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ABSTRACT

We construct locally generic C1-diffeomorphisms of 3-manifolds with maximal transitive Cantor sets without
periodic points. The locally generic diffeomorphisms constructed also exhibit strongly pathological features general-
izing the Newhouse phenomenon (coexistence of infinitely many sinks or sources). Two of these features are: coex-
istence of infinitely many nontrivial (hyperbolic and nonhyperbolic) attractors and repellors, and coexistence of in-
finitely many nontrivial (nonhyperbolic) homoclinic classes.

We prove that these phenomena are associated to the existence of a homoclinic class H(P, f ) with two spe-
cific properties:

– in a C1-robust way, the homoclinic class H(P, f ) does not admit any dominated splitting,
– there is a periodic point P′ homoclinically related to P such that the Jacobians of P′ and P are greater

than and less than one, respectively.

1. Introduction

One of the main problems in dynamical systems is to describe the limit set
for a large class of diffeomorphisms. The ideal objective is to split the limit set
into finitely many pieces of dynamics which are mutually independent, maximal,
and dynamically indecomposable. The next step should be to give a description
(as complete as possible) of each piece.

In the case of hyperbolic diffeomorphisms, the Smale theory gives a complete
topological description of the limit set: the limit set of a hyperbolic diffeomorphism
is the union of finitely many pairwise disjoint hyperbolic transitive sets (existence of
a dense orbit), these sets are the basic pieces of the Smale theory. These basic sets
are locally maximal and correspond to homoclinic classes of periodic points, see [Sm].
These notions correspond to the ideas of dynamical independence, maximality, and
indecomposability.

The Smale diffeomorphisms fail to be dense in the space of C1-diffeomorph-
isms if the dimension of the ambient manifold is strictly greater than two, see
for instance the first examples in [AS] in dimension greater than or equal to 4,
adapted for 3-manifolds in [Si], and its density remains an open problem for
surface C1-diffeomorphisms. Thus, in the nonhyperbolic setting, it is natural to try
to decompose the limit set of a large class of diffeomorphisms f as the union of
(preferably) finitely many elementary pieces of dynamics playing the role of the
basic pieces of the Smale theory. For the role of elementary pieces of dynamics of

� This paper was partially supported by CNPq, Faperj, and Pronex Dynamical Systems (Brazil), PICS-CNRS
and the Agreement Brazil-France in Mathematics. The authors acknowledge to IMPA and Laboratoire de Topologie,
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a diffeomorphism f defined on a compact manifold M there are three natural
candidates:

• the robustly transitive sets introduced in [DPU]: an f -invariant set Λ is ro-
bustly transitive if there is a neighborhood U of it such that the set
Λg = ⋂

n∈Z gn(U) is transitive and contained in U for every g C1-close
to f and Λf = Λ.
A robustly transitive set Λ is good for the role of elementary piece of
dynamics if the neighborhood U in the definition can be chosen being
a filtrating neighborhood, that is, U = V \ W, where V and W are open
open sets such that f (V) ⊂ V and f (W) ⊂ W. Otherwise, the robustly
transitive set may be included in a greater transitive set.

• Given any periodic saddle P of f , the closure of the transverse intersections
of the stable and unstable manifolds of the orbit of P is a transitive set,
the homoclinic class of P, denoted by H(P, f ).

• The maximal transitive sets, that is, sets which are maximal in the family of all
transitive compact invariant sets of f ordered by inclusion. As the closure
of the union of an increasing (for ⊂) family of transitive sets is transitive,
Zorn’s Lemma ensures that any transitive set is contained in a maximal
one.

These three notions are closely related but, in general, they are not equiva-
lent. We adopt here the generic or locally generic point of view: a property P is
locally generic if there exist a non-empty open set U of Diff 1(M) and a residual
subset R of U on which P is satisfied.

– By definition, every robustly transitive set associated to a filtrating neigh-
bourhood is maximal transitive. Moreover, as a consequence of the Con-
necting Lemma in [H], robustly transitive sets of generic diffeomorphisms
are relative homoclinic classes, where the relative homoclinic class of a sad-
dle P in a neighbourhood U is the closure of the transverse homoclinic
points of P whose orbits are contained in U. However, in general, ho-
moclinic classes (relative or not) fail to be robustly transitive sets (see, for
instance, [BD2]).

– For generic C1-diffeomorphisms, every homoclinic class H(P, f ) is a max-
imal transitive set (see [Ar]) verifying a stronger property: every transitive
set intersecting H(P, f ) is contained in it (see [CMP]1).

Here we prove that generic diffeomorphisms may have maximal transitive
sets which are neither homoclinic classes nor robustly transitive sets (this result

1 This stronger notion corresponds to the so-called maximal transitive sets in [CMP]. The name saturated transitive
set we use here seems to be more coherent with the usual terminology, see Section 1.1.
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will be restated in a more precise and stronger formulation in the next section,
see Theorem A):

Theorem. — Given any compact 3-manifold M there is a locally residual subset F(M)

of Diff 1(M) of diffeomorphisms f having maximal transitive Cantor sets Λf without periodic

points. In particular, the maximal transitive sets Λf are not homoclinic classes.

The sets Λf in the theorem are infinitely renormalizable according to the ter-
minology in [BGLT] or adding machines, see for instance [BS].

Let us observe that, following [CMP], for generic diffeomorphisms, every
maximal transitive set which is not a homoclinic class does not contain periodic
points. So we define aperiodic maximal transitive sets to be the maximal transitive sets
without periodic points. However, as a classical consequence of the Closing Lemma,
see [Pu], every aperiodic maximal transitive set of a generic diffeomorphism is
contained in the closure of the set of periodic points.

The construction of the aperiodic maximal transitive sets in the theorem in-
volves the coexistence of infinitely many (different) homoclinic classes. Actually, due
to a recent result in [Ab], the coexistence of infinitely many different (maybe triv-
ial) homoclinic classes is a necessary condition for the (locally generic) existence
of aperiodic maximal transitive sets. More precisely, [Ab] states that, in a residual
set of Diff 1(M), the cardinality of the set of homoclinic classes is locally con-
stant. Moreover, for those generic diffeomorphisms with finitely many homoclinic
classes, there is a spectral decomposition theorem analogous to the one in the
hyperbolic case (see [Sm]): the non-wandering set is the union of finitely many
pairwise disjoint homoclinic classes exhibiting a weak form of hyperbolicity (exis-
tence of a dominated splitting, see Definition 3.7). Furthermore, as in the hyper-
bolic case, the homoclinic classes are the maximal invariant sets in neighborhoods
corresponding to levels of a filtration. In particular, the maximal transitive sets
of generic diffeomorphisms with finitely many homoclinic classes are homoclinic
classes. This result in [Ab] generalizes the generic dichotomy (hyperbolicity versus
infinitely many sinks or sources) obtained in [Ma] for generic C1-diffeomorphisms
of surfaces.

Theorem A (locally generic existence of aperiodic maximal transitive sets) is
consequence of a generalization of the so-called Newhouse Phenomenon (coexistence of
infinitely many sinks or sources for locally generic diffeomorphisms). In the case of
C2-diffeomorphisms, this phenomenon is associated to the unfolding of homoclinic
tangencies, see [N1], [N2] and [PT] for surface diffeomorphisms and [PV] and
[Tj] in higher dimensions. In the C1-setting the existence of such a phenomenon
for surface diffeomorphisms remains an open question.

In higher dimensions, the C1-Newhouse phenomenon (as well the locally
generic existence of aperiodic maximal transitive sets) is related to the existence
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of wild homoclinic classes, see [BD2]. The homoclinic class H(P, f ) of a periodic
point P is wild if (in a robust way) it does not admit any dominated split-
ting.

In dimension 3, a homoclinic class H(P, f ) is wild if it contains (in a sta-
ble way) a pair of hyperbolic periodic points of indices (dimension of the stable
bundle) two and one whose derivatives have non-real (contracting and expanding,
respectively) eigenvalues. We will write H(P, f ) ∈ W0( f ) if furthermore there is
a periodic point P′ homoclinically related to P, such that the Jacobian of f (at
the period) at the points P and P′ is greater than 1 and less than 1, respectively,
see Definition 1.1.

Here we consider a non-empty open set W0 of diffeomorphisms f (on a com-
pact 3-manifold) having a wild homoclinic class H(P, f ) ∈ W0( f ).

In the next section, in Theorem B, we will give a much more precise state-
ment of the following result:

Theorem. — Generic diffeomorphisms f ∈ W0 satisfy the following universal property: for

every open set O of diffeomorphisms of the disk D3, there are infinitely many disjoint periodic

disks on which the first return map of f is smoothly conjugate to some element of O.

As a consequence we get:

Corollary. — Generic diffeomorphisms f ∈ W0 display infinitely many times (in periodic

disks with pairwise disjoint orbits) any robust property of C1-diffeomorphisms of the disk D3.

In particular, these diffeomorphisms exhibit simultaneously:

• infinitely many pairwise disjoint non-trivial homoclinic classes,

• infinitely many non-trivial hyperbolic and non-hyperbolic attractors, and

• infinitely many non-trivial hyperbolic and non-hyperbolic repellors.

For a more complete list of pathological forms of the Newhouse Phenomenon
see Corollary C.

In the proof of the previous theorem (see also Theorem B), the key technical
result is that given any wild homoclinic class H(Q , f ) ∈ W0( f ) of a diffeomorphism f
there are diffeomorphisms g arbitrarily C1-close to f with a periodic point P of arbitrarily

large period n and arbitrarily close to H(Q , f ) such that the derivative Dgn(P) is the identity,

(see Theorem 3.2). This claim follows by using strongly the arguments in [BDP].
This assertion allows us to prove that given any diffeomorphism f with a wild
homoclinic class H(Q , f ) ∈ W0( f ) and any open set O of diffeomorphisms of the
disk D3 into itself preserving the orientation, there are disks D arbitrarily close
to H(Q , f ) and a C1-perturbation g of f such that the disks D are periodic
for g (i.e., D, g(D), ..., gm−1(D) are pairwise disjoint and gm(D) ⊂ D, for some
m ≥ 1) and the restriction of gm to D is differentially conjugate to some element
of O.
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Let us now explain how Theorem A follows from Theorem B. Consider any
generic diffeomorphism f with a wild homoclinic class in W0( f ). First, by defin-
ition, the property of having a homoclinic class in W0( f ) is an open one. So,
Theorem B implies that there are small periodic disks where the first return map
has a new wild homoclinic class. In other words, by rescaling a generic diffeo-
morphism f with a wild homoclinic class in W0( f ), one obtains a new generic
diffeomorphism f1 with a wild homoclinic class in W0( f1). Arguing inductively, one
gets an infinite decreasing sequence of small periodic disks Dk on which the first
return maps of f have wild homoclinic classes. Finally, the aperiodical maximal
transitive sets of the theorem are obtained as the intersection of the orbits of the
disks Dk.

1.1. Definitions and precise statement of results

Before stating precisely our results let us give some definitions.
Let M be a compact closed manifold and Diff 1(M) the space of C1-diffeo-

morphisms of M endowed with the usual C1-uniform topology. Consider f ∈
Diff 1(M), we say that an f -invariant set Λ is transitive if it is the closure of
the forward orbit of some point x of Λ. A transitive set Λ is maximal if it is
a maximal element of the family of all compact transitive sets of f ordered by
inclusion. A maximal transitive set is aperiodic if it does not contain any periodic or-
bit. A transitive set is saturated if every transitive set Σ intersecting Λ is contained
in Λ (this means that the transitive set is saturated by the equivalence relation
generated by the relation of belonging to the same transitive set). Observe that,
since the union of two transitive sets may fail to be transitive, it is not guaranteed
that every transitive set is contained in a saturated one (recall that it is contained
in a maximal one), see for instance the examples in [DS] of diffeomorphisms with
a pair of different homoclinic classes with non-empty intersection whose union is
not contained in any transitive set.

An f -invariant set Λ of a diffeomorphism f is minimal if the orbit of any
point of Λ is dense in itself (or equivalently, Λ has no proper f -invariant sets).
In particular, an infinite minimal set Λ does not contain periodic orbits. An f -
invariant set Λ is uniquely ergodic if it supports only one f -invariant probability
measure (which is necessarily ergodic). Observe that there are minimal sets where
the restriction of f is not uniquely ergodic (see [Fu]).

The homoclinic class of a hyperbolic periodic point P of f , denoted by H(P, f ),
is the closure of the transverse intersections of the orbits of the stable and unstable
manifolds of P. Every homoclinic class H(P, f ) is an f -invariant transitive set and
the hyperbolic periodic points of the same index as P are dense in H(P, f ) (the
index of a hyperbolic periodic point Q of f is the dimension of the stable bundle
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of f at Q , i.e., the number of eigenvalues of modulus less than one of Df p(Q )(Q )

counted with multiplicity, where p(Q ) is the period of Q ).
Two hyperbolic periodic points P1 and P2 of f are homoclinically related if

Ws(P1) � Wu(P2) �= ∅ and Wu(P1) � Ws(P2) �= ∅ (where Ws(P1) � Wu(P2) denotes
the transverse intersection between Ws(P1) and Wu(P2)). In particular, the indices
of P1 and P2 are equal and their homoclinic classes coincide. In fact, the homo-
clinic class of a hyperbolic periodic point P is the closure of the periodic points
homoclinically related to P.

Finally, a compact set Λ is Lyapunov stable for f if for every neighborhood
U of Λ there is a neighborhood V of Λ such that f i(V) ⊂ U for all i ≥ 0.
Observe that every Lyapunov stable transitive set Λ is saturated: any transitive set
intersecting Λ is contained in any neighborhood of Λ. This also holds if Λ is
Lyapunov stable for f −1.

A set F of Diff 1(M) is residual in an open subset U of Diff 1(M) if there are
open subsets (V )n∈N of Diff 1(M) such that every Vn is dense in U and ∩nVn ⊂ F .
We say that a set F is locally residual if there is a non-empty open subset U of
Diff 1(M) in which F is residual.

Theorem A. — Given any closed 3-manifold M there is a locally residual subset F(M)

of Diff 1(M) of diffeomorphisms f having aperiodic maximal transitive Cantor sets Λf . More-

over, the set Λf is minimal and uniquely ergodic for every f ∈ F(M). In particular, the

maximal transitive sets Λf are not homoclinic classes. Finally, the sets Λf are simultaneously

Lyapunov stable for f and f −1, hence the sets Λf are saturated.

The constructions in the proof of this theorem also implies that every diffeo-
morphism f ∈ F(M) simultaneously has uncountable aperiodic maximal transitive
sets. This remark was pointed out to us by F. Béguin.

Observe that given any hyperbolic periodic point Pf of f there is a C1-
neighborhood V of f such that the continuation Pg of Pf is defined for every g
in V .

Definition 1.1. — Consider a diffeomorphism f defined on a closed three manifold M
and a hyperbolic periodic point Pf of f .

1. The homoclinic class of Pf is wild if there is a neighborhood V0 of f such that,

for any g ∈ V0, the homoclinic class H(Pg, g) does not admit any dominated splitting

(see Definition 3.7 for the notion of dominated splitting).

2. The homoclinic class H(Pf , f ) belongs to W0( f ) if there are two hyperbolic periodic

points Q f and P′
f and a neighborhood V of f where the continuations Pg , P′

g and

Q g are defined for all g ∈ V such that

(a) Q g belongs to H(Pg, g),
(b) the point Pg has index two and a contracting non-real multiplier,

(c) the point Q g has index one and an expanding non-real multiplier,
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(d) the point P′
g has index two and is homoclinically related to Pg ,

(e) Jacgper(Pg ) (Pg) > 1 and Jac
gper(P′

g )(P′
g) < 1, where Jacg(R) denotes the Jacobian of

g at the point R.

We define homoclinic classes of points of index 1 in W0( f ) analogously.

Notice that items (a)–(c) of the definition of homoclinic classes in W0( f )
imply that the homoclinic class H(Pf , f ) is wild.

Denote by W (M) the set of diffeomorphisms of Diff 1(M) having a wild
homoclinic class, and by W0(M) the set of diffeomorphisms f having a homoclinic
class H(Pf , f ) ∈ W0( f ). By the previous comment, W0(M) ⊂ W (M).

By definition, the sets W (M) and W0(M) are open in Diff 1(M). The fact
that the set W0(M) is non-empty can be proved exactly as in [BD2, Section 3.2],
where it is proved that the set W (M) is non-empty, see the appendix (Section 6)
in this paper for details.

The arguments in [BD2] show that C1-generic diffeomorphisms of W0(M)

exhibit simultaneously infinitely many sinks and infinitely many sources. In fact, in
[BDP] it is proved that, for generic diffeomorphisms, any homoclinic class either
has a dominated splitting or is contained in the closure of the (infinite) set of sinks
and sources. Thus generic diffeomorphisms of W (M) (i.e., with a wild homoclinic
class) have infinitely many sinks or sources.

Remark 1.2. — The proof of Theorem A shows that diffeomorphisms with
aperiodic maximal transitive sets are generic in the set W0(M).

We prove that generic diffeomorphisms of W0(M) are the universal models
for 3-dimensional dynamics, in the sense that they satisfy the following universal
property.

Let Dn be the compact ball of radius 1 in Rn and denote by Diff +
int(D

n) the
space of orientation preserving C1-diffeomorphisms φ : Dn → int(Dn) endowed with
the usual C1-topology.

Definition 1.3 (Universal Dynamics). — A diffeomorphism f has universal dynamics at

an f -invariant set Σ if for every open subset O of Diff +
int(D

n) and every point x ∈ Σ there

are sequences of pairwise disjoint disks (Dk)k and of natural numbers (nk)k and a constant

K > 0 such that:

(U1) the disks Dk, f (Dk), ..., f nk−1(Dk) are pairwise disjoint,

(U2) the disks Dk satisfy the following:

• diam(Dk) → 0 and Dk → x as k → ∞,

• (sup{diam( f i(D2k))}n2k−1
i=0 ) → 0 as k → ∞, and

• (sup{diam( f −i(D2k+1))}n2k+1−1
i=0 ) → 0 as k → ∞,
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(U3) f n2k(D2k) ⊂ int(D2k) and the restriction f n2k |D2k of f n2k to D2k is differentially

conjugate to some g2k ∈ O,

(U4) f −n2k+1(D2k+1) ⊂ int(D2k+1) and the restriction f −n2k+1 |D2k+1 is differentially con-

jugate to some g2k+1 ∈ O.

The following result is the key of all the constructions in this paper.

Theorem B. — There is a residual subset U (M) of W0(M) of diffeomorphisms f
with universal dynamics at any wild homoclinic class in W0( f ).

Theorem A will follow from Theorem B. We shall see that for every f in
the residual subset U (M) of W0(M) there are natural numbers nk and disks Dk

as in the definition of Universal Dynamics where the induced dynamics of f (i.e.,
the restriction of f nk or f −nk to Dk, according to the case) belongs to W0(Dk) (the
set of wild diffeomorphisms g of Dk having a homoclinic class in W0(g)). This
fact allows us to apply Theorem B to this small disk Dk. Arguing inductively
and repeating the previous construction infinitely many times, we will get maximal
transitive sets Φ( f ) which are infinitely renormalizable: there are sequences of nested
disks (∆k)k and of natural numbers (nk) satisfying conditions (U1)–(U4) above such
that

Φ( f ) =
⋂

2k

∆̂2k, where ∆̂2k =
n2k−1⋃

i=0

f i(∆2k).

By construction, the Cantor set Φ( f ) is minimal, maximal transitive, and
Lyapunov stable for f and f −1, see Proposition 4.2 and Section 4 for the details
of this construction

A property P of a diffeomorphism f is a robust property if every diffeomor-
phism in some C1-neighborhood of f verifies P.

Similarly, a property P is generic in an open set V of diffeomorphisms if
there is a residual subset R of V consisting of diffeomorphisms satisfying P.
Finally, a property P is locally generic if it is generic in some non-empty open set
of Diff 1(M). As a direct consequence of Theorem B we now have the following
heuristic principle.

Heuristic principle. — Given any robust or locally generic property P of Diff+
int(D

3)

there is a residual subset RP(M) of W0(M) of diffeomorphisms satisfying P. Moreover, this

property is displayed by every f ∈ RP(M) in infinitely many disjoint periodic disks.

In the next corollary we summarize some of these dynamical robust proper-
ties we consider more relevant:
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Corollary C. — There is a residual subset R(M) of the set W0(M) contained in

the set of wild diffeomorphisms consisting of diffeomorphisms f having simultaneously infinitely

many:

a) Sinks and sources.

b) Independent saddles, (i.e., saddles whose homoclinic classes consist only of a periodic

orbit).

c) Non-trivial uniformly hyperbolic transitive attractors and repellors.

d) Non-trivial partially hyperbolic robustly transitive attractors and repellors.

e) Homoclinic classes containing persistently saddles of different indices.

f) Wild homoclinic classes Λi ∈ W0( f ).
g) Aperiodic maximal transitive Cantor sets Fi where f is minimal. Moreover, the sets

Fi are simultaneously Lyapunov stable for f and f −1, hence every Fi is saturated.

Moreover, the wild homoclinic classes Λi and the aperiodic maximal transitive sets Fi

can be chosen such that
⋃

Λi =
⋃

Fi.

Let us observe that we do not know if last the equality in the corollary
holds for all the aperiodic maximal transitive sets.

Our constructions can be carried out in higher dimensions. First, a trivial
way to get aperiodic maximal transitive sets in higher dimensions consists of multi-
plying the dynamics on D3 by a hyperbolic transverse dynamics in such a way the
disk turns out to be normally hyperbolic. On the other hand, a more interesting
approach is to get universal dynamics in higher dimensions by defining wild ho-
moclinic classes in W0( f ) similarly: these classes contain in a robust way periodic
saddles of any possible index (2, ..., dim(M)−1), possess complex (non-real) eigenval-
ues of any rank (see [BDP] for the definition of rank), and, for any k ∈ [2, dim M],
has homoclinically related points of index k having Jacobians greater than and less
than one.

Recall that a topological attractor of a diffeomorphism f is a compact set Γ

such that there is a compact neighbourhood ∆ of it such that f (∆) is con-
tained in the interior of ∆ and ∩i≥0 f i(∆) = Γ. By construction, the aperi-
odic maximal transitive sets in Corollary C are a countable intersection of (non-
transitive) attractors. Thus, in the terminology introduced in [Hu], these sets are
quasi-attractors. Recall that the aperiodic maximal transitive Cantor sets here are
Lyapunov stable for f and f −1, so they have trivial stable and unstable basins.
This fact gives counter-examples2 (in the C1-setting) to the following question posed
in [Hu]:

2 This consequence of the results in this paper has been pointed out to us by M.-C. Arnaud and by a ref-
eree.
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Are generic chain recurrent quasi-attractors attractors?

In the case of tame diffeomorphisms, i.e., diffeomorphisms having finitely many
pairwise disjoint homoclinic classes and whose number is locally generically con-
stant, in [CM] it is proved that the union of the basins of the (topological) at-
tractors is open and dense in the ambient manifold. This result, the question in
[Hu], and our constructions (in the world of the wild diffeomorphisms) suggest the
following problems concerning the size of the basins of attraction of the aperiodic
maximal transitive sets with minimal dynamics in this paper.

Problems.

• Consider a diffeomorphism f in the residual subset R(M) of W0(M) in
Corollary C. Is there an aperiodic maximal transitive set F of f whose
basin of attraction has non-empty interior? Or a weaker version of this
question; does the basin of attraction of F contain a residual subset in
some non-empty open subset of M?

• In the opposite direction of the previous questions, there is the following natural problem.

For generic diffeomorphisms f of Diff 1(M), is the union of the basins of
the (topological) transitive attractors of f dense in the whole manifold?
For generic diffeomorphisms f , the set of periodic points of f is dense in the nonwan-

dering set of f , in particular any topological attractor of f contains periodic points.

Hence, a positive answer to this problem will imply a negative answer to the first one.

This paper is organized as follows. In the next section we sketch the proof
of Theorem B. In Section 3 we give the complete proof of Theorem B. This
section has two preparatory parts, the first one concerning perturbations of the
identity (see Section 3.1) and the second one about dynamical perturbations of the
derivative (see Section 3.2). In Section 4 we deduce Theorem A from Theorem B.
Corollary C is proved in Section 5. Finally, in the Appendix (Section 6) we outline
the construction of the wild homoclinic classes in W0( f ).

2. Sketch of the proof of Theorem B

Consider an open subset W0 of W0(M) of diffeomorphisms f having a wild
homoclinic class H(Pf , f ) ∈ W0( f ), where Pf is a saddle of index 2 depending
continuously on f ∈ W0. Observe that W0(M) can be written as union of the sets
of the form of W0, so that it is enough to prove Theorem B for the set W0.

The proof of Theorem B consists of the following steps:

Step 1. — We begin by proving that given any open subset O of Diff +
int(D

3)

and any open set V of M, there are an arbitrarily small C1-perturbation h of the



ON MAXIMAL TRANSITIVE SETS OF GENERIC DIFFEOMORPHISMS 181

identity map in V, a small disk D ⊂ V, and k > 0 such that the (k − 1) first
iterates of D by h are pairwise disjoint, hk(D) ⊂ int(D), and hk|D is differentially
conjugate to some g ∈ O. This is done in Proposition 3.1.

Given f ∈ W0 and ε > 0 consider the set Σ(ε, f ) of hyperbolic periodic
points R of f such that

• R is homoclinically related to Pf , and

• log ( Jacf per(R) (R))
per(R)

∈ (−ε, ε).

Step 2. — The next step is to see that, for every ε > 0 and every f ∈ W0,
the set Σ(ε, f ) is dense in H(Pf , f ), see Lemma 3.5.

Step 3. — Using the point Q f of index one with a non-real expanding eigen-
value in the definition of wild homoclinic class in W0( f ), we have that H(Pf , f )

does not admit any dominated splitting for all f ∈ W0. Step 2 now implies that,
for every f ∈ W0 and every ε > 0, the set Σ(ε, f ) does not admit any dominated
splitting (see Definition 3.7 and Lemma 3.8).

Step 4. — Using the fact that Σ(ε, f ) does not admit any dominated splitting,
Proposition 2.1 in [BDP] implies that, for every δ > 0, there are a point P1 ∈
Σ(ε, f ) and a δ-perturbation of the derivative of f throughout the orbit of P1

(without modifying neither the f -orbit of P1 nor the Jacobian of f at P1) such that
the linear map A : TP1M 
→ TP1M corresponding to the product of the perturbed
derivatives along the orbit of P1 is a homothety. By definition of Σ(ε, f ), the linear
map A verifies

log(det(A))

per(P1)
∈ [−ε, ε].

So, after a new ε-perturbation, we can assume that det(A) = 1, i.e., the linear
map A is the identity.

Step 5. — By a lemma of Franks (see Lemma 3.4), we can perform the pre-
vious perturbation of the derivative of f dynamically, obtaining a diffeomorphism
g arbitrarily C1-close to f with a periodic point P1 whose derivative is the iden-
tity. After a new small perturbation, if necessary, we can assume that gper(P1) is the
identity map in a small neighborhood V of P1, see Theorem 3.2.

Step 6. — The end of the proof of Theorem B involves an inductive argu-
ment (see Section 3.3). In rough terms, we apply Step 1 to gper(P1) and check that
the disk D in Step 1 can be taken arbitrarily close to any point x ∈ H(Pf , f ).
This will be done using the density of Σ(ε, f ) in H(Pf , f ) and the constructions
in [BDP]. Finally, we get in the disk D a point with a wild homoclinic class and
repeat the procedure above (this gives the inductive pattern).
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3. Proof of Theorem B

3.1. Perturbations of the identity map

Proposition 3.1. — Let D ⊂ M be a compact ball and φ any diffeomorphism in

Diff +
int(D

3). Then every neighborhood of the identity map of D contains a diffeomorphism f
such that

• f coincides with the identity in a neighborhood of the boundary of D,

• there are a disk D0 ⊂ D and a natural number n0 such that D0, f (D0), ..., f n0−1(D0)

are pairwise disjoint sets, f n0(D0) ⊂ int(D0), and the restriction of f n0 to D0 is dif-

ferentially conjugate to some φ ∈ O.

This proposition follows from the following classical result (see J. Cerf, [Ce]):

Theorem. — Let Diff 1
0(D

3) be the group of C1-diffeomorphisms of the disk D3 coincid-

ing with the identity in a neighborhood of the boundary ∂D3 of D3. Then every diffeomorphism

g ∈ Diff 1
0(D

3) is isotopic to the identity by a path gt ∈ Diff 1
0(D

3).

Proof of the proposition. — Observe first that, up to a choice of a diffeomor-
phism ψ : D → D3, one can assume that D is equal to D3.

Fix φ in Diff +
int(D

3) and choose a diffeomorphism g of D3 coinciding with
the identity in a neighborhood of the boundary of D3 and such that there is
a disk D̂ in the interior of D3 such that the restriction of g to D̂ is smoothly
conjugate to φ.

The previous theorem implies that g can be written as the composition gk ◦
· · · ◦ g1 ◦ g0 of finitely many diffeomorphisms gi arbitrarily close to the identity.

We first perturb the identity map of D3 to get a diffeomorphism h equal
to identity in a neighborhood of the boundary ∂D3, and a periodic round disk
D0 ⊂ D3 of arbitrarily large period n0 ≥ k such that

• D0, h(D0), ..., hn0−1(D0) are pairwise disjoint,
• h : hi(D0) → hi+1(D0) is an isometry for every i ∈ {0, ..., n0 − 1},
• hn0 : D0 → D0 is equal to the identity.

We now write g = gn0−1 ◦ · · · ◦ g0, where, for 0 ≤ i ≤ k, the gi are as above
and, for i > k, we take gi equal to the identity. Consider an affine bijective map
H : D0 → D3, and define

g̃i = H−1 ◦ gi ◦ H : D0 → D0.

Replace now the restriction of h to each disk hi(D0) by the map hi+1 ◦ g̃i−1 ◦
h−i and denote by f the resulting diffeomorphism. Since the restrictions of h to
the iterates hi(D0) are isometries and the maps gi are C1-close to identity, the
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diffeomorphism f is C1-close to h. Observe that, by construction, the restriction of
f n0 to D0 is

f n0 = hn0 ◦ g̃n0−1 ◦ · · · ◦ g̃0 = H−1 ◦ gn0−1 ◦ · · · ◦ g0 ◦ H = H−1 ◦ g ◦ H,

where the second identity follows recalling that the restriction of hn0 to D0 is the
identity. Since g is differentially conjugate to φ, it is clear that the disk D0, the
natural number n0, and the map f verify all properties in the proposition, ending
the proof of the proposition. 
�

3.2. Perturbations of the derivative at a periodic point

Theorem 3.2. — Consider the open subset W0 of W0(M) of diffeomorphisms f having

a wild homoclinic class H(Pf , f ) ∈ W0( f ), where the point Pf has index 2 and depends

continuously on f ∈ W0. Then for every diffeomorphism f in W0 and every ε > 0 there are:

• a hyperbolic periodic point x homoclinically related to Pf (thus x ∈ H(Pf , f )) whose

orbit is ε-dense in H(Pf , f ),

• a small neighborhood V of x and an ε-perturbation g of f along the orbit of x, such

that the sets V, g(V), ..., gp(x)−1(V) are pairwise disjoint and the restriction of gp(x)

to V is the identity map (p(x) is the period of x). Moreover, the orbits of x by f
and g coincide.

Given a periodic point x of f we let

J(x, f ) = log(Det(Df p(x)(x)))
p(x)

.

For given ε > 0 and f ∈ W0, denote by Σ(ε, f ) the set of periodic points
x homoclinically related to Pf whose orbit is ε-dense in H(Pf , f ) and such that
J(x, f ) ∈ (−ε, ε).

To prove Theorem 3.2 we analyze the linear cocycle defined by the differ-
ential of f over the wild homoclinic class H(Pf , f ), its restriction to Σ(ε, f ), and
the perturbations of this cocycle. A lemma of Franks (Lemma 3.4) will allow us to
realize such perturbations of the cocycle as C1-perturbations of f . The main step
to prove Theorem 3.2 is now the following proposition:

Proposition 3.3. — Let W0 ⊂ W0(M) as in Theorem 3.2. Then for every f ∈ W0

and every ε > 0 there are a hyperbolic periodic point x in Σ(ε, f ) and an ε-perturbation

A( f i(x)) : Tf i(x)M → Tf i+1(x)M

of the derivative of Df along the orbit of x such that the product

MA(x) = A( f p(x)−1) ◦ · · · ◦ A(x)

is the identity map.
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Before proving the proposition, let us prove Theorem 3.2.

Proof of the theorem. — We begin by stating the announced lemma of Franks:

Lemma 3.4 ([Fr], [Ma]). — Consider a C1-diffeomorphism ϕ and a ϕ-invariant finite

set Σ. Let L be an ε-perturbation of Dϕ along Σ (i.e., the linear maps L(x) and Dϕ(x)
are ε-close for all x ∈ Σ). Then for every neighborhood U of Σ there is a diffeomorphism φ,

C1-ε-close to ϕ, such that:

• ϕ(x) = φ(x) if x ∈ Σ or if x �∈ U,

• Dφ(x) = L(x) for all x ∈ Σ.

Applying Lemma 3.4 to a diffeomorphism f in W0, the set Σ = {x, f (x),
..., f p(x)−1(x)} (x as in Proposition 3.3), and the linear map L = A (A is the pertur-
bation of the derivative in Proposition 3.3), we get a perturbation g of f preserving
the orbit of x with Dgp(x)(x) = Id .

The first part of the theorem follows recalling that, by definition of Σ(ε, f ),
the orbit of x is ε-dense in H(Pf , f ).

For the second part of the theorem, observe that, after a new perturbation
of g throughout the orbit of x, we get a neighborhood V of x such that V, g(V)

and gp(x)−1(V) are pairwise disjoint and the restriction of gp(x) to V is the identity.
Observe that, by construction, the orbits of x by f and g are the same.

The proof of Theorem 3.2 is now complete. 
�
The proof of Proposition 3.3 is a small variation of the main technical result

in [BDP]: Given any non-trivial homoclinic class H that does not admit any dominated splitting

(see Definition 3.7) there are a periodic point x ∈ H and a perturbation of the derivative of

f along the orbit of x such that the product of the perturbed derivatives along this orbit is

a homothety, (see [BDP, Proposition 2.1]). Here we use the fact that the points in
Σ(ε, f ) have Jacobians close to 1 to get the homothety being the identity. The
main difficulty here is to check that the set Σ(ε, f ) verifies the hypotheses in
[BDP].

To prove Proposition 3.3 we need to state some properties of the sets Σ(ε, f ).
This will be done in the next two lemmas.

Lemma 3.5. — Consider any ε > 0 and f ∈ W0. Then Σ(ε, f ) is a dense subset of

H(Pf , f ).

Proof. — Recall that, by definition of wild homoclinic class in W0( f ), we
have that J(Pf , f ) > 1 and that H(Pf , f ) contains a point P′

f homoclinically related
to Pf with J(P′

f , f ) < 1. This implies that for every δ > 0 there is a hyperbolic
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basic set3 Hδ ⊂ H(Pf , f ) containing Pf and P′
f which is δ-dense in H(Pf , f ). We

choose a Markov partition of Hδ by rectangles of small size such that the variation
of log(det(Df (x)) in each rectangle is less than ε/2.

Now, given any periodic point x ∈ Hδ, J(x, f ) is determined (up to an error
of ε/2) by its itinerary. For each n1 and n2 (big enough) there is a periodic point
x of period n1 + n2 + k spending n1 consecutive iterates in the same rectangles that
the iterates of Pf , n2 consecutive iterates in the rectangle containing the iterates
of P′

f , and k iterates passing through all rectangles of the partition, where k is
bounded independently of n1 and n2. Choosing appropriated n1 and n2, we get
a point x ∈ Hδ such that J(x, f ) is ε-close to 0 and whose orbit intersects all
the rectangles of the partition. As we can take the size of the rectangles of the
partition and δ arbitrarily small, we get that the orbit of x is ε-dense in H(Pf , f ).
Thus the periodic point x belongs to Σ(ε, f ). The same proof gives the density
of Σ(ε, f ) in H(Pf , f ). This ends the proof of the lemma. 
�

We have the following lemma which follows straightforwardly from the proof
of Lemma 3.5:

Lemma 3.6. — Consider any ε > 0 and f ∈ W0. Then given any finite subset Ξ of

Σ(ε, f ) there is a basic transitive set Λ containing Ξ whose periodic points belong to Σ(ε, f ).

Proof. — Observe that all the points in the set Ξ are homoclinically related
and, for every x ∈ Ξ, |J(x, f )| < (ε − δ) for some δ > 0. Thus there is a basic set
Λ′ ⊂ H(Pf , f ) containing Ξ. Consider now a Markov partition of Λ′ by sufficiently
small rectangles (as in Lemma 3.5, this allows us to control the Jacobians up to
an error less than δ/2). Finally, the set Λ corresponds to the points in Λ′ whose
itineraries are determined by a sub-shift of finite type associated to the rectangles
of the partition. As in Lemma 3.5, the choice of the sub-shift is done to have
a suitable control of the Jacobians. The proof of the lemma is now complete. 
�

Let us recall the definition of dominated splitting.

Definition 3.7. — A dominated splitting of an f -invariant set Λ is a Df -invariant

splitting E ⊕ F defined over TΛM such that the fibers of E and F have constant dimension

and there is k ≥ 1 such that for every x ∈ Λ one has

||Df k|E(x)|| · ||Df −k|F( f k(x))|| <
1
2
,

that is, the derivative Df expands the vectors in F uniformly more than the vectors in E. Then

we say that F dominates E and write E ≺ F.

3 A basic set is a transitive hyperbolic compact set with local product structure, or, equivalently, which is the max-
imal invariant set in some neighborhood of it.
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Lemma 3.8. — Consider any diffeomorphism f ∈ W0 and ε > 0. Then the set Σ(ε, f )

does not admit any dominated splitting.

Proof. — By Lemma 3.5, the set Σ(ε, f ) is dense in H(P, f ). Observing that
a dominated splitting defined in a set Λ always admits a dominated extension to
the closure of Λ (see, for instance, [BDP, Lemma 1.4]), it is enough to see that
H(Pf , f ) does not admit any dominated splitting for every f ∈ W0.

We argue by contradiction, let f ∈ W0 and suppose that there is a dominated
splitting

TH(Pf , f )M = E ⊕ F, E ≺ F.

The fact that Pf has a non-real contracting eigenvalue implies that dim(E) = 2.
Similarly, the fact that Q f ∈ H(Pf , f ) has a non-real expanding eigenvalue implies
that dim(F) = 2. Thus dim(E) + dim(F) = 4 > 3 = dim(M), which is a contradic-
tion. 
�

We can now finish the proof of Proposition 3.3:

Proof of the proposition. — Let f ∈ W0. Consider the continuous linear cocycle
D induced by Df over Σ(ε, f ). By Lemma 3.8, this cocycle does not admit any
dominated splitting. As all orbits in Σ(ε, f ) are periodic, we have a continuous linear

periodic system, according to the terminology in [BDP, Section 1.1].
Lemma 3.9 and the proof of [BDP, Lemma 1.9] imply that the cocycle D

admits transitions, see [BDP, Definitions 1.6 and 1.8]4. This implies that the cocycle
D over Σ(ε, f ) verifies the hypotheses of [BDP, Proposition 2.1]. So, given any
δ > 0, there are a point x ∈ Σ(ε, f ) and a δ-perturbation B of D along the orbit
of x such that MB(x) is a homothety (recall that MB(x) = B( f p(x)−1) ◦ · · · ◦ B(x)).
Moreover, if δ is small enough,

J(x,B) = log(det(MB(x)))
p(x)

∈ [−2ε, 2ε].

By multiplying B along the orbit of x by a number λ close to 1 (in fact, λ =
e−| J(x,B)|/3, where 3 = dim(M)) we get a new perturbation A of D along the orbit
of x such that MA(x) = Id . This ends the proof of the proposition. 
�

4 The precise definition of transitions is somewhat technical and we do not use explicitly it here. This notion
is a formalization of the following intuitive idea: consider a finite set X of periodic orbits of a hyperbolic basic set Λ.
Then, there are periodic points of Λ whose orbits visit a small neighborhood of some orbit of X, remain there an
arbitrarily large time and go (in a uniformly bounded time) to the neighborhood of another orbit of X, remain there
an arbitrarily large time, and so on, until the period. The derivatives at these orbits are essentially products of the
derivatives at the orbits of X with some correcting terms, which are bounded matrices called transitions and corres-
pond to the itineraries out of a small neighborhood of X. Here Lemma 3.9 asserts that any finite set of Σ(ε, f ) is
contained in a basic set whose periodic orbits are in Σ(ε, f ), providing the existence of transitions.
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3.3. End of the proof of Theorem B

Given an open subset O of Diff+
int(D

3) and ε > 0 let P(O, ε,W0) be the
subset of W0 (W0 is the open subset of W0(M) in Theorem 3.2) of diffeomorphisms
f such that there are a neighborhood Uf of f in W0, a disk D, and a natural
number n > 0, such that every g ∈ Uf satisfies the following properties:

(P1) the iterates gi(D), i = 0, ..., n − 1, are pairwise disjoint,
(P2) gn(D) is contained in the interior of D,
(P3) for every point x ∈ H(Pg, g) there is i ∈ {0, ..., n − 1} such that gi(D)

is contained in the ball B(x, ε),
(P3’) the iterates gi(D), i = 0, ..., n−1, are contained in the ε-neighborhood

of H(Pg, g),
(P4) the diameters of the family of disks {gi(D)}n−1

i=−n are upper bounded by
2 ε,

(P5) the restriction of gn to D is differentially conjugate to some ϕ ∈ O.

We denote by P−(O, ε,W0) the set of diffeomorphisms f in W0 whose in-
verse f −1 belongs to P(O, ε,W0).

Remark 3.9.

1. The sets P(O, ε,W0) and P−(O, ε,W0) are both open (even if the prop-
erty P3 is not open): by definition, any f ∈ P(O, ε,W0) admits a neigh-
bourhood Uf of diffeomorphisms verifying (P1–P5), thus Uf

⊂ P(O, ε,W0).
A priori, these sets may be empty. In the next lemma we will see that
they are dense in W0.

2. For every f ∈ P(O, ε,W0), there is a neighborhood V of f where the
natural number n is constant, and the disk D and the conjugacy between
the restriction of gn to D and some element of O ⊂ Diff+

int(D
3) can be

chosen depending continuously on g. We call this conjugacy the identification

between D and D3.

Lemma 3.10. — The sets P(O, ε,W0) and P−(O, ε,W0) are open and dense in

W0 for every ε > 0 and every open set O ⊂ Diff+
int(D

3).

Proof. — We prove the lemma for P(O, ε,W0), the proof for P−(O, ε,W0)

is the same. By Remark 3.9, it is enough to prove the density of P(O, ε,W0)

in W0.
Observe that the map g 
→ H(Pg, g) is lower semi-continuous. So there is

a residual subset S1 ⊂ W0 where this map is continuous. Thus to prove the
lemma it is enough to see that given any f ∈ S1 there is an arbitrarily small
perturbation of f in P(O, ε,W0).
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Given f ∈ S1, consider ε0 > 0 such that, for every diffeomorphism g ε0-close
to f , the Hausdorff distance between the homoclinic classes H(Pf , f ) and H(Pg, g)
is less than ε/10. By Theorem 3.2, given any 0 < ε1 < inf{ε0/10, ε/10}, there are

• a hyperbolic periodic point y ∈ H(Pf , f ) homoclinically related to Pf whose
orbit is ε1-dense in H(Pf , f ),

• an ε1-perturbation f1 of f along the orbit of y and a neighborhood V of y
such that V, f1(V), ..., f p( y)−1

1 (V) are pairwise disjoint, the restriction of f p( y)
1

to V is the identity, and the orbits of y by f and f1 coincide.

Applying Proposition 3.1 to a small compact ball D contained in V and the
open set O, we get an ε1-perturbation F of the identity in the disk D that can
be extended to the identity outside the disk D, a disk D0 ⊂ D (with diameter less
than ε1) and k, such that the map f2 = F ◦ f1 and the natural number m = p( y) · k
satisfy the following properties:

(d1) the disks { f i
2 (D0)}m−1

i=0 are pairwise disjoint,
(d2) f m

2 (D0) ⊂ int(D0) and the restriction of f m
2 to D0 is differentially conju-

gate to an element of O (recall that f p( y)
1 is the identity in D, so f p( y)

2

coincides with F in D),
(d3) the disk f i

2 (D0) is contained in the interior of the ball B( yi, ε1) of radius
ε1 centered at yi, where yi = f i

1 ( y) = f i( y) and i ≥ 0,
(d4) the diameters of the family of disks { f i

2 (D0)}m−1
i=−m are strictly upper

bounded by 2 diam(D0) = 2 ε1.

Observe that conditions (d1), (d2), (d3) and (d4) are open ones.
The previous assertion implies that there is a non-empty open set O1 such

that every f2 ∈ O1 is an ε1-perturbation of f1 and verifies (d1)–(d4) above, where
in these conditions the disk D0, the natural number m, and the points yi do
not depend on the diffeomorphisms, that is, the disks { f i

2 (D0)}m−1
i=0 are pairwise

disjoint, f m
2 (D0) ⊂ int(D0), the restriction of f m

2 to D0 is differentially conjugate
to an element of O, and f i

2 (D0) is contained in the interior of B( yi, ε1), i ∈
{0, 1, ..., m − 1}.

Let us state a remark about the disk D0 we will use later.

Remark 3.11. — The orbit of the disk D0 is disjoint from H(Pf2, f2).

This remark follows by observing that the point Pf2 does not belong to the
segment of orbit V, f2(V), ..., f p( y)−1

2 (V) and that the disk D0 is strictly forward
f2-invariant and contained in V ∪ f2(V) ∪ · · · ∪ f p( y)−1

2 (V2).

To conclude the proof of the lemma it is enough to check that every f2 ∈ O1

is an ε0-perturbation of f and belongs to P(O, ε,W0). The first assertion follows
immediately observing that f2 is a (3 ε1)-perturbation of f and that ε1 < ε0/10.
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For the second one, observe that, by construction, f2 verifies (P1), (P2),
(P4) and (P5) in the definition of P(O, ε,W0). So it remains to see that f2 also
verifies (P3) and (P3’).

Let us show that it verifies (P3), that is, given any point x2 ∈ H(Pf2, f2) there
is i ∈ {0, 1, ..., m − 1} such that f i

2 (D0) ⊂ B(x2, ε).
To see why this is so observe that, by the choice of ε0, the Hausdorff dis-

tance between H(Pf2, f2) and H(Pf , f ) is less than ε/10. Thus, given any x2 ∈
H(Pf2, f2) there is x ∈ H(Pf , f ) with d(x2, x) < ε/10. Hence, by the choice of y (the
f -orbit of y is ε1-dense in H(Pf , f ) and is equal to the f1-orbit), there is some i
such that f i( y) = f i

1 ( y) = yi ∈ B(x2, ε1 + ε/10). Therefore,

B( yi, ε1) ⊂ B(x2, 2 ε1 + ε/10) ⊂ B(x2, ε).

Finally, by condition (d3) above, there is i such that

f i
2 (D0) ⊂ B( yi, ε1) ⊂ B(x2, ε).

In the same way, the property (P3’) follows from the lower semi continuity
of the homoclinic class H(Pg, g) and from property (d3).

Since the previous argument holds for every sufficiently small ε0 > 0, the
proof of the density of P(O, ε,W0) in W0 is complete. This also ends the proof
of the lemma. 
�

Consider now a countable basis On of the topology of Diff+
int(D

3) and a se-
quence εn > 0 with εn → 0 as n → +∞. Define the set

U0 =
⋂

i,j∈N

(P(Oi, εj,W0) ∩ P−(Oi, εj,W0)).

By Lemma 3.10, the set U0 is a countable intersection of dense open subsets of
W0, thus it is a residual subset of W0.

The first step of the proof of Theorem B is to see that it holds for a fixed
wild homoclinic class H(Pf , f ) ∈ W0( f ). This is a consequence of the next lemma:

Lemma 3.12. — Every f ∈ U0 has universal dynamics at H(Pf , f ) (recall Defin-

ition 1.3).

Proof. — Given f ∈ U0 denote by D+
i,j and m+

i,j (resp. D−
i,j and m−

i,j ) the
disk and the natural number (period of the disk) associated to f by the condition
f ∈ P(Oi, εj,W0) (resp. f ∈ P−(Oi, εj,W0)), and so verifying the conditions (P1)–
(P5).

Claim 1. — There are two sequences j(i) and k(i) converging to +∞ as
i → +∞ and satisfying the following property:
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• given any integer i ∈ N denote by δ2i and δ2i+1 the disks D+
i,j(i) and

D−
i,k(i), respectively, and consider the unions ∆2i = ⋃+∞

n=0 f n(δ2i) and ∆2i+1 =
⋃+∞

n=0 f −n(δ2i+1). Then the sets ∆	, 	 ∈ N, are pairwise disjoint.

Before proving the claim, let us conclude the proof of Lemma 3.12. Consider
any open set O of Diff+

int(D
3) and any point x ∈ H(Pf , f ). As the set Oi are a basis

of the topology of Diff+
int(D

3), there is an infinite sequence in → +∞ such that
Oin ⊂ O. Property (P3) implies that, for any integer i, the disk δ2i has a positive
iterate D2i contained in the ball B(x, εj(i)) and the disk δ2i+1 has a negative iterate
D2i+1 contained in the ball B(x, εj(i)). Now one easily verifies that the sequence
Dk, k ∈ N, verifies all the conditions (U1)–(U4) in the definition of the universal
dynamics, concluding the proof of the lemma.

We now prove the claim. By Remark 3.11, the homoclinic class H(Pf , f )

and the forward f -orbit of D+
i,j are compact disjoint sets, thus there is µ+

i,j > 0
such that the distance between H(Pf , f ) and

⋃
k≥0 f k(D+

i,j) is greater than 2 µ+
i,j.

We argue analogously with H(Pf , f ) and the backward f -orbit of D−
i,j , obtaining

a positive lower bound 2 µ−
i,j for the distance between H(Pf , f ) and

⋃
k≤0 f k(D−

i,j).
We build the sequences j(i) and k(i) inductively. Assume that j(0), k(0), ...,

j(i), k(i) are defined, we define j(i + 1) and k(i + 1) as follows: we choose j(i + 1)

such that

εj(i+1) < inf
{
µ+

	,j(	), µ
−
	,k(	), 	 = 0, ..., i

}
.

Property (P3’) asserts that the union of the positive iterates of the disk D+
i,j(i+1) is

contained in the εj(i+1) neighborhood of H(Pf , f ) so that ∆2(i+1) is disjoint from
the ∆	, 	 ≤ 2i + 1. In the same way, we choose k(i + 1) such that

εk(i+1) < inf
{
µ+

i+1,j(i+1), inf
{
µ+

	,j(	), µ
−
	,k(	), 	 = 0, ..., i

}}
.

This concludes the proof of the claim. 
�
To end the proof of Theorem B we need to get the universal property for

all the wild homoclinic classes in W0( f ) ( f in a residual subset of W0(M)). For
that consider a countable basis Gn of the set of wild diffeomorphisms of W0(M)

and, for each n, consider all the pairs (Gn, P : Gn → M) where P is a continuous
map associating to each f a hyperbolic periodic point P( f ) of f with a wild
homoclinic class in W0( f ). Observe that this set of pairs is countable. Thus we
can index them in the form Yi = (Gn(i), Pi).

By Lemma 3.12, there is a residual subset Zi of Gn(i) such that every f ∈ Zi

has universal dynamics at H(Pi( f ), f ).
Consider now Vi = Zi ∪ (W0(M) \Gn(i)). This set is residual in W0(M). Then

V = ⋂
i∈N Vi is residual in W0(M) and any f ∈ V has universal dynamics at each

wild homoclinic class of W0( f ). This completes the proof of Theorem B. 
�
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4. Aperiodic maximal transitive Cantor sets

In this section we prove Theorem A.

4.1. Notations

By definition, every f ∈ W0(M) has a saddle Pf such that H(Pf , f ) is a wild
homoclinic class in W0( f ). Moreover, for every f ∈ W0(M) there is a neighborhood
where the points Pg depend continuously on g. Using the metrizability of Diff 1(M),
one gets a dense open subset W1(M) ⊂ W0(M) and a continuous function f 
→
P0( f ) defined on W1(M) such that H(P0( f ), f ) ∈ W0( f ) for all f ∈ W1(M).

We denote by W0(D3) ⊂ Diff+
int(D

3) the subset of diffeomorphisms f having
a wild homoclinic class in W0( f ) and, as above, consider a dense open subset
W1(D3) of W0(D3) of diffeomorphisms with a point P( f ) depending continuously
on f ∈ W1(D3) and having a wild homoclinic class in W0( f ).

Given ε > 0, consider now the sets P(M, ε) = P(W1(D3), ε,W1(M)) de-
fined as in Section 3.3 and associated to the open sets O = W1(D3) and W0 =
W1(M). By Lemma 3.10, the set P(M, ε) is open and dense in W1(M) for every
ε > 0.

We observed in Remark 3.9 that the disks D1( f ) and the natural numbers
k1( f ) verifying (P1)–(P5), as well as the identification of D1( f ) with D3 con-
jugating f k1( f ) to some gf ∈ W1(D3), can be chosen varying locally continuously.
Moreover, as the restriction of f k1( f ) to D1( f ) is conjugate to some gf ∈ W1(D3)

(up to the identification D1( f ) = D3), f has a periodic point P1( f ) correspond-
ing to P(gf ), depending continuously on f and having a wild homoclinic class in
W0( f ). So there is a dense open subset Q1(M, ε) ⊂ P(M, ε) and a continuous
function Ψ1 defined on Q1(M, ε) by

f 
→ Ψ1( f ) = (D1( f ), k1( f ), P1( f )),

where

• D1( f ) and k1 = k1( f ) > 1 are the disk and the natural number given by
the definition of P(M, ε), satisfying (P1)–(P5), and such that the restric-
tion of f k1 to the disk D1( f ) is differentially conjugate to some g ∈ W (D3),
recall condition (P5). Observe that, by (P4), the diameters of the disks
f i(D1( f )), i ∈ {−k1( f ), ..., k1( f )}, are upper bounded by 2 ε.

• P1( f ) ∈ D1( f ) is a point with a wild homoclinic class in W0( f ).

We define analogously the set Q+
1 (D3, ε) ⊂ W0(D3) and the maps D1( f ),

k1( f ) and P1( f ). We define Q−
1 (D3, ε) as the set of diffeomorphisms f such that

f −1 belongs to Q+
1 (D3, ε).
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4.2. The inductive process

For starting our construction we fix a sequence εi > 0, i ∈ N∗, converging to
0 as i → ∞.

Let Q1 = Q1(M, ε0). Notice that for any f ∈ Q1 there is ε1( f ) such that, for
any disk ∆′ of diameter less than 2 ε1( f ) in D3, one has the following property:
denote by ∆ ⊂ D1( f ) the disk corresponding to ∆′ via the identification, then the iterates

f i(∆), i ∈ {−k1( f ), ..., k1( f )}, have diameters bounded by ε1.

As the identification of D1( f ) with D3 depends continuously on f , the num-
ber ε1( f ) can be chosen locally independent of f . So there is a dense open subset
R1 of Q1 where ε1( f ) is locally constant.

Define the set Q2 as the subset of R1 of diffeomorphisms f such that the
restriction of f k1( f ) to D1( f ) is identified to some element gf ∈ Q−

1 (D3, ε1( f )).
Remark that, by Lemma 3.10, the set Q2 is open and dense in R1. Consider
f ∈ Q2 and let

• D2( f ) be the disk identified with D1(gf ),
• k2( f ) = k1( f ) · k1(gf ) ≥ 2 · k1( f ),
• P2( f ) ∈ D2( f ) be the point identified with P1(gf ) (with a wild homoclinic

class in W0(gf )).

Lemma 4.1. — The diameter of f i(D2( f )) is upper bounded by ε1 for every i ∈
{−k2( f ), ..., k2( f )} and every f ∈ Q2.

Proof. — Write i = j + l · k1( f ), with j ∈ {−k1( f ), ..., k1( f )} and l ∈ {−k2(gf ),

..., k2(gf )}. The disk gl(D1(gf )) has diameter less than 2 ε1( f ) (recall(P3)), and the
corresponding disk (via the identification) in D1( f ) is f l·k1(gf )

(D2( f )). The choice
of ε1( f ) now implies that f j( f l·k1(gf )

(D2( f ))) has diameter less than ε1, finishing
the proof of the lemma. 
�

We now construct inductively nested sequences Qn of subsets of W0(M) (with
continuous functions Dn( f ), kn( f ) and Pn( f )) and Rn ⊂ Qn (open and dense in
Qn and with a locally constant function εn( f )) in the following way:

• Qn+1 is the subset of Rn of diffeomorphisms f such that the restriction
of f kn( f ) to Dn( f ) is identified (conjugate) with some gf ∈ Q±

1 (D3, εn( f )),
where ± is the sign of (−1)n.

• Thereafter we construct Rn+1 ⊂ Qn+1, open and dense in Qn+1, with a lo-
cally constant function εn+1 such that for every disk ∆′ of diameter less
than εn+1( f ) in D3 the corresponding disk ∆ ⊂ Dn+1( f ) via the iden-
tification is such that the iterates f i(∆), i ∈ {−kn+1( f ), ..., kn+1( f )}, have
diameters bounded by εn+1.
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By construction, the sets and the functions above satisfy the following properties:

1. Qn is open and dense in Qn−1, so it is also open and dense in W0(M),
2. kn+1( f ) = mn · kn( f ) for some mn ≥ 2,
3. the diameters of f −kn( f )(Dn( f )), ..., f kn( f )(Dn( f )) are upper bounded by

εn−1, in particular, these diameters uniformly go to 0 as n → ∞,
4. if n is even then the disks Dn( f ), f (Dn( f )), ..., f kn( f )−1(Dn( f )) are pairwise

disjoint and f kn( f )(Dn( f )) ⊂ int(Dn( f )),
5. if n is odd then the disks Dn( f ), f −1(Dn( f )), ..., f −kn( f )+1(Dn( f )) are pair-

wise disjoint and f −kn( f )(Dn( f )) ⊂ int(Dn( f )),
6. for every even (resp. odd) number n the positive (resp. negative) f -orbit of

Dn( f ) is contained in the negative (resp. positive) orbit of Dn−1( f ).

Consider now the residual subset R = ⋂
n≥1 Qn of W0(M). For each f ∈ R define

the set

Φ( f ) =
⋂

n∈N

k2n( f )⋃

0

f i(D2n( f )).

Theorem A follows from the next proposition:

Proposition 4.2. — Consider f in the residual subset R of W0(M). Then the following

holds:

• Φ( f ) is an f -invariant Cantor set.

• The forward orbit of any point x ∈ Φ( f ) is dense in Φ( f ), that is, f is minimal

on Φ( f ) (in particular, Φ( f ) is transitive and aperiodic).

• Φ( f ) is a maximal transitive set and it is saturated.

• Φ( f ) is Lyapunov stable for f and f −1.

• Φ( f ) is uniquely ergodic.

Proof. — The majoration by εn−1 of the diameters of the disks f i(Dn( f )),
i = −kn, ..., kn( f ), implies that Φ( f ) is totally disconnected. The fact that Dn( f )
contains mn > 1 disks of the orbit of Dn+1 implies that the set Φ( f ) has no
isolated points. Finally, it is compact as intersection of compact sets. Therefore the
set Φ( f ) is a Cantor set.

Consider the set
⋃k2n( f )−1

0 f i(D2n( f )) (resp.
⋃k2n+1( f )−1

0 f −i(D2n+1( f ))). Observe
that, for each n, this set is a forward (resp. backward) invariant (ε2n−1)-neighbor-
hood (resp. (ε2n)-neighborhood) of Φ( f ), thus the set Φ( f ) is f -invariant and
Lyapunov stable for f and f −1.

Observe that, by construction, the set Φ( f ) does not contain periodic points:
each orbit of Φ( f ) meets any disk Dn( f ), whose kn( f )−1 first iterates are disjoint,
thus its period is at least kn( f ) for all n. As kn( f ) → +∞, there is no periodic
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points in Φ( f ). Moreover, by construction, each orbit of Φ( f ) meets each com-
ponent of

⋃k2n( f )−1
0 f i(D2n( f )), implying that each orbit of Φ( f ) is (ε2n−1)-dense

for every n. Since εn → 0, this implies the density of any forward orbit (the proof
for backward orbits is analogous). So the restriction of f to Φ( f ) is minimal and
aperiodic.

The Lyapunov stability of Φ( f ) implies that Φ( f ) is maximal and saturated.
By construction, the time average of any orbit of Φ( f ) in a disk f i(Dn( f ))

is equal to 1
kn( f ) . One deduces from this fact that given any continuous function

θ : Φ( f ) → R, its Birkhoff sums along two orbits converge to the same number.
Thus Φ( f ) supports a unique invariant measure, which is necessarily uniquely
ergodic. The proof of the proposition is now complete. 
�

5. Proof of Corollary C

To prove Corollary C, observe that the property of having sinks, sources,
non-trivial hyperbolic or partially hyperbolic robustly transitive attractors or repel-
lors, homoclinic classes containing persistently points of different indices, and wild
homoclinic classes in W0( f ) are robust properties, and that to exhibit an aperi-
odic maximal transitive set is a locally generic property, recall Theorem A. For
the independent saddles, we can guarantee their robust existence using filtrations.

The unique difficulty to prove the corollary is to verify that these phenomena
may appear in D3: that is clear for sinks, sources and independent saddles. In
[BD2] it is explained how to get a wild homoclinic class in W0( f ), see also the
appendix (Section 6). For hyperbolic attractors of dimension 1 one can consider,
for example, the product of a Plykin attractor in D2 by a transverse contraction, or
the Smale’s solenoid (as far as we know, it is not possible to have 2-dimensional
hyperbolic attractors in D3). For partially hyperbolic attractors, we consider the
map defined on the solid torus D2 × S1 obtained as the product of a Plykin
attractor in D2 by the identity map in S1. In [BD1] it is proved that this map
can be perturbed to get a robustly transitive partially hyperbolic (nonhyperbolic)
attractor.

By Remark 1.2, the existence of wild homoclinic class in D3 implies the local
genericity of diffeomorphisms of D3 having aperiodic maximal transitive sets.

The heuristic principle now implies that these phenomena appear generically
infinitely many times in W0(M).

Finally, observe that all the aperiodic maximal transitive sets in our construc-
tion are contained in the closure of the union of infinitely many wild homoclinic
classes, and that the universal dynamics at the wild homoclinic classes allow us to
get (generically) the other inclusion.
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6. Appendix

In this section we sketch the construction of wild homoclinic classes in W0( f )
whose existence was claimed in Section 1.1. This construction is a minor mod-
ification of the one in [BD2, Section 3.2] involving blenders. Let us sketch this
construction in the simplest situation.

In rough terms, a blender of a diffeomorphism f is a cube Γ endowed
with f -invariant cone fields Cs, Cu and Cuu, Cuu ⊂ Cu, such that for every point
x ∈ Γ with f (x) ∈ Γ the derivative of f uniformly contracts the vectors in Cs

and uniformly expands the vectors in Cu. We assume that the cube Γ contains
a hyperbolic fixed saddle Q of index 1 whose local stable manifold transversely
meets the two sides of Γ parallel to the unstable cone field. Using the cone field
Cuu, one defines vertical segments through Γ as curves joining the top and the
bottom faces of the cube and whose tangent vectors are in Cuu. Using the manifold
Ws

loc(Q ), one speaks of vertical segments at the right and at the left of Ws
loc(Q ).

Using this terminology, we say that (Γ, f ) is a blender associated to Q if the
closure of the stable manifold of Q intersects every vertical segment through Γ at
the (say) right of Q .

Suppose now that (Γ, f ) is a blender associated to a saddle Q of index 1
as above and that there is a hyperbolic fixed saddle P of index 2 whose one-
dimensional unstable manifold contains a vertical segment through Γ at the right
of Ws

loc(Q ). Then we say that P activates the blender (Γ, f ). In such a case, as
a consequence of the λ-lemma, the whole stable manifold of P is contained in the
closure of Ws(Q ). Moreover, if Ws(P) and Wu(Q ) have a nonempty transverse
intersection, the whole homoclinic class of P is contained in Q .

We observe that to have a blender is a C1-open property, this mainly follows
since the existence of cone fields as above is C1-persistent and compact parts of
invariant manifolds depend continuously on the diffeomorphism.

A simple way to get blenders is to consider a pair of saddles P and Q as
above related by a heterodimensional cycle which is far from tangencies. Recall
that a diffeomorphism f has heterodimensional cycle associated to P and Q if
Wu(P) and Ws(Q ) meet quasi-transversely along an orbit and Ws(P) and Wu(Q )

have a non-empty transverse intersection. This cycle is far from tangencies if every
diffeomorphism C1-close to f has no homoclinic tangencies associated to P or Q .
For this result see [DR]. In fact, in [DR] it is proved that, if f has a cycle far
from tangencies associated to P and Q there is an open set B of diffeomorphisms,
f ∈ B, such that for every g ∈ B there are blenders (Γ, f ) associated to Q
and activated by P, and (Γ, f −1) associated to P and activated by Q . Using the
first blender one has H(Pg, g) ⊂ H(Q g, g), and the second one gives H(Q g, g) ⊂
H(Pg, g) for all g ∈ B.
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The previous construction is semi-local and it only involves the separatrices
of Ws(Q ) and of Wu(P) involved in the cycle. Thus it can be carried out satisfying
also the following.

• The saddle P is homoclinically related to a saddle P′ having a pair of
contracting non-real eigenvalues and such that the Jacobian of f at P′ is
bigger than one (for that it is enough to take P′ having a big expansion
in the unstable direction).

• The saddle Q is homoclinically related to a saddle Q ′ having a pair of
expanding non-real eigenvalues and such that the Jacobian of f at Q ′ is
less than one.

Since these conditions are C1-open, after shrinking B if necessary, we have
that, for every g ∈ B,

H(P′
g, g) = H(Pg, g) = H(Q g, g) = H(Q ′

g, g).

Thus the homoclinic class H(Pg, g) = H(Q g, g) is wild and belongs to W0(g) in the
sense of Definition 1.1. This ends our sketch of the construction of wild homoclinic
classes.
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[Ma] R. MAÑÉ, An ergodic closing lemma, Ann. of Math., 116 (1982), 503–540.
[Mi] J. W. MILNOR, Topology from differential view point, Charlottesville, The University Press of Virginia, 1965.
[N1] S. NEWHOUSE, Diffeomorphisms with infinitely many sinks, Topology, 13 (1974), 9–18.
[N2] S. NEWHOUSE, The abundance of wild hyperbolic sets and nonsmooth stable sets for diffeomorphisms, Publ.

Math. IHES, 50 (1979), 101–151.
[PT] J. PALIS and F. TAKENS, Hyperbolicity and sensitive chaotic dynamics at homoclinic bifurcations, Cambridge

Studies in Advanced Mathematics, 35 (1993).
[PV] J. PALIS and M. VIANA, High dimension diffeomorphisms displaying infinitely many sinks, Ann. of Math., 140

(1994), 207–250.
[Pu] C. PUGH, The closing lemma, Amer. Jour. of Math., 89 (1967), 956–1009.
[Si] R. C. SIMON, A 3-dimensional Abraham-Smale example, Proc. A.M.S., 34 (2) (1972), 629–630.
[Sm] S. SMALE, Differentiable dynamical systems, Bull. A.M.S., 73 (1967), 747–817.
[Tj] J. C. TATJER, Three dimensional dissipative diffeomorphisms with homoclinic tangencies, Ergod. Th. Dynam.

Syst., 21 (2001), 249–302.

C. B.
Laboratoire de Topologie, UMR 5584 du CNRS,
BP 47 870,
21078 Dijon Cedex,
France,
bonatti@u-bourgogne.fr

L. J. D.
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