. We define the excess conormal complex and a spectral
sequence computing Zr in 1.6. We study its relation with the Atiyah class in 1.7.

1.1. Simplicial modules and chain complexes. — As a preliminary, we recall the
standard notations on simplicial objects. Basic references are [19] Chap. I 1 and [42]
Chap. 8.

For an integer n > 0, let [0, n] denote the finite ordered set {0, 1, ..., n}. Let
A denote the category whose objects are [0,n],n = 0,1, 2, ... and morphisms are
increasing maps. For 0 < ¢ < n, let §; : [0,n — 1] — [0, n] be the increasing injection
skipping 7 and let o, : [0, 74+ 1] — [0, ] be the increasing surjection repeating ¢. For
a category %, a simplicial object of € is a contravariant functor A’ — %. A simplicial
object X : A’ — % is determined by the objects X, = X([0,#]) for n = 0,1, 2, ...,
the maps d;, = 6 : X, - X,_; and 5;, = 0 : X, = X,y for 0 <7 < n For an
object X of €, the constant simplicial object defined by X, = X for all n > 0 and
d;, = si, = 1dx 1s denoted by KX. If there is no fear of confusion, we drop K and
write simply X. Let Simpl(%4) denote the category of simplicial objects of €.

For a category €, a bisimplicial object of € is a contravariant functor (A x A)’
— % . Let Bisimpl(%) denote the category of bisimplicial objects of €. The diagonal
functor A : Bisimpl(4) — Simpl(%) is defined as the pull-back by the diagonal func-
tor A = A x A. For a bisimplicial object X, we let X* = AX denote the associated
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simplicial object. We identify a bisimplicial object (X,, )., with a simplicial simplicial
object ((X,),)m.- The functor Bisimpl(%€) — Simpl(Simpl(%)) is an isomorphism of
categories.

Let &7 be an abelian category. A chain complex is a complex C = (C,, d, : C,
— C,_1), satisfying C, = 0 for n < 0. Let C,(%7) denote the full-subcategory of the
category C(&7) of complexes of &7 consisting of chain complexes. For an simplicial
object C = (C,, d;,, $i.n)in of &, the normal complex NC = (NC,, d,), is the chain
complex defined by NC, = ),_;.,Ker(d;, : C, — C,_)) and d, = dj,Inc,- We say
a map C — C’ of simplicial object is a quasi-isomorphism if the map NC — NC'
of normal complexes is a quasi-isomorphism. We define a functor N : Simpl(</) —
C.(«) by sending a simplicial object to its normal complex.

The Dold-Kan transform K : C,(/) — Simpl(</) gives a quasi-inverse of the
functor N : Simpl(2/) — C,(«7) ([19] Chap. I 1.3.1, [42] 8.4). Further, the functors
N and K are compatible with homotopies and induce quasi-inverse functors between
the corresponding categories up to homotopy [42] Theorem 8.4.1.

A double chain complex is a naive double complex C = (C,,,,d,,, : C,, —
Ch-tmdy, 2 Cow = Copum)my satistying G, =0 for n<0orm<0andd,, d =

d'_, d . Let C,,.(27) denote the category of double chain complexes. For a double

m—1,n%mn*
chain complex C = (C,,,, d,,,,d, ), the associated simple chain complex f C is de-
fined by (D,_,1, Cpp» 2oy, (@), + (=1)'d) )),. We have a functor [ Coo() —
C.(«). We identify a double chain complex (C,,,),., with a chain complex of chain
complexes ((C,),)n..- The functor C, (%) — C,(C,()) is an isomorphism of cat-
egories.

For a bisimplicial object C of 7, the normal complex NC is the double chain
complex consisting of NC,,, = (..., Ker &, N, Ker d' , and d, =
.y INCos @ = ) (. wINC,,,,- The normal complexes define a functor N : Bisimpl(%/)

— C,o ().
The diagram

Bisimpl(#/) —— C,.(<)

(1.1.0.1) Al fl
Simpl(/) —— C.(«7)

is commutative up to homotopy. Namely there exist a morphism No A — [oN of
functors called the Alexander-Whitney map and its inverse up to homotopy ([42] 8.5.4
and [19] I 1.2.2, 1.3.5). It induces an isomorphism of functors to the derived category.
The functor N for the abelian category Simpl(%?) defines a functor N’
Bisimpl(«7) = Simpl(Simpl(«7)) — C,(Simpl(<)). The functor N : Simpl(«/) —
C. induces a functor N” : C,(Simpl(#)) — C,(C,o/) = C,.o. We have N =
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N” o N'. Similarly, the partial Dold-Kan transforms K’ : C,(Simpl(%)) —
Simpl(Simpl(«/)) = Bisimpl(#) and K" : C, .o = C,(C,o/) — C,(Simpl(=))

are defined and the composition K = K’ o K” gives a quasi-inverse of N.

1.2. Derwed exterior powers and derived symmetric powers. — We recall generalities
on derived exterior power complexes and derived symmetric power complexes. For
a chain complex of the form [.Z — .#] where .# is put on degree 0, we give an ex-
plicit description of the exterior powers and the symmetric powers in Corollary 1.2.7.
A basic reference i1s [19] Chapitre I 1.3 and 4.2.

In this section, (X, Ax) denotes a ringed topos. In practice, we consider the fol-
lowing two cases. Let (T, Ar) be a ringed space. Besides (T, Ay) itself, we also con-
sider the topos X = Simpl(T) of simplicial sheaves of sets on T with the constant
simplicial ring Ax = KAr. In the second case, the category (Ax-modules) is naturally
identified with the category Simpl(Ar-modules) of simplicial Ap-modules.

We say a simplicial Ax-module . is flat if each component ., is flat. We also
say a chain complex of Ax-modules % is flat if each component %, is flat. For sim-
plicial Ax-modules .# and A, let 4 ®x, -/ denote the simplicial module defined by
(M Qp N )y = MyQsy N, and let A ®f_\x A denote the bisimplicial module defined
by (M @ng N )V = M, @y N, For chain complexes of Ax-modules £ and £, let
H @4, " denote the double chain complex defined by (' ®4 H "), = @y A,
and let # ®,, A" be the associated simple complex [ (£ ®4 A"). Since M @ N
= A @) N) and N(A ® N) =N @, NA, the Alexander-Whitney map
No A — [oN induces a quasi-isomorphism N(Z Qa, A) = [(NA @a NA).

Hence, we have quasi-isomorphisms
H @ay A = [(Fex)

(1.1.0.1) —— [ (NKx ®@{ NK¥") = [ N(KA# @4 KH)

—— NA(KZ ®, KA') = N(KX @ KX7).

We briefly describe the idea of the definition of derived exterior powers and
derived symmetric powers for chain complexes on a ringed topos (X, Ax) ([19] Chap.
I 4.2.2.2, Definition 1.2.1 below) before recalling it precisely. In 1.1, we have recalled
an equivalence

K
C,(Ax-modules) : Simpl(Ax-modules)
N
of the categories of chain complexes of Ax-modules and of simplicial Ax-modules. For
simplicial Ax-modules, the exterior power and symmetric power are defined by simply
taking the exterior powers and the symmetric powers componentwise. For chain com-
plexes, the definitions are given by transferring the definitions for simplicial modules
by using the functors N and K.
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Let (X, Ax) be a ringed topos and .# be a simplicial Ax-module. For an in-
teger p > 0, the p-th symmetric power S’.# is defined as the composition A’ £

r
(Ax-modules) > (Ax-modules) with the functor S? : (Ax-modules) — (Ax-modules)
sending an Ax-module to its p-th symmetric power. Similarly, for an integer ¢ > 0,

the ¢-th exterior power A’ is defined as the composition A’ £ (Ax-modules) X
(Ax-modules) with the functor A? : (Ax-modules) — (Ax-modules) sending an Ax-
module to its ¢-th exterior power. The simplicial module F{ .7 associated to the stan-
dard free resolution Fy,.# ([19] Chap. I (1.5.5.2)) has a canonical quasi-isomorphism
FR A — M of simplicial modules.

Definition 1.2.1 ([19] Chap. I 4.2.2.2). — Let (X, Ax) be a ringed topos and F~ be
a chain complex of Ax-modules.

1. For an integer p > 0, the p-th derived symmetric power LS?JZ" s defined to be
NS/FL K7

2. For an integer ¢ > 0, the g-th derived exterior power LAY is defined to be
NAFL KA.

For an integer ¢ > 0, we put LIS’JZ" = LS’ . Tor an integer 7 > 0, we also
put VA" = LA . If X7 —  is a homotopy equivalence of chain complexes,
the induced maps LS’ %" — LS’ # and LA’#" — LA’ are also homotopy equiv-
alences. If each component of % is flat, the canonical maps LS?.#" — NS/K. %" and
LA?Z — NAKZ are quasi-isomorphisms. For an Ax-module .#, we have canon-
ical isomorphisms L'S”.% — S/.Z and L'A%F — A'.Z. If .F is flat, the canonical
maps LS’.# — SI.F and LAY — A% are quasi-isomorphisms.

For a simplicial Ax-module .# and an integer p > 0, the diagonal map .#Z —
M ® A induces a map

(1.2.1.1) S — SNMS M) — B,y S' MRS M.

For a chain complex £ and integers p = p' + p”, it induces a canonical map
(1.2.1.2) LSt —— LS' 2 @Y% LSV'.X.

Similarly, canonical maps

(1.2.1.3) NH ——> D, N MR N M

7=q'+q¢
and

(1.2.1.4) LA’ —— LA' X Q% LAt

for ¢ = ¢’ 4+ ¢” are defined. The following elementary lemma is useful in the sequel.
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Lemma 1.2.2. — Let 0 > £ — M — N — 0 be an exact sequence of flat Ax-
modules. Then, the canonical maps (1.2.1.1) and (1.2.1.3) define commutative diagrams of exact
sequences

0> LRSI N - SLH|(SPL -SP2 ) — St N -0
(1.2.2.1) | s \
0> QSN — MRS N - N QSN — 0,

0= LN N - AN M|(NL - N2 M) — AN — 0
(1.2.2.2) [ \ \
0> QAN — M NN — N QAN — 0.

Proof. — 1t suffices to show the exactness. By localization and a limit argument
(cf. [19] T 4.2.1), it is reduced to the case where .Z, # and .4 are free of finite rank
and the sequence 0 - & — .# — A — 0 splits. Then the assertion is clear. |

For chain complexes .# and .4, we naturally identify the complexes .Z[1]®.4
and (A @ N)[1].

Corollary 1.2.3. — 1. Let 0 - £ — M — N — 0 be an exact sequence of flat
simplicial Ax-modules. Then, for p > 0, the upper exact sequence in (1.2.2.1) defines a distinguished

triangle
(1.2.3.1) — NZL QL NS"' AN — NSLA)(S’L -S> M) - NS! AN —.
The boundary map NSV — N.Z Q% NSV A[1] is the composition

(1.2.1.1)

NS/ 20 NA @5 NS —— NZ[1]®% NSH'.A.

2. Let L be an ivertible Ax-module, & be a flat Ax-module and — £ — & — H —
be a distinguished triangle of chain complexes of Ax-modules. For ¢ > 0, the upper exact sequence
in (1.2.2.2) defines a distinguished triangle

(1.2.3.2) —— QLAY —— ATE —— LAY —— .

The boundary map LA™ # — L Q LAIK[1] is the composition

LA o L2 v e LA —— L1 Q LALK.

It induces an isomorphism LI AT — L Q LINIA either if p > 0 or if & is locally fiee
of rank n < q.
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Proof. — 1. It 1s sufficient to apply Lemma 1.2.2.

2. We may assume % is the mapping cone of . — &. Let € be the mapping
cylinder of . — &. Then, for the distinguished triangle (1.2.3.2) and the descrip-
tion of the boundary map, it is sufficient to apply Lemma 1.2.2 to the exact sequence
0 > KZ — K% — K% — 0 of simplicial modules. The last assertion is clear from
the distinguished triangle (1.2.3.2). |

To study explicitly the derived exterior power complex, we recall the divided
power modules I'"M, see e.g. [16] Exp. XVII 5.5.2. Let A be a commutative ring and
M be an A-module. We regard M as a functor attaching to a commutative A-algebra
A’ the set A’ ®, M. For an integer 7 > 0 and for A-modules M and N, a morphism
S+ M — N of functors is called r-ic if f(ax) = a'f(x) for an A-algebra A’, a € A’
and x € A’ ®y M. For an A-module M, the 7-th divided power I'"M represents the
functor attaching to an A-module N the set of 7-ic morphisms M — N. The universal
7-ic morphism is denoted by Y’ : M — I"M. We have M = A and the map M —
'™ : x — y'x is an isomorphism. If r = 7, + 7y, the r-ic map M — "M ® "M
sending x to ¥ (x) ® ¥ (x) induces a map ['M — I""MQI"M. If M = M, & M,, the
r-ic map M — @, ,,,_, T"M; ® I"Mj sending (v, x5) to (¥" (x1) ® y"*(xy)) defines
an isomorphism I"'M — P, ,,,_, "M, ® "M, ([16] Exp. XVII 5.5.2.6). If M is
a free (resp. flat) A-module, its 7-th power I"M 1is also a free (resp. flat) A-module.
More precisely, if M i1s a free A-module and ey, ..., ¢, 1s a basis of M, I"M is also
a free A-module and y"¢; @ -+ Q@ y™e,, (n + -+ +1r, =r,1,....,7, = 0) is a basis of
I"M. Similarly as (1.2.1.1) and (1.2.1.3), we have a canonical map

(1.2.4.1) 'M —— @ "M ®, I M.

r=r'+r"

The definition of I'" and the properties as above are generalized to modules on a ringed
topos.

Definition 1.2.4. — Let (X, Ax) be a ringed topos and v : L — M be a morphism of
Ax-modules.
1. For an wteger p > 0, we define a chain complex

SNL = M) = (Sl ® N'.Z, d))
by putting d, lo be the composition

1®(1.2.1.3)
—

Sl @ AT Sl Q@ L Q@ MNYL
(1.2.4.2) ll@v@l

S A QNY < Sl @ @ ML
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2. For an integer ¢ > 0, we define a chain complex
AL S M= (N"HQT' L, d)

by putting d, to be the composition

AN g Ty B Al e v RS
(1.2.4.3) l@y@l
A M QTS "L N AR MRTL.

The complex S/(.Z = .#) is the same as the total degree p-part of the Koszul

complex Kos,(v) and the complex A/(Z S ) is the total degree g¢-part of the
Koszul complex Kos®(v) defined in [19] I 4.3.1.3.

Lemma 1.2.5. — Let £ and & be locally free Ax-modules of rank 1 and n. Let u :
L — & be an Ax-linear map and u* : & — L be ils dual. Let

NTE QLY —— Homa (NEQ LE ! NE QL)

I

Lt QAEF Q@ N'E QR LB

be the isomorphism sending x@y to the map x' ®) > xAx'®yQy and the canonical isomorphism.
Then they induce an isomorphism

(1.2.5.1) N(ZL — &) —— S(E* > L)QNERQR L
of chain complexes.

Proof. — The squares

ANITIE @ LE — ANT1E QL

l l

Som(ATIE Q@ L7 NE Q@ LB — Hom(MNE Q L, NE R L")

[ [

Dg/ﬂ*@nfpfl ® Ap+1g* ® NE ® g@n N Z*@nﬁz ® ALE* R NE ® Z@n

are commutative up to (—1)’ and the assertion follows. O
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Lemma 1.2.6 (cf. [34] 7.34, [19] 14.3.2). — Let 0 —> L — M — N — 0 be

an exact sequence of flat Ax-modules. Then, the natural maps
(1.2.6.1) SNYL > M) —> SIA,

(1.2.6.2) N(L S M) —— NN
are quast-isomorphisms.

Proof. — 1t 1s proved for the symmetric power in [19] I 4.3.2. The proof for the
exterior power is similar. We briefly sketch it. For the direct sum, we have a canonical
isomorphism

NLOL S MM
s Dy [ ML S QN (LS ).

Similarly as loc. cit., it is reduced to the case where &, .# and A are free of fi-

nite rank and the sequence 0 — ¥ — # — A4 — 0 splits. Hence, we may

identity & — A with £ @0 YWy By induction on rank of .Z, we see

that A7 (& S ) is acyclic except for ¢ = 0. Thus we obtain a quasi-isomorphism
AN(L S #) — AN and the assertion follows. O

Corollary 1.2.7. — Let u © L — M be a map of flat Ax-modules and let FH =
[.L = M) be the mapping cone. Then, the maps (1.2.6.1) and (1.2.6.2) induce isomorphisms

(1.2.7.1) SNYL > M) —> LSIH,

(1.2.7.2) AN(ZL > M) — LAK
in the derived category.

Proof — Let € = [£ “SV o ® £) be the mapping cylinder. The exact
sequence of chain complexes 0 — & — ¥ — # — 0 induces an exact se-
quence of simplicial modules 0 - K% — K% — K% — 0. By Lemma 1.2.6,
we obtain a quasi-isomorphism S/(K.¥ — K%) — S’K.Z of complexes of sim-
plicial modules. It induces a quasi-isomorphism [N"S/(K.¥ — K%) — NS/K.# of
chain complexes. Since the canonical map .# — % is a quasi-isomorphism, it induces
a quasi-isomorphism K.Z — K% of simplicial modules. It further induces a quasi-
isomorphism S/(¢ — #) = [N'S/(KZ — K#) - [N'S/(KZL — K%). Thus

we obtain an isomorphism (1.2.7.1). It is similar for the exterior power. |
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Proposition 1.2.8 ([34] 7.21, [19] Chap. I Proposition 4.3.2.1). — Let £~ be a chain
complex of Ax-modules and p > O be an integer. Then, the map (1.2.6.1) induces an isomorphism

(1.2.8.1) (LA [ p] —— LSI(H[1])

in the derived category.

Progf: — We briefly recall the proof of loc. cit. Replacing %" by a flat resolution,
we may assume £ is flat. Let € be the mapping cone of the identity % — % .
Then, we have an exact sequence 0 — % — ¢ — J#[1] — 0. Applying
Lemma 1.2.6 to the exact sequence 0 — K7 — K% — KJT[1] — 0 of sim-
plicial modules, we obtain a quasi-isomorphism of complexes of simplicial modules
SI(KA — K€) — S/(KAT1]). Since € is acyclic, the map of associated simple
complexes [N'S/(K# — K%) — NA?(KJ)[p] is a quasi-isomorphism. Thus the
assertion follows. O

Lemma 1.2.9. — The isomorphism (1.2.8.1) and the maps (1.2.1.2) and (1.2.1.4) form

a commutative diagram

LA*Z[p) —— LA Z[p]®% LA A (p']
| |

(1.2.9.1) | |
LS/ (1)) —— LS/ (1)) ®% LS (A 1]).

Proof. — We use the notation in the proof of Proposition 1.2.8. As in the proof
of Lemma 1.2.6, we obtain maps

SHK A — KE) — SH(KA®* - K€
— YK — K6) @ S (KA#¥ — K?%)

of complexes of simplicial modules. The composition is compatible with the map
NKAp] — AKA [P A KA [p']. Hence the assertion follows. O

1.3. Koszul algebras. — We introduce Koszul simplicial algebras. We will use
them in the proof of the degeneration, Proposition 1.6.7, of a spectral sequence com-
puting Jor.

Let (X, Ax) be a ringed topos and u : .# — Ax be a morphism of Ax-
modules. Let [.# —> Ax] denote the chain complex where Ax is put on degree 0.
The Dold-Kan transform K[.Z —> Ax] of the chain complex [# 5 Ax] is a sim-
plicial Ax-module. Let S(K[.Z N Ax]) denote the symmetric algebra of the sim-
plicial Ax-module K[.Z 5 Ag]. The n-th component of S(K[.Z 5 A(]) is the
symmetric algebra over Ax of the n-th component K,[.Z = Ax]. The simplicial al-

gebra S(K[.# > Ax]) is naturally an algebra over the constant simplicial Ax-algebra
S(K[0 — Ax]) = S(KAx) = KS(Ax).
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Definition 1.3.1. — Let (X, Ax) be a ringed topos and u : M — Ax be a morphism of
Ax-modules.

1. We define a simplicial Ax-algebra A(A# > A) by
(1.3.1.1) A S A) = S(K[A = Ax]) ®skay) KAx
with respect to the map S(KAx) — KAx mduced by id : KAx — KAx. We call the simplicial
Ax-algebra A(A Y Ax) the Koszul simplicial algebra of u: .# — Ax.

2. The chain complex K(M > Ax) = (N A, u,) defined by putting u, to be the com-
position

u®1

N —> %@Aﬂ_l.ﬂ s Aﬂ_l,ﬂ
is called the Koszul complex of u: M — Ax.

If A"™*' 4 = 0, we have
(1.3.1.2) KA 5 Ax) = S(AM S A).
In general, we have K(.#Z 5 Ax) = li_rr)1,ZS"(/// 5 Ayx) with respect to the natural

maps.

Lemma 1.3.2. — Let (X, Ax) be a ringed topos and u : M — Ax be a morphism
of Ax-modules. We define an increasing filtration ¥y on A —> Ax) by pulting F, to be the
image of @p’sp SY(K[A = AK)). Then, we have a canonical isomorphism SPK(A[1]) —
Gr;A(/// 5 AX) of simplicial modules.

Assume A s flat. Then, the spectral sequence

E,, =H,. NGryA(# = Ax) = H, [NA(A = Ax)
satisfies E; , = 0 except for ¢ = 0. The complex E. , is naturally identified with the Koszul complex
K/ = Ax).
Progf. — The exact sequence 0 - A — [.# — A] — #[1] — 0 of chain com-

plexes induces an exact sequence 0 - KA — K[.Z — A] — K(Z[1]) — 0 of sim-
plicial A-modules. By definition, we have a commutative diagram of exact sequences

0 0
) \!

KA ®x S 'K([1]) — Gr A — A)
A \:

(1.3.2.1) SK[AM — Al/S’KA - SI2K[A4 — Al — Frr-UA(# — A)
A \:

SR ([1]) —  GriA(# — A)

) \!

0 0.
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Since the map S(KAyx) — KAx in Definition 1.3.1.1 is induced by the identity KAx —
KAx, the upper horizontal arrow maps 1 ® a to the class of a. Thus, it is easy to see
that the horizontal arrows are isomorphisms.

Assume . is flat. Then, the bottom horizontal map in (1.3.2.1) induces an iso-
morphism A’.Z|[p] — LS/ (A#[1]) — NGr{iA(/// — A) by Proposition 1.2.8. By the
diagram (1.3.2.1) and Corollary 1.2.3.1, we have a commutative diagram

LS (.#[1]) ——  NGriA(# — A)
(1.3.2.2) A1) Q% LS ([1]) l

u®1l

All] ®x LS (#[1]) —— NGrl 'A(# — A)[1].

Thus the assertion follows from Lemma 1.2.9. O

Loma 1.33. — L1a 0 — L5 05 4 = 0 be an exact sequence of flat
Ax-modules and u : N — Ax be a map of Ax-modules. We put Ay = A(L pcid Ax),
A, =AA = Ax) and Ay = ANV > Ax) and we wdentify Ax = A0 — Ax). The

commutatwe diagram

M —— N
[
<L —— 0

induces an 1somorphism

(1.3.3.1) A, ®a, Ax — A,

Progf. — We have an exact sequence 0 — K[.Z — 0] - K[.Z — Ax] —
K[ — Ax] — 0 of flat simplicial modules. Hence, we obtain an isomorphism
SK[AZ — Ax]) Qskz—o) Ax = S(K[A — Ax]) of simplicial algebras. It induces
the isomorphism (1.3.3.1). |

We define a generalization for chain complexes.

Definition 1.3.4. — Let (X, Ax) be a ringed topos and u : H — Ax be a map of chain
complexes. We regard KA — KAx be a map of KAx-modules on the topos Simpl(X) and define
the Koszul bisimplicial algebra A(E — Ax) to be the simplicial simplicial algebra A(KA —
KAx) regarded as a bisimplicial Ax-algebra. Let A®(K# — KAx) = AAK# — KAx)
denote the diagonal simplicial Ax-algebra.
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Lemma 1.3.5. — Let v : X' — & be a quasi-isomorphism of flat chain complexes of
Ax-modules and u : H — Ax be a map of chain complexes of Ax-modules. We put ' = uov:

u

K — Ax. Then the natural map A>(H" — Ax) — A> (A 5 Ay) s a quast-isomorphism
of simplicial Ax-algebras.

Proof. — Let KJ#" — KJ¢ be the map of the Dold-Kan transforms. Let F* de-
note the filtrations on A(JZ —u> Ax) and A(¥” 5 Ax) in Lemma 1.3.2. It is sufficient
to show that f NGriA(Z’ 5 Ay) — f NGryA(Z 5 Ay) is a quasi-isomorphism
for each n > 0. By Lemma 1.3.2, GriA(J¢ 5 Ax) and GriA(X” KN Ax) are iso-
morphic to S"K'(KJ)[1]) and S"K'((KJZ")[1]) respectively. By Proposition 1.2.8,
N'S"K'(KZ)[1]) and N'S"K'((K2Z")[1]) are quasi-isomorphic to A'K.#[n] and
N'KZ"[n] respectively, as complexes of simplicial modules. Hence f NS"K'(K2)[1)])
and f NS'"K'(KZ")[1]) are isomorphic to LA'J#[n] and LA'#"[n] respectively.
Thus the assertion follows. O

Corollary 1.3.6. — Let M and L be flat Ax-modules and let u : M — Ax and
v: L — M be Ax-linecar maps. Let H# = [L = M) be the mapping cone and € =
[ “ e L] be the mapping cylinder. We define a map ¢ : € — Ax by (u, uov).

1. The natural map M — € induces a quasi-isomorphism

(1.3.6.1) A, =A(# > Ax) —— Ay =A%(F = Ax)

of simplicial Ax-algebras.

2. Assume the composition uo v : L — Ax is the O-map and let w: K — Ax be the
map of chain complexes defined by u. We put Ay = A(ZL 5 Ax) and Ay = A2 (5 Ay).
Then the commutative diagram

C —— X
[
Z —— 0

induces an 1somorphism
(1.3.6.2) Ay Qa, Ax ——> Ay
of simplicial Ax-algebras.

Progf. — 1. Since the map .# — € is a quasi-isomorphism, the assertion follows
from Lemma 1.3.5.

2. We have an exact sequence 0 - K — K% — K% — 0 of simplicial
Ax-modules. By applying Lemma 1.3.3, we obtain an isomorphism
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A S Ay) ® KAx —— A(KF 3 Ay)

KA(Z5Ax)
of bisimplicial Ax-algebras. Taking the diagonals, we obtain the isomorphism (1.3.6.2).
O
1.4. Cotangent complexes and the Atiyah classes. — We recall some definitions

and facts on cotangent complexes and the Atiyah classes. A basic reference is [19]
Chapitres II and IV.

Let (X, A) be a ringed topos. For an A-algebra B, a standard resolution P,(B)
— B by a free simplicial A-algebra Po(B) is constructed in [19] I 1.5.5.6. The cotan-
gent complex Ly, is defined as the normal complex N (Q%,A(B) /A ®py) KB) ([19] Cha-
pitre IT 1.2). There is a canonical isomorphism Ly — Qp sa (loc.cit. Proposi-
tion 1.2.4.2). If A — B is surjective and I = Ker(A — B), we have Jf{Lgn = 0
and a canonical isomorphism .7 L,y — I/I* (loc.cit. Corollaire 1.2.8.1).

Let (X, A) be a ringed topos. We say a simplicial A-algebra P is weakly free if,
for each n > 0, there exist a flat A-module L, such that the n-th component P, of P is
isomorphic to the symmetric algebra S,L,. For an A-algebra B, we say a morphism
of simplicial A-algebra P — KB is a resolution P — B by a weakly free simplicial
A-algebra if P is weakly free and P — B is a quasi-isomorphism in the sense that
the map NP — NKB = B of normal complexes is a quasi-isomorphism. A resolution
P — B by a weakly free simplicial A-algebra induces an isomorphism L/, — QII)/ A
in the derived category as follows. Let P{(P) — P be the diagonal of the standard
resolution by free bisimplicial A-algebras as in loc.cit. (1.2.2.1). Then the quasi-iso-
morphisms Py (B) < Pﬁ (P) — P induce quasi-isomorphisms QII{,\(B) / A(—Qéﬁ @A Qp /A
Composing them with the quasi-isomorphism Qp 5 e Q. B /a ®p,) B, we obtain
an isomorphism Lg/y — Q} /A

For a map f : X — S of ringed toposes, the cotangent complex Ly/s is defined

1 . P .
Proipg AX)/[f T As P, (4x) Ax. We will recall an explicit computation

of the cotangent complex in Lemma 1.6.2 for some morphisms of schemes. For maps

as LAX/fflAS = Q

XLy4sof ringed toposes, a distinguished triangle
(1.4.0.1) —> Ly — Lxs — Lxyy ——

is constructed as follows (loc.cit. Proposition 2.1.2). Let Ps(Ay) — Ay be the standard
resolution by a free simplicial g~ Ag-algebra and Pﬁs( Ay (Ax) = Ax be the diagonal of
the standard resolution by a free bisimplicial /~'Ps(Ay)-algebra as in loc.cit. (1.2.2.1).
Then, we have quasi-isomorphisms

1
= b (ag)/(go) 1 As?

— Q!

1
QPI%S(AY,)(Ax)/(gof)*lAs

1

P Py(Ax)/f~'Ay

Ptay) (AX) [/~ Ps(Ay)
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and the distinguished triangle (1.4.0.1) is defined by the exact sequence

11 A
0 — " Cpgay)r-1as B psan) Prgiay) (Ax)

QIA 1

PPS(AY)(AX)/(gOf)ilAS P[%S(AY)(AX)/filPS(AY) O

— Q
Let / : X — S be a map of ringed toposes and .# be an Ax-module. The
Atiyah class map is a map

(1.4.0.2) atys(F)  F —— Lyxs ®f F[1]

in the derived category defined in [19] Chapitre IV 2.3.6. We briefly recall the defin-
ition. We consider the graded Ax-algebra Ax @ % such that Ax is put on degree 0
and .Z is put on degree 1. Then, for the maps (X, Ax & %) — (X, Ax) — (S, As)
of ringed toposes, the distinguished triangle (1.4.0.1) gives

(1.4.0.3) — Lyxs ®f, (Ax ® %) = Lixaxesys = Lixaxas/x —-

The degree 1-part of the map Lx ave.7)x = Lx/s ®I/;X (Ax & Z#)[1] gives the Atiyah
class map atx;s(F) 1 F — Lxys ®I[gx F1].

We recall another description of the Atiyah class map. Let Ps(Ax) = P15 (Ax)
— Ax be the standard resolution of Ax by free f~'Ag-algebra and I be the kernel of

the surjection Ps(Ax) ®-1a¢ Ps(Ax) — Ps(Ax). We have QII,S(AX)/f,lAS = I/I*. We put
Pl

by as = (Ps(Ax) @14 Ps(Ax))/I?. The exact sequence

— > P!

(1.4.0.4) 0—> Q Ps(Ax)/f ! As

Ps(Ax)/f~'As — Ps(Ax) — 0

1 . .
of PPS( A1 As—modules splits as an eﬁact sequence of Ps(Ax)-module with respect to

the ring homomorphism Pg(Ax) — PPS A/~ 1As sending a to 1®a. We regard the Ax-
module .# as a Ps(Ax)-module by the quasi-isomorphism Ps(Ax) — Ax. By applying
®pgay)¥, we obtain an exact sequence

(1.4.0.5) 0— !

1
Ps(Ax)/f~'As ®ps(ax) F —> P IAg ®py(Ax) F — F — 0.

Ps(Ax)/f~

We regard it as an exact sequence of Ps(Ax)-modules by the ring homomorphism

Ps(Ax) — PII’S(AX)/fflAg sending a to a ® 1 (cf [19] III (1.2.6.3)). Since Lx;s =

N(QII’S(AX)/f“AS ®PS(AX) Ax), we have N(QII’S(AX)/f“AS ®PS(AX) g) = LX/S ®kx g Thus

the exact sequence (1.4.0.5) gives a distinguished triangle

(1.4.0.6) — Lix/s ®I/§X F — N(P1

a a
Ps(Ax)/f~1 As Qpg(ax) J) — 7 —

of complexes of Ax = N(Ps(Ax))-modules (cf. [19] I Corollaire 3.3.4.6). By [19] IV
Proposition 2.3.7.3, the Atiyah class map .# — Lx/s ®II;X Z[1] is defined by the dis-
tinguished triangle (1.4.0.6).
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Let ¢ : X — P be a map of ringed toposes such that i 'Ap — Ax is a sur-
jection. We put Ix = Ker(:7'Ap — Ax). By the long exact sequence defined by the
short exact sequence 0 — Ix — i 'Ap - Ax — 0, f%ri_]AP (Ax, Ax) is canonically
identified with the conormal sheaf Nx,p = Ix/I% = Ix ®-1a, Ax. More generally,
for an Ax-module %, the Ax-module %riilAP (Ax, %) is canonically identified with
Ix ®i-1a, F = Nxjp Qay #. We consider the distinguished triangle

(1.4.1.1)  — Nyp ®u Z[1] = 1_10(Ax @11y, F) = F —

of Ax-modules. Here and in the following, t(, % = Ts,T<)# = T<4T>,# denotes
the canonical truncation for a complex J#". In the middle, Ax ®, Ap F 18 regarded
as a complex of Ax-modules with respect to the Ax-module structure of Ax and is
computed by taking a resolution of % by flat i~'Ap-modules. Note that it can be dif-
ferent from that with respect to the Ax-module structure of .# computed by taking
a resolution of Ay by flat "' Ap-modules. The distinguished triangle (1.4.1.1) defines
a canonical map .# — Nxp ®a, F[2].

Lemma 1.4.1 ([19] IV Corollary 3.1.9). — Let 1 : X — P be a map of ringed toposes
over a ringed topos S and F be an Ax-module. Assume i"'Ap — Ax and i'i,.F — F are
surjective. Let Lix ;s — Lixp — Nx/p[1] be the canonical map. Then the composition

(1.4.1.2) ﬁ ﬂ) LX/S ®IL%( ﬁ[l] L@) NX/P ®Ax ﬁ[Q]

is the same as the map defined by the distinguished triangle (1.4.1.1).

Proof. — We reproduce the proof of loc.cit. Replacing S by P, we may assume
S = P. Let .Z be the free Ap-module A;"*‘%. The natural map 7'.Z — Agé_li*‘% — F
is surjective. Let Sy, (%) = Ap[i,-#] be the free Ap-algebra generated by 7,.#. Let X »
denote the graded ringed topos (X, Ax @ %) and Py denote (P, Sy, (¥)). We put
J = Ker(i7'Sp, (%) — Ax,) and 4 = Ker(i7'.Z — %). Since the canonical map
L, p — Q%@/P = £ ®ap Sap(Z) is an isomorphism ([19] II Proposition 1.2.4.4),
we obtain an isomorphism 7_; glx,» — J/J? = 'L ®-1a, Ax]. Since J/JP =
Nx/p ® (9 ®;-14, Ax) @ (deg > 2), by taking the degree l-part, we see that the Atiyah
class map atxp : .# — Nx/p ®a, Z[2] is induced by the distinguished triangle

—> NX/P ®AX ﬁ[l] g [AX ®i_lAp g — AX ®i_lAp l._lg] e ﬁ —.
Since the isomorphism [¢ — i7'%¢] — % induces an isomorphism [Ax ®;-1z, ¥ —

Ax ®i-1p, 1T7'Z] = 111,01(Ax O, Ap Z) in the derived category of Ax-modules, the
assertion follows. O
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1.5. Associativity, projection formula and the Atyyah class. — We recall spectral se-
quences for Jor arising from the associativity and the projection formula. We show
that a map induced by the Atiyah class map is the same as the boundary map of
a spectral sequence in Lemma 1.5.4. First, we introduce notations on tensor products.

For a scheme X, let D™ (X) (resp. D’(X)) denote the derived category of com-
plexes of Ox-modules bounded above (resp. bounded above and below). Let D™ (X) qcon
denote the full subcategory consisting of complexes whose cohomology sheaves are
quasi-coherent Ox-modules. If X is locally noetherian, let D™(X)o, and D?(X),;, de-
note the full subcategories consisting of complexes whose cohomology sheaves are co-
herent Ox-modules. Let f/ : W — X be a morphism of schemes. For .# € D™ (X)
and & € D™(W), we put # ®p, 4 = Lf*F ®, 4 € D~(W) (cf. [17] Exp. III Nota-
tion 1.6). For an integer ¢, let %rfx (F,%9) denote the homology sheaf J7,(F ®If7’x 9).
If # — % is a flat resolution, we obtain an isomorphism .# ®p ¥ — f*% Q4 Y.
Locally, the sheaf f%rfx(ﬁ ,9) is computed as follows. If X = Spec A and W =
Spec B are affine and if # = M™,% = N~ are quasi-coherent sheaves associated to
an A-module M and to a B-module N respectively, then %rfx(ﬁ ,%9) is the quasi-
coherent sheaf associated to the B-module Tor‘;‘(M, N).

Let 7 : V — X be a closed immersion and .# be an Oy-module. By abuse of
notation, we identify ¢,.# = .# and regard .% as an Ox-module. We put T' = VxxW.
Then, %rfx (Z,%9) is an Op-module for each ¢. If X and W are locally noetherian, if
Z 13 a coherent Oy-module and if 4 € D~ (W), then the &r-modules %rfx (#,9)
are coherent for all ¢.

Lomma 1.5.1. — La X < W < W pe morplisms of schemes and F# € D™ (X),
¢ € D(W) and 7€ € D= (W') respectively. Then,

1. The associativity isomorphism
(1.5.1.1) (F ®;, 9) @, H — T Qp (9 Qg H)
in D™(W') induces an isomorphism
(1.5.1.2)  To?"(F @y 4. H) - Tonl(F.9 @y, H)

of Oyy-modules.
2. The canonical filtrations on .F Q4 and G Qy, I define spectral sequences

(1.5.1.3) B =T (Tol(F.9), H) = Tl (F Qb H),

btq
(1.5.1.4) B = TuN(F, TG, H)) = Tl (F. 9 @5, H)

of O\y-modules, respectively. If V is a closed subscheme of X and if F s an O\-module, then they
are spectral sequences of Oy -modules where T =V xx W'.
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Proof — 1. We recall the definition of the isomorphism (1.5.1.1). It suffices
to consider the case where each component of ¥ and ¢ are flat over Ox and
over Oy respectively. Then, we have isomorphisms g*(f*% Qg 9) Q¢ H —
(F @ ) ®@°w H and (f 0 9)*F ®s,, ('Y ®o,, H) - F Y (& ®ﬁ“ 7). Hence
the canonlcal isomorphism g*(f*.% Qg ¥Y) s, H — ( g”if*ﬁ ®ﬁw, *G) Qo H —
(f 097 ®a, (Y R, ) defines an isomorphism (1.5.1.1).

Clearly, the isomorphism (1.5.1.1) induces an isomorphism (1.5.1.2).

2. The canonical filtration on .F @y, ¢ defines a spectral sequence E1 =
f%rg‘jrq(f%r F,9), ) = %rp (7 QL g 7). We obtain the spectral sequence
(1.5.1.3) by decalage The spectral sequence (1.5.1.3) 1s defined similarly. |

Lemma 1.5.2. — Let X < W — X' be morphisms of schemes and ¥ € D™ (X),
7€ D (W) and F' € D~ (X') respectively. Then,
1. The composition

T @y (F @, 9) = F @y (904, F)— (7 & 9) %, T
(1.5.2.1) ‘
— 7 @ (7 ® 9)

of the commutativity and the associativity isomorphisms i D~ (W) induces an isomorphism

(1.5.2.2)  Tn™(Z.F @, 9) > Tn’~(F.F &

X

9)

of Oyy-modules.
2. The canonical filtrations define spectral sequences

(1.5.2.3) B, = InX(F, Tl (T, 9) = T3 (7. F &, 9),

Oy

(1.5.2.4) = Ton) " (F', Ton?(F. D)) = T, 5 (T F @ )

of Oww-modules. If V and ' are closed subschemes of X and X' and if F is an Oy-module
and F' is an Oyr-module respectively, then they are spectral sequences of Oy-modules where T =
Vv Xx \4Y Xx! V.

Proof. — The proof is similar to Lemma 1.5.1 and left to the reader. |
We also recall the projection formula.
Lemma 1.5.3. — Let X be a quasi-compact scheme and [ : W' — W be a quasi-

compact and quasi-separated morphism of quasi-compact schemes over X. Let F € D™(X)qcon
and ¢ € D™(W'). We assume that either of the following condition is salisfied.
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(1) ([17] Exp. III Proposition 3.7) The complex .7 is a perfect complex of Ox-modules
and 4 € Db(W’)qcoh.

(i) ([18] 11 Proposition 5.6) The schemes W and W' are noetherian schemes of finite
dimensions.

1. There exists a canonical and functorial isomorphism
(1.5.3.1)  ZQ®p; RLY - RA(F @) 9)

in D™(W). The isomorphism (1.5.3.1) induces an isomorphism
(1.5.3.2) Tor”(F . RYG) - R(F Qp, b)

of O-modules.

2. The canonical filtrations define spectral sequences

(1.5.3.3) E! = Jor/X(F,RLY) = Tl (F.RLY),

yax
(1.5.3.4) B} =R/LIN(F, 9) =R (F @5 9)

of Ovw-modules. If V is a closed subschemes of X and if F is an O-module, then they are spectral
sequences of Ov-modules.

Let X — P be an immersion of schemes and .% be an Ox-module. Let
W — X be a morphism of schemes and ¢4 € D~ (W). Then the composition of .% —
Lx/p ®2X Z[1] = Nxp ®2X Z(2] (1.4.1.2) induces a map

(1.5.4.1) O[yygyX/P . ﬁ@LﬁX g —_— NX/p ®Lﬁx ﬁ@%»x g[Q]

in D7(W). It further induces a map

(1.5.4.2) azgxp: T, (F,G) —— T Nxp Qo F, D)
of Ow-modules for p > 0.

Lemma 1.5.4. — Let X — P be an immersion of schemes and F be an Ox-module. Let
W — X be a morphism of schemes and ¢ € D™(W). Let

(1.5.4.3)  E, = Ju*(Tr!"(F, 0x),9) = Epyy = Torlf (F,9)

prtq

be the spectral sequence (1.5.1.3) combined with the isomorphism (1.5.1.2). We identyfy Nxp Qo F
with F Q@ Nxjp = f%riﬁ "(F, Ox) by the multiplication by —1. Then, the map otz 4 xp :
f%rfx(ﬁ, 9) — %rﬁQ(Nx/P Qo F,9) (1.5.4.2) s equal o the boundary map Ef,,O =
Tor)(F.G) — B2, = Tor5(Tor{" (F, 0x),9) of (1.5.4.3).
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Progf. — The boundary map %rf NF, Y — f%rﬁg(f%riﬁ "(F, 0x),9) is the
boundary map defined by the distinguished triangle

—— ToN(F, O[] — 110(F Y, Ok) z

of complexes of Ox-modules where . ®y;, Ox in the middle is regarded as a complex
of Ox-modules by the Ox-module structure of O%. Under the identification
f%rlﬁ "(F,0x) = F ®p Nxsp and the commutativity isomorphism % ®Iévp Ox —
Ox ®2P Z, it is identified with (1.4.1.1). Thus it follows from Lemma 1.4.1. |

If the Ox-module Ny,p is flat, we identify Jor,%(Nx/p ®ey -F, 9) = Nx;p Qs
f%rﬁg(ﬁ, ¢/) and the map (1.5.4.2) defines a map

(1.5.4.4) azgxp: Tor)(F,9) —> Nxp oy Jor5(F, D).

For a spectral sequence E = (E;, , = Ep+p), let E[0, 2] denote the spectral sequence
EIQ)’{[_Q :> E[H‘(/—Q‘

Lemma 1.5.5. — Let X — P be an immersion of schemes and % be an Ox-module. We
assume that the conormal sheaf Nxp is flat over Ox. Let f : W' — W be a map of schemes
over X.

1. Let 9 € D=(W) and 7 € D= (W') respectively. Let

(15.5.0)  E=(E, = T (Tn{N(F.9), H) = T3 (7. (9 &, H)))

Yax

be the spectral sequence (1.5.1.3) combined with the isomorphism (1.5.1.2).
Then the map &z 4 xp 9@{5& 9 — Nx/r Qay ﬁ@;x 912] (1.5.4.1) induces a map

(1.5.5.2) E —— Nx» Qg E[0, 2]
of spectral sequences. The maps on Eq-terms are induced by

azgxp: Tl (F,9) > Nxp ®ay Tt (F,9)
and the maps on the abutments are

a‘g’%g%w'%ﬂ’x/}‘ : f%rf)‘ (g’ (g ®Iéw %))
= Nxpp @ T, (7, (9 &%, ).

2. Let f : W — W be a morphism of schemes over X and G € D™ (W'). Assume either
of the condition (1) or (1) in Lemma 1.5.3 s satisfied. Let
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(1.5.5.3) E= (B =R7LIn(F.9) = Toli (F.RED))

be the spectral sequence (1.5.3.4) combined with the isomorphism (1.5.3.2).
Then the map oz 4 xp : 9@{5& 9 — Nx/r Qay 9@2}( 912] (1.5.4.1) induces a map

(1.5.5.4) E —— Nxr Q¢ E[0, 2]
of spectral sequences. The maps on Eq-terms are induced by
azgxp: T’ (F,9) > Nxp @ay Torl5(F.9)
and the maps on the abutments are
oz rgxp Tor’X(F,RED) — Nxjp ®ay Tirl5(F . RED).

Progf — 1. We consider the map ez xp : F QF, Z — (Nx/p®gy F12]) QL 4
as a map of filtered complexes with respect to the canomcal filtrations on .7 ®j, ¢ and
on Nx,p Qg F ®L ¢[2]. It induces a map of filtered complexes % ® 54®(]~w I —
Nxp Qo F ®L 54 ®L - [2]. By identifying %rp+q(NX/p Qo F ®LX 9(2], 7€) with
Nx/p Qo Tor’x g Q(J g®ﬁw ) by using the isomorphism (1.5.1.2), we obtain a map
E — Nx/p Qg E[0, 2] of spectral sequences. It is clear from the construction that the
maps on the Eo-terms are induced by @z« x/p and the maps on the abutments are

X799y A X/P:
2. Proof 1s similar to 1 and left to the reader. m]

Lemma 1.5.6. — Let X — S be a flat morphism of schemes and % and G be complexes of
Ox-modules bounded above. We define F ®3; G to be Lpr} F @Y, Lpr;% Then the adjunction

induces an isomorphism (F ®2S 9) ®It5°stx Ox > F Q4 9. It induces a spectral sequence

(15.6.1)  E = Top, "N T (F,9), Ox) = Tonls(F,9).
Proof. — The proof is similar to Lemma 1.5.1 and left to the reader. O

Corollary 1.5.7. — Let X — S be a smooth morphism of relative dimension n and F be
an Ox-module. Assume F is of tor-dimension < m as an Os-module. Then F s of tor-dimension
< m+n as an Ox-module.

Proof. — The diagonal map X — X xgX is a section of the smooth map X xgX
— X of relative dimension z and hence is of tor-dimension n. We consider the spectral
sequence (1.5.6.1). Then, we have E;,q = 01if p > n or ¢ > m. Hence the assertion
follows. |
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1.6. Excess conormal complex and For. — We construct a spectral sequence com-
puting f%rfx(ﬁv, Oy) for certain morphisms V. — X <= W of schemes in Proposi-
tion 1.6.4.

Defimation 1.6.1. — 1. ([17] Exp. VII Definition 1.4) We say an immersion X — P
of schemes s a regular immersion if the following condition s satisfied.

For x € X, there exist an open neighborhood U of x in P, a locally free Oy-module & of
finite rank and an Oy-linear map &y — Oy such that the Koszul complex K(&y — Oy) s
a resolution of Oxny.

2. ([17] Exp. VIII Definition 1.1) Let X — S be a morphism locally of finite presenta-
tion of schemes. We say X s locally of complete intersection over S if, for each x € X, there exust
an open neighborhood U of x in X, a smooth scheme P over S and a regular immersion U — P
over S.

We do not require flatness in the definition of locally of complete intersection as
in [15] (19.3.6). By Lemma 1.3.2, the condition that the Koszul complex
K(&y — Oy) is a resolution of Oxny is equivalent to that the canonical surjection
A8y — Oy) — Oxnu is a resolution by a weakly free simplicial &y-algebra. The
quasi-isomorphism K(&y — Oy) — Oxny induces an isomorphism &y ®g, Oxnu
— Nxnuyu to the conormal sheaf. If P is a noetherian scheme, the condition that
K(8y — Oy) is a resolution of Oxny is equivalent to that the image of a local basis
of &y is a regular sequence of Oy. A map of finite type of regular noetherian schemes
is locally of complete intersection. If X — S is locally of complete intersection and if
P — S is smooth, then an immersion X — P over S is a regular immersion.

Lemma 1.6.2. — 1. ([19] III Proposition 3.1.2) Let X — S be a smooth morphism
of schemes. Then, the canonical map Lxjs — Q2 /s U8 an somorphism.

2. (loc.cit. Proposition 3.2.4) Let X — P be a regular immersion. Then, the canonical
map Lxp — Nx,p[1] 15 an isomorphism.

3. (loc.cit. Proposition 3.2.6) Let X — P be a regular immersion and P — S be
a smooth morphism. Then, we have a distinguished triangle — Nx,p —> QII)/S Qg Ox —
Lx/s —.

Let :: V— X be an immersion of schemes and let

T 25 W

¢| Ir

1

be a cartesian diagram of schemes. Assume that the immersion ¢ : T — W is a regu-
lar immersion. We define the conormal complex My x, the excess conormal complex
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M/V/X,W and the excess conormal sheaf N’\,/Xw. Recall that the standard resolution
Px(Oy) = Pr14.(Oy) — Oy is a resolution of Oy by a free simplicial :~! Ox-algebra
and that the cotangent complex Ly,x is defined as the normal complex
N(QIl)X(ﬁV)/Z'—IﬁX Rpy(ov) OV)-

Defimition 1.6.3. — Let 1 : V — X be an immersion of schemes.
1. We call

(1.6.3.1) MV/X - LV/X[_l] - N(Q}l)x(ﬁ\r')/flﬁx ®Px(ﬁ\") ﬁv)[—l]

the conormal complex of the immersion ¢ : V — X.

2. Let

T%W

e| Ir

1

be a carlesian diagram of schemes and assume v : T — W is a regular immersion. We put
—1 v—1
AV/X,VV = g PX(ﬁV) ®(iog)—]ﬁx l/ ﬁvv

and define an ideal Iy x w C Av/x,w by the exact sequence

0 — Lyxw — Ayxw Oy 0.
We call the chain complex
(1.6.3.2) MY w = NIy xw/Iyxow) [—1]
the excess conormal complex. We call the map

M/V/X,W — Lg*MV/X

1
Avx.w/i~ 10w
We define the excess conormal sheaf Ny, y \ by the exact sequence

induced by d : Iy,x w/ Iir/X!W — Q Qayxw O the canonical map.

(1.6.3.3) 0 —— N/V/X,W' — g*NV/X — NT/\N —> 0
where g*Ny x —> Njw s the canonical surjection of conormal sheaves.

The cohomology sheaf 775 (My/x) = 7 (Ly/x) is canonically isomorphic to the
conormal sheaf Ny x. If the immersion V — X is a regular immersion, the canonical
map My,x — Ny/x is an isomorphism.
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Proposition 1.6.4 (cf. [19] III Proposition 3.3.6, [35] Theorem 6.3). — Let
1V = X be an tmmersion of schemes and let

T 25 W

¢| Ir

V— X
1
be a carlesian diagram of schemes. Assume that the immersion ' : T — W s a regular immersion.
We put AV/X,\\" = g_lpx(ﬁv) ®(iog)*lﬁx l./_lﬁ\v and IV/X,\/V = Ker(AV/X,\/V g ﬁT) as
Defiation 1.6.3.2. We define a decreasing filtration F* on Ay x w by FP'Ay/x w = I, IXW-
1. For p > 0, the canonical map S?(Iyx.w/Iy xw) > Gri(Ayxw) =1 xow/ I’{f;;,w
is an wsomorphism and induces an isomorphism

(1.6.4.1) LAM,, « wlp] — NGri(Ayxw)
m D™(T).
2. We have a distinguished triangle

(1.6.4.2) —> M/V/X,W — Lg'My)x —— Npyw —— .

In particular, of W = "I is a scheme over V, the canonical map My, x v — Lg"Myx is an
. . . . : : : , .
wsomorplusm. If V- — X is a regular tmmersion, the canonical map My v — Ny x5 an
wsomorphism.

3. The filtration ¥* defines a spectral sequence
(1.6.4.3) E), = LYATM = TS (Oy, Oy)
of Or-modules.

Progf. — 1. Since ¢ : T — W is a regular immersion, the ideal Iy =
Ker(/~'Ow — Oy) of /7Oy is weakly regular in the sense of [19] IIT 3.3.1. Hence
by loc.cit. Proposition 3.3.6, the /7! Oy-algebra Oy is weakly of complete intersec-
tion in the sense of loc.cit. 3.3.4. Further, the ideal Iy/x w of Ay x w is weakly regular
and the map S”(IV/X,W/I%,/X,W) — GrﬁAV/XM,v is an isomorphism by loc.cit. Propo-
sition 3.3.6. It induces an isomorphism NS”(IV/X,W/I%,/XQW) = NS”(M/V/X’W[I]) —
N(K ,/X!\\,/I@;,W). Hence we obtain an isomorphism (1.6.4.1) by Proposition 1.2.8.

2. By the canonical isomorphism Lyw[—1] — Nrpw, it suffices to apply fur-
ther loc.cit. Proposition 3.3.6 to the surjection Ay)xw — Op. If W = T, we have
Npw = 0. If V— X is a regular immersion, the canonical map My/x — Ny/x is an
isomorphism.

3. We consider the spectral sequence E;’ , = 6N (GrF_p Ayxw) =
76, ;N(Ay/x,w) defined by I*. The quasi-isomorphism Px(&0y) — Oy induces an iso-
morphism JZN(Ayxw) — Jor?(0Oy, Oy). The isomorphism (1.6.4.1) induces an
isomorphism L#*A™My, v — E, . Thus the assertion follows. O
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Corollary 1.6.5. — Assume further that the immersion 1 : V — X is a regular immersion.
Then, the spectral sequence (1.6.4.3) degenerates at E.'-terms and gives an isomorphism

(1.6.5.1) AVN/V/X,W m—— %Trﬁx(ﬁv, ﬁw)
of locally free Op-modules. In particular, if W =T, we have an isomorphism
(1.6.5.2) Ng'Nyx —— T (Oy, Oy).

Proof. — By Proposition 1.6.4.2, the canonical map My xw — Ny xy is an
isomorphism. Since the conormal sheaf Ny, y y; is a locally free &r-module under the
assumption, the assertion follows. |

In Proposition 1.6.4, we may replace the resolution Px(0y) — Oy by any reso-
lution by a weakly free simplicial i~ Ox-algebra.

Lemma 1.6.6. — Let the notation be as in Proposition 1.6.4. Let A — O be a resolution
by a weakly fiee simplicial ' Ox-algebra. We put Ayw = g7 'A og-10yx ' Ow and 1 =
Ker(Aw — Or). We define filtrations ¥* on Ay by ¥'Aw = 1. Let E 5 be the spectral sequence
(1.6.4.3) and Ex be the spectral sequence E}hq = HqNGrF_p Aw = H, [NAw defined by the
Sfiltered complex (NAwy, F*).

Then, the canonical map
(1.6.6.1) SYI/12) —— T/IH = GriAy
is an isomorphism. The quasi-isomorphism A — O induces an isomorphism of distinguished tri-
angles

- Myxw —— g"My/x —> Npw —

(1.6.6.2) | |

— NI/P)[-1] — N(}, ,4,)[-1] —> Npw —

and an somorphism of spectral sequences

(1.6.6.3) E, —— L.

PTO()f — Recall IV/X,\V = KCI'(AV/X’\V = Px(ﬁv) ®ﬁx ﬁ\/\r — ﬁT) and
N(Iy,/x,w/ I%’/X,W) = My x wll] in the notation of Definition 1.6.3.2. In the notation
of [19] II 1.2.2, we have quasi-isomorphisms Px(0y) <« P§(A) — A. They induce

a map

— N(Lyxw/Iyxw) =11 — N(L;

Av/x,w/ 0w

! l

- NI/P=11 —— Ny, u)-11 —— Ny —

)11 — Nppy —
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of distinguished triangles. Since A — Oy is a resolution by weakly free simpicial
Ox-algebra, the middle vertical arrow is an isomorphism. Thus, the left vertical map
N(IV/XM/I%, xow) = My, xwlll = N (I/T?) is also an isomorphism and we obtain an
isomorphism (1.6.6.2).

By [19] Proposition 3.3.6, the ideals I C Aw and Iy/xw C Ay xw are weakly
regular. Thus by loc.cit. 3.3.1, the maps S/(I/I?) — I//I/*' (1.6.6.1) and
Sy x.w/Ty ow) —> I, /X,W/IP j;;(,w are isomorphism.

We consider the maps Px(0y) <« PR(A) — A. For p > 0, they induce an
isomorphism GriAy,xw = NI xw/Ixw) — GriAw = N(IP/F*!) by the isomor-
phisms N(IV/X,W/ I%//X,w) — N(I/ 12)> S? (IV/X,W/ I%//X,W) - IQ//X,W/ I@;{,W and S*(I/ I?)
— I7/1"*'. Hence they define an isomorphism N (Av/x,w, F*) = N(Aw, I*) in the de-
rived category of filtered complexes. It defines an isomorphism Ey — Ez (1.6.6.3) of
the spectral sequences. |

The following result will be used only in the proof of Proposition 5.1.4 and will
not be used in the proof of the main result, Theorem 6.3.1.

Proposition 1.6.7 (cf. [5] Theorem 8). — Let 1 : V — X be an immersion. Assume
that, for each x € X, there is an open neighborhood U and a regular immersion U — P such that
the composition VU — U — P is also a regular immersion. Then for a scheme W over V, the
spectral sequence (1.6.4.3) degenerates at E.'-terms.

Proof. — We give a proof using the Koszul simplicial algebra defined in Sec-
tion 1.3. Since the question is local, we may assume that there exist locally free Op-
modules .#p and %} of finite rank and Op-linear maps vp : £ — Ap and up :
Mp — Op such that the Koszul complexes K(.Zp L Op) and K(% 5" 0p)
are resolutions of the Op-modules Oy and Ox respectively. By Lemma 1.3.2, A 4, =
A(Mpy 5 Op) — Oy and Ay =A(S B Op) — Ox are quasi-isomorphisms.

Let 6 = [% er b Mp & Zp] be the mapping cylinder and define a map
¢cp : 6p — Op by (up, up o vp). By Corollary 1.3.6.1, the natural map #p — %p
induces a quasi-isomorphism A ,, — Ag, = A*(%p — Op). Thus, in the commutative

diagram

A(gp —_—> ﬁ Vv

[

Afp EE— ﬁXa

the horizontal arrows are quasi-isomorphisms. Since Ag;, 1s flat over Ay, the map
Ag, = Ag;, Qa,, Ay — A ®a,, Ox is a quasi-isomorphism by [19] I Lemme 3.3.2.1.
Thus we obtain a quasi-isomorphism Ag, Qa, Ox — Oy.
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We put & = % Qg, Ox, M = Mp Qp, Ox and € = Cp Qgp, Ox. Let H =
[Z — ] be the mapping cone and w : # — Ox be the map defined by u = up® 1.
We put Ay = A(Z 5 0X), Ay = A(F > 0x) and Ay = A(X > 0). Then,
we have Ag, Ray, Ox = Ay ®a, Ox. Since the composition .Z — Ox is the 0-map,
we have an isomorphism Ay ®4, Ox — Ay by Corollary 1.3.6.2. Thus we obtain
a resolution A = Ay — Oy by weakly free simplicial Ox-algebra.

We consider the filtration F* on Ay = A ®4, Oy defined by the powers of the
kernel of the surjection Ay — Op = Oy. By the assumption that W is a scheme
over V, the map wy : Hy — Oy defining Ay = A(Hy & Oy) is the 0-map. Hence
the filtration I* on Ay splits. Thus the assertion follows by Lemma 1.6.6. |

The relation of Proposition 1.6.7 with [5] Theorem 8 is as follows. We
keep the notation in the proof of Proposition 1.6.7. Since the Koszul complex
K(#p = Op) is a resolution of the Op-modules @y, the Koszul complex
E=K(#Z > Ox) is isomorphic to Ox ®I;7P Oy. Hence, by Corollary 1.6.5, the
Oy-module H;(E) is isomorphic to %r{ﬁ "(Ox, Oy) and is locally free. Further,
the canonical map A’H;(E) — H,(E) is an isomorphism for p > 0. Thus the
ideal of Ox defining Oy has locally Free Exterior Koszul Homology property
in the sense of [3]. Therefore loc.cit. Theorem 8 together with the remark
following its proof implies Proposition 1.6.7.

1.7. Spectral sequence for Jor and the Atipah class. — We give a relation between
the spectral sequence (1.6.4.3) and the Atiyah class map in Proposition 1.7.2.
In this subsection, we consider a commutative diagram

T 5w
(1.7.0.1) gl lf
vV > X P

of schemes. We assume that the square is cartesian, the horizontal arrows are immer-
sions and that the immersions 7 : T — W and X — P are regular immersions.
Shifting the distinguished triangle (1.4.0.1) for the lower line in the diagram (1.7.0.1),
we obtain a distinguished triangle

(1.7.0.2) — (09" Nxp —— Myp —— Myx >

Throughout this subsection, we use the following notation. We consider the stan-
dard resolution & = Pp(Ox) = Pj14,(Ox) — Ox by free simplicial j~'Op-algebra
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and the diagonal of the standard resolution 2 = P5,(0y) — Oy by free bisimplicial
! P-algebra. We put J = Ker(Z Q;-14, & — ). Further, we put

1
B=1"0x®oy10v 2,
A=i"'"0xQ®1»2=8B Qi-1(7e, 1,7 2,

JB = KCI‘(B —> A) = Q ®Z‘—l(;ﬂ®j_lﬁl}’(}a) i_lj.

We put Ay = A Qg Ow, By = B ®4, Ow and Ji, = Ker(Byw — Aw). Further we
put I = Ker(Ay — Or), I = Ker(By — Or).

For each n, there exist flat (j o 7)~'&p-modules L, and M, and isomorphisms
S(jo-tepLy = P, and S(jop-16,(L, ® M,) = 2,. We put L,x = L, ®(jop-10, ' Ox
and M, x =M, (16 i'Ox. Then we obtain a commutative diagram

Siflﬁx(Lﬂ,X ® Mﬂ,X) E— Bﬂ

l l

Si-1eM,, x —> A,
where the horizontal arrows are isomorphisms. The left vertical arrow is induced by
an i 'Ox-linear form L,x — ¢ 'Ox. Thus, by modifying the isomorphism
S1oy(L,x ® M, x) — B, by the linear form L,x — 7 '0x, we may assume that
the left vertical arrow is induced by the 0-map L,x — i '@x. Thus, we obtain an
isomorphism

(1.7.0.3) Sa, (A, ®ir1oy Lux) —— B,

of A,-algebras.

Lemma 1.7.1. — We keep the notation above. Then, the canonical maps defines a map

— > (log)*NX/P > M/V/P,VV > M/V/X,\\’V >

(1.7.1.1) H | |

—_— (lOg)*NX/P E— MV/P — MV/X —

of distinguished triangles, where the lower line 1s the distinguished triangle (1.7.0.2). In particular, if
the composition VN — P 1s a regular tmmersion, the upper line gives a distinguished triangle

(1.7.1.2) —— (09" Nxpp — Nipyw —> Myxy —> .
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Proof. — We consider the commutative diagram

0 0

W w

2 1
Jow/Jby ®aw Ot —— 2, 50 /105 OPriox) Or

Vv W

(1.7.1.3) I/ —> Q6 Oy Or
1/12 E— Q}%W/ﬁ\\' ®A\\' ﬁT
0 0

Using the isomorphism (1.7.0.3), it is easy to see that the left column of (1.7.1.3) is
exact. It follows from the construction of the distinguished triangle (1.4.0.1) recalled
in Section 1.4 that the right exact sequence gives the lower distinguished triangle in
(1.7.1.1). By Lemma 1.6.6, the horizontal arrows in (1.7.1.3) induce the vertical arrows
in (1.7.1.1). Thus, we obtain a map of distinguished triangles (1.7.1.1).

If V. — P is a regular immersion, the canonical map My, pw > Ny,p,w 1s an iso-
morphism by Proposition 1.6.4.2. Thus the upper line of (1.7.1.1) implies (1.7.1.2). O

Let M, xw > Nx/p ®¢y Or[1] be the map defining the distinguished triangle
— Nx/p ®ay Or = Ny jpyw = My xyw = We define a map

(1.7.2.1) AV/X/PW - L/f’A‘/l\/[/V/X’w —> Nx/p Qo L”_IA‘/_lM/V/X’W
to be that induced by the composition
LAqM/V/X,W - M/V/X,W R ox LAq_lM/V/X,W — Nx/p®ox LAq_lM/V/X,w[ 1].

For a spectral sequence E = (E;ﬁ , = Ey+,) and integers a and b, let E[a, 4] denote the
spectral sequence (E;_a’ — = E,,+q_(a+b)).

The following result will be used in the proof of the excess intersection formula,
Proposition 3.4.2.

Proposition 1.7.2. — Let

T 5 W




ON THE CONDUCTOR FORMULA OF BLOCH 39

be a diagram of schemes. We assume that the square is cartesian, the horizontal arrows are timmersions
and that the immersions X — P and 7 : T — W are regular tmmersions. Let E 5 denote the
spectral sequence (1.6.4.3).

Then, there exists a map

(1.7.2.2) o:Ey —— Nxp Qp B[], 3]

of spectral sequences such that the maps on the abutments are Agy gy xp : Jor*(Oy, Oyw) —
Nxp ® %riﬁ_‘é(ﬁv, Ow) (1.5.4.4) and the maps on the E'-terms are the maps Av/xpw
LIATMY v = Nxyp @y LITIATIMY i -

Proof. — Proof 1s divided into the following three steps.

1. Define a map Ez — Nx,p ®¢, Ez[—1, 3] of spectral sequences.
2. Compute the map on abutments.
3. Compute the map on E!-terms.

1. We keep the notation
B=i"0x ®(jon-'op 2,
A=7"0xR®15,2=8B (P81, 2) i1,
Jg=Ker(B—> A) =2 R, 1,2 i,

éw = A Qg Ow, By = B Qg Ow, Jp, = Ker(Byw — Ay), 1 = Ker(Aw — Or),
I = Ker(Byy — Or) above. We define filtrations F* on Ay, Jg,, /Jfsw and on BVV/J%“,
by F’Aw = FPAw, F'(Jo/Jiy,) = V(Jsy/Ji,) and by F'(Bw/J5,) = P(Bw/Jj,,)- Let
E, and Ej be the spectral sequences E}h ;= p+qNGr;p (Aw) = H, ,N(Aw) and
E}M{ = Hp+qNGr;” (Jsy /Jsz) :> H,  ,N(Js, /J%W) defined by the filtered complexes
(N(Aw/Ad), F*) and (N(Jp, /Jéw), I*) respectively

The construction of E5 — Nxp ®g Ez[—1, 3] is divided into the following
three substeps.

1. Define an isomorphism B : Es — E, of spectral sequences.
ii. Define a map y : Ex — Ej[—1, 2] of spectral sequences.
iii. Define an isomorphism 6 : Nx,p ®g, EA[O, 1] — E;.
Transporting the composition §'oy by the isomorphism B : E5 — Ea, we will define
amap o : Es — Nxp Qg Ez[—1, 3].
1. We define an isomorphism E s — E4 of spectral sequences. In the commuta-
tive diagram

2 — O \%

(1.7.2.3) T T

i_ly e i_lﬁx,
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the horizontal arrows are quasi-isomorphisms. We show that the induced map A — Oy
is a resolution by weakly free simplicial :~!Ox-algebra. Since 2 is a free simplicial
i~ P-algebra, the tensor product A = 2®;-1.5i" ' Ox is a free simplicial i~ Ox-algebra.
Further, the quasi-isomorphism & — O induces a quasi-isomorphism 2 = 2 ®;-1 »
TP > A= 2151 "'0x by [19] I Lemme 3.3.2.1. Thus the quasi-isomorphism
2 — Oy induces a quasi-isomorphism A — Oy. By applying Lemma 1.6.6, we ob-
tain an isomorphism B : Ez — E, of spectral sequences.

. We define y : E, — Ej[—1, 2]. Using the isomorphism (1.7.0.3), it is easy to
see that the sequence

(1.7.2.4) 00— G} ' (JuuJ3,) —— Gri(Bw/Ji,) — GrfAw — 0

is exact for each p > 0. Namely, the exact sequence 0 — Jp,, /JQBW — B\\r/JQBW —
Aw — 0 defines an exact sequence

(1.7.2.5)  0— (Je/J3,. F7') — (Bw/i,. F?) — AW, F) =0

of filtered simplicial modules. The exact sequence (1.7.2.5) defines a map (NAy, F*) —
(N(Jpy /j%w), F*~H[1] of filtered complexes in the derived category and hence a map
Ex — Ej[1, —2] of spectral sequences.

iii. We define an isomorphism § : Nx,p Qg Esl0, 1] — E;. The natural map
Aw ®i-151 ' (J/J) = Jny /JQBW is an isomorphism. Since J/J? is flat over 22, it defines

an isomorphism

(1.7.2.6) " '(J/P) ®15 (Aw, F*) —— (Jou /T3 F)

of filtered modules. By the assumption that X — P is a regular immersion, we have
a canonical isomorphism Ly, — Nx/p[1]. Since Lx/p = N (J/J? ®» Ox), we have an
isomorphism

(1.7.2.7) N(i_l(J/JQ) Qi1 (Aw, F')) —> Nx/p Qo N(Aw, F*)[1]

of filtered complexes in the derived category. The isomorphisms (1.7.2.6) and (1.7.2.7)
induce an isomorphism § : Nx,p @4, Ea[O, 1] — E;.

2. We show that the maps on the abutments are induced by the map a4, sy x/p :
ﬁv ®Lﬁx ﬁ\/\r — NX/P ® ﬁ\/ ®¥[}>X ﬁ\v[Q] <1541> Applyng the functors i_l( ) ®i*1W ﬁv,
TN ) R 2 and Ox ®i-15 17'( ) ®i-19 2 to the exact sequence 0 — J/J* —
(2 Q10 P[]} — & — 0, we obtain a commutative diagram

0= ' (JJD) @19 Oy = TN (P 10, D)) @19 Oy — Oy — 0

0 t !
0= '(J/J) ®r1p 2 - (¥ Qj-1op D)) ®irip 2 —> 2 — 0
! b Y

0 — Js/J3 — B/J3 - A —> 0.
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of exact sequences. We regard the upper two lines as exact sequences of i ' Z2-modules
with respect to the map & — & ®;-14, & sending a to a ® 1. The lower vertical
arrows are compatible with the surjection i~' 22 — Ox.

Since Ly p = N(Qly/j_]ﬁl)@(@ﬁx) =N(J/J*®% Ox), we may identify Ly p® s Oy
= NG'(J/J*) ®i1 Oy) for the upper left term. Then, by the second description of
the Atiyah class map recalled in Section 1.4, the Atiyah class map Oy —
Lx/p®gy Ovl[1] is defined by the boundary map of the top sequence. Since the vertical

arrows are quasi-isomorphisms, we obtain a commutative diagram

atx/p, 2%

Oy —— Lxp Qa Ov[1]

I I

NA ——  N(Js/Jp)[1]

in the derived category of Ox-modules. Thus, applying ® 4 O\, we obtain a commu-
tative diagram

Aoy, O, X/P

Oy ®y, Ow Nx/p ®oy Ov ®5, Owl2]

[ [
NAy — N(Jo /T )11

in the derived category of Ow-modules. Thus the assertion follows from the definition
of the identifications B : E5 — E, and é : Nx/p ®y EA[0, 1] — Ej in 1 and 1i1 above.

3. We show that the maps on the E'-terms are given by Ay/x/pw : L/ A/MY, W
— Nx/pQ®sy L”_IA‘/_lM/V W By the assumption that T' — W is a regular immersion,
the kernel of the surjection Byy — Oy is weakly regular. By the isomorphism (1.7.0.3),
it is easy to see that the isomorphism S/(I/T%) — I*/I*! induces an isomorphism

0 0
J !
S/ @ Juy /T3, —— Gt} (Jow/J3)

! l

S/ /(S (T /T3 ) - SP2A/T)) ——  Grf(Bw/J3,)

! |

SH(I/T?) — GriAw

2 ¢
0 0
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of exact sequences. The right column is the exact sequence (1.7.2.4). Hence by Corol-
lary 1.2.3.1, we obtain a commutative diagram

NS?(1/1%) — NGriAyw
N(I/1?) @ NS/~!(1/1?) NGt~ (Jny [ )]

! I

N(Jou/Jhy ®aw O1)[11 @ NSITHI/T) — N(J/J* ®py, Gri Ay)[1].

The upper left vertical arrow is induced by the map (1.2.1.1) and the lower left and
the upper right vertical arrows are defined by the exact sequence (1.7.2.4). The rest
are the natural maps. Recall that the distinguished triangle — (¢ o ¢)*Nx/p
— Ny /pw = My x w — (1.7.1.2) is defined by the exact sequence 0 — Jp,, /JQBW ®aw Or
— I/I? = 1/I> = 0 in the proof of Lemma 1.7.1. Thus, by Lemmas 1.2.9 and 1.6.6,

we have a commutative diagram

LAMY, « wlp] — NGriAy

l l

Nx/p ®oy LA M,y w[p] —— NGri™' (Ju, /J3,)(1]

and the assertion follows. O

2. K-theory and localized Chern classes

We briefly recall generalities on K-groups, Chow groups and Chern classes
in 2.1. We interpret intersection theory a la Fulton-MacPherson in terms of K-theory
in 2.2. We briefly recall generalities on localized Chern classes in 2.3. We compare
the localized Chern class and the class of the derived exterior power complex in 2.4
for a complex satisfying a certain condition.

2.1. K-theory and Chow groups. — We recall generalities on K-theoretic inter-
section theory. Basic references are [17] and [14].

For a scheme X, let K(X) be the Grothendieck group of the category of locally
free Ox-modules of finite rank. It is the quotient of the free abelian group generated
by the isomorphism classes [&] of locally free Ox-modules of finite rank divided by
the relations [&] = [&'] + [6”] for exact sequences 0 — & — & — & — 0.
For a noetherian scheme X, let G(X) be the Grothendieck group of the category of
coherent Ox-modules. It is the quotient of the free abelian group generated by the
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isomorphism classes [.#] of coherent Ox-modules divided by the relations [[#] =
[#'] + [Z"] for exact sequences 0 — F — F — F' — 0. For 4 € D"(X)con,
its class [¢] € G(X) is defined as the alternating sum Zq(—l)q[%/(g)]. For a distin-
guished triangle - 4" — 4 — 4" — in D"(X)., we have [¢] = [¢4'] + [¢"].

We have a canonical map K(X) — G(X) sending the class [£] of a locally free
Ox-module & to [&]. If X is regular, noetherian and separated, then the canonical
map K(X) — G(X) is an isomorphism by the following lemma.

Lemma 2.1.1 ([17] Exp. II Corollary 2.2.7.1). — Let X be a separated regular noethe-
rian scheme of dimension n and F be a coherent Ox-module. Then there exists a resolution

0> & — > & — F — 0o F by locally free Ox-modules of finite rank.

In this case, we identify G(X) = K(X). For a coherent Ox-module .#, the in-
verse image of [.#] in K(X) is ZZ:O(—I)q[éZ] for a resolution (&,) as in Lemma 2.1.1.

The multiplication on K(X) is defined by the tensor product [&£] - [6'] =
[ ®g &']. If X is noetherian, G(X) i1s a K(X)-module by the multiplication
[£] - [Z] = [ Qg F]. More generally, if f/ : W — X is a map of schemes and
W is noetherian, a bilinear map ( , )x : K(X) x G(W) — G(W) is defined by
([Z], 9Dx = [¥ (X)LﬁX 1. If X is separated, regular and noetherian of dimension n,
the multiplication on G(X) =K(X) is given by [.#]-[.%] ZZZZO(—I)q[%rfx (7, F)].

The y-fltration F'K(X) on K(X) is defined as follows. There is a canonical
map A, : K(X) — 1+ KX)[[/]] € KX)[[]]* sending the class [&] of a locally free
Ox-module & to Zq[A‘/é"]t‘/. For x € K(X), we put y,(x) = A« (x) = L+ o v
For a locally free Ox-module & of rank n, we have

(2.1.1.1) y([E1—n) =Y [AEWA - = () (=) (” a q) (A&
¢=0 1

r=0 ¢=0

For r = n, we have

(2.1.1.2) Yo([E] — ) = Z(_m—q[z\qg’].

=0

If % is invertible, we have y,([.Z]—1) = 1+ ([.Z]— 1)t. For n = |, F'K(X) is defined
to be the kernel of the map K(X) — Z™® sending & to rank &. For n > 1, F"K(X)
is defined as the subgroup generated by the elements of the form y, (x))-- -y, (x,)
where x; € FIK(X) and > .n > n. We put F’K(X) = K(X). We have F"'K(X) -
F'K(X) C F""K(X).

In the rest of this section, S denotes an equidimensional regular noetherian

scheme of finite dimension. For a scheme X of finite type over S, the topological fil-
tration F,G(X) on G(X) is defined as follows. It is called the lower filtration in [14]
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Chapter VI §5. We recall that the dimension dimS is defined as the supremum of the
dimensions of the local rings dim s ;. For a point s of S, we put dimgs = dimS —
dim O . Let X be a scheme of finite type over S and / : X — S denote the structural
map. We put dimg x = tr. deg, 1),k (x) +dims f (x) for x € X as in [16] Exp. XIV 2. If
S 1is the spectrum of a regular local noetherian ring and X is proper over S, we have
an equality dimg x = dim {x} for x € X by loc.cit. Proposition 2.3. For a closed subset
V C X, we put dimg V = sup, ., dimg x. Note that the function dimg depends on the
base scheme S. For an integer n > 0, let F,G(X) be the subgroup of G(X) generated
by the classes [.#] of coherent Ox-modules .# such that the dimension of the support
of Z is at most n.
The y-filtration and the topological filtration are related as follows.

Lemma 2.1.2. — Let S be an equidimensional regular noetherian scheme of finite dimension
and X be a scheme of finite type over S.

1. ([14] Chapter V Theorem 3.9, Chapter VI Proposition 5.2) We have F*K(X) -
F,GX) C F,_.G(X). In particular, if X s of dimension d, the canonical map K(X) — G(X)
sends F'K(X) o F;_,G(X).

2. ([14] Chapter VI Proposition 5.5) If X s regular and equidimensional of dimension d
and if there exists an ample nvertible Ox-module, the induced map GriK(X)q — Grg_nG(X)Q

s an isomorphism.

Let f : X — Y be a morphism of schemes. The pull-back of locally free sheaves
defines a ring homomorphism f* : K(Y) — K(X). We have f*F"K(Y) C F"'K(X).
Assume X and Y are noetherian. If / is proper, there is a map f, : G(X) — G(Y)
sending the class of a coherent Ox-module .# to the class of the complex Rf,.Z. If f
is flat, there is a map /* : G(Y) — G(X) sending the class of a coherent Oy-module
Z to the class of [*.Z.

Lemma 2.1.3. — Let [ : X — Y be a morphism of schemes of finite type over a regular
noetherian scheme S of finite dimension.

1. ([14] Chapter VI Proposition 5.6) If [ s proper, we have f.F,G(X) C F,G(Y).

2. ([14] Chapter VI Proposition 6.3) If [ s flat of relative dimension m, we have
SEGY) C Fp GXD).

We recall the definition of Chow groups and bivariant Chow groups. Let S be
an equidimensional regular noetherian scheme of finite dimension, X be a scheme of
finite type over S and : > 0 be an integer. Let X; denote the set {x € X|dimgx = }.

The Chow group CH;(X) 1s defined as the cokernel Coker(G}yeXi+1 k(p)* 4 D, ex.Z).
The (x, y)-component d, , : k() — Z of d is characterized as follows. Let Y be the

closure of {»} with the reduced subscheme structure. If x € Y, the map 4, , satisfies
dy ,f =lengthOy . /(f) for f € Oy, # 0 and, if x ¢ Y, it is the O-map.
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Let S be an equidimensional regular noetherian scheme of finite dimension. Let
X be a scheme of finite type over S and Z be a closed subscheme of X. An elem-
ent of the bivariant Chow cohomology group CH(Z — X) is a collection of maps
CH;(W) — CH,_;(Z xx W) defined for schemes W of finite type over X and for in-
tegers j > 1, satisfying certain natural functorial properties ([13] Chapters 17 and 20).
If Z =X, let CH"(X) denote the bivariant Chow ring CH*(X — X). If X is equidi-
mensional of dimension @, a canonical map N[X] : CH/(X) — CH,_,(X) 1s defined.
It is an 1somorphism if X is smooth and S = Spec £ for a field £ [13] Corollary 17.4.

The filtrations on K-groups and Chow groups are related as follows. The map
ch : K(X) — CH*(X)q sending the class [£’] of a locally free Ox-module & to its
Chern character (¢4;(&)); € CH*(X)q is a ring homomorphism.

Lemma 2.1.4. — Let S be an equidimensional regular noetherian scheme of finite dimension
and X be a scheme of finite type over S.

1. The Chern character map ch : K(X) — CH*(X)q 15 compatible with the yfiltration
and induces a homomorphism ch : GryK(X) — CH*(X)q of graded rings.

2. (cf. [13] Example 15.1.5) The map CH,(X) — GriG(X) sending the class [V]
of an integral subscheme NV lo [O\] s well-defined and is a surjection.

3. Assume X 1s equidimensional of dimension n. Let & be a locally free Ox-module of rank r.
Then for an wnteger © > 0, the class in Grf_iG(X) of the image of vi([&] —r) € FR(X) is
equal 1o the image of ¢;(&) € CH{(X). In particular, for i = r, the image of v,([&] — r) =
(=1) Zq(—l)q[Aqtg’] € F'K(X) s equal to the image of ¢,(&) € CH'(X).

4. Assume X s equidimensional of dimension n. Then the composition

GriK(X)g —— CH*(X)q —> CH,_,(X)q — Gr'_,G(X)q

i equal lo the map induced by the canonical map K(X) — G(X).
5. Assume X is quasi-projective and smooth of dimension n over a field. Then the three maps
m 4 are isomorphisms.

By Lemma 2.1.4, the intersection product on CH,(X)g for a smooth quasi-
projective scheme X over a field may be computed by the product on K(X)gq.

Progf. — 1. It follows from the splitting principle and the equality y,([.Z]—1) =
1 4+ ([.Z] — 1)t for an invertible sheaf .Z.

2. Let W be a closed subscheme of Py and let 7 : Py — X be the projection.
Then we have [Ow,] — [Ow, ] = 7. (([O(1) = Ol = [0O(1) — O)) - [Ow]) =0 in G(X).

3. It follows from the splitting principle and the equality (2.1.1.1).

4. It follows from the splitting principle and the equality ¢k ([0(D)] — 1) N [X]
= [D] for a Cartier divisor D.
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5. The second arrow is an isomorphism by [13] Corollary 17.4. The composi-
tion 1s an isomorphism by 4 and by [14] Chapter VI Proposition 5.5. By Riemann-
Roch for the immersion V. — X, we have ¢/,[0y] = [V] for a closed subscheme
V of codimension i. Hence the composition map CH,_;(X)g — Grf_iG(X)Q_ —
GriK(X)q — CH,_{(X)q is the identity. Thus the assertion follows. |

2.2. K-theory and intersection theory. — The intersection theory a la Fulton-
MacPherson is translated in terms of K-theory as follows. We introduce some notation.
Let ¢ : V — X be a regular closed immersion of codimension ¢. Then the Ox-module
Oy is of finite tor-dimension. Let W be a noetherian scheme and

T — W

¢| I

1

be a cartesian diagram of schemes. For a coherent Oy-module ¢, the Zor-sheaves
f%rfx(ﬁv, ) are coherent Op-modules and are 0 except for 0 < ¢ < ¢ since Oy is of
tor-dimension ¢. We define a map (V, )x : G(IW) — G(T) by

V.9 =) (=1 [T (v, 9)]

q=0

for a coherent Ow-module ¥.

Lemma 2.2.1. — Let 1 : V — X be a regular closed immersion of codimension ¢ and
S W — X be a map of schemes. We put T = V xx W and assume the closed immersion
7 'T — W s a regular immersion of codimension ¢'. Assume W s noetherian. Then, for the in-
tersection product (V, W)x € G(T) defined as ) q(—l)q[%rfx(ﬁv, Ow)], we have an equality

c—c

(2.2.1.1) (V. W)x =D (—DAN x ] = (=D yeeo [Ny x 0] = (6 = ).
7=0

IfW =T and g : W — V is the induced map, we have

(2.2.1.2) (V. W)x =D (=DA% Nyx] = (~D)¥([ g Nvx] — o).

9=0

Proof. — It follows from Corollary 1.6.5 and the equality (2.1.1.2). O
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We study the relation of the K-theoretic intersection product with the intersec-
tion product using Chow groups. We recall the definition of the Segre class. Let S be
an equidimensional regular noetherian scheme of finite dimension. Let W be an inte-
gral scheme of finite type over S and T C W be a closed subscheme. If T = W, we
put s(T, W) = [W] € CH,(W) = @, CH;(W). Assume T # W. Let 7 : W — W be
the blow-up at T and T" = W’ xy T be the inverse image of T. The subscheme T
1s a Cartier divisor of W'. Then, the total Segre class is defined by

SCLW) = (T, W) = D (=)' (T N [T
>0 >0
€ CH.(T) = @, CH/(T) (cf. [13] Corollary 4.2.2).

Let S be a regular scheme of finite equidimension as above. Let X be a scheme
of finite type over S and V — X be a regular immersion of codimension ¢. The inter-
section product (V, )x is defined as an element of the bivariant Chow cohomology
group CH(V — X) as follows. Let W be an integral scheme of finite type over S
and W — X be a morphism over S. We put T =V xx W and let g: T — V be the
projection. Then the intersection product (V, W)x € CHgimw-.(T) is defined by

(2-2.2-1) (V, W)X = {C(g*NV/X)* N S(T, W)}dim\/\r'—n-

Here ¢(g"Ny,/x)* denotes Zi(—l)ici(g*NV/X) and the subscript dim W—¢ means taking
the dimension dim W —¢-part. If the closed immersion T — W is a regular immersion
of codimension ¢’ and Nj, x.w denotes the excess conormal sheaf, we have

(2.2.2.2) (V. Wx = (=1 e Ny ) N [T

The equality (2.2.2.2) 1s called the excess wntersection formula. Thus we obtain a collec-
tion of maps (V, )x : CH;(W) — CH,_.(T) sending the class of a closed integral
subscheme W’ to (V, W) for a morphism W — X of schemes of finite type over S.
They define an element [V] € CH(V — X) of the bivariant Chow group. The bi-
variant class [V] € CH(V — X) is characterized by the excess intersection formula

(2.2.2.2) and the projection formula (V, 7,W)x = m,.(V, W)x.

Proposition 2.2.2. — Let S be an equidimensional regular noetherian scheme of finite di-
mension and [ : W — X be a morphism of schemes of finite type over S. Let 1 : V — X be
a regular closed immersion of codimension ¢ and we put T =V xx W.

Then the map (V, )x : GIW) — G(T) sends the topological filtration ¥,G(W) to
F,_ .G(T). For the induced map, the diagram

(V, )x

CH,(W) —= CH,_.(T)

(2.2.2.3) | |
GI’/,G(W) ﬁ Grp_[G(T)
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s commutative. In particular, if W s equidimensional of dimension p and if the immersion T — W
is a regular immersion of codimension ¢, we have an equality

(2.2.2.4) (VL IWD = (= 1)t Ny x0) N [T]
i Gr,_ .G(T).

The equality (2.2.2.4) is also called the excess intersection formula. We will later
show a localized version, Theorem 3.4.3.

Proof. — The topological filtration F,G(W) is generated by the classes [Oy] for
integral closed subschemes Y C W of dimension < p. We put Z=VxxY. If Y =7,
we put Y =Y and Z' = Z. If otherwise, let 7 : Y — Y be the blow-up of Y at Z
and put Z' =Z xyY'. In the latter case Z C Y, the exceptional divisor Z’ 1s a Cartier
divisor of Y'. Let ny : Z/ — Z denote the induced map.

We show an equality (V, [R7, 0y ])x = m2.(V, [Oy]x in G(Z). Since Oy is of
finite tor-dimension and m is quasi-compact, we have a projection formula
Oy ®Lﬁx Rn,. 0y = Rm (Oy ®ZX Oy) (1.5.3.1) in D*(X).n. Thus, by the spectral se-
quences (1.5.3.3) and by the isomorphism (1.5.3.2), we have

(V. R, Oy D)x = Y (=1 [ T (O, Ri, Oy) |

Yax
=Y ([T (O, Rx,O0v)] = ) (—1)[Rim. (04 ®, Ov)]
q q
= D> VYR T ¥ (O, Ov)] = 1z.(V, [Ov]).

bq

The topological filtration F,G(W) is generated by the classes m,[Oy /] = [Rmr, Oy/]
for integral closed subschemes Y C W of dimension < p. Hence it is reduced to show-
ing that (V, [0y ]x is in F,_,G(Z') and that its class in GrF_nG(Z/) is equal to the
image of (V,Y’) € CH,_(Z') assuming dimgY = p. Replacing W by Y and further
by Y, we may assume W =Y =Y and T =Z = Z'. Thus we may assume Y = W
is of dimension p and either T is equal to W or T is a Cartier divisor of W. Let
g: T — V be the canonical map.

IfTWwW = T, we have (V, [ﬁw])x = (—I)CVC([g*NV/X] - C) by Lemma 2.2.1.
Hence (V, [Ow])x 1s in F,_.G(T) and its class is equal to the image of (V, W)x =
(—=D‘(g"Ny)x) by Lemma 2.1.4.3. If T is a Cartier divisor of W, we have
V, [OwDx = (—1)[_1)/5_1([N’V/Xw]—(c—1)) by Lemma 2.2.1. Hence (V, [Ow])x is in
Fy-1)--1)G(T) and its class is equal to the image of (—1)5_105_1(N/V/X’w) by Lem-
ma 2.1.4.3.

The excess intersection formula (2.2.2.4) follows from (2.2.2.2) and the commu-
tative diagram (2.2.2.3). O
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Let f : X — Y be a morphism locally of complete intersection of noetherian
schemes. For a subscheme Z of Y, the pull-back map f* : G(Z) — G(Z xy X) is
defined by sending the class of a coherent &z-module ¥ to Zq(—l)q[%rf"(ﬁx, D)
since the map f : X — Y 1is of finite tor-dimension.

Corollary 2.2.3. — Let S be an affine, equidimensional regular noetherian scheme of finite
dimension and X and Y be regular schemes of finite type over S. Let [ : X — Y be a morphism
over S. Let 7. C'Y be a subscheme and put 7 = 7. Xy X. Assume X s quasi-projective over S.

1. Assume that X 1s equidimensional of dimension n and Y s equidimensional of dimension
m. Then the map [* : G(Z) — G(Z') sends ¥,G(Z) nto ¥,,,_,,G(Z).

2. Assume further that f : X — Y s proper, surjective, generically finite of constant rank
[X 2 Y]. Then, we have n = m and the composition f, [* : Gr;G(Z) — GrgG(Z) is the
multiplication by [X : Y].

Progf — 1. Take an immersion X — PY. The map X — Y is factorized as
X — P{xsY — Y. Since X and Y are regular, the immersion X — PYxY is regular
of codimension m+N—n. Hence it follows from Lemma 2.1.3.2 and Proposition 2.2.2.

2. The direct image Rf,Ox is a perfect complex of Oy-modules of rank [X : Y].
Hence we have [R,0x] = [X : Y] mod F'K(Y). Thus, for a coherent ¢;-module
Z such that dimg supp.# = p, we have [REL/* 7] = [ Q4 RAOk] = [X 1 Y] -
[#] mod F,_,G(Z). |

For a scheme over a discrete valuation ring, we have a reduction map. Let S =
Spec Ok be the spectrum of a discrete valuation ring and X be a scheme of finite type
over S. Then, since the immersion s — S of the closed point is a regular immersion,
the intersection product (s, )s : G(X) = G(X)) is defined.

Corollary 2.2.4. — Let X be a scheme of finite type over a discrete valuation ring S =
Spec Ox. Then

1. The map (s, )s : G(X) = G(X|) wmduces a map (s, )s: G(Xg) = G(X)).

2. The induced map (s, )s : G(Xg) = G(X,) sends the topological filtration ¥,G(Xk)
mto F,G(X)).

Proof — 1. We have an exact sequence G(X,) - G(X) — G(Xg) — 0. It is
sufficient to show that the composition G(X,) = G(X) — G(X|) is the 0-map. By
(2.2.1.2), for a closed subscheme W C X, we have (s, W)s = —([N;;s® Ow]—1) =0
and the assertion follows.

2. The map F,;,G(X) — F,G(Xg) is surjective. By Proposition 2.2.2, the map
(s, )s : G(X) = G(X)) sends I, G(X) to F,G(X,). Thus the assertion follows. O
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2.3. Localized Chern classes. — We recall the definition and basic properties of
localized Chern classes. Basic references are [13] Chapters 18 and 20 and [6] Sec-
tion 1.

Let S be an equidimensional regular noetherian scheme of finite dimension,
X be a scheme of finite type over S and Z be a closed subscheme of X. Let & =
(A, d;), be a bounded complex of locally free Ox-modules of finite ranks. Assume
that on the complement U = X —Z, the restriction |y is acyclic except at degree 0
and the cohomology sheaf J (% )|y is locally free of rank n— 1. Then for ¢ > n, the
localized Chern class ¢5(#) € CH'(Z — X) is defined in [6] Section 1. We define
a ring CH*(Z — X)™ to be [].., CH'(X — X) x [[., CH(Z — X) and regard the
total localized Chern class ¢ () = ((¢;(H))i<u, (c,-%i(ji/ ))i>x) as an invertible element
of the ring CH*(Z — X)®.

The localized Chern classes satisfy the following properties.

Proposition 2.3.1 ([6] Proposition (1.1)). — Let Z be a closed subscheme of X and
H be a bounded complex of locally free O'x-modules of finite ranks. Assume that on the complement
U = X —7Z, the restriction |\ is acyclic except at degree 0 and the cohomology sheaf F45( ) v
us locally free of rank n — 1.

1. The image of c; () in CH*(X) is l_[q c(d"i/q)(_l)q.

2. For a quasi-isomorphism H~ — K", we have c; (H) = c5 (H).

3. Let & be a locally free Ox-module of finite rank. Then for © > n and for an integer V',
we have ¢i5 ()i (E) = ci(Ely)eiy (K. Let H be another bounded complex of locally free
Ox-modules of finite ranks such that the restriction &'\ is acyclic except at degree 0 and the
cohomology sheaf F6(K")|v is locally free of rank n' — 1. Then for t > n and ¢ > ', we have
Cz'}z((e/ni/)@’(%/) = Ci’%((%/)ci(%)-

4. ([2]) Let " and A" be bounded complexes of locally free Ox-modules of finute ranks
such that the restriction '\ and "y are acyclic except at degree 0 and the cohomology sheaves
FL(H Ny and FE(H ) |6 are locally free of rank W' — 1 and W' — 1 respectively and let
K — H — K" — be a distinguished triangle. Then we have ¢ () = c; (A ")y (H)
in CH*(Z — X)®.

5. Let 7. C 7/ C X be closed immersions. Let i, denote the collection of the induced maps
e 1 CH.(Z xx X') = CH.(Z' xx X') for schemes X' of finite type over X. Then we have
Lo G (H) = ().

Let [ : X" — X' be a morphism of finite type over X and let g : 7" — 7 be the base
change by 7. — X.

6. Assume [ s proper and let f, 1 CH.(X") — CH.(X') and g, : CH.(Z") —
CH.(Z') be the induced maps. Then we have c; (') o f, = g, 0 i (K).

7. Assume [ is flat of relative dimension n and let f* : CH,(X') — CH,.,(X") and
g CH.(Z') — CH,(Z") be the induced maps. Then we have c; () o f* = g* o i (X).
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Let .# be an Ox-module such that the restriction .#|y is locally free of rank n.
If % has a finite resolution &, — % by locally free Ox-modules &, of finite rank, the
localized Chern class ¢ (%) for i > n is defined as ¢;; (&,). By Proposition 2.3.1.2, it
is independent of the choice of a resolution.

For a locally free sheaf on a divisor, its localized Chern class is computed as
a special case of Riemann-Roch without denominator as follows.

Lemma 2.3.2 (cf. [13] Theorem 15.3). — Let D be a Cartier divisor of a scheme X
and i : D — X be the immersion. Let & be a locally free On-module of rank n. Assume there
exist a locally free Ox-module & of finite rank and a surjection E — i,.& so that the localized
Chern class ¢(i,&(D)) € CH*(D — X)) is defined. We put a(&) =) _ ( )cn (&) €
CH*(D — D).

Then we have Y ;_, (& @ L) = Zj 0 4(&)a (& Y for an invertible Op-module &

and we have equalities

n

(H@EM)) — 1) N[X] = (&) Zaj(tg’)Dj_l N [D]

J=1

in CH, (D).

Proof. — We have

n n k

D aE®L) =) (+a(@) " aé) = Z > < ) (LY 6,1(8)

=0 =0 k=0 j=0

=Y a(&)a (LY.
J=0

By deformation to the normal bundle, we may assume X is a P'-bundle over D and
the immersion ¢ : D — X is a section. Then & is the restriction to D of the pull-back
éx of & to X. Since the map 7, : CH,(D) — CH,(X) is injective, it is reduced to
the equality for the usual Chern class ¢(z,8(D)). By the locally free resolution 0 —
& — & D) — ,&D) — 0, we have ¢(4,E(D)) — 1 = (&) (e(E (D)) — (X)) =
() (i (D = ay(é)). 0

Similarly as Lemma 2.3.2, the following formula is proved.
Corollary 2.3.3. — Let D be a Cartier divisor of X. Then we have

(O = 1) N[X] = —[DI.
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We compute the localized Chern class of a blowing-up.

Lemma 2.3.4. — Let X be a regular noetherian scheme of finite equidimension, C be a regu-
lar closed subscheme of codimension ¢ and 1 : C— X be the immersion. Let w : X' — X be the
blowing-up at C and 7y, : E = C xx X' — C be the induced map. Then, we have an equality

e (( (Ryx) = 1) NIXT) = (=D(c = DeNex) ™ N[C]
in CH,(C).

Progf — The canonical map €y, x QE/(} is an isomorphism. Since E is a
P~ !'-bundle P(NQ/X) associated to the conormal sheaf N¢/x, we have an exact se-
quence 0 — €| B miNex(—=1) — O — 0. Hence, we have cX(Ql,/X) =

cx (5 Ne/x (— 1))6‘X (0r)~'. By Corollary 2.3.3 and Lemma 2.3.2, we have

(CE(/(”ENC/X(_1))C§/(ﬁE)_l — 1) N[X']
= (e (mNex(®) = 1) N [XT —a (”ENC/X)_lcE(”ENC/x(E)) N[E]

= o (TiNex) | D @ (miNex) B N [E] - Z 7iNex)E N [E]
j=1
We have Ef = — ;:1 ngcj(Nc/X)E‘_f since ¢, (Ker(mjN¢,x — 0(1))) = 0. Substitut-
ing this and using e (B N[E) = (=D!'[Clifj=c¢c—1andis 0 for j<c¢— 1, we
have

ﬂE*((CE(,(Q;(’/X) - 1) n [X/])
= (_1)6_15(NC/X)_1(ac(NC/X) - ac—I(NC/X) + af(NC/X)Cl (NC/X)) N [C].

Since a,(N¢/x) =1 and a,_;(N¢/x) = ¢+ ¢;(N¢/x), the assertion follows. O

2.4. Localized Chern class and derived exterior power. — Let £ be a complex of
Ox-modules and n > 0 be an integer. In this subsection, we compute the class of the
derived exterior power LA'JZ" assuming that £ satisfies the following condition:

(L(n)) For each x € X, there exist an open neighborhood U of x, a locally free
Oy-module &y of rank n, an invertible &;-module %, and a distinguished
triangle — % — &y — |y — in D’(U).

We put . = J4% and let ¢ : Z — X be the closed immersion defined by the
annihilater ideal Ann A".%. We also relate the class [LA*#] to the localized Chern
class ¢,;(#) € CHY(Z — X) in Proposition 2.4.4 assuming %~ further satisfies the
condition:
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(G) There exist a locally free Ox-module & of finite rank and a map & — %~
in D’(X) such that the induced map & — % = J4. % is a surjection.

Lemma 2.4.1. — Let X be a scheme, n > 1 be an integer and J# be a complex of Ox-
modules satisfying the condition (L(n)) above. We put F = Fo X and let i : 7. — X be the
closed immersion defined by the annihilater ideal Ann N'F. Then,

1. The restriction F|x_z is locally fiee of rank n — 1. The Oz-module £ = L'i* X is
wnvertible.

2. For an Ox-module 4, the Jor-sheaves %rfx (LA, 9G) are Oz-modules for all q and
are 0 except for 0 < q < n. In particular, LIN'  are Oz-modules for all g and are 0 except for
0<¢g=<n

3. Let T be an Oz-module. Then the canonical map £;[1] — Li* K induces an ismor-
phism

2.4.1.1) %@, T — Tl 'K, T) = Tn? (K, D).

For locally free Ox-modules £ and & of finite rank and a distinguished triangle — £ — & —
H —, we have a commutative diagram

L Qo T ——  Tol(H, T)

(2.4.1.2) l l

L ®p. T —— Tn'™(ZL[1], 7).

The vertical maps are induced by the map H — L[1]. If L is invertible, the vertical arrows are
wsomorphisms.

4. If & further satisfies the condition (G) above, then there exist a locally free Ox-module
L of finite rank and a distingushed triangle — £ — & — H — i D*(X).

Proof — 1. Since the question is local on X, we may assume that there is an
distinguished triangle - & — & — % — where £ = Ox and & = 0%. Let
(a1, ..., a,) € & = O% be the image of 1 € £ = Ox. Then the closed subscheme
7. C X 1s defined by the ideal (ay, ..., a,). Hence, on the complement X\ Z, the map
£ — & is a locally splitting injection. The natural map L'i* % — £ Qg Oy is an
isomorphism.

2. The question is local on X and we keep the notation in the proof of 1. By
Lemma 1.2.5 and by the isomorphism (1.3.1.2), we have an isomorphism
N(ZL — &) — S(E - L) - K(E* ® L — 0Ox). It induces an isomorphism
%er(LA”%, G) — H(K(E* Q@ L — Ox) Qo 9). Since H (K(E* Q@ L — Ox)
Qu ¥4) is an HK(E* @ L — Ox) = 0z-module, the assertion follows.
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3. It 1s clear that the diagram (2.4.1.2) is commutative. It is clear from the defin-
ition of Z that the vertical arrows are isomorphisms if .Z is invertible. For the iso-
morphism (2.4.1.1), the question is local on X and hence the assertion follows from
(2.4.1.2).

4. There exists a distinguished triangle — %7 — & — # — of complexes
of Ox-modules. By the condition (L(n)), " is acyclic except at degree 0 and hence
is identified with an Ox-module Z. In the notation of (L(n), the restriction .Z|y is
isomorphic to the kernel of a surjection &|y @& Ly — &y of locally free Oy-modules
of finite rank and the assertion follows. O

Lemma 2.4.2. — Let the notation be as in Lemma 2.4.1.

1. The homology sheaf LY N X = FC(LAIE) is an Oy-module except for p = 0 and
0 < ¢g<nandis 0 except for max(0, g —n) < p <gq.

2. Assume either ¢ > n, p >0 or Z = X. Then the composition

(2.4.2.1) o s AL — Tor?S (A LA —> T ¥ (A LINK )
o — £ Qu, LN

is an tsomorphism. The first map is induced by the map LA™ H — H# @y LN, the second
map is the boundary map of the spectral sequence El, = Jor(H ,L'NH) =
Tor X (A, LAK) and the last map is the inverse of the isomorphism (2.4.1.1).

3. Assume 7. = X. Then the Ox-module & = FGH s locally free of rank n and
L = JOK is invertible. An iteration of the isomorphism Xy (2.4.2.1) defines an isomorphism
LN — L2 Q NE.

4. Assume 7. is a Cartier divisor of X. Then ¥ = F5 K is an extension of a locally free
Ox-module &' of rank n — 1 by an invertible Oz-module £, = £,(1) = &5, Q¢ Ox(Z).
The canonical map K — F is an isomorphism in the derived category.

For ¢ = 0, the composition

LA —  To(N(HLNK)  — Ta{N(H, NF)

(2.4.2.2)

— TN (H, Ly(2) @ NT'E) — LENL) @ ATE
is an isomorphism of Oy-modules. The first map is induced by the map LAT' A —
H @y LAIA, the second map is induced by the canonical map LAVA — N.F, the third
map is the inverse of the isomorphism induced by the map £7(2) @ A1~'E — AL.F and the last
map 1s the wmverse of the isomorphism (2.4.1.1).

Proof. — Since the questions are local on X, we may assume that there is an
distinguished triangle - & — & — J# — where £ = Ox and & = 0% as in the
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proof of Lemma 2.4.1. We put .# = 7.% . By Corollary 1.2.3.2, we have an exact

sequence
(2.4.2.3) 0— LAY —— LQANTF —— ATE —— AT -0
and isomorphism

(2.4.2.4) LA — L QLN

for ¢ > 0 and p > 0. If X = Z, we have an isomorphism (2.4.2.4) also for p = 0.

1. By the isomorphisms (2.4.2.4), it is reduced to the case ¢ = n. Hence it follows
from Lemma 2.4.1.2.

2. The composition of A : LT AT — £, ®4, 1P AH with the isomorph-
ism % Qp, LN K — L Qp LA is the isomorphism (2.4.2.4) either if ¢ > n,
p>1or X =7. Hence the assertion follows.

3. If X = Z, we have an isomorphism %2~ — &@.Z[1] and the assertion follows.

4. We show that .% is an extension of a locally free Ox-module &” of rank n— 1

by an invertible z-module .Z, and J# — .# is an isomorphism. Let (ay, ..., q,) €
& = 0% be the image of 1 € £ = Ox. Shrinking further X and changing the iso-
morphism 0% — &, we may assume ¢; is a non-zero divisor and 4y = ... = q, = 0.

The assertion is clear from this.

We have a canonical isomorphism % = f%riﬁ (O, F) —> Ker(F Q@ Ox(—7)
— #) = Homu (O, F) Qo Ox(—1) = £, ®p, Ox(—Z). Thus we obtain an
isomorphism %, @ Ox(Z) — Z,.

We show that the map (2.4.2.2) is an isomorphism. By the exact sequence 0 —
£5(7) > F — & — 0, we obtain an exact sequence 0 = % (Z) @ A7 '&" —
ANF — A& — 0. From this, we see that the kernel of the map . ® A%.¥ —
A in (24.2.3) is LPX(Z) ® A7'E and obtain an isomorphism L'A%!'.¢ —
L2UL) ® AT'E. Tt is easy to see that this isomorphism is the same as the map
(2.4.2.2). O

We compute the class of the exterior derived power LA".# in the K-group.

Corollary 2.4.3. — Let the notation be as in Lemma 2.4.1.
1. Assume 7, = X. Let & = 5% be the locally free Ox-module of rank n and £ =
FOH be the invertible Ox-module in Lemma 2.4.2.5. Then, we have an equality

LA ] = (=1)"Y (=1 [M(E®@ L5 © £
p=0
=y, ® L% - n[L]

(2.4.3.1)

n K(X).
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2. Assume X s a noetherian scheme and 7, is a Cartier divisor of X. Let &' be the locally

Jfree Ox-module of rank n — 1 and £, be the vertible Oz-module as in Lemma 2.4.2.4. Then,
we have an equality

n—1 n—1

(2.4.3.2) D CVIAA = (1)) (Y [N(E ®@a L7 © L7(2)]
4.3. 2 2

=y ([6 ®ox L87'] — (1 — D)LT10,(2)]
in G(Z).

Proof — 1. We have an isomorphism /A% — A& @ Z£* by Lem-
ma 2.4.2.3. Thus the first equality of (2.4.3.1) follows. The second equality in (2.4.3.1)
follows from (2.1.1.2).

2. By the composition of an iteration of the isomorphisms (2.4.2.1) and the iso-
morphism (2.4.2.2), we obtain an isomorphism L/A'¥ — A& @ L¥(Z).
Thus the first equality in (2.4.3.2) follows. The second equality in (2.4.3.2) follows from
(2.1.1.2). O

We compare the localized Chern class and the class of the exterior derived power.
We introduce some notations. Let S be an equidimensional regular noetherian scheme
of finite dimension and X be a scheme of finite type over S. Let J# be a complex of
Ox-modules satisfying the condition (L(r). Let Z be the closed subscheme of X as
in Lemma 2.4.1. For a coherent Ox-module ¥, the Zor-sheaves %er(LA”,%/ , ) are
coherent 0-modules and are 0 except for 0 < ¢ < n by Lemma 2.4.1.2. Hence
the map ([LA%], )x : G(X) — G(Z) sending the class [¢] of a coherent Ox-
module 4 to ZZZO(—I)‘/[%rqﬁX (LA % ,9)] is defined. If % further satisfies the con-
dition (G) above, the localized Chern class c,fZ((Ji/ ) € CH"(Z — X) is defined by
Lemma 2.4.1.4.

Proposition 2.4.4. — Let S be an equidimensional regular noetherian scheme of finite di-
mension and X be a scheme of finite type over S. Let n > 1 be an integer and K~ be a complex
of Ox-modules satisfying the condition (L(n)) above. Let 1 : 7. — X be the closed immersion defined
by the annihilater ideal Ann N'JG K and £ be the invertible O7-module 1.'i* ¥ .

Then the map ([LN' ], )x : G(X) — G(Z) sends the topological filtration ¥,G(X) to
the topological filtration ¥,_,G(Z). If X~ further satisfies the condition (G), the induced map makes
a commutative diagram

iy (N
CH,X) —— CH, .(2)

l l

GIG(X) —— Gl G(Z).
([Lax], Hx
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Proof. — The proof is similar to that of Proposition 2.2.2. The topological filtra-
tion F,G(X) is generated by the classes [Oy] for integral closed subschemes W C X
of dimension < p. We put T = W xx Z. f W =T C Z, we put W = W. If oth-
erwise, let 1 : W' — W be the blow-up of W at T and put T" = W’ x T. Then,
the topological filtration F,G(X) is generated by the classes m,[Oyw] = [Rm, O] for
integral closed subschemes W C X of dimension < p.

Let %4y and %y denote &~ ®ﬁ Ow and A ®ﬁ Oy respectively. We show
the equality ([LA" ], m.[Ow])x = m LAy ] in G(T). Since LA" iy is a per-
fect complex of Ow-modules and 7 is quasi-compact, we have a projection formula
LAy @ R, Oy ~ Ra LAy (1.5.3.1) in D*(X).n. Thus, by the spectral se-
quences (1.5.3.3) and (1.5.3.4) and by the isomorphism (1.5.3.2), we have

(LA, R, OwDx = ) (=1 [ Tor/ (LA A, R', Oy) |

sq
= Y (~[TorXLANK R, O)] = ) (—1Y [ROm, LA Ay |
)4 4
= Z(— D[R LN Sy | = m[LA Ay ).

bq

Hence it is reduced to showing that [LA" ] is in F,_,G(T") and its class in
Grﬁ_nG(T’ ) is equal to the image of ¢, (%) N [W'] assuming dims W = . Replacing
X by W and further by W and J# by Jy, we may assume X = W = W’ and
Z =T ="T". Thus we may assume X = W is of dimension p and Z = T is either
equal to X or is a Cartier divisor of X.

First, we assume Z = X. In the notation of Corollary 2.4.3.1, we have

(LAY, [OxDx = v,([€ ® L% = [ L]
= ,(6 ® £°'1—n mod F,_, ,GX).

Hence it is contained in F,_,G(X) and its class in Grp ,G(X) is equal to the image

of ¢,(& ® Z® ") N[X] by Lemma 2.1.4.3. Further, we have

6y () NIX] = (o(E)e(L) ™" N [XDdeg

4.4.1 . .
2 ) =Y eV e(&)a (LY N[X] = (6 ® £ N[X]

in CH,;_,(W). Thus the assertion is proved in the case Z = X.
Next, we assume Z is a Cartier divisor of X. In the notation of Corollary 2.4.3.2,
we have

([ILAA, [0x)) = Vi ([ © L7 ] = (0 = D)L [0(2)]
=y([6'® L7 - (= 1)) mod ¥, G(2).
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Hence by Lemma 2.1.4.3, it is contained in F,_,G(Z) and its image in GrF_ﬂG(Z) is
equal to the image of ¢, (&"]; ® Z2~") N[Z]. We show the equality

(2.4.4.2) Gy () NX] =1 (81, @ L5 ) N [Z]

in CH,_,(Z). By the exact sequence 0 - %, ®g», O7(Z) - F — & — 0, we have
& (ANX] = (&) (ZL®0,07(2))N[X]. By Lemma 2.3.2, we have ¢ (#)N[X] =
(ENV([X]+c(Z,) ' N[Z]). Its degree n-part is equal to Zp+q:n_l(—1)"cp(é"/|2)cl (L)1
N [Z] and further to the right hand side of (2.4.4.2). Thus the assertion is also proved
in the case Z is a Cartier divisor of X. O

Corollary 2.4.5. — Let X be a separated regular noetherian scheme of finite dimension and
F be a coherent Ox-modules such that & = F satisfies the condition (L(n)) for an integer n > 0.
Let i : 7. — X be the closed immersion defined by the annihilator ideal of N''F. Assume F is
locally free of rank n — 1 on a dense open subscheme of X. Let w : X' — X be the blow-up
at 7, D = 7 xx X' be the exceptional divisor and mp : D — 7. be the restriction of 7. Let
& be the locally free quotient of rank n— 1 of the Ox-module w*.F by the invertible Op-module
5Ly Qs On(D). Then, we have

6y (F) N[X] = 7 (601 (6 lp @ 7522 ~") N [D])
in CH,_,(Z).

Progf. — The complex # satisfies the condition (G) by Lemma 2.1.1. Since
the cohomology sheaves L%*.J¢Z are locally free &z-modules for all ¢, the &p-module
L' (7p 0 9)*# is the pull-back 7{,.%;. Thus it follows from the equality (2.4.4.2) for
La*.7. O

3. K-theoretic localized intersection product

In this section, we define and study K-theoretic localized intersection product,
which plays an essential role in the proof of the conductor formula. To define the lo-
calized intersection product in Section 3.2, we prove a periodicity of Jor-sheaves in
Theorem 3.1.3 using the Atiyah class map recalled in Section 1.4. We establish ba-
sic properties of the localized intersection product including the associativity formulas,
Proposition 3.3.2 and 3.3.3, the projection formula, Proposition 3.3.5 and the excess
intersection formula, Theorem 3.4.3. The excess intersection formula gives a relation
with the localized Chern class introduced in Section 2.3 and also with the localized
intersection theory defined by Abbes [1]. We prove the formula by using the map
(1.7.2.2) of the spectral sequence (1.6.4.3).
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3.1. Perodicity.

Defimation 3.1.1. — Let S be a scheme. We say a scheme X locally of finite presentation
over S s locally a hypersurface of virtual relative dimension n — 1 if, for each x € X, there exust
an open neighborhood U of x in X and a regular immersion U — P of codimension 1 over S into
a smooth scheme P over S of relative dimension n.

Clearly, if a scheme is locally a hypersurface, it is locally of complete intersection.
In this section, for a scheme X over S that is locally a hypersurface of virtual relative
dimension n—1, let z : Z — X denote the closed immersion defined by the annihilator
ideal Ann QY ¢ and let %, denote the €;-module L'7*L/s. Locally on X, the closed
subscheme Z 1s described as follows. Let the notation be as in Definition 3.1.1. Further
let P — AY be an etale map defined by a coordinate ¢, ..., ¢, and assume U is defined
by ¢ € I'(P, Op). Then we have a distinguished triangle — Ny,p — Q%’/s ®p, Ov —
Lx/slu — and the map Ny,p — QII)/S ®g, Oy sends the basis g to dg = %dtl + ..+
g—idtn. Thus the closed subscheme Z N'U C U is defined by the ideal (;’751, ey g_ti)'

Lemma 3.1.2. — Let X be a scheme over S that is locally a hypersurface of virtual relative
dimension n—1. Let 1 : Z — X be the closed ummersion defined by the annilulator ideal Ann 5 /.
We put &5, = LY Ly)s.

1. The underlying set of Z. is equal to the closed subset {x € X :X s not smooth at x over S}.

2. The cotangent complex Lixs satisfies the condition (L)) in Section 2.4. For Q2 s =
HoLix s, the restriction Q2 sslx\z to the complement of 7. is locally free of rank n — 1. The Oy-
module £, = L'*Lixs is tnvertible.

3. Let P be a smooth scheme over S and X — P be a regular immersion over S. Then the
canonical map L ;s — Lixp — Nx,p[1] nduces a locally splitting injection

(3.1.2.1) Vx/p/s - oiﬂz — NX/P ®ﬁx ﬁZ'

If P — S s smooth of relative dimension n and X — P is a regular immersion of codimension 1,
the map vxpss + £7 — Nxjp Qg Oy is an isomorphism.

Proof. — 1. Clear from the local description above.

2. The condition (L(n)) is also clear from the local description above. The rest
follows from this and Lemma 2.4.1.1.

3. By the distinguished triangle — Nx,p — QII)/S ®ep Ox — Lxjs —, we have
an exact sequence 0 - .27 — Nx»p Qg 07 — Qll,/s Qe O7 — Q%{/s Ray O7 — 0.
Since Qs ®y Oy is locally free of rank n, the assertion follows. |

In the following, for a scheme W over X, we put Zy = Z xx W. By Lem-
ma 3.1.2.2, for an 0y, -module .7, the isomorphism (2.4.1.1) defines an isomorphism

(3.1.2.2) toxss Tl (Lxs, T) = L, ®p, T

of 07,,-modules.
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The following periodicity result is crucial in the definition of the localized inter-
section product.

Theorem 3.1.3. — Let S be a scheme and X be a scheme over S that is locally a hyper-
surface over S of virtual relative dimension n— 1. Let W be a scheme over X, F be an Ox-module
and G be a complex of Ov-modules. Assume that F is of tor-dimension < m as an Os-module
and that 7€,(9) = 0 except for a < q < b. We put g9 =m~+n—+ b.

Then we have the following.

1. The O\y-module Q%rfx(ﬁ ,9) s an Oy,-module for ¢ > qo.

2. For ¢ — 2 > qo, the composition

(3.1.3.1)  asyxs: Tn?(F.G) — L4 R®q, T (F,9)

of the maps
f%rfx(}\, g)
Jv 27 R, %7?2(‘?’ 9)
(3.1.3.2)
%fo (LX/S ®Iéx ﬁ[l]’ g) T

= T (Lxss, F ®% G) —— T (Lss, Torl5(F. D))

is an wsomorphism of Oy, -modules. The first map is induced by the Atiyah class map atxss z @ F
— Lx/s ®2X FI1] (1.4.0.2), the second map s the boundary map of the spectral sequence E/f ;=
%rfx (Lx/s, %rfx (7,9)) = Q%r[ﬁf](LX/S, F ®15~X ) (1.5.1.4) and the last upward map
is the isomorphism Tt%&\; ¢ (3.1.2.2).

3. Let P be a smooth scheme over S and X — P be a regular immersion over S. Let
A7y x/p ! Q%rfx(ﬁ, ) — Nx/p®uy %rf_@(ﬁ, ) be the map (1.5.4.4). Then the diagram

7.9),X/S

Tn(F, %) TS 04, T N(T, D)
(3.1.3.3) H lVX/P/S®1
L%fo (9, g) _— > NX/P ®ﬁx L%rf—XQ (ﬁ, Cf)
X7 G X/P

s commultative.

Proof — 1 and 2. The assertions are local on X. Shrinking X, we take a smooth
scheme P over S and a regular immersion X — P over S. We consider the diagram
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1 ox (g
QP/S ®ﬁp %rq_\g(t%a g)

I

L%fo (9, g) NX/P ®@\ %75}2(g, g)

(3.1.3.4) l T

Tor? (Lss @y F111,9)
= %%ﬁ_xl (LX/Ss ﬁ@LﬁX g) — %T?X(LX/S, %7’967_)(2(9, g))

I

0.

XF 4 X/P

The right column is the exact sequence defined by the distinguished triangle — Nxp
— Qps g, Ox — Lx;s —. The lower left part is the same as in (3.1.3.2). Since the
map a@zgxp is induced by the composition of the Atiyah class map # —
Lx/s ® #[1] and the map Lx/s — Nx/p[1], the square is commutative.

Now we assume X — P is a regular immersion of codimension 1. We show
that the map az g xp : %rfx (#,9) - Nxp oy f%rf_XQ(ﬁ ,9) is an isomorph-
ism for ¢ — 2 > ¢p. By Lemma 1.5.4, the map is the same as the boundary map dZO :
%rf F.9) — Nxp Qag %rf}z(ﬁ ,9) of the spectral sequence Ei .
Tor)*(Tor7(F, Ox),9) = Eypy = Tor)f (F,4) (1.5.4.3). Since X — P is a regular
immersion of codimension 1, the E*-term vanishes for ¢ > 1. By Corollary 1.5.7, the
Op-module .7 is of tor-dimension < m~+n. Hence we have f%rfv" (#,9) =0 for r> g
= b+ n+m. Therefore the map oz ¢ x/p : c%rfx(ﬁ, 9) — Nxp Qay %rf_xz(ﬁ, 9) is
an isomorphism if ¢ — 2 > ¢,.

Since oz g x/p : %rfx(ﬁ ,¥9) — Nx/p Qo %rﬁ‘g(ﬁ , %) is an isomorphism,
the top vertical map Nx/p ® ¢y f%rf_"z(ﬁ, 7)) — 911)/5 P %rf_@(ﬁ, 9) in (3.1.3.4) is
the 0-map. Hence the assertion 1 follows by the definition of Z. Further, since vx,p/s :
£, — Nxp Qg 07 is an isomorphism, the assertion 2 follows.

3. Clear from the commutative diagram (3.1.3.4). O

3.2. K-theoretic localized intersection product. — In this subsection, we keep the no-
tation in Theorem 3.1.3. Namely, X is locally a hypersurface of virtual relative dimen-
sion n — 1 over a scheme S, Z is the closed subscheme defined by Ann Qf ¢ and Z7
is the invertible ©;-module Lli*LX/S. For a noetherian scheme Y over Z, let G(Y), ¢,
denote the cokernel of the endomorphism 1 —.%- : G(Y) — G(Y) sending [¢] to
Y] — £, ®s, 9.

Theorem 3.1.3.2 has the following consequence.
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Theorem 3.2.1. — Let S be a noetherian scheme and X be a scheme over S that is locally
a hypersurface of virtual relative dimension n — 1 over S. Let Z. be the closed subscheme defined by
Ann Q% /s and £, be the invertible ©;-module Lli*LX/s. Let V be a closed subscheme of X and
F be a coherent O\-module. Let W be a noetherian scheme over X and 4 € D*(W)on. Assume
that F s of tor-dimension < m as an Os-module and that H,(9) = 0 except for a < q < b.
We put g = m~+n+b and T =V xx W. Then,

1. For ¢ > qo, Q%rfx(ﬁ v 9) 1s a coherent Oy,.-module and the class [%rfx (7,9)] €
G(Zr),g, depends only on the parity of q modulo 2. The class

(3.2.1.1)  [[Z.9llx = (D[ Tr(Z. )] + (D™ [T/ (F.9)]

€ G(Zr1) )¢, s independent of q.
2. For an exact sequence 0 — F' — F — F" — 0 of coherent Ov-modules, we have

(7,91 =7, 91 + [[F", “]].
3. Let ¥ be an increasing filtration on 4. Assume that ¥, is acyclic for sufficiently small g,
GI¥,G is acyclic for sufficiently large q and that Gr?g € DY (W) on, for all q. Then we have
(L7 91 = ) _[[Z. 619
q

In particular, for an exact sequence 0 — §' — G — 4" — 0 of coherent O\y-modules, we have
(7. 91 =7, 91+ [[F,9"]]

4. If W is also a closed subscheme of X, & is a coherent Ovy-module and if G is of finite
tor-dimension as an Os-module, we have [[.F, 41lx = [[¥, F]]x.

Proof. — 1. Clear from Theorem 3.1.3.
2. We have a long exact sequence

— TnN(F G —— Tn(F.G) —— Tnl(F.9)
—— T N(TFG) —— T N(F.G) —— T (F.G)
SN %rﬁ‘g(ﬁ’,g) LN %rﬁé(ﬁ,g) —_—

Since the canonical map az ¢ x/s is functorial, it induces an isomorphism Im a —
Im b ® .Z;. Hence the equality follows.

3. Assume ¥ is acyclic for ¢ < a and ¥/F?9 is acyclic for ¢ > b. By induction
on b — a, it is reduced to the case where ¢ = —1 and b = 1. In other words, it is
sufficient to show an equality [[.#, ¥]] = [[#, 911+ [[.#, 94"]] for an exact sequence
0—>9 -9 — 9" — 0 of complexes. It is proved similarly as in 2.

4. Clear from the definition. O
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Definition 3.2.2. — Let S be a regular noetherian scheme of finite dimension and X be
a scheme over S that s locally a hypersurface of virtual relative dimension n — 1 over S. Let Z. be
the closed subscheme defined by Ann Q% /s and £, is the invertible O;-module Lli*LX/s. Let V
be a closed subscheme of X and W be a noetherian scheme over X and put 'T' =V xx W.

We call the bilinear map

(3.2.2.1) ([, llx:G(V) x GW) —— G(Zr),,

sending ([ F], [9]) to [[F, 9Y]]lx (3.2.1.1) the localized intersection product on X. We put
[[V, Wllx = [[Ov, Owllx.

The localized product is related to the usual intersection product in the following
way.

Proposition 3.2.3. — Let the notation be the same as in Definition 3.2.2. Let P be a smooth
scheme over S and X — P be a regular immersion of codimension 1. Let G(T)/xy,, denote the
cokernel Coker(1 — [Nx,p] : G(T) — G(T)).

Then, the canonical map G(Zr) — G(T) induces a map G(Zr), 2, — G(T)ngp-
Further we have a commutative diagram

G(V) x GW) 15 G(Z1) 4,

| !

G(V) x GOW) 2 G(T) xup-

Proof: — By the isomorphism vy ps : -£7 — Nxp®g Oz (3.1.2.1), the canonical
map G(Zr) — G(T) induces a map G(Zr),z, = G(T)/xyp-

We show the equality (F,9)p = [[#,¥]lx in G(T))xy, for a coherent Oy-
module % and a coherent Oyw-module ¢. We consider the spectral sequence Ez,q =
Tor) (Tor7(F, Ox).9) = Tt (F.9) (1.54.3). Since E2 = 0 for ¢ # 0,1, we
have a long exact sequence

— Tn"(F,G) — Ton/(F,9) — Tor 5(F,9) @ Nxsp —

For p > m = n+ dim S, we have %rfl’(ﬁ, &) = 0. Hence we have (Z,9)p =
Z;n:o(—l)p[%rfp(ﬁ, 4)] is equal to

m+1 m—1
D V[T (T D) = D (1Y [ Tor!(F.G) @ Nxp]
p=0 =0

= (=D)"[Tr(F, D] + (=) [Torl5 (F,9) @ Nxsp)

= [[.7, 91Ix

in G(T)/NX/P‘ O
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For a flat hypersurface, the localized intersection product commutes with base
change in the following sense.

Lemma 3.2.4. — Let X be locally a flat hypersurface of virtual relative dimension n — 1
over a scheme S and V be a closed subscheme of X. Let 1 : 7. — X be the closed immersion defined
by the ideal AnnQ2y /s and %, be the invertible O;-module Lli*LX/S as m Theorem 3.1.3. Let
S" — S be a map of schemes.

1. The base change X' = X xg S is a flat hypersurface over S'. The closed immersion
U2 — X defined by the ideal AnnS2y, s, is the base change of 11 7. — X and the invertible
Oyr-module 1'%, s 15 the pull-back of 7.

2. Assume S and S' are regular noetherian of finite dimension. Let V' be a closed subscheme
of X and F be a coherent Ov-module and assume F is flat as an Os-module, We put V' =
V xx X' and let F' be the Oyi-module F Qg Os. Let W be a noetherian scheme over X' and
put T =V xx W. Then the two maps

(7, IIx. [, llx : GOW) —— G(Z1),g,

are equal.

Progf. — 1. Clear.
2. Since F' = .7 @y, Ox, we have F Qg G = F' Q¥ and the assertion
follows. |

Corollary 3.2.3. — Let the notation be as in Lemma 3.2.4.2. Assume further that
W =X/, the map S — S is a closed immersion and that F = Oy is flat as an Os-module.
Then, we have T = V' and the diagram

(v, Ix
—_—

GX) G(Zv), 2,

I I

GX) —— G(Zv), g
(v, llx
s commultative.

Proof. — Clear from Lemma 3.2.4.2. O

Lemma 3.2.6. — Let S be a regular noetherian scheme and N > 1 be an integer. Then
X = uns s a flat hypersurface over S of virtual relative dimension 0. The invertible O'7-module
%, = LY*Liys on the closed subscheme i : 7. — X defined by AnnS2y Js 15 tral. We regard
S as a closed subscheme of X = s by the unit section 1, : S — X. Then, the composition

GX) B G(Zg),4, = G(Zs) —— G(S)

is the 0-map.
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Progf. — The closed subscheme Z is defined by the ideal (N). To show .Z7 is
trivial, we may assume S = Spec Z by Lemma 3.2.4.1. The assertion is clear in this
case.

We show that the Composmon [[S, 1lx : G(X) — G(S) is equal to the composi-

tion G(X) — G(G,.s) N G(S) where ¢ : S — G, s 1s the unit section. It is sufficient
to apply Proposition 3.2.3 by taking S - X - G,,s > SasV—>X=W — P — S.
We show that the composition G(X) — G(G,.s) — G(S) is the 0O-map. Let ¢

(t—1)x

be the coordinate of G,,s. Let .# be a coherent Ox-module. Since 0 — Og,, —

Og,s — Os — 0 is a resolution of Og by free Og, -modules, we have a quasi-

isomorphism [.# —>)X T — ®L ﬁs Hence the class *[.#] € G(S) is equal to

the image of 0 = [#] — [¥] € G(X) by the push-forward map G(X) — G(S). Thus
the assertion follows. O

Example. — Let G be a finite cyclic group of order N and let Z[G] be the
group algebra. We put S = Spec Z and X = Spec Z[G]. Then we have X =
puxs = Spec Z[T]/(TN — 1). The unit section S — X is defined by the augmen-
tation Z[G] — Z. By Theorem 3.1.3, for a G-module M, there is an isomorphism
Toqu[G](Z, M) — ToquE(Q}](Z, M) for ¢ — 2 > 0. Since Toqu[G](Z, M) is equal to the
homology group H,(G, M), the isomorphism is equivalent to the periodicity of the
homology of cyclic group [36] Chapitre VIII Section 4.

The Grothendieck group G(Zs) = G(Z/NZ) >~ @MNZ is naturally identified
with the subgroup of Q™ generated by the prime divisors of N. Then the localized
intersection product [[Z, M]lspeczic) € Q* is identified with the Herbrand quotient
#T1,(G, M) /#H,(G, M).

3.3. Associativity and projection formula. — We prepare a technical lemma for the
proof of the associativity formula and the projection formula. For a spectral sequence

= (E/i, ;= E,1,), let E[s, t] denote the spectral sequence Ef, gt = | DY

Lemma 3.3.1. — Let W be a noetherian scheme, T be a closed subscheme of W and Ly
be an invertible O'r-module. Let F. = (E/l;, , = By be a spectral sequence of coherent Oyy-
modules. Let 1y and t be integers. We assume that E,i,q are Oy-modules for p+ q > 1y and E, are
Or-modules for r > ry. We also assume that there exist integers a < b such that E;) , = 0 unless
a< (t+2)p+tq< b.

Let 05 El — 2 g, E th o and o, : B, = L ®g, E,_y be isomorphisms of
Or-modules d ﬁned for p+qg—2 =1 and r — 2 > 1y respectively. Assume that, for each x € W,
there exist an open neighborhood U C W of x, an invertible Oy-module £15, an isomorphism
0 ®oy Orou = Lrlrnu and a map ay @ Ely = L0 gy Elul—t, ¢ + 2] of spectral
sequences compatible with the restrictions of the maps oz;)y Jrou and o |tau for p+q—2 = 1y and
r—2>r.
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Then, we have

(3.3.1.1) > (=YME, = (=IE]+ (=) [E,]

prg=rrt+l

Jor v = 1y in the cokernel G(T), 4. = Coker(1 — Z1 : G(T) — G(T)) of the map sending
[F] o [F] - [Lr @op F].

Proof. — By the isomorphisms all,, , and a,, the both sides of (3.3.1.1) are inde-
pendent of » > 7, and we may replace » by a larger integer if necessary. The difference

of the both sides is the sum for m > [ of

Y (e ] - [E)

ptg=ro+1
= Y ([Imd )+ [Imd),,,, .0])
prg=r,r+1
==Y [md]- > [Ima]
pq=r prg=r+2

Hence it suffices to show that the isomorphisms a! , iInduces isomorphisms Im &' —

$T®Imd[§”+[’q_t_2 forp+qg—2>m—1+n. !

The assertion is local on W. Hence, replacing W by U, we may drop the sub-
script U and identify % = £ ®g, Or. By induction on m > [/, the map o' :
EZq - Z® E/’]’;[’q_t_2 is an isomorphism for p+ ¢ —2 > (m — [) 4+ r,. Hence the

map Im 4, > £y ®Im &', , , is an isomorphism if p+¢ > m— [+, as required.
O

Proposition 3.3.2. — Let X be locally a hypersurface of virtual relative dimension n — 1
over a noetherian scheme S and v : 2. — X be the closed immersion defined by Ann QY s and let
L, be the invertible O7-module Lli*Q;( /s Let V be a closed subscheme of X and F be a coherent

Ov-module. Assume F s of finite tor-dimension as an Os-module.

Let
A% T T
X W w

be a cartesian diagram of noetherian schemes over S and 4 € D*(W)eon and H € D' (W')cp.
Assume € is of finite tor-dimension as a complex of O\w-modules. Then the map ( , 7€ )w :
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G(Zy) — G(Zy) induces a map ( , 7)) : G(Zr) e, = G(ZLr), 2, and we have an
equality

(3.3.2.1) ([7, 9, ) = [[F, (¥4, 7)wllx
in G(Z1) 2,

Progf. — FYor an Oy -module .7, we have a canonical isomorphism %, ®g,
%rf“"(f, H) — %rf“" (&} ®¢, T, ) of 0y,-modules. Hence the map ( , ) :
G(Z1),2, = G(Z1), 4, is well-defined.

We show the equality (3.3.2.1). We consider the spectral sequence E = (Ef,! =
Tor) " (TorP(F,9), H) = By = T s (F. 9 Q% ) (15.5.1). We have
([[Z, 9lx, 7)w = Zp(—l)pJ“‘/[EZ!q] + Zp(—l)”Jr"H[E;!qH] for a sufficiently large in-
teger ¢. Since [Ei q] = [Ef,_zq] for a sufficiently large p, it is further equal to
Zp gy H(—I)P*q[Ei ;I for sufficiently large r. For the left hand side, we have
[Z, g@%w HNx = (—1)[E,]+ (= 1)t [E,;,] for a sufficiently large integer r. Hence
it is sufficient to verify that the assumption of Lemma 3.3.1 is satisfied with ¢ = 0.

By the assumption that 7 is of finite tor-dimension, there exists an integer
b such that E}f’q = 0 except for 0 < p < b. By Theorem 3.1.3.1, E}f’q are Oy, -
modules for sufficiently large ¢ and E, are &7 ,-modules for sufficiently large r. We
consider the maps oz x/sx : E/iq = f%rf“'(f%rfx(ﬁ, 9D, H)) - £ g, EZ,(]—Q
induced by the Atiyah class maps and the Atiyah class maps o YRy XS E, =
Tor(F, 4 ®I;jw H) — £, ®p, E,_y themselves. Let U C X be an open subscheme,
P be a smooth scheme of relative dimension n over S and U — P be a regular im-
mersion of codimension 1. Then, by Lemma 1.5.5.1, the Atiyah class map defines
a map ayp @ Eluy — Nyp ® Elu[0, 2] (1.5.5.2) of spectral sequences. By the com-
mutative diagram (3.1.3.3), the map oy,p is compatible with the maps oz x/s« :
E;’q — % Qg, EZ,(]—Q and Az gl #X/S - E, - %, ®¢, E,_». Thus, it suffices to
apply Lemma 3.3.1 to show the equality (3.3.2.1). |

Proposition 3.3.3. — Let

A% X W X «——V
S S’

be a diagram of noetherian schemes. Assume that V- — X and V' — X' are closed immersions.
Assume further that X is locally a hypersurface of virtual relative dimension n — 1 over S and X'
is locally a hypersurface of virtual relative dimension W' — 1 over S'. Let i © 7. — X be the
closed subscheme of X defined by Ann QU s and 27, be the ivertible O7-module Lli*Q;qS. Let
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i 27 — X' be the closed subscheme of X' defined by Ann Q, s and Ly, be the invertible
O -module 1! /*Q;c g

Let 7, be a closed subset of W. Assume that the underlying sets of Zy =7 xx V xx W
and 7}y, =7 xx' V' xx W are subsets of 7, and let G(Z,), ¢, z, be the cokernel of the map
(cano ([.%] — 1),cano ([Z,]1 - 1)) : GZrt) & G(Z,,) — G(Zl) so that the canonical
maps induce G(Zt) ¢, — G(Zl)/gég and G(ZT/)/g/ — G(Z1),2, z,

Let F be a coherent O\-module and F' be a coherent Ovyr-module. Assume F is of finite
lor-dimension as an Os-module and F' is of finite tor-dimension as an Og-module. Let G €
D*(W)on. Assume that the complex & is of finite tor-dimension as a complex of Ox-modules and
as a complex of Ox-modules so that the maps ( ,9)x : G(X) — GW) and ( ,9)x :
G(X) = G(W) are defined. Then we have an equality

([Z, (F, 9Dx1lx =[[F, (F,9Dx]lx

in G(Z1),2,.2,

Progf. — By Theorem 3.2.1.3, we have [[.#, (¥, 9Dx]lx = [[#, 9 ®LX/ FN
and [[¥, (¥, 9Dx]lx = [[ ¥, F ®ng ¢1]. Hence it follows from the isomorphism
Ton?(F, F @, 9) — Tnl>(F, F Q4 9) (15.2.2). O

In the proof of conductor formula, we will use the following special cases of
Propositions 3.3.2 and 3.3.3.

Corollary 3.3.4. — Let S be a regular noetherian scheme of finite dimension and X be
a scheme of finite type over S that is locally a hypersurface over S. Let f : W — X be a morphism
of noetherian schemes.

1. Let g : W — W be a morphism of finite tor-dimension of noetherian schemes over X.
Then, for I' € G(X), we have an equality

UL, Wik = [T, Wk

Here [[ ,W]lx : GX) = G(Zw),g, and [[ ,W']llx : G(X) — G(Zw), g, denoles the
localized ntersection product respectively and g* : G(Z) ¢, — G(Zw), g, wn the left hand side
denotes the pull-back defined by Lg*.

2. Let g : W' — W be a morphism of noetherian scheme and NV be a closed subscheme

of X. Assume W s regular of finite dimension so that the functor ®2w induces an intersection
product (, Yw:G(Zr))z, x GW') = G(Zr),9,. Then, for T € G(W'), we have

[V, Fllx = (I[IV, WlIx, Dw.

In each side, [[V, llx : GIW') = G(Zr),¢, and [[V, 1lx : GIW) — G(Zr),s, denotes
the localized intersection product respectively and ([[V, Wllx, Jw : GIW') = G(Z1),«, in the

right hand side denotes the intersection product above.
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3. Let S" be another regular noetherian scheme and X' be locally a hypersurface over S'. Let
g : W — X' be aflat morphism, V' be a closed subscheme of X' and put W' = W xx/V'. Assume
that [ W — X is a morphism of finite tor-dimension, that the closed subset Zny = 7. Xx W' of
W' is set-theoretically a subset of Z'vv = 2 xx W' and that we have G(Zyy), ¢, = G(Zw)
and G(Z/W/)/gé/ = G(Z'w). Then, for ' € G(X), we have

[, Wik = [V, /*Tllx.

In each side, [[ ,\W]lx : GX) = G(Zw), g, and [[V', llx : GW) = G(Z'w),z,
denotes the localized intersection product respectively and f* : G(X) — G(W) i the right hand
side denotes the pull-back.

Progf. — 1. It is sufficient to show the equality g*[[.#, W]lx = [[.%, W']Ix for
a coherent Ox-module .%. This is the special case of Proposition 3.3.2 where ¢ = Oy
and % = ﬁ\w.

2. It is sufficient to show the equality [[V, €]]x = ([[V, W]lx, -#€)w for a co-
herent Ow-module 7. This is the special case of Proposition 3.3.2 where .# = Oy
and ¥4 = ﬁ\v.

3. It is sufficient to show the equality [[.%#, W']lx = [[V', Lf*#]lx for a coher-
ent Ox-module .#. By the flatness of W — X', we have Lg*0y = Oy. By the as-
sumption, G(Z'w'),«,, Z, in the notation Proposition 3.3.3 is equal to G(Z'w). Hence
this is the special case of Proposition 3.3.3 where ¢4 = O\y and #' = Oy. O

Proposition 3.3.5. — Let X be locally a hypersurface of virtual relative dimension n — 1
over a noetherian scheme S. Let F be a coherent O-module on a closed subscheme NV of X. Assume
F is of finite tor-dimension as an Os-module. Let 1 © 7. — X be the closed subscheme of X defined
by Ann QY ¢ and put L5 = L'i*Qy .

Let w : W' — W be a proper morphism of noetherian schemes of finite dimension over X and
G € D" W)eon. We put T =V xx W and T' =V xx W'. Then the map m, : G(Zy) —
G(Zr) winduces a map 7, : G(Zy), ¢, — G(ZL1), 2, and we have an equality

(3.3.5.1) [[.7, Rr.9]]x = w7, 91k
m G(ZT)/,SQ

Progf. — Tor an O ,-module 7, we have a canonical isomorphism %, ®g,
Rin,7 — Rin (%, Qp, 7) of 0z,-modules. Hence the map m, : G(Zr), e, —
G(Zt1),g, 1s well-defined.

We show the equality (3.3.5.1). The proof is similar to that of (3.3.2.1). By the
assumption that W is a noetherian scheme of finite dimension, the condition (ii) in
Lemma 1.5.3 is satisfied. Applying Lemma 1.5.5.2, we obtain a spectral sequence

E, = RIm, Inl(F.9) = Tnl’(F, Ru.9) (15.5.3). We have [[F, Rr.Y]lx =
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(—=1)'[E,]4+(=1)"'[E,;,] for a sufficiently large integer 7. We also have 7, [[.Z, ¥]]x =
Zp(—l)”Jr‘/[EZ’q] —f—zp(—l)”J"/H[Eg,qH] for a sufficiently large integer ¢. Similarly as in
the proof of (3.3.2.1) it is sufficient to verify the assumption of Lemma 3.3.1.

We consider @z g x/s« : thq = R‘pn*%rfx(ﬁ, 9 — £, Qg, E;’q_Q and
Az rnyxs @ B = f%rffx(ﬁ, Rn,9) — £, ®4, E, 5. Let U C X be an open
subscheme, P be a smooth scheme of relative dimension n over S and U — P be
a regular immersion of codimension 1. Then, by Lemma 1.5.5.2, the Atiyah class
map defines a map ayp : Ely — Nyp ® E|y[0, 2] (1.5.5.4) of spectral sequence.
By the commutative diagram (3.1.3.3), the map ay/p is compatible with the maps
Oz 4 X/S* - El%,l{ — gz ®[)’Z EIQMI—Q and A7 Rn,9.X/S - E,, — gz ®[)’Z E,_Q. Thus, it
suffices to apply Lemma 3.3.1 to show the equality (3.3.5.1). |

3.4. Excess ntersection formula. — We prove the excess intersection formula Theo-
rem 3.4.3 and the self-intersection formula Corollary 3.4.4. First, we study the excess
conormal complex.

Lemma 3.4.1. — Let V — X be a closed tmmersion of schemes over S and

T T, w

¢| Ir

iy

be a cartesian diagram of schemes over S. Assume that X s locally a hypersurface of virtual relative
dimension n — 1, V s locally of complete intersection of virtual relative dimension n — ¢ and that
the immersion vy : T — W s a regular immersion of codimension ¢'.

Let i : 7 — X be the closed subscheme defined by the ideal AnnSdy s and put £7 =
Lli*LX/S. Let My, W be the excess conormal complex. Then,

1. The complex M x vy of Or-modules satisfies the condition (L(c — ¢)) in Section 2.4.

2. On the complement 'U — Ziy of Zyr = I Xx Z, the canonical map MV/XV\ lr—7Z;
NV 2 /x_z.w_zy 15 a1 zsomorphzsm and the excess conormal sheaf Ny_, 7w 7. & @ locally
Jree Or_z..-module of rank ¢ — ¢' — 1.

3. Assume p > 0 or ¢ > ¢ — ¢'. Then, the Op-module L' ATMy, v is an Oy,-module
and the map hy,  (2.4.2.1) defines an isomorphism

(3.4-1.1) )LV/X/S A\ Lp+1Aq+1Mv/XV\ E— gz ®ﬁé LpAqM/V/X!“r

of Oy.-modules. Let P be a smooth scheme over S and X — P be a regular immersion over S.
T/zen, the isomorp/zisms )“V/X/S,\/V and )"V/X/P,\V . Lp+1Aq+lM/V/X’\N — NX/P®ﬁXLpAqM/V/X!Wv



ON THE CONDUCTOR FORMULA OF BLOCH 71

(1.7.2.1) form a commutative diagram

AV/X/S,W
1 AgH
LI ATTIMY, x w 27 ®p, LI A™MY, x v
G412 | [
AN N , ’
LA Al MV/X,V\" oo NX/p ®ﬁx LpAqMV/X,VV'
Proof — 1. The assertion is local on T. Hence, we may assume there exists

a smooth scheme P of relative dimension n over S and a regular immersion X — P
of codimension 1 over S. Then, we have a distinguished triangle — (7 0 g)*"Nx,p —
Ny pw = My xw = (1.7.1.2). Since the excess conormal sheaf Ny, is locally free
of rank ¢ — ¢/, the complex M/V/X’W satisfies the condition (L(c — ¢')).

2. The map X — S is smooth on the complement of Z. Hence the immersion
V — X is a regular immersion of codimension ¢ — 1 on the complement of Zy. Thus
the assertion follows from Proposition 1.6.4.2.

3. Let / : ZZ’— T be the closed immersion defined by AnnA‘_‘/N’\//Xw. We
show that Z' is a closed subscheme of Zr and that the canonical map My v —
Lg*"My/x — L(iy 0 9)*Lx/s induces an isomorphism Lli’*l\/I’WX’W — £ ®p, Oy of
invertible & -modules. The question is local on T. The inverse image Zt C T is
defined by the ideal Ann(iy o g)*A”Q%i/S. Let the notation be as in the proof of 1.
Then, the claim follows from the map

> NX/P PN Or > N/V/P,W > M/V/X,W

| ! !

_— NX/P ®ﬁx ﬁT EEm— Q%’/S ®[)’P ﬁT e (lV Og)*LX/S —_—

—_—

of distinguished triangles.

By Lemma 2.4.2.1, L’ A"My, x yy is an Oz-module and hence is an 07,-module
for p > 0. By the isomorphism L'/*M;, xw — £7®p, Oz, the isomorphism AN -
LA ATHIME, Xw L'7* M, xw ®a, LPAqM’V/X’W defines an isomorphism Av/x/s w-
The commutative diagram (3.4.1.2) is clear from the commutative diagram (2.4.1.2).

O

We relate the localized intersection product with the derived exterior power of
the excess conormal complex.

Proposition 3.4.2. — Let S be a scheme and V — X be a closed immersion of schemes
over S. Assume that X s locally a hypersurface of virtual relative dimension n — 1 over S and V
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is locally of complete intersection of virtual relative dimension n — ¢ over S. Let
T — W

¢| Ir

V — X
v
be a cartesian diagram of schemes over S. Assume that W s a noetherian scheme and that the
immersion vy 2T — W s a regular immersion of codimension ¢'. Let 1 : Z. — X be the closed
subscheme defined by the ideal AnnQy s and put £ = L' Lx/s. Let M, rxw be the excess

conormal complex. We put [LAf_f/M’V xowl = Z;;g(—l)p[L”Af_f/M/v xwl G(Zry).
Then, we have an equality

(3.4.2.1)  [[V.WIlx = (=) [LA™ My v ]-

in G(Z1) 2, In particular, if W =T is a scheme over V, we have
(3.4.2.2)  [[V,Wllx = (=1)[LATg"Myx]

n G(Zw), g,

Proof. — Proof is similar to Propositions 3.3.2 and 3.3.5. Let E be the spec-
tral sequence E/;q = LzﬁJrqA_ﬁM’V/X’w = By, = f%rﬁ“q(ﬁv, Ow) (1.6.4.3). We have
(=D LA MY owl = 2, (=D HEL ) 1. Since L/AMY x v = 0 except for
max(0, g — (c — ¢)) < p < ¢, we have Ef'Y = 0 except for —(c—¢') < 3p+¢<0.
We have [E;,, q] = [E}) " q_g] for p < —(¢ — ¢) by the isomorphism Ay x/sw
LATATIMY, « w = 27 @, LINMY  (3.4.1.1) for ¢ > ¢ — ¢/. Hence, it is fur-
ther equal to Zp = H(—I)P*q[E;’ ,| for sufficiently large . On the other hand, we
have [[V, W]lx = (=1)'[E,] + (—=1)""'[E,,,] for sufficiently large ». Thus it suffices to
show that the assumption of Lemma 3.3.1 is satisfied with ¢ = 1.

We have the isomorphisms og eyxs @ E = %rfx(ﬁv, Oyw) —
gz ®ﬁZ %T,ﬁ_xz(ﬁv, ﬁ\/\r) (3131) and )"V/X/S,\V . Elli,t{ = LQIH_(IA_/)M/V/X’\N —
Ly ®g, LATIATTIMY « (3.4.1.1). Let U C X be an open subscheme, P be
a smooth scheme of relative dimension n over S and U — P be a regular immersion
of codimension 1 over S. Then, we have a map of spectral sequences ayp : Ely —
Ny ® Elu[—1, 3] (1.7.2.2). By the commutative diagrams (3.1.3.3) and (3.4.1.2), the
map ay,p is compatible with oz g, x/s © E, = 7 ®4, E,—o and Ayx/sw : E/;q —

%7, ®¢, B, Thus it suffices to apply Lemma 3.3.1. O

+1,¢—3"

To state the excess intersection formula, Theorem 3.4.3, we introduce further
notation. We keep the notation in Proposition 3.4.2. We assume further that the regu-
lar noetherian scheme S is equidimensional of finite dimension. If the conormal com-
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plex My x satisfies the condition (G) in Section 2.4, then the excess conormal com-
plex My also satisfies the condition (G) and the localized Chern class
t—erg (MY ) € CHT (Zy — T) is defined.

We briefly recall the localized intersection product defined by Abbes in [1] De-
finition 4.4 after slight modification. Let W be a scheme of finite type over X. Assume
W is integral and is of dimension p. We put T = VxxW and Z1 = ZxxT. If T C W,
let 7 : W — W be the blow-up at T and T" = T xw W’ be the exceptional divisor.
Since the immersion 1" — W’ is a regular immersion of codimension 1, the localized
Chern class 65—12, My xw) € CH™'(Zy — T') of the excess conormal complex
My, W is defined. Then the localized intersection product (V, W)x o € CH,_.(Zr)
is defined by

(=D, My x) N [W] if T=W

(3.4.3.1) (V, Wk loe = Vo oo ' ,

Tz (=1 emry, (MG ) N [T']) if T CW.
If the closed immersion T — W is a regular immersion of codimension ¢’ and My, y
denotes the excess conormal complex, we have

(3.4.3.2) (V, Wxttoe = (=1 ey, My ) N [T,

The equality (3.4.3.2) 1s called the localized excess intersection formula (cf. [1] Propo-
sition 4.11).

For an integer p > 0, let Z,(W) be the free abelian group generated by the
classes of integral closed subscheme of dimension p. Thus we obtain a collection of
maps (V, Ixue : Z,(W) — CH,_.(T) sending the closed integral subscheme W’ to
(V, W)x 1o for morphisms W — X of finite type over S. The localized intersection
product (V, )x.oc 1s characterized by the localized excess intersection formula (3.4.3.2)
and the projection formula (V, 1,W)x 1oc = T(V, W)x joc-

Let T =V xx W and F,(G(Zr),¢,) denote the filtration on G(Zr),, induced
by the topological filtration on G(Zr).

Theorem 3.4.3. — Let X be locally a hypersurface of virtual relative dimension n— 1 over
a equidimensional regular noetherian scheme S of finite dimension and j : V. — X be a closed
subscheme of X. Let Z be the closed subscheme of X defined by the ideal Ann 2 . Assume that
V s locally of complete intersection over S of relative dimension n — c.

Let W be a scheme over X and assume W s of finite type over a regular noetherian scheme
of finite dimension. We put T =V xx W — W.

1. The localized intersection product [[V, 1lx : GIW) = G(Zr),«, sends the topological
Siltration ¥,G(W) to ¥,_(G(Zr),%,) for p > 0.
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2. Assume further that the conormal complex My x satisfies the condition (G) i Section 2.4.
Then the map induced by [[V, 1lx on the graded quotients sits i the commutative diagram

(V! )X,loc
—

Zp (W) CHp—c (ZT)

canl Jvcan

GIIGW) =5 Gl (G(Z1)).

Proof. — The proof is similar to those of Propositions 2.2.2 and 2.4.4. We use
the notation of the proof of Proposition 2.2.2. By the same argument as loc.cit. and
by the projection formula Proposition 3.3.5 and [1] Proposition 4.6 (a), it suffices to
show the following: Assume that W is of dimension p and that either T is equal to W
or T is a Cartier divisor of W. Then, the localized intersection product [[V, W]]x is
in F,_(G(Zr),#,) and, if My x satisfies the condition (G), the class of [[V, W]]x
Grﬁ_[(G(ZT) /2,) 1s equal to the image of (V, W)x 1, € CH,_.(Z7)

First, we assume T = W. Then by (3.4.2.2), we have [[V,W]]lx =
(=D [LALg*My/x] in G(Zw),¢,. Hence, by Proposition 2.4.4, [[V,W]]x is in
F,_(G(Zw),%,) and, if My x satisfies the condition (G), the class of [[V, W]]x in
GrE_C(G(ZW) /2,) 1s equal to the image of (—1)[6[}/V (My/x) N [W]. Thus the assertion
follows from the first equality in (3.4.3.1) in this case.

Next, we consider the case where T is a Cartier divisor of W. Then by (3.4.2.1),
we have [[V,W]lx = (—1)”‘1[LA”_1M’V,/XM,] in G(Zr),¢,. Hence, by Propos-
ition 24‘4‘, [[V, W]]X Is in F(p—l)—(c—l)(G(ZT)/.iﬂz) and, if MV/X satisfies the con-
dition (G), the class of [[V,W]]x in GrF_ﬁ(G(ZT)/gZ) is equal to the image of
(—1)‘_106_1%T(M’\,/Xw) N [T]. Thus the assertion follows from the excess intersection
formula in (3.4.3.2) in this case. O

Corollary 3.4.4. — Let the notation be the same as in Theorem 3.4.3. Assume W is of
dimension p and that the closed immersion T — W is a regular immersion of codimension ¢'. Assume
also that the conormal complex My, x satisfies the condition (G).

Then for the class of [[V,Wllx € F,_(G(Zr)),) and for the image of
(—1)‘_‘/@_[/% (Mg, /X,W) N[T] € CH,_.(Zr), we have an equality

(3.4.4.1) [V, Wllx = (=D e (Miy i y) N [T

n GYE_C(G(ZT)/&)-
If W s a scheme over V, the class of [[V, W]lx GrF_[(G(ZW) J.2,) s equal to the
image of (— l)ccc}/v (My,x) N[W] € CH,—.(Zw). In particular, of V = W, we have an equahty

(3.4.4.2)  [[V,VIx = (—D'cy, (Myx) N[V]
in Gr,_(G(Zv),2,)-
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We call the equality (3.4.4.1) the localized excess intersection formula and the
equality (3.4.4.2) the localized self-intersection formula

Proof. — Similarly as the proof of Theorem 3.4.3 above in the case T is a Cartier
divisor, the excess intersection formula (3.4.4.1) follows from Proposition 3.4.2.3 and
Proposition 2.4.4. The case W =T is proved in the proof above. |

Corollary 3.4.5. — Let X be locally a flat hypersurface of virtual relative dimension n— 1
over a scheme S and V be a closed subscheme of X. Let 1 : 7. — X be the closed immersion defined
by the ideal AnnS2% /s and £, be the invertible O;-module Lli*LX/s as mn Theorem 3.1.3. We
consider the self-product X xs X as a scheme over X with respect to the second projection.

1. The scheme X xg X s locally a hypersurface of virtual relative dimension n — 1. Let
1:7 — X xsX be the closed subscheme defined by the ideal AnnQy, x x- Then the intersection
7 Xxxox X with the diagonal A : X — X xg X is Z C X and the pull-back of the invertible
O -module le*LXXSX/X is £. There s a canonical isomorphism Lix /s — Mx xxex-

2. Further if S 15 equidimensional regular noetherian and of dimension d, we have an equality

(X, X]lxxsx = (—1)"6, (Lys) N [X]
in Gr'_ (G(2),2,).

Proof. — 1. We obtain an isomorphism My xyx — LALxyx/x — Lxss by
the distinguished triangle — LA"Lx,xx — Lxx = Lx/xxsx —. The rest follows
immediately from Lemma 3.2.4.

2. It suffices to apply Corollary 3.4.4. O

The image of [[V, W]]x in Gr}_,(G(T),s,) may be computed using the Segre
classes. For a perfect complex J, we put ¢(#)* = (™) = Y_.(—1)'c;:() as usual.

Corollary 3.4.6. — Let VC X = S and T =V xx W C W — X be as in Theo-
rem 3.4.3. Assume W 1s an integral scheme of dimension p of finite type over a regular noetherian
scheme of finmite dimension and T # W. Let g : T — V be the natural map, let G(T),¢, denote
the cokernel of the map [£7] — 1 : G(Zy) — G(T) and let ¥o(G(T),,) denote the filtration
induced by the topological filtration. Then the class of the localized intersection product [[V, W]]x
m Gr;_[(G(T) 1.%,) 15 equal to the image of

c—1

{C(Lg*MV/X)* N s(T, W)}dimp—c = Z(_l)ici(Lg*MV/X)sc—i(Ta W)

=0

€ CH,_(T).
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Proof. — Let 7 : W — W be the blow-up at T and D = 77 (T) = W xy T
be the inverse image of T as above. By Proposition 3.3.5.1, we have [[V,W]]x =
. [[V, WT]lx. Since D is a Cartier divisor of W', by Theorem 3.4.3.2, the class of
[[V. W]l in Gr,_(G(D),g,) is equal to the image of (=1)"""c._; (M}, x ) N [D] =
{c(Mv/X)*c(ND/W)*_1 N [Dl}gimp—. € CH,_ (D). Hence the class of [[V,W]]x in
GrE_f(G(T)/gZ) is equal to the image of {¢(Lg*My/x)*m,(¢c(Npw)*' N [DD }dim p—e-
Since Npw = Op(—D), we have an equality 77.(¢(Npw)* ' N[D]) = s(T, W). Thus
we obtain the required equality. |

4. Logarithmic products

We define and study logarithmic products. In 4.1, after recalling generalities on
log schemes, we define a functor [P] on the category of log schemes for an fs-monoid
P and introduce the notion of frames. We define log products in Definition 4.2.4 and
establish basic properties in 4.2. We study generality on properties of morphisms of
log schemes in 4.3 as an application of log products. In 4.4, we study morphisms log
locally of complete intersection.

For generalities on log schemes such as the definitions of log smooth morphisms,
exact immersions etc., we refer to [23], [25] and [20].

4.1. Frames. — We define a functor [P] for an fs-monoid P on the category of
fs-log schemes and introduce the notion of frames as a preliminary for the definition
of the logarithmic product in the next subsection. It is closely related to the toric stack
studied in [21] and [32]. First, we briefly recall generalities on log schemes. Basic ref-
erences are [23], [25] and [28] Section 1.

In this paper, a monoid means a commutative monoid. For a monoid P, PP
denotes the associated commutative group and P* denotes the subgroup of invertible
elements. A monoid P is called integral if the canonical map P — P5P is injective. We
will identify an integral monoid P with its image in PP. A monoid P is called saturated
if it 1s integral and if it is equal to the saturation P** = {x € P#|x" € P for some n > 1}.
A monoid is called an fs-monoid if it is finitely generated and saturated. We regard
Ox as a sheaf of monoids on the etale site of X with respect to the multiplication. An
fs-log structure on a scheme X is a morphism o : Mx — Ox of sheaves of monoids
on the etale site of X satisfying the following conditions (1) and (2).

(1) The induced map o' (%) — O is an isomorphism.

(2) For each geometric point ¥, there exist an etale neighboorhood U, an fs-
monoid P and a morphism of monoids g : P — I'(U, Mx) such that the
diagram
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— C
B (MSly) —— Py
| |
! V
X C

Mxlu —> Mxlu
1s co-cartesian in the category of sheaves of monoids. Here Py denotes the
constant sheaf.

A morphism B : P — I'(U, Mx) of monoids satisfying the condition (2) above is called
a chart of Mx on U. The log structure on Mx|y on U is called the log structure
associated to P — T'(U, Mx). A scheme with an fs-log structure is called an fs-log
scheme. In this paper, we only consider fs-log schemes and fs-log structures and we
simply call them log schemes and log structures respectively. The condition (1) implies
M = a1 (%) and that the map MY — 0% is an isomorphism. The log structure
My = 0% is called the trivial log structure.

For a monoid P, let P denote the quotient P/P*. The quotient P of an fs-monoid
P is also an fs-monoid. For a log scheme X, we put My = My/ MS. The sheaf My is
the inverse image of My by MY — MS'. For a log scheme X, the monoid I'(X, My)
is integral and saturated. For a geometric point & of X, the stalk My ; is an fs-monoid
and there exists a section Mx; — Mx ; inducing an isomorphism My ; x M. —
Mx . We say a morphism f/ : X — Y of log schemes is strict if the induced’map
f*My — My is an isomorphism. If X — Y is strict, we say that the log structure Mx
on X is the pull-back of the log structure My on Y.

A typical example of log scheme is given by a divisor with normal crossings
on a regular locally noetherian scheme. Let X be a regular locally noethrian scheme.
Recall that we say a divisor D on X has simple normal crossings if its irreducible
components are regular and if they meet transversally. More precisely, let D;, 7 € 1
be the irreducible components of D. Then for any finite subset J = {7, ..., 4} C I, the
intersection Dy = ﬂiej D; =D, xx---xxD; is a regular subscheme of codimension s.
In other words, for each x € X, there exist a regular system ¢, ..., {; of parameters
of the regular local ring Ox , and an integer 0 < r < [ such that the divisor D is
defined by []._, & in a neighborhood of x. We say D has normal crossings if, etale
locally on X, the divisor D has simple normal crossings. A divisor D with normal
crossings has simple normal crossings if and only if each of its irreducible components
is regular. If X is a regular noetherian scheme, D is a divisor with normal crossings
and j : U — X is the open immersion of the complement of D, we call the log
structure Mx = Ox N .07 the standard log structure on X defined by D.

For an fs-monoid P, let

S[P] = Spec Z[P]

denote the log scheme with the log structure associated to P — Z[P]. For a log
scheme X, maps P — TI'(X,Mx) of monoids correspond bijectively with maps
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X — S[P] of log schemes. In other words, the log scheme S[P] represents the func-
tor associating the set Homy,oneia(P, I'(X, Mx)) of morphisms of monoids to a log
scheme X. A map P — I'(X, Mx) is a chart on X if and only if the correspond-
ing map X — S[P] is strict. By abuse of terminology, we call a strict map X — S[P]
a chart. We call a pair of a log scheme X and a chart P — I'(X, Mx) a charted log
scheme and will abbreviate it as (X, P). For charted log schemes (X, P) and (Y, Q),
we call a pair of a morphism X — Y of log schemes and a morphism QQ — P of
fs-monoids such that the diagram

X — Y

l l

S[P] —— S[Q]

1s commutative a morphism of charted log schemes and will abbreviate it as (X, P) —
Y, Q).

For maps of log schemes X — S and Y — S, we let X xlsOg Y denote the fiber
product in the category of fs-log schemes. For maps f : N — P and g : N — Q of fs-
monoids, the saturation P@Y'Q of the image of P@Q in P Pno Q = Coker(f —g:
N& — PSP @ QFP) is the amalgamate sum of P and ) over N in the category of fs-
monoids. The canonical map S[P &% Q] — S[P] Xlso[i] S[Q] is an isomorphism. If
X,P) = (S,N) and (Y,Q) — (S,N) are morphisms of charted log schemes, we
have

(4.1.0.1) X xg8Y = (X x5 Y) Xspaq) S[P &% Q]
and X xlsOg Y is strict over S[P ®F' Q.

Definition 4.1.1. — Let P be an_fs-monoid.
1. Let [P] denote the functor on the category of log schemes associating to a log scheme X the
set

[P] (X) = Hommonoid(Ps F(X’ MX))

of monoid homomorphisms. We identify a map P — T'(X, Mx) of monoids with a map X — [P]

of functors.
2. Let S[P] — [P] be the map induced by the tautological map P — T'(S[P], Mgp)). If

a map X — [P] is the composition of X — S[P] and the map S[P] — [P], we say the map
X — S[P] is @ lifting of X — [P].

3. We say a map Q — P of fi-monoids is a quasi-isomorphism if Q = Q /Q* —
P = P/P* is an isomorphism.
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Lemma 4.1.2. — Let ¢ : Q — P be a morphism of fs-monouds.

1. If ¢ : Q — P is a quasi-isomorphism, the induced map [Q) — [P] of functors s an
wsomorphism.

2. Let P’ be the inverse image of P by the map PP @ Q% — PSP sending (a, b) to
a+ @(b). Then the map PP @ Q= — P @ Q=P sending (a, b) to (a + @(b), b) induces
an somorphism P" — P @ QSP. Hence the map P — P’ defined by a — (a,0) and the map
P" — P wnduced by (a, b) = a+ @(b) are quasi-isomorphisms.

3. Let Q — Q be a quasi-isomorphism of fs-monouds. Then the map P — P @5 Q' is
a quasi-isomorphism.

4. Let (P®qP)™ C PP®quw P be the inverse image of P by the map PP @ qe PP — PP
sending (a, b) to a+b. Then the map P® P ® PP — (P ®q P)™ sending (a, b, ¢) to (a+ ¢,
b—¢) induce a surjection P@P® (PP /p(Q)) — (PDq P)~. Further the monowd (P@®g P)™
is wdentified with the quotient of P @ P @ (PP /@(Q5P)) by the equivalence relation generated by
(a,0,0) ~ (0, a, a) for a € P.

Progf. — 1. Clear from the definition.

2. Clear.

3. It is reduced to the case Q' = Q = Q/Q*. Then P' = P& Q' = P/Im Q*
and P — P’ is an isomorphism.

4. The map P& P — PP (P/p(Q%)) : (a,b) — (a + b, a) induces an iso-
morphism P @ge PP — P® @ (PP/¢(Q%)) of abelian groups. Hence, it induces
an isomorphism (P @g P)™ — P @ (P /¢(Q*#")). The composition P & P @ PP —
(P&g P)™ — Pd (PP/9(QFP)) maps (a, b, ¢) to (a+ b, a+ ¢). Now the assertion is
clear. O

Defination 4.1.3. — Let X be a log scheme and P be an_fs-monowd.

1. We say a map X — [P] s strict if; for each geometric point X, there exist an etale
neighborhood U of x and a strict morphism U — S[P] lfting the restriction U — [P].

2. We call a strict map X — [P] a frame. We call a pair of a log scheme X and a_frame
X — [P] a framed log scheme and, by abuse of notation, let it denoted by (X, [P]). For framed
log schemes (X, [P]) and (Y, [Q)), we call a pair of a morphism X — Y of log schemes and
a morphism QQ — P of fs-monowds such that the diagram

X — Y

L

[Pl — [Q]
s commutative a morphism of framed log scheme and will abbreviate it as (X, [P]) — (Y, [Q]).

The functor [P] is in fact a sheaf with respect to the classical etale topology.
In [21] and [32], the “toric stack” .p and a stack 5”}1)0‘% associated to it are intro-
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duced for a fine monoid P. For an fs-monoid P, the stack yllog is identified with the
sheaf [P] by [32] Proposition 5.17. Moreover, a map to .#p is strict if and only if the
corresponding map to [P] is strict in the sense of Definition 4.1.3.1 by loc.cit. Re-
mark 5.18.

By definition, a map X — [P] is a frame if and only if it is etale locally lifted to
a chart. A typical example of frames is given by a divisor with simple normal crossings
on a regular locally noetherian scheme.

Lemma 4.1.4. — Let X be a log regular ([25] Definition (2.1)) locally noetherian log
scheme and U be the maximum open subscheme of X where the log structure Mx s trivial.

1. The following conditions are equivalent.

(1) The underlying scheme X s regular, the open subscheme U s the complement of a divisor
D with normal crossings and Mx s the standard log structure defined by D.

(2) Etale locally on X, there exist a chart X — S[N"™] for some integer m.

2. If X s quasi-compact, the following conditions are equivalent.

(1) The underlying scheme X s regular, the open subscheme U s the complement of a divisor
D with simple normal crossings and Mx s the standard log structure defined by D.

(2) There exist a_frame X — [N"] for some integer m.

Progof. — 1. Clear from the definition ([25] Definition (2.1)).

2. (1)=(2). Let Dy, ..., D,, be the irreducible components of D. Then, the mon-
oid P = I'X, My) is isomorphic to N”. The tautological map X — [P] is strict.

(2)=(1). It follows from 1 (2)=(1) that X is regular, U is the complement of
a divisor with normal crossings and My is the standard log structure defined by D.
We show that each irreducible component of X is regular. Let ¢, ..., ¢, be the standard
basis of N”. For ¢ = 1, ..., m, we define a closed subscheme D; of X by the image of
¢; iIn Ox by etale locally lifting the frame X — [N”] to a chart. Then, Dy, ..., D,
are regular. Since an irreducible component of D is an irreducible component of one
of D;, the assertion follows. O

We call the frame X — [P] in the proof of Lemma 4.1.4.2 (1)=(2) the standard
frame on X defined by D.

Lemma 4.1.5. — Let X be a log scheme, X be a geometric point of X and P — My ; be
a map of fs-monoids.

1. There exist an etale neighborhood U of x and a map P — T'(U, Mx) mducing P —
Mx ;.

2. Let ¢ : Q — P be a map of fs-monoids and X Ly S[Q ] be morphisms of log

schemes such that the diagram
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—— P

Q
L(Y,My) — Mx;
is commulative. Let P C P @ Q5P be the inverse image of P as in Lemma 4.1.2.2. Then there
exist an etale neighborhood U of X and a map P" — I'(U, Mx) such that the diagram

Q e P’ — P

l l !

I'(Y,My) — T'(U,Mx) —> Mx;
s commulative.

Proof. — 1. We may assume P = Mx ;. Since there exists a section My ; — Mx s,
the assertion follows.
2. We take an etale neighborhood U and a map P — TI'(U, M) as in 1. Let
Q — I'(Y,My) — I'(U, Mx) be the composition. Then, we have a commutative
diagram
PpQQ —— P

! l

'u,Mx) —— Mx,x~

Since My ; is the inverse image of My ; by the canonical map MY, — 1\_/123 -, the

composition P@ Q — I'(U, Mx) — Mx; is extended to a map P’ — Mx ;. Hence
shrinking U if necessary, we get the assertion. |

Corollary 4.1.6. — Let X be a log scheme and X be a geometric point of X.

1. Let X — [P] be a map. Then there exist an etale newghborhood U of x and a map
U — S[P] &fiing the restriction U — [P].

2. Let QQ — P be a map of fs-monowds, X — Y be a map of log schemes and

X — Y

(4.1.6.1) l l

[P] — [Q]
be a commutative diagram. Let P C P @ Q8P be the inverse image of P as in Lemma 4.1.5.2.
Then there exist etale neighborhoods U of x and V of vy = f(X) and a commutative diagram
u — V

(4.1.6.2) | |

S[P'] —— S[Q]
lifting the restriction of (4.1.6.1).
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Proof. — Clear from Lemma 4.1.5. |

Lemma 4.1.7. — Let X be a log scheme, P be an_fs-monoid and X — [P] be a map.

1. For a morphism [ : X — S[P] of log schemes lLifiing X — [P], the map X — [P] s
strict if and only if X — S[P] s strict.

2. Let P — P be a quasi-isomorphism of fs-monoids. Then the map X — [P] is strict if
and only if the composition X — [P] — [P'] is strict.

3. There exist a log structure My, a map X — X' = (X, MY) of log schemes and a strict
map X' — [P] such that X — [P] s the composition.

Proof. — 1. The if part is trivial. We show the only if part. Since the question
is etale local, we may assume there exists a strict map g : X — S[P] lifting X — [P].
Then the difference of the two maps P — I'(X, Mx) is a map to I'(X, M) and the
assertion follows.

2. We may assume P = P. Then P’ is isomorphic to P x P and S[P'] — S[P]
1s strict. Hence the assertion follows.

3. If there exists a map X — S[P] lifting X — [P], it 1s sufficient to define
a log structure MY on X by the chart P — Mx — Ox. If there are 2 such maps
X — S[P], the difference of the maps P — I'(X, Mx) is a map P — I'(X, %) and
the log structure My on X is indepenent of the choice of lifting. In general, we obtain
the log structure MY by patching by Lemma 4.1.5.1. |

Corollary 4.1.8. — 1. Let P be an fs-monoid and X be a log scheme. Let X — [P]
be a map and % be a geometric point of X. If the composition P — T'(X, Myx) — Mx ; is
a quasi-isomorphism, there exists an etale neighborhood U of x such that the restriction U — [P]
i strict.

2. Let X — Y be a map of log schemes, x be a geometric pont of X and Y — [Q]
be a fiame. We put P = Mx ;. Then there exist an etale neighborhood U of % and a frame
U — [P] such that the composition QQ — T'(Y, My) - I'X,Mx) - P = MX”,; defines
a map (U, [P]) — (Y, [Q]) of framed log schemes.

3. Let [ : X — Y be a map of log schemes and x be a geometric point of X. We put
P=DMx:)=f% and Q = My 5 Then there exist etale neighborhoods U of X and V of y
and frames U — [P] and NV — [Q] inducing the identities P — Mx z and Q — My ;5 and
a map (U, [P]) = (V,[Q)) of framed log schemes.

4. Let (X, [P]) = (Y,[Q)) be a map of framed log schemes and x be a geometric point
of X. Then the commutative diagram (4.1.6.2) in Corollary 4.1.6.2 defines a map (U, P') —
(V, Q) of charted log schemes lfiing the restriction of (X, [P]) — (Y, [Q]).

5. Let Y — [P] be a strict map. Then a map X — Y of log schemes s strict if and only
if the composition X — Y — [P] s struct.
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6. Let N — P and N — Q  be morphisms of fs-monowds and let

X L, 5 <4y

(4.1.8.1) l l l

[P] —— [N] «— [Q]

be a commutative diagram. Then, the vertical maps induce a map X ><ISOg Y = [POX QI If the
vertical arrows are strict, the induced map X xlsOg Y — [PBY Q] s also strict.

Progf. — 1. Replacing P by P/P*, we may assume P = Mx ;. There exist an
etale neighborhood U of ¥ and a chart P — I'(U, Mx) on U such that the diagram

P — I'(U, My)

! !

F(X,Mx) —  Mx;
is commutative. Shrinking U, we may assume that the diagram

P —— I'(U My)

! !

X, Myx) —— I'(U, My)

1s commutative. Hence the assertion follows from Lemma 4.1.7.1.

2. By 1, there exist an etale neighborhood U and a frame U — [P]. Shrink-
ing U, if necessary, we obtain a map (U, [P]) — (Y, [Q]) of framed log schemes.

3. By 1, there exist an etale neighborhood V and a frame V — [Q)]. Hence it
suffices to apply 2.

4. It follows from Lemma 4.1.7.1.

5. Since the question is etale local on Y, we may assume there is a map Y —
S[P] lifting Y — [P] by Corollary 4.1.6.1. Then the assertion follows from Lem-
ma 4.1.7.1.

6. Since MXX}:gY is saturated, the map P@&xy Q — I'X Xlsog Y, MXX}SOgY) induces
amap P@Y Q — N(X xg* Y, My, sy).

We show that the induced map X x}gog Y — [P &Y Q] is strict assuming that
the vertical arrows in the diagram (4.1.8.1) are strict. The question is etale local on
X,Y and S. Let P’ be the inverse image of P by the map P @ N® — P and Q'

be the inverse image of () by the map Q% @ NP — Q5P as in Lemma 4.1.5.2. The
canonical surjections P — P and Q' — Q) are quasi-isomorphism and hence the
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maps [P] — [P'] and [Q] — [Q]] are isomorphisms. By Lemma 4.1.5.2, we may
assume there exists a commutative diagram

X 15 s <y
| | |

S[P'] —— S[N] «—— S[Q]

lifting the diagram (4.1.8.1). By Lemma 4.1.7.1, the verical maps are stricts. Hence the
map XXISOgY — [P'®{' Q] is strict. By Lemma 4.1.2.3, the map P&JF'Q — P Q’
1s a quasi-isomorphism and the assertion follows. |

4.2. Loganithmic products. — Let X be a log scheme, Q. — P be a map of fs-
monoids and X — [Q ] be a map. Then, let X x}g] [P] denote the functor associating
to a log scheme T the set X(T) xq)cr) [P1(T).

Proposition 4.2.1. — Let Q — P be a map of fs-monoids and assume that the map
Q8P — PP g5 surjective. Then,

1. The map [P] — [Q] us relatively representable, log etale and affine. Namely, if X s
a log scheme and if X — [Q] i a map, the functor X Xl[ag] [P] us represented by a log scheme
log etale and affine over X.

2. Let X — S[Q] be a map of log schemes and let P~ denote the inverse image of P by

the surjection QP — PP, Then the log scheme X Xlso[%l] S[P~] s log etale over X and represents

the functor X X}g] [P].

Proof. — 1. We reduce the assertion 1 to the assertion 2. Let P~ C Q# denote
the mverse image of P by the map Q% — P, Since Q% — P is surjective, the
map P~ — P is a quasi-isomorphism and hence [P™] — [P] is an isomorphism by
Lemma 4.1.2.1. Thus, by replacing P by P™, we may assume Q C P C Q% = P,

For an fs-log scheme T, a map T — [P] is determined by the induced map
P = Q® — I'(T, MY), since the monoid I'(T, My) C I'(T, M%) is integral. Hence,
for a log scheme X, the base change X Xl[ag] [P] is the subfunctor of X associating to
a log scheme T the set {T — X] the composition Q — I'(X, My) — I'(T, My) is ex-
tended to P — I'(T, My)}. Thus the assertion is etale local on X. By Lemma 4.1.5.1,
we may assume that there exists a map X — S[Q ] lifting X — [Q]. Thus the asser-
tion | is reduced to the assertion 2.

2. Similarly as above, we may assume P = P~ and Q% = PSP, Further, it is
sufficient to prove the case X = S[Q ]. By the proof of 1, S[Q ] x}g] [P] is the functor
associating to a log scheme T the set {Q — I'(T, M1)|Q — I'(T, My) is extended to
P— I'(T,Mp)}. A map Q — I'(T, My) is extended to P — I'(T, M) if and only if
it is extended to P — T'(T, M) since My is the inverse image of Mt by MY — MT.
Thus the functor S[Q) ] xl[ag] [P] is represented by S[P] and the assertion follows. O
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We let X Xl[ag] [P] denote the log scheme representing the functor X xl[(ég] [P].

The log etaleness of the map X xl[(ég] [P] — X in Proposition 4.2.1.1 is a special case
of the log etaleness of the map of toric stacks induced by a map of fs-monoid, [32]
Corollary 5.29. The following Corollary 4.2.2.2 is a variant of the local exactification
in [23] Proposition (4.10).

Corollary 4.2.2. — Let Q — P be a map of fs-monowds such that Q% — PP s
surjective.

1. Let Q — Q! be a map of fs-monowds. Let X be a log scheme and X — [Q'] be
a frame. Then the map X x}g] [P] — [Q @& Pl is a frame. In particular, if X — [Q] is
a _frame, then the map X X}g] [P] — [P] s also a frame.

2. Let (X, [P]) = (Y,[Q)l) be a map of framed log schemes. Then X — Y s the

composition of the strict map X — Y x}g] [P] and the log etale map Y x}g] [P] — Y.

Proof. — 1. Since the assertion is etale local on X, we may assume there exists
a chart X — S[Q’] lifting the frame X — [Q’]. Then the assertion follows from
Proposition 4.2.1.2 and Corollary 4.1.8.6.

2. The map Y xl[g] [P] — [P] is strict by 1. Hence the map X — Y xl[g] [P] 1s
strict by the assumption that X — [P] is strict and by Corollary 4.1.8.5. By Proposi-
tion 4.2.1, the map Y x5 [P] — Y is log etale. O

To define logarithmic products, we introduce notations. Let X and Y be log
schemes over a log scheme S, let P be an fs-monoid and let X — [P] < Y be
maps. Then, let X Xls‘f%P] Y denote the functor associating to a log scheme T the set
X(T) xscryxpycry Y(T). For a map N — P of fs-monoids and a commutative diagram

X — S «— Y
| | |
[P] —— [N] «<— [P],

let X XISOE[NJ[P] Y denote the functor associating to a log scheme T the set
X(T) X(S(T)X[NJ('l')[P](T)) Y(T) Since S(T) XNI(T) [P](T) is a subset of S(T) X [P](T),
the natural map

is an isomorphism. If P = 0, we have X xls(f‘%o] Y=X xlsOg Y.

Proposition 4.2.3. — Let X and Y be log schemes over a log scheme S. Let P be an fs-
monoid and X — [P] <Y be maps. Then, the log scheme (X ><IS°g Y) xl[%%em [P] @ log etale

1
over X ><ISOg Y and represents the functor X XSO’%P] Y.
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Proof. — Clear from Proposition 4.2.1. O

Definition 4.2.4. — We let X x50 Y denote the log scheme (X xg* Y) X(pep; [P]
representing the functor X ng%P] Y and call it the log product of X and Y over S and [P].

Example. — Let m>1 be an integer and (N"@®N")~ be the submonoid {(ay, ..., @y,
bi, ..., b,) € Z?|a;+b; > 0 for all 1 < i < m}. Then, we have S[N"] Xé(;iczg[Nm]S[N’”] =
S[(N™ & N™)~]. In other words, we have

SpecZXi, ... X,.] X g% 7 ey SPecZlY1, ..., Y, ]
= SpecZ[Xi, ... X,, Y, .o, Yo, X /YDH o, (X / YD

Corollary 4.2.5. — Let X and Y be log schemes over a log scheme S, N — P be a map
of fs-monouds and

X — S «— Y
| | |
[P] —— [N] «— [P]
be a commutative diagram. Assume S — [N] s strict.

1. Let P — P and P — P" be maps of fs-monowds and let X — [P'] and Y — [P"] be
strict maps inducing X — [P] and Y — [P] respectively. Then, the induced map X Xls(f%P] Y —
[P @3 P"] us strict. In particular, of P — P’ 15 a quasi-isomorphism (resp. if P — P' and
P — P” are quasi-isomorphisms), the induced map X ng(fp] Y — [P7] fresp. X ng(fp] Y — [P))
i strict.

2. 1If X, [P]) = (S, [N]) s a map of framed log schemes, then the projection X xls‘f%P] Y
— Y s strict.

Proof. — 1. The map X xéog Y — [P’ P"] is strict by Corollary 4.1.8.6. Hence
X xg8 Y = (X xg¥Y) x55p, [P] s strict over [(P' @% P") @3, P1 = [P @5 P’] by
Corollary 4.2.2.1. The rest of assertion follows from Lemma 4.1.2.3.

2. Since the question is etale local on Y, we may assume there exist a map
(Y, [P']) — (S, [N]) of framed log schemes by Corollary 4.1.8.2. Hence the assertion
follows from 1 and Corollary 4.1.8.5. |

The log product may be explicitly computed as follows.

Corollary 4.2.6. — Let ¢ : N — P be a map of fs-monoid and

X — S «— Y

(4.2.6.1) l l l

S[P] —— S[N] «—— S[P]
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be a commutative diagram of log schemes. Let o : P — I'(X, Ox) and ay : P — ['(Y, Oy)
be the maps induced by X — S[P] <= Y. Let (P &N P)™ denote the inverse image of P by the
surjection (P @' P)P = P @nw PP — P sending (a, b) to a+ b as in Lemma 4.1.2.5.

1. We have

lo lo 1o -
X xg Y = (X x¢*Y) Xsﬁl@;@tm S[(P&xP)7].

2. Assume the vertical arrows mn (4.2.6.1) are strict. Then, we have
X x5y ¥ = (X x5 Y) xsipar SI(P @©x P)].

On the right hand side, the underlying scheme is identified with the closed subscheme of (X XsY)
X specz. [P /@(QFP)] defined by the ideal (ox(a) ® 1 —ay(a)®a : a € P) and the log structure
is the pull-back of that of S[(P &x P)™].

Proof. — 1. It is clear from Propositions 4.2.1.2 and 4.2.3.

2. By 1 and X x§¥Y = (X xXsY) Xsipep SIPOLP] (4.1.0.1), we have X x5, Y =
(X X¢BY) Xghgap SIP Oy P71 = (X x5 Y) Xspper S[(P @x P)71. The assertion on
the underlying scheme follows from this and Lemma 4.1.2.4. O

We give a global example where the closed immersion X Xls(f“fP] Y- Xxs5Y)
X specz S[P /@(Q5)] in Corollary 4.2.6.2 is an isomorphism. We prepare some nota-
tions. Let P and N be fs-monoids and (S, [P@&N]) — (S, [N]) be a map of framed log
schemes. Assume that the map S — S of underlying schemes is the identity. Assume
further that P* = {1} and that the composition P — Mg — Os/ 0% sends P\ {1}
to 0. The assumptions imply that, etale locally on S, there exists an isomorphism
Mgy x P — Mg inducing the map P — Mg defining S — [P]. Thus the map P — Mg
induces an isomorphism P — Mg/Mg = Mg/Mg. For a log scheme f : T — S over
S’, the set S(T) of log schemes T — S over S’ is identified with the set

{¢ : f7'Mg — M| the composition P — f~'Mg — Or/O5 sends P\ {1} to 0
and the composition f "My — f~'Mg — M underlies the
map T — S'}.

Let G be the torus Hom(P#P, G,,). We define an action of G on S over S’ as follows.
Namely, we define a functorial action of G(T) = Hom(P, I'(T, %)) on S(T) for
a log scheme f : T — S over S'. For u : P — Of and ¢ : f7'Mg — My, let
up : f~'Mg — My denote the product of ¢ : f7'Mg — My and the composition
Mg — f'Mg/Mg — P N Of — Mry. Then it is easy to see that, for u €
G(T) = Hom(P, I'(T, £5)) and ¢ € S(T), the product up is in S(T) and that the
maps G(T) x S(T) — S(T) sending (u, ¢) to up define an action of G on S over S'.
This action is also compatible with the map S — [P & N]J.



88 KAZUYA KATO, TAKESHI SAITO

Lemma 4.2.7. — Let S — S < X be maps of log schemes and P and N be_fs-monouds.
Let

S —— S5 «— X

(4.2.7.1) l l l

[PEN] —— [N] «— [PDN]

be a commutative diagram of maps. Assume the vertical arrows S' — [N] and S — [P @ N] are
strict and that the map S — S’ of underlying schemes is the identity. Assume further that P* = {1}
and that the compositions P — Ms — Os/ 0 and P — Mx — Ox /0% send P\ {1} to 0.

Then, the log product S XE%[P] X 15 strict over X. Further, the action of the torus G =
Hom(PsP, G,,)) on S induces an action on S X}S?,g[P] X over X and S xls(fﬁp] X s a G-torsor
over X.

Proof. — The map S xlso,‘f”[P]X — X is strict by Corollary 4.2.5.2. Since the action
of G on S is compatible with the maps S — S and S — [P], the action of G on
S X}S?,g[P] X is defined. To show that S xls(ffg[P] X 1s a G-torsor over X, first we show
that the map G x S — S XIS?‘?[P] S is an isomorphism. Let / : T — S’ be a log
scheme over S and ¢, ¢ : T — S be maps over S and over [P]. Then, since the
maps P — f~'Mg — My induced by ¢ and ¥ are equal, there exists a unique map
u:P — OF such that ¥ = up. Thus, the map G xS — S Xlsg,g[P] S is an isomorphism.

We show that S XIS?%[P] X is a G-torsor over X. By the assumption that P\ {1} is
sent to 0 in Ox /0%, there exists a commutative diagram

S — X
l l
S[N] «—— S[P® N]

lifting the right square in (4.2.7.1) etale locally on S’ and on X. Hence there exists
amap X — S over S’ and over [P @ N] etale locally on X. Thus, etale locally on X,
the scheme S xls(ffg[P]X 1s the pull-back of S xls(ffg[P]S by X — S and has a section over X.
Thus the assertion is proved. O

We define the log diagonal map and study the relation with the sheaf of logarith-
mic differentials. Recall that, for a morphism f : (X, Mx) — (S, Mg) of log schemes,
the Ox-module Qy . ss.Mg) 1s defined in [23] (1.7). It is canonically isomorphic to

(x5 ® Ox ®z (MY /" MT))/((da(m), —a(m) @ m) : m € Mx).

For m € Mx, its image is denoted by dlogm.
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Corollary 4.2.8. — Let X — S be a map of log schemes, P be an fs-monoid and
X — [P] be a map.
1. The diagonal map X — X xg)g X is umiquely decomposed as the composition of an

immersion
log
A:X — X xgp X
and the log etale map
X x g X —— X x¢¢ X,

2. Let (X,[P]) — (S,[N]) be a map of framed log schemes. Then, the immersion
A:X - X xls‘f%P] X s an exact immersion. Let Ny /X8, X be the conormal sheaf of the

. . lo . . . .
exact immersion A : X — X x¢'\{p X. Then, there is a canonical isomorphism

(4.2.8.1) NX/XX};%PJX — Qx MMy

Proof. — 1. Clear from Proposition 4.2.3.1.

2. Since the projection X xls‘f%P] X — X 1s strict by Corollary 4.2.5.2, the im-
mersion A : X — X xlso’%P] X 18 an exact immersion. Hence the immersion A : X —
X XIS?‘%P] X is an exactification of the diagonal map X — X ><IS°g X. Thus, taking it as
Z in [23] (5.6), we obtain an isomorphism (4.2.8.1) as a special case of loc.cit. (5.8.1).

Here, we give more detail. We regard X ng%P] X as a scheme over X by the second
projection py : X xlso’%P] X — X. The canonical map X xlso’%P] X=X xlsogX is log etale
and the projection py : X Xls(f%P] X — X is strict by Corolllary 4.2.5.2. Hence we have

. . . 1 1 1
canonical 1Isomorphisms #¥27 +, — Q — Q and
p Dr5exax) /s Ms) Xxgfp XM, o /(X Mx) X% X/X
XS [P ’

Q! — AQ! . Since the canonical map N I — ANQ!
(X, Mx)/(S,Ms) X%, X /X P X/X x5 X X%, X/X

is an isomorphism, the assertion follows. |

Definition 4.2.9. — Let [ : X — S be a morphism of log schemes, P be an fs-monoid
and X — [P] be a map. We call the immersion A : X — X xgj(fp] X the log diagonal map.

We may describe the modification associated to a subdivision using the construc-
tion above in the following way (cf. [25] Proposition (9.9)). Let P be an fs-monoid and
N = Homyneid(P, N) be the dual monoid. We say a submonoid N' C N is a face of
N if there exists a € P such that N' = {/ € N| f(a) = 0}.

Lemma 4.2.10. — Let P be an_fs-monoid and N' be a face of N. Let X be a log scheme
and X — [P] be a map. Then
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1. The monoid P = {x € P®| f(x) > 0 for f € N'} is an fs-monod and the canonical
map N' — Homyonoqa(P’, N) s an isomorphism. The natural map X xl[?,% [P] — X is an
open ummersion.

2. Let N be another face of N. Then the wntersection N = NN N" 15 a face of N. We
define P", P"" C P simularly as in 1. Then the natural map X Xl[?,% [P"] — (X Xl[?,% [P']D xx

X xl[(ff]; [P"]) s an isomorphism.

Proof. — 1. Assume N’ = {f € N|f(a) = 0} for a € P. Then, we have P’ =
(P,a”'y C P® and P’ is an fs-monoid. The isomorphism N’ — Homy,eneia(P’, N) is
clear.

We show that the map Xxl[%’ [P'] — X is an open immersion. Since the question
1s etale local on X, we may assume there is a map X — S[P] lifting X — [P]. Since
Z[P'] = Z[P][a"'], we have X xl[;“]; [P'] = X ®zp Z[P][a"'] and the assertion follows.

2. Assume N' = {f € N|f(a) = 0} for a € P and N” = {f € N|f(d) = 0}
for ¢ € P. Then N = {f € N|f(ad') = 0} is a face. Since P = P' @3" P’, the
isomorphism follows. O

We say a sub fs-monoid N’ C N is saturated in N if N’ = {x € N|x* € N’
for some n > 1}. A sub fs-monoid N’ is saturated in N if and only if N8 is a direct
summand of the free abelian group N#*. We identify a sub fs-monoid N’ saturated in
N with the dual Homy,uea(P’, N) of P = {x € P®|f(x) > 0 for f € N'}. We say
a finite set X of submonoids of N is a subdwision of N if the following conditions 1.-3.
are satisfied:

I. If N" is in X, N’ is saturated in N.
2. If N € ¥ and N” is a face of N, then N” € X.
3. If N', N” € X, the intersection N’ N N” is a face of N’ and of N” and hence
is in X.
We call an element 0 € ¥ a face in 2. If a subdivision X further satisfies the following
condition 4 (resp. 5), we say X 1is proper (vesp. regular).

4. N=J,cx No.
5. There exists an isomorphism N, — N"©@ for each o € X.

Let P be an fs-monoid and X be a subdivision of the dual monoid N =
Hom,,on0ia(P, N). In the following, we write £ = {N,|o € X}. Let X be a log scheme
and X — [P] be a map. Then we define a log scheme Xy log etale over X as fol-
lows. For o € X, we put P, = {x € P®|f(x) > 0 for / € N,}. Then the log scheme
X, =X xl[;“]; [P,] log etale over X is defined. For o C 7, we have an open immer-
sion X, — X; by Lemma 4.2.10.1. Patching X, for o € X, we define a log scheme
X5 =, 5 Xo log etale over X.
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For a face v in X, a closed subscheme V, C Xy is defined by patching the closed
subschemes V,; N X, of X, defined by the ideal generated by P, \ {x € P,|f(x) =0
for all f € N;} for 0 D 7.

Lemma 4.2.11. — Let P be an fs-monoid and L be a subdivision of the dual monowd N.
Let X be a log scheme and X — [P] be a map.

1. ([25] Proposition (9.11)) If X s proper, the map Xy — X s proper.

2. Assume X 15 log regular ([25] Definition (2.1)) locally noetherian, X — [P] s a_frame
and the subdivision X 1s regular. Then, the scheme Xy ts regular and the log structure on Xy s
defined by a divisor with simple normal crossings.

3. Let o and o' be faces in L. If there exists T € X such that o, 0" C T, the intersection
V, NV, is equal to V, for the smallest T satisfying o, 0" C t. If there exists no such T € X,
the wintersection Vo, NV is emply.

Proof. — 2. Since the map Xy — X is log etale, the log scheme Xy is log regu-
lar. Hence it follows from Lemma 4.1.4.2.
3. Clear from the definition. O

Lemma 4.2.12. — Let X be a regular locally noetherian scheme of dimension n and D
be a divisor with normal crossings. Let D be the normalization of D and V; be the closed subset
{x € X| deg, D, > n— i} with the reduced closed subscheme structure. We put Xo = X and, for
0 <t <n—2, define X;y) — X; inductively to be the blow-up at the proper transform V' of V..
Then,

1. The scheme X; s regular. The reduced nverse image D; of D in X; s a dwisor with
normal crossings. The subscheme V'. is regular for 0 <1 <n — 1.

2. The dwnsor D,y has simple normal crossings.

Proof — 1. Since the assertion is etale local, we may assume that the divisor
D has simple normal crossings. Let Mx be the standard log structure of X and put
P = I'X, My). Let Dy, ..., D, be the irreducible components of D and we identify
P = N’. We describe the blow-up X; — X in terms of a partial barycentric subdivision
of a simplex as follows.

We regard A = {l,...,r} as the set of vertices {f, ..., f;} of the simplex |A|
spanned by the standard basis f,, ..., /; of R". We define a subdivision of |A] as follows.
For a subset T C A, let b, = Zjer /fi/Card T be the barycenter of the face spanned by
JiJ€t. Foreach 0 <i<wn,let A; = AL {b |t C A,#t > n—1} be the set of vertices
of |A| together with the barycenters of faces with dimension > n—¢. We say a subset
o C A; is a face of A; if the following condition is satisfied: There exists a sequence
00 € ... € oy such that Cardoy < n— ¢, Cardoy, > n— 1 and 0 = oy U {b,,, ..., by, }.
Let X; be the set of faces of A;. We define a regular and proper subdivision ¥; of
the dual monoid N = Hom,,,,.;ia(P, N). Let ¢, ..., ¢, be the standard basis of P = N’
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and fi, ..., /; be the dual basis of N. For a subset T C A, we put f; = ZJETJJ[‘ € N. For
a face o in X;, we put N, = (f;|t € 0). Then (Ny)sex, 1s a regular proper subdivision
of N. We have X; = Xy,. By Lemma 4.2.11.2, X is regular and the divisor D; has
simple normal crossings.

For a subset T C A, let D, be the intersection [),_, D;. We have V,; = [ ,,_, ; D-.
For a subset T C A satisfying #1 = n—1, the proper transform of D in X is the closed
subscheme V; of Xy, defined by the face T € X,. Since V; is regular and V,.NV, =@
if T # v’ by Lemma 4.2.11.3, the closed subscheme V. =]],,_, ,V, is regular.

2. By 1, V/_, is a regular divisor. Since the exceptional divisors are also regular,
every irreducible components of the divisor D,_, is regular. Therefore D,_; has simple
normal crossings. O

4.3. Log products and properties of morphisms of log schemes. — In [32], for a prop-
erty & of morphisms of algebraic spaces, Olsson gives a definition for a morphism of
log schemes to have property log &2, using algebraic stacks. We give an interpretation
of the definition without using algebraic stack under the condition (P1) below, after
briefly recalling the main result and the definition in [32].

For a log scheme S, a stack Zogs over S is defined. An object of Zogs is a log
scheme X over S and a morphism is a strict morphism over S. The natural map
Zogs — S is defined by sending a log scheme X to the underlying scheme. The main
result, Theorem 1.1, of [32] asserts that the stack Zogs is an algebraic stack locally of
finite presentation over S. In the following, we identify an object X of Zogs with the
induced morphism X — Zgs. The identity of S defines a section S — Zogs. The
section S — Zogs is an open immersion (loc. cit. Proposition 3.19 (ii)). A map X — S
of log schemes induces a natural map Zogx — Zogs. The map Logx — Logs is
relatively representable. Namely for an arbitrary object T — Zogs, the fiber product
ZLogx X 44 T is representable by an algebraic space.

For a property & of morphisms of algebraic spaces, we say a morphism X — S
of log schemes is log & (resp. weakly log &) if the induced morphism Zogx — Zogs
(resp. the composition X — Zogx — Zogs) of algebraic stacks is &. Namely for an
arbitrary object T — Zogs, the base change Zogx x ¢, T — T (resp. the composition
X X g T = Logx X g5 T — T) is & (loc. cit. Definition 4.1). Let & be a property
of morphisms of schemes satisfying the condition:

(P1) Let (U; = X),e1 be an etale covering of X. Then X — S is & if and only
if the compositions U; - X — S are & for all 1 € L.

Then we say a morphism X — S of algebraic spaces is & if, for any scheme U etale
over X, the composition U — X — S is &. Thus, for a morphism of log schemes,
we have the following:

Lemma 4.3.1. — Let & be a property of morphisms of schemes satifying the condition (P1).
Then, for a morphism X — S of log schemes, the following conditions are equivalent.
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(1) X — S is log & (resp. weakly log Z).
(2) For an arbitrary commutative diagram
W — T

(4.3.1.1) l l

X —— S

of log schemes, if W — X XlsOg T s log etale and if W — T is struct (resp. and if W — 'I" and
W — X are strict), then the underlying map W — 1" 1s 2.

Progf. — First, we show the assertion for log &. By the definition, an object of
Logx X g4 T 1s a commutative diagram (4.3.1.1) of log schemes such that W — T is
strict. Thus, it is sufficient to show that, for a scheme W over Zogx X g, T, the map
W — ZLogx X 4, T of algebraic spaces is etale if and only if the map W — X ><lsOg T
of log schemes is log etale. The algebraic space Zogx X 4, T is naturally endowed
with the pull-back log structure of that on T. Then, it suffices to show that the map
Logx X g T — X xlsogT is log etale. The underlying map Zogx X g, T — X xlsogT is
locally of finite presentation by the main result of [32]. Hence, it is sufficient to show
that the map Zogx X g T — X xlsOg T is formally log etale by loc.cit. Theorem 4.6.
We consider a commutative diagram

W() _—> gogx Xﬁ,gs T

| |

W —— X xET
of log schemes such that the map Wy — Zogx X g4 T is strict and that the map
Wy — W is a nilpotent exact closed immersion. Then, since Wy — T' is strict, the
map W — T is also strict. Thus, there exists a unique map W — Zogx X 4, T making
the two triangles commutative. Hence the map Zogx X 44 T — X xlsOg T is formally
log etale and is log etale further by loc.cit. Theorem 4.6. Thus the assertion is proved.

Similarly, an object of X X g, T is a commutative diagram (4.3.1.1) of log

schemes such that W — T and W — X are strict. Since X — Zogx is an open
immersion, the composition X X g T — Logx X s T — X x$E T is log etale. Thus
the assertion for weakly log & is proved similarly. |

By Lemma 4.3.1, for a property & of morphisms of schemes satisfying the con-
dition (P1), we may regard the condition (2) in Lemma 4.3.1 as a definition for a mor-
phism of log schemes to be log . By [32] Theorem 4.6, we recover the definition of
log etale, log smooth and log flat in the literature by taking & to be etale, smooth
and flat respectively.

We also consider the following conditions on a property & of morphisms of
schemes:
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P2) If X — S is &, its base change X' = X xg 8 — S is also & for an
arbitrary map S" — S.

(P3) Let X — S’ be a map and " — S be an etale morphism. Then the com-
position X — S is & if and only if X — §' is Z.

(P4) Let X — S be a morphism of schemes and S" — S be a faithfully flat map.
Then X — S is & if the base change X' — S is Z.

P5) If f: X —> Yand g: Y — S are &, the composition go f : X — S is Z.

(P6) If X — S is &, its base change X' = X x5S — S is also & for a flat
map S — S.

The following is clear from Lemma 4.3.1.

Corollary 4.3.2. — Let &P be a property of morphisms of schemes satisfying the condition
(P1). Let f : X — S be a morphism of log schemes.

1. Assume & satisfies (P2). If [ : X — S is log P, ils base change [ : X' — S is also
log & for an arbitrary morphism of log schemes S" — S.

2.If X — S s log P and if U — X is log elale, the composition U — S s log P.

3. Assume & satisfies (P2) and [+ X — S is strict. Then f s log & (resp. weakly
log @) if and only if the underlying morphism is 2.

4. Assume P satisfies (P3). Then, the following conditions are equivalent.

(1) The map [ : X — S is log &P (resp. weakly log ).

(2) There exist an etale covering (U; — X)ier of X, etale maps V; — S and log P (resp.
weakly log &) maps g; : U; — V; such that the diagrams

U, —= Vv,

Lo

X%S

are commutative for ¢ € 1.

We give a criterion for a morphism of log schemes to be log & using log prod-
ucts and Lemma 4.3.1.

Proposition 4.3.3. — Let &2 be a property of morphisms of schemes satisfying the condition
(P1). Let (X, [P]) = (S, [N]) be a map of framed log schemes. We consider the conditions:

(1) f:X—Sislg 2.

2) f:X— S s weakly log 2.

(I') (resp. (2')) For an arbitrary map T — S of log schemes and an arbitrary map (vesp.
an arbitrary strict map) T — [P] such that the diagram
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T —— S

(4.3.3.1) l l

[P] —— [N]

s commutative, the strict map X XISO’%P] T—Tuis 2
We have (1)=(2) =(1') < (2'). If & further satisfies the condition (P3), the four conditions

are equivalent.

Proof: — (1)=(2) and (1")=(2"). Clear.
(2)=(2) We consider the commutative diagram

X xg8 T — T
(4.3.3.2) i i

X — S.

Since X — [P] is strict, the map X xgj(fp] T — T is strict by Corollary 4.2.5.2. If
further T" — [P] is strict, the map X xls(f“fP] T — X is also strict by Corollary 4.2.5.2.
Since X xls(f‘%P] T — X x§* T is log etale, (2) implies (2') by Lemma 4.3.1.

(2'=(1"). We consider the commutative diagram (4.3.3.2). Assuming (2), we
show the map X Xls(f%P] T — Tis & Let T" be the log scheme as in Lemma 4.1.7.3
such that the map T — [P] is the composition of a strict map 1" — [P] and a map
T — 'T" whose underlying map is the identity of T. The diagram (4.3.3.1) with T
replaced by T’ is commutative. Since X xg% T = (X x5 T') x1¢ T and the maps
X XTSCT%P] T — T and X XISO’%P] T" — T’ are strict by Corollary 4.2.5.2, the underlying
morphism X xlso’%P] T — T of schemes is the same as that of X xls(f“fP] T" — T'. Since
T" — [P] is strict, the map X xls(f‘%P] T — T is & by (2)). Thus (2) implies (1").

(1=(1). We consider the commutative diagram (4.3.1.1). We assume W —
XXISOgT is log etale and W — T is strict and we show W — T is Z2. Since we assume
(P1) and (P3), the question is etale local on W and on T by Corollary 4.3.2.4. Let w
be a geometric point of W and put P' = My . The composition W — X — [P]
induces a map P — P’ of fs-monoids. Replacing T by an etale neighborhood of the
image ¢ of @, we may assume there exists a strict map T — [P'] such that the com-
position W — T — [P] induces the identity P' — va@ since MT,; — Mw,fu Is an
isomorphism. We define a map T — [P] as the composite T — [P'] — [P].

We may assume the diagram (4.3.3.1) is commutative by shrinking T if neces-
sary. Shrinking W if necessary, we may assume that the two compositions W — X

— [P] and W — T — [P] are equal. Hence, we obtain a map W — X xls(f“fP] T

of log schemes log etale over X x¢% T. Thus the map W — X Xls‘f‘%P] T is log etale.
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The map X xlso’%P] T — T is strict by Corollary 4.2.5.2 and the map W — T is strict
by the assumption. Hence the map W — X XISO!%P] T 1s also strict and hence is etale.

By (1), the map X xg%, T — T is &. Hence by (P1), the map W — T is . Thus
the assertion follows by Lemma 4.3.1. |

Corollary 4.3.4. — Let & be a property of morphisms of schemes satisfying the condition
(P1).

1. Assume & satisfies (P3). Then a morphism [+ X — S of log schemes is log & if and
only if it is weakly log 2.

2. Assume &P satisfies (P3) and (P5). Then, tof morphisms [ : X — Y and g: Y — S of
log schemes are log P, the composition g o f : X — S is also log Z.

3. Assume P satisfies (P2) and (P5). Let X — Y and X' — Y’ be maps of log schemes
over a log scheme S, N — Q — P be maps of fs-monoids and

X —s Y S Y «— X
| | | | |
(P] — [Q] [N] [Q] «— [P]

be a commutative diagram. Assume X — [P], Y — [Q] and S — [N] are strict, X — Y s

. / - . lo /
log & and the underlying map of X' — Y' is 2. Then the underlying map of X XS,%P] X —
Y x$8o, Y is 2.

Proof — 1. By Corollary 4.3.2.4, the assertion is etale local on X and S. Hence
we may assume there exists a morphism (X, [P]) — (S, [N]) of framed log schemes by
Corollary 4.1.6.2. Thus the assertion follows from the equivalence (1)<(2) in Propo-
sition 4.3.3.

2. Since the question is etale local, we may assume that there exist maps (X, [P])
— (Y, [Q]) — (S,[N]) of framed log schemes. Let (T, [P]) — (S, [N]) be a map
of framed1 log schemes. We consider the diagram (4.3.3.2) and show that the strict

og

map X Xgp T — T is & By the assumption and Proposition 4.3.3 (1)=(2’), the

strict maps X Xy5p (Y xls(f‘%Q] T - Y xls(f“f’Q] T and Y xls(f“f’Q] T — T are . Since

X xy8 (Y xghs, T) = X x¢h, T, the assertion follows by (P5) and Proposition 4.3.3
N=(1).
(2 ):>( ) log ’ log , log , log ,
3. We show the maps X Xgip X' = Y X519 X and Y X519 X' = Y X5 Y
are . In the diagram

1 1
X xgpX — Y XSO,%Q] X

(4.3.4.1) i i

X Y,
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1 1 . . . 1 1
the top arrow X XSO’%P] X =Y XSO’%Q] X' is strict since X XSO’%P] X and Y XSO!%Q] X'

are strict over X' by Corollary 4.2.5.2. The log scheme X XIS?‘%P] X' is log etale over
XXy (Y gt X)) = X x g%, X. Since X — Y is log 2, the strict map X x % X' —
Y x¢to, X is 2.

In the diagram

log ’ log ’
Y Xs10] X —Y Xs10] Y

(4.3.4.2) l l

X' — Y,
the vertical arrows are strict since Y — [Q) ] is strict. Hence the diagram of underlying

scheme is cartesian. Since the underlying map of X' — Y’ is &, the underlying map
of Y xls‘f%Q] X —-Y XS%Q] Y is & by (P2). Thus we conclude by (P5). O

In particular, for log flat morphisms, we have the following.

Corollary 4.3.5. — 1. (cf. [32] Corollary 4.12 (1)) If X — S s log flat and S — S
15 a map of log schemes, the base change X ><ISOg S"— S s log flat.

2. (cf. [32] Corollary 4.12 (i) If X — Y s log flat and Y — S s log flat, the
composition X — S 15 log flat.

3. If X and Y are log flat log schemes over S, the log fiber product X XISOg Y s log flat
over S.

4. Let X and Y be log schemes over S and N — P be a map of fs-monouds. Let

X — S «—Y

Lo

[P] —— [N] «<—— [P]

be a commutative diagram and assume X — [P] and S — [N] are strict. If X — S s log flat,
the strict map X Xls(f%P] Y — Y s flat

5 Lt X — Y and X' — Y’ be maps of log schemes over a log scheme S and let
N — Q — P be maps of fs-monoids. Let

X — Y S Y «— X
| l l l |
[P] — [Q] [N] [Q] «<— [P]

be a commutative diagram and assume X — [P], Y — [Q] and S — [N] are strict. If X — Y
. . . / 7. . lo 12

is log flat and if the underlying map of X' — Y' 15 flat, the underlying map of X XS,%P] X —
Y x¢to, Y is flat.
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Proof. — 1 and 2. It suffices to apply Corollaries 4.3.2.1 and 4.3.4.2 respectively.
3. It follows from 1 and 2.

4. It suffices to apply Proposition 4.3.3 (1)=(1").

5. It follows from Corollary 4.3.4.3. |

In Section 4.4, we define morphisms log locally of complete intersection as a spe-
cial case of the following definition.

Definition 4.3.6. — Let & be a property of morphisms of schemes satisfying the condition
(P1). We say a morphism of log schemes X — S is very weakly log &2 if the following condition
s satisfied.

For an arbitrary commutative diagram

W —— T

(4.3.6.1) l l

X —— S

of log schemes, if T — S s log flat, W — X xéog T s log etale and if W — T and W — X
are strict, then the underlying map W — T is .

For a property & satistying (P1), a weakly log & morphism is very weakly
log Z.

Similarly as in Corollary 4.3.2.4, if &7 satisfies (P1) and (P3), the following con-
ditions are equivalent.

(1) The map f : X — S is very weakly log Z.

(2) There exist an etale covering (U, — X)), of X, etale maps V; — S and
very weakly log &2 maps g : U; — V; such that the diagrams

U,-L>VZ~

L

X%S

are commutative for : € I.
The following lemma is useful in the study of very weakly log & morphisms.

Lemma 4.3.7. — Let N — P be an wection of fs-monoids. Then the induced map
S[P] — S[N] of log schemes s log flat. More precisely, for an arbitrary log schemes T over S[IN]
and an arbitrary strict map T — [P] such that the diagram

T —— S[N]
L
[P] —— [N]

s commultative, the strict map "I Xlso[%\]]’m S[P] — T s _faithfully flat.
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Proof. — Since flatness satisfies (P1) and (P3), it is sufficient to show the second
assertion by Proposition 4.3.3 (2')=(1). The assertion is etale local on T. Hence by
Corollary 4.1.6.2, we may assume there exists a map (T, P’) — (S[N], N) of charted
log schemes where P* C P3P @ NP is the inverse image of P as in Lemma 4.1.5.2.
Thus it is reduced to the case T = S[P’]. In this case, we have T xlso[“f\l],m S[P] =
S[(P" ®&x P)~] where (P’ &x P)™ C P @no PP is the inverse image of P. The iso-
morphism P @ NP — PP @ N* : (a, b)) = (a + ¢(b), b) induces an isomorphism
P' — P® N*® and the isomorphism P8P @ne PP = (P @ N5P) e PSP — PSP PP
((a, b), ¢) = (a+ @(b) + ¢, p(b) + ¢) induces an isomorphism (P’ &y P)™ — P & PP,

These isomorphisms make a commutative diagram

P’ — (PP P)”

! !

o (L) ,
PN —5 P @ PeP,

Since @5 : NP — PP is injective, the map Z[N*P] — Z[P*P] is faithfully flat. Thus
the map T Xlso[“f\ﬂsm S[P] = S[(P' &x P)~] — S[P] is faithfully flat. O

Proposition 4.3.8. — Let & be a property of morphisms of schemes satisfying the condi-
tion (P1). Let f : (X, [P]) = (S, [N]) be a morphasm of framed log schemes. We consider the
conditions:

(3) f:X — S is very weakly log P.

(3') For an arbitrary map (T, [P]) — (S, [N]) of framed log schemes such that T — S
is log flat, the strict map X XIS?‘%P] T— T A

1. We have (3)=(3'). If & satisfies the condition (P3), the two conditions are equivalent.

2. Let S — S[N] be a chart lifting the frame S — [N]. Assume N — P s ijective. We
consider the condition:

(3") For Tp = S xgn1 SIP], the strict map X XISO’%P] Tp — Tp is .

Then we have (3')=(3"). If &P satisfies the conditions (P4) and (P6), we have (3")&(3'). If
P salisfies the conditions (P2) and (P4), the condition (3") implies the condition (2') in Proposi-
tion 4.3.3.

Proof. — The proof is similar to that of Proposition 4.3.3. The implications
(3)=(3")=(3") are clear. The proof of (3)=(3) is the same as that of (1')=>(1) except
that here we need to notice that the constructed map T'— [P] is strict after shrinking
T if necessary.

We show (3")=(3"). Let (T, [P]) — (S, [N]) be a map of framed log schemes
such that T — S is log flat. We show that the strict map X xg% T — T is 2. We
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consider the cartesian diagram

X xg8y T —— X xg%, T x¢% Tp —— X xg5 Tp

(4.3.8.1) l l l

T <«— TxggTe ——  Tp

of strict morphisms. By (3”), the right vertical map X x. stey Tp = Tp is 2. The strict
map T XISO[P] Tp — Tp 1s flat slnce T — Sis assumed log flat. Hence by (P6), the
middle vertical map X XS T ><S ) Ip —> T XS , Tp is £, Since T ><S e Ip —> T
1s faithfully flat by Lemma 4 3.7, the assertion follows by (P4).

The mmplication (3”)=(2") is proved similarly by replacing (P6) by (P2). O

Corollary 4.3.9. — Let & be a property of morphisms of schemes satisfying the condition
(P1).

1. Assume & satisfies (P2), (P3) and (P4). Then a morphism f : X — S of log schemes
is log P if and only if it is very weakly log 2.

2. Assume &P satisfies (P3) and (P5). Then, of morphisms f : X — Y and g: Y — S of
log schemes are very weakly log &, the composition g o f : X — S is also very weakly log .

3. Assume &P satisfies (P6) and (P5). Let X — Y and X' — Y' be maps of log schemes
over a log scheme S, N — Q — P be maps of fs-monoids and

X — Y S Y «— X
| | | | |
[Pl — [Q] [N] [Q] «— [P]

be a commutative diagram. Assume X — [P, Y — [Q] and S — [N] are strict, X — Y s
very weakly log P, the underlying map of X' — Y' is & and X' — S and Y — S are log flat.
Then the underlying map of X XIS?‘%P] X =Y XISO,%Q] Y is .

Progf. — 1. It is sufficient to show that a very weakly log & morphism X — S
is log . By (P3) and Corollary 4.1.8.2, we may assume there is a map (X, [P]) —
(S, [N]) of framed log schemes. By replacing P by the inverse image P* C PP @ N#°
of P as in Lemma 4.1.5.2, we may assume that the map N — P is injective. Hence
the assertion follows from Proposition 4.3.8 (8”)=(2") and Proposition 4.3.3 (2')=(1).

2. The proof is similar to that of Corollary 4.3.4.2. We only indicate the points
where a modification is required. Let (T, [P]) — (S, [N]) be a log flat map of framed
log schemes. Then, the projection (Y Xls o) T [PD) — (Y, [Q]) is also 1og flat. Hence,

by the assumptlon and Proposltlon 4.3.8 (3)=(3’), the strict maps X XY’[P] Y XISO,‘%Q] T)

—Y xs[ T and Y >< o1 T — T are &. Thus we conclude by (P5) and Proposi-
tion 4.3.8 (3) (3).
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3. The proof is similar to that of Corollary 4.3.4.3. We only indicate the points
where a modification is required. In the diagram (4.3.4.1), since further Y xls‘f%Q] X'
— Y is log flat, the strict map Xxls‘f%P] X — YX}S%Q] X' is Z. In the diagram (4.3.4.2),

. . I : I 1
since further the strict map Y xs‘f%Q] Y — Y’ is flat, the map Y xs‘f%Q] X =Y xs‘f%Q] Y

is & by (P6). Thus we conclude by (P5). O
For log flat morphisms, we have the following criterion.

Proposition 4.3.10 ([32] Theorem 4.6). — For a morphism | : X — S of log schemes,
the following conditions are equivalent.
(1) f: X — S is log flat.

(2) For an arbitrary commutative diagram

W — T

Lo

X —— S

of log schemes, if W — X XISOg T s log etale and W — T 15 strict, then the underlying map
W — T s flat.

(3) f : X — S is very weakly log flat.

(4) For an arbitrary pont x € X, there exist an injection N — P of fs-monoids and
a commutative diagram

X U S[P]
(4.3.10.1) l l l
S \% S[N]

of log schemes satisfying the following conditions: The map U — X is strict and flat, the image of
U — X contains an open neighborhood of x, V- — S s an open immersion, the maps U — S[P]
and V' — S[N] are strict and the strict map U — V Xlso[“f\n S[P] s flat.

Here, we give a proof using Proposition 4.3.8.

Proof. — (1)<(2). Since flatness satisfies the condition (P1), it is clear from Lem-
ma 4.3.1.

(1)>(3). Since flatness further satisfies the conditions (P2), (P3) and (P4), it is
clear from Corollary 4.3.9.1.

(3)=4). Assume X — S is very weakly log flat. We show that X — S satisfies
the condition (4). The question is etale local on X and S. Hence by Corollary 4.1.8.3
and 4, we may assume there exist an injection N — P of fs-monoids and a map
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(X,P) = (S,N) of charted log schemes since the map Q — P’ loc.cit. is injective.
We put U=X xlso[‘(f\]]’[l,] S[P] and consider the commutative diagram

L

S[N].

By Lemma 4.3.7, the strict map U — X is faithfully flat. We show that the strict map
U—>Tp=S xlso[“f\ﬂ S[P] is flat. We consider the commutative diagram

1
U=Xxgp Tp — Tp

! !

X — S.

Then, since Tp — S is log flat by Lemma 4.3.7 and X — S is very weakly log
flat by the assumption, the strict map X xgj(fp] Tp — Tp 1s flat. Hence the assertion
follows.

(4)=(3). We assume X — S satisfies the condition (4) and show that the map
X — S is very weakly log flat. We assume there exist an injection N — P of fs-
monoids and a commutative diagram (4.3.10.1) satisfying the condition in (4). Since
the question is etale local on X, we may further assume that the map U — X is
faithfully flat and V = S. Then we obtain a commutative diagram

U—— Tp

(4.3.10.2) l l

X —— S.

The map U — X is strict and faithfully flat and the map U — Tp is strict and flat.
Since U — X is strict and surjective, by shrinking them if necessary, we may assume
there is a strict map X — [P] such that the diagram

U—> Tp

(4.3.10.3) l l
X — [P]

1S commutative.
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We show the condition (3”) in Proposition 4.3.8 is satisfied. Namely, we show
that the strict map X xls‘f%P] Tp — Tp 1s flat. We consider the commutative diagram
U XISO’%P] TP e TP ng%)] TP
(4.3.10.4) l l

log
X XS,[P] Tp — Tp

induced by the diagrams (4.3.10.2) and (4.3.10.3). The strict map U Xls(f“fP] Tp —
Tp xg% Tp is flat since it is a base change of the strict and flat map U — Tp. By
Lemma 4.3.7, the strict map Tp xls‘f%P] Tp — Tp 1s flat. The strict map U xls‘f%P] Tp —
X xlso’%P] Tp is faithfully flat since it is a base change of the strict and faithfully flat map
U — X. Hence the strict map X xls(f‘%P] Tp — Tp is flat. O

For a morphism / : X — S locally of finite presentation of schemes and x € X,
we put s = f(x) and

dim, /7' (f(x)) = dim Ox_, + tr. deg «(x)/k(f(x)).

The fiber dimension dim, /~'(f(x)) at x is equal to the maximum of the dimensions
of components of the fiber X; = f~!(f(x)) containing x. We also define a log version.
Let f : X — S be a map of log schemes whose underlying map is locally of finite
presentation. For x € X, we put

dim!®® £~ (f (%))
= dim Ox ;/(a(Mx: \ 0% ;)) + tr. deg x(x)/k(s) + rank MY /M,

by taking geometric points ¥ and 5 above x and s = f(x).

Proposition 4.3.11 (cf. [3] Lemma 3.10). — Let / : X — S be a morphism of log
schemes such that the map of underlying schemes is locally of finite presentation. Let

W 5T

L

X%S

be a commutative diagram of log schemes such that W — X XlsOg T s log etale and W — 'I' and
W — X are strict. Then, for w € W and its image x € X, we have

dim' /71 (£ (%)) = dim,, g~ (g(w)).
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Proof. — By replacing S and T by geometric points on the images s = f(x) and
t = g(w), we may assume S and T are the spectrums of algebraically closed fields with
the pull-back log structures. We put N = Mg; and P = My ;. Let P C P® @ N® be
the inverse image of P as in Lemma 4.1.5.2. Since the question is etale local on X, by
replacing X by an etale neighborhood of X, we define a map of charted log schemes
(X, P) = (S,N) as in Corollary 4.1.8.3 and 4. The chart X — P’ induces a chart
W — P’ and hence a chart T'— P'. Since the question is etale local on W and the
strict map W — X xls‘f%P,] T is etale, we may assume W = X Xlscj(fp,] T. By replacing
S by T with the pull-back log structure of that of S, we may assume the underlying
map T — S is the identity.

By Proposition 4.2.3.3, we have X x¢5 T = X xgpgr) SI(P ®x P)7]. Let
a: P - I'X, Ox) and @, : P — «(t) denote the maps defining the charts X — P’
and T — P'. Then by Corollary 4.2.6.2, the underlying scheme of X xls(f%P,] T is iden-
tified with the closed subscheme of X Xg,e.z S[P®"/N®] defined by the ideal I =
(a(a) — o(a)) ® a; a € P'). Since a,(a) = 0 for a ¢ P, the ideal I is the sum of
[ = @®l;ae P\P*)and I, = (1 ® a — (o, (a a(a) ® 1;a € P*). Since
P = P'/P™, the closed subscheme of X Xg,..z S[P"*?/N*] defined by the ideal I, is
identified with X Xspe.z S[P%/N®]. Hence X XISO’%P,] T is identified with the closed sub-
scheme of X Xg,..z S[P**/N®P] defined by the image of the ideal I}, = (a(a) ® 1;a €
P\ P¥). Thus the assertion follows. O

4.4. Log locally of complete intersection morphisms. — We briefly recall the definition
and some facts on morphisms locally of complete intersection. Let X — S be a mor-
phism locally of finite presentation of schemes. As we have recalled in Definition 1.6.1,
we say X is locally of complete intersection over S if, for each x € X, there exist an
open neighborhood U of x in X, a smooth scheme P over S and a regular immer-
sion U — P over S. Assume X is locally of complete intersection over S. For x € X,
the difference d, = rankQ2} s, — rankNy,p,, in the notation above is independent of
U — P — S ([17] Exp. VIII Proposition 1.8) and is called the virtual relative dimen-
sion at x. If d, 1s a constant d on X, we say X is of virtual relative dimension ¢ over S.
The function d, is locally constant on X and is different from dimgx in Section 2.1.
We have the following criterion for a locally of complete intersection morphism to be
flat in terms of a relation between &, and dim, f~!( f(x)).

We give a criterion for a locally of complete intersection morphism to be flat in
terms of the relative dimension. A flat and locally of complete intersection morphism
is called a syntomic morphism.

Proposition 4.4.1. — Let [ : X — S be a locally of complete intersection morphism of
virtual relative dimension d. Then, the following conditions are equivalent.

(1) f: X — S s flat.

(2) For each point x € X, we have dim, f~'(f(x)) = d.
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Proof. — Since the question is local on X, we may assume there exist a smooth
scheme Y over S purely of relative dimension n and a regular immersion X — Y of
codimension ¢ = n — d. Let x be a point of X and (g, ..., g) be a regular sequence
of Oy, generating the ideal defining the immersion X — Y at x. By [15] Théoreme
(11.3.8) b)<>c), the condition (1) at x is equivalent to that the image (gi, ..., &) 1s a regu-
lar sequence of ﬁyf(x)”,c. Since ﬁyﬂx)”,c is of Cohen-Macaulay, it is further equivalent
to that dim Oy, , = dim Oy, , — ¢ by [15] Chap. 0 Corollaire (16.5.6). Since n =
dim Oy, . + tr.deg k(x)/k(f(x)), the assertion follows. O

Following Definition 4.3.6, we make the following definition. Note that mor-
phisms locally of complete intersection satisfy the properties (P1) and (P3)—~(P6) in Sec-
tion 4.3.

Definition 4.4.2. — We say a morphism of log schemes X — S 15 log locally of com-
plete intersection (resp. log locally of complete intersection of virtual relative dimension d) if
the underlying map 1s locally of finite presentation and if the following condition is satisfied.

For an arbitrary commutative diagram

W — T

(4.4.2.1) l l

X —— S

of log schemes, if T — S s log flat, W — XXISOgT is log etale and if W — T and W — X are
strict, then the underlying map W — I 1s locally of complete intersection (resp. locally of complete
intersection of virtual relative dimension d).

Let X — S be a log smooth map. Then we say X is purely of relative dimen-
sion d, if, for an arbitrary commutative diagram (4.4.2.1) of log schemes such that
W— X xlsOg T is log etale and W — T is strict, the underlying smooth map W — T
1s purely of relative dimension d. A log smooth scheme X is purely of relative dimen-
sion d if and only if the locally free Ox-module Q%X,Mx) Js.Mg) 18 Of constant rank d.

Lemma 4.4.3. — 1. A log smooth morphism (resp. purely of dimension d) is log locally of
complete intersection (resp. of virtual relative dimension d).

2. The composition of log locally of complete intersection morphisms (resp. of virtual relative
dimension d and d') is log locally of complete intersection (vesp. of virtual relative dimension d +d').

Progf. — 1. If & is the property “smooth”, the property log & is “log smooth”
by [32] Theorem 4.6. Hence the assertion follows by Lemma 4.3.1.

2. Clear from the corresponding property ([17] Exp. VIII Propositions 1.5 and
1.10) in the non-log case and Corollary 4.3.9.2. O
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Proposition 4.4.4. — Let X — S be a map of log schemes and assume the underlying map
is locally of finite presentation.

1. The following conditions are equivalent.

(1) X — S s log locally of complete intersection.

(2) For an arbitrary geometric point x of X, there exist an etale neighborhood U and a com-
mulative diagram

Uu—V

Lo

X —— S

of log schemes such that N — S s log smooth and U — V s an exact and regular closed
tmmersion.

2. Let Y — S be a log smooth morphism of relative dimension n and X — Y be an exact
closed tmmersion. Then the following conditions are equivalent.

(1) X — S s log locally of complete intersection of virtual relative dimension d.

(2) X = Y s a regular tmmersion of codimension n — d.

Proof. — 1. We reduce the assertion 1 to 2. Let X — S be a morphism of log
schemes whose underlying map 1is locally of finite presentation and ¥ be a geometric
point of X. It is sufficient to show that there exist an etale neighborhood U of ¥,
a log smooth log scheme Y over S and an exact closed immersion U — Y over S. By
Corollary 4.1.8.3 and 4, shrinking X and S if necessary, we may assume there exist
a map N — P of fs-monoids such that NP is a direct summand of P* and a map
(X, P) = (S,N) of charted log schemes. Then, we obtain a strict map X — Tp =
S XISO[%V] S[P]. Since T is log smooth over S, by replacing S by T, it is reduced to the
case X — S 13 strict. Now the assertion is clear.

2. The question is etale local on X and on S. By Corollary 4.1.8.3 and 4, shrink-
ing Y and S if necessary, we may assume there exist a map N — P of fs-monoids
such that N® is a direct summand of P% and a map (Y, P) — (S, N) of charted log
schemes. Let Tp = S Xlso[i] S[P] be as in Proposition 4.3.8. We consider the commu-
tative diagram

X xls(f“fP] Tp — Y Xls(f‘%P] Tp —— Tp
(4.4.4.1) i i '

X R Y —

N —

and the condition:

(1) The strict map X Xls(f‘%P] Tp — T'p is locally of complete intersection of virtual
relative dimension d.
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By Proposition 4.3.8.2, the condition (1) is equivalent to (1’). Hence it is sufficient to
show that (1) is equivalent to (2).

(1’=(2). Since the strict map Y xls(f“fp] Tp — Tp is smooth purely of relative
dimension 7, the immersion X XIS?‘%P] Tp—>Y Xls(f“fP] Tp is a regular immersion of codi-
mension n — d. Since the left square of (4.4.4.1) is cartesian and the middle vertical
arrow Y XISO’%P] Tp — Y is faithfully flat by Lemma 4.3.7, the immersion X — Y is
a regular immersion of codimension n — d.

(2)=(1"). Since the middle vertical arrow Y ng%P] Tp — Y 1s flat, the immer-

. 1 1 . . . . .

sion X Xoto Tp = Y x5 Tp is a regular immersion of codimension n — d. Hence
S,(p] +P S.[P] g

the strict map X xlso’%P] Tp — Tp 1s locally of complete intersection of virtual relative

dimension d. O

Corollary 4.4.5. — 1. Let f : X — S be a log locally of complete intersection morphism of
log schemes and Y — S be a log flat morphism of log schemes. Let N — P be a map of fs-monouds
and (X, [P]) = (S, [N]) and (Y, [P]) — (S, [N]) be maps of framed log schemes. Then, the
strict map X XISO!%P] Y — Y s locally of complete intersection.

2. Let X — Y and X' — Y' be maps of log schemes over a log scheme S and let
N — Q — P be maps of fs-monoids. Let

X —s Y S Y «— X
| | | | |
(Pl — [Q] [N] [Q] «— [P]

be a commutative diagram and assume X — [P, Y — [Q] and S — [N] are strict. Assume
X — Y s log locally of complete intersection, the underlying map of X' — Y' s locally of complete
intersection and X' — S and Y — S are log flat. Then the underlying map of X xlso’%P] X —

% XlSO,%Q] Y’ is locally of complete intersection.

Proof. — 1t suffices to apply Proposition 4.3.8.2 (3)=(3') and Corollary 4.3.9.3
respectively. o

Similarly to Proposition 4.4.1, we have a criterion for a log locally of complete
intersection morphism to be log flat.

Proposition 4.4.6 (cf. [3] Lemma 3.10). — Let X — S be a log locally of complete
intersection morphism of virtual relative dimension d. Then, the following conditions are equivalent.

(1) The map [ : X — S s log flat.

(2) For each x € X, we have an equality dim'2 £~ (f(x)) = d.

Proof. — By Propositions 4.4.1 and 4.3.11, the condition (2) is equivalent to the
condition that the map f : X — S is very weakly log flat. Hence the assertion follows
by Corollary 4.3.9.1. |
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Corollary 4.4.7. — Let X and S be regular noetherian schemes and Dx and Dg be divisors
with simple normal crossings. Let | : X — S be a morphism of finite type and assume we have an
inclusion £~ (Ds) C Dx of the underlying sets. Let X and S also denote the log schemes with the
standard log structures and [ : X — S be the induced map of log schemes. Then

1. (cf. [3] Lemma 3.9) The map f : X — S is log locally of complete intersection.

2. We put U = S\ Dg and D y, ..., D,,u be the irreducible component of Dx N f~'(U).
Assume dimS = 1, the underlying map X — S s flat and the irreducible components D v,
woos Dyu and their intersections Dy v N -+~ N D,y for 1 <1 < ... <4 < m are flat over U.
Then the map f : X — S s log flat.

Proof. — 1. We put N = I'(S, Mg) and P = I'(X, My). The assertion is etale
local on X and on S. Shrinking them, we may assume there exists a map of charted
log schemes (X, P) — (S, N) by Corollary 4.1.8.3 and 4 where P" C P @ N*® is
as in Lemma 4.1.5.2. The map §' = S ®1;[%\I] Z[P'] — S is log smooth and the map
X — S is the composition X — §" — S. Since P’ is isomorphic to P @ N and S’ is
log regular, the underlying scheme S’ is regular and the log structure is the standard
one defined by a divisor with simple normal crossings. Thus it is reduced to the case
where X — S is strict. Now the assertion is well-known.

2. We may assume X and S are connected. Let d be the relative dimension of
X over S. It is sufficient to show that dimiog F7'(f(x)) = d for each x € X. We put
rank Mf?x = r and let Dy, ..., D, be the irreducible component of D containing x. We
put V=D;N---ND, and put s = f(x).

First, we consider the case s € Ds. Then, V is in f7!(s) and we have
Ox,./(@Mx, — O0x,) = Oy, Hence, we have dim0Ox ./(a(Mx, — 0x.))
+tr.deg k(x)/k(s) =dimV =dimX —r = d+ 1 —r and rank M‘E‘; = 1. Next, we as-
sume s 1s a closed point not in Dg. Then V is flat over S and we have Ox_,/(a¢(Mx ,—
0%,)) = Oy,,. Hence we have dimOx ,/(@(Mx, — 0% ) + tr.deg «(x)/k(s) =
dimV — 1 =dimX — 7 — 1 = d — r and rank M, = 0. Finally, we assume s is the
generic point of S. Then we have Ox ,/(e(Mx ,—0x ) = Oy, ,, dim O . /(a(Mx ,—
0x.,) + tr.deg k(x)/k(s) = d — r and rank M%ﬁ_ = 0. In each case, we obtain
dim®® £~ (f(x)) = d as required. O

5. Localized intersection product on schemes over a discrete valuation
ring

We study localized intersection theory for regular schemes over a discrete valu-
ation ring and its logarithmic version. In 5.1, we study the non-logarithmic case. We
define and study the logarithmic localized intersection product in 5.4. We prove the
crucial property Proposition 5.4.3 that it is factored through the generic fiber. As a pre-
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liminary, we study the log self-products and the sheaves of logarithmic 1-forms in 5.2
and 5.3 respectively.

In this section, K denotes a discrete valuation field with perfect residue field F,
S denotes Spec Ok, s € S denotes the closed point and 7 denotes a prime element
of K.

5.1. Non-logarithmic case. — We study non-logarithmic localized intersection
product. In this subsection, X denotes a scheme over S = Spec Ok satistying the
following condition:

(R(n) X is a regular and flat equidimensional scheme of finite type over Ok of
relative dimension n — 1. The generic fiber Xk is smooth.

Lemma 5.1.1. — Let X be a scheme over Ox satisfying the condition (R(n)) and x be
a pomnt of X wn the closed fiber. Then there exist an open neighborhood U of x and a regular immer-
sion U — P of codimension 1 into a smooth scheme P of relative dimension n over Oy. Namely,
X s locally a hypersurface of virtual relative dimension n — 1 over Ok.

Progf. — Let 1, ..., t, € Ox_, be a minimal system of generators of the maximal
ideal m, of the local ring Ox . Let t,4, ..., 1, € Ox be a lifting of a transcendental
basis of the residue field k(x) over I such that k(x) is a finite separable extension of
F(tyi1s o5 ). We take an open neighborhood U of x and define a map U — Ay, =
Spec O[T, ..., T,] by sending T; to . Then we have QIlJ/A,(,,?K = 0. By shrinking U

if necessary, we may assume Qb/Ag = 0, namely U — Ay, is unramified. By [13]

WX

Corollaire (18.4.7), further shrinking U if necessary, there exist a closed immersion
U — P and an etale morphism P — Ay such that the composition is the map
U — A’fﬁK. The scheme P is smooth over Ok of relative dimension n. Hence it is regu-
lar of dimension 7+ 1. Therefore the immersion U — P is regular of codimension 1.

O

We give a local description of the sheaf Qy ¢ using an immersion as in Lem-
ma 5.1.1.

Corollary 5.1.2. — Let X be a scheme over O satisfying the condition (R(n)). Then
1. The canonical map Lix/s — S /s 1S an isomorplusm.
2. Let U — P be an immersion as in Lemma 5.1.1. Then we have an exact sequence

(5.1.2.1) 0 —— Nyp ——> Qb Qg Ov —> Q)3 —> 0.

The Oy-module Q2 /s ®ap O s locally free of rank n and the conormal sheaf Ny p is invertible.
3. The cotangent complex Lix ;s satisfies the conditions (L(n)) and (G) wmn Section 2.4.
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Proof. — 1. It follows immediately from Lemma 1.6.2.3 and from the assertion 2.

2. Tor the exact sequence (5.1.2.1), it is sufficient to show the injectivity of Ny,p
— QII,/S ®g, Oy. Since the generic fiber is smooth, it is injective there. Since X is
normal, the map is injective. The rest of assertion is clear.

3. It follows from 2 and Lemma 2.1.1. |

Lemma 5.1.3. — Let X be a scheme over O satisfying the condition (R(n)). Let i : Z.— X
be the closed ummersion defined by the ideal Ann Q% s and £y be the invertible Oy-module

L'7*Qi /s
1. Let W be a normal scheme of finite type over s = Spec F and ¢ : W — Z be
a morphism over S. Then, there exists a canonical isomorphism ¢*.%; = L'(i o (p)*§2>1( s =

Nys ® Ow = Oy of wvertible Ovy-modules.

2. The bivariant Chern class ¢,(%;) € CHY(Z — 7) is 0.

3. For a scheme T of finite type over Z, the map -, : G(T) — G(T) sending [F]
W [F Qp, L4] s the identity. The canonical map G(T) — G(T),,, = Coker(l — -Z; :
G(T) — G(T)) s an somorphism.

Progf. — 1. The Ow-module ¢*.%; = L'(i 0 9)*Qy s is invertible by Corol-
lary 5.1.2.2. Therefore, to define an isomorphism L'(i o ¢)*Qy ;s> Nys® O\ of in-
vertible Ow-modules, we may shrink W to an open subset containing all the points of
codimension 1. Shrinking W, we may assume W is smooth over s. The distinguished
triangle (1.4.0.1) gives us distinguished triangles

(5.1.3.1) — L(io )" Qs — Lws —> Lyx ——

and — Lj/s X ﬁ\/\r — L\/\r/s —> L\\’/s —. Since Ls/S = Ns/S[l] and L\\’/s = Q\l\,/ﬂ we
have 4 (Lw/s) = Q4 s, and 6 (Lwys) = Nys @ Oyy. Taking the cohomology sheaves
0, of the distinguished triangle (5.1.3.1), we obtain an exact sequence

0 — Loy QL —— Nys® Oy —— H (L)

We show that the map « is an isomorphism. Since W is locally of complete intersection
over X, the Ow-module J7(Ly x) is locally a subsheaf of a locally free &y-module
and hence is torsion free. On the other hand, since « is injective, the cokernel of a is
torsion. Hence the map 4 is 0 and « is an isomorphism.

2. For a scheme T of finite type over Z, the Chow group CH,(T) is generated
by 7, [W] where w : W — T runs through the normalization of integral closed sub-
schemes of T of dimension ¢. By 1, we have ¢;(-Z7) N w,[W] = m.(¢c;(7*Z,) N [W])
= 0 and the assertion follows.

3. For a scheme T of finite type over Z, the K-group G(T) is generated by
. [Ow] where m : W — T runs through the normalization of integral closed sub-
schemes of T. By 1, we have .Z, - m,[Ow] = 7%, ®p, Ow]l = m[0Oy] and the
assertion follows. |
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Proposition 5.1.4. — Let X be a scheme over S = Spec O satisfying the condition (R(n))

and let Z. C X be the closed subscheme defined by the ideal Ann Q .
Then the spectral sequence

’ _ OX x>
E;’q — [2HIA /’Q;qs = f%r/ﬂ:{ S (Ox, OX)

(1.6.4.3) degenerates at E'-terms. It defines an increasing filtration F, on Torl (O, OX)
satispying ¥, = %rfxxsx(ﬁx, Ox) and ¥y = 0 and isomorphisms LﬁAqQ;(/S —
Gr[ff%rfxxsx(ﬁx, Ox) for p+q = n. The Ox-modules L) N1Q s are G-modules for p > 0.

Progf — We have an isomorphism My xxx — ss by Corollaries 5.1.2
and 3.4.5. By applying Proposition 1.6.7 to the diagonal embedding X — X xsX, we
see that the spectral sequence (1.6.4.3) degenerates at E'-terms. It defines a filtration
F, satisfying the condition up to decalage. The Ox-modules L/ A7Qy /s are Oz-modules
for p > 0 by Lemma 2.4.2.1. |

We define the non-logarithmic localized intersection product. Let X be a scheme
over Ok satisfying the condition (R(n)) as above. Let 7 : Z — X be the closed immer-
sion defined by the ideal Ann QY ¢ and .%; be the invertible &7-module L'i*Qy g as
in Lemma 5.1.3. Then, by Lemmas 5.1.1 and 3.2.4, the projection pr, : X Xxg X — X
is locally a hypersurface of virtual relative dimension n—1 over X and the closed sub-
scheme of X x5 X defined by the ideal Ann€2y, X is the pull-back Z xx (X xg X)
of Z C X by the first projection. Let W be a noetherian scheme over X xg X and
let V be a closed subscheme of X xg X. We put T =V xx,xWand Zy =7 xx T
be the pull-back by the composition T — X xg X — X with the first projection. By
Lemma 5.1.3.3, we have G(Zr), ¢, = G(Zr). Thus, the localized intersection product
(3.2.2.1) defines a map [[ , ]lxxsx : G(V) x G(IW) = G(Zr). Since the generic fiber
1s smooth, the subscheme Z is supported on the closed fiber X; and we have a natural
map G(Zr) — G(T)).

Definition 5.1.5. — Let X be a scheme over S = Spec O salisfying the condition (R(n))
and Z — X be the closed subscheme defined by ithe wdeal Ann Sy s For a closed subscheme V
of X xs X and a noetherian scheme W over X X X, we put 'T =V Xxxx W and call the

composition

s 1IxxgX

[
(3.1.5.1)  G(V) x GIW) —— G(Zr),g, = G(Z1) —> G(T)
the localized ntersection product. We also define

(5.1.5.2)  [[, Wllxxex : GX xsX) ——> G(W))
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as the localized ntersection product with the class [Ow] € G(W) by taking V = X xg X. If
V =X — X xg X s the diagonal map, we call the localized intersection product

(5.1.5.3) [[X, Jlxxsx : GIW) —— G(T))
with the class [Ox] € G(X) the localized intersection product with the diagonal.

By Theorem 3.4.3.1, the map [[X, ]lxxsx : GIW) — G(T}) induces

(5.1.5.4)
GIIG(W) —— G} G(T).

By abuse of notation, we use the same notation [[X, ]lxx.x for them. For W =
X xg X, we have

(5.1.5.5) [[X, Jlxxsx 1 GX x5 X) — G(X).
For the self-intersection, we have an equality
(5.1.5.6) (X, XIxxsx = (=1)"e; (2ys) N [X] = (Ax, Ax)s

n GrgG(Xj) by Corollaries 5.1.2.1 and 3.4.5.
The localized Chern class C&F(Q;( 1) N [X] € CHy(Xy) is computed explicity
as follows.

Lemma 5.1.6. — Let X be a scheme over Oy satisfying the condition (R(n)) and let 7. be
the closed subscheme defined by the ideal Ann QY g as in Lemma 5.1.3. Let 7w : X' — X be the
blow-up at 7. and D = 7. xx X' be the exceptional divisor.

Then the pull-back 7*Qy 15 15 an extension of a locally free Ox-module & of rank n — 1

by an invertible On-module and we have
6y (2xs) N [X] = m.(6,-1(6) N D).

Another computation of deg(Ax, Ax)s in terms of the torsion parts of Q% /s 18
given in [39].

Example. — Let the notation be as in Lemma 5.1.6. Assume x € X is an 1solated
non-degenerate quadratic singularity of the map X — S and assume X —{x} is smooth
over S. Then Z = {x} with reduced scheme structure, D =~ P"~! is the exceptional
divisor and & ®g4, Op is a quotient of O} by Op(—1). Hence ¢,1(&”) N [D] is the
class [x] of a k(x)-rational point x" of D and c,fZ((Qgi/S) N[X] = m[x'] = [x].
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Proof. — By Corollary 5.1.2.3, we may apply Corollary 2.4.5. The assertion fol-
lows by Lemma 5.1.3.2. O

We prove a K-theoretic version of the projection formula conjectured in [1] Sec-
tion 6 formula (20).

Lemma 5.1.7. — Let X and Y be schemes over Ok salifying the condition (R(n)) and
S X =Y be a morphism over Ox. Then, for a closed subscheme T" of X x s X of dimension n,

we have an equality

[T, (f x )" Avllxxex = LY, Tllyxgy

in FoG((X xy X),).

Proof. — We apply Corollary 3.3.4.3 by taking Y <= Y XY « X xg X =
XxgX —=> X, [Ay] e GY¥ xgY) and 'C X xgXas S« X <~ W —> X — §
I' e G(X) and V' C X'. Then, since the map X xsX — Y XgY is locally of complete
intersection, it i3 of finite tor-dimension. Thus the assumption of Corollary 3.3.4.3 is
satisfied and we obtain the equality in G((X Xy X),).

We show the right hand side is in FoG((X xy X),). Since dimI" = 7, we have
[0F] € F,G(X xg X). Thus the assertion follows from Theorem 3.4.3.1. O

5.2. Logarithmic self-products. — We keep the notation that K is a discrete valu-
ation field with perfect residue field. In this subsection, X denotes a scheme over Ok
satisfying the following condition:

(S'(n)) X is a regular and flat equidimensional scheme over Ok of finite type of
relative dimension # — 1. The reduced closed fiber X .q is a divisor with
simple normal crossings.

For a regular and flat equidimensional scheme X over Ok of relative dimension n— 1,
the condition (S'(n)) is equivalent to the following condition:

For each closed point x in the closed fiber X, there exist a minimal system
(41, ..., t,) of generaters of the maximal ideal m, of the local ring O,
a unit u € 05, and integers [y, ..., [, > 0 such that 7 = u [, £ for a prime
element 7 of K.

We consider a scheme X satisfying (S'(n)) as a log scheme with the standard log
structure Mx defined by the reduced closed fiber. Unless we say otherwise, we also
consider S = Spec Ok as a log scheme with the standard log structure Mg defined
by the closed point. We put P = I'(X, My) and let X — [P] denote the standard
frame. If Dy, ..., D,, are the irreducible components of X; = ZL ;D;, the monoid
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P = I'(X, My) is identified with N". We identify I'(S, Mg) = N. The canonical map
N - P = N"sends | to ({,...,,). We define the log self-product (X xg X)~ to
be X XISOQ%P] X defined in Definition 4.2.4. For schemes X and Y over S satisfying the
condition (S'(r)), a morphism f : X — Y over S induces a morphism (f X f)~ :
X xsX)” = (Y x5 Y)". In the following, we regard the log product (X xg X)™ as
a scheme over X with respect to the second projection.

Lemma 5.2.1. — Let X be a scheme over S satisfying the condition (S'(n)).

1. The map X — S s log flat and log locally of complete intersetion. The projection
X x5 X)™ = X s strict and flat.

2. Let X and Y be schemes over S satisfying the condition (S'(n)) and f : X — Y be
a morphism over S. Let (f X )™+ (X xsX)™ — (Y X5 Y)™ be the map induced by f. Then,
the underlying map (X xs X)~ — (Y x5 Y)™ s locally of complete intersection.

3. Further assume X — Y s log flat and its underlying map s flat. Then, the underlying
map of (X x5 X)™ = (Y xsY)™ s flat.

Proof — 1. The map X — S is log flat and log locally of complete intersetion
by Corollary 4.4.7. The map (X xg X)~ — X is strict by Corollary 4.2.5.2. Since
X — S is log flat, the strict map (X xg X)™ — X is flat by Corollary 4.3.5.4.

2 and 3. It suffices to apply Corollaries 4.4.5.2 and 4.3.5.5 respectively. |

We study the closed fiber of log self-product (X xg X)~. An irreducible com-
ponent D; of the closed fiber X; is smooth of dimension n— 1 over the residue field F.
We consider two log structures on D; and introduce two log self-products. Let Mp, be
the pull-back log structure on D; of Mx and let My, be the log structure defined by
the divisor Uj +(D;ND;) with simple normal crossings. Let D; denote the log scheme
(Dj, Mp,) and D; denote the log scheme (D;, My, ). There is a canonical map D; — D;
of log schemes. Similarly, let s denote the log point SpecF with the pull-back log struc-
ture from S and let s denote SpecF with the #rwial log structure. The canonical map
P=TIX My) - I'D,, 1\_/IDZ.) defines a frame D; — [P]. We identify P = N” and
let P, C P =P, ® N, be the submonoid obtained by omitting the i-th component N,.

) 1
Then, we have a frame D} — [P;]. We consider the log self-products D, xfﬁ,] D, and
D Xi?ﬁpf] D!. The canonical map D; — D! induces a map D; xt)[gP] D;, — D! xi_(,),g[m D.

The following lemma will be used in the proof of Theorem 5.4.3.

Lemma 5.2.2. — Let X be a scheme over S satisfying the condition (S'(n)). Let D; be an
urreductble component of X and ; be the multiplicity of D; in X,. Then,

1. The map D; xlf[gp] D, —- X ng%P] X =X xgX)™ s a closed immersion and induces
an isomorphism to the mnverse image (X xs X))~ xXx D; of D; by the projection (X xgX)™ — X.

2. The underlying scheme D, Xio [gP] D; s a py-torsor over D), Xi?,g[l’,-] D..
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Proof. — 1. Since the map D; — X is strict, the 1 inverse image (XxsX)™ xxD; is
equal to the log product X xS 1 Di. The log product XxS D, represents the functor
sending a log scheme T over S to theset {(f/: T — X, g: T — D,)|f and g are maps
over S and induce the same map P = I'(X, My) — (T, My)}. The condition that ya
and g induce the same map P — I'(T, My) implies that the map f : T — X factors
through D;. Thus the canonical map D, Xio 5D — X XIS?‘%P] D; is an isomorphism and
the assertion follows.

2. Since the projections D; x5 D; — D; and Dj x

.. . 1
Corollary 4.2.5.2, it is sufficient to show that D, ><0[g P D,- Is a [, -torsor over

I I I . )
(D! x;,g[m D)) ng D, =D; XA?,%P{] D;. We consider the commutative diagram

log 1 DI — D] are strict by

log log ; log
Di XS,[P] Di _—> DZ Xs/’[P] DZ —> Dl XS/,[PZ’] Di

l ! l

5 — xSy —— 5.
We have D; x ")%P] D, = D; ><log 1 (D; Xl?gP] D) Hence by applying Lemma 4.2.7
to D, = D) < D! x 1°g py Di, we see that D; x! ,[P] D, is a Hom(N?", G,)-torsor over

1
D} x /% p, D Slrmlarly, we see that s x o § is a Hom(N#, G,,)-torsor over s. Further,

it is easy to see that the middle vertical map D; X;’,[P]Dl — sxl;,)ﬁN]s 1s compatible with
the map Hom(N?", G,) - Hom(N®, G,,) induced by the composition N — P — N,.
Namely, it is compatible with the /-th power map G, = Hom(N¥, G,) — G, =
Hom(N®P, G,)). Since the left square is cartesian, the assertion follows. O

We construct a compactification of log products of strictly semi-stable schemes.
A scheme X locally of finite type over the integer ring Ok is said to be strictly semi-
stable, if the following conditions 1-3 are satisfied.

1. X is regular and flat over S.
2. The generic fiber Xk is smooth.
3. The closed fiber is a divisor with simple normal crossings.

A scheme X is strictly semi-stable over S, if and only if Zariski locally it is etale over
Spec O[Ty, ..., T,1/(Ly---- - T, —m) for some 1 < r < n For a scheme over S
satisfying the condition (S'(r)), the condition 3 is equivalent to that the closed fiber is
reduced. The standard log structure on a strictly semi-stable scheme X over S is that
defined by the closed fiber.

Lemma 5.2.3. — 1. For a log smooth scheme X of finite type over S, the following condi-
tions are equivalent.

(1) X s strictly semi-stable and the log structure is the standard log structure.

(2) There exist a map (X, [P]) — (S, [N]) of framed log schemes and a quasi-isomorphism
P — N’ such that the composition N — P — N sends 1 to (1, ..., 1).
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2. Let X and Y be strictly semi-stable schemes with the standard log structures and let
X, [P]) — (S,[N]) and (Y, [P]) — (S, [N]) be maps of framed log schemes. Then the log
product X xls(f“fP] Y s strictly semi-stable. The pfojections X X}SO,%P] Y - Xand X X}SO,%P] Y—>Y
are smooth. When X =Y and [P] = I'(X, Mx), the log diagonal map X — (X xg X)) s

a regular tmmersion.

Proof. — 1. (1) = (2), It 1s sufficient to take the standard frame.

(2) = (1). By Lemma 4.1.7.2, we may replace P by P = P/P* and hence we
may assume P = N’. Since X is log regular, it follows from Lemma 4.1.4.2 that the
underlying scheme X is regular, the open subscheme U is the complement of a divisor
D with simple normal crossings and Mx 1s the standard log structure defined by D.
By the assumption that 1 is sent to (1, ..., 1), the divisor D is equal to the closed fiber.
Since X is log smooth and the log structure is trivial on the generic fiber, the generic
fiber is smooth.

2. The projections are strict and log smooth. Hence the underlying map is
smooth. Since X Xls‘f%P] Y is smooth over a strictly semi-stable scheme, it is also strictly
semi-stable. The log diagonal map is a section of a smooth map and is a regular im-
mersion. O

Let N — N’ be the map sending 1 to (I,...,1) and P = N" ®&n N’ be the
amalgamate sum. We define a regular proper subdivision of the dual monoid N =
Hom,on0ia(P, N) as follows. We regard A = {1, ..., 7} x {1, ..., 7} as a partially ordered
set with the product order. We identify an element (z,7) € A with an element f;; € N
characterized by f;j(¢;) = 8; and J; J(ej’-,) = §; where ¢ and ej’-, denote the images of
the standard basis of N” and § denotes Kronecker’s delta. We say a subset o of A is
a face if it is a totally ordered subset. Let ¥ be the set of faces of A. For a face o, let
N, be the submonoid (f;, (z,7) € o) of N. The family (N;),cx is a regular proper
subdivision of N.

Lemma 5.2.4 (cf. [41] Lemma 1.2.2). — Let X and Y be strictly semi-stable schemes
over S. Let N — N’ be the map sending 1 to (1,...,1) and (X,[N']) — (S, [N]) and
(Y, [N']) — (S, [N]) be maps of framed schemes. Let P = N"@®NN'" be the amalgamate sum and
XxsY — [P] be the induced frame. Let % be the subdivision of the dual N = Homyy,neia(P, N)
defined above and (X xs YY)y be the associated modification. For t = 1, ..., 7, let ¢; (resp. ¢.) be
the image in P of the i-th standard basis of the fust (vesp. second) factor N" and Z; (resp. ) be
the ideal locally generated by a lifling of the image of ¢ (resp. ¢;) in Mxgy.

Then the underlying scheme of (X Xs Y)x s strictly semi-stable and equal to the blow-
up of X xs Y by the wdeal ],y ([1ici<i ) + [li<j<i &) There is an open immersion
X xghe Y = (X x5 Y)s.

Proof. — To show that (X Xg Y)y is strictly semi-stable, it is sufficient to show
that (X xXsY) X(p [P,] is strictly semi-stable for each face o. There is an isomorphism



ON THE CONDUCTOR FORMULA OF BLOCH 117

N* — N, for £ = Cardo and the composition N* — N, — N = Hom(N, N) sends
each element of the standard basis to 1. It induces a quasi-isomorphism P, — N such
that the composition N — P, — Nf maps 1 to (1, ..., 1). Hence by Lemma 5.2.3.1,
the underlying scheme (X xsY) Xl[(ff]; [P,] is strictly semi-stable.

For the proof of the isomorphism from (X Xxg Y)y to the blow-up, we refer
to [41] Lemma 1.2.2. For the face oy = {(z,7)[z = 1, ..., 7}, the monoid P,, is the
iverse image (N @x N')™ of N” as in Proposition 4.2.3.2 and (X xsY) xl[‘f,% [Ps,] =
X X}S%Nr] Y is an open subscheme of (X xgY)s. O

5.3. Differentials with log poles. — We keep the notation that K is a discrete
valuation field with perfect residue field. In this subsection, X denotes a scheme over
Ok satistying the following condition:

(S(n)) X satisfies the condition (R(n) in Section 5.1 and the condition (S'(r)) in
Section 5.2.

We consider a scheme X satisfying (S(n)) as a log scheme with the standard log
structure Mx defined by the reduced closed fiber. Let Mg be the standard log structure
on S defined by the closed point.

Lemma 5.3.1. — Let X be a scheme over Ok salisfying the condition (S(n)) and let x be
a pont of X wn the closed fiber. We consider X as a log scheme with the standard log structure Mx.
Let Dy, ..., D, be the vrreducible components of the closed fiber of X containing x and [y, ..., [, be
the multiplicities of Dy, ..., D, wn the closed fiber X;.

1. We consider S = Spec Ok as a log scheme with the standard log structure Ms. We
define a ring homomorphism Z[N] — Ok by sending 1 to w and a map N — N" x Z of
monoids by sending 1 to (L, ..., 1,0, ...,0,1). We define a log smooth scheme Y, over Ox by
Yo = Spec Ok ®zn ZIN" x Z] = Spec Ok[Ty, ..., T,, W=/ (m — W], Tf) with the
log structure defined by the chart N' — Ox @z ZIN" X Z] sending the standard basis ¢; to 'T;
Jor1 <1<

Then there exist an open neighborhood U of x and a regular immersion U — Y of codi-
mension 1 wnto a log scheme Y elale over Y, such that the diisor D; is defined by the image
L, e T(U,0x) of T; for 1 < @ < 1. The map X — S is log flat and log locally of com-
plete intersection.

2. We consider S = Spec O as a log scheme with the trivial log structure Og . We regard
A{ = Spec O[T\, ..., T,] as a log smooth log scheme over O, with the log structure defined by
the chart N' — Ox[T, ..., 'T,] sending the standard basis ¢; to 'T; for 1 <1 <r.

Then there exist an open newghborhood U of x, a regular immersion U — 'V of codimension
I wnto a log scheme NV etale over AY and a unit v € T'(V, O3) such that the divisor D; is defined
by the image t; € T'(U, Ox) of 'T; for | <1 <r and the closed subscheme U — V s the divisor
defined by w — o[ [._, Tf The map X — S s log locally of complete intersection.
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Proof. — 1. Let £ be an element of O, defining D; at x for I <7 < 7. We
define a unit w € 0%, by 7 = w[[_, £
ators of the maximal ideal m, extending 4, ..., {, and let ¢4, ..., &, € Ox, be a lifting
of a transcendental basis of the residue field «(x) over F such that x(x) is a finite sep-
arable extension of F(¢,41, ..., t,). We take an open neighborhood U of x and define
amap U — Y, by sending T, to 4, and W to w. Shrinking U if necessary, we define
a regular immersion U — Y of codimension | and an etale morphism Y — Y, as
in the proof of Lemma 5.1.1. The map X — S is log flat and log locally of complete
intersection by Corollary 4.4.7.

2. Let #,...,t, € Ox, and w = 7w/ []_, tfi € 0%, be as in the proof of 1. We

take an open neighborhood U of x and define a map U — Ay, by sending T; to ¢.
Shrinking U if necessary, we define a regular immersion U — V of codimension 1 and

Let 4, ..., t, be a minimal system of gener-

an etale morphism V — Ay, as in the proof of Lemma 5.1.1. Shrinking U and V if

necessary, we take a unit v € T'(V, &%) lifting w. Then the function f = & — o[/, T*
vanishes in Oy ,. Since f is not in mf,x, we have Ok, = Oy,/(f). Hence shrinking U
and V if necessary, the subscheme U of V is defined by the equation / = 0. The map

X — S 15 log locally of complete intersection by Corollary 4.4.7.1. |

Let Qy s(log) and Q ¢(log/log) denote the Ox-modules QEX’MX) /.62 and

Q x m/s.ms) Tespectively. The Ox-module Q4 ¢(log) is canonically isomorphic to
(Q;(/S ) (ﬁx ®Zj*ﬁ§}{))/(da —a®a:ac€ Ox ﬂj*ﬁ§K, I1®b:be KX)
and we have an exact sequence
Ox, -dlogm —— Qy s(log) —— Qy (log/log) —— 0

for a prime element 7 of K. The canonical maps Q%{/s — Q;i/s(log) — Q;i/s(log /log)
induce isomorphisms Qf ¢ = Qy slxc = Q2 /5(10g)[x — 2 s(log /log)|x, on the
generic fiber.

We give a local description of Qy ¢, 2y (log) and Q2 (log /log) using immer-
sions as in Lemma 5.3.1.2.

Corollary 5.3.2. — Let X be a scheme over Ox_ satisfying the condition (S(n)). Let U — V
be an immersion as in Lemma 5.3.1.2. Then we have a commutative diagram of exact sequences

0— NU/V — Q{v/s ®@°\, ﬁU — QIlJ/S — 0
[ 2 2

(5.3.2.1) 0— Nuv — Q{,/S(log) R, Oy —> Qb/s(log) -0
\: I \2

0 — Nuyv @y mlzl — Q{,/S(log) ®p, Oy — Q%J/S(log/log) — 0.
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The Oy-modules 2, s ®oy Oy and S, /S(log) ®e, Oy are locally free of rank n and Ny )y
and Ny )y ®@g, my' are invertible.

2. The Ox-modules Q;(/S(log /log) and Q;i/s(log) satisfy the conditions (Li(n)) and (G)
in Section 2.4.

Proof — 1. The top line is the same as in Corollary 5.1.2. The exactness of
the middle line is proved similarly as in Corollary 5.1.2. To get the bottom exact se-
quence, we show that the map Ny, — Q{ /S(log) ®g, Oy is extended uniquely to
an injection Nyy ®gy mi' — Qy5(log) ®4y Ou. The generator w — o] T! of Ny v
is mapped to d(v]]; Tﬁ") =@ 'dv+ ) ldlogT)) in Ql,/s(log) ®g, Oy. Since it is
divisible by 7, the map Ny,yv — €y 15(102)® ¢, Oy is uniquely extended to an injection
Ny Qe mg' — Q{,/S(log) ®g, Oy sending the generator (m — v]_[in")/n to
v 'dv+ )", dlog T;. Since the image of v™'do+ ), ldlogT; in Q[lj/s(log) is dlogm,
the lower sequence is also exact. The rest of assertion is clear.

2. It follows from 1 and Lemma 2.1.1 immediately. |

We study relations between Q4 /s Q ss(log) and Q ss(log /1og). We use the fol-
lowing generalization of the Poincaré residue map [9] 11 (3.7.2).

Lemma 5.3.3. — Let X be a locally noetherian regular scheme, D be a dinsor of X with
simple normal crossings and Mx be the standard log structure on X defined by D. Let D;, (2 € I)
: ' . YES 1 ~
be the irreducible components of D. Then, the map dlog : Ox @ My — Q2 (XM (X, 6) induces

an isomorphism

(5.3.3.1) D.c1 O, 5 QEX,MX)/(X,@?)'

o . 1 . . .
Proof. — The map dlog : Mx — (XM (X, 62) induces an isomorphism Ox ®z,
\ 1SP 1 . 2P _ . . .
MY = Q4 o, o) Since MY = @, Zp,, we obtain an isomorphism €, ; Op, —
Q! O

XMx)/(X,05)"

Lemma 5.3.4. — Let X be a scheme over Oy salisfying the condition (S(n). Let
Dy, ..., D,, be the wrreducible components of the reduced closed fiber X eq and l; be the multiplicity
of D; in X,. Then,

1. We identify 2 x nry x with DL, On, by the isomorphism (5.3.3.1). Then, the exact

sequence Q2 s> Q%X!MX) s> Q%X,NIX) x = 0 gwes an exact sequence
(5.3.4.1) 0 —— Q5 — Qlog) — D, Op, — 0.

1 2. We ide;litg'/ﬁ/ Q%&MS) /s lwit/z F by the isomorphism (5.3.3.1). The exact sequence Ox @ g,
Qsaes = Lxmoss = L savg) — 0 gwes an exact sequence

(5.3.4.2) 0 0%, Qy s(log) —— Qy s(log/log) — 0.
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3. The kernel and cokernel of the map Q2 s = Qy ss(log /1og) are isomorphic respectively
to the kernel and cokernel of the map Ox, — @, Op, sending 1 to (1y, ..., 1,,).

Proof — 1. By Lemma 5.3.3, it is sufficient to show the injectivity of Qx 5 =
Q%i/s(log). The question is local on X. Let U — V be as in Lemma 5.3.1.2. Then the
assertion follows from the injectivity of the upper middle vertical arrow €2, s ®ay O
— Q{,/S(log) ®p, Oy 1n (5.3.2.1) by the snake lemma.

2. Similarly, by Lemma 5.3.3, it suffices to show that the surjection Ox, —
Ker(Qy s(log) — Qy s(log/log)) is an isomorphism. Hence, it is reduced to show-
ing that Ker(Qy s(log) — Q4 ¢(log /log)) is an invertible &x -module. The question
is local on X. The assertion follows from the lower half of the commutative diagram
(5.3.2.1) by the snake lemma.

3. The image of 1 by the composition Ox, — Q;i/s(log) P, Op, is (L, ..., 1,).
The assertion 3 follows from this and the assertions 1 and 2 by the snake lemma. O

Lemma 5.3.5. — Let X be a scheme over Oy satisfying the condition (S(n)). Let ¢ : 7
— X be the closed immersion defined by the ideal Ann A'Q ;s(log /log) and let £, =

Lli*Q;qS(log/log). Lt 7. =74 and i : 7. — X be the immersion.
1. There is a canonical somorphism L7 Q@¢, O; = Llfﬂgi/s(log/log) — 0, of

ivertible O -modules.

2. The bivariant Chern class ¢,(%,) € CH' (Z — Z) is 0.

3. For a scheme T of finite type over Z,, the map -, © G(T) — G(T) sending a class
[F] to |F ®p, L] s the dentity. The canonical map G(T) — G(T),4, = Coker(l —-Z :
G(T) — G(T)) us an womorphism.

Proof. — 1. Applying Li to the exact sequence (5.3.4.2), we obtain a long exact
sequence

0 0, — LiQlog —> L7Q,log/log) —>
O; — Qys(l0g) ®p O; — Q (log/log) ®g, 0; — 0.

It follows from the lower half of the commutative diagram (5.3.2.1) that the map
Qy s(log) ®py O; — Qy(log/log) ®g, O, is an isomorphism and the map
L7 Q) s(log) — L' Q) (og/log) is the O-map. Hence the boundary map
LlfQ;qS(log/log) — 03 is an isomorphism.

2 and 3. Similarly as in the proof of Lemma 5.1.3, it follows from 1. |

Similarly, we have the following analogue for €3 ss(log).

Lemma 5.3.6. — Let X be a scheme over Ox satispying the condition (S(n)), Dy, ..., D,
be the wrreducible components of D = (Xgp)ea and let | C {1, ...,m} be a non-emply subset
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of the index set of the irreducible components of the closed fiber. We put Dy = ﬂiej D; and let
y : Dy — X denote the closed 1immersion.

1. The scheme DJ is smooth over ¥ of dimension n—#] and the divisor By = DyN Uzg
has simple normal crossings.

2. The Orp,-module zj* Qy /S(log) < /S(log) Qg O, is locally free of rank n and we

have an exact sequence
(5.3.6.1) 0 — Q) p(logBy) —— iQy s(log) — B, Op, — 0.

3. The first map in the exact sequence (5.3.4.2) induces an isomorphism Op; >~ L' i Ox, —
L' Q;i/g(log) We have L‘/zijgi/g(log) =0/ orqg#0,]1.

Proof. — 1. Clear.
2. Let M})J be the standard log structure on Dy defined by By and Mp, be the

. 1
pulll-back log structure of Mx. First, we show that the exact sequence Q(DJ’I\TDJ) JF
Q

(Dy,Mp))/F - Q(DJ Mpy)/ (D} M)

—

— 0 gives an exact sequence

(5.3.6.2) 0— QED M )/F 3 Q%DJJVIDJ)/F Digy On, = 0.

A canonical isomorphism €, j Op, — Q! is defined similarly as in Lem-

(Dy MD )/(DJ M, )

ma 5.3.3. Hence, it is sufficient to show that the canonical map Q! —

(D). My, )/F
Q(D]’MDJ) JF is injective. Locally on Dy, the log scheme (Dy, Mp,)) is 1somorph1c to the
product of (Dy, Mi)J) with the log point F with the chart N) — F sending the non-0

elements to 0. Thus we obtain a locally splitting exact sequence (5.3.6.2).
We have QIBJ/F(logBJ) = (D My, /7 and Q}D /F(logBj) is locally free of rank

n — #] by 1. Hence QEDJJ\TDJ)/F

condition (L(r)) in Section 2.4 by Corollary 5.3.2.2, the pull-back ¢ QL /g(log) 1s locally
generated by n-sections. Hence the canonical surjection ZJQX /S(log) — Q!

1s locally free of rank n. Since Q4 /S(log) satisfies the

Dy M}, )/F is
an isomorphism and the assertion follows.

3. Since Q;i/s(log) satisfies the condition (L(n)) in Section 2.4, we have
quij;(/s(log) = 0 for ¢ # 0, 1. Further, since ifQ;i/S(log) is locally free of rank n,
the Op,-module lejkfzé( ss(log) is invertible. By the exact sequence 0 — Ox — Ox —
Ox, — 0, we obtain an isomorphism Oy, — L'4Ox . We show the map L'jf0x, —
L'y Qy (log) is an isomorphism. By the exact sequence (5.3.4.2), we get an exact se-
quence

0 — lej*ﬁx — LY Qé(/s(log) — LY Qé(/s(log/log)
The first two Op-modules are invertible. The last one is locally a submodule of an

nvertible ﬁD -module and is torsion free. Hence the cokernel of the injection ﬁD o~
L! *ﬁx — L Z*Q;qs(log) is 0 and the map is an isomorphism. O
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The relation between the localized Chern classes cni_(Q;( s) N [X] and
C&F(Q;(/s(log/ log)) N [X] is as follows.

Corollary 5.3.7. — Let X be a scheme over S satisfying the condition (S(n)). Then we have
an equality

(Cﬂ§j(9}1(/s) - C'Z§X(Q)1(/S(log/log))) N [X]
= (p—1 (Q;(/s(log/log)) N [X]

+>° ) (=16 (R, (ogBp) N [Dy]

r=1 Jc{1,...,m},#]=r

(5.3.7)

in CHy(X,).

Proof. — We have equalities

m

& (Qxy5) = o (x5 (109)) 1_[ &.(Op)7",

=1

e, (2xslog /10g)) = & (@ 5(10g)) e (Ox) ™!

in CH*(X, — X)® by the exact sequences (5.3.4.1) and (5.3.4.2) and by Lem-
ma 2.3.1.4. Further we have

m

[TE@ nxi=][a-mp=Y 3 (1ym]
=1

=1 r=0 Jc{1,...,m},#]=r

and UXXJ(ﬁXX)_1 N [X] = [X] — [X,] by Corollary 2.3.3. Hence we have an equality

(e (2% /S) — o (R4 s(og / log))) N [X]
= (p—1 (Q)l(/s(log/log)) N [Xs]

+Y > (e (Q4500g) N D]

r=1 Jc{1,...,m},#]=r

in CHy(X;). We have c(Q;(/S(log)) N [Dy] = C(QED],MDJ)/F) N [Dy] by Lemma 5.3.6.
Thus the assertion follows. O
5.4. Loganithmic localized intersection product. — We define logarithmic localized

intersection product for a scheme X over Ok satisfying the condition (S(r)) in the last
subsection. We prove that the logarithmic localized intersection product has an advan-
tage that it is factored through the generic fiber in Theorem 5.4.3.
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Lemma 5.4.1. — Let X be a scheme over Ox_ satisfying the condition (S(n)). Let 1 : 7. — X
be the closed immersion defined by the ideal Ann Q0 s(log /log) and £ be the invertible O-
module 1'7* Q3 /s (log /log). Let Lixxsxy~/x be the cotangent complex, A : X — (X xg X)~
be the log diagonal map and My xxsx)~ be the conormal complex. Then,

1. The projection pry : (X xsX)™ — X 15 flat and locally a hypersurface of virtual relative
dimension n — 1 over X. The canonical map Lixxsxy~/x = Qxxsx)~ /x 15 an isomorphism.

2. The canonical maps Mx xxsx)~ —> LA Lxxgx)~/x —> QL /S(log /log) are isomor-
phisms. The composition induces the isomorphism Nx xxsxy~ = S2x ss(log /log) (4.2.8.1).

3. The closed subscheme i = 7. — (X xg X)~ defined Ann Qixxex)~/x 15 equal to

the_pull-back of Z. by the first projection (X x5 X)™ — X. The ivertible Oz-module £; =
L' Qi oxy~x & equal to the pull-back of Z;.

Proof — 1. Let X — [P] be the standard frame. By Lemma 5.3.1.1 and by
Corollaries 4.3.5.4 and 4.4.5.1, the strict map (X xsX)” =X Xls(f“fP]X — X is flat and
locally of complete intersection of virtual relative dimension n — 1. Let x be a point
in the closed fiber and U — Y be an exact regular immersion as in Lemma 5.3.1.1.
Shrinking Y if necessary, we obtain a frame Y — [P] lifting the restriction U — [P].
Then, since the strict map Y xgj(fp] X — X is smooth of relative dimension 7, the

strict map U XISO,%P] X =Y xls(f%P] X 18 a regular immersion of codimension 1 by
. . I . .
Proposition 4.4.4.2. Since U xgyp X for each x gives a covering of the closed fiber

of X xg X)~ = X XS%P] X and the generic fiber is assumed smooth, the scheme
(X xg X)™ 15 locally a hypersurface of virtual relative dimension n — 1 over S.

We show Lxxex)~/x — Q%XXSX)” /X is an isomorphism. Since (X xg X))~ — X
is locally of complete intersection, it is sufficient to show that J# Lxxsx)~/x = 0. The
restriction of 4 Lxx¢x)~/x on the generic fiber is O since the generic fiber is smooth.
Since (XxsX)™ is flat over X, it is flat over S. Since J Lxx,x)~/x is locally a subsheaf
of locally free module, it is 7-torsion free and the assertion follows.

2. We obtain an isomorphism Mx/xxsx)~ = LA Lxxx)~/x by the distinguished
triangle — LA L xxx)~x = Lxx = Lx/oexsx~ =+ Since (X xg X)™ = X x £ X is
log etale, the canonical map p5Qy s(log /log) — Q%XXSX)N /x 18 an isomorphism. Sim-
ilarly as in 1, we see that it induces an isomorphism Lp}Qy ss(log /log) — QEXXSX)N X
by using the assumption that the generic fiber is smooth. By the isomorphism in I,
it induces an isomorphism LA'Lxyx)~/x — Q;i/s(log /log). The assertion on the
composition is clear from the definition.

3. It follows from the isomorphism Lp;‘Q;(/S(log/ log) — Q%XXSX)N /x in the
proof of 2. O

We define the logarithmic localized intersection product. Let X be a scheme
over S satisfying the condition (S(n)). Let ¢ : Z — X be the closed immersion and
%, be the invertible modules as in Lemma 5.4.1. Let W be a noetherian scheme over
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(X' xgX)™ and let V be a closed subscheme of (X xsX)™. We put T =V X (xxx) W
and Z1 = Z xx T be the pull-back by the composition T — (X x5 X)™ — X with
the first projection. By Lemmas 5.4.1.3 and 5.3.5.3, we have Z1 = T X xxsx)~ Z and
G(Zr), 7, = G(Zr) in the notation loc.cit. Thus, the localized intersection product
(3.2.2.1) defines a map [[ , llxxsx)~ @ G(V) x G(W) — G(Zr). Since the generic
fiber is smooth, the subscheme Z is supported on the closed fiber X; and we have
a natural map G(Zr) — G(T)).

Definition 5.4.2. — Let X be a scheme over S = Spec Ok satisfying the condition (S(n))
and Z. — X be the closed subscheme defined by the deal Ann Q2 s(log /10g). For a closed sub-
scheme V of (XxsX)™ and a noetherian scheme W over (X xsX)™, we put T =V X (xxsx)~ W
and we call the composition

s Nixxgx)™~

[l
(5.4.2.1) G(V) x GIW) G(Zr))y, = G(Zr) — G(T))
the logarithmic localized intersection product. We define
(5.4.2.2) [[ , W]](XXSX)” . G((X Xg X)N) E—— G(WA)

as the logarithmic localized intersection product with the class [Ow] € G(W) by laking V =
X xsX)". If V=X — (X xg X)) s the log diagonal map, we call the log localized
intersection product

(5.4.2.3)  [[X, lxxeo- 1 GOW) — G(T))

with the class [Ox] € G(X) the logarithmic localized intersection product with the log diagonal.
By Theorem 3.4.3.1, the map [[X, [lxxex)~ : G(W) = G(T,) induces maps

(5.4.2.4) F,GW) — F,_,G(T)).

By abuse of notation, we use the same notation [[X, [lxx¢x)~ for them. If there is no
fear of confusion, we drop the suffix xxx)~. For W = (X xg X)™, we have

(5.4.2.5) [[X, Nxxex)~ @ GIX x5 X)") — G(X)).
For the self-intersection, we have an equality
(5.4.2.6)  [[X, X]lxnsx)~ = (—1)"c; (R,5(log / log)) N [X]

in GrgG(Xﬁ;) by Lemma 5.4.1.2 and Corollary 3.4.5.

The advantage of the logarithmic localized intersection product against the non-
logarithmic one is the following Theorem 5.4.3. It claims that the logarithmic localized
intersection product is factored through the generic fiber. The non-logarithmic product
does not share this property in general.
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Theorem 5.4.3. — Let Ox be a discrete valuation ring with perfect residue field and X
be a scheme over S = Spec Ox satisfpying the condition (S(n)). Then the map [[X, lxxsx)~ :
G((X x5 X)) = G(X)) s factored by the surjection G((X x5 X)) = G(Xg xg Xg).

Proof. — Let Dy, ..., D,, be the irreducible components of X;. Let E; = (XxsX)~
xx D; be the inverse image of D; by the second projection (X xgX)~ — X. Since the
open subscheme Xg xx Xk of (X x5X)™ is the complement of the union |J_, E;, we
have an exact sequence P, G(E;) - G((X x5 X)) - G(Xk xx Xx) — 0. Hence

it 1s reduced to showing that the composition G(E;) — G((X x5 X)™) X, 1 G(X,) is
the O-map for each . The projection (X xg X))~ — X is flat by Lemma 5.2.1.1.
Hence by applying Corollary 3.2.5 to D; - X — (X x5 X)” — X <« D, as
T—-V—>X-—=S <« 5 loccit, we obtain a commutative diagram

G(X xs X)) 2N 6x)

I [

G(E) — G(D)
[D:, M

7

where the vertical arrows are the push-forward. Thus it is reduced to showing that the
localized intersection product [[D;, ]lg : G(E;) = G(D;) is the 0-map.

By Lemma 5.2.2, the scheme EizDiXE)[gP]Di is a [L,-torsor over EQZDQXE),‘%[P{]D;.
Let D, — E! be the log diagonal map. Since the log diagonal map D; — E; gives
a section D; — E; Xy D; of the w;-torsor E; x; D; over D;, we obtain an isomorphism
i, = E; xg D;. We identify w; p, = E; X Dy in the following.

We show that the immersion j; : i p, = E; g D; = E; is a regular immersion.
Since the projection E. — D, is log smooth and strict, it is smooth. Since the log
diagonal map D; — E! is a section, it is a regular immersion. Since the pu,-torsor E;
is flat over E!, the immersion E; x g, D; — E; is also a regular immersion.

The localized intersection product [[D;, ]]M/i,r)z» : G(uyp,) — G(D)) is defined
and is the 0-map by Lemma 3.2.6. To complete the proof, it is sufficient to show that
the map [[D;, ]I, : G(E,) = G(D,) is equal to the composition

* [[Diy Ny, .
G(E) —— G(E: xg D) = G(uyp) ———> G(D)).

We apply Corollary 3.3.4.3 by taking D; <— E; < E; xg; D} — D and the log diago-
nals D; - E; and D; - E; xg D;as S <~ X <~ W=X -8, V- Xand V - X
in Corollary 3.3.4.3. Then, since the immersion Ji t Bixg D! — E, is a regular immer-
sion, the assumption is satisfied. Hence [[D;, ]y, : G(E,) = G(D,) is the composition
G(E) — G(E; xg D;) - G(D;) and is the 0-map. O
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Lemma 5.4.4. — Let X and Y be schemes over S satisfying the condition (S(n)) and let
f X =Y be a morphuism over S. Then we have a commutative diagram

G(Yk xx Yi) =8 G(Y)

(fKXfK)*Jv lf*

GXg xg Xg) —> G(X)).
[[X, 11

Proof — The map (f x f)7 : X xs X)7 = (Y x5 Y)” is locally of com-
plete intersection by Lemma 5.2.1.1. Hence it is of finite tor-dimension and the map
(f x )™ GUY x5 Y)") = G((X xg X)7) is defined. Similarly, /' : X — Y is lo-
cally of complete intersection and the map /™ : G(Y,;) = G(X)) is defined. By Theo-
rem 3.2.1.4, we have [[X, ]]=[[,X]] and [[Y, ]] =I[[ , Y]]. Hence it is enough to
show that the diagram

G((Y xs Y)™) L Gy

(fo)N*Jv lf*

G(X xsX)") — G(X)
(IBN)

1s commutative since G((Y xsY)”) = G(Yx xk Yk) is surjective.

We show that both of the compositions are equal to [[ , X]]yxsy)~ by apply-
ing Corollary 3.3.4. First, we consider the composition via the upper right. We ap-
ply Corollary 3.3.4.1 by taking X — Y — (Y X5 Y)” — Y and the log diagonal
Y>> ¥YxsY)"aasW - W —> X — Sand V— X in Corollary 3.3.4.1. Since
S 1s of finite tor-dimension, the assumption of Corollary 3.3.4.1 is satisfied. Thus the
composition f* o [[ , Y]] is equal to [[ , X]lyxsy)~. Next, we consider the composi-
tion via the lower left. We apply Corollary 3.3.4.3 by taking X <« (X x5 X)” —
(Y xsY)" — Y and the log diagonals Y — (Y x5 Y)” and X — (X xg X)™7 as
S <X =W-=>X—->3S5 V= Xand V — X' in Corollary 3.3.4.3. Since (f x f)~
and / are of finite tor-dimension, the assumption of Corollary 3.3.4.3 is satisfied. Thus
the composition [[ , X]Jo (f X /)™ is also equal to [[ , X]]yxsv)~- Hence the diagram
s commutative. O

Lemma 5.4.5. — Let X be a scheme over S satisfying the condition (S(n)).

1. The logarithmic self-intersection product [[X, X]lxxsx)~ € FoG(X,) w5 equal to the
tmage of the logarithmic self-intersection cycle (Ax, AX)lsog = (—1)"5 (R /S(log /log)) N [X]
e CHy(X)):

(5.4.5.1) (X, XTlxxsx~ = (=15 (Qx,5(og /1og)) N [X] = (Ax, Ax)SE.
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2. Let n be the dimension of X. Then the map [[X, 1] : G(X xsX)™) = G(X,) sends
the topological filtration ¥,G((X xs X)™) wmto F,_,G(X,).

3. Let d = n—1 be the dimension of Xx. Then the induced map [[X, ]] : G(Xk X Xk)
— G(X)) sends the topological filtration ¥,G(Xg xg Xg) mto F,_;G(X,).

Proof. — 1. Applying Corollary 3.4.4.1 to the log diagonal map X — (X xgsX)7,
we obtain [[X, X]]xxsx)~ = (—l)”cn§(MX/(XXSX)~) N [X] in FyG(X,). Thus it follows
by the isomorphism My xxsx)~ = 2x/s(log/log) in Lemma 5.4.1.2.

2. It suffices to apply Theorem 3.4.3.1 to the map [[X, ]]xxx)~ 1 G((XxsX)7)
— G(2).

3. Clear from 2. O

The induced map GrEG(XK Xk Xg) — Grg_ ,G(X)) is also denoted by [[X, ]].

Lemma 5.4.6. — Let X be a scheme over S satisfying the condition (S(n)) and 7. C X be
the closed subscheme defined by AnnA'Q2y s(log /1og) as in Lemma 5.4.1. Let 7 : X' — X be
the blow-up at 7. and D = 7 xx X' be the exceptional dwisor. Then the pull-back
Q% s(1og /10g) is an extension of a locally free Ox:-module & of rank n— 1 by an invertible
On-module and we have

6oy (2% s(log / 10g)) N [X] = 7.(,-1(6") N [D]).

Proof. — The proof is the same as that of Lemma 5.1.6 except that we use Corol-
lary 5.1.2.3 and Lemma 5.3.5.2 in place of Corollary 5.3.2.2, Lemma 5.1.3.2. |

Definition 5.4.7. — Let X be a scheme over S satisfying the condition (S(n)) and o be an
automorphism of X over S. Then, we say o is admissible if the following condition s satisfied.

For each wrreducible component D; of the reduced closed fiber X .q, we have either
O’(DZ‘) = Di or O'(Dl') N Dl' = 0.

For an admissible automorphism o of X over S, the localized intersection prod-
uct [[X, I';]] is computed using the Segre classes as follows.

Lemma 5.4.8. — Let X be a scheme over S satisfying the condition (S(n)) and o be an
admassible automorphism of X over S. Let Dy, ..., D,, be the wrreducible components of X, and put
U =X = Usowmynp—s Di- Then,

1. The pair (1,0) : U — X of maps induces a closed immersion U — (X x5 X)™.

2. Let Ty denote U regarded as a closed subscheme of (X xs X)™ by the immersion in
I and let Ay C (U xg U)™ denote the log diagonal. Define the logarithmic fixed part X3, by

log
Xﬁ)g =X X (XxgX)™ Fg. Then we have Xﬁ)g = AU X(UxgU)™ FU.
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3. Assume that o does not have a fixed point in the generic fiber Xg. Then the localized
wntersection. product [[X, T'sllxxsx)~ € FoG(XT,,) @5 equal to the umage of

log

{C(Qéi/s(log / log))* N S(Xﬁ)g’ X) }dimO

n—1

= Z(— 1)'e:(Q 5(10g / 10g)) s, (X, X).
=0

In particular, of the logarithmuc fixed part Xy, is a Cartier dwisor of X, we have

[[Fo, X xxsx)~ = {c(Q;qs(log/log))* N (1 + Xﬁ)g)_l N [Xﬁ)g]}dimo'

Proof. — 1. We set (XxsX)" = XXSX_U(i,j):DiﬂDi:@ D; xD;. By the definition of
(X xsX)~, we have pri'(D;) = pry '(D;) in (X xsX)~. Hence (X xsX)™ is a scheme
over (XxsX)". By the definition of U, it is the inverse image of (XxsX)" C XxsX by
the map (1, 0) : X — X xsX. Hence the map U — (X xsX)" is a closed immersion.
Since o 1s admissible, the map (1, 0) : X — X xg X induces a map U = (X xgX)™.
Since U — (X x5 X)? is a closed immersion, the induced map U — (X x5 X)™ is
also a closed immersion.

2. Since U is stable under o, I', is a subscheme of (U x5 U)™ C (X x5 X)™.
The assertion follows from Ay = X X (xxsx)~ (U xg U)™.

3. By the assumption that o does not have a fixed point in the generic fiber Xk,
the underlying set of Xy, is a subset of the closed fiber X,. We apply Corollary 3.4.6,
by taking X — (X x5 X)™ — X to be V.= X — S in Corollary 3.4.6 and X{, —
o - X xsX)” tobe T - W — X. Since Mx;xxsx)~ = Q;i/s(log/log), we
obtain [[X, I';]lxxex)~ = {c(Q;(/S(log/log))* ﬂs(Xﬁ)g, I'5) }dimo. By the automorphism
(x, ») = (9,0(x)) of (U xg U)7, the closed subschemes Ay and I', are switched.
Hence by 2, we have s(X{,. ') = s(X{,, Ay) = s(Xogs X). Thus the assertion is
proved. O

Lemma 5.4.9. — Let K be a discrete valuation field with perfect residue field and X be
a scheme over S satisfying the condition (S(n)). Let K be a discrete valuation field with perfect residue
Sield. Assume that K' is an extension of K, the valuation of K' is an extension of that of K and
that a prime element of K is a prime element of K'. Put S' = Spec Oy and let s be the closed
pownt of S'. Then,

1. X' = X xg 8 is regular and the reduced closed fiber X, ., has simple normal crossings.

2. We have a commutative diagram

(X, Nxxgx)~

G(Xxs X)) — GX)

l l

G(X xg X)) —— GX))

[[X’, ]](x/xs,x/)'v

where the vertical arrows are the pull-backs.
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Proof — The assertion 1 1s checked easily using Lemma 5.3.1.2. We show 2.
We have (X' xg X))~ = (X x5 X)~ xg S and the vertical arrows are defined. We
show that the both compositions are equal to the map [[X', [lxxsx) @ G((X xsX)™)
— G(X!)) by applying Corollary 3.3.4. For the composition via G(X)), it suffices to
apply Corollary 3.3.4.1 by taking (X x5 X)” « X <« X as X <~ W <~ W'in
Corollary 3.3.4.1. For the composition via G((X' xg X)), we take (X x5 X)™ <«
X' xg X)) as X <~ W — X' in Corollary 3.3.4.3. Then since (X' xg X')™ =
X xsX) " xsS — (XxgX)™ 1s flat and hence of finite tor-dimension, the assumption
in Corollary 3.3.4.3 is satisfied. Hence the assertion follows. O

6. Conductor formula

We recall the precise formulation of the conductor formula and give the ex-
act statements of the main result, Theorem 6.2.3, and its log version, Theorem 6.2.5,
in 6.2. We state a generalization, Theorem 6.3.1, of Theorem 6.2.5 to an algebraic
correspondence in 6.3. We recall the definition of conductor and give an interpreta-
tion Lemma 6.1.1 in terms of localized intersection product in 6.1.

The proof of Theorem 6.3.1 is given in 6.4 and 6.5. The both sides of the
equality in Theorem 6.3.1 is computed using an alteration in 6.4. In the final sub-
section 6.5, we complete the proof of Theorem 6.3.1 by combining the computations
with the logarithmic Lefschetz trace formula, Theorem 6.5.1.

6.1. Artin and Swan conductors. — We recall generalities on conductor. Basic
references are [36] Chapitres IV, VI and [37] Partie III §3.4.

Let K be a discrete valuation field with perfect residue field F. Let £ be a prime
number different from the characteristic p of ' and Gx — GLgq,(V) be a continuous
¢-adic representation of the absolute Galois group Gx = Gal(K/K). We recall the
definition of the Artin conductor Art(V) and the Swan conductor Sw(V) of V.

In this subsection, L. denotes a finite separable extension of K and we assume
that the integral closure &, of Ok is a discrete valuation ring. Let E be the residue
field of L. Assume that L is a finite Galois extension of K of Galois group Gy k. The
Artin character aj,x and the Swan character swy g of Gy are defined by

leng‘[hﬁl{QlﬁL/ﬁK ifo=1,
—length, O1/(0(x) —x: x € O1) if o # 1,
length,, Q4 /4 — ([L: K] —[E: F]) ifo =1,
—length,, Op /(%2 —1:x € LX) if o # 1

for o0 € Gpk. We call the p-Sylow subgroup Pp,x of the inertia subgroup Ik of
Gi/k the wild inertia subgroup. If 0 € Ik and 7y, is a prime element of L, the

aL/K(U) = {

SWL/K (o) = {
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ideals (o(x) — x,x € O1) and (o(x)/x — 1 : x € LX) are generated by o(r) — 7 and
by o(m)/m — 1 respectively. Hence we have a(o) = —ordy(o(w) — 7) and sw(o) =
—ordy(o(mw)/mr — 1) for o # 1, € Iy k. For o € Gk, the condition —swy k(o) > 0
is equivalent to o € P — {1} and the condition —aj k(o) > 0 is equivalent to
o € IL/K — {1}

We give an interpretation, Lemma 6.1.1, of the Artin and Swan characters as
a localized intersection product, which plays a crucial role in the proof of the conduc-
tor formula. Let L be a finite separable extension of K such that the integral closure
0}, is a discrete valuation ring. We put S = Spec Ok and T = Spec 0}, and regard
them as log schemes with the standard log structures. We define the log self-product
(T'xsT)™ and the log diagonal map T — (T'xs'T))™ as in Section 5.2. On a neighbor-
hood of the log diagonal T C (T xsT)™, the log self-product (T xsT)™ is isomorphic
to the blow-up of T xg T at the image of the closed point of T. We also consider the
diagonal map T — T xg T. We introduce further notation assuming L is a Galois
extension. For o € Gy, let T =T, — T xg T be the graph of o : T — T. It is
defined by the surjection 01, ®g O, — 01, : a® b+ ac(b). Let T = T, > (TxsT)~
be the map defined by the pair id: T — T,0* : T — T). If 0 = 1, the immersion
T, — T xg T is the diagonal map and T, — (T xg T)~ is the log diagonal map.

Lemma 6.1.1. — Let K be a discrete valuation field with perfect residue field and 1. be
a finite separable extension of K such that the integral closure OY, of Ox s a discrele valuation ring.
Regard S = Spec Ox and 'T' = Spec Oy, as log schemes with the standard log structures. Let
S ' T — S be the canonical map and s and t denote the closed points of S and ‘T respectively. We
wentify G(s) = Z and G(t) = Z. The push-forward map f, : G(t) = Z — G(s) = Z 1s the
multiplication by the residual degree |E : ¥]. Then,

1. We have

([T, Tllrxgr = —length,, 24, /6,
([T, THrxsT)~ = —length, Qg /6, (l0g / log).

2. Assume L. s a Galois extension of K. Then for an element o € Gy k of the Galois
group, we have

aL/K(U) = —ﬂ[[T, Ta]]szT and SWL/K(U) = —ﬂ[[T, To]](szT)~

in G(s) =Z. If o € Gy — Pk, the tersection T, NT in (T xsT)™ is emply.
3. ([36] Chapitre IV Proposition 3) Further, let M C L be a sub Galois extension
over K. Then for an element o € Gy, we have

[L: Mlayk(0) = Y apx(n) and [L: Mlswyk(0) = Y swi k(D).

=0 =0
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Proof. — 1. It 1s a special case of the equalities (5.1.3.1) and (5.4.5.1).

2. If o = 1, it follows from 1 and Lemma 5.3.4.3.

We assume o # 1. Then the intersection D, = T Xy Ty 1s a divisor of T
and we have Op, = 01 /(0(x) —x : x € 01). Hence, by Theorem 3.4.3, we have
([T, Tollrxsr = length, Op, = —ap k(o). Since the log self-product (T xs T)™ is
isomorphic to the blow-up of T xg T at the closed point on a neighborhood of the
log diagonal T C (T xg T)~, similarly as above, the intersection Dy = T X (ryg1)~ To
is a divisor of T and we have Oy = 0y /(o(x)/x—1:x € L*). By Theorem 3.4.3, we
have [[T, Tg]](TXST)~ = lengthmﬁﬁg = —SWL/K(O'). Ifo ¢ PL/K: we have SWL/K(O') =0
and hence D, = TNT, is empty.

3. We put U = Spec Oy and let g : T — U be the induced map. Let u € U
be the closed point. Since the maps g : T — Uand gx g : T xgT — U xgU
are locally of complete intersection, they are of finite tor-dimension and the pull-back
maps ¢* : G(u) = G(¢) and (g xg)* : G(U xsU) = G(T xg7T) are defined. We have
an equality (g x @*[U,]1 =Y. _[T,] in Gr]G(T x5 T). We apply Proposition 3.3.3
by taking U C UXxgU < TxsgT=TxsT DT, asVCX <« W—= X" DV. Then
we obtain [[Uy, TTlusxst = [T, (g X @ Uy llrxgr = oy [[T, Telbugr in FoG()) =
G(?). By the projection formula, Proposition 3.3.5, we have g[[U,, Tlluxsu =
[L : M][[U,, Ulluxsu. Thus the assertion follows from 2.

For the equality for the Swan character, we replace g x g : T xg T — U xg U
in the above proof by (g x g)~ : (T xgT)™ — (U x5 U)™. Since the map (g x g)~
is also of finite tor-dimension by Lemma 5.2.1.2, the same argument as above proves
the equality. O

Let K’ be the completion of K. Taking an embedding K — K’ we identify the
absolute Galois group Gk with a subgroup of Gg. Let Ix = Gal(K/K"™) C Gk be the
inertia group of K corresponding to the maximum unramified extension K" of K'.
We call the pro-p Sylow subgroup Px = Gal(K/K") C Ik the wild inertia group of K.
It corresponds to the maximum tamely ramified extension K™ = K" (z'/"; p /m)
of K" where 7 is a prime element of K.

Let Gg — GLg,(V) be an £-adic representation. The image of the wild inertia
Px is finite. Let L be a finite Galois extension of the completion K’ such that P, =
Px N Gal(K/L) acts trivially on V. We identify P;,x» = Px/Py, as a subgroup of the
Galois group Gy x. The action of Py g on V is well-defined by the assumption on L.
The Swan conductor Sw(V) is defined as the intertwining number

1
Sw(V) = m ; SWL/K/(U)TY(U . V)
ge L/K/

Note that swy g(0) = 0 unless 0 € Pr g and the sum is taken over the subgroup
Pr/x C Grr. It is a theorem that Sw(V) is a non-negative integer. It is 0 if and only
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if the action of Pk is trivial. The Artin conductor is defined by the equality Art(V) =
dimV — dim V! 4+ Sw(V) where V' denotes the I-fixed part. The fact that the right
hand side is independent of the choice of L is a consequence of Lemma 6.1.1.3.

For an endomorphism f : V — V of an {-adic representation of Gk, we define
the Swan conductor Sw( f : V) as follows. Take a finite Galois extension L of the
completion K’ such that Py, acts trivially on V as above. Then we put

1
[L: K]

Sw(f:V) = Z swik () Tr(f oo : V).

o€l g

It also follows from Lemma 6.1.1.3. that the right hand side is independent of the
choice of L. For f/ = id, we have Sw(V) = Sw(id : V).

6.2. Conductor formula. — Let K be a discrete valuation field with perfect residue
field F. In the rest of the paper, S will denote Spec Ok and s = Spec I denotes
the closed point. Let X be a proper scheme over Ok satisfying the condition (R(r)) in
Section 5.1. We define the conductors of X. Let d = n — 1 be the dimension of the
generic fiber Xg. The Swan conductor is defined to be the alternating sum

2d
Sw(Xg/K) = Z(—l)quHq(XK, Q).

=0

The cohomology in the right hand side is the £-adic etale cohomology for a prime £
different from the characteristic p of F. It is known that the alternating sum is inde-
pendent of the choice of £ [30]. The Artin conductor Art(X/0%) is defined by

Art(X/0x) = x(Xg) — x(Xp) + Sw(Xg /K).

In the right hand side, x denotes the £-adic Euler number which is known to be in-
dependent of £ as a consequence of the Weil conjecture.

Recall that the localized self-intersection class (Ax, Ax)s € CHy(Xy) is defined
as the localized Chern class (—1)"0,2§F(Q§</ﬁ}<) N [X]. We consider its image
deg(Ax, Ax)s € Z by the degree map deg : CHy(Xy) — CHy(F) = Z.

Comgecture 6.2.1 ([6] Conjecture). — Let K be a discrete valuation field with perfect
residue field ¥ and let X be a proper scheme over O satisfying the condition (R(n)) in Section 5.1.
Then we have

(6.2.1) Art(X/6x) = —deg(Ax, Ax)s.

The formula (6.2.1) is called the conductor formula for X. The conductor for-
mula in the case dimX = 1 is the classical conductor-discriminant formula. In the
case dimX = 2, it is proved by Bloch in the same paper [6].
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Proposition 6.2.2. — Let X be a proper scheme over S satisfying the condition (R(n)) in
Section 5.1. Let G be a regular closed subscheme of X supported in the closed fiber X, and m :
X' — X be the blow-up at C. Then, the conductor formula (6.2.1) for X is equivalent to that
Jor X'.

Proof. — Let E = X’ xx C be the exceptional divisor. Then we have
—(Art(X'/S) — Art(X/8)) = (X)) — x(X5) = x(Ep) — x(Cy).

Since E is a P*"'-bundle over C, we have x(E;) = ¢x(C;). On the other hand, by
Lemma 2.3.4, we have
. (3(0) M) = & (20 )

= & (2gs) e (] (23x) = 1) NIXT)

= (= 1) = De(Q5)eNew) ™ N IC]
where 7, : E — C denotes the restriction of w : X' — X. Let ¢ : C — X denote the
immersion and f : C — s denote the canonical map. By the distinguished triangles
— Li*Q;i/S — L¢is = Neyx[l] = and — Lf*N,s[1] — QE/F — Lgis = 0, we
have c(Q%(/S)c(l\TC/X)_1 N [C] = ¢(Lgys) N[C] = C(QE/F) N [C]. Thus it follows form
the Lefschetz trace formula x(C;) = deg(—1)""“¢,_. (¢, ) NICL O

Our first main result is the following.

Theorem 6.2.3. — Let Ox be a discrete valuation ring with perfect residue field ¥ and let
X be a proper scheme over Oy satisfying the following condition

(N(n)) X satisfies the condition (R(n)) i Section 5.1 and the reduced closed fiber (Xg)yeq 15

a dwisor with normal crossings.

Then we have
Art(X/0g) = —deg(Ax, Ax)s.

By Proposition 6.2.2 and Lemma 4.2.12, Theorem 6.2.3 is equivalent to the
following weaker version.

Corollary 6.2.4. — Let K be a discrete valuation field with perfect residue field ¥ and let
X be a proper scheme over Oy salisfying the condition (S(n)) in Section 5.5. Then we have

Art(X/Ok) = —deg(Ax, Ax)s.

We show that Corollary 6.2.4 is equivalent to the following logarithmic version.
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Theorem 6.2.5. — Let the assumption be the same as in Corollary 6.2.4. Then we have
Sw(Xx/K) = — deg(Ax, Ax)g®.

Proof of equivalence of Corollary 6.2.4 and Theorem 6.2.5. — The proof of equivalence
1s similar to that of the conductor formula in the tame case in [4]. Let Dy, ..., D,, be
the irreducible components of D = X, 4. For a subset J C {1, ..., m}, let Dy be the
intersection [, D; and By be the divisor {J,; D; N Dy with simple normal crossings
as in Lemma 5.3.6. By the definition of Artin conductor and Corollary 5.3.7, it is
sufficient to show the equalities

(6.2.5.1)  x(Xg) = (=1)"""dege,1(Rys(log /log)) N[X,],

6.2.5.2)  xXp) =D Y (=1)dege, (2 (logBp) N D],

r=1 JC{L,....m} #=r
Since deg c,,_l(Q;(K/K) N [Xk] = deg cn_l(Qéi/S(log/log)) N [X,], the equality (6.2.5.1)
follows from the Lefschetz trace formula (—1)""!deg cn_l(QéiK /K) N [Xk] = xXg).
Since x(Xp) = Y, ch{l’_mm}qﬂ:r x((Dy — B));), the equality (6.2.5.2) is reduced to
the equalities

(6.2.5.3)  x((Dy —By);) = (—=1)""degc,, (2, x(log B))) N [Dy],

for a subset J C {I,...,m} of cardinality ». Thus it suffices to show the following
lemma.

Lemma 6.2.6. — Let V be a proper smooth scheme of dimension n over a perfect field ¥

and D be a dinsor of V with simple normal crossings. Then we have
x(Vi — D) = deg(—1)"c,(Ry,s(log D)).

Proof. — Let Dy, ..., D, be the irreducible components of the divisor D and res; :
Q{,/F(log D) — Op, be the residue map. For a subset J C {1, ..., 7}, we define By C
Dy C V as above. Then we have an exact sequence

0 —— Q{//F — Q{,/F(logD) S @;:1 O, 0.

Hence we have

r

o(Qr) NIVI = o( R pog D) [ [e@) ™ N V]
=1

= ¢(QyogD)) [ [ =D N[V

=1

=> Y (=D"(Qy,(ogD)) N[Dy].

m=0 JC{1,...,r},#]=m
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By the exact sequence
0 — Q%)J/F(log B) — Q{,/F(log D)lp, — @iej Op, — 0,
we have c(Q{,/F(log D)) N[Dy] = c(Qll)J/F(log B;j)) N [Dy]. Hence we have
(;1)"6,1(9{,/17) N[V]
6260 =% ¥ 1@, pogBp) N Dy

m=0 JC{1,...,r},#]=m

On the other hand, we have

(6.2.6.2)  x(Vp =) >  x((Dy—Bp.

m=0 JC{1,...,r},#]=m

By the Lefschetz trace formula (Vi) = (—1)"c, (2, /F)D[V], the left hand sides of the
equalities (6.2.6.1) and (6.2.6.2) are equal. Hence the assertion follows by induction on
dimV. |

We prove Theorem 6.2.5 together with its generalization Theorem 6.3.1 in Sec-
tions 6.4 and 6.5.
By Proposition 6.2.2, Theorem 6.2.3 has the following consequence.

Corollary 6.2.7. — Let X be as i Comjecture 6.2.1. Assume there exists a sequence of
blowing-ups X' = X,, = -+ — Xo = X at regular closed subschemes supported in the closed
Sibers such that X' satisfies the condition (S(n)) in Section 5.3. Then Conjecture 6.2.1 is true for X.

By Corollary 6.2.7, if the reduced closed fiber (Xp),q has an embedded reso-
lution in a strong sense, Conductor formula for X is true. In particular when
dimX = 2, the assumption of Corollary 6.2.7 is satisfied and hence we obtain a new
proof of Conjecture 6.2.1 in this case.

6.3. Correspondences. — We formulate a generalization, Theorem 6.3.1, of Theo-
rem 6.2.5 for an algebraic correspondence. To state it, we prepare some terminology
and notations on the cycle map and algebraic correspondences.

Let Xk be a proper smooth scheme over a field K and ¢ be a prime number
different from the characteristic of K. Then, for an integer » > 0, we have a cycle
map ¢ : CH' Xg) — H*(Xg, Q(1). For ' € CH'(Xx), the image ¢/(I") is also
denoted by [I']. It is compatible with the product and the pull-back. It also makes
the degree map deg : CHy(Xk) — Z compatible with the trace map. Its composition
with the Chern character map ¢4 : GrK(Xg) — CH'(Xk)g is the Chern character
map ¢k : GrpK(Xg) = H¥(Xz, Q. (1).
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Let Yk be another proper smooth schemes over a field K and assume Xk and
Yx are purely of dimension d. We call an element I' € CH,(Xg xk Yk) an algebraic
correspondence from Xk to Yg. An algebraic correspondence I' € CH (X xk Yg)
defines a Gg-equivariant map I'* : H*(Yz, Q) — H*(Xz, Q) as the composition

. Vo) . [ru et
H*(Yg, Q) — H*Xg xg Y, Q) — H™(Xi xi Yi, Q(d))
LAY H*(Xg, Q).

When Xk = Yk, an algebraic correspondence I' on Xk defines an endomorphism I'™*
of the £-adic representation H?(Xy, Q ,) of Gk.

Assume K is a discrete valuation field with perfect residue field F and £ is dif-
ferent from the characteristic of F. We put

24
Sw(l", Xg/K) = > (= DSw(I™ : H/(Xg, Q).
q=0
For an endomorphism f : Xg — Xk over K, similarly we put

2d
Sw(f. Xi/K) = Y (= 1)Sw(/* : H/(Xg. Qo).

9=0

If I'y € CH;(Xg xx Xk) denotes the class of the graph of f, we have Sw( f, Xx/K) =
Sw(I'y, X /K). In particular, for / = id and I'; = Ax,, we have Sw(id, X /K) =
Sw(Xk/K).

As in the last subsection, let K be a discrete valuation field with perfect residue
field F, S = Spec Ok and s = Spec F be the closed point of S. Let X be a proper and
flat regular scheme over S = Spec Ok satisfying the condition (S(n)) in Section 5.3. For
I' e CH,(Xk xx Xk), let [[X,I']] € GrgG(Xﬁ‘) be the image by the composition map

CH,(Xk xx Xg) — GriG(Xg xx Xx) =" Gr'G(X,). We define the degree map
degy : G(X,) = G(s) = Z to be the push-forward for X; — s.

Theorem 6.3.1. — Let Ok be a discrele valuation ring with perfect residue field and € be
a prime number different from the characteristic of the residue field. Let Xk be a proper smooth scheme
over K of dimension d. Let T € CH,(Xk Xk Xg) be an algebraic correspondence on Xg. Then,

1. Sw(I', Xk /K) s a rational number independent of €.

2. Let X be a proper scheme over S satisfying the condition (S(n)) i Section 5.3 such that
X ®p K= Xk. Then we have an equality of integers

Sw(l', X /K) = —degy [[X, I']].
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Proof will be completed in Section 6.5. Theorem 6.2.5, which is shown to be
equivalent to Theorem 6.2.3, is the special case of the following Corollary where
f =1d, by Lemma 5.4.5. Theorem 6.3.1.1 also follows from [41] Theorem 0.1.

Corollary 6.3.2. — Let K, Xk and £ be as in Theorem 6.3.1. Let [ : Xx — Xk be
an endomorphism over K. Then,

1. Sw( f, Xk /K) s a rational number independent of €.
2. Let X be a proper scheme over S satisfying the condition (S(n)) i Section 5.3 such that

X Qu K=Xg. Let T'y € CH;(Xk Xg Xg) be the class of the graph of f. Then we have an
equality of integers

Sw(f, Xk /K) = —degy [[X, I'/]].
Progf. — It is enough to apply Theorem 6.3.1 to I',. |

If the relative dimension of X over S is 1 and if f/ is an automorphism of X
over S, analogous formula is proved in [1].

Corollary 6.3.3. — Let X be a proper scheme over S satisfying the condition (S(n)) n
Section 5.3 and o be an admissible automorphism of X over S. Assume that o does not have
a fixed point in the generic fiber Xg. Then we have

Sw(o, Xk /K) = —deg {C(Q;qs(l()g/lc’g))* N 5(XFes X) gimo
n—1

= —deg Z(— 1)'e:(2 5(l0g / 10g))s5,—i(X{,. X).

=0

In particular, if the logarithmic fixed part X3, = X Xxxsx)~ I'o @5 a Cartier divisor of X, we

have

Sw(o, Xk /K) = —deg {¢(2 s(log / log)) N (1 + X;’Og)_1 N [X7e ] aimo-

Proof. — 1t follows from Theorem 6.3.1.2 and Lemma 5.4.8. |
We show that Theorem 6.3.1 is reduced to the case where K is complete.

Corollary 6.3.4. — Let X, K and T" be as in Theorem 6.3.1 and let K' be the completion
of K. Then Theorem 6.5.1 for X and T is equivalent to that for X' = X Qg O and the pull-
back T of T' 1o X, xx X

Proof. — We have Sw(T', Xx/K) = Sw(I”, Xg//K). By Lemma 5.4.9, we have
degy [[X, Tl = degxg,[[X’, 1. O



138 KAZUYA KATO, TAKESHI SAITO

6.4. Alteration. — To prove the main result, Theorem 6.3.1, we compute the
Swan conductor Sw(I', Xx/K) and the logarithmic localized intersection product
[[X, T'll(xxsx)~ using an alteration. First, we recall results on alteration.

Theorem 6.4.1. — Let K be a complete discrete valuation field.

1. ([27]) Let Xk be a separated scheme of finte type over K. Then there exist a proper
scheme X over Ox_ and an open immersion Xx — X over Ok.

2. ([8] Theorem 6.5) Let X be a flat integral and separated scheme of finite type over
Ox. Then there exist a finite extension L. of K, a projective, strictly semi-stable and geometrically
connected scheme W over the integer ring Oy, an open subscheme W C W and a proper, surjective
and generically fimite morphism f: W — X over Ok.

Lemma 6.4.2 ([41] Lemma 1.2.4). — Let L be a finite extension of K and W be
a strictly semi-stable scheme of finite type over the integer ring Oy,. Let 1. be a finite extension of L.
Then there exist a strictly semi-stable scheme W' of finite type over the integer ring O, and a projec-
tive and surjective morphism W' — W over Oy, such that the induced map Wi, = W ®4,, L' —
WL, =W Qg L is an isomorphism.

By Lemma 6.4.2, Theorem 6.4.1 has the following consequence.

Corollary 6.4.3. — Let K be a complete discrete valuation field.

1. Let Xx be a proper wrreducible scheme over K. Then there exist a finite normal extension
L of K, a projective, strictly semi-stable and geometrically connected scheme W over the integer ring
O\, and a proper, surjective and generically finite morphism Wy, — Xk over K.

2. Let X be a proper and flat irreducible scheme over K. Then there exist a finite normal
extension L of K, a projective, strictly semi-stable and geometrically connected scheme W over the
integer ring Oy, and a proper, surjective and generically finite morphism W — X over Ok.

We compute the trace using an alteration. We introduce some notation. Let K
be an arbitrary field for the moment. Let Xx be a proper smooth scheme purely of
dimension d over a field K, o0 € Gk be an element of the absolute Galois group and
I' € CH(Xk xx Xk) be an algebraic correspondence. We assume X is irreducible.
Let L. D K be a finite normal extension of K, Wy, be a proper, smooth and geo-
metrically irreducible scheme over L. and / : Wi, = Xk be a proper, surjective and
generically finite morphism over K.

We fix an embedding K — L of separable closures and extend o to automor-
phisms of L and of L. For an automorphism 7 € AutgL, let W[ = Wy X L
be the base change by 7 and f; denote the composition / x 1 : W] — Xk. For
T € Autkl, let I';,; € CH"(W] Xy WY{") be the pull-back (f; x for)*T of I' by
Je X for t WXL WYF — Xk xg Xk. It induces a homomorphism I'; - H*(Wgt, Q) —

H*(WZ, Q). If T = id, we put I': = T}, : H'(W?, Q) — H*(W;, Q). The
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isomorphism ¢* = 1 x 0* : W' — W[ induces an isomorphism o, = (0%)" :
H*(WE, Q) — H*(W(L", Q). The composition I'; . o o, is an endomorphism of
H*(WE, Q).

Lemma 6.4.4 ([41] Lemma 3.3). — Let Xx be a proper and smooth irreducible scheme of
dimension d over a field K, o € Gg be an element of the absolute Galois group and
I' € CHY Xk xx Xk) be an algebraic correspondence. Let L. be a finite normal extension of
K of inseparable degree q, Wy, be a proper, smooth and geometrically irreducible scheme over L. and
S 1 Wi — Xk be a proper, surjective and generically finite morphism of degree [Wy, : Xk]
over K.

Then, we have an equality

[WL . XK] -Ir (F* OO0, . H’(XK, Q[))
—g 3 T (I, 00, H(WE Q).

teAutg L

Now we assume K is a discrete valuation field and compute the Swan conductor
Sw (I'*, Xk /K) using an alteration as in Corollary 6.4.3.1.

Corollary 6.4.5. — Let Xx be a proper and smooth irreducible scheme of dimension d over
a complete discrete valuation field K and T € CHY(Xg Xk Xk) be an algebraic correspondence.
Let L. be a finite normal extension of K of inseparable degree q, W be a proper, strictly semi-stable
and irreducible scheme over Oy, and [+ Wi, = W ®g, L. — X be a proper, surjective and
generically finite morphism of degree [Wy, : X over K. Then,

1. The restriction to the wild inertia subgroup Py, C Gy, of the action of Gk on H'(Xg, Q ()
i trval.

2. Let Ly be the separable closure of K i L, Gy = Gal(Ly/K) be the Galois group and
Py C Gy be the wild wnertia subgroup. Then we have an equality

[Wy, : Xkl - Sw (T, Xk /K)
=g )_sw(@) T (I 00 s H(Wg, Q).

UEP[)

Proof. — 1. We identify Gy = Gal(Ly/K) with AutgL.. For o € Gy, the conju-
gate W2 = W ®g, »o+ 01, is also strictly semi-stable over 07, Hence the wild inertia
P, C Gy acts trivially on H*(WE, Q) for 0 € Gy. Since the composition f, o f* :
H*Xz, Q) — @UeGU H* (W7, Q) — H"Xg, Q) is the multiplication by [Wy, : Xk],
the Gr-equivariant map f* : H*(Xg, Qo) — D, g, H*(W7, Q) is mjective. Hence
the action of Py, on H*(X, Q) is also trivial.
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2. Yor o € Pg, the action o, on H*(Xjz, Q) depends only on the image in
Py = Px /Py, by 1. By the definition of Swan conductor and Lemma 6.4.4, we have

[Wy. : XgISw(T™, Xk /K)
LYY T (e (Y Q).

oePy teAutg L

Since sw(o) = sw(rot™!) and Tr (I'* oo, : H’(WE, Q) =Tr I7, o o, :

7,07

H' (Wi, Q/)), the assertion follows. O

We compute the logarithmic localized intersection product [[X, I']] using an al-
teration as in Corollary 6.4.3.2. To state it, we introduce some notation. Let K be
a complete discrete valuation field and X be a proper scheme over Ok satisfying the
condition (S(n)) in Section 5.3 and I' € CH"'(Xg Xk Xk) be an algebraic corres-
pondence. Let L be a finite normal extension of K and ¢ be the closed point of T =
Spec O1.. Let W be a proper, strictly semi-stable and geometrically irreducible scheme
over T = Spec 0}, and f : W — X be a proper, surjective and generically finite mor-
phism. Let Py C Gy = Gal(L;/K) be the wild inertia subgroup of the Galois group
of the separable closure Lj in L.

We regard W and W as log schemes with the standard log structures
defined by the closed fiber. For o € Py, we have a canonical isomorphism W, — W¢
of log schemes. We identify I'(W?, My-) with P = I'(W, My) by the isomorphism
I'W, My) — I'(W,, Myy) = I'W7, My») — I'(W?, My»). We define the log prod-
uct (W x1t W)™ to be W x1 py W?. Since W is strictly semi-stable, W is also strictly
semi-stable over &1, and the projection (W X1 W?)™ — W is strict and smooth. The
canonical isomorphism W, — WY induces a map Ay, : W, — (W x1 W?);". Since
Aw, : W, = (W x1t W) is a section of the smooth map (W x1 W?)™ — W, it is
a regular immersion.

We have a map CH" ' (Xg xgXg) — Grf_lG(XKxKXK) by Lemma 2.1.4.2. By
Lemma 5.4.5.2, the logarithmic localized intersection product defines a map
Grl  G(Xk xx Xk) = FiG(X). Let o € P,. By Corollary 2.2.3, the pull-back map

n—1
(f x )" GXg xx Xg) — G(Wp, x;, W?) induces a map Grl_ G(Xg xg Xg)
— Grf_lG(WL x1, W7). By Corollary 2.2.4, the reduction map G(W, x;, W{) —
G((W x1 W?)7) induces a map Grf_lG(WL x, W{) — GrS_IG((W x1r W?)7). Since
the immersion Ay, : W, — (W x1 W?)" is a regular immersion, the pull-back
Ay, 1 GIW x1 W?)7) — G(W)) is defined. By Proposition 2.2.2, it induces a map

Grl_ G((W x1 W)™) — F,G(W,).

Proposition 6.4.6. — Let K be a complete discrete valuation field, X be a proper scheme
over Oy satisfying the condition (S(n)) in Section 5.3 and T € CH"™'(Xg Xk Xk) be an algebraic
correspondence. Let 1. be a finite normal extension of K of inseparable degree q and t be the closed
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powmnt of T = Spec Oy. Let W be a proper, strictly semi-stable and irreducible scheme over T =
Spec O, and [ : W — X be a proper; surjective and generically finite morphism of degree [W : X]
over Ok.

Let [[X, 1] : CH"'(Xk xg Xg) — GrS_IG(XK X Xg) — FoG(X,) denote the
logarithmic localized intersection product. For an element o € Py C Gy = Gal(Ly/K) of the wild
wmertia subgroup of the separable closure Ly, let Ty, € Grf_lG((W x1W?)7) denote the reduction
of the pull-back Ty = (f x fz)*T € Grt_ | G(Wy, x1, W?) and Ay, - Grl_ G((W x1 W?))
— FoG(W,) denote the pull-back by the regular immersion Av, : W, — (W X1 W?)7". Then,

we have an equality

(6.4.6.1)  [W:X]deg[[X. Il =—¢- Y sw(0) - degy, A%y, (T).

O’EPO

Proof. — Since the map F,G((X x5 X)™) — F,_1G(Xk xg Xk) Is surjective,
we may assume the image of I' in GrS_IG(XK xg Xk) 1s the image of an element
[ e F,G(XxsX)). By abuse of notation, we drop ~ and write I' € F,G((XxsX)™).

Since f; o f* : FiG(X,) = FyG(W,) — FiG(X)) is the multiplication by the
degree [W : X] by Corollary 2.2.3, it is sufficient to show the equality

(6.4.6.2) ¢/ [X.Tll=—¢"> swlo) A}, (Ts)

O’EP[)

in G(W)) for I € G((X x5 X)™).
We have [[X, T']] = [[I', X]] by Theorem 3.2.1.4. We show the equalities

(6.4.6.3) /T, Xllxxsx~ = [T, Wllxxsx)~ = AT, (W x1 W)™ Tlixxex)~

by applying the associativityy, Corollary 3.3.4.1. In the middle and the right,
[, WHixxsx~ 1 GIXxsX)™) = GW) and [[, (W X1 W)™ [Jxxsx)~ 1 GIXXsX)7)
— G((W x1 W);") denote the localized intersection product respectively. In the right
hand side, Aj, : G(Wx1W);) — G(W,) denotes the pull-back by the regular immer-
sion W — (W x1+ W)™, Since (W x1+ W)™ is flat over W by Lemma 5.2.1.1, the map
Ay GI(W xpW)T) — G(W,) is the same as the pull-back by the regular immersion
Ay, : W, = (W x1 W), For the first equality, we apply Corollary 3.3.4.1 by taking
W-X—-> XxsX)" = Xas W - W - X — S. Since W and X are regular, the
map f : W — X is of finite tor-dimension. Hence the assumption of Corollary 3.3.4.1
is satisfied and the first equality is proved. For the second equality, we apply the same
Corollary 3.3.4.1 by taking W - (W xt W)” - X xs X)” > X as W - W —
X — S. Since W is strictly semi-stable over T, the map (W x1t W)™ — W is smooth.
Hence (W x1 W)™ is regular and the log diagonal map A : W — (W x1 W)™ is of
finite tor-dimension. Thus the assumption of Corollary 3.3.4.1 is also satisfied and the
second equality follows.
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. _ N L i
Since Oy, = Opyxrw)~ @ I O\, we further have

(6.4.6.4) AL, (W Xt W) Tl xxsx)~ = A%[[F, (W xt W) T]xtxsx)

Hence, it 1s reduced to showing the equality

(6.4.6.5) g+ [T (W x1 W) Tlixuex- = —¢* - Y _ sw(o)T,

UEPO

in G((W xt W)7).

To go from G((W x1 W)[") to G((W x1, W);), we use the following lemma.
If L is separable over K, we have T, = T and this step is trivial. Since the action of
o € Py on the log point ¢ is trivial, we naturally identify W? and (W xt W?);” with
W, and (W x1t W) for o € P respectively.

Lemma 6.4.7. — 1. The immersion (W x1 W)™ — (W x1, W)™ induces an isomorph-
wm G(W x1t W);") — G((W x1, W),).

2. We dentrfy GIW x1t W)[") and G((W x1, W),) by the isomorphism in 1. Then,
Jor ' € G((X xg X)™), we have the equality

qg- [T, (W xt W)N]](Xxsxr =[[T", (W XT, W)N]](Xxsxr

of the localized wntersection products [[ , (W X1 W) ]lxxsx)» @ GIX xg X)7) —
G(W x1W);") and [[ , (W X1, W) Txxsx)~ 1 GIX x5 X)7) = G((W X1, W),).
3. For ' e G(Xg xg Xk) and o € Py, let Ty, € GI(W x1t W)) and T, €

G((W scr, WY;") be the images by the compositions G(X xxXk) 5" G(Wy, x We) 3"

N (fxXfo.K)* ( ,to)T -
G(W x1 W);) and G(Xg Xk Xg) = = GWL x1, W) — G(W x1, W),)

respectively. Then, we have
QQ . Fo,t = Fo,m'
Proof — 1. The diagram

W x1, W)™ «—— (W xt W)~

(6.4.7.1) l l

(T xp, T)™ «—— T

1s cartesian. The purely inseparable extension L of L is generated by the ¢-th root 7y,

of a prime element my of Ly. The map O [x]/(x") — (O, Qay, O x> 1— %

is an isomorphism. Hence the immersion T — (T xp, T)™ is a nilpotent immersion.
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Thus the closed immersion (W x1+ W)™ — (W X1, W)™ induces an isomorphism on
the K-groups of coherent sheaves.

2. Let I be the kernel of the surjection (O, Ra, 01)~ — Oy. Then, in
G((T xt, T)™), we have [ﬁ(TXTOT)N] = ;,:—01 [I'/TF'] = ¢[Or]. The vertical arrows
of the diagram (6.4.7.1) are flat by Lemma 5.2.1.3. Hence we have [Oayx,,w)~] =
qlOwxrwy~1. Thus the assertion follows by Theorem 3.2.1.3.

3. Similarly, we have [ﬁWLXLUWK] = g[Ow,xywy] in G(WL xr, W). Further for
a coherent ﬁ(\/\JXOL\/\w)~-mOdUIC ﬁ, we have [ﬁ ®%}L0 ﬁLO/mLU] = [ﬁ ®%’L ﬁL/mf] =

[(Z ®% Oy /my]. Thus the assertion follows. O
q o

By Lemma 6.4.7, the equality (6.4.6.5) is equivalent to

(6.4.6.6)  [[[, (W x1, W) Nxusxy- = — D _ sw(@)ly,

O’EPO

in G((W x1, W);).
We show the equality

(6-4-6-7) [r, w XT, W)N]](XXsX)N = [T, (f Xf)w*r]](ToxsTo)M

by applying the associativity, Corollary 3.3.4.3. We take X <« (XxsX)™ <= (WxsW)~

— (Ty xg Ty)~ & Ty tobe S < X < W — X' <« V' in Corollary 3.3.4.3. We
verify that the assumption in Corollary 3.3.4.3 is satisfied. The map (W xg W)™ —
(Toy xs Ty)™ 1s flat by Lemma 5.2.1.3 and the map (f x /)~ : (W xg W)™ —
(X xgX)™ is of finite tor-dimension by Lemma 5.2.1.2. The subscheme W’ in loc.cit.
18 (W xs W)™ X (1510~ To = (W x1, W)™. The closed subsets Zy and Zj,, in loc.cit.
are (W xp, W)™ xx Z and (W X1, W)™ X7, ¢, respectively. Since the closed sub-
scheme Z C X is supported on the closed fiber, the condition that Zy is Zi,, set-
theoretically a subset in loc.cit. is satisfied. Further by Lemma 5.3.5.3, the condition
G(Zw), ¢, = G(Zw) and G(Z'v), 7, = G(Z'v) 1s satisfied. Hence the assumption in
Corollary 3.3.4.3 is satisfied. Since (W Xs W)™ X 151~ To = (W x1, W)™, applying
Corollary 3.3.4.3, we obtain the equality.

Remark. — 1f L is assumed separable over K and hence if T = T, there is an
alternative proof of the equality (6.4.6.7). By Corollary 3.3.4.3, we have equalities

[T, (W x, W)N]](XXSX)” = [[(W x7, W)™, (f Xf)N*F]](stwy
= [[TOa (f Xf)w*r]](ToXsTo)N

and the equality (6.4.6.7) follows.
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By (6.4.6.7), the equality (6.4.6.6) is equivalent to

(6.4.6.8)  [[To. (f x/) " Tleryustyy = — Y sw(@)lqy,

UEPO

in G((W x1, W),'). Hence it suffices to apply the following lemma to (f x /)™T" €
G((W xs W)™M).

Lemma 6.4.8. — Let L be the separable closure of K in L and let t be the closed point
of Ty = Spec Oy,,. Let Py be the wild inertia subgroup of the Galois group Gy = Gal(Ly/K).
For ' € G(W xs W)™) and o € Py, let T, € G(Wy, X1, WY) be the restriction and
Ui € GIW X1, W)) be the reduction of T, Then, we have

[[To, Tlleryssyy = — Y sw(0) Ty,

UEPO

n G((W x1, W),).

Progf. — The map [ [, ., Tos = To x5 Ty is surjective and (W xp, W)™ =
(W xs W)™ X (1xs10)~ To.o- Hence the map [ [, ., (W x1, W)™ — (W xs W)™ is sur-
jective and consequently the sum of the push-forward map €, ¢, GI(Wx1,W)™) —
G((W xs W)7) 1s surjective. Thus it is sufficient to show the equality

—sw(0) 54, if o € Py

T ,F X ~ =
[[To, TleroxsTo) 0 if 0 € Gy \ Py

for o0 € Gy and I' € G((W x1, W?)™).

In Corollary 3.3.4.2, we take T A (To xs To)™ < Tos < (W xp, W)™ as
V= X < W <« W. Since Ty, =T is regular, the assumption of Corollary 3.3.4.2
is satisfied. By Lemma 6.1.1.2, we have [[ T, Toollit x5t~ = —sw(o) € G(t) = Z
for 0 € Py and Ty, N Ty =0 for 0 € Gy — Py. Hence the equality follows. |

6.5. Log Lefschetz trace formula. — We state and prove logarithmic Lefschetz
trace formula. To state it, we fix some notations. Let K be a complete discrete valu-
ation field with perfect residue field. Let L be a finite extension of K and o be an
automorphism L over K. We assume that o acts trivially on the residue field E and
that the order of o is a power of the characteristic p of E. In other words, the action
of o on the log point ¢ = Spec E is trivial. We extend o to an element & € Px.

Let W be a projective and strictly semi-stable scheme purely of relative dimen-
sion d over T = Spec 0}. The conjugate W — T is defined as the base change
pro © W Xp 0« T — T. For a prime number £ different from p = char E, we
define a map o, : H* (Wi, Q,) — H*(W?,Q,) to be the pull-back by the map
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1 x 6% : W; = W x4 L xi. L =W XL/ o L > W;. Since we assume W is
proper and strictly semi-stable and £ # p, the action of the wild inertia Py, is trivial
on H*(Wy, Q). Hence the map &, : H*(Wy, Q) — H*(W], Q) depends only on
o and is independent of the choice of a lifting 6.

We put P =T'(W, My) and N = I'(T, My) = N. Then the map P =T'(W, My)
— T'(W?, M) defines a frame and the canonical map N — P defines maps (W, [P])
— (T, [N]) and (W7, [P]) — (T, [N]) of framed log schemes. We put (W xtW?)™ =
W X1 W?. Since o is the identity on the log point ¢, we have W? = W, as log
schemes over ¢. Hence the closed fiber (W x1 W?)7" = (W x1t W?)™ Xt ¢ is canoni-
cally identified with (W x1 W)

For an algebraic correspondence I' € CH,(Wy, x1, WY), let I' also denote its
image in GrgG(WL x1, W{) by abuse of notation and let I', € GrgG((W x1t W)T)
denote the specialization (I', /). Since the immersion Ay, : W, — (W xp W)™ is
a regular immersion by Lemma 5.2.3.2, the pull-back Aj, (I') € GrgG(Wt) is defined.
We define the degree map degy,, : G(W,) — G(/) = Z to be the push-forward for
W, - ¢

Theorem 6.3.1. — Let L. be a discrete valuation field with perfect residue field E of char-
acteristic p and £ # p be a prime number. Let o be an automorphism of O}, of order a power of
p which induces the identity on the residue field E. Let W be a projective and strictly semi-stable
scheme of relative dimension d over T = Spec O..

Then for an algebraic correspondence I' € CH,(Wy, x, WY ), we have an equality of integers

(6.5.1.1) Tr (T o0, : H*(Wy, Q) = degyy Ay, (T)).

Proof — We show the formula (6.5.1.1) by using log-etale cohomology of the
closed fiber. Basic references for log-etale cohomology are [12], [28], [29] and [20].

We regard ¢ as a log scheme with the log structure induced by the standard one
on T. The assumption on o means that o acts trivially on the log point ¢ Let 7 be
a log geometric point over the log point ¢ and W; be the geometric closed fiber. Let
H{,, (W7, Q) be the log-etale cohomology. By [29] Proposition (4.2), there is a canon-
ical isomorphism H*(W;, Q) — Hfog(W;, Q).

We fix an isomorphism N” — I'(W, My). It induces an isomorphism N” —
T(W?, My»). We put P=N"@®x N’ and let £ be the subdivision of the dual monoid
N = Hompma(P, N) as in Lemma 5.2.4. Let (W xp W?)™ be the log blow-up
(W x1 W5 of W xp W? studied loc.cit. It contains (W x1 W?)™ as an open sub-
scheme.

We reduce Theorem 6.5.1 to a statement, Lemma 6.5.2 below, for an elem-
ent in Gr%K((W x1 W?)7). Since Wi, and WY are projective and smooth, the Chern
character map ¢4 : Gr%K(WL x1, Wi)g — CH (Wi, x1, WY)q is an isomorphism
by Lemma 2.1.4.3. Since (W xt W?)™ is regular by Lemma 5.2.3.2, the canonical
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map K((W xpr W7)7) — G((W xt W?)7) is an isomorphism. Hence the maps
K(W x1 W9)7) — KWy, x;, W9) and GriK((W xt W?)7) — GriK(Wy, x;, W9)
are surjective. Thus, there exists an element [e GréK((W x1 W?)7)q such that the
image of I" in CH,(Wy, X1, WY)q is equal to cA(I'|w, x, wg). Since the equality (6.5.1.1)
is an equality in Q ;, we may assume that the image of I' in CH,(Wy, x1, Wy)q is the
images of T' € Gr!K((W x1 W?)7) by replacing ' by a multiple.

The diagram

ch

GriK(Wi x. W) —  CHy(Wr xt W7)g —  GryG(Wr x;, WY)

1 L

GriK((W xr W?)") — GriK (W xr W7),) " BGriG((W xr W7) )

Q

| |
Ky, l lA*w

can

GriK(W)) = GryG(W)g
is commutative, since the composition of the top horizontal arrows is the canonical
map by Lemma 2.1.4.3. Hence the image of A, (I') € Grl 0G(W))g is the image of
A:‘V[(Ft) € GrfFlK(Wt) where T, € Gr%K((W X1 W")[ ) is the reduction of T.

Thus Theorem 6.5.1 is reduced to the following lemma. Let deg : Gr%K(W[)

— Z denote the composition map Gr%K(Wt) — Gt ' G(W)) e Z.

Lemma 6.5.2. — Let T be an elmzzem‘ of Gr'FlK((W xt Wo)7). Let ~F €
CH,(WL x1, WY)q be the Chern character ch(T|w, x,we) of the restriction and let A3, (T';) €
Gr%K(W[) be the pull-back of the reduction [ e Gr%K((W xtW2)7) of T'. Then we have an
equality of integers

Tr (" o 0, : H'(Wp, Q) = degy, Ay, (F).

We show that I, € Grf?K((W xt W?)7) defines an endomorphism of
log(W,f, Q) corresponding to I'* o 0, on H*(W;, Q). We define an endomorphism

F* of Hl*og(Wt’ Q) as follows. The Chern character map ¢4 : K((W x1t W?)) —
Hfodg((W Xt W), Q(d)) induces a map ch : GriK(W xp W°)7) —
ngodg((W x1 W)=, Q(d)). It is the composition of the Chern character map ¢/ :
GriK(W xp Wo)7) — H*((W xr W?)7,Q(d)) with the canonical map
H (W x1 W), Q(d)) = Hig (W x: W9)7, Q(d)).

First, we show that the projections (W X W(’) - W, Wx1:W?)™ - W? and
the cup-product induce an isomorphism @p g log(W,f, Q) ® Hlog(W(,’;, Q) —

(WxtW?)", Q(d)). Since (Wx1W?)", W and W? are semi-stable, the log etale

log
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cohomology of the closed fibers are canonically isomorphic to the etale cohomology of
the generic fibers by [29] Proposition (4.2). Since the canonical isomorphism is com-
patible with the pull-back and the cup-product, it is reduced to the Kiinneth formula
for the generic fibers.

Recall that we have W,, = W, as log schemes over ¢{. By Poincaré duality
loc.cit. Theorem (7.5) for log-etale cohomology, we have a canonical isomorphism
@ End(Hlog(W;, Q,) — Hfodg((W x1 W2, Q,(d)). Taking the composition of the
maps, we obtain a map GrFK((W xr W%)) — @ End(Hlog(W;, Q). Thus an
element T, € GréK((W x1 W?),) defines an endomorphism F* of Hf’og(W;, Q). Itis
the composition of

Uc/z(l";)

1og(th Qﬁ) log(W?’ QZ) quog((w X1 W )z‘ ’ QZ)
Hit (W xp W) Q@) — HL, (W7, Q).

log

We show that the endomorphism I'* o o, of H*(W;, Q) corresponds to the
endomorphism I'} on H{, (W3, Q.)).

Lemma 6.5.3. — Let the notation be the same as i Lemma 6.5.2. Let f’f be the endo-
morphism @[Hlog(Wt, Q () defined above and let ch(AT, (F )) € HX (W;, Q ¢ (d)) be the Chern

log
character of the pull-back A:(N,(Ft) € Gr%K(W[). T/zen,
1. The diagram

r* oa*

H* W, Q) —— H W, Q)

(6.5.3.1) cn | e
log(Wt’ Q() —> Hlog(wf’ QK)

is commutative and we have an equality
(6.5.3.2)  Tr (Moo, : H' (W, Q) =Tr (I : Hi ,(W;, Q).
2. We have an equality
Tr (T : Hy (W7, Q) = T (ch(Ay, (1))

Proof. — 1. For the commutative diagram (6.5.3.1), it is sufficient to show the
commutativity of the diagram
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H/(Wp, Q) — HI(WZ, Q) ——> H/(Wp x; W7, Q)

! ! l

*

HL (Wi Q) = H (W2, Q) —"> HL (W x1 W), Q)

[T pis
—_

H* (W xp W2, Q(d)) H'(W;, Q)

! !

Uch(T;) HIQO?(,((W X7 WU)Z_’ Qz(d)) L) H{[og(WE, Q,Z).

The vertical maps are the canonical isomorphisms. The commutativity of the first two
squares is the functoriality of the canonical isomorphisms. The commutativity of the
last square follows from the functoriality and the compatibility with the Poincaré du-
ality. We show the remaining square is also commutative. The diagram

GriK((Wr x1W?)7)  ——  GriK(Wy, x1, WY)
| |

! L

GriK((W xt W) ) CHY(Wy, x1, WY)

i Js
HY (W xe W2)1, Qu(d)) <—— H (W x; W, Q(d))

1s commuatitive, since the composition of the right vertical arrows is the Chern char-
acter map. Hence it follows from the compatiblity of the canonical isomorphism with
the cup-product.

The equality (6.5.3.2) is an immediate consequence of the commutative diagram
(6.5.3.1).

2. By the functoriality of the Chern character map, Kiinneth formula and Poin-
caré duality, we have a commutative diagram

Q

iy

Gr{K((W x1r W?) ) e GriK(W,)
| I

ch ch
! ) !

HY (W xr W), Qe(d)) ——  HIL (W, Qu(d))

| |

S (=DITx
@q End(H{[og(Wf’ QK)) : > Qg .

The equality follows from this immediately. |
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To complete the proof of theorem, we compare the trace map with the degree
map.

Lemma 6.5.4. — Let T' be an element Gr%K(Wt) and let ch(I") be the image by
the Chern character map ch : Gr%K(W,f) — H* (W, Q. (d)). Then we have Tr (ch(I')) =

log
deg I'. In other words, we have a commutative diagram

GriK(W) —— HiY (Wi, Qo (d))

| [

Z _—> Qg.

Proof — Let 1 : W, — W, be the normalization of W,. The scheme W, is
projective and smooth over ¢. We show that the diagram

GriK(W) —2> HY(W;, Q,) —— HX(W;, Q)

log

(6.5.4.1) n*l ﬂ*l lTr

GriK(W,) — H*(W;, Q) — Q.

is commutative. Let W? denote the smooth locus of W;. Then the canonical map
Hfd(W; , Q) — H*(W;, Q) is an isomorphism. The composition Hfd(W; , Q) —
H2(W5, Q) — Q. is the trace map for W7. The other composition Hfd W7, Q) —
ngodg(W;, Q) — Q, is also equal to the trace map for W7 by the definition of the
trace map for log etale cohomology in [28] Proof of Proposition (7.8.2). Hence the
right square is commutative. The left square is commutative by the functoriality of
the Chern character map.

We show the equality Tr (cA(I")) = deg I'. Since the composition of the up-
per line of the commutative diagram (6.5.4.1) is the Chern character map, we have
Tr (¢ci(I")) = Tr (m*(ci(I"))). On the other hand, we have I' = 7, 7% € GrgG(W[)
since 7,[Oy ] = [Ow,] mod F;_;G(W,). Hence we have degy, I' = degy w7l =
degy, . Thus it is reduced to the well-known equality Tr (ci(7*T")) = degy 7*I’

for the projective smooth scheme W,. |

We complete the proof of theorem. We have Tr (I o 0, : H*(Wp, Q)
Tr ch(A5,,(I'})) by Lemma 6.5.3. Further, applying Lemma 6.5.4 to Aj, (I')
Gr{K(W,), we obtain an equality Tr ch(A} (I")) = deg Ay, ().

o m |l

Proof of Theorem 6.3.1. — By Corollary 5.4.9, we may assume K is complete. We
may further assume Xx is irreducible. By Corollary 6.4.3, we have an alteration W as
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in loc. cit. By the computation, Corollary 6.4.5.2, and the log Lefschetz trace formula,
Theorem 6.5.1, we have

[We : Xkl - Sw (I, X /K) = g+ Y sw(0) - degyy, Afy, (D).

O’EPO

Thus the assertion 1 follows. The assertion 2 follows from this equality and Proposi-
tion 6.4.6. O
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