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p-ADIC UNIFORMIZATION OF UNITARY SHIMURA VARIETIES
by Yakov VARSHAVSKY

Introduction

Let I'C PGU,;_, ,(R)° be a torsion-free cocompact lattice. Then I' acts on the
unit ball B*~'C G*~! by holomorphic automorphisms. The quotient I'\B?~! is a
complex manifold, which has a unique structure of a complex projective variety Xp
(see [Sha, Ch. IX, § 3]).

Shimura had proved that when I' is an arithmetic congruence subgroup, X has
a canonical structure of a projective variety over some number field K (see [Del] or
[Mil]). For certain arithmetic problems it is desirable to know a description of the
reduction of X modulo w, where w is some prime of K. In some cases it happens
that the projective variety X has a p-adic uniformization. By this we mean that the
K,-analytic space (X ®g K, )* is isomorphic to A\Q for some p-adic analytic sym-
metric space Q and some group A, acting on Q discretely. Then a formal scheme structure
on A\Q gives us an O -integral model for X ®¢ K,,.

Cherednik was the first who obtained a result in this direction. Let F be a totally
real number field, and let B/F be a quaternion algebra, which is definite at all infinite
places, except one, and ramified at a finite prime » of F. Then Cherednik proved in
[Ch2] that the Shimura curve corresponding to B has a p-adic uniformization by the
p-adic upper half-plane Qf , constructed by Mumford (see [Muml]), when the subgroup
defining the curve is maximal at v. Cherednik’s proof is based on the method of elliptic
elements, developed by Ihara in [Ih].

The next significant step was done by Drinfel’d in [Dr2]. First he constructed cer-
tain covers of Qf (see below). Then, when F = Q , he proved the existence of a p-adic
uniformization by some of his covers for all Shimura curves, described in the previous
paragraph, without the assumption of maximality at v. The basic idea of Drinfel’d’s
proof was to invent some moduli problem, whose solution is the Shimura curve as well
as a certain p-adically uniformized curve, showing, therefore, that they are isomorphic.

Developing Drinfel’d’s method, Rapoport and Zink (see [RZ1, Ra]) obtained
some higher-dimensional generalizations of the above results.

In this paper we generalize Cherednik’s method and prove that certain unitary
Shimura varieties and automorphic vector bundles over them have a p-adic unifor-
mization. Our results include all previously known results as particular cases.
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We now describe our work in more detail. Let F be a totally real number field
of degree g over Q, and let K be a totally imaginary quadratic extension of F. Let
D and D™ be central simple algebras of dimension d* over K with involutions
of the second kind « and o™ respectively over F. Let G:= GU(D,«) and
G := GU (D™, «™) be the corresponding algebraic groups of unitary similitudes
(see Definition 2.1.1 and Notation 2.1.2 for the notation).

Let v be a non-archimedean prime of F that splits in K, let w and w be the primes
of K that lie over v, and let oo, be an archimedean prime of F. Suppose that D™ ®, K,
has Brauer invariant 1/d, that D ®; K, =~ Mat,(K,), and that the pairs (D, «) ®; F,
and (D™, o) ®, F, are isomorphic for all primes u of F, except » and oo,. Assume
also that o« is positive definite at all archimedean places F,, = R of F, that is that
G(F,,) = GU,(R) forall: =1, ..., g, and that the signature of «™ at o, is (d — 1, 1),
so that G™(F,, ) = GU,_, ,(R).

Let A] and A} be the ring of finite adeles of F and the ring of finite adeles of F
without the v-th component respectively. Set E’' := F* X G(A%"), and fix a central
simple algebra D, over K, of dimension 4* with Brauer invariant 1/d. Then
G™(Af) = DX x E’ and G(Af) ~ GL,(K,) x E’. In particular, the group GL,(K,)
acts naturally on G(A]) by left multiplication.

Let Qf = be the Drinfel’d’s (4 — 1)-dimensional upper half-space over K, cons-
tructed in [Drl], and let {Zg"},cnyqoy be the projective system of étale coverings
of Qf ~constructed in [Dr2]. This system is equipped with an equivariant action of the
group GL,(K,) x D such that if T, denotes the n-th congruence subgroup of 0%"),
then we have T,\Zg" = I3 " for all m> n (see 1.3.1 and 1.4.1 for our notation and
conventions, which differ from those of Drinfel’d).

Denote by G™(F), the set of all de (D™)* such that d-o«™(d) is a totally
positive element of F. Choose an embedding K « C, extending oo, : F < R. It defines
us an embedding G™(F),_ < GU,_, ;(R)’ = Aut(B*~'). Choose finally an embedding
of K, into G, extending that of K.

For each compact and open subgroup S of E’ and each non-negative integer =
let X , be the weakly-canonical model over K,, of the Shimura variety corresponding
to the complex analytic space (T, X S)\[B*"* x G™(Af)]/G™(F), and to the
morphism £:8 - G™®y R, described in 3.1.1 (see Definition 3.1.12 and
Remark 3.1.13 for the definitions). The experts might notice that our % is not the one
usually used in moduli problems of abelian varieties.

Let Vg , be the canonical model of the automorphic vector bundle on X ,
(see [Mil, III] or the last paragraph of the proof of Proposition 4.3.1 for the definitions),
corresponding to the complex analytic space

(T X S)\[BR(W™ ®g,, C)F* X G™(Af)]/G™(F),

(see 4.1.1 for the necessary notation).
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Let Py, be the canonical model of the standard principal bundle over X ,
(see [Mil, III] or Corollary 4.7.2 for the definitions), corresponding to the complex
analytic space (T, X S)\[B?~! X (PG™®q C)*™ x G™(AL)]/G™(F), (see 4.1.1 for
the necessary notation).

Main Theorem. — For each compact and open subgroup S of E’ and each n e N {0}
we have isomorphisms of K, -analytic spaces:

a) (X3 GL(K\[ZE" x (S\G(AD)/G(E)];

b) (Vg )™= GL(K)\I[B, »(W™) X (S\G(A])/G(F))] (see 4.1.1 for the necessary
notation), where the group GL,(K,) acts on B}, ,(W*") as the direct factor of (G®4K,) (K,),
corresponding to the natural embedding K — K ;

¢) (Bs, )™ 3 [GL(K\[ZL" X (PG ®K,)™ x (S\G(AD)/GE)]™ (see 4.1.1 for
the definition of the twisting ( )*™), where the group GL,(K,) acts trivially on
(PG ®yK,)™

These isomorphisms commute with the natural projections for S;C S,, ny > n, and with
the action of G™(AL) = DX x FX x G(AL").

The idea of the proof is the following. Consider the p-adic analytic varieties ?S, ,,
of the right hand side of a) of the Main Theorem. They form a projective system and
each of them has a natural structure Yg , of a projective variety over K,. Kurihara
proved in [Ku] that for every torsion-free cocompact lattice I' C PGL,(K,) the Chern
numbers of I'\Qf are proportional to those of the (d — 1)-dimensional projective
space and that the canonical class of I'\Qg is ample. The result of Yau (see [Ya])
then implies that B?~! is the universal covering of each connected component of the
complex analytic space (Yg ,®g G)™ for all sufficiently small § e #(E) and all
embeddings K, < C.

It is technically better to work with the inverse limit of the Y ,’s equipped with
the action of the group G™(A}) = DX x E’ on it rather then to work with each Yj ,
separately. Generalizing the ideas of Cherednik [Ch2] we prove that there exists a
subgroup AC GU,_, ;(R)® x G™(A]) such that

(Ys,n ®x, € = (T, X S)\(B'~* x G™(Ag))/A

for all compact open subgroups SC E’ and all ze N uU{0}.

Using Margulis’ theorem on arithmeticity we show that the groups A and G™(F)
are almost isomorphic modulo centers. More precisely, we show that (Y ,®g C)™
is isomorphic to a finite covering of (X; ,®g, C)™. Using Kottwitz’ results [Ko] on
local Tamagawa measures we find that the volumes of (Y5 ,®¢ C)™ and
(X, » ®x, G are equal. It follows that the varieties Y5 ,®g C and X ,®g C
are isomorphic over C. Comparing the action of the Galois group on the set of special
points on both sides we conclude that Yg , and X, , are actually isomorphic over K,,.
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Notice that if one considers only Shimura varieties corresponding to subgroups
which are maximal at w, then the use of Drinfel’d’s covers in the proof of the p-adic
uniformization is very minor. (We use them only for showing that the p-adically uni-
formized Shimura varieties have Brauer invariant 1/d at w; that probably can be done
directly.) In this case the proof would be technically much easier but contain all the
essential ideas.

The proof of the p-adic uniformization of standard principal bundles is similar.
In addition to the above considerations it uses the connection on principal bundles.
Using the ideas from [Mil, III] we show that the p-adic uniformization of standard
principal bundles implies the p-adic uniformization of automorphic vector bundles.
In fact Tannakian arguments show (see [DM]) that these statements are equivalent.

This paper is organized as follows. In the first section we introduce certain cons-
tructions of projective systems of projective algebraic varieties, give their basic properties
and do other technical preliminaries.

In the second section we give two basic examples of such systems. Then we for-
mulate and prove the complex version of our Main Theorem for Shimura varieties.

The third and the forth sections are devoted to the proof of the theorem on the
p-adic uniformization of Shimura varieties and of automorphic vector bundles respectively.

Our proof appears to be very general. That is starting from any reasonable p-adic
symmetric space, whose quotient by an arithmetic cocompact subgroup is algebraizable,
we find Shimura varieties uniformized by it. For example, in another work ([Va]) we
extend our results to Shimura varieties uniformized by the product of Drinfel’d’s upper
half-spaces. Hence it would be interesting to have more examples of such p-adic sym-
metric spaces.

Our result on the p-adic uniformization of automorphic vector bundles is not
complete, because we prove the p-adic uniformization only under the assumption that
the center acts trivially. In fact our proof of the complex version of the theorem works
also in the general case, but to get an isomorphism over K, one should understand
better the action of the Galois group on the set of special points.

After this work was completed, it was pointed out to the author that Rapoport
and Zink have recently obtained similar results concerning the uniformization of
Shimura varieties by completely different methods (see [RZ2]).

Notation and conventions

1) For a group G let Z(G) be the center of G, let PG := G/Z(G) be the adjoint
group of G, and let G* be the derived group of G.

2) For a Lie group or an algebraic group G let G° be its connected component
of the identity.

3) For a totally disconnected topological group E let % (E) be the set of all compact
and open subgroups of E, and let E™ be the group E with the discrete topology.
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4) For a subgroup I of a group G let Commg(I") be the commensurator of I' in G.

5) For a subgroup I of a topological group G let T’ be the closure of I' in G.

6) For a set X and a group G acting on X let X® be the set of all elements of X
fixed by all g e G.

7) For a set X, a subset Y of X and a group G acting on X let Stab,(Y) be the
set of all elements of G mapping Y into itself.

8) For an analytic space or a scheme X let T(X) be the tangent bundle on X.

9) For a vector bundle V on X and a point ¥ € X let V, be the fiber of V over x.

10) For an algebra D let D be the opposite algebra of D.

11) For a finite dimensional central simple algebra D over a field let SD* be
the subgroup of D* consisting of elements with reduced norm 1.

12) For a number field F and a finite set N of finite primes of F let Af be the
ring of finite adeles of F, and let Af:¥ be the ring of finite adeles of F without the com-
ponents from N.

13) For a field extension K/F let Ry be the functor of the restriction of scalars
from K to F.

14) For a natural number 7 let I, be the n X n identity matrix and let B"C C"
be the n-dimensional complex unit ball.

15) For a scheme X over a field K and a field extension L of K write X, or X ®¢ L
instead of X X g . x Spec L.

16) For an analytic space X over a complete non-archimedean field K and a
for a complete non-archimedean field extension L of K let X ®¢ L be a field extension
from K to L. (A completion sign will be omitted in the case of a finite extension.)

17) By a p-adic field we mean a finite field extension of Q , for some prime number p.
Let G, be the completion of the algebraic closure of Q .

18) By a p-adic analytic space we mean an analytic space over a p-adic field in
the sense of Berkovich [Bel].

19) For an affinoid algebra A let .#(A) be the affinoid space associated to it.
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1. BASIC DEFINITIONS AND CONSTRUCTIONS

1.1. General preparations

Definition 1.1.1. — A locally profinite group is a locally compact totally disconnected
topological group. In such a group E, the set #(E) forms a fundamental system of
neighbourhoods of the identity element, and (1 S ={1}.

SEF®

Lemma 1.1.2. — Let E be a locally profinite group, and let X be a separated topological
space with a continuous action E X X — X of E. For each S € F(E), set Xg:= S\X. Then
{ X }s @5 a projective system and X = 1i<s_m Xs.

Proof. — [Mil, Ch. II, Lem. 10.1]. O

This lemma motivates the following definition.
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Definition 1.1.3. — Let X be a separated scheme over a field L, let E be a locally
profinite group, acting L-rationally on X. We call X an (E, L)-scheme (or simply an
E-scheme if L is clear or is not important) if for each S € #(E) there exists a quotient
X := S\ X, which is a projective scheme over L, and X Li_snng.

The following remarks show that E-schemes are closely related to projective
systems of projective schemes, indexed by % (E).

Remark 1.1.4. — If X is an E-scheme or merely a topological space with a conti-
nuous action of E, then for each g€ E and each S, T e #(E) with SD gTg™ we

have a morphism pg 1(g) : X3 — X, induced by the action of g on X and satisfying
the following conditions:

a) Ps,s(g) =Idif geS;

b) Ps,m(g) o PT,R(’Z) = Ps,n(gh);

¢) if T is normal in S, then p, , defines the action of the finite group S/T on X, and
X, is isomorphic to the quotient of X by the action of S/T.

Remark 1.1.5. — Conversely, suppose that for each S € #(E) there is given a
scheme X, and for each g € E and each S, T € #(E) with S D gTg™?, there is given
a morphism pg 1(g) : Xy — X, satisfying the conditions a)-c) of 1.1.4. Then for
each T C S there is a map pg (1) : X; - X, which is finite, by condition ¢). In this
way we get a projective system of schemes and we can form an inverse limit scheme
X:= Ligl_ Xgs. Then there is a unique action of E on X such that for each g €e E and

each S € #(E) the action of g on X induces an isomorphism p,g, 11 Xg 5 X
It follows from ¢) that Xy > S\X for each S e #(E).

gSg-1°

Definition 1.1.6. — Let Ebea topological group, which is isomorphic to E under
an isomorphism @ : E 3 E. We say that an (E, L)-scheme X is ®-equivariantly isomorphic
to an (E, L)-scheme X if there exists an isomorphism ¢ : X & X of schemes over L
such that for each g € E we have ¢ o g = ®(g) o . If in addition E = E and ¢ is the
identity, then we say that ¢ is an isomorphism of (E, L)-schemes.

Definition 1.1.7. — Let L,/L, be a field extension. We say that an (E, L;)-scheme X
is an Lo[L,-descent of an (E,L,)-scheme Y if the (E, L,)-schemes X; and Y are
isomorphic.

Suppose from now on that E is a noncompact locally profinite group.
Notation 1.1.8. — For a topological group G and a subgroup I'C G X E let prg
and pry be the projection maps from I' to G and E respectively. Set Ty := pry(T"),

Iy = prg(T") and T := prg(I' n (G X §)) for each S € #(E). For each yel set
Yo 1= Pra(Y) and yg := pry(y).
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Lemma 1.1.9. — Let I'C G X E be a cocompact lattice. Suppose that pry is injective.
Then for each S € & (E) we have the following:
a) | S\E/Tg | < 0;
b) [Tg:Ts] = co;
¢) Ty is a cocompact lattice of G;
d) T3 C Commg(Ty).

Proof. — a) Since the double quotient (G X S)\(G X E)/I' @ S\E/TI'y is compact
and discrete, it is finite.
b) The group E is noncompact, therefore | S\E | = c. Hence, by a),

[Tg:SNnTg] =|S\ST'g | = .

But T’y = prg(T") = prg(prg(I'g)), and likewise I'y = prg(prg’(I'g N'S)). Since prg
is injective, we are done.
¢) The group I'is a cocompact lattice in G X E, hence I' n (G X S) is a cocompact
lattice in G X S, and the statement follows by projecting to G (see [Shi, Prop. 1.10]).
d) Let y eI, and set S’ = vz Syz' € F(E). Then

YT NG XxS)y*=Tn(G x 8.

But SNnS' e%(E) is a subgroup of finite index in both S and §’, hence
Yo I's e N Ty = Iy~g is a subgroup of finite index in both I'y and y; Iy yg!. O

Suppose that d > 2 and take G equal to PGL,(K,) for some p-adic field K, or
to PGU,_, ,(R)°. We shall call these the p-adic and the real (or the complex) cases
respectively.

Proposition 1.1.10. — Under the assumptions of Lemma 1.1.9 we have:
a ) E > Gder;
b) pry is injective;
¢) for each S € F(E), the group Ty is an arithmetic subgroup of G in the sense of Margulis

(see [Ma, p. 292]);
d) if Se F(E) is sufficiently small, then the subgroup U g,-1 is torsion-free for each a € E.

Proof. — a) For each S e #(E), I'y is cocompact in G and [[;:T§] = 0. It
follows that I‘_G is a closed non-discrete cocompact subgroup of G. Therefore its inverse
image =~ (T) in SU,_,,,(R) (resp. SL,;(K,)) is also closed, non-discrete and cocompact,
hence by [Ma, Ch. II, Thm. 5.1] itis all of SU,_, ,(R) (resp. SL,;(K,)). This completes
the proof.

b) Set T'y:= pry(Ker prg). This is a discrete (hence a closed) subgroup of G,
which is normal in I';. Therefore it is normal in f; D G, It follows that each y € T,
must commute with some open neighborhood of the identity in G*, hence I'; is trivial.
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¢) is a direct corollary of [Ma, Ch. IX, Thm. 1.14] by 4)-d) of Lemma 1.1.9.

d) (compare the proof of [Ch. 1, Lem. 1.3]). Choose an S € #(E), then I';C G
is a cocompact lattice.

Lemma 1.1.11. — The torsion elements of T'y comprise a finite number of conjugacy
classes in Tg.

We first complete the proof of the proposition assuming the lemma. Let
4y, - .., a, € E be representatives of double classes I'f\E /S (use Lemma 1.1.9, a)). For
eachi=1,...,nlet M;C T, 4., be a finite set of representatives of conjugacy classes of
torsion non-trivial elements of I, ;... Then the image of all non-trivial torsion elements
of T ggt under the natural i‘nj:action Ji: Ty, Sa71 STNn(G X a8a")>aS4 138
is contained in the set X, ={s-5;,(M,)-s7'|seS}, which is compact and does not
contain 1. Hence there exists T € #(E) not intersecting any of the X’s. By taking a
smaller subgroup we may suppose that T is a normal subgroup of S. Since all the j’s
are injective, the subgroup I‘a,.'ra;l = j; }(T) is torsion-free for each i =1, ..., n. For
each a € E there exist te{1l,...,n}, s€S and y eI such that a = yg4;s. Hence
the subgroup

Faer 20 (G X aTa™!) =T N (Ye Gyg' X vg 4, Ta; * vg?)
2y(T'N (G xaTa )y ' =g

is torsion-free. O

Proof (of the lemma). — The group G acts continuously and isometrically on
some complete negatively curved metric space Y. Indeed, in the real case Y = B¢~?
with the hyperbolic metric. In the p-adic case Y is a geometric realization (see [Br,
Ch. I, appendix]) of the Bruhat-Tits building A of SL,(K,). This is a locally finite
simplicial complex of dimension d — 1 which can be described as follows. Its vertices
are the equivalence classes of free 0 -submodules of rank d of the vector space KZ,
where M and N are said to be equivalent when there exists a € K, such that M = gN.
The distinct vertices A;, A,, ..., A, form a simplex when there exist for them representa-
tive lattices M, M,, ..., M,, such that M; D M, D ... D M, D nM,. For more informa-
tion see [Mus, § 1] or [Br, Ch. V, § 8].

The geometric realization Y of A has a canonical metric, that makes Y a complete
metric space with negative curvature (see [Br, Ch. VI, § 3]). Moreover, the natural
action of PGL,(K,) on the set of vertices of A can be (uniquely) extended to the sim-
plicial, continuous and isometric action on Y.

Now the Bruhat-Tits fixed point theorem (see [Br, Ch. VI, § 4, Thm. 1]) implies
that any compact subgroup of G has a fixed point on Y. In particular, any torsion
element of G has a fixed point on Y. Notice that in the p-adic case it then stabilizes the
minimal simplex, containing the fixed point.



66 YAKOV VARSHAVSKY

Conversely, the stabilizer in G of each point of Y is compact. In the real case
this is true, since the group PGU,_, ;(R)® acts transitively on B?~! and the group
K = Stabgs1(0) = U,;_,(R) is compact. In the p-adic case the group PGL,(K,)
acts transitively on the set of vertices, and the stabilizer of the equivalence class of
0%, C Ky, is PGL,(0 ), hence it is compact. Since the stabilizer in G of any point
» €Y must stabilize the minimal simplex ¢ containing y, it must permute the finitely
many vertices of o, so that it is also compact. It follows that the stabilizer of any point
of Y in TI'y is compact and discrete, hence it is finite.

To finish the proof of the lemma in the real case we note that for each x e B¢~
there exists an open neighbourhood U, of x such that

Ioi={gels[g(U,)nU,+ 0} ={geTs|g() =+}

is finite (see [Shi, Prop. 1.6 and 1.7]). The space I'(\\B*~! is compact, hence there
exist a finite number of points #,, %,, ..., %, of B?~%, such that Ty(Ur., U,) = B*~%,
If v is a torsion element of I'y, then it fixes some point of B?~!. By conjugation we may
assume that it fixes a point in some U, therefore v is conjugate to an element of the
finite set Ur_, |

In the p-adic case we first assert that A has only a finite number of equivalence
classes of simplexes under the action of I'y. Since A is locally finite, it is enough to prove
this assertion for vertices. The group G acts transitively on the set of vertices, and
G = I'y- K for some compact set K C G. Hence if v is a vertex of A, then K. is a compact
and discrete (because the set of all vertices of A is a discrete set in Y) subset of Y, and
our assertion follows. Now the same considerations as in the real case complete the
proof. O

1.2. GAGA results

In what follows we will need some GAGA results. Let L be equal to K, in the
p-adic case and to C in the complex case. We will call both the complex and the p-adic
(L-)analytic spaces simply (L-)analytic spaces. Recall that for each scheme X of locally
finite type over L and each coherent sheaf F on X a certain L-analytic space X**
and a coherent analytic sheaf F*» on X** can be associated (see [Bel, Thm. 3.4.1] in the
p-adic case and [SGAI, Exp. XII] in the complex one).

Theorem 1.2.1. — Let X be a projective Li-scheme. The functor F +— F*® from the category
of coherent sheaves on X to the category of coherent analytic sheaves on X*® is an equivalence of
categories.

Proof. — In the complex case the theorem is proved in [Sel, § 12, Thm. 2 and 3],
in the p-adic one the proof is the same. One first shows by a direct computation that
the p-adic analytic and the algebraic cohomology groups of P* coincide. Next, one
concludes from Kiehl’s theorem (see [Bel, Prop. 3.3.5]) that the cohomology group
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of an analytic coherent sheaf on P* is a finite-dimensional vector space. Now the argu-
ments of Serre’s proof in the complex case hold in the p-adic case as well. See [Bel, 3.4]
for the relevant definitions and basic properties. O

Corollary 1.2.2. — a) If X is an algebraic variety over L and X' is a compact L-analytic
subvariety of X, then X' is a proper L-algebraic subvariety of X.

b) The functor which associates to a proper L-scheme X the analytic space X™ is fully
Saithful.

Proof. — Serre’s arguments (see [Sel, § 19, Prop. 14 and 15]) hold in both the
complex and the p-adic cases. O

Corollary 1.2.3. — Let X be a projective L-scheme. The functor X' > (X')*® induces
an equivalence between:

a) the category of vector bundles of finite rank on X and the category of analytic vector bundles of
finite rank on X**;

b) the category of finite schemes over X and the category of finite L-analytic spaces over X, if
L is a p-adic field.

Progof. — a) To. prove the statement we first notice that the category of vector
bundles of finite rank is equivalent to the category of locally free sheaves of finite rank.
In the algebraic case this is proved in [Ha, II, Ex. 5.18]. In the analytic case the proof
is similar. Now the corollary would follow from the theorem if we show that locally
free analytic sheaves of finite rank correspond to locally free algebraic ones. The analytic
structure sheaf is faithfully flat over the algebraic one (see [Sel, § 2, Prop. 3] and
[Bel, Thm. 3.4.1]). Therefore the statement follows from the fact that an algebraic
flat coherent sheaf is locally free (see [Mi2, Thm. 2.9]).

b) We first show that the correspondence (¢:Y — X) > ¢, (0Oy) (resp.
(:Y > X=) 9,(0%)) gives an equivalence between the category of finite schemes
(resp. analytic spaces) over X (resp. X*') and the category of coherent Oy — (resp.
Oxan —)algebras. In the algebraic case this is proved in [Ha, II, Ex. 5.17]. In the analytic
case the proof is exactly the same, because a finite algebra over an affinoid algebra has
a canonical structure of an affinoid algebra (see [Bel, Prop. 2.1.12]). O

Remark 1.2.4. — If X' is finite over X, then it is projective over X, therefore if,
in addition, X is projective over K, then X' is also projective over K, .

Corollary 1.2.5. — Let X and Y be projective L-schemes, and let W and V be algebraic
vector bundles of finite ranks on X and Y respectively. Then for each analytic map of vector bundles
f : W — V* covering some map f: X — Y there exists a unique algebraic morphism g : W — V
such that g™ = f
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Progf. — By definition, f factors uniquely as
Wee s Ve o X0 (VX X)) 20y,

Corollary 1.2.3 implies that there exists a unique g’ : W — V Xy X such that (g')* = g".
Set g:= projog'.
For the uniqueness observe that if #: W — V satisfies 4** = g, then it covers f.

Hence k factors as W —» V Xy X 22 V. Since f; and g’ are unique, we have ' = g’
and h=g. O

Remark 1.2.6. — Using the results and ideas of [SGA1, Exp. XII] one can replace
in the above results the assumption of projectivity by properness.

We now introduce two constructions of E-schemes which are basic for this work.
1.3. First construction

1.3.1. Let Qg A be an open K -analytic subset of (Pg_')*, obtained by removing
from (Pg_')*™ the union of all the K -rational hyperplanes (see [Bel] and [Be3] for
the definition and basic properties of analytic spaces). It is called the (d — 1)-dimensional
Drinfel’d upper half-space over K,, (see also [Drl, § 6]). Then Qg is the generic fiber
of a certain formal scheme ﬁ;w over O , constructed in [Mus, Ku], generalizing [Mum]l].

The group PGL,(K,) acts naturally on Q¢ . (It will be convenient for us to
consider P*~* as the set of lines in A? and not as the set of hyperplanes, as Drinfel’d
does. Therefore our action differs by transpose inverse from that of Drinfel’d.) Moreover,
this action naturally extends to the Oy -linear action of PGL,(K,) on Q‘éw. Further-
more, PGL,;(K,) is the group of all formal scheme automorphisms of ﬁ;’{w over Oy
(see [Mus, Prop. 4.2]) and of all analytic automorphisms of Qg over K,, (see [Be2]).

Though the action of PGL,(K,) on Qi is far from being transitive, we have the
following

Lemma 1.8.2. — There is no non-trivial closed analytic subspace of Qf @Kw C,,
invariant under the subgroup
X
1

U= U5:==(Id_l
0

Progf. — Suppose that our lemma is false. Let Y be a non-trivial U-invariant
closed analytic subset of Qf ®c C,. Then dimY<dimQf & C,=d—1
Choose a regular point y € Y(C,) (the set of regular points is open and non-empty).
Then dim T(Y) =dimY<d— 1. Next we identify Qf ®Kw C, with an open

analytic subset of (A‘ép‘ g by the map (z:...:2) H(ﬁ E). Then

) a—1
x € K§

C PGL,(K,).

y ey
23 23
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Uz(2) = z + « for every z e A" and every ¥ € A’"'(K,). In particular, y + €Y
for every ¥ e A’ !(K,), contradicting the assumption that dim T, (Y)<d—1. O

Recall also that the group PGU,_, ,(R)° acts transitively on B~ ! and that it is
the group of all analytic (holomorphic) automorphisms of B?~! (see [Ru, Thm. 2.1.3

and 2.2.2]).
In what follows we will need the notion of a pro-analytic space.

Definition 1.3.3. — A pro-analytic space is a projective system { X, }, o of analytic
spaces such that for some «, €I all transition maps @g,:X; = X,; B> > a, are
étale and surjective.

Definition 1.3.4. — By a point of X:={X,},c; we mean a system { X, }ocy,
where x, is a point of X, for all « € I and ¢g,(x3) = %, for all § > « in I. For a point
x ={xa}ael of X ={Xa}ael let

T.’c(X) = { V= { Vs }aeI I Uy € Tza(Xa)’ dcpaa(vﬁ) = Uy fOI‘ all B 2o in I}
be the tangent space of x in X.

Defimition 1.3.5. — Let X ={X,},c; and Y ={ Y}, be two pro-analytic
spaces. To give a pro-analytic morphism f: X —Y is to give an order-preserving map
o:I —J, whose image is cofinal in J, and a projective system of analytic morphisms
fo: X, > Y, . A morphism f is called étale if there exists oy € I such that for each
o > ay the morphism f, is étale.

Construction 1.3.6. — Suppose that I'C G X E satisfies the conditions of
Lemma 1.1.9. We are going to associate to I' a certain (E, L)-scheme.

Let X° be B?~! in the real case and Qg in the p-adic one. Consider the L-analytic
space X := (X° x E¥)/T, where I' acts on X° x E¥ by the natural right action:
(%, 8) y:= (vg ' %, gyg)- Then E acts analytically on X by left multiplication.

Proposition 1.3.7. — For each S € & (E) the quotient S\)~( = S\(X® X E)/T" exists
and has a natural structure of a projective scheme Xg over L.

Proof. — First take S € # (E) satisfying part d) of Proposition 1.1.10. Then S\X'
has | S\E/TI'; | < o connected components, each of them is isomorphic to I',g,-,\X°
for some a € E. By ¢), d) of Proposition 1.1.10, each ')y, is a torsion-free arithmetic
cocompact lattice of G.

By [Shi, Prop. 1.6 and 1.7], [Sha, Ch. IX, 3.2] in the real case and by [Mus]
or [Ku] in the p-adic one, each quotient I')g, ;\X° exists and has a unique structure
of a projective algebraic variety over L. Therefore there exists a projective scheme Xg
over L such that X =~ S\X.
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Take now an arbitrary S € #(E). It has a normal subgroup T € #(E) which
satisfies part d) of Proposition 1.1.10. The finite group S/T acts on T\s{ ~ X& by
analytic automorphisms and S\)'\(' ~ (S/T)\X5. Corollary 1.2.2 implies that the
analytic action of S /T on Xj" defines an algebraic action on X and that the projective
scheme Xg:= (S/T)\X; (the quotient exists by [Mum2, § 7]) satisfies (Xg)** = S\)'Z
Moreover, the same corollary implies also that the algebraic structure on S\ X is unique. 0O

For all geE and all S, T € #(E) with SD gTg~' we obtain by Remark 1.1.4
analytic morphisms pg 1(g) : Xi* — X§*. They give us by Corollary 1.2.2 uniquely
determined algebraic morphisms pg 1(g) : Xy — Xy, which provide us by Remark 1.1.5
an (E, L)-scheme X := lim Xj.

S

Proposition 1.3.8. — a) There exists the inverse limit X of the X%’s in the category
of L-analytic spaces, which is isomorphic to X

b) Stabgy(X° x {1}) = TI'y.

¢) Let X be the connected component of X such that X2 D X° X { 1} (note that X° x {1}
is a connected component of X**, and that the analytic topology is stronger then the Zariski topology).
Then Stabg(X,) = I'y.

d) The group E acts faithfully on X.

¢) For each x € X the orbit E-x is (geometrically) Zariski dense. In particular, E acts
transitively on the set of geometrically connected components of X.

f) For each S € F(E) satisfying part d) of 1.1.10, the map X — Xg s étale;

g) For each embedding K, G and each S € F(E) as in ¢), B*~! is the universal
covering of each connected component of (X ¢)** in the p-adic case and of X in the complex one.

Proof. — a) We start from the following

Lemma 1.3.9. — a) Let 11 be a torsion-free discrete subgroup of G. Then the natural
projection X°® — II\X° is an analytic (topological) covering.
b) For each x € X° the stabilizer of x in G is compact.

Proof. — a) follows from [Shi, Prop. 1.6 and 1.7] in the real case and from [Be2,
Lem. 4 and 6] in the p-adic one.

b) By [Dr2, § 6] there exists a PGL,(K,)-equivariant map from Qf to the
Bruhat-Tits building A of SL,;(K,), thus it suffice to show the required property for
stabilizers of points in A and B?~'. This was done in the proof of Lemma 1.1.11. O

The lemma implies that for each sufficiently small S € % (E) the analytic space X§'
admits a covering by open analytic subsets U, satisfying the following condition: for
each ¢ and each subgroup SO T € #(E) the inverse image p; '(U,) of U, under the
natural projection pp: X3 — X3 splits as a disjoint union of analytic spaces, each
of them isomorphic to U; under py.
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Now we will define a certain L-analytic space X®** associated to X. As a set it
is the inverse limit of the underlying sets of the Xis. To define an analytic structure
on X* consider subsets V,C X** such that for some (hence for every) sufficiently small
S e #(E), the natural projection =g : X" — X§" induces a bijection of V, with an
open analytic subset 7g(V,) of X%, described in the previous paragraph. Provide then
such a V, with an analytic structure by requiring that =g : V, — ng(V,) is an analytic
isomorphism. Then the analytic structure of the Vs does not depend on the choice
of the S’s, and there exists a unique L-analytic structure on X* such that each V, is
an open analytic subset of X*".

By the construction, X** is the inverse limit of the X%"’s in the category of L-analytic
spaces. Hence there exists a unique E-equivariant analytic map = : X — X®* such that

for each S € #(E) the natural projection X - X§ factors as XL x=3 X%, where
by ng we denote the natural projection. It remains to show that = is an isomorphism.

For each S € % (E) satisfying part d) of Proposition 1.1.10, the natural projection
X > P\ X is a local isomorphism, hence the projections X — X and = are local
isomorphisms as well.

The map =g o = is surjective, hence for each x € X** there exists a point y € X
such that mg(x) = mg o ©(»). Therefore, =(») = sx for some s e 8S. Since = is E-equi-
variant, we conclude that =(s~'(y)) = x. Hence = is surjective.

Suppose that =(y,) = =n(y,) for some y,, y, € X. Let (%1, g;) and (x,, g,) be their
representatives in X° X E. Then for each S € #(E) there exist s€S and y €I such
that x; = v5 ' (x,) and g; = s, Y- Such yg’s belong to the set{ge G | g(x,) = 22} N T g,
which is compact (by the lemma) and discrete, hence finite. Therefore we can choose
sufficiently small S € #(E) such that g, yz' g; ' = s € S must be equal to 1. This means
that y;, = ,. Thus = is a surjective, one-to-one local isomorphism, hence it is an
isomorphism.

b) is clear.

¢) For each S € #(E) let Y be the connected component of X such that Y3*
is the image of X° X {1} C X* under the natural projection w4 :X®** — X% . Then
X, = %@YS. It follows that geE satisfies g(X,) = X, if and only if g(Yg) = Y

for each Se F(E) if and only if X° X { g} CS(X® X 1) T for each S e #(E) if and
only if g e STy for each S € #(E) if and only if g € n STy = I‘—E

SEF(E)

d) If g e E acts trivially on X, then it acts trivially on X* =~ (X° x E®*)/T.
By b), g = yg forsome y € T, and vy, acts trivially on X°. Since pry, is injective, y = g = 1.

¢) Let Y be the Zariski closure of E.x. Then Y is E-invariant and, therefore,
Y N (X®x{1}) is a closed I'-invariant analytic subspace of X° x {1} =~ X° By
Proposition 1.1.10 @), it is G*-invariant. Since G*" acts transitively on X° in the
real case and by Lemma 1.3.2 in the p-adic one, Y*» n (X° x {1}) has to be all of
X x {1}. It follows that Y = X.
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f) holds, since the projection mg:X*® — X% is a local isomorphism (see the
proof of a)).

g) The real case is clear, the p-adic case is deep. It uses Yau’s theorem (see [Ku,
Rem. 2.2.13]). O

Remark 1.3.10. — The functorial property of projective limits implies that X
satisfies the functorial properties of analytic spaces associated to schemes (see [Bel,
Thm. 3.4.1] or [SGAIl, Exp. XII, Thm. 1.1]).

Lemma1.3.11. — Let T'C G X E and X be as above, let E' be a compact normal subgroup
of E, and let T" C G X (E'\E) be the image of T under the natural projection. Then we have
the following:

a) the map @ : T' — I is an isomorphism;
b) T satisfies the conditions of Lemma 1.1.9;
¢) the quotient E'\ X exists and is isomorphic to the (E'\E, L)-scheme corresponding to T".

Proof. — a) The composition map I' = I 25 G is injective, therefore ¢ is an
isomorphism and pr;: IV — G is injective.

b) T is clearly cocompact. Let U X SC G x (E’\E) be an open neighbourhood
of the identity with a compact closure. Then ¢~*(U X S) is an open neighbourhood
of the identity of G X E with a compact closure. It follows that ¢™*(U X S) N T is
finite, thus (U X S) n I is also finite. Hence I is discrete.

¢) Since E’ is compact and normal, we have E’' S = SE’ € # (E) for each S € # (E).
Hence E'\X:= lim X4 is the required quotient. Next we notice that for each

8

S € #(E) the subgroup S := S\E’S belongs to #(E’\E) and that each T € #(E'\E)
is of this form. Since X% ¢ &~ E’ S\[X° x E]/T" = S\[X° x (E'\E)]/T", we are done. O

1.4. Drinfel’d’s covers

1.4.1. Now we need to recall some Drinfel’d’s results [Dr2] concerning covers of
Q% - (A detailed treatment is given in [BC] for d = 2 and in [RZ2] for the general case.)

Let K, be as before and let D, be a central skew field over K, with invariant 1/d.
Let 0, C D, be the ring of integers. Fix a maximal commutative subfield K¢ of D,,
unramified over K, . Let = € K, be a uniformizer and let Fr, be the Frobenius auto-
morphism of K over K,. Then D, is generated by K, and an element II with the
following defining relations: 11 = =, II-a = Fr,(a)-II for each a e K.

Denote by @™ the ring of integers of the completion of the maximal unramified
extension K™ of K. Drinfel’d had constructed a commutative formal group Y over
ﬁ’f{w (35% (ﬁg' with an action of @), on it. For a natural number n denote by T, the

kernel of the homomorphism Y > Y. Let %, :=T',® o, K, be the generic fiber of T,
and let %, _,,C %, be the kernel of II*~ (= ="~1%),
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Put Zp":=%, — %,_,,, and set T,:=1+ "0, e F(D;). Then Ig" is
an étale Galois covering of Zd 0= QK 5 Km with Galois group (0, [7")* = O /T
We also denote O by T,. The action of = induces étale covering maps =, : Ig* — 2"’: R
giving a K’“—pro-a.nalytlc space g :={Zg"},. The group 05 acts natura.lly on Xg ,
and we have Zg" =~ T, \Zg for each n eNuU{0}. Moreover, Drinfel’d had also
constructed an action of the group GL,(K,) X D on Zg , viewed as a pro-analytic
space over K, which extends the action of 0y and satisfies the following properties
(notice that our convention 1.3.1 differ from those of Drinfel’d):
a) the diagonal subgroup { (%, k) € GL;(K,) X D |k e K} } acts trivially;
b) GL,(K,) (resp. D) acts on Zg° =Qf &g K‘“ by the product of the natural
action of PGL,(K,) on Qf ~(resp. “the tr1v1a1 action on Qg,) and the Galois action

g Frvalw(det(n)) (I'CSP g~ Fr— val,,,(det(g))) on Knt

1.4.2. In the case d = 1 Drinfel’d’s coverings can be described explicitly. Let L be
a p-adic field. Then, by property a) above, the action of L* X L* on X} is determined
uniquely by its restriction to the second factor. Denote by 6, : L* — Gal(L*/L) the Artin
homomorphism (sending the uniformizer to the arithmetic Frobenius automorphism).

Lemma 1.4.3. — One has TL = A4 (L), and the action of (1,1) e{1} x L* on =}
is given by the action of 0,()~* € Gal(L*®/L) on L2®,

Progf. — This follows from the fact that Drinfel’d’s construction for d =1 is
equivalent to the construction of Lubin-Tate of the maximal abelian extension of L
(see, for example, [CF, Ch. VI, § 3]). O

1.4.4. Let L be an extension of K, of degree d and of ramification index e. For
every embeddings L < Mat,(K,), L< D, (such exist by [CF, Ch. VI, § 1, App.])
and K% < L™ and for every n e NU {0} there exists a closed L-rational embedding

:Ip e Zg", which is (L* x L*)- equlvanant and commutes with the projec-
tlons T, Moreover i QL& L’“‘—-)QK ®g K™ is the product of our embedding
Rres Lnr and a closed embedding ¢: Q‘ f—>Q"K , with 1mage Q)" (see [Dr2,
Prop. 3.1]). Taking an inverse limit we obtain an embedding 7 : 2} X,

Lemma 1.4.5. — Let H be a subgroup of Ry (G,)(K,) = L*, Zariski dense in
Ryx, (Gp). Then Im? ={« eXg | (L1) x=x for every LeH}.

Proof. — Since for each / e HC L* the action of (/,/) on X} is trivial, and since
7 is (L* x L*)-equivariant, Im 7 is contained in the set of fixed points of (/, 1), / € H.
Conversely, if x € Z‘]’;w is fixed by all (/,), [ e H, then its image ¥ € Qg under
the natural projection p:Zg —Qf = belongs to (Qf )¥ = (Qf )*" =i(Q;). Since
p(Im7) = Imi, there exists y eIm7 such that p(p) = ¥(= p(x)). Recall that
Q, =Dj \Z%, - Therefore y = 3x for some 8 e D). It follows that ([, 3/87")y =y

10
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for each /eH, hence also (1,3/87"/7") y = y. Since the covering X% — O \Zg
is étale, the group Of acts freely on X . Therefore 8/8~' "' =1 for each /eH.
Hence § belongs to the centralizer of H in D}, so that to L*. It follows that
x=938'yel* Im7=Im7. O

Proposition 1.4.6. — For each n e N U {0} the group SD) N T, acts trivially on the
set mo of connected components of g " @Kw C,.

Proof. — Recall (see 1.4.4) that each maximal commutative subfield LC D,
gives us (after some choices) a closed L-rational L*-equivariant embedding
i, Iy —>2Zg". Let % be a connected component of X" ®,C,. Take Z emn,,
which contains 2,(%). Then, by Lemma 1.4.3, & is defined over L** and

(1.1) (&) = (6,())~*(Z) for each [ eLX.

Fix a %, e w,, and let M be the field of definition of %,. Then M D K™. Since
the quotient Dy\Zg" = Qf ~is geometrically connected, D;; acts transitively on m,.
Since the action of D;; on =, is K -rational, M is the field of definition of every Z € .
In particular, M is the closure of a Galois extension of K,, and M C L for every
extension L of K,, of degree d. Taking L be unramified we see that the group Aut™(M)
of continuous automorphisms of M over K is meta-abelian (= extension of two abelian
groups). Set H:= {8 € D | there exists a ¢(3) € Autx™(M) such that §(Z;) = (8) (%) }-
Then H is a group and o: H — Aut™(M) is a well-defined homomorphism.

We claim that H = D). Take a § e D}, then K, [3] is a commutative subfield
of D,. Let L be a maximal commutative subfield of D, containing 3. Then by (1.1),
3(Z) = (6,(3))"Y(%) for some & emy,. Take 3’ €D} such that & = §(%,). Then
(B3N8 (&, = (8) 1o (0,(3)) 1o ¥ (%) = (6,(3)) 1(ZX,), so that (8)"'38 eH.
Thus each element of D} is conjugate to some element of H. In particular, Z(D}) C H.
Since T, acts trivially on Z%", it is also contained in H. Hence HD T,-Z(Dy) has
a finite index in D). Therefore our claim follows from the following

Lemma 1.4.7. — Let G be a group and let H be a subgroup of G of finite index. Suppose
that G= U gHg ' Then G = H.

gEG/H

Proof. — Set K:= [l gHg ', Then K is a normal subgroup of G of

gEG

finite index, and G/K = EléIHg(H/K) gl= l(J},H (eHK)g'—{1}Hu{l}. Hence
9 g€
|GK|<|GH|(HK]|—-1)+1=]|G/K|—|G/H]| + 1, therefore G = H. O
Now the proposition follows from the fact that SD;; is the derived group of D,

(see [PR, 1.4.3]) and that T, N SD} is the derived group of SD;; (see [PR, 1.4.4,
Thm. 1.9]). O
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1.5. Second construction

Construction 1.5.1. — Suppose that a subgroup I' C GL,(K,) X E satisfies the
following conditions:
a) Z(I') = Z(GL,(K,) X E) n T
b) the subgroup Z(I') C Z(GL,(K,) X E) is cocompact;
¢) PI'C PGL,(K,) X PE satisfies the assumptions of Lemma 1.1.9 (this imply, in
particular, that the closure of I' is cocompact in GL,(K,) X E);
d) the intersection of Z(I') with Z(GL,(K,)) X {1} is trivial.

We are going to associate to I' a certain (D) X E, K, )-scheme.
Consider the quotient X:= (Z% X E)/I'. The group Dj x E acts on X by
the product of the natural action of D on Zf and the left multiplication by E.

Proposition 1.5.2. — For each S € # (D) X E) the quotient S\)N( = S\(Zg, x E)/T
has a natural structure of a K -analytic space, which has a unique structure Xy of a projective
scheme over K, .

Proof. — First take S =T, X S’ for some e NuU {0} and some sufficiently
small S’ € #(F) (to be specified later). Then S\i = 8'\(Zg" x E)/T" is a disjoint
union of | S\E/T'y | < oo (as in Lemma 1.1.9) quotients of the form I, .\Zg" with
a € E. Thus it remains to prove the statement for quotients Iy ,-1\Zg". For simplicity
of notation we assume that a = 1. Set

Ly, o:= 'y N prg(Z(1)) = pra(T" 0 (Z(GLy(K,)) X (Z(E) n'§))).

First we construct the quotient Fs',o\Z?;’,:- Assumptions @) and 4) of 1.5.1 imply that
the closure of Ty , is cocompact in Z(GL,(K,)) = K, hence val,(det(T'g, ,)) = dk Z
for some & € N. Let K% be the unique unramified extension of K, of degree dk; then
Ty, o\O%, ©x, Ry = Ok, ®x, Ki°.

Consider the natural étale projection m,:Zg" —3g° —Qf . Let {#(A) }ieq
be an affinoid covering of Qf . Since the projection Ig" — X% is finite, each
m, (M (A;)) C Zg” is finite over the affinoid space (A, ®Kw K=). Hence it is iso-
morphic to an affinoid space 4 (B;) for a certain Kg-afﬁnoid algebra B,, finite over
A, ®Kw K™, Since =, is D)-invariant, we have a natural action of Iy o on B;. Set
C, := Bl'*.0, Since an affinoid algebra is noetherian, we see that C; is finite over the
K,-affinoid algebra A;. Hence C; has a canonical structure of a K -affinoid algebra
(see [Bel, Prop. 2.1.12]). Gluing together the .#(C,)’s, we obtain a K -analytic space

Ty o\Zg ), finite and étale over Qf .

Put S:= S-Z(E)/Z(E) C PE. Then S € #(PE). To construct T, \Z‘,’{" we observe
that the action of PI'y = I'y, (\I'y on Ty \Zg" covers its action on Q"w Suppose
that S’ is so small that S satisfies part d) of Proposition 1.1.10. Recall that
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by Lemma 1.3.9 each x €Qf has an open analytic neighbourhood U, such that
Y(U,) N U, + O for all y e PI'; — {1} and, as a consequence, PI'5\Qg  is obtained by
gluing the U.s. Let m, be the natural projection from Ty \Zg" to Qf . For
each yeTy \Zg" set V,:=7."(Uz,). Then the quotient K,-analytic space
PT5\(Ty, 0\Zg") = Ig\Zg " is obtained by gluing the V.

Since I'y\Z%_ is a finite (and étale) covering of PI'5\Qf , which has a structure
of a projective scheme over K,, by [Mus, Ku], I'y\Z%" also has such a structure by
Corollary 1.2.3 and the remark following it.

Finally consider an arbitrary S e #(D; X E). It has a normal subgroup S of
the form S =T, x S’ with sufficiently small S’ € #(E), therefore to complete the
proof we can use the same considerations as in the end of the proof of Propo-
sition 1.3.7. O

The same argument as in Construction 1.3.6 gives us a (DS X E, K,)-scheme

X = lim X,.
8

Proposition 1.5.3. — a) The kernel E, of the action of D X E on X is the closure of
the subgroup Z(I')C Z(GL,(K,) X E) =Z(D} X E) after the natural identification
Z(GL,(K,)) = K} = Z(Dy).

b) Let B, be the closure of Z(T) in E, and let T C PGL,(K,) X (E\E) be the image
of T under the natural projection. Then T satisfies the assumptions of Lemma 1.1.9.

¢) The quotient DX\X exists and is isomorphic to the Eo\ E-scheme corresponding to T
by Construction 1.3.6.

d) The quotient (D} X Z(E))\X exists and is isomorphic to the (PE, K )-scheme X'
corresponding to PT' by Construction 1.3.6.

¢) For each x € X the orbit (Dy; X E)x is Zariski dense in X.

f) For each sufficiently small S € #(E) and each n e N U {0} the map X —X; .4
is étale, and B~ is the universal covering of each connected component of (Xy . g )™ for
each embedding K, < C. In particular, the projective system X" := { XP }yc sy xm)s
associated to X, is a K, -pro-analytic space.

Proof. — a) Notice that g € E, if and only if g acts trivially on X (or, equivalently,
on X% = S\(Zg, X E)/T) and normalizes S for each S e #(D; X E). For each
yeZ(I'YCZ(D) x E) let v, be the projection of y to the first factor. Since (ys X 7v,,)
acts trivially on Z‘f(w, we have v([x,e]) = [v,(*), Y €] ~ [(Ya X Yu) (), €] = [*, €]
for each x e 2% and ¢ € E, that is y acts trivially on each X§'. Since y is central, it
certainly normalizes S. This shows that the closure of Z(T') is contained in E,.

Conversely, suppose that some (g;,g,) €eDS X E with g, eD) and g, €E
belongs to E;. Choose S’e % (E) and neNuU{0}. It suffice to show that
(81, &2) € (T, x 8') Z(T). Since (g;, ) acts trivially on S"\(Zg" x E)/T, we have
[g:1(%), 8] ~ [, 1] for each x € Z3". This means that there exists an element y =y, €
such that g,(x) = y5'(x) and g, € S’ yz. Let x” be the projection of x to Z¢°, and let x”
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be its projection to Qf . The group Dy acts trivially on Qf , therefore v5'(x") = #”.
Choose x so that no non-trivial element of PGL,(K,) fixes x”, then y; belongs to
Z(GL,(K,)) = K. Assumption ¢) of 1.5.1 implies that vy € Z(T"). Since
&%) = 15 (%) = v,(%),

we conclude that g!y,(x) =x Hence %' = (g7'y,) (x) = Fryvadetq v (y) = 5o
that g7''y, € 0y . Since Z¢" is an étale Galois covering of 2’ with Galois group
05,/ T, the equality (g7'y,)(x) =« implies that g 'y, eT,. It follows that
(&1, 85) € (T, X S") (vp>ys) C (T, x S") Z(T"), as claimed.

b) The natural projection PGL,(K,) X (E\E) —PGL,(K,) x PE induces an
isomorphism I = PI'. Hence I is discrete and has injective projection to PGL,(K,).
It is cocompact, because so is I'C PGL,(K,) x E.

¢) Notice first that for each open subgroup E,C SC D} X E, compact modulo E,,
the quotient S\X exists and is projective. Assumption 5) of 1.5.1 implies that E,
is cocompact in Dj X Z(E). Therefore for each S e % (D) x E) the quotient
DX S\X = (DX EoS)\X = (DX x Eg) S\ X exists. Set

S:= (DX x EJ\(D; x E,) S e F(ENE).

Then (D} S\X)™ = (D x Eg) S\[E% x E]/T' = S\[Q% x (E,\E)]/I", and the state-
ment follows as in the proof of Lemma 1.3.11 ¢).

d) follows from ¢) and Lemma 1.3.11 ¢).

¢) follows from ¢) and Proposition 1.3.8 ¢).

f) Take T € #(PE) satisfying part d) of Proposition 1.1.10. Then there exists
S e #(E) such that Z(E)\S-Z(E) = T. Since we have shown in the proof of Propo-
sition 1.5.2 that X, , ¢ is étale over T\ X’ for each n e N U {0}, the statement follows
immediately from Proposition 1.3.8 f), g). O

Corollary 1.5.4. — For each a € E the composition map

beiZh S TL X {a}es (Zh x EM)T »Xm

of pro-analytic spaces over K is étale and one-to-one.

Proof. — The étaleness is clear. Let x, and x, be points of X such that
0a(%1) = p4(#5). Let a € PE’ be projection of a, and let p; be the injection
Q304 x{a}e> (@, x (PE))/PT 3 (X)),
Then we conclude from the commutative diagram

faq

d, n an
DL X

Droil lm‘oi

0, — (X

that x, and x, have the same projection y € Qg .
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Choose S € #(E) so small that the group PI,. is torsion-free (use Propo-
sition 1.1.10 4)). Then no non-central element of ')y, 1 fixes ». For each n e N let
m, s be the projection X* — (X; ,¢)*. Then the image of =, 3o, is isomorphic
to I'yg,-1\Zg". Hence there exists vy, € I';g,1 such that the projections of v,(x;) and x,
to %" coincide. Therefore v,(y) =, so that v, e Z(GL,(K,)) = K;. It follows
that the sequence { v, }, converges to some y € K, which satisfies y(¥,;) = x,. Then
(v, 1) e Z(D,; X E) fixes z:= p,(x;) = p,(¥y). Since (v, 1) is central, it then fixes the
whole (D} x E)-orbit of z. Hence, by Proposition 1.5.3 ¢), it acts trivially on X. There-

fore by Proposition 1.5.3 a), the element (y, 1) belongs to Z(I') C Z(GL,(K,) X E).
Assumption d) of 1.5.1 implies that y = 1, hence x, = x,. O

1.6. Relation between the p-adic and the real comstructions

The following proposition (and its proof) is a modification of Ihara’s theorem
(see [Ch2, Prop. 1.3]). It will allow us to establish the connection between the p-adic
(1.3.6, 1.5.1) and the real (or complex) (1.3.6) constructions.

Proposition 1.6.1. — Let X be an (E, Q)-scheme. Suppose that
a) E acts faithfully on X;
b) E acts transitively on the set of connected components of X;

¢c) there exists S € F(E) such that the projection X — X is étale, and B*~* is the universal
covering of each connected component of X3.

Then X can be obtained from the real case of Construction 1.3.6.

Remark 1.6.2. — a) It follows from Proposition 1.3.8 that all the above conditions
are necessary.

b) Let X be an (E, C)-scheme and let E, be the kernel of the action of E on X.
Then X is an (Eg\ E, C)-scheme with a faithful action of E¢\ E. Conversely, any (Eo\ E, C)-
scheme can be viewed as an (E, C)-scheme with a trivial action of E,.

¢) Let X be an (E, C)-scheme and let X, be a connected component of X. Put

X := U g(X,). Then X’ is an (E, C)-scheme with a transitive action of E on the set
JEE

of its connected components, and X is a disjoint union of such (E, C)-schemes.

Remarks 4) and ¢) show that assumptions a) and 5) of the proposition are not
so restrictive.

Proof. — We start the proof with the following

Lemma 1.6.3. — Suppose that { X, }, <1 i a projective system of complex manifolds such
that the transition maps X, — X, where o, B € I with B > «, are analytic coverings. Then there
exists a projective limit X of the X.’s in the category of complex manifolds.
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Progf. — Choose an « € I. Cover X, by open balls { U }g¢ 5, and let ©: X' — X,
be an analytic covering. Then the inverse image =~ '(U,s) of each U, is a disjoint
union of analytic spaces, each of them isomorphic to U,; under =. Hence the cons-
truction of the projective limit from the proof of Proposition 1.3.8, @) can be applied. O

Now we return to the proof of the proposition. By assumption ¢), X% is a complex
manifold for each sufficiently small S € #(E), and the natural covering X3 — XJ*
is étale (analytic) for each T CS in & (E). Therefore by the lemma there exists an

analytic space X* := lim Xg.
S
Since X is a complex projective scheme for each S € # (E), the set of its connected

components coincides with the set of connected components of X%*. Hence assumption &)
implies that the group E acts transitively on the set of connected components of X*

Let M be a connected component of X**. Denote by I'y; the stabilizer of M in E.
Then I'y acts naturally on M, and the transitivity statement above implies that
X > (M X E®) [Ty,

For each S € # (E) the analytic space X§" =~ S\(M X E)/I'; is compact. Therefore,
as in the proof of Lemma 1.1.9, | S\E/T';| < oo and [T';: 'y N S] = oo. Note that
M := (I'y n S)\M is a connected component of X%*. Suppose that S satisfies condi-
tion ¢); then the map M — My is étale and B?~! is the universal covering of M.
Hence it is also the universal covering of M. It follows that I'y; C Aut(M) can be lifted
to Ty C Aut(B*~ ') = PGU,_, ,(R)".

The kernel A of the natural homomorphism = :I'y — 'y is the fundamental
group of M. Let I'y C PGU,_, ;,(R)° be the fundamental group of the compact analytic
space Mg, then I'y is a cocompact lattice in PGU, _, ;(R)°, satisfying I'y = =~ *(I'y N S).
It follows that [I'g: I'y] = [['g: I'y N S] = co. Therefore, as in the proof of Propo-
sition 1.1.10 a), we see that I'y is dense in PGU,_, ,(R)’ The group A is discrete
in PGU,;_, ;,(R)° and normal in Ty, thus it is trivial (compare the proof of Propo-
sition 1.1.10 4)). In particular, M = B*~! and = is an isomorphism.

Put T:={(y,=n(y)) |y eTg}CPGU,_,;(R)® x E. Since Iy is discrete in
PGU,_,,(R)%, sois I' in PGU,_, ,(R)® X E. Let KC PGU,_, ;(R)° be the stabilizer
of 0 e B~ Then X§ = S\(B’~' x E)/T' = (K x S)\(PGU,_, ;(R)® X E)/T. Since
K, S and X§' are compact, I' is cocompact in PGU,_, ;(R)° x E. Since Ker(pr,)
equals the kernel of the action of E on X, the projection pry is injective. This shows
that I' satisfies all the assumptions of Construction 1.3.6. O

Corollary 1.6.4. — Choose an embedding K, — C. Let X be an (E, K )-scheme obtained
by the p-adic case of Construction 1.3.6 or an (E, K,,)-scheme obtained by Construction 1.5.1.
Then X can be constructed by the real case of Construction 1.3.6.

Proof. — This is an immediate consequence of Propositions 1.6.1, 1.3.8 and
1.5.3. O
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1.7. Elliptic elements

Definition 1.7.1. — Suppose that a group G acts on a (pro-)analytic space (or a
scheme) X. An element g € G is called elliptic if it has a fixed point x such that the
linear transformation of the tangent space of x, induced by g, has no non-zero fixed
vectors. In such a situation we call x an elliptic point of g.

Lemma 1.7.2. — Let A\, Xy, ..., N; be the eigenvalues of some element g € GL,(L)
(with multiplicities). Let v e P*~*(L) be one of the fixed points of g corresponding to N;. Then
A A
%, 5\3’ RN )Td are the eigenvalues of the linear transformation of the tangent space of v, induced
1 1 1
by g.

Progf. — Simple verification. O

Proposition 1.7.8. — The set of elliptic elements of PGU,_, ;(R)® with respect to its
action on B*~* and of PSL,(K,,) with respect to its action on Qg  is open and non-empty.

Progf. — In the real case we observe that an element

g:=diag(, Ay, ..., A) € PGU,_, ;(R)°

fixes (0,0, ...,0) e B4~ ', Therefore by Lemma 1.7.2, g is elliptic if A % A; for all
i + d. It follows that the set of elliptic elements is non-empty. It is open, because if g
has a fixed point in B*~! corresponding to an eigenvalue of g appearing with multi-
plicity 1, then the same is true in some open neighbourhood of g.

In the p-adic case we start with the following

Lemma 1.7.4. — An element g € GLy(K,) is elliptic (acting on Qg ) if and only if
its characteristic polynomial is irreducible over K.

Progf. — Suppose that the characteristic polynomial y, of g is irreducible over K,, .
Then g has d distinct eigenvalues. Let A be some eigenvalue of g, let v + 0 be the eigen-
vector of g corresponding to A, and let 7 e P*~*(K ) be the fixed point of g corresponding
to v. By Lemma 1.7.2, the linear transformation of the tangent space of v, induced
by g, has no fixed non-zero vector. So it remains to be shown that 7 e Qg . If 7 ¢ Qg ,
then it lies in a K -rational hyperplane. Therefore there exist elements q,, ..., q; € K,
not all 0 (say a; + 0) such that (a;, ..., q;)-v = 0. We also know that (g — AI) v = 0.
Let A be the matrix obtained from g — Al by replacing the last row by (ay, ..., a,).
Then Av =0, so that det A = 0. The determinant of A is a polynomial in A of
degree (d — 1) with coefficients in K, with leading coefficient (— 1)~ g, < 0. This
contradicts the fact that the minimal polynomial of A over K, has degree 4.

Suppose now that the characteristic polynomial y, of g equals the product f;- ... -f;
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of polynomials irreducible over K, (k> 1). Consider the matrix fi(g). If fi(g) =0,
then the minimal polynomial m, of g divides f;. Hence each root of y,, being a root
of m,, is a root of f;. Each f; has only simple roots, therefore f, | f; for each i. Since
/1 is irreducible, all the f’s are equal up to a constant. Hence y, = ¢ff for some c e K.
In particular, each root of y, is at least double. Lemma 1.7.2 then implies that g is
not elliptic.

Hence we can suppose that f;(g) = O forall¢ =1, 2, ..., k. Let A be an eigenvalue
of g, let v be the eigenvector corresponding to A, and let 2 e P*~}(K,) be the fixed
point of g corresponding to ». Choose 7 €{1, ..., %} such that A is a root of f;. Then
filg) v =fi(A) v = 0. The matrix f;(g) + 0 has all its entries in K, hence 7 lies in a
K -rational hyperplane. Therefore g is not elliptic. O

Now we return to the proof of the proposition. Embed an extension L = K, ()
of K, of degree 4 in Mat,(K,). Then A e L* C GL,(K,) has an irreducible cha-
racteristic polynomial over K,. Therefore the set of elliptic elements of PGL,(K,,)
is non-empty. It is open because by Krasner’s lemma if g € GL,(K,) has a characte-
ristic polynomial irreducible over K, then any g’ € GL,(K,), close enough to g, has
the same property (see [La, Ch. II, § 3, Prop. 4]). It follows that the set of elliptic
elements of PSL;(K,) is also open. For showing that it is non-empty observe that if
an element g € PGL,(K,) is elliptic but g° is not elliptic, then by Lemma 1.7.2 the
characteristic polynomial of any representative of g in GL,(K,) has at least two equal
roots. Hence such a g belongs to some proper Zariski closed subset of PGL,. It follows
that there exists an elliptic element g € PGL,(K,,) such that g is elliptic as well. Since
g% always belongs to PSL,(K,), we are done. O

Proposition 1.7.5. — a) An element (g, 8) € GL;(K,) X Dy s elliptic with respect
to its action on Iy (viewed as a pro-analytic space over K,,) if and only if the characteristic
polynomials of g and § are K -irreducible and coincide.

b) For every element g € GL,(K,,) elliptic with respect to its action on Qf , there exists
a8 e Dy such that (g, 8) is elliptic with respect to its action on Tg .

Proof. — a) Let x € g be an elliptic point of (g, 3), and let ¥ € Q¢ be its image
under the natural projection p : 3§ — Qg . Since p is étale, it induces an isomorphism
of tangent spaces (up to an extension of scalars). Hence g is elliptic with respect to its
action on Qf . By Lemma 1.7.4, g generates a maximal commutative subfield L := K, (g)
of Mat,(K,).

Choose an embedding j: K, (g) < D,, (such exists by [CF, Ch. VI, § 1, App.]).
It defines an L*-equivariant embedding 7 :3f < Zg (see 1.4.1). We know that
Xe(Qg )" =po7(Z}). In particular, there exists y €7(Z;) such that p(y) =&
Since 7 is L*-equivariant, the element (g,j(g)) € GL,(K,) X D} fixes y. Using the
fact that x € p(¥) and that D3\Z§ = Qf , we have y = dyx for some d, e D;.
Hence, the elements (g, d; ' j(g) d,) € GL,(K,) X D;; and d :=d;'j(g) dy 5~ e D} fix x.

11
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In particular, d € D} fixes some point (the projection of x) on %0 ®Kw C,, therefore
de 03, - Since the Galois covering Zg — 05 \Zg is étale, Oy acts freely on Zg . It fol-
lows that 4 = 1, hence 8 = d; 'j(g) d,. This completes the proof of the implication
 only if ”’, because g € Mat,(K,) and j(g) € D, have the same characteristic polynomials.

Conversely, suppose that the characteristic polynomials of g and & are K, -irreducible
and coincide. Then the subfields K, (¢g) C Mat,(K,) and K,(8) C D, have degree d
over K, and are isomorphic under the K -isomorphism sending g to 8. Using
this isomorphism we obtain embeddings of the field L := K (g) into Mat,(K,) and
into D,,. These embeddings define (by 1.4.4) an (L* X L*)-equivariant embedding
7:Z} < X such that every point x €7(Z}) is fixed by all elements of the form
(,,1) eL* x L* C GL,(K,) X Dj. In particular, » is a fixed point of (g, 3). As
before, the action of (g, 3) on the tangent space of x coincides with the action of g on
the tangent space of z. Since x is an elliptic point of g (by Lemma 1.7.4), xis an elliptic
point of (g, 3).

b) If an element g € GL,(K,) is elliptic, then by Lemma 1.7.4 it has an irreducible
characteristic polynomial over K,. Therefore K, (g) C Mat,(K,) is a field extension
of K, of degree d. Then for every embedding j of K,(g) into D, the element (g,7(g))
is elliptic by a). O

1.8. Euler-Poincaré measures and inner twists

Here we give a brief exposition of Kottwitz’ result [Ko, § 1].

1.8.1. Let L be a local field of characteristic 0, and let H be a connected reductive
group over L. Serre [Se2] proved that there exists a unique invariant measure (called
the Euler-Poincaré measure) py on H(L) such that pg(I"\H(L)) is equal to the Euler-
Poincaré characteristic y5(I') of H*(I', Q) for every torsion-free cocompact lattice T’
in H(L). In particular, pug(H(L)) =1 if the group H(L) is compact. The Euler-
Poincaré measure is either always negative, always positive or identically zero. It is
non-zero if and only if H has an anisotropic maximal L-torus. (A result of Kneser
shows that in the p-adic case this happens if and only if the connected center of H is
anisotropic.)

1.8.2. Let G be an inner form of H. Choose an inner twisting ¢ : H - G over L.
Choose a non-zero invariant differential form g of top degree on G. Set wg := p*(wg).
Using the fact that H is reductive, that the twisting is inner and that w, is invariant, we see
that wy is invariant, defined over L, and does not depend on p. Hence w, and wy define
invariant measures | g | and | g | on G(L) and H(L) respectively (see [We2, 2.2]).

Definition 1.8.3. — The invariant measures p. on H(L) and p’ on G(L) are called
compatible if there exists some ¢ € R such that u =¢| wy| and p’ =c| oy |.

1.8.4. — Now suppose that H has an anisotropic maximal L-torus T, so that
the Euler-Poincaré measure pyz on H(L) is non-trivial. (Notice that for semisimple
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groups of type A, this assumption is satisfied automatically). Denote by |ug| the
absolute value of py. Write 2(T, H) for the finite set Ker[H'(L, T) — H'(L, H)] and
write | 2(T, H) | for its cardinality. It is well known that T transfers to G, thus we can
also consider the finite set 2(T, G).

Proposition 1.8.5 ([Ko, Thm. 1]). — The invariant measure | 2(T, H) |7! | pg |
on H(L) s compatible with the invariant measure | 2(T, G) |7 | ug | on G(L).

Remark 1.8.6. — a) In the p-adic case, the sets (T, H) and 2(T, G) always
have the same cardinality.

b) In the real case, (T, H) = Q(H(C), T(C))/Q(H(R), T(R)), where Q stands
for the Weyl group. In particular, | Z(diag, PGU,) | =1 and | 2(diag, PGU,_, ,) |
is d (resp. 1) if d> 2 (resp. d = 2).

1.9. Preliminaries on torsors (= principal bundles)

Definition 1.9.1. — Let G be an affine group scheme over a field L (resp. an
L-analytic group), and let X be an L-scheme (resp. an L-analytic space). A G-forsor
over X is a scheme (resp. an analytic space) T over X with an action G X T - T of G
on T over X such that for some surjective étale covering X’ — X the fiber product
T X X' is the trivial G-torsor over X' (that is isomorphic to G X X').

Remark 1.9.2. — Since each étale morphism of complex analytic spaces is a local
isomorphism, our definition in this case coincides with the classical one.

Lemma 1.9.3. — a) If T is a G-torsor over X, then the map ¢p: G X T - T x4 T
(pp(g, t) = (gt, t)) is an isomorphism.

b) Let T and T' be two G-torsors over X and Y respectively. Then for each G-equivariant
map f:'T —T' the natural morphism T — T’ Xy X is an isomorphism.

Proof. — a) Since the problem is local for the étale topology on X (see [Mi2,
Ch. I, Rem. 2.24] in the algebraic case, [Be3, Prop. 4.1.3] in the p-adic analytic and
Remark 1.9.2 in the complex one), we may suppose that T is trivial. Then our morphism
(g, (b, x)) > ((gh, %), (h, x)) is invertible.

b) For trivial torsors the statement is clear. The general case follows as in @). O

Remark 1.9.4. — By [Mi2, Ch. I, Rem. 2.24 and Prop. 3.26] our definition in
the algebraic case is equivalent to the standard one. In particular, a G-torsor over X
is affine and faithfully flat over X.

Lemma 1.9.5. — Let X be a separated scheme over a field L, let G and H be two affine
group schemes over L, let T be a G-torsor over X, and let w: T — X be the natural projection.

a) The functor F > n* F defines an equivalence between the category of quasi-coherent
sheaves on X and the category of G-equivariant quasi-coherent sheaves on ‘T, that is, quasi-coherent
sheaves on T with a G-action that lifts the action of G on T.
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b) The functor Z — Z X T defines an equivalence between the following categories:

1) the category of vector bundles of finite rank on X and the category of G-equivariant vector
bundles of finite rank on T;

ii) the category of H-torsors over X and the category of G-equivariant H-torsors over T

iii) (if X s noetherian and regular) the category of P"-bundles on X and the category of
G-equivariant P*-bundles on T.

The quasi-inverse functor is Z G\Z.

Proof. — This is a consequence of a descent theory.

a) Abusing notation we will write # Xy, Y, instead of ¢* # for every morphism
0:Y,; > Y, and every sheaf of modules # on Y,. Let & be a G-equivariant quasi-
coherent sheaf on T. Define an isomorphism ¢: (F X, T) Xy T3 T X £ (F X, T)
over T X4 T by the formula o(f, gt,¢) = (gt, g7 f,¢) for all ge G, teT and fe 37',
(use Lemma 1.9.3). Then ¢ satisfies the descent conditions of [Mi2, Prop. 2.22].
Since T — X is affine and faithfully flat, there is a unique quasi-coherent sheaf # on X
such that & =~ # Xx T. Since the construction of descent is functorial (see [Mi2,
2.19]), we obtain an equivalence of categories. Notice that # ~ G\(# Xy T).

b) follows from a) in a standard way (use [Ha, II, Ex. 5.18, 5.17 and 7.10]). O

From now on we suppose that the reader is familiar with basic definitions of tensor
categories (see [DM]).

Notation 1.9.6. — For a field L, an affine group scheme (resp. an analytic group) G
over L and a scheme (resp. an analytic space) X over L:

a) let Zep, (G) be the category of finite-dimensional representations of G over L;
b) let Yecy be the category of vector bundles of finite rank on X;
¢) let Torg(G) be the category of G-torsors over X.

We will sometimes identify categories with the sets of their objects.

Definition 1.9.7. — Let L be a field and let G be an affine group scheme over L.
A G-fibre functor with values in a separated scheme (resp. analytic space) X over L is an exact
faithful tensor functor from Zep (G) to Veck.

Remark 1.9.8. — If X = Spec R is affine, then #e is equivalent to the category

of finitely generated projective modules over R, hence our definition is a global version
of that of [DM, 3.1].

1.9.9. — Let T be a G-torsor over X, then by Lemma 1.9.5, the correspondence
Vi G\(V X T) defines a G-fibre functor with values in X. This correspondence
defines a functor v from Torg(G) to the category of G-fibre functors with values in X.
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Theorem 1.9.10. — The functor v determines an equivalence between Torg(G) and the
category of G-fibre functors with values in X.

Proof. — The local version is [DM, Thm. 2.11 and 3.2]. The gluing works
because X is separated. O

1.9.11. Later on, we will use the following description of the quasi-inverse
functor 7 of v. Let n be a G-fibre functor with values in X. For each morphism =, : Ty — X
we define two tensor functors %;,: V>V X T and 7, = m50on from Zep (G) to
Veoy,. Let (T, mp) := Isom(n,, n;) be the set of isomorphisms of tensor functors.
The action of G on the first factor of V X T, defines an action of G on v,, and a fortiori
defines an action of G on (T, ©,). Thus p is a functor from the category of schemes
over X to the category of sets with a G-action. Theorem 1.9.10 says that this functor

is representable by a G-torsor t(n) over X (see [DM, Thm. 2.11 and 3.2] and their
proofs).

1.9.12. Let T be a G-torsor over X. For each V e %, (G) the identity
map of T, viewed as a T-valued point of T, corresponds to a certain isomorphism
ov: VXT3 (G\(V X T)) XxT. Then ¢ is the quotient of the G-equivariant
isomorphism Idy X ¢p: VX G XT3V X T X T (for the diagonal action of G
on the first two factors on both sides) by the action of G. Explicitely, ¢(v, t) = ([, t], ¢).

Proposition 1.9.13. — Let L be equal to K or to C as in 1.3.1. Let X be a projective
L-scheme, and let G be a linear algebraic group over L. The functor T > T* induces an equivalence
between the category of G-torsors over X and the category of G*-torsors over X,

Proof. — A quasi-inverse functor can be described as follows. Let %:T — X
be a G*™-torsor. Then the map V > G™\(V* x T) defines a G-fibre functor with
values in X**, Since the correspondence described in Corollary 1.2.3 commutes with
tensor products, the tensor categories ¥ecy and Yecgan are equivalent. Therefore
Theorem 1.9.10 gives us an algebraic G-torsor =: T — X.

It remains to show that there exists a canonical isomorphism T = T,
By the definition of T we have for each V e %, (G) a canonical isomorphism
Py 1 G\ (V™ X T) 3 G=\(V* x T*). We also have (as in 1.9.12) natural iso-
morphisms T x v 3T %, (G=\(T x V™)) mapping (¢, 2) to (¢ [¢, 7]). Hence each
point #, of T‘ defines canonical isomorphisms

Ve {5} X VRS {4} Xg (G=\(T X V) : 0 > (4, [t, 7])

Since f, defines a point of X** and therefore of X, it gives us by the universal property
of T (see 1.9.11) a point §(z,) € T*, satisfying y([2,, 2]) = [$(%), v] for all V e Zep, (G).

Taking V to be a faithful representation of G, we obtain that the map (of sets)
$:T > T is G**-equivariant, therefore it is one-to-one and surjective. It remains
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to show that the maps ¢ and ¢! are analytic. Let us prove it, for example, for ¢. Let
p: X" =X be an étale surjective covering such that p*(T*") =~ G*™ X X'. By [Be3,
Prop. 4.1.3] in the p-adic case and by Remark 1.9.2 in the complex one it will suffice
to show that p* ¢: p*('T‘) —p*(T™) = G™ X X’ (or just its projection to the first
factor =’ : p*(’T‘) — G*) is analytic. Consider the map

Py Ve x of(T) 24 G\ [V x o*(T)]

p*(dy)

A Ga.n\[va.n X p*(Ta.n)] ~ Gan\(Van X Gnm X X') ~ Vs.n X X' ﬂ) Va,n.
It is analytic, and satisfies ’vI;v(v, t) = (n'(¢))" ' v. Hence =’ is analytic as well. O

Corollary 1.9.14. — Let X and Y be projective L-schemes, let G and H be algebraic
groups over L, and let § : G — H be an algebraic group homomorphism over L. If T € Torg(G)
and S € Tory(H), then for any {-equivariant analytic map f~ : T*® — S* (that is, satisfying
f (gt) = ¥(g) f (¢) for all g € G*™ and t € T*), there is a unique algebraic morphism f: T — S
such that f** ~ f

Proof (compare the proof of Corollary 1.2.5). — Since fis {-equivariant, it covers
some algebraic morphism f: X — Y (use Corollary 1.2.2). Therefore f~ factors through
S X g X* = (S X4 Y)*™ Hence we may suppose, replacing S by S XY, that
X =Y and that fis the identity.

Consider the H-torsor H X T over T equipped with the following G-action:
ght) = (MY(g)~ ', gt) for all ge G, heH and teT. By Lemma 1.9.5, there exists
an H-torsor H X, T := G\(H X T) over X. Let ¢ be the composition of the embedding
t—(1,¢) of T into H X T with the natural projection to H X T. Then by the defi-
nition, every {-equivariant algebraic morphism p:T — S factors as a composition
of 7 with the unique H-equivariant map H X, T — T (defined by [k, t] — hu(2)).
Therefore (H X, T)*™ =~ H*™ Xgan T® is an H*-torsor over X** having the same
functorial property.

~
Now we are ready to prove our corollary. From the {-equivariance of f we conclude
jan 7

that it factors uniquely as f~ : T > (H XGT)‘“‘—f; S*». By the proposition, f; has a
unique underlying algebraic morphism f': H X, T — S. Set f:= f’ o i. The uniqueness
can be derived from the above considerations as in the proof of Corollary 1.2.5. O

Now we recall the notion and basic properties of connections on torsors (following

[St, Ch. VI, § 1]).

Definition 1.9.15. — Let X be a smooth scheme or an analytic space, and let
n:P —> X be a G-torsor. A connection on P is a G-equivariant vector subbundle # of
the tangent bundle T(P) of P such that =, #, 15 an isomorphism #, 3 Trpy(X) for
each p eP.
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1.9.16. Starting from the isomorphism ¢,:G X PS5 P Xy P we obtain an
isomorphism of tangent spaces (¢p), : T,(G) X T, (P) = T,(P) Xy o Tp(P) and an
identification (X > proj,((¢p).(X, 0)) of ¥ := Lie(G) = T,(G) with the tangent space
to the fiber through p € P. Therefore a connection 5# on P gives us a canonical decompo-
sition T (P) = ¢ ® 5, for each p € P. Now considering the projection of T (P) onto ¥
with kernel 5, for each p € P we get a certain %-valued differential 1-form Q = Q(#),
called the connection form of .

Definition 1.9.17. — Let 5 be a connection on a G-torsor P, whose connection
form is Q. Let & be the natural projection of T (P) on 5, for all p € P. The curvature
of the connection 5 is the 2-form DQ defined by ( X A Y | DQ > := { A(X) A A(Y) |dQ ).
A connection with zero curvature is called flat.

Remark 1.9.18. — The trivial torsor P @ G X X has a natural flat connection,
consisting of vectors, tangent to X. We will call such a connection trivial.

Lemma 1.9.19. — Let X be a simply connected complex manifold, let ©: P — X be a
G-torsor, and let # be a flat connection on P. Then there exists a unique decomposition P > G x X
such that S corresponds to the trivial connection on G X X.

Proof. — By [St, Ch. VII, Thm. 1.1 and 1.2], there exists a unique G-equivariant
diffeomorphism ¢ : PS5 G X X over X which maps 5 to the trivial connection. Hence
@ induces complex isomorphism between tangent spaces T, (P) = %®#, and
Ty (G X X) = 4@ T,,,(X) for each p € P. In other words both ¢ and ¢~ ! are almost
complex mappings between complex manifolds. [He, Ch. VIII, p. 284] then implies
that ¢ is biholomorphic. O

2. FIRST MAIN THEOREM
2.1. Basic examples

Definition 2.1.1. — Let K/k be a quadratic field extension and let D be a central
simple algebra over K. We say that « : D — D is an involution of the second kind over k
if a(dy + dy) = a(dy) + a(dy), a(dy dy) = a(dy) «(d;) for all d;, d, € D and the restriction
of « to K is the conjugation over .

Notation 2.1.2. — For k, D and « as in Definition 2.1.1, let G = GU(D, «) be the
algebraic group over % of unitary similitudes, that is G(R) = {d e (D®, R)* | da(d) e R*}
for each k-algebra R. Define the similitudes homomorphism G — G,, by x — xa(x). Notice
also that by the Skolem-Noether theorem the group G satisfies PG(L) = G(L)/Z(G(L))
for every field extension L of k.

2.1.3. First basic example. — Let F be a totally real field of degree g over Q , let
K be a totally imaginary quadratic extension on F. Let D be a central simple algebra
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of dimension 4% over K with an involution of the second kind « over F. Set G := GU(D, «),
and put D, := D ®; K, for each prime # of K. Let » be a (non-archimedean) prime
of F that splits in K and let w and w be the primes of K that lie over ». Then
D®;F, @ D, ®Dg, and the projection to the first factor together with the similitude
homomorphism induce an isomorphism G(F,) 5 Dj x FX. We identify G(F,) with
D,, X F,© by this isomorphism.

Suppose that D, = Mat,(K,). Identifying D, with Mat,(K,) by some iso-
morphism we identify G(F,) with GL,(K,) X FYX. Suppose that « is positive definite,
that is G(F,) = GUy(R) for all archimedean completions F, =R of F. Put
E' :=F) X G(Af"), then E’ is a noncompact locally profinite group. Set

I':= G(F) C G(A}) = GL,(K,) X E’,

embedded diagonally.

Proposition2.1.4. — The subgroup I' C G(AL) = GL,(K,) X E’ satisfies the assumptions
of Construction 1.5.1.

Proof. — a) is trivial.

b) is true, because the closure of Z(I') @ K* is cocompact in Z(G(A])) = (AL)*.

¢) Since PE’ = PG(Af*) and PG(F,) @ PGL,;(K,), we have to show that
PI'(= PG(F)) is a cocompact lattice in PG(A{).

Lemma 2.1.5. — If H is an F-anisotropic group, then H(F) is a cocompact lattice in H(Ag).
Proof. — See [PR, Thm. 5.5]. O

Since PG is anisotropic over each F,, it is anisotropic over F. Hence by the
lemma, PG(F) is a cocompact lattice in PG(Ag). The compactness of the PG(F,,)’s
implies also that the projection of PG(F) to PG(A]) is a cocompact lattice as well
(see [Shi, Prop. 1.10]). Observe also that the projection PG(F) — PG(F,) =~ PGL,(K,)
is injective.

d) Since Z(T') @ K* and Z(G(A})) = (A%)*, we have to show that the inter-
section of K* C (A%)* with KX X {1} is trivial. This can be shown either by the direct
computation or using the relation between global and local Artin maps (see [CF,
Ch. VII, Prop. 6.2]). O

Fix a central skew field D, over K, with invariant 1/d. Set E =: DX x E’, then
Construction 1.5.1 gives us an (E, K,)-scheme X corresponding to T

2.1.6. Second basic example. — By Brauer-Hasse-Noether theorem (see [Wel,
Ch. XIII, § 6]) there exists a unique central skew field D™ over K which is locally
isomorphic to D at all places of K except w and w and has Brauer invariant 1/d at w.
By Landherr theorem (see [Sc, Ch. 10, Thm. 2.4]), D™ admits an involution of the
second kind over F. Fix an embedding o, : K < C. It induces an archimedean com-
pletion F, of F, and we have the following
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Proposition 2.1.7. — a) There exists an involution of the second kind «™ of D™ over F
such that:
1) the pairs (D, o) ®x F, and (D™, o™)®y F, are isomorphic at all places u of F, except v
and ooy
ii) the signature of (D™, &™) at oo, is (d — 1, 1).
b) The group G™ := GU (D™, «™) is determined uniquely (up to an isomorphism) by
conditions 1), ii) of a).

Proof. — a) follows from [Cl, (2.2) and the discussion around it] as in [Cl,
Prop. 2.3].
b) follows immediately from [Sc, Ch. 10, Thm. 6.1]. O

Let G™ be as in the proposition. Then embedding oo, defines an isomorphism
D" ®g K,,, 5 Mat,(C), and we identify PG™(F,, ) with PGU,_, ,(R) by the induced
isomorphism. Set G™(F), := G™(F) n G™(F, )°. Then G™(F), = G™(F) if 4> 2,
and [G™(F) : G™(F),] = 2 if d = 2. Set E™ := G™(A}) and let E{* C E™ be the clo-
sure of Z(G™(F)) C E™. Embed diagonally G"™(F) into G™(F, ) x E™ and define
™t to be the image of G™(F), under the natural projection to

PG™(F,,) X (E™[Eg") = PGU,_,,(R) x (E™/Eg").
Proposition 2.1.8. — The subgroup T™ is a cocompact lattice in
PGU,_,,,(R)® x (E™[Eg*)

and it has an injective projection to the first factor.

Proof. — Notice that the natural projection E™/Ert — ERt/Z(E®) — PE™
induces an isomorphism I'™ 5 PG™(F), C PGU,_, ,(R)® X PE™ and that the
group Z(E™)/EM ~ (AL)*/K* is compact. Therefore it will suffice to prove that
PG™(F) is a cocompact lattice with an injective projection to the first factor of
PG"™(F, ) x PE™. This can be proved by exactly the same considerations as in the
proof of Proposition 2.1.4, ¢). O

By the proposition, I'"™ satisfies the assumptions of Construction 1.3.6, so it
determines an (E™/El*, C)-scheme Xt which can be regarded as an (E™, C)-scheme
with a trivial action of E{*.

Remark 2.1.9. — For each S € #(E™) we have the following isomorphisms
(Ritym o S\[B~" x (E"/E{)] /e
= (S-Z(G™(F))\[B*~! x G"(A§)]/G™(F),
= (S-Z(G™(F))\[B*"* x G"™(A})]/G"™(F),
= S\[B*~! x G™(A£)]/G"™(F),..

12
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2.2. First Main Theorem

Definition 2.2.1. — An isomorphism ® : E 5 E™ is called admissible if it is a
product of G(AL?) 5 G™(AL"), induced by some Aj’-linear algebra isomorphism
D®; Al 5 D™ ®, AL® (compare Proposition 2.1.7), and the composition map
DX x FX 3 (D)* x FX 3 G™(F,), constructed from some algebra isomorphism
D,3D"® K, as in 2.1.3.

2.2.2. Fix a field isomorphism €= C,, whose composition with embedding
0, : K« C (chosen in 2.1.6) is the natural embedding K < K, < C . Identifying G
with G, by means of this isomorphism we can view, in particular, K, as a subfield of C.

First Main Theorem 2.2.3. — For some admissible isomorphism @ : E 5 E™ there
exists a ®-equivariant isomorphism fy, from the (E, C)-scheme X to the (E™, C)-scheme Xint,

2.2.4. Let E; be the kernel of the action of E on X, and put E:= E[E,. By
Corollary 1.6.4 there exists a subgroup AC PGU,_, ,(R)® X E such that the (E, C)-
scheme X corresponds to A by the real case of Construction 1.3.6. By Proposition 1.5.3,
each admissible isomorphism @ : E 5 E™ satisfies ®(E,) = Ei*. Hence ® induces an
isomorphism ® : E = E™/E,

Theorem 2.2.5. — There exists an admissible isomorphism @ : E S E™ and an inner
automorphism ¢ of PGU,_, ; such that (¢ X @) (A) = I'™*,

Lemma 2.2.6. — Theorem 2.2.5 implies the First Main T heorem.

Proof. — Theorem 2.2.5 implies that there exists a ®-equivariant analytic iso-
morphism f,;, (XS (i"“)‘“‘. From the ®-equivariance we obtain analytic iso-
morphism ﬁ,s 1 (Xg o)™ > Xty for each S e #(E). Corollary 1.2.2 provides us
with an algebraic isomorphism fg, ¢ : X5 ¢ > 5("3{’8) satisfying ( fo ¢)™ = f;,s. Taking their
inverse limit we obtain a ®-equivariant isomorphism fg, := ﬁ(_{m Jos: X X, 0

Thus we have reduced our First Main Theorem to a purely group-theoretic
statement. For proving it we need to know more information about A. First we introduce
some auxiliary notation.

2.2.7. Let A’CPGU,_, ,(R)* x PE and A”"CPGU,_,,;(R)® X PE' be the
images of A under the natural projections. Since the groups E\\Z(E) and EO\IND;-Z(E)
are compact, Lemma 1.3.11 shows that subgroups A’ and A" correspond by the real
case of Construction 1.3.6 to the (PE, C)-scheme X := Z(E)\X; and to the (PE’, C)-
scheme X{ := (IND; X Z(E))\X, respectively. The same lemma implies also that the
natural projections A -~ A’ and A — A" are isomorphisms.

Let E; be the image of E, under the canonical projection to E’. Let I be the
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image of I' under the projection GLy(K,) X E’ — GL,(K,) X (E\E’). Then, by Pro-
position 1.5.3 ¢), the group I' corresponds by the p-adic case of Construction 1.3.6
to the (EQ\E/, K, )-scheme X' := DX\X. Recall also that, by Proposition 1.5.3 d),
the (PE/, K, )-scheme X" = (DX x Z(E))\X 1is obtained from the subgroup
PI'Cc PGL,(K,) X PE’ by the p-adic case of Construction 1.3.6.

For each subset ® of A, A’ or A" (resp. of I', IV or PI") we denote by ©,, (resp. 0)
and Oy its projections to the first and to the second factors respectively (compare 1.1.8).

Our next task is to establish the connection between A and I'. The next key
proposition is the modifications of [Ch2, Prop. 2.6]. In it we apply Ihara’s technique
of elliptic elements to relate elements in A and in T

Proposition 2.2.8. — For each 8 € A with elliptic projection 3, € PGU,;_, ,(R)°, there
exist ye ' and vy, € IND; with (vg, Yp) € GL,;(K,) X f); elliptic (with respect to its action
on Z% ) and a representative 3= (’gw,'gE) e GU,;_, ,(R)® X E of & satisfying the following
conditions:

a) the elements (yp, vg) and §E are conjugate in E;
b) the characteristic polynomials of 3, and Yo are equal.

Conversely, for each ye T and ype D with (Ya» Yo) € GLy(K,) x D elliptic, there
exist § € A with elliptic projection 3., € PGU,;_, ,(R)® and a re[zresentative§ eGU,_, ,R)°’x E
of 8 satisfying conditions a) and b).

Proof. — If an element 3, €A, is elliptic, then 3, has a fixed elliptic
point P on B?"!. The action of 3§, on B*"! coincides with the action of §; on
Bi~1a Bi~! x {1}C (B! x E)/A = (X,)™, therefore P, viewed as a point of (X)™
(or of X(C)), is an elliptic point of 85. Using the isomorphism C = C,, chosen above,
P can be considered as a point of X(C,), hence as a point of the p-adic pro-analytic
space X" There exists an element g € E such that the point P’:= g(P) liesin & : =, (3§ )
in the notation of Corollary 1.5.4.

Let = be the natural projection X — X'””. Choose a representative g€ E of
g, ¢! e E. Since ¥ fixes P’, it fixes the projection P := n(P')e (Xé;')‘“’. Hence
g stabilizes the connected component Qf ®Kw C, x {1}C (X, )™ containing P".
By Proposition 1.5.3 ¢), the image of g under the canonical projection E — E\E’
belongs to the projection of IV to E/\E’. We can therefore choose y € I' whose
projection to EJ\E’ coincides with that of geE. Therefore gvyz' belongs to
DX x E, = DX E,. Hence there exists a vy, € D such that Z(y5?, v5?) € E,. It follows
that (yp, yg) € E is also a representative of g 85 g7 .

The action of (yp, yg) on the tangent space of P’ € % is conjugate to the action
of 3; on the tangent space of P, therefore P’ is an elliptic point of (yy, yg). Since p; is
étale, one-to-one (use Corollary 1.5.4) and D, x I-equivariant, the action of (yp, vg)
on the tangent space of P’ € % coincides with the action of (yg, yp) on the tangent
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space of p; '(P') e g . Therefore o *(P’) is an elliptic point of (yg, yp). It follows
that the action of (yg, yp) on the tangent space of p~!(P’) eZ"Kw is conjugate to the
action of 3, on the tangent space of P € B?~!. Using the étalness of the projection
Z‘f(w —Qf ~ we conclude from Lemma 1.7.2 that there exists a representative
3, € GU,_, ,(R)? of 3, such that the characteristic polynomials of 3,, and v, are equal.
Hence 3 := (5., g (Yp, Yg) &) is the required representative of 3.

The proof of the opposite direction is very similar, but much easier technically.
If an element (yg, vp) € [y X DX is elliptic, then it has an elliptic point Q e D
Hence Q' := p,(Q) € X* is an elliptic point of (yy, vz) € E. Hence Q' can be considered
as a point of the complex analytic space (X)™ = (B*~! x E)/A. Choose a
representative (r,g) € B~ X E of Q’. Then the element g(yp,yg) & ' €E fixes
Q" :=g(Q) eB* ! x {1}, hence it stabilizes the connected component

B! x {1}C (Xq)™

It follows that the image of g(yy, Yg) & ' under the projection of E to E belongs to Ag.
The rest of the proof is exactly the same as in the other direction. O

Corollary 2.2.9. — For each 8 € A with elliptic projection 3, € PGU,_, ,(R)°, there
exists a representative

~ ~ ~ ~

S =0,,3,,7,3") eGU,_, ,(R)® X Dx x FX x G(A§”)

such that
a) if we view K as a subset of C, of K, and of K ®; AL:? respectively, then the characteristic
polynomials of 3., '5; and 377 have their coefficients in K and coincide;

b) 7, and the similitude factor of 3" belong to F, viewed as a subset of F* and of (AL*)* respec-
tively, and coincide.

Proof. — Take y and J as in the proposition. Then the statement follows from
Proposition 1.7.5. O

Proposition 2.2.10. — We have the inclusion A_;; ) (SI~)"; N T;) x P(G* (AL")).

Proof. — Let X be the connected component of Xg such that (Xg)* D> B¢~* x {1}.
Then by~Proposition 1.3.8 ¢), Ay = Stabyg (X]). Proposition 1.4.6 implies that the
group SDY N T, acts trivially on the set of connected components of X, therefore
it remains to show only that A; D P(G*(A%")). To prove it we first observe that by
the strong approximation theorem (see, for example, [Ma, Ch. II, Thm. 6.8]), the
closure PG(F) of PG(F) in PE’ = PG(A%") contains P(G*"(A%")). So the proposition
follows from

Lemma 2.2.11. — We have Ay = PG(F).
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Proof. — Proposition 1.3.8 ¢) we see that A is the stabilizer of the connected

component Y, of Xg such that (Y,)* D> B* ! x {1} and PG(F) is the stabilizer of
the connected component Y, of X{,; such that (Y, )™ D Q’I’(w X {1}. Since the group PE’
acts transitively on the set of geometrically connected components of X", the sub-
groups A, and PG(F) are conjugate in PE’. Since A, contains P(G¥*(AL")), it is
normal. So we are done. O

2.3. Computation of Q (Tr Ad)

In the next subsection a field Q (Tr Ad) (generated by the traces of the adjoint
representation) will be a field of definition of a certain algebraic group.

Remark 2.3.1. — If geGL,, then by direct computation we obtain that
Tr Ad g = Tr g-Tr(g™'). Hence for g e PGL; we have TrAdg = Trg Tr(§~') — 1
for each representative § € GL; of g.

Proposition 2.3.2. — We have Q(Tr AdA,) = F 3 R.

Proof. — 1t follows from Proposition 2.2.8, Proposition 1.7.5 and Remark 2.3.1
that Q (Tr Ad 3, | 8, € A, is elliptic) = Q (Tr Ad v, | y¢ € PTs C PGL,(K,,) is elliptic).
Let F’ be the last-named field. Then F’ C F, since PI' = PG(F) and since PG is an alge-
braic group defined over F. It follows from the weak approximation theorem that for each
non-archimedean prime # # v of F, the closure of the projection to PG(F,) of the set
{y € PT'| y; is elliptic} contains an open non-empty subset of PG(F,). (Recall that
the closure of PI'; in PGL,(K,) contains PSL,(K,) by Proposition 1.1.10, and that
the set of elliptic elements of PSL,(K,) is open and non-empty by Proposition 1.7.3.)
Therefore F’ is dense in each non-archimedean completion F, of F for u + v. Thus F’
splits completely in F at almost all places. Hence F’ = F (see [La, Ch. VII, § 4, Thm. 9]).
This part of the proof is completely identical with Cherednik’s proof of [Ch2, Prop. 2.7].

Now we want to prove that Q (Tr Ad A,) = Q(Tr Ad 3, |3, € A, is elliptic).
Since the group PGU,_, , is absolutely simple, the representation

Ad: PGU,_, ,(R) - GL(Lie(PGU,_, ,(R))) = GL,_,(R)

is absolutely irreducible. Therefore our statement is a consequence of the following
general

Lemma 2.3.3. — Let p be an absolutely irreducible algebraic representation of PGU,_, ,
and let A be a dense subgroup of PGU,;_, ,(R)". Then

Q(Tr(p(R))) = Q(Tr () | 5 e A is elliptic).
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Proof. — Let L be the last-named field. If g e PGU,_, ,(R)° is elliptic and g" is
not elliptic for some r e Z — {0}, then by Lemma 1.7.2, gbelongs to some Zariski closed
proper subset of PGU, ,,. Therefore for eachN e N, there exists an open subset
WC PGU,_, ,(R)° such that for g € W and r € Z satisfying 1 < | 7| < N, the element
g" is elliptic. Choose g € W. By the continuity of multiplication, there exists an open
neighbourhood U C W of g such that for g, ..., g, €U, and n,, ..., n, € Z, satisfying
n+ ... +m+0, |n|+ ... 4+|n|<N, the element g1-...-gpt is elliptic. Take
N = 6m?® where m is the dimension of p.

Since PGU,_, ,(R)° is a connected real Lie group, it is generated by U. The
subgroup A is dense in PGU,;_, ;(R)° by Proposition 1.1.10, therefore AnU generates
the group A (see [Ma, Ch. IX, Lem. 3.3]). Since the restriction of p to the Zariski
dense subgroup A is absolutely irreducible, Burnside’s theorem (see [Wa, vol. II,
Ch. XVII, 130]) implies that @ := dimg(Spang(p(A))) = m™

Set A° ={1}C Z, and for each positive integer n set

LNX”:={g{‘1-...-g,’c‘klgiEAQ0 NU,|n |+ ... +|m]< n}CK.
Denote dimR(SpanR(p(Z”))) by 2,. Since A = U A", we have

l1=92,< 9, ...9,<...< 2 =sup Z,.

n

Moreover, if 2, = 9, , forsomen, then 2, =2, ,, = ... = 9. Therefore Z,,,_, = m2.
Hence there exist elements §; € A™~! i =1, ..., m? such that {p(3,) }; constitute a
basis for Mat,:(R). Choose any g € A N U and take 8 := g™ *1§,. Then{ p(3,) ¥ still
constitutes a basis for Mat,.(R). Each §; is of the form git- ... - gi*, where the g’s belong
to A N U and the »’s satisfy n, + ... + n, > 2 and [ny | 4+ | ng| + ... + || < 2m2
In particular, each 3; is elliptic, therefore Tr p(3;) € L.

Lemma 2.3.4. — If for some § e PGU,_, ;(R)° the elements 83, are elliptic for all
1 =1, ..., m? then o(3) can be writien as a linear combination of the o(3,)’s with coefficients in L.

Proof. — Let e,, ..., e,. be the dual basis of { p(3;) }; relative to the bilinear form
(%,9) > Tr(xp). If 8 is as in the lemma, then Tr p(83;,) = Tr(p(3) p(3;)) € L for all
i=1,...,m’. Hence p(3) can be written as a linear combination of the ¢’s with
coefficients in L. Therefore it is enough to prove that each ¢, can be written as a linear
combination of the p(3;)’s with coefficients in L. The last condition is equivalent to
the condition that each p(3;) can be written as a linear combination of the ¢’s with
coefficients in L. Thus, as we mentioned above, to complete the proof it is enough to
show that each 3; satisfies the conditions of the lemma. This follows directly from the
definition of the 3;’s and of U. O

The choice of the 3;’s assures that for every 3 e An (Uu U™ the elements 33;
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are elliptic for all ¢ = 1, ..., m*. Therefore the above lemma implies that ¢(3) can be
written as a linear combination of the p(3;)’s with coefficients in L. The set U n A
generates the group A, hence for every 8 €A, the linear transformation p(3) can be
written as a polynomial in the p(3;)’s with coefficients in L. For any 7,7,k {1, ..., m?}
the elements §; 3; 3, are elliptic, therefore by the lemma each (3;3;) = o(3;) o(3;)
can be written as a linear combination of the p(3,)’s with coefficients in L. Hence every
polynomial in the p(3;)’s with coefficients in L, can be written as a linear combination
of the p(3;)’s with coefficients in L. In particular, this is true for each o(5) with § € A.
Hence Q (Tr p(Z)) CL. O

Corollary 2.3.5. — Suppose that a subgroup AcC A, ts Zariski dense in PGU,_, , and
that A, C Commypgy, | l(R)(Z). Then Q (Tr Ad Z) = Q(TrAd A,) (= F).

Proof. —Set L:=Q (Tr Ad A), then there exists an L-form V of Lie(PGU,_, ,(R))
preserved by Ad A (see [Ma, Ch. VIII, Prop. 3.22]). Take any § € A_. Then some sub-
group of finite index A’ of A satisfies SA’ §~1 C A, hence (Ad 8) (Ad A) (Ad 8)~}(V) = V.

Since the subgroup A’ is also Zariski dense in PGU,_, ,, Burnside’s theorem

implies that Ad A’ generates End V as an L-vector space. Therefore
(Ad 3) (End V) (Ad 8)"'C End V.

In other words, Ad(Ad3) (End V) = End V. Let H be the Zariski closure of
Ad AC GL(V). Then H is an L-form of Ad PGU,;_, ,, hence Lie HCEnd V is an
L-form of Lie(Ad PGU,_,,). In particular, Lie H = End V n Lie(Ad PGU,_, ,),
therefore Ad(Ad A,) (Lie H) = Lie H. Since PGU,_,, is adjoint, the homomor-
phism ad := Ad, : Lie PGU, _, , - Lie(Ad PGU,_, ,) is an isomorphism. Therefore
V:=ad '(LieH) is an L-form of Lie(PGU,_, ,) and AdA,C GL(V). It follows
that Q (TrAdA,)CL. O

2.4. Proof of arithmeticity

2.4.1. Consider the subgroup A’'C PGU,_,,(R)* x PEC PGU,_, ;(R) X PE,
defined in 2.2.7. For a finite place u of F let G, be PGy, for u + v and PGL1(1~)W),
viewed as an algebraic group over F, = K, for « = ». In what follows it will be also
convenient to introduce a formal symbol « and to write F_ instead of R and G, instead
of PGU,_, , (the algebraic group over F, =~ R).

Let M be a finite set of non-archimedean primes of F, containing v for simplicity
of notation. Set M := M U o and choose S € #(PG(AL™)). For each subset M’ of M,

denote II G,(F,) by Gy . Denote also the projection of A’ N (Gyz X S) to Gy
ueEM'

by AS. Let AS (resp. A}) be the projection of A® to G,(F,) (resp. to Gy). For
u €M and § € A® denote the projection of § to G,(F,) by 3,.
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Definition 2.4.2. — A lattice I' C Gy is called érreducible if for every proper non-
empty subset M’ C M the subgroup (I' N Gy) (I' N Gj_y) is of infinite index in T’
(compare [Ma, p. 133]).

Definition 2.4.3. — We say that a lattice I" of G has property (QD’) if the closure
of I'G_(F,) in Gy has finite index.

Remark 2.4.4. — Since the group PGU,_, , is isotropic over R, it follows from
[Ma, p. 290, Rem. (v)] that if I' has property (QD’), then it has property (QD) in the
sense of Margulis (see [Ma, p. 289]).

Proposition 2.4.5. — The subgroup A® C Gy is a finitely generated cocompact irreducible
lattice, which is of infinite index in Commgz(A®) and has property (QD").

Proof. — Observe that PGU,_, ;(R) X PE = G X PG(Af{™) and that A’ is
a cocompact lattice in Gg X PG(AL™) having injective projection to PGU,_, ;(R),
hence to Gg. It follows from Lemma 1.1.9 that A® C G is a cocompact lattice, which
is of infinite index in Commg;(A®). By Proposition 2.2.10 the closure of G, (F,)A’
in Gz X PG(AL™) contains G, (F,) x (SDX nT,) x P(G**(A%*)). Hence the
closure of G (F,)A’ in Gg contains G, (F,) x (SDX nT,) x I }P(G"“(Fu)).

v EM—{v
In particular, A® has property (QD’). Let M’ be a non-empty subset of M. Then
A® N Gy, = {1}, because the projection of A’ to PGU,_,,(R) is injective. Suppose

that A® is not irreducible, then [A®: (A% N G _y)] < . Hence

[Go(Fy) A% : (G, (Fy) A®) N Gg_y] < 0.

Since G, (F,)A®* D G, (F,) X (DX nTy) x I P(G*(F,)) and

uEM— {v}

(Geo (Fw)AS) N Gﬁ—M’ C GE—M’ ’

we get a contradiction. Since A® is a cocompact lattice in Gy, it is finitely generated
(see [Ma, Ch. IX, 3.1 (v)]). O

2.4.6. Now we are going to use the results of Margulis (see [Ma]). By [Ma,
Ch. VIII, Prop. 3.22], there exists a basis in Lie(PGU,_,,(R)) such that all
transformations in Ad A, are written in this basis as matrices with entries in
Q(TrAdA,) =FCF, = R. Define a homomorphism ¢:G, —GLp_, rational
over R by assigning to g € G, the matrix of Ad g in the above basis. It follows that
¢(A,) C GL2_,(F). Let H be the Zariski closure of ¢(A,); then H is an algebraic
group, defined over F and ¢(A,) C H(F). Since A, is Zariski dense in G, and since
the group G,, = PGU,_, , is adjoint, ¢ induces an isomorphism PGU,_, , = Hy,, .
In particular, H is an F-form of PGU,_, ,.
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By Proposition 2.4.5, A® satisfies the conditions of Theorem (B) of [Ma, p. 298],
therefore it is arithmetic in the sense of [Ma, p. 292]. The group A% is Zariski dense
in G, (see [Ma, Ch. IX, Lem. 2.1]) and A, C Commg_q ,(A%). Hence ¢(A%) is
Zariski dense in H and Q (Tr Ad A%) = F (by Corollary 2.3.5).

It follows (see Margulis’ proof [Ma, p. 307-311]) that the following conditions
are satisfied:

a) The group H(F,) is compact for each i =2, ..., g.

b) There exists a unique bijection I from M to a (finite) set of non-archimedean
primes of F satisfying the following property: for each u € M there exists a continuous
isomorphism o, :F,> F;,, and an o,algebraic isomorphism r,:G,> H (that is
7, becomes an isomorphism of algebraic groups over F, after the identification of F,
with F;, by means of w,) such that 7,(3,) = ¢(3,) e H(F) C H(Fy,) for all e AS.
Since the subgroup A} is Zariski dense in G, (see [Ma, Ch. IX, Lem. 2.1]), =, is unique.

¢) Let =y:1l,cyG,(F,)S1,cn HFy,) be the product of the r.’s. Put
Oy, 1 :={f€F|fel for each finite prime u ¢ I[(M) of F}. Then the subgroup
v(A%) C H(F) is commensurable with H(0Oy 1a)-

Taking M larger and larger we conclude from 4) that there exists a unique one-to-one
surjective map I of the set of all non-archimedean primes of F into itself such that for
each prime u of F there exists a continuous isomorphism o, :F, > Fy, and a unique
w,-algebraic isomorphism =,:G,5 H such that =,(3,) = ¢(8,) e H(F) C H(Fy,)
for all 8 e A’. The maps 1, combined together for all non-archimedean primes u
of F give us a continuous isomorphism = : I, G,(F,) = II, H(F,) such that

(Ag) C H(F) C H(Af) C I, H(F,).
By ¢), the subgroup (A N S) is commensurable with H(®;) for each S € #(PE).

2.5. Determination of H

2.5.1. Recall that H is an F-form of PGU,_, ,. In particular, it is a form of
PGL,;. By the classification of simple algebraic groups (see [T1i]), there exists a quadratic
extension F’ of F and a central simple algebra D’ over F’ of dimension 4% (defined up
to a replacement D’ - (D’)®?) with an involution of the second kind «’ over F such
that H = PGU(D’, «’). Moreover, F’ is uniquely determined if 4> 2 and can be chosen
arbitrary if d = 2. We denote the group GU(D’, «’) by G’ and will not distinguish
between H and PG’.

Claim 2.5.2. — For each non-archimedean prime u of ¥, we have 1(v) = u and o, is the
identity.
Proof. — Since the map 1, : G, 5> H is w,-algebraic, we have

Tr Ad(7,(g)) = o (Tr Ad(g))

13
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for each g € G,(F,). Hence for each § € A" we have

Tr Ad(e X 7) (8) = (Tr Ad(3,,); ..., o,(Tr Ad(3,)), ...)
€ (Fopsooes Frys o o2)e

;9

Recall that (¢ X =) (A") CH(F), hence Tr Ad((p X ) A’)CF. On the other

hand, Corollary 2.2.9 implies that Tr Ad(8) e FC F,, X A{ for each 8 e A’ with elliptic

3, . In particular, for such 8’s we have Tr Ad(3,) = Tr Ad(3,) € F for each «. Since

we showed in the proof of Proposition 2.3.2 that Q (Tr Ad(3,) | 3, is elliptic) = F,

we conclude from the above that the restriction of each w,:F, > Fy, to F is the
identity. Since each , is continuous, the claim follows. O

2.5.3. Next we will show that in the case d> 2 we have F’ = K. Indeed, if a
prime z of F splits in K, then PG'(F,) = G,(F,) @ PD) for some central simple
algebra D, over F,. It follows that « splits in F’. By [La, Ch. VII, § 4, Thm. 9], F’ = K.
As we mentioned before, we may take F' = K also in the case d = 2.

Proposition 2.5.4. — The map < induces a continuous isomorphism PE = H(AZL).

Proof. — Since PE = PDX x PE’ and H(AL) ~ H(F,) x H(A%"), we need
only to show that <*:II,., G,(F,) >II,., H(F,) induces a continuous isomorphism
PE’ 3 H(AL?).

First we claim that +* induces a continuous map from A’C PE’ to H(A%"). In
fact, let a sequence {3,},C Ay converge to g € PE’. Then the sequence {3, 35, },},
converges to 1. Therefore for each Se % (PE’) there exists NgeN such that
3,8,1,€Ag NS (hence 1°(§, 8, },) €7°(Ag NnS)) for all .»> Ng. Since <"(Ag N S)
is commensurable with H(0;), it is contained in a compact subset of H(A*). Therefore
the sequence {1°(3, 8;},) },C H(A{") has a limit point. Let % be some limit point
of {+°(3,3,1,) }s, and let {<°(3,.8,%,) }i be a subsequence, converging to A Then
for each prime u # v of F we have

by = lim 5,((3,,8532)) = =(lim (3, 551,),) = 1,
because 7, is continuous. It follows that 1 is the only limit point of {<°(8, 3, },) }.,
therefore the sequence {<°(3,) =°(8,},) }, converges to 1. Now by similar arguments
we see that the sequence { 7°(3,) }, converges to 1°(g) € H(AL").

Moreover, the same arguments also imply that if we show that t*(PE’) = H(A%"),
then the continuity of 1° and of (7")~! will follow automatically.

Observe that for each non-archimedean place # we have G(F,)* = G*(F,)
(resp. G'(F,)% = (G")%*(F,)) (see [PR, 1.3.4 and Thm. 6.5] in the anisotropic
and [PR, Thm. 7.1 and 7.5] in the isotropic cases respectively). Therefore z° ‘induces
an isomorphism of derived groups II, ., P(G*(F,)) S II,., P((G')*(F,)).
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By Proposition 2.2.10, Ay D P(G¥*(A%*)) = PG(AL") n1I,,, P(G*(F,)).
Hence by the facts shown above,

= (P(G™*(AF"))) C PG/(Af*) n TI P((G))*(E,)) = P((G")*"(AF").

In particular, @(I,,, P(G*(0,)) = IL,,, 7,(B(G™(0y))) C P((G)*(A§*). It
follows that =,(P(G™(0g,)) C P((G')*"(0g,)) for almost all u+ v. Since each 7, is
algebraic, the subgroups ,(P(G**(0g)) and P((G')*(0g,)) are conjugate (hence
equal) for almost all u # ». It follows that °(P(G%*"(A}*))) = P((G')* (AL")).

Therefore to complete the proof it will suffice to show that PG(Af®) (resp.
PG’(A%")) is the normalizer of P(G*"(A%?)) in the product II, . , PG(F,), and similarly
for PG'. Since PG(A%?) is the restricted topological product of the PG(F,)’s with respect
to the PG(0)’s, it remains to show that the normalizer of P(G*(0,)) in PG(F,)
is PG(0p,) for almost all . This can be done by direct calculation. O

We will use the same letter 7 to denote the isomorphism between PE and PG’ (A%?).

2.5.5. Notice that a regular function ¢:= Tr%/det on GL,; defines a function
on PGL,;. Moreover, an algebraic automorphism ¢ of PGL, is inner if and only if it
satisfies ¢o ¢ = ¢.. Therefore there is a unique choice of an algebra D’ defining G’
(see 2.5.1) such that the function ¢’ := Tr%/det on PG, defined by the natural embedding
G'(F) — D', satisfies ¢’ o ¢ = &.

Proposition 2.5.6. — We have D’ = D™, G’ = G™ and < is induced by some admissible
isomorphism.

Progf. — By Corollary 2.2.9, for each 3 €A’ with elliptic 3, we have
t(3,) = ¢(3,) = t(3”**) e K. Since (9 X 1) (3) € PG'(F) C PG'(F,, X Af), we have
t((p X 7)8) e K. By our assumption, ¢(¢(3,)) = #(3,,) for all § € A’. Hence for each
3 e A’ with elliptic 3, we have #(r,(3,)) = ¢(3,) for each non-archimedean prime
u of F.

Recall that the algebraic isomorphism =, : PG(F,) — PG'(F,) for « = v is induced
either by an F,-linear isomorphism D®,F, 3 D'®,F, or by an F, linear iso-
morphism D®; F, 5 (D)™ ®, F,, composed with an inverse map (g~ g !). In
the first case we have #(t,(g,)) = t(g,) for all g, €G,(F,), and in the second one
t(r.(&.)) = t(g ") for all g, € G,(F,).

To exclude the second possibility we need to show the existence of a § € A’ with
elliptic 8, such that #(3,) + #(3;?). Since the condition ¢(g) = (g™ ") is Zariski closed
and non-trivial and since the closure of all elliptic elements of A, € PGU,_, ,(R)°
contains an open non-empty set, we are done.

It follows that D’ is locally isomorphic to D™ at every non-archimedean place
of K, except possibly at w and w, and that the map " : PG(A%°) 5 PG’(A%°) is induced
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by some admissible isomorphism. To prove the statement for the »-component we copy
the above proof replacing PG(F,) by PGL,(D,) and D®, F, by D, ® Do.

Since D’ and D™ are locally isomorphic at all places, they are isomorphic. We
showed before that PG'(F, ) = PGU,_, ;(R) and that for each i =2,...,g the
group PG'(F,,) is compact and, therefore, is isomorphic to PGU,(R). Propo-
sition 2.1.7 b) then implies that G’ =~ G™. O

From now on we identify G’ with G™,

2.6. Completion of the proof
Our next task is to prove the following
Proposition 2.6.1. — We have (¢ X 7) (A') = PG™(F),.
Proof. — First observe that
(o X 7) (A)0 = ¢(A,) C 9(PGU,_, ,(R)?) = PG™(F,,)",

therefore (¢ X 7) (A’) C PG™(F), and (¢ X ") (A”) C PG™(F), . Since the projection
of PG™(F) to PG™(F,,) x PG™(A[?) is injective, it remains to show that

.1) [PG™(F) : PG"(F),] = [PG™(F) : (¢ x ') (A")].

We are going to use of Kottwitz’ results described in 1.8. Recall that PG™ is
an inner form of PG. Let wpg; and wpgint be non-zero invariant differential forms of
top degree on PG and PG™ respectively, connected with one another by some inner
twist as in 1.8.2. They define invariant measures | wpg| and | wpgint | on PG(F,)
and PG™(F,) for every completion F, of F and product measures on PG(A;) and
PG"(A;) respectively (see [We2, Ch. 2]). It follows from Weil’s conjecture on Tama-
gawa numbers and from Ono’s result (see Ono’s appendix to [We2]) that

(2.2) | @pgint | (PG™(Ag) [PG™(F)) = | wpq | (PG(Ag)/PG(F)).

Lemma 2.6.2. — Let A and B be locally compact groups, let S be a compact and open
subgroup of A and let T be a lattice in A X B with injective projection to B. Then for every right
invariant measures ., on A and py on B we have

(ea X ug) ([A X B]/T) = p,(S)- wp([(S\A) x B]/T).

Proof. — Let T', be the projection of I' to A. Choose representatives {a,};c; of
the double classes S\A/T',. For each 7 €I let I'; be the projection of the subgroup
(a7*Sa; x B) N T to B. Then T is a lattice in B, therefore there exists a measurable

subset U; of B such that B is the disjoint union II U,y. Since I' has an injective
YET;
projection to B, we have A x B= II II (Saz x U,) y. Then
YETIEI

(ka X pp) ([A X B]JT) = X u,(Sa) - up(U) = ps(S)- Z up(U))
= 1a(S)- 2 pp(a; X Uy) = py(8)-up([(S\A) X BJ/T). O
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By the lemma, for each S € #(PG(A%°)) the left hand side of (2.2) is equal to
g
(2.3) I | wpgnt | (PG™(F,)) - | wopgint | (PG™(F,)) | wopgumt | (+*(S))
i=2 .

| opgint | (7(S)\[PG™(F,,,) x PG™(AF")]/PG™(F))
and the right hand side of (2.2) is equal to

(2.4) .-I:I1 | wpg | (PG(Fo,))-| wpg [(S):| wp | (S\PG(Af)/PG(F)).

By definition, | wpgmt | (PG™(F,,)) = | wp. | (PG(F,,)) for each i=2,...,d
and | wpgmt | (7°(S)) = | wpg | (S) for each S € F(PG(ALY)).

Since the expressions of (2.3) and (2.4) are equal, Proposition 1.8.5 and
Remark 1.8.6 imply that

(2.5) rct (*(S\[PG™(F.,) X PG*(Af)]/PG™(F), )
1 — d- e, (S\PG(A]) [PG(F))

(““ 4+ ” was added to multiply the left hand side by 2 when d = 2).

If S is sufficiently small, then for each a € PG(Af*) the group a~! Sa n PG(F)
is torsion-free by Proposition 1.1.10. Let Y, .4, be the projective variety over K,
such that Y3214, = (a7' Sa N PG(F)),\Qg, . By Kurihara’s result (see [Ku, Thm. 2.2.8])
¢1-1(Ty, 1) = xu(@a™ ' Sa N PG(F))-¢;_,(Tps-1), where ¢;_,(Ty,_, ) (resp. ¢;_;(Tpe-1))
is the (d — 1)-st Chern class of the tangent bundle of Y, .q, (resp. P¥~!). Notice that
64—r(Tpar) = d, hence ¢,_y(Ty_, ) = d-tpe, ((a Sa " PG(F))\PG(E,)).

Since (Y,1g00)™ = A;/15,\B*"7, we have

cd—l(TYa_lsa) = cd—l(T(Ya-lsa) o) = xu(Ad15a\B )

(see for example [BT, Prop. 11.24 and (20.10.6)]). The last expression is equal to
xu(Dd-15s) = Hrau,_, ,(Aat18.\PGU,_, ;(R)). This shows that for each a € PG(A[") we
have

d- ppee, (@77 Sa N PG(F)),\PG(F,)) = trpou,_, ,(Ad18s\PGU;_ 1,1 (R)).

Summing this equality for a running over a set of representatives of double classes
in S\PG(A{*)/PG(F), we obtain that

d- iy, (S\PG(Af) [PG(F))
= trau,_,,,(S\[PGU, _,1(R) X PG(AF")]/A").

Since the right hand side of the last expression is equal to

ppint (*(S\[PG™(Fa,) X PG™(AF")]/(p X =) (A"),

we conclude (2.1) from (2.5). O
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2.6.3. By Proposition 2.5.6 there exists an admissible isomorphism @ : E 5 E™,
inducing the isomorphism <:PE = PE™. Choose § € A with elliptic 3, € A, and
Tr Ad(3,) + — 1. Choose its representative§ e GU,_, ;(R)® X E as in Corollary 2.2.9.
Then (Trd) (Tr3—1)eK*. Let 3 be the projection of 3 to PGU,_, ;(R)? X E. Set
Y := (p X ®) (¥'), and let T be its projection to E.

By the definition of admissible maps, Tr(¥g) € K*. Let § be the image of § in A,
then ¥ := (t X ¢) (3) belongs to PG™(F),. Let v € G™(F), be some representative
of v, then ¥3'yg € Z(E™). Therefore Y3 vy = (Tr¥g) *(Tr yg) € KX = Z(G™(F)).
Thus ¥; and y; have equal projections to PGU,_,;(R)® x (E™/E™), hence
(@ X @) (8) e I'mt,

The condition {3, is elliptic and Tr Ad(3,) + — 1} is open and non-empty,
therefore the above 8’s generate the whole group A = A, (see [Ma, Ch. IX, Lem. 3.3]).
It follows that (¢ X @) (A)C I'™. Since the projection =:I'™ —PG™(F), is an
isomorphism, Proposition 2.6.1 implies that (¢ X ®) (A) = '™, This completes the
proof of Theorem 2.2.5 and of the First Main Theorem.

3. THE THEOREM ON THE p-ADIC UNIFORMIZATION

The First Main Theorem implies that for some admissible isomorphism @ : E & E™*
there exists a ®-equivariant C-rational isomorphism fp:X;> X=t, Therefore for
some C/K,-descent X™ of the (E™, C)-scheme X™, f, induces a K, -rational iso-
morphism X 3 X", To describe X™ we need some preparations, following [Del]
(see also [Mil]).

3.1. Technical preliminaries

In this subsection we recall basic notions related to Shimura varieties and give
their explicit description in the cases we are interested in.

3.1.1. First we realize X™ as a Shimura variety. Set Hit:— Ry G™.
Then H™ is a reductive group over Q such that H™(A’) = G™(A]) and
H™(R) =TII;., G™(F,). Put S:= Ry G,, and let 2 be a homomorphism S — Hg*

such that for each z € C* =@ S(R) we have

h(z) = (diag(l, ..., 1, 2/2)7*; I;; .. .5 1)) € IT G™(F,,,),
i=1

using the identification of G™(F,) with GU,_, ;(R) chosen in 2.1.6. Then the
conjugacy class M™ of & in H™(R) is isomorphic to B*~*if d> 2 andto C — R if d = 2.
Then the pair (H™, M™) satisfies Deligne’s axioms (see [Del, 1.5 and 2.1] or [Mil,
II, 2.1]), and the Shimura variety M;(H™, M™), corresponding to (H™, M™), is
isomorphic to Xot,
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3.1.2. For each pair (H™, M™) as above there is a number field E(H™, M) C C,
called the reflex field of (H™, M™), which is defined as follows (compare [Del, 1.2,
1.3 and 3.7]). The group Hom(S, (G,)¢) is a free abelian group of rank 2 with
generators z and z such that if ¢ : S(R) — S(C) is the natural inclusion, then for each
weC* = §(C) we have zoi(w) =z and Zoi(w) =w. Let r:(G,); >S; be the
algebraic homomorphism such that (2?2 o r(¥) = x?. Then E(H™, M™) is the field

of definition of the conjugacy class of the composition map ’: (G,)¢ = S¢ LY HE.

Proposition 3.1.3. — We have E(H™, M™) = K, the latter being viewed as a subfield
of C through the embedding oo, chosen in 2.1.6.

Proof. — Note that H™(C) is naturally embedded into GL,(C)* so that each
factor corresponds to an embedding of K into C. Supposing that the first and the second
factors corresponds to our fixed embedding and to its complex conjugate respectively
we have

r'(z) = (diag(l, ..., 1, 27 1) ; diag(l, ..., 1, 2); I;5 ...; 1)

for each z e CX. Therefore the reflex field E(H™, M™) contains K C C. On the other
hand, the Skolem-Noether theorem implies that for each ¢ € Autg(C) the homo-
morphism o(r"’) is conjugate to 7’’. This implies the assertion. O

3.1.4. Let TC H™ be a maximal torus of H™, defined over Q, such that some
conjugate ' e M™ of & in H™(R) factors through Ty. Then we have a natural
embedding i, : M(T, 2') & Mg(H™, M™), where Mg(T, ') is the Shimura variety
corresponding to (T, #’). Since T is commutative, the reflex field E;:= E(T, %) of
(T, %) is the field of definition of the morphism 7" : (G,)c > Sci T¢. Hence 7’
defines a morphism of algebraic groups over Q

REyQ(*') NErQ
7 Ep:= Ry q(G,) — > Ry o(T) — T.

Notice that E; D E(H™, M™). Let 0y be the Artin isomorphism of global class
field theory sending the uniformizer to the arithmetic Frobenius automorphism. Let

Ap : Gal(E®/E;) — T(A7)/T(Q) be the composition map

-1
OET

Gal(EP/E;) —> Ep(R)"\E3(A)/EL(Q)
> TR)\T(A)/T(Q) = T(A)/T(Q).

For each E’ D E(H™, M™) we denote the composition map
Gal(E2.E'[E') =5 Gal(E®/E,) RLN T(A)/T(Q)

by Ap g
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Lemma 3.1.5. — Each maximal torus T of H™, defined over Q , is equal to the inter-
section of H™ with Ry G, for a unique maximal commutative subfield L of D™. (In such
a situation we will call T an L-torus.) In this case, o™ induces a nontrivial automorphism of L,
and the subgroup T(Q)C L* = Ry ¢ G, (K) is Zariski dense in Ry x G,,.

Proof. — Let L be the subalgebra of D™ spanned over K by T(Q)) C H™(Q) C D™,
then L is a commutative subfield and T(Q)C H™(Q) NnR;qG,(Q). Since T is
connected and Q is infinite and perfect, the subgroup T(Q) is Zariski dense in T
(see [Bo, Ch. V, Cor. 13.3]). It follows that TC H™ n Ry G,,. Since T is maximal,
L have to be maximal and T = H® n R, G,,.

For each geT(Q) we have o™(g) e g * F*C T(Q), so that «™(L) = L. To
prove the last assertion we observe that there exists a maximal F-rational subtorus T’
of G™ such that T = Ry,o(T"). Then the subgroup T(Q) = T'(F) is Zariski dense
in Ty = Ry x G,, X (G,)g. Hence its projection to Ry G,, is also Zariski dense. O

3.1.6. Now we want to calculate the reflex field E;. Observe that
L®y CC D™ ®, G =~ Mat,(C)%.
Possibly after a conjugation we may assume that L ®g C is the subalgebra of diagonal

matrices of Mat,(C)*. Then each diagonal entry of each of the 2g copies of Mat,(C)
corresponds to an embedding of L into G, and the map " : (G,); - T, is as follows:

r''(z) = (diag(l, ..., 1,27 1);diag(l, ..., 1, 2); I;; ...; 1,).

Let +; be the embedding L < C, corresponding to the right low entry of the first matrix,
then the right low entry of the second matrix corresponds to the embedding 1, := 1; o &™.
Now we embed L into C via ,.

Proposition 3.1.7T. — We have E, = LC C, and ' : E}, — T 1is characterized by
r'(l) = 171 o™(l) for each | € Ex(Q ) C LX.

Proof. — As was noted before, E, O E(H™, M™). Hence by Proposition 3.1.3,
E; D K. By the definition, o(r"'(2)) = r""(s(2)) for each o € Auty (C), hence the
group Autg (C) must stabilize t;, so that E; D L. Finally, it is clear that 7"’ is defined
over LC C. For each / € E; = L we have
r'(l) = Npjo(diag(l, ..., 1,17 diag(l, ..., 1,0);I,; ...; 1))
=["tod™(]). O
Set L, :=L® K, CD:=D"®, K,. Since D is a division algebra, L,
is a field extension of K, of degree 4, and L, = L-K,.

Lemma 3.1.8. — The following relations hold:

2) B K, =L,;
b) E;b'Kw = (Lw)ab‘
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Proof. — a) was proved above.
b) The group Gal(E®-K,/E;-K,) is abelian, hence L, CE®.K C L,
By the class field theory, the composition of the canonical projections

Gal((L,)*®/L,) — Gal(E2.K, /E,-K,) - Gal(E®/E,) ~ Gal(L*/L)

is injective (use, for example, [CF, Ch. VII, Prop. 6.2]). Therefore we have the required
equality. O

Proposition 3.1.9. — For each | € L C (D)% the element
(71 1,1) € (D) x Fy x G™(AF") = H™(A)

belongs to T(A’), and its equivalence class in T(AY)[T(Q) is Ay i (0y, (0))-

Proof. — The statement follows immediately from the explicit formulas of Pro-
position 3.1.7 using the connection between local and global Artin maps. O

Definition 3.1.10. — A point x € M(H™, M™)(C) is called (T-)special if
x € ig(Mg(T, &) (C)).

Remark 3.1.11. — The group T(A’) acts naturally on the set of T-special points

and the group T(Q) acts on it trivially. Hence by continuity the closure T(Q) C T(AY)

acts trivially on the set of T-special points, therefore the action of T(A?)/T(Q) on it
is well-defined.

Definition 3.1.12. — Let K’ D E(H™, M™) be a subfield of C. A C/K’-descent
of the (H™(A’), C)-scheme My (H™, M™) is called weakly-canonical if for each
maximal torus T < H™ as above, each T-special point x is defined over E2.K’, and
for each o € Gal(EP-K'/E;-K') we have o(x) = Ay /(o) (%).

Remark 3.1.13. — Our definition of the canonical model coincides with that
of [Mi3], which differs from those of [De2] and [Mil] (see the discussion in [Mi3, 1.10]).
The seeming difference (by sign) between our reciprocity map and that of [Mi3] is
due to the fact that we consider left action of the adelic group whereas Milne considers
right action.

Proposition 3.1.14. — For each field K' satisfying E(H™, M™) C K'C C there exists
a unique (up to an isomorphism) weakly-canonical C[K'-descent of the (H™(AY), C)-scheme
Mc(Hlnt’ Mint)'

Progf. — Uniqueness is proved in [Del, 5.4], for the existence see [Del, 6.4]
or [Mil, II, Thm. 5.5]. O
By Proposition 3.1.3, we have E(H™, M™) =KCK, CGC (in our conven-

tion 2.2.2). Hence by Proposition 3.1.14, the (E™, C)-scheme X™ has a unique
weakly-canonical G/K -descent X™*,

14
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3.2. Theorem on the p-adic uniformization

Now we are ready to formulate our

Second Main Theorem 3.2.1. — For each admissible isomorphism ® : E = E™ there
exists a ©-equivariant isomorphism fo, from the (E, K,)-scheme X to the (E™, K, )-scheme X™,

Corollary 3.2.2. — After the identification of E with E™ by means of ® we have for each
SeZF(E) of the form T, X S', where S’ € F(E'), an isomorphism of K, -analytic spaces
Pg ¢ (X§4)™ 3 GLy(K,)\(Z2" X (S'\G(Af)/G(F))). These isomorphisms commute with

(]
the natural projections for T D S and with the action of E S E™,
Proof (of the Second Main Theorem) :

Step 1. — We want to prove that for ® and f;, as in the First Main Theorem, the
C/K-descent of X corresponding to X is weakly-canonical. For this we have to
show that for each maximal torus T < H™ as in 3.1.4 and each T-special point
x = fo(y) € Mg(H™, M™) (C) = X™ we have:

a) y e X(C,) is defined over E-K,;
b) o(y) = ® (A, (o)) (») for each ¢ € Gal(EP-K,/E;-K,).

By Proposition 3.1.9, Lemma 3.1.8 and the definition of admissible map, it
will suffice to show that when L, is embedded into D, by means of the isomorphism
D 3 D, from Definition 2.2.1 we have

(3.1) i) every point y € X(C,), fixed by ®}(T(Q)), is rational over (L,)™;
ii) 6, (1)(y) =1"%()) for each le L C DX =Dy x{1}cDs x E.

Let (x,a) e % X E’ be a representative of y € X(C,). Then (o(x), a) is a repre-
sentative of o(y) for each (not necessarily continuous) o € Autg (G,). Recall that for

each embedding L, <> Mat,(K,) there exists an (L} X LJ)-equivariant L,-rational
embedding V: X} < Xf .

Proposition 3.2.8. — There exists an embedding L,, — Mat,(K,) such that the image
of the corresponding V:Xj <> Ig  contains x.
Proof. — Let x" e Q¢ be the projection of x. Then
Y =1, a)] e D\X)™ = (@, x (E)"™)/G(F) Z(G(F))

(use Proposition 1.5.3) is the projection of y. Since ®~'(T(Q)) stabilizes p, it
also stabilizes ), therefore the projection of a ! ® (T(Q)) a to E’ is contained in

G(F) Z(G(F))C E'. In other words, for each ¢eT(Q)C D™ we have
pry (¢ ©7H(t) @) = g2

for some g € G(F) and some z € Z(G(F)).
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Since @ is induced by some algebra isomorphism D(AZL") 5 D™(Af*), we have
Trt = Tr(a '@ (t) @) = (Tr g) z. Therefore for #s with non-zero trace we get
z = (Trt)(Trg)~* e KX C (A" ®)*. This means that prg(a~* @~ () a) € G(F) C E.
As the set of all #’s in T(Q) C D™ with Tr ¢+ 0 generates L C D™ as an algebra, the
map ! — prg (¢~ ®7*(/) a) defines embeddings L < D and L, < D ®; K, ~ Mat,(K,).
This shows that pry (¢~ @~ (T(Q)) a) C G(F) C E/, so that

a1 O YT(Q)) aC DX x Ty DX x B’ =E.

Hence ®~'(T(Q)) preserves p,(Zg ) C (X, )’”‘ (in the notation of Corollary 1.5.4).
Moreover, it follows from the definition of the embeddings L, < D, and L, < Mat,(K,)
that for each teT(Q)CL*CLY the image of a1 ®~ ()aC D; X I'y under the
canonical map ﬁ; X I‘Eiif)'; X I'y C ]~);f X GL,;(K,) is equal to (¢ ¢). Since y is
a fixed point ®~*(T(Q)), we conclude from the above that (7, ¢) () = x for every
t € T(Q). Noticing that T(Q) is Zariski dense in Ry x G,, by Lemma 3.1.5 and that
Rix G, ® K, 2Ry x G,, Lemma 1.4.5 completes the proof. O

Since 7 is (LY x LJ)-equivariant and L,-rational, the proposition together
with Lemma 1.4.3 imply (3.1). In other words, we have proved that for some

admissible isomorphism @ : E 5 E™ there exists a ®-equivariant K -linear isomorphism
Sfo : X 3 Xint,

Step 2. — Let ¥ be another admissible isomorphism E 5 E™. The definition of
admissibility together with the theorem of Skolem-Noether imply that ¥ o @~ : E*t X Elnt
is an inner automorphism, so that there exists g € E™ such that ¥ o ®7!(g) = g¢ ggg!

for all g € E™. Take fy: Xid; X 25 X Then for each g €E we have
Jreg=8rofoog =28y ®g) ofo=(gx° P °gy) o (g o fo)
= (¥ o 079 (2(g)) o for = ¥(g) o fo,
that is fy is a W-equivariant isomorphism. This completes the proof of the Second Main
Theorem. O

4. p-ADIC UNIFORMIZATION
OF AUTOMORPHIC VECTOR BUNDLES

In the previous section we proved that the Shimura varieties corresponding to
the pairs (H™, M™) have p-adic uniformization. Our next task is to show the analogous
result for automorphic vector bundles.

4.1. Equivariant vector bundles

4.1.1. Set H:=RyqG. Then for some algebraic group H over K,
we have natural 1somorph1sms Hg, = GL; X H, PH, ~PGL, x PH and
PHY! =~ PGL,(D}") x PH, where the first factors correspond to the natural embed-
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ding F < K,,. Using these decompositions let PHy acts on Pi ' through the natural
action of the first factor and the trivial action of the second one, and let H(K ), PH(K)
and PH™(R)° = PGU,_, ;(R)® X PGU,(R)’"" act similarly on Zf , on Qf and
on B! respectively. Let Bz be the natural embedding B*~! < (P§~1)*, and let B,
(resp. By, ,) be the composition of the natural projection X% — Qg (resp. Zg" —Qf )
and the natural embedding Qg <« (P !)™.

Let = € K, be a uniformizer, let I be an element of GL,(K,) satisfying ¢ = =,

and let I’ e PGL;(K,) be the projection of 10. Set
Il := (I, 1) e PGL,(K,) x PH(K,) ~ PH(K,,).

Let K% be the unramified field extension of K, of degree d. Since the Brauer invariant
of Di* is 1/d, the group PHE® is isomorphic to the quotient of PHy ®; K{ by the
equivalence relation Fr(x) ~ II7* #II, where Fr € Gal(K?/K,) is the Frobenius auto-
morphism. For each scheme Y over K, on which PHy acts K,-rationally define a
twist YV := (Fr(x) ~ II7' x)\Y ® K. Then Y ® K = Y™ ®; K and the natural
action of PHE® on it is K,-rational.

Let W be a PHy -equivariant vector bundle on Pg~?, that is a vector bundle
on P{ ! equipped with an action of the group PHy , lifting its action on Pz '. Then
(W, p'™) is a PHg'-equivariant vector bundle on (Pg )™, and BR((Wg)™) (resp.
B (W), By (W™)) is a PH™(R)°- (resp. H(K,)-)equivariant analytic vector bundle on
BI~1 (resp. X% , Zgl).

For each S € #(E) (resp. S € #(E™)) consider a double quotient

¥, 1= S\[BL(W™) X EJ/T (resp. Vit :— S\[Ba(WE)™ x Ew/T).

Proposition 4.1.2. — For each S € F(E) (resp. S € F(E=)) Vg (resp. \Nzg“) has a
natural structure of an affine scheme Vg over X (resp. V't over X2%). Moreover, Vi (resp. Vinty 45
a vector bundle on Xg (resp. XT%) if S is sufficiently small.

Proof. — We give the proof in the p-adic case. The complex case is similar, but easier.

I) First we take S of the form T, X S’ with sufficiently small S’ € #(E’). Then
Vg is a finite disjoint union of quotients of the form [oga-1\Bh, »(W*) with some
aeE’. Since the projection Xg" —Qf = factors through each Iy, 1,\Zg" (in the
notation of the proof of Proposition 1.5.2), the quotient Iy, 1,\B}, ,(W™) Iis
naturally an analytic vector bundle on Tyg -1 (\Zg". Now (as in the proof of Proposi-
tion 1.5.2) the quotient vector bundle PT' 5, 1\(Tyg 4-1,0\Bh, (W) = Ty o1\Bh, o(W™)
on I‘as,a_l\Z%l:‘ is obtained by gluing. For the algebraization we use Corollary 1.2.3 a).

II) For each T € % (E) there exists a normal subgroup of the form S =T, X S,
where S’ € #(E’) is sufficiently small. Then by the same considerations as in Propo-
sition 1.3.7, V; can be defined as (T/S)\ Vg (using Corollary 1.2.3 a)).
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III) Suppose that Vg and Vg, , constructed in I) and II), are vector bundles
on Xg and X respectively for 5;CS, in F(E). Then the natural morphism
S Vg, = Vg, Xy, Xg, of vector bundles on X induces an isomorphism on each
fiber. Hence it is an isomorphism.

IV) Suppose that TC S in & (E) and that Vg is a vector bundle on Xg. Choose
a normal subgroup S,€ & (E) of T such that Vg is a vector bundle on X . Then
Vi = (T/So)\Vg, = (T/Se)\Vys Xx, Xg, = Vg Xx, (T/S)\Xs,) & Vg Xx, Xy, 50 Vy is
a vector bundle on X,;. O

4.1.3. Choose S eZF(E) (resp. S eF(E™)) sufficiently small. Then Vg
(resp. V2%) is a vector bundle on X, (resp. X™). Thus V:= Vj X xs X (resp.
Vit — e X gint Xty is a vector bundle on X (resp. X™). By Step III) of the
proof, V (resp. V) does not depend on S. Each g € E (resp. g € E™) defines an iso-
morphism V§ = V2, (resp. (Vintyan (V},“strl)“). Therefore by Corollary 1.2.3a),
g defines an isomorphism Vg3V, , (resp. Vit ¥m ) The product of this
isomorphism and the action of g on X (resp. X™) gives us an isomorphism
g:V=Vy X, X3 V51 X501 X =V (resp. g: Vit 5 ¥ty Thus we have cons-
tructed an algebraic action of E (resp. of E®) on V (resp. V™), satisfying S\V = Vj
for all Se%(E) (resp. S\V Vit for all §e % (E™)). Moreover, V =limVy

8

~ ~
and V™ = lim V5,
(E—

By [Mil], there exists a unique canonical model V™ of V™ over K, (the
definition of the canonical model will be explained in the last paragraph of the proof
of Proposition 4.3.1) such that V™ is an E™-equivariant vector bundle on X™,

Our main task is to prove the following
Third Main Theorem 4.1.4. — For any admissible isomorphism @ : E S E™, each

isomorphism fy, from the First or the Second Main Theorem can be lifted to a ®-equivariant iso-
morphism fo : V 5 Vi,

We will prove this theorem, using standard principal bundles (= torsors) (see [Mil,
Ch. III, § 3]).

4.2. Equivariant torsors

4.2.1. For each S e F(E) (resp. S e F(E™)) consider the double quotient
Py:=8S\[ZZ x (PHg, )™ X EJT (resp. Pt := S\[B*~* x (PHEY)™ x Ebt]/I'at),

Proposition 4.2.2. — For each S € F(E) (resp. S e F(E)) Py (resp. 1~>‘;t) has a
natural structure of an affine scheme Pg over X (resp. P over X). Moreover, Py is a PH -
torsor over Xg (resp. P2 is a PH™-forsor over X if S is sufficiently small).
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The proof is almost identical to that of Proposition 4.1.2 (using Proposition 1.9.13

and Lemma 1.9.3 instead of Corollary 1.2.3 a) and arguments of step III) respec-
tively). O

4.2.3. Arguing as in 4.1.3 and using Corollary 1.9.14 we obtain an E-equi-
variant PHg -torsor P =limP; over X (resp. an E™-equivariant PH{"-torsor

s
P =lim Pg* over X™). By [Mil, III, Thm. 4.3], there exists a unique canonical
S

model P of P over K, (the definition will be explained in Corollary 4.7.2) such
that P™ is an E"-equivariant PHR'-torsor over X™. Let n:P —X and

7 Piot X he the natural projections. Denote also the natural projection from
the PHE!-torsor P*¥ to X by ™.

Fourth Main Theorem 4.2.4. — For any admissible isomorphism @ : E = E™ each
isomorphism fo, from the First or the Second Main Theorems can be lifted to a ®-equivariant
isomorphism fo p: P™ 55 P of PHE' -torsors.

4.3. Connection between the Main Theorems

Proposition 4.3.1. — The Fourth Main Theorem implies the third one.
Proof. — Consider the pro-analytic maps
31 [Bh, X (PHg)™ x (B)™]/T — (BE )™
and (37 (B! x (PHg)™ x (E™)™]/T — (B§=")

given by §’(x, g, ¢) = gB,(*) and (9')™(%, g, €) = gBc(x). Then §’ (resp. (p")™) is
(PHg )*™- (resp. (PHg*)*™-) equivariant and commutes with the action of E
(resp. E™). Hence it defines an equivariant analytic map §: P* — (Pg"%)* (resp.
%lnt . (ﬁint)an = (Pg—l)m).

Proposition 4.3.2. — There exists a unique algebraic morphism o: P —Pi=1 (resp.
Pt Pt PI-Y) such that o™ ~ F (resp. (F™Y)™ = g“‘").

Progof. — We prove the statement for p (in the second case the proof is exactly
the same). We have to show that the graph Gr(g)C P*™ x (Pg ')*™ corresponds to
an algebraic subscheme. For each S € #(E) let §: P§* — (Pg_')™ be the morphism
induced by . Since Gr(g) = limGr(g) C (lim Pg") x (Pg *)™, it remains to show

S 8

that the graph Gr(5;) C P§* x (P§")* corresponds to a unique algebraic subvariety
for each S sufficiently small.

Take S so small that X is smooth, then by Lemma 1.9.5 5) there exists a quotient
Qg := PHg \(Py x Pg7") by the diagonal action of PHg . Moreover, Qg is a
P?~!-bundle on Xg, hence it is projective over K. Let a: Py X Pi~' -~ Qg be the
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natural projection. Since By is (PHg )*-equivariant, Gr(g;) is invariant under the
diagonal action of (PHg )*. Therefore the quotient Q:——- (PHg,)*\Gr(g;) is a closed
analytic subspace of Q°, so that it is algebraic (see Corollary 1.2.2). It follows that
its inverse image «~'(Q) = Gr(p,) is also algebraic. The uniqueness is clear. O

Claim 4.3.3. — The map ?i“t is the only (PHP)*™ X E™-equivariant analytic map
ﬁ,om (Pint)an to (P«(i)—l)an.

Proof. — Let o' : (P™)*™ — (P~1)™ be any such map. Composing it with the
natural (PHY')* X E™-equivariant projection

[Bd—l X (PHié)t)an X (Eint)dlsc]/l“int > (Pint)an

and, identifying a complex analytic space with the set of its G-rational points, we obtain
a PH™(C) x E™-equivariant analytic map

P” . [Bd—l X PHlnt(C) X (Elnt)disc]/l‘lnt —> (P‘é—l)m.

Let po be the restriction of p to B*"* 3 B! x {1} x {1}. Then p"'(x, g, &) = gp,()
for all x eB?~! g e (PHN)™ and ¢ e E™. Therefore ypy(x) = po(yx) for all y e It
and x € B’ Since the subgroup I'™ is dense in PGU,_, ,(R)° we obtain by conti-
nuity that ypy(x) = po(y*) for all y e PGU,_, ;(R)® and » e B*~". In particular, for
the origin 0eB*~! we get Stabpyy 4_1,1<R>°(0) C Stabpyy 4_1,1<B>°(90(0))' The subgroup
Stabpgy, , ,m0(0) stabilizes precisely one point (0:...:0:1) e P*"*(C) if 4> 2 and
two points (0:1) and (1:0) in PY(QC) if d = 2. The case p,(0) = (1 : 0) is impossible,
because identifying P1(C) with C = C U by (x:%) — x/y we would get in this case
po(2) = 1/z for all zeB!, contradicting the analyticity of p,. We conclude that

00(0) = (0:...:0:1). Hence p, = Bg and ¢’ = p™. O

4.3.4. Next we show that the map g™ :Pg* — (P *)f is K -rational. Recall
that the map §' is PHg*-equivariant and that the actions of the group PHY' on both
P and (Pg )™ are K,-rational. Therefore for each o € Aut(C/K,) the analytic
map o(p™)™ is (PHJ')*™ x E™-equivariant, hence it coincides with (g™¢)* = T,
By the uniqueness of the algebraic structure, o(g™) = g™,

It follows that g™ defines a PHg' x E™-equivariant map o™ : P™ — (PE"1)™.

Notice also that p defines a PHY' X E-equivariant map o™ : P*™ — (Pg )™
Suppose that the Fourth Main Theorem holds, then

Lemma 4.3.5. — We have o™ o fo, p = p™.

Proof. — By the claim, o™~ (pl*)™ is equal to (o o (fop,p)c )™ From the
uniqueness of algebraic structures we conclude that pg' = i o (fp p)g ' Now we
descent to K, as in 4.3.4. O
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It follows from the definitions that p*(W) = =n*(V) (hence p*(W)™ x (=™™)*(V))
and (p™)* (W) = (rx)*(V™), Lemma 1.9.5 allows us to define V™ by the requirement
that (w)*(Vi®t) & (o®)*(W™). (By the definition, this is the canonical model of Vit
on X"™,) Lemma 4.3.5 implies that f » can be lifted to the ®-equivariant isomor-
phism o*(W)™ = (p™)*(W*™) = (p™)"(W'™), commuting with the PHE'-action. This
gives us the PHY'-equivariant isomorphism (=*™)*(V) = (n)*(V™). Hence the Third
Main Theorem follows from Lemma 1.9.5. O

Remark 4.3 .6. — Tannakian arguments can be used to show (see Theorem 1.9.10
and the discussion around it) that the Third Main Theorem implies the Fourth one.
We will not use this implication.

4.4. Reduction of the problem

4.4.1. Now we start the proof of the Fourth Main Theorem. For simplicity of nota-
tion we identify E with E™ by means of ® and X with X™ by means of f;. Recall that
Pg ¢ is a PHg-torsor over X  for all sufficiently small S € #(E), hence (Pg o)™ is a
(PHg)*™-torsor over (X )™ and (Pg)™ = (Pg )™ Xxsgan (X)™ is a (PHg)*-torsor
over (X)™ = [B?~! x (ERt/Elt)disc]/PT, Set Y := (n:‘“‘)’“l (B*~* x {1}) C (Pg)*™. Then
Y is a (PHg)*-torsor over B?~'. Recall that E, = EM™ acts trivially on P, hence
(Poy™ = (Y x (ES/E)0) /PT,

Proposition 4.4.2. — There exists a homomorphism j : PT'™ — PH(C) and an isomorphism
(P)™ 5 (B*~* x (PHg)™ x (E™[EGY)"*)[PT™ such that (x,h, g) v = (v5' % hj(Y), &7s)
Jor all x e B*~', h e (PHy)™, g € E™/EX and v € PT™,

Proof. — The proposition asserts that there exists a decomposition

Y > B! x (PHg)™

such that the group PI'"™ acts on B?~! x (PH;)*™® by the product of actions on factors.

The trivial connection on Zf X (PHg )™ —3g is I' X D-invariant, there-
fore it defines a natural E-invariant flat connection ## on the (PHg)*-torsor
[Z%, X (PHg )™ x E¥*]/I" over [Xg X E¥™]/T. Since for all sufficiently small
S e #(E) the projection (Zf X (PHg )™ x E®*)/I' —Pg is étale, it induces an
isomorphism of tangent spaces up to an extension of scalars. Hence # induces a flat
connection '%s on P§". By the definition, .;fs is a (PHg )*-invariant analytic vector
subbundle of (Ty)*™, therefore Lemma 1.9.5 and Corollary 1.2.3 imply the existence
of a unique flat connection 2, on Pg such that #, = #. Since the projection
ng: P — Py is étale, S#; defines a unique flat connection # on P satisfying
(mg).(€) = H#3. Moreover, S# is E-equivariant and does not depend on S.

The connection # determines flat connections 5#; on P; and (5#;)*™ on (Pg)*™.
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Let 5’ be the restriction of (#7)*™ to Y. Then 5’ is a PI"™.-invariant flat connection
on the (PH)*-principal bundle Y over the simply connected complex manifold B%~?.
By Lemma 1.9.19, there exists a decomposition Y = B*~! x (PH;)*™ such that the
corresponding action of PI"™ on B~ x (PH,)™ preserves the trivial connection.

For each y e PT™ Jet ¥: B! x (PH;)*™ — (PHy)™ be the analytic map such
that y(x, ) = (y(x),Y(x, &)) for all x e B4~! and h e (PH)*. Since the action of PI'n*
preserves the trivial connection, we have 9¥/dx = 0 for each y € PI"™, Hence analytic ¥’s
depend only on 4. Since the action of PI"™ commutes with the action of (PHg)™, we

have ¥ (k) = AY(1) for all e (PHy)®™ and y € PT"™, Therefore the map y —Y(1)"!
is the required homomorphism. O

Theorem 4.4.3. — There exists an inner isomorphism (= inner twisting)

®, : PH, = PHu

such that jo ®g: PI'™ = PG™(F), — PH"™(C) =~ PG™(C®yF) is induced by the natural
(diagonal) embedding F — C®qF =~ C°.

Remark 4.4.4. — Algebraization considerations as in Lemma 2.2.6 (using Propo-
sition 1.9.13 instead of Corollary 1.2.2) show that Theorem 4.4.3 implies the existence
of a ®-equivariant isomorphism P& 3 Pt lifting 7.

4.5. Proof of density

To prove Theorem 4.4.3 we will use Margulis’ results. For this we first show
that the subgroup j(PI'"™) is sufficiently large. We start with the following technical

Lemma 4.5.1. — Let n and d be positive integers. For each i = 1, ..., n we denote by pr;
the projection to the i-th factor.

a)Let 9,, ..., 9, be Lie algebras, and let # be an ideal in the Lie algebra 9 =117_, %,.
Then # D115 _,[pr; 7, %.]. .

b) Let A be a subgroup of PGL,(C)". Suppose that pr;(A) is infinite for every i = 1, S
If A:= Commypgy,,on(A) is Zariski dense in (PGL,)", then the same is true for A.

¢) If a subgroup A C PGU,(R)" is Zariski dense (in (PGU,)"), then it is dense.

Proof. — a) If x = (%1, ..., x,) €ell?_, ¥, belongs to 5, then
2] = (O, ..., %] ...,0) = [pr; %] e for all y,e¥,.

b) Let J be the Zariski closure of A in (PGL,)", then 8] 87! N J is an algebraic
subgroup of finite index in J for each 3 e A. Hence 3]°3~1 = J° In particular, the
subgroup Ad A stabilizes Lie J°C Lie(PGL,)". Since A is Zariski dense in (PGL,)",
the Lie algebra Lie J° = Lie J is an ideal in Lie(PGL,)". By our assumption, pr;(J)
is an infinite algebraic group for each ¢ = 1, ..., n, therefore pr;(Lie J) + 0 is an ideal

15
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in a simple Lie algebra Lie(PGL,). Therefore @) implies that LieJ = Lie(PGL,)".
Since the group (PGL,)" is connected, J = (PGL,)".

¢) Let M be the closure of A in PGU,;(R)". Then M is a Lie subgroup of the Lie
group PGU,(R)". Hence Lie M is an Ad M-invariant subspace of Lie(PGU,(R))".
Since the adjoint representation is algebraic, Lie M is an ideal in Lie(PGU,(R))". Since
M is compact, it has a finite number of connected components. Hence M? is also Zariski
dense, therefore it is not contained in PGU,R)!~! x {1} x PGU,(R)*~* for any
i =1, ...,n It follows that Lie M = Lie M° is not contained in

Lie(PGU,(R))'~! x {0} x Lie(PGU,(R))" %,
so that pr;(Lie M) # 0. Now the assertion follows exactly in the same way as in 4). O
Proposition 4.5.2. — The subgroup j(PT™) is Zariski dense in PHy.

Progf. — Let G’ C PH, be the Zariski closure of j(PI™). Then
R:= (Bi=1 x (G')™ x (PG™t(Afv))de) PLint

is a PG™(Af")-invariant (G’)*-subtorsor of the (PHg)*-torsor
(P)™ = ((G™(F,) x Z(E™))\Pg)™
o~ [Bd—l X (PHc)an X (PG’“‘(A{;‘”))“‘”]/PI““‘

over (X¢)™ = [B*~! x (PG™(AL?))%]/PI'"™, Hence by Proposition 1.9.13 there
exists an algebraic G'-subtorsor R of P; such that R*™ R. Using our identification
of G, with G, we obtain a closed analytic subspace

(ch)a.nc (Pé;)sn ~ (Qde @)Kw C, x (PHcﬁ)an x (PE’)%*)/PT.
Recall that PT' = PH(Q) is naturally embedded into PH(C,).

Lemma 4.5.3. — The subgroup generated by the elements of PT' with elliptic projections
to PGL,(K,,) is Zariski dense in PH, .

Proof. — The subgroup of PGL,;(K,) generated by the set of all elliptic elements
is open and normal, because a conjugate of an elliptic element is elliptic. Hence it
contains PSL,(K,). The subgroup PI'; n PSL,(K,) is dense in PSL,(K,). Therefore,
by [Ma, Ch. IX, Lem. 3.3], the subgroup of PT; generated by all elliptic elements
of PT, contains PT'; n PSL,;(K,). In particular, it has finite index in PI'; = PH(Q).
Since PH is connected, the statement follows from [Bo, Ch. V, Cor. 18.3]. O

If G'+ PH;, then by the lemma there exists y € PI' with elliptic pro-
jection to PGU,_, ;(R) whose image y, € PH(C,)) does not belong to G'(C,). Let
xeQp @Kw C, x{1}C (Xg,)™ be an elliptic point of yg € PE’, and let ¥ be an
arbitrary point of (ch)““, lying over x. Then yg(%) = y,(¥) is another point of (Rg,)™,
lying over x. Hence vy, must belong to G'(C,), contradicting to our choice of y. O
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Recall that we defined in Proposition 4.3.2 the algebraic PHy X E-equivariant
map p:P —Pg ', Identify PH; with (PGL,;)’ in such a way that the first factor
corresponds to the embedding oo;:K < C. Denote by j, :PI'"™ — PGL,(C) the
composition of j with the projection pr, of PGL,(C)? to its k-th factor. Denote also by pr’
the projection of PGL,(C)? to the product of all factors except the i-th. We will some-
times identify PI"™ with its projection PI'"2C PGU,_, ,(R)".

Proposition 4.5.4. — The subgroup j,(PT™) is not relatively compact in PGL,(C).

Proof. — If not, then j;(PI"™) is contained in some maximal compact subgroup
of PGL,(C) (see for example [PR, Prop. 3.11]). After a suitable conjugation we may
assume that j,(PT™)C PGU,(R). By Proposition 4.5.2, j;(PI'™) is Zariski dense
in 'PGLd, hence it is infinite. Therefore, by Lemma 4.5.1, j;(PI'"™) is dense in PGU,(R).

Consider the map p : P(G) — P*~*(C) and its restriction p, to B?~? x {1}~ B¢~
Then, as in the proof of Claim 4.3.3, p,: B*~* — P*~(C) satisfies po(yx) = j1(Y) po(¥)
for all x e B4~ and y € PT™. The group PGU,(R) acts transitively on P*~!(C), hence
po(B*™1) is dense in P*~1(C).

Now we want to prove that j; : PI"™ — PGU,(R) can be extended to a continuous
homomorphism ;Nl :PGU,_, ;(R)* - PGU,(R). For each gePGU,_,,(R)° choose a
sequence { v, }, C PI"™ C PGU,_, ,(R)° converging to g. Since PGU,(R) is compact,
there exists a subsequence {v, },C{v,}, such that {j(y,) }; converges to some
a € PGU,(R). Then py(gx) = Lim po(y,,(x)) = (lim ji(y,,)) po(¥) = apo() for all x € B*~1.
It follows that ¢ = a(g) depends only on g, since po(B?~?) is dense in P*~!(C) and since
the group PGL,(C) acts faithfully on P¢~*(C). In particular, a(g) does not depend on the

choice of { v, }, and a(g) = lim j,(v,). It follows thatj: := a is the required extension.

Since PGU,_, ;(R)° is simple and j;(PT™) is dense, 7, must be injective and
surjective. Hence is it an isomorphism, a contradiction. O

Proposition 4.5.5. — For each i =1, ..., g the homomorphism j, : PT'™ — PGL,(C)

is injective.

Proof. — Suppose that for some 7 the subgroup A, := Ker(j;) is non-trivial. Then
A, is a normal subgroup of PI'"™ >~ PI'"2*C PGU,_, ;(R)°. Hence the closure of (A;),
is a non-trivial normal subgroup of a simple group PGU,_, ;(R)% Therefore the pro-
jection (A)),, is dense in PGU,_, ;(R)°. Hence there exists an element 8 € A; with elliptic
projection 8, € PGU,_, ;(R)°. Therefore the element (j(3),3d5) € PGL,(C)* x PE’
has a fixed point [y, g, €] e P"(C,) = (Qg (C,) X PGL,(C,)’ x PE')/PT. Hence
(677 (3) g, ¢ " 35 ¢) stabilizes [y, 1, 1] € P(G,). It follows that ¢~* 8 ¢ = vy for some
v e PI' = PH(Q) and g~ 'j(3) g € PH(C,) is the image of y. Hence j,(8) + 1 for all &,
contradicting to our assumption. [
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4.6. Use of rigidity

Now we are going to use the following theorem of Margulis [Ma, Ch. VII,
Thm. 5.6].

Theorem 4.6.1. — Let L be a local field, let J be a connected absolutely simple adjoint
L-group, and let A be a finite set. For each o € A let k, be a local field and let G, be an adjoint

absolutely simple k,-isotropic group. Set G := II G,(k,). Let T' be an irreducible lattice in G
aE A
and let A be a subgroup of Commg(T). Suppose that rank G:= X rank, G, > 2.

aE A

If the image of a homomorphism ~: A — J(L) s Zariski dense in J and not relatively
compact in J(L), then there exists a unique o € A, a continuous homomorphism 6 : k, — L and
a unique 9-algebraic isomorphism w: G, > J such that ~(X) = 0(0(pr,(X))) for all A € A.

4.6.2. We use the notation of 2.4.1 with A’ = PI'"™, Take any M and S such
that rank Gg > 2. Then by Proposition 2.4.5, I := A® is an irreducible lattice in Gg.
We will try to apply Theorem 4.6.1 in the following situation. Take G = Gg, A be
the projection of A’ to Gz, L=0GC, J = (PGL;); and = be the homomorphism
Ji s PI'™ — PGL,(C) for some ¢z €{ 1, ..., g}. Consider first ¢ = 1. By Proposition 4.5.2
and Proposition 4.5.4, v = j; satisfies the conditions of Theorem 4.6.1, hence there
exists an algebraic isomorphism v, : (PGU,_, ;)¢ = (PGL,); such that j;(y) = 7;(Y.)
for all y e PT"™®,

Now take 7> 2. Suppose that j;(PT™) is not relatively compact. Then using
again Proposition 4.5.2 we conclude from Theorem 4.6.1 that there exists an algebraic
isomorphism =,: (PGU,_, ,)¢ = (PGL,); such that j(y) = %(y,) for all yePI™,
In particular, j(PI™) is not Zariski dense in (PGL;)°. This contradicts to
Proposition 4.5.2. Therefore after a suitable conjugation we may assume that
7:(PT™) C PGU,(R) for all :=2,...,¢.

It follows that up to an algebraic automorphism of (PGL,;)’,

j(PT™) C PGU,_, ,(R) X PGU,(R)"~* = PH"(R)

and that j; is the natural embedding PG™(F), < PG™(F,, ). Therefore j together
with the natural embedding PG™(F), < PG™(Af"*) embed PT™ into

PGU,_,;(R)" x PGU,(R)*~* x PG™(Af").

Lemma 4.6.3. — The closure of the projection of PT'™ to PGU a(R)"»_l x PGUt(AL?)
contains PGU,(R)?~ x P((G™)%(A%")).

Proof. — Let (g,,g,) be an element of PGU,R)’~! x P((G™)%(AL")), let
U CPGU,R)’"* be an open neighbourhood of g., and let S € #(PG™(AL")). We
have to show that PT"™ n (PGU,_, ;,(R) x U X g,8) + 0. By the strong approxi-
mation theorem there exists a y € PI"™ whose projection to PG™(A%") belongs to g, S.
Let y' be the projection of y~' to PGU,(R)?~ 1.
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Since j(PI"™) belongs to the commensurator of Ag:=j(PT§*) in PGL,(C),
Proposition 4.5.2, Proposition 4.5.5 and Lemma 4.5.1, b), ¢) imply that pr'(Ag)
is dense in PGU,(R)?’". It follows that there exists & € PI"™™ whose projection to
PGU,(R)’"! x PG™(AL®) belongs to ¥' U X S. Then y3 belongs to

PIr'™ n (PGU,_, ,R)* x U x g,8§). O

4.6.4. Now we proceed as in the proof of Theorem 2.2.5. Let M and S be as
in 2.4.1, and let PT§* be the projection of PI'g := PI"™™ N PGU,R)’"! X Giz X S
to PGU,(R)*~* X Gg. The proof of Proposition 2.4.5 holds in our case, hence PI'j*
is arithmetic. It follows that there exists a permutation o of the set{ 2, ..., g } such that for
every i =2, ..., g there exists a unique algebraic isomorphism 7;: PG, = PGU,
satisfying 7,(y) = j, () for each y e PT'lg. In particular, ¢ and the 7’s do not depend
on M and S. Since PI'™ = MUs PIg, we then have 7,(y) = j,,(y) forallie{2, ..., g}
and y € PT"™, This shows the existence of an algebraic isomorphism @, which will satisfy
Theorem 4.4.3 if we show that it is inner. But this can be immediately shown by the stan-

dard argument using elliptic elements and function ¢ defined in 2.5.5 (compare for
example the proofs of Proposition 2.5.6 and Proposition 4.5.5).

4.7. Rationality question

Consider the (PH2t)*torsor (P™) & [B*~! x (PHI!)™= x (Eit/Eint)disc] /pint
over (X®)m, As in the p-adic case, it has a canonical flat connection .}%’“. The same
considerations as in the p-adic case (see the proof of Proposition 4.4.2) show that there
exists a unique connection #™ on P™ such that (#™)™ x #. Tt follows from
the proofs of Proposition 4.4.2 and Theorem 4.4.3 that ( f;y ). () = A,

Lemma 4.TA. — If an analytic automorphism o : (P=t)= 3 (Potyen  commuytes

with the action of (PHE)™ x Et  preserves ™ and induces the identity map on
()"(Im)an = (PHc)“\(T’"‘t)"“, then o is the identity.

Proof. — Recall that (Pt)™ ~ [B~! x (PH)™ x (E®t/Eit)ds] /P, Since ¢
induces the identity map on (X™)*, there exists a holomorphic map ¢ : B¢~! — (PHit)s=
such that ¢[x, 1, 1] = [x, §(x), 1] for all x e Bi~L, Since ¢ preserves #™, we have
o/ox = 0. Hence ¢ is a constant, say a. Then ¢[x, &, ¢] = [x, ha, ¢] for all x e B?~?,
h € (PHE")* and ¢ € E™, In particular,

olx 1,11 = o[v5' %,7(Y), Yel = [Y=' % J(Y) 4 v&] = [%J(Y) ¢(y)" ", 1]

for all y e PI'™, Therefore j(y) ¢j(y)~* = a for all y e I'™, Since PI"™* is Zariski dense
in PHg*, a=1. O
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Corollary 4.7.2. — The torsor P™ has a unique E™-equivariant structure P™ of a

PH}’;“w-torsor over X™ such that there exists a connection ™ on P™ satisfying AP ~ A,
(P™ s called the canonical model of P™ over X™.)

Proof. — The existence is proved in [Mil, III, § 3]. Suppose that P’ and P”’ are
two structures satisfying the above conditions. Let f: Pg 3 Pty Py be the natural
isomorphism. For each ¢ € Autg (C) set ¢, := o(f)7! o f. Then the automorphism (p,)*"
of (Py)™ = (Pt)* satisfies the assumptions of the lemma. Hence (q,)* is the identity,
so that o(f) = f for all ¢ € Autg (C). It follows that P’ = P". O

To finish the proof of the Fourth (and the Third) Main Theorem it remains to
show that the homomorphism fy, 5 : P§" = Pi* is K -linear. Since

(fo, ) () = (Jop)u () = HE,

this follows from the lemma by the same considerations as the corollary.
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