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PLANAR TREES,
SLALOM CURVES AND HYPERBOLIC KNOTS

by NORBERT A'GAMPO

1. Introduction

An embedded tree B in the unit disk D, such that the intersection BH9D consists
of one terminal vertex r of B, is called a rooted planar tree. For a rooted planar tree
B there exists an immersed copy PB C D of the interval [0, 1] with the following
properties:

(i) The immersion is relative, i.e. the endpoints are embedded in <9D.
(ii) The immersion is generic, i.e. there are only transversal crossing points, only

the endpoints lie on <9D and the immersion is transversal to <9D.
(iii) The double points of PB lie in the interior of the edges of B, and the local

branches are transversal to the corresponding edge of B.
(iv) Each connected component of D \ PB contains exactly one vertex of B.
(v) The only intersection points of PB with B are the double points of PB.
The immersed curve PB is well defined up to regular relative isotopy and is

called the slalom curve or slalom divide of the rooted planar tree B, see Fig. 1, 2, 4.

FIG. 1. - Rooted planar tree, its Dynkin diagram EIQ and slalom

The slalom curve PB is a divide to which corresponds a classical knot KB in S3,
which we call a slalom knot. The complement of the slalom knot KB admits a fibration
over the circle S1, see [AG4] and Section 2 for basic definitions and properties. The
Dynkin diagram AB of the divide PB is deduced from the rooted tree B as follows:
First make a new tree B' by subdividing each edge of B with a new vertex, which is
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placed at the crossing point of PB on the edge; next, remove from B' the root vertex
r and the terminal edge of B' pointing to r. In Fig. 1 the tree B has the shape of the
classical Dynkin diagram Do but the Dynkin diagram AB of PB, which we can denote
by Eio has 10 vertices. The Dynkin diagram AB of a rooted tree B is a bicolored
rooted tree with an embedding in the plane. The root is the new vertex which lies on
the edge of B originating from the root point of B and the bicoloring is such that the
new vertices are of the same color. Moreover, the Dynkin diagram AB has the property
that the terminal vertices of AB different from the root, are never new. The purpose
of this paper is to prove the following theorem.

Theorem 1. — Let B be a rooted tree. The complement of the slalom knot KB admits a
complete hyperbolic metric of finite volume, if and only if the Dynkin diagram AB is neither the
diagram A^y 1 ^ k, nor the diagram EG or Eg.

If the Dynkin diagram AB is among A^, 1 ^ A:, EG, Eg, the knot KB is the torus
knot (2, 2k + 1), (3, 4) or (3, 5) and appears as local knot of a simple plane curve
singularity [AC1]; the monodromy diffeomorphism (with free boundary) of the knot
KB can be chosen to be of finite order in those cases and its complement does not
carry a complete hyperbolic metric. We only need to prove the if part of the theorem.

From the above theorem we get many examples of hyperbolic fibered knots,
whose monodromy diffeomorphism and gordian number are known explicitly. The
monodromy diffeomorphism of a slalom knot can be realized as the product of right
Dehn twists of a system of simple closed curves on the fiber surface, such that the
union of the curves is a spline in the fiber surface and the dual graph of the system is
the Dynkin diagram of the rooted tree; the gordian number of a slalom knot equals the
number of crossings of the slalom divide [AG4]. We call (see section 3) the isotopy class
of the monodromy diffeomorphism of the slalom knot of a rooted tree the Goxeter
diffeomorphism of the Dynkin diagram of the rooted tree. It follows from Theorem 1
that a Coxeter diffeomorphism of a Dynkin diagram of a rooted tree is pseudo-Anosov,
if and only if the Dynkin diagram is not a classical Dynkin diagram (see Theorem 3).
We do not know the lattice in ijo(H3) = PSL(2, C) of the hyperbolic uniformization for
the complement of the hyperbolic slalom knots KB. I wish to thank Makoto Sakuma
for explaining to me his joint work with Jeff Weeks on hyperberbolic 2-bridge links
[S-W], which indicates a road leading to a description of the uniformization lattice
and the canonical decomposition in ideal hyperbolic simplices of the complement of
hyperbolic slalom knots.
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2. Divide and knot of a planar rooted tree.

Let B be a rooted planar tree in the unit disk D C R2 and let PB be its divide.
The knot KB of the tree B is the knot of its divide PB (see [AG3-4]), i.e.

KB := fe u) e T(Pa) | UMII = i } c SCURFS3

where T(Pa) C T(R2) is the subspace of tangent vectors to the divide PB in the space of
tangent vectors to the plane R2. A tangent vector of the plane {x, u) G T(R2) = R2 x R2,
is represented by its foot x e R2 and its linear part u G T^(R2) = R2. The norm ||(x, u)\\
is the usual euclidean norm of R4. In Fig. 5 is shown a computer drawing of the knot
of the divide Lys (see Fig. 4). This knot can be presented with 11 crossings and its
gordian number equals the number of crossing points of the divide, i.e. 4. Since a
slalom divide is connected, the complement of the knot KB of a rooted tree fibers over
the circle [AG4]. A model for the fiber surface and monodromy diffeomorphism can be
read by a graphical algorithm from the divide PB as follows: replace each crossing point
of PB by a square, which has its vertices on the local branches of PB at the crossing
point, and get a trivalent graph F embedded in the disk D; the fiber is diffeomorphic
to the interior of the surface with boundary F obtained from a thickening of the graph
r. The thickening corresponds to the cyclic ordering of the edges of F at each vertex
of r, which alternatingly agrees or disagrees with an orientation of the ambient plane.
The graph F has only circuits of even length, so the alternating cyclic ordering of the
edges at the vertices of F exists. For each of its squares and for each region of the
divide PB the graph F has a circuit, which surrounds the square or region. To these
circuits of F correspond simple closed curves on the surface F. The monodromy T is
the product of the right Dehn twists along those closed curves.

FIG. 2. - The slalom Eg
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This product is well defined up to conjugacy in the relative mapping class group
of the surface (F, 9F) since the non-commutation graph of this set of Dehn twists is
precisely the Dynkin diagram AB, which is a tree ([B], Fascicule XXXiy Chap. 4,
par. 6, lemme 1). The graph F with its cyclic orientation of the edges at the vertices
allows us to give a combinatorial description of the diffeomorphism T of the surface F,
which can be used as input to the Bestvina-Handel algorithm, [B-H] see also [L] . In
practice, we use the Gayley code for rooted trees, see [S-Wh], and a maple program
to deduce from the Cayley code the combinatorial description of T, which was finally
the input to the program TRAINS, written by Tobi Hall, doing the Bestvina-Handel
algorithm. This way we get extra stimulating evidence for Theorem 1 and 3. I would
like to thank Tobi Hall for allowing me to use his program TRAINS.

3. Conway spheres and Bonahon-Siebenmann decomposition
for slalom knots.

Let B be a rooted tree with slalom divide PB C D and slalom knot KB. Let
f^ : D —> R be a Morse function for the divide PB as in the proof of the fibration
theorem of [AC4], i.e. a generic G°° function, such that PB is its 0-level and that each
interior region has exactly one non-degenerate minimum and that each region which
meets the boundary has exactly one non-degenerate maximum or minimum on the
intersection of the region with <9D. The underlying tree of the slalom divide can be
reconstructed up to isotopy as the closure of the union of the gradient lines of^e,
which lie in {/B < 0} and which contain a saddle point in their closure. The singular
gradient lines L off^ in {/B > 0} give enough Conway spheres to build the Bonahon-
Siebenmann decomposition [B-S] of the knot KB, see [K]. For a singular gradient line
L of/a in {/B > 0} we define G(L) := {{x, u) C T(D) | x C L, \\x\\2 + \\u\\2 = 1}. Observe
that such a gradient line passes through a saddle point off^ and both end points of
L are on <9D. It follows that C(L) is a smooth embedded 2-sphere in S3. Each sphere
G(L) is invariant under the involution (x, u) i—» (x, — u).

We state without proof:

Theorem 2. — Let B be a rooted tree and f^ its Morse junction. The spheres C(L) of the
singular gradient L lines off^ in {/B > 0} are Conway spheres/or the slalom knot KB. The spheres
G(L) which correspond to edges of the tree B, with at least one endpoint of valency ^ 3 or equal to
the root vertex, give the Bonahon-Siebenmann decomposition of the slalom knot.

We wish to mention here that the knot of the slalom divide of the tree [0,1,2,2] is
the knot 10139 of the table ofRolfson's book [R], which is equivalent to the Montesinos
knot M(l, (3, 1), (3, 1), (4, 1)), see [Ka]. The gordian number of 10139 is shown to be
4 by Tomomi Kawamura [Kaw].

I am grateful to Mikami Hirasawa for explaining to me his method of
constructing a knot diagram for slalom knots directly from the slalom divide. He first
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FIG. 3. — The slalom divide of the tree [0, 1, 2, 2] and singular gradient lines.

doubles the slalom divide and then changes according to local rules the doubled divide
to a knot diagram. It follows from his construction that slalom knots are arborescent
knots in the sense of Bonahon and Siebenmann [B-S]. The notation as arborescent
knot for the slalom knot PB is the Dynkin diagram AB with the weighting 2 at each
vertex.

3. Trees, forms, plumbings.

Let A be a tree with vertex set {v\, ^5 • • • ? vn}' ^e w1^ choose the numbering
of the vertices such that for some m, 1 < m ^ n, there are no pairs of vertices vi and
Vj connected by an edge of A with i ^ m and j ^ m or with m < i and m < j. The
chosen numbering corresponds to a bicoloring of the vertices of the tree. The real
vector space VA generated by the set of vertices of A carries a quadratic form q^
whose matrix is q\(pi^ Vi) = —2 5 1 ^ i ^ n, and q\(yiy vj) = 1, if and only if, the vertices
Vi and Vj are connected by an edge of A. To each vertex •D[ corresponds an isometry
R,of(VA,?A)

R -̂) := Vj+ q^(pi, v])v,,

which is a reflection. Since the non-commutation graph of the set {RI 5 R2.» ...5 R/z} is
a tree the product of the reflections R^ does not depend up to conjugacy on the order
in which the product is evaluated [B] and is called the Coxeter element GA of the tree
A. The vector space VA also carries a skew form sq^ whose matrix is sq\(yiy vj) = 1 or
sq^(vi, Vj) = —1 if and only if the vertices vi and vj are connected by an edge of A. If
i ^ m then sq^Vi, vj) = 1 else ifj < m then sq\(pi^ Vj) = —1. To each vertex Vi corresponds
an endomorphism T^ of (VA , sq^)

T^vj) := v^sq^Vi, v])vj,
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which is a transvection. The product of the transvections T,, is equal to -CA, and we
caU its conjugacy class in the group of the form sq^ well defined by [B], the skew
Goxeter element sC^ of the tree A.

From [AC2] we recall the following (see also [Hu]). If the tree A is not among
the diagrams A^, D^, G^s, 1 ^ k, Ee, £5, E7, £7, Eg, Eg, the endomorphism GA has
a real eigenvalue K^^ > 1 with multiplicity 1, such that for any eigenvalue ^ of GA we
have |?l| < |Xmax| unless K = Xmax. We caU X^ax the dominating eigenvalue of GA and
—^max the dominating eigenvalue of sC^.

Let A be a planar tree with vertex set {v^ v^ ..., Vn}. To the tree A corresponds
a surface SA by the following plumbing. First realize the planar tree A by a planar
circle packing with small overlappings. Each vertex ^ is represented by an oriented
circle Ci. As orientation we choose the counterclockwise orientation. The circles c,, c
are disjoint if the vertices v, and vj are not connected in B and touch each other
from the outside with a small overlap, if v, and vj are connected in A. Let G, be a
tubular neighborhood in the plane of ^, which is an oriented cylinder. The surface SA
is obtained by plumbing the cylinders C, and Cy at one of the intersection points of
^ and Cj and making an overcrossing at the other intersection point, if the vertices v,
and vj are connected in A. The choice at which intersection point the plumbing takes
place, is made such that on the surface SA the cycles c, and cj have the intersection
number sq^, vj). The surface SA is naturally immersed in the plane. Let D, be the
right Dehn twist with core the curve c, of SA. Let TA : SA -> SA be the composition
DI o D2 o ... o D^ which we call the Goxeter diffeomorphism of the planar tree A.

FIG. 4. — The slalom Lys

The numerical function A i-̂  ^(TA) on trees is monotone for the inclusion of
trees [AG2]. Question: is the function A ̂  ^{TA) monotone?
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4. Trees and hyperbolic knots.

We now give the proof of the if part of Theorem 1:

Proof. — Let B C D be a rooted tree, such that the Dynkin diagram AB is
neither the diagram A^k, 1 ^ A;, nor EG or Eg. We will show that the isotopy class of
the monodromy of the fibered knot KB is pseudo-Anosov. The geometric monodromy
T of the knot KB is up to conjugacy the diffeomorphism TA : SA —> SA, where we
put A := AB, see [AG4]. The action of TA on the first homology of SA is conjugate to
the skew Goxeter element sC^ of the tree A. It follows from [AC2] that the biggest
absolute value s of an eigenvalue of the action of TA on the first homology of SA
strictly exceeds 1. So for the homological entropy we have ^Hi(T) zz log(J) > 0. By the
entropy inequality, we deduce for the isotopical entropy ^isotop(T) the inequalities

0 < XH,(T) ^ ?^(T) ^ ?lisotop(T) < ?ltop(T)

where ^sotop(T) is the minimum of the topological entropy ^top(T) over the relative
isotopy class of T. Since the isotopical entropy of T is positive, we conclude that
in the decomposition of Thurston [Tl] in quasi-finite and pseudo-Anosov pieces of
the diffeomorphism T at least one pseudo-Anosov piece occurs. So, to prove that the
isotopy class of the diffeomorphism T is pseudo-Anosov, we need to prove that T is
irreducible. A reduction of the diffeomorphism T would give an essential torus in the
complement of the knot KB. Since the knot KB is an arborescent knot, as shown by
the construction of Mikami Hirasawa, we conclude with the proposition 2.1 of [B-Z],
see also [O], that the complement of the knot KB does not have an essential torus. So,
the diffeomorphism T is irreducible and hence pseudo-Anosov. We can conclude with
a celebrated Theorem of W. Thurston [T2], see [O], that the mapping torus of the
diffeomorphism T, which is diffeomorphic to the complement of the knot KB, admits
a complete hyperbolic metric. D

The knot of the slalom curve Eg of the rooted tree with Gayley code [0,1,1,2]
is not hyperbolic (see Fig. 2). The knots of the slalom curve Lys of the tree with
code [0,1,1,1] and of the slalom curve Eio of the tree [0,1,1,2,4] are hyperbolic (see
Fig. 1, 4).

In fact, for a diffeomorphism T of surfaces the equality ̂  (T) = XisotopfT) holds,
and moreover, for pseudo-Anosov diffeomorphisms the equality A^(T) = ^top(T) holds.
It would be very interesting to compute the hyperbolic volume of the knot of the
rooted tree Eio and to relate it with ^isotop(TEio)-

The knots KB for B such that the Dynkin AB diagram equals A<^n, EG or Eg,
are links of singularities and the corresponding monodromies are irreducible and of
finite order. From this fact and from the proof of the theorem we deduce that Coxeter
diffeomorphisms of rooted trees have in general a pseudo-Anosov isotopy class. More
precisely, with the notation of section 2 we have:
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FIG. 5. - The knot of the slalom Lys

Theorem 3. — Let A C D be a rooted, bicolored, tree embedded in the plane such that the
root is a terminal vertex and that no other terminal vertex has the color of the root. The Coxeter
dijfeomorphism TA : SA —^ SA is irreducible. Moreover, if A is not among A^.EQ.EQ, the
diffeomorphism is pseudo-Anosov.

The pseudo-Anosov diffeomorphisms given by this theorem are products of Dehn
twists, which belong to the same conjugacy class in the mapping class group of a surface
with one boundary component and the union of the cores of the Dehn twists of the
product decomposition is a spline in the surface. The pseudo-Anosov diffeomorphisms,
which we obtain here, differ from the examples ofR. C. Penner [P], see also [F], since
all Dehn twists in the product belong to the same conjugacy class. The diffeomorphism
is pseudo-Anosov, if and only if the Dynkin diagram of the intersection of the core
curves is not a classical Dynkin diagram of a finite Goxeter group. A finite tree can be
realized as Dynkin diagram of a slalom divide of a (disk wide) web, which we define
as an embedded finite tree B in the unit disk D such that the intersection B D 9D is
a set of terminal vertices of B, which are called root vertices of B. The definition of a
slalom curve remains unchanged, except for the slalom of a web without root vertices,
where we consider an immersion of the circle instead of the interval. For instance the
extended Dynkin diagram Eg with 9 vertices is the Dynkin diagram of the slalom of
Fig. 6, which is the slalom of a web with 2 root vertices.

The link of the slalom divide £3 has 2 components; it is the Montesinos link
M(0,(2,l),(3,l),(6,l)). The extended Dynkin diagram 64 with 5 vertices corresponds to
the slalom of the web with 4 root vertices and a single vertex of valency 4 and its link is
the Montesinos link M(0,(2,l),(2,l),(2,l),(2,l)). It is interesting to observe that both links
are in the list b). of proposition 2.1 of [B-Z]. The Goxeter diffeomorphism of a Dynkin
diagram, which we suppose to be a tree here, is always the monodromy diffeomorphism
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FIG. 6. - The slalom of Dn, n ̂  4, EG, £7 and Eg.

of a fibered link by the fibration theorem of [AC4]. The Dynkin diagram 64 is realized
as the Dynkin diagram of a complete intersection curve singularity by Marc Giusti
[G] and the Goxeter diffeomorphism of D4 appears as monodromy in the unfolding
of this singularity. The fibered link of the web with n + 1 vertices and n root vertices,
n ^ 5, is a chain with n links. This link is studied in the lecture notes of W. Thurston
and is hyperbolic.

Remark. — The complexity Cj^ (())) of an orientation preserving isotopy class (|) of
diffeomorphisms of a surface can be defined as the minimum of the quantity a + b over
all the product decompositions of (|) as product of Dehn twists, where a is the length
of the product and where b is the number of intersection points of the core curves
of the twists involved in the product decomposition. The corresponding homological
complexity is the complexity CH^) where we minimize the quantity a + A, where
h stands for the sum of the absolute values of the mutual homological intersection
numbers of the core curves.

The homological complexity of the monodromy T of a non trivial fibered knot is
estimated from below by CH^(T) ^ 4 5 — 1 , where § is the genus of the fiber. So, we can
observe that both complexities coincide and are minimal with respect to this estimation
by the genus for monodromies of knots of slalom curves. It would be nice to deduce
from this observation that the homological and isotopical entropy of monodromies of
knots of slalom curves coincide.
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