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CONCENTRATION OF MEASURE
AND ISOPERIMETRIC INEQUALITIES IN PRODUCT SPACES

by Micaer TALAGRAND

AssTrRACT. The concentration of measure phenomenon in product spaces roughly states that, if a set A in a product QN
of probability spaces has measure at least one half, * most * of the points of QN are ¢ close ” to A. We proceed
to a systematic exploration of this phenomenon. The meaning of the word “ most > is made rigorous by isoperimetric-
type inequalities that bound the measure of the exceptional sets. The meaning of the work ¢ close ”’ is defined in
three main ways, each of them giving rise to related, but different inequalities. The inequalities are all proved through
a common scheme of proof. Remarkably, this simple approach not only yields qualitatively optimal results, but,
in many cases, captures near optimal numerical constants. A large number of applications are given, in particular
to Percolation, Geometric Probability, Probability in Banach Spaces, to demonstrate in concrete situations the
extremely wide range of application of the abstract tools.
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Dedicated to Vitali Milman

Upon reading the words “ isoperimetric inequality  the average reader is likely
to think of the classical statement:
(1.1) Among the bodies of a given volume in RY, the ball is the one with the
smallest surface area.

This formulation, that needs the notion of surface area, is not very appropriate
for generalization in abstract setting. A less known (equivalent) formulation is as follows:
(1.2) Among the bodies A of a given volume in R¥, the one for which the set A,
of points within Euclidean distance ¢ of A has minimum volume is the Euclidean ball.
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It should be intuitive, taking ¢ — 0, that (1.2) implies (1.1). We will, however,
rather be interested in large values of . At first sight, this is uninteresting; but this first
impression is created only by our deficient intuition, that functions correctly only for
N < 3, and miserably fails for the large values of N that are of interest here.

For our point of view, the main feature of (1.2) is that it gives a lower bound
on the volume of A, that depends only on ¢ and the volume of A.

From now on, all the measures considered will be probabilities (i.e. of total mass
one). Following [G-M], [M-S], the basic ideas of concentration of measure may be

described in the following way. Consider a (Polish) metric space (X, d). For a subset
A of X, consider the d-ball A, centered on A, i.e.

(1.3) A, ={xeX:d(x, A)<t}.

Consider now a Borel probability measure P on X. The concentration function «(P, t)
is defined as

1

(P, t) = sup{ 1—PA,):PA)> -, ACX, A Borel}.

No|

In other words

(1.4) P(A)

\Y

NI =

=PA)>1—«P, ).

It turns out that in many situations the function «(P, ¢) becomes extremely small when
¢t grows. In rough words, if one starts with any set A of measure > 1/2, A, is almost the
entire space. This is the concentration of measure phenomenon. This idea started with
the work of V. Milman on Dvoretzky’s theorem on almost Euclidean sections of convex
bodies [Mil]. Most importantly, Milman understood that concentration of measure
occurs extremely often [Mi2], and most vigorously promoted the idea. (In particular
we refer to his paper [Mi3] to supplement our sketchy discussion.) Concentration of
measure plays an important role in local theory of Banach spaces, and has become the
central concept of the area of probability known as Probability in Banach spaces. (See the
book [L-T2], and subsequent work such as [T6], [T7].)

A prime example of space where concentration of measure holds is the Euclidean

sphere Sy of RN ! equipped with its geodesic distance d and normalized Haar measure Py,
for which it can be shown that

m\? N-=-1)
(1.5) a(Py, t) < (5) exp (—————2——t).

(The central fact in Milman’s approach to Dvortzky’s theorem.) Closely related, and
more in line with the topic of the present paper is the case X = RY¥, equipped with the
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Euclidean distance and the canonical Gaussian measure yy (whose covariance is the
Euclidean dot product). In that case
1 1

1.6 oy ,t)sj —— Yy ~ P2,
(1.8) w <) Ve 2

It should be pointed out that more is known. The Gaussian isoperimetric inequality
states that

(1.7) Y(A) = 11((— o, a]) = 1x(A) = 71((— 0, a +1])

which implies (1.6) when a = 0. However, it is sufficient for many applications to
know (1.6) or even the weaker inequality

(1.8) a(yy, £) < Ke™ ¥

where K is a universal constant.

In the present work we perform a systematic investigation of the concentration
of measure phenomenon in product spaces. Thus with the terminology above, X will
be a product of probability spaces, and P a product measure. The statements will have
the form (1.4). However, the set A;, which consists of points close in a certain sense
to A (and that, for convenience, we will call the ¢-fattening of A), will not always have
the form (1.3). This is the crucial difference between the present work and previous
investigations, such as [A-M], [M-S]. Indeed, it turns out that it is extremely fruitful
to consider various notions of fattening. We will define three rather distinct notions of
fattening. These notions are studied respectively in Chapters 2 to 4. Each of these notions
can be studied with various levels of sophistication, and they are at times closely connected.
Discussing the whole theory in this introduction would require too much repetition
and is inappropriate for an article of the present length. Thereby, we have decided to
mention here only the main new theme (that did not appear in this author’s previous
work) as well as a simple result that appears to have a considerable potential for
applications.

Assume that X = QY is a product of probability spaces, and that P = pN is a
product probability. We recall that the Hamming distance d on X is given by

(1.9) d(x,y) =card{i< N:x =+ 5}

When A, is given by (1.3), where d is the Hamming distance, an important result,
proved in a special case in [A-M] (see [M-S] with a proof that extends verbatim to
the general situation) is that the concentration function «(P, ) satisfies

(1.10) a(P, ) < K exp (— -K‘_;-)

where K is a universal constant.
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One could interpret (1.9) by saying that we put a penalty 1 for each coordinate ¢
where x; + y,. One recurring theme of the present paper is the investigation of what
happens when, instead, we put a penalty k(x;, »;), where A(x, y) is a non-negative function
on Q2. A striking and unexpected finding is that in several instances there is a high
disymmetry between the roles of x and y. For example, in one of the main results of
the paper (Theorem 4.4.1) if one requires that %(x, ) should depend on x only, it has
to be bounded; but, if it depends on » only, weak integrability conditions suffice.

Suppose now that («;);<y are positive numbers, and let us replace the
distance (1.9) by

du(x,_y) = S &; l(m,-*w} .

It is then shown in [M-S] that (1.10) can be extended into

t2
(111) ac(P, t)SKCXP(— _K—ZZN_OL—?).

One way to spell out this result is as follows:

Given ACQF, with P(A) > —é—, then, for all numbers (o);<x, %= 0, X o
we have

12
(1.12) P(A,,)>1—Kexp (—— E)

I

where A ,={xeQ:3yeA, § % liayy St}
i<N

The first result of Chapter 4 states that (1.12) can be improved into

12
(1.13) P(NA,,)>1—Kexp (— I—Z)

where the intersection is over all families « = (o;);<y as above. The power of this
principle (that will be considerably perfected in Chapter 4) is by no means obvious
at first sight, but will be demonstrated repeatedly through Chapters 6 to 9 (the easiest
applications being in Chapters 6 and 7).

We have explained in terms of sets what is the concentration of measure pheno-
menon. However, rather than sets, one is more often interested in functions. In that case,
the concentration of measure phenomenon takes the following form: if a function fon X
is sufficiently regular, it is very concentrated around its median (hence around its mean).
If M, is a median of f; this is expressed by a (fast decreasing) bound on P(| f — M, | > #).

For a simple example, (1.4) implies that if f has a Lipschitz constant 1 with respect
to the underlying distance, then

(1.14) P(|f— M, | > t) < 2u(P, &),

Despite the fact that functions are potentially more important than sets, all our
concentration of measure results are stated in terms of sets. (This is done in Part L.)
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The essential reason for this choice is that the power and the generality of these results
largely arises from the fact that they require only minimal structure (a condition better
achieved by considering sets only). A secondary reason is that much of the progress
reported in the present paper (including on some rather concrete questions presented
in Part II) has been permitted, or at least helped by the abstract point of view; and
thereby, it seems worthwhile to promote this approach. Nevertheless, the natural domain
of application of the tools of Part I is obtaining bounds on P(|f— M,|> ¢), when
Jfis a function defined on a product of measure spaces. We will, however, give no abstract
statement of this type. We prefer instead to analyze a number of specific situations,
reducing each time to statements about sets (the great variety of situations encountered
indicates that this is possibly a clever choice). This is the purpose of Part II, where we
will demonstrate the efficiency of the tools of Part I. It must be said that these specific
situations have been of considerable help in pointing out the directions in which the
abstract theory should be developed. Most of the abstract results are indeed directly
motivated by applications.

Certainly there is a considerable number of situations where functions that are
defined on a product of many measure spaces naturally occur, or equivalently that
depend on many independent random variables. The examples presented here are
certainly influenced by the past interests of the author. Their boundary, however, is
likely to reflect the limited knowledge of this author rather than the limit of the power
of abstract tools of Part I. (Should a reader be aware of another potential domain of
application, he is urged to mention it to this author.) Quite logically, several of the
examples we present have an * applied ” flavor. This is simply because stochastic models
occur in physics (such as in Percolation and Statistical Mechanics) and Computer
Science (bin packing, assignment problem, geometric probability). The reason for the
later is that these stochastic models do shed some light on the behavior of computationally
intractable problems, and, for this reason, are widely studied today; see e.g., [C-L].
No previous knowledge whatsoever of these problems is required for reading the material
of Part II, that we briefly describe now.

Each of the examples of Part II studies the deviation of a specific function f of
many independent random variables from its mean. In every example but one, the
function f is obtained as the solution of an optimization problem. This is not a coin-
cidence, but rather reflects the fact that such situations are well adapted to the use of
our methods. In Chapter 6, we apply (4.1.3) to stochastic bin packing. This simple
application is presented first since it is while considering this problem that the power
of (4.1.3) beyond Probabilities in Banach spaces was first realized. The application
is not really typical. More typical is the application of Chapter 7, to the length of the
longest increasing subsequence of a random permutation. This application puts forward
the fact that when one studies the size of substructures whose existence is determined
by a comparatively small number of random variables, rather than by the whole collection
of random variables, inequality (4.1.3) fully takes advantage of that feature. This
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characteristic occurs again in Chapter 8, where is presented a general result that
allows, as a rather weak and special corollary, to improve upon H. Kesten’s recent
results on first time passage in Percolation [K2]. In Chapter 9, we show how (4.1.3)
again provides a natural approach to questions on random graphs. The challenge of
the assignment problem considered in Section 10 is that the objective function f considered
there is very small; it is of order one, while depending on N2 independent variables of
order one, each of them with a potentially disastrous influence on the objective function.
In Chapter 11, we consider situations where the objective function f is defined in a
geometrical manner from a random set of N points in the unit square. The common
objective is to prove that f has Gaussian-like tails. However, the richness of the situation
is unsuspected beforehand; apparently similar definitions require rather different levels
of sophistication. In Chapter 12, we provide a simple derivation of the free energy in
the Sherrington-Kirpatrick model for spin glasses at high temperature. Finally, in
Chapter 13, we discuss how the study of sums of vector-valued independent random
variables motivated the approach of this paper, and we discuss a few new specific results.

We now comment on the methods of Part I, their history, and compare them
with competing methods.

There is a general method, that is becoming increasingly popular, to prove deviation
inequalities for | f — Ef|. (That the mean rather than the median is involved is very
much irrelevant.) It is to decompose f as the sum of a martingale difference sequence
f= 24, and to use martingale inequalities. The generality of the method stems from
the fact that such a decomposition is easy, simply writing d; = E(f| #,) — E(f| %,_.)
for any increasing filtration (&,). This method was used in Probability in Banach Spaces
(under the name of ¢ Yurinski’s method ) for the study of f = ||‘<ZNX1 ||, where

X, are independent Banach space random variables (r.v.). (After an important step
by B. Maurey [Maul], the generality of the method was understood by G. Schechtman [S].
It soon became apparent, however, that this method would not always yield optimal
results; this is what prompted the invention of the isoperimetric inequality of [T2] (more
details on history are given in Chapter 12). An inequality very similar to the inequality
of [T2], but with a much simpler proof, appears in the present paper as Theorem 3.1.1.
The phenomenon described by this inequality was completely new at that time, and
had a major impact in Probability in Banach spaces (prompting, in particular, the
writing of the book [L-T2]). One could reasonably hope that this inequality would
find applications to other domains; but as of today, this has not been the case. Another
inequality that was discovered in relation with Probability in a Banach space is a pre-
decessor of (4.1.3) [T1]. The inequality of [T1] did not, however, play a crucial role
in that theory, because, for most applications, it could be replaced by the Gaussian
isoperirhetric inequality (1.7) to which it is related. For this reason, the discovery that
(4.1.3) was the direction to pursue for applications outside Probability in Banach spaces
was delayed until very recently. It does not seem possible to prove either (4.1.3), or
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even some of its most interesting consequences we will present in Part II through the
martingale method. This should not be so surprising, since the inequalities of the present
paper have been developed precisely to achieve what martingales seem unable to attain.
Among the results of Chapters 2 to 5, apparently only those of Sections 2.1, 2.2 can
be obtained using martingales; and the only reason why these are included here is that
they provide an excellent and very simple setting to introduce our basic scheme of proof.
A major thesis of the present paper is that, while in principle the martingale method
has a wider range of applications, in many situations the abstract inequalities of Part I
are not only more powerful, but require considerably less ingenuity to apply. In all
the examples we examined, only in some rare situations, where the martingale is close
to a sum of independent r.v., and where the value of numerical constants is crucial
(such as [M-H]), did our methods fail to supersede martingales.

We now comment on the method of proof of the inequalities of Part I. Isoperi-
metric inequalities such as (1.7) are proved via rearrangements. That is, one produces
a (simple if possible) way to transform the set A in a set T(A), of the same measure,
but more regular, so that the measure of T(A), is not more than the measure of A,.
The procedure is then iterated, in a way that the iterates of A converge to the ¢ extremal
case ’. Rearrangements are the only known technique to obtain perfect inequalities
such as (1.5), (1.6). The inequality of [T2], that started the present line of work was
proved using rearrangements. The difficult proof requires different types of transfor-
mations, some of which prevent from obtaining the extremal sets.

Despite considerable efforts, rearrangements did not yield a proof of the inequality
of [T1]. (As pointed out to me by N. Alon, the reason could be the complicated nature
of the extremal sets.) A completely new method was developed there. The main discovery
was that of a formulation that allows an easy proof by induction upon the number of
coordinates. The wide applicability of the method became apparent only gradually.
This method and its variations provide a unified scheme of proof of all our inequalities,
that, in its simplest occurrence, is described in great detail in Section 2.1. Ironically
enough, this method is, in its principle, rather similar to the martingale method; the
extra power is gained from the possibility of abstract manipulations in product spaces.
A considerable advantage of the method is that, proving the induction hypothesis reduces
to proving certain statements involving only functions on Q. At times this is extremely
easy; sometimes it is a bit harder. But certainly the nature of the statements that have
to be decided is such that they are bound to yield to sufficient effort. What on the other
hand, is not entirely clear, is why this simple procedure seems so miraculously sharp;
in the situations where explicit computations of the best possible constants given by
the method has been possible, these constants have proved very close to the optimal.
In the cases where only less precise estimates have been possible, these estimates appear
nonetheless to capture, up to a constant, the exact order of what really happens, and
this, in every single situation that has been investigated.

The paper has been written to be read without any knowledge of this author’s
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previous work or of the topic in general. For the sake of completeness, the only previous
result of the author that has not been either vastly generalized or considerably simplified
has been reproduced (as Theorem 4.2.4). Significant effort has been made in writing
the paper in an easily accessible form. For example, it turns out in several situations
that the simplest occurrence of a new principle is also the most frequently used. In these
cases, we have made a point to give a separate proof for this most important case. These
(short) proofs also serve as an introduction to the more complicated proofs of subsequent
more specialized results.

During the preparation of this paper, I asked a number of people whether they
were aware of recent or potential uses of the martingale method. I am pleased to thank
D. Aldous, E. Bolthausen, A. Frieze, C. McDiarmid, B. Pittel, M. Steele, W. Szpankowski
for their precious suggestions. Special thanks are due to H. Kesten, who communicated
to me preprints of his recent work on percolation [K]. Analysis of his results pointed
the way to several of the major developments that are presented in the present paper.
The material of Chapter 5 was directly motivated by questions of G. Schechtman
concerning the ¢ correct form * of the concentration of measure on the symmetric group.
A. Frieze, J. Wehr and particularly S. Janson most helpfully contributed to literally
hundreds of improvements upon an earlier version of this work. I also followed several
precious suggestions from M. Ledoux. Finally, it must be acknowledged that this paper
would not have been written if Vitali Milman had not, over the years, convinced this
author of the central importance of the concentration of measure phenomenon and if
Wansoo Rhee had not introduced him to most of the topics considered in Part II.

2. Control by one point
2.1. The basic principle

Throughout the paper we will consider a probability space (Q, Z, u) and the
product (QF, u¥). The product probability p¥ will be denoted simply by P.
Consider a subset A of QF. For x € QF, we measure how far x is from A by

e.1.1) SA %) = min{card{i< N;x, + 3, };yeA}.

This is simply the Hamming distance from x to A. The reason that we use a different
notation is that at later stages, we will introduce different ways to measure how far x»
is from A. These ways will not necessarily arise from a distance.

It should be observed that the function f{A, -) need not be measurable even
when A is measurable. This is the reason for the upper integral and outer probability
in Proposition 2.1.1. below. On the other hand, measurability questions are well
understood, and are irrelevant in the study of inequalities. Since it would be distracting
to spend time and energy on routine considerations, we have felt that it would be better
to simply ignore all measurability questions, and treat all sets and functions as if they
were measurable. This is certainly the case if one should assume that Q is Polish, p is a

11



82 MICHEL TALAGRAND

Borel measure, and that one studies only compact sets, which is the only situation that
occurs in applications. The reader will keep in mind that in the sequel, when measurability
problems do arise, certain integrals (resp. probabilities) have to be replaced by upper
integrals (resp. outer probabilities) just as in the statement of Proposition 2.1.1. (The
reader who desires to have a proof of our statements without measurability assumption
should be warned that it does not work to try to extend the proofs we give by putting
outer integrals rather than integrals—the reason being that Fubini theorem fails for
outer integrals. Rather one has to derive the general result from the special case of well-
behaved sets by approximating general sets from inside by well-behaved sets.)

Proposition 2.1.1. — For t> 0, we have

* 1 (1 & 4+ e Q¥
t1(A,2) —_
(2.1.2) J e dP(x) < PA) (2—}— 4 )
< 1 eﬂNu.
P(A)

In particular,

* 1 —k2/N
(2.1.3) P({f(A,-)?k})Sme .

As was pointed out in the introduction, the power of our approach largely rests
upon the fact that it reduces the proof of an inequality in Q such as (2.1.2) to the proof
of a much simpler fact about functions on Q. In the present case, the meat of Propo-
sition 2.1.1 is as follows.

Lemma 2.1.2. — Consider a (measurable) function g on Q. Assume 0< g< 1. Then
we have

(2.1.4) L min (e‘, gZIZT)) dy(w) L 2(0) du(w) < a(t)

¢ —t
where we have set a(t) = (% + ‘ —:e )

Proof. — If we replace g by max(g, ¢ %), this does not change the first integral,
but increases the second. Thus it suffices to prove that if ¢7! < g< 1, we have

1
J —dp.j gdp.< a(?).
Qg Q

Consider the convex set € of measurable functions g on Q for which e7*< g< 1.

On ¥, the functional g Hf g 'dp is convex. On the subset €, of ¥ that consists of
Q
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the functions with integral 4, this functional attains its maximum on an extreme point.
There is no loss of generality to assume that p. has no atoms; then it is well known that
an extreme point of ¥ takes only the values ¢~* and 1. Thereby it suffices to show that
for 0< u< 1 we have

(1 —u+ uet) (1 —u+ uet) < a(t).

But the left hand side is invariant by changing # into 1 — u, so that the maximum is
obtained at # = 1/2 by concavity of the left-hand side, and is a(¢). O

The proof of Proposition 2.1.1 goes by induction over N. The case N = 1 follows
from the application of (2.1.4) to g = 1,.

Suppose now that the result has been proved for N, and let us prove it for N + 1.
Consider ACQYT! = OF x Q. For o €Q, we set

(2.1.5) Alw) ={xeQN; (x, 0) €A}
and B={xeQ¥;J0eQ, (x,0) eA}.

With obvious notation, we have
SA, (%, 0)) < flA(w), x).

Indeed, if y € A(w), then (, ) € A, and the number of coordinates where (», ») and
(x, ) differ is the number of coordinates where x# and y differ. Thus, by induction
hypothesis, we have

(2.1.6) J exp(f(A, (x, ) dP(x) <

We also observe that
JA, (x, ) < f(B,x) + 1

so that, by induction hypothesis, we have

et (A (z, @) dP(x) <
N

and combining with (2.1.6) we get

¢ 1
et.f(A.(a:, ®)) dP( ) < a(t)N mm( s ).
LN * P(B)’ P(A(w))

Integrating in w, we have

€

t1(A, (@, ©) N : ___‘__ 1 ®
LNH et dP(x) du(w) < a(t) L min (P(B)’ ——-P(A(w))) dp(w).
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To complete the induction, it suffices to show, by Fubini theorem, that

) ¢t 1 a(t) a(t)
[ (g7 ) 4 < 7o 41w [ P(A(w) da@)

But this follows from (2.1.4) applied to the function g(ew) = P(A(w))/P(B).
We now finish the proof of Proposition 2.1.1. We note that

t270

o) =1+ % sonv

Now 2(2z)! > 4" n!. Indeed, this holds for n = 1, n = 2, while if » + 1 > 4, we have
(2m)!

n!

—(n41)...(20) > 4",
Thus
a(t) < 1 4+ X /4" n! = exp(:3/4).

n=>1

Finally, (2.1.3) follows from Chebyshev inequality

PH{AA, )2k} < e ‘kje"‘A'“’ dP(x)

< 1 g~ th+ N4
P(A)
for t =2k/N. O
Remark 2.1.3. — Consider a sequence (g;);<y of positive numbers. If we now
replace (2.1.1) by
(2.1.7) SfA ) =inf{Z{q:i< N;x,+3}:9eA}

the proof of Proposition 2.1.1 shows that

| 3
1A, x) 4 E;$N0‘~/4
(2.1.8) je dP(x) < P(A)e
and, by Chebyshev inequality,
1 2 2
1. )2 < _“/EisNat.
(2.1.9) P{f(A,-)>u}) PA) ¢

A number of inequalities presented in Chapters 2 to 5 allow extensions that
parallel the way Remark 2.1.3 expands Proposition 2.1.1. These extensions are
immediate, and will not be stated. It should be pointed out, on the other hand, that
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no gain of generality would be obtained in Proposition 2. 1.1 by replacing the product QF,

u¥ by a product I Q;,, & u,. This comment also applies to many inequalities that
iISN iSN

we will subsequently prove.

2.2. Sharpening

Having proved (2.1.2), it is natural to wonder whether this could be improved
by allowing another type of dependence of the right-hand side as a function of P(A).
The most obvious choice is to replace P(A)~! by P(A)~* for some o« > 0.

Proposition 2.2.1. — For t > 0, we have

) a(o, )Y

@.2.1) Je 4P < Braye

where

2.2.2) a0 1) al (e — e T

T e )1 — e (1)

Proof. — Following the scheme of proof of Proposition 2.1.1, (2.2.1) holds
provided that, for each function 0< g< 1 on Q, we have

J min (e‘, -l—m) dp ([ g dp.)a < a(a, ).
Q g Q

Following the proof of Lemma 2.1.2, we see that we can take

(2.2.3) a(a, 8) = sup (1 + u(e® — 1)) (1 —u(l — e ¥%))%
o0<u<1
from which (2.2.2) follows by calculus. O
Certainly neither the author nor the reader are enthusiastic about the prospect
of using (2.2.1) and optimizing in Chebyshev inequality. The purpose of the next result
is to obtain a more manageable bound, that also makes clearer the gain obtained by
taking large values of «.

Lemma 2.2.2.
2 1
a(a, t) < exp 3 (1 + —).

o

Proof. — Interestingly, rather than using (2.2.2), it seems simpler to go back
to (2.2.3) and to show that, whenever 0 < « < 1, we have

(14 a(e — 1) (1=l — )< eXP§(1 + 1)
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or, equivalently (after removing 1 from each term of the left-hand side)

3 1
(2.2.4) log(1 + u(e* — 1)) + alog(l — u(l — e ¥%)) < %(1 + —).
o
Since (2.2.4) holds for ¢ = 0, it suffices to show that the derivative of the left-hand
side is bounded by the derivative of the right-hand side for ¢ > 0, i.e.,

uet ue

t 1
:>1+u(e‘—1)_1—u(1—e—"“)<2(1+a)’

— b/

t>0

or, equivalently

u—1 u—1 ¢ 1
2.2.5 t> 0 — <I1+2).
(2.2.5) TTraed —1) 1—u(1—e‘”°‘)<4( +a)

Again (2.2.5) holds for ¢ = 0. So it suffices to show that for ¢ > 0, the derivative
of the left-hand side of (2.2.5) is bounded by the derivative of the right-hand side,
or, equivalently, that

¢ 1 e U

(1 —u + ue')? T a (1 — u + ue ¥1%)2

u(l — u) .

< 1 n 1
T4
Now, using the inequality 4ab < (a + )%, we see that

u(l — u) é < 1 u(l — u) e ¥
(1 —u+u')? 4 (1 —u+ue ¥%?

<l
<z O

Corollary 2.2.3. — For t > 0, we have

1 2 1
2. a8 <=y —(1+=).
(2.2.6) J'e dP(x) < DAy exp N 3 ( a)
I ticul k> 1 ! h
n particular, for k > 2 og P A)’ we nave

(2.2.7) P4, ) > k) < exp(‘%(kﬁ/g o8 <1A>))'

Proof. — Certainly (2.2.6) follows from (2.2.1) and Lemma 2.2.2. Optimization
over ¢ in Chebyshev inequality yields

1 28«
PUAA > k) < g o (- T )
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N 1
For & > A/ o) log A making the (optimal) choice

—
Nlogm

yields (2.2.7). O

It is an interesting fact that (2.2.7) is exactly the best bound that has been proved
on P({f(A, -) > k}) using martingales (see [McD]). It is a natural question to wonder
whether, when P(A) > 1/2, one indeed has

P(LAA, -) > £)) < K exp (— 35)

N
for some universal constant K. More or less standard arguments (e.g., those contained
in [T2]) show that it suffices to consider the case where Q = {0, 1}, where P is the
product of measures (,);<x on Q, and where A is even ‘ hereditary . The case where
»({1}) = 1/2 for each i< N is known, as a consequence of more precise results, such
as Harper’s inequality. Intuitively, this is the worst case.

Having obtained (2.2.6), one must wonder whether further improvements upon
(2.2.6) are possible by considering yet other general dependencies of the right-hand
side as a function of P(A). The reader who wishes to truly penetrate this paper will
convince himself that this is not the case.

2.3. Two point space
Let us now consider the case where Q ={0,1}, and set p = u({1}), so that
w({0) =1—p.

Proposition 2.3.1. — For t > 0, « > 1, we have

2.3.1) Je”“"’" dP(x) < l’(;f’(;’;){)_lq,

where, for p > 1/2, we have set

(2.3.2) bla,t,p) = (1 —p) ¢ + ) (p + (1 —p) )",

and, for p < 1/2,

(2.3.3) b, ) = bla, ;1 — p) = (1 — p) =4 +p) (p + (1 — p) &%

Progf. — Following the proofs of Propositions 2.1.1 and 2.2.1 it suffices to show
that for any function 0< g< 1 on Q we have

J min (e‘, élz) dyu (Jg dp.)a < b(a, 8, p).
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As in the proof of Lemma 2.1.2, we reduce to the case where g > ¢~ **. Setting
a = g(0), b = g(1), it suffices to show that, for e=¥*< a, 5< 1 we have

((1 N ;f) (1= ) a + p0)° < b(a, 1, ).

Setting x = b/a, it suffices to show that

< x< e = o(x) < b(a, £, p)
where we have set

o(x) = (1 —p) 2" + p) (_p +1')

Now,

?'(x) = ap(l — ) (xa_l _ é) (1 —p +p)a_1

X

so that ¢ decreases for x < 1, increases for x > 1.
Also, we have

(%) — (<P (i))
= apl1 =) (1 = o) (0 =)+ 4= = (1 = x4 7

so that, for x > 1, this has the sign of 2p — 1. Thus for p < 1/2, ¢ attains its maximum
on the interval [¢~ % ¢//*] at the right end of this interval, while for p > 1/2 it attains
its maximum at the left end. (One should observe that changing xin 1/x and pin1 —
leave ¢ invariant.) O

A particularly important example is when

A={x=(x)e{0,1}¥; T x,<k}.
iSN

The use of (2.3.1) for this set and of Chebyshev inequality will in particular produce
bounds for the tails of the binomial law. Thereby, it is not surprising that the compu-
tations involved in the use of (2.3.1) do run into the same type of difficulties as those
involving the tails of the binomial law. We now show how, nonetheless, some simple
and reasonably sharp results can be deduced (for general sets A) from (2.3.1). The
reader will observe that the bound (2.3.1) is (of course) invariant when p is replaced
by 1 — p, so that there is no loss of generality in assuming p > 1/2. Let us fix p, « > 1,
and consider

fit) =log b(a, £, p) = log((1 — p) & + p) + «log(p + (1 — p) e==).
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Thus f(0) = 0, and

’ — 1 l
;i =01-2 ((1 —p) +pet p™ (1 —ﬁ))'

Thus f'(0) = 0, and
70 = 51— ) (™) + - h(e)

x x
where h(x) = = .
(px+1—p)2 (1 —(1—x)p)?
Simple computations show that when x> 1/e, we have |k(x) — 1|< K|x — 1]
for some universal constant K. It follows that

s s+ o)

and, by integration, that
2
1< 1 =)< p1 - p) ((1 = 1)—;— + Kt)
o

Thus, we have shown the first half of the following.

Corollary 2.3.2. — For a > 1, 0< t< 1, we have

1 1\ 22
f(A, z) — Y
(2.3.4) Je‘ A2 dP(x) < Ay exp N[p(l b) (1 -4 Ot) 5 + Kt“].

In particular, for

1 \ve
(4p(1—p)Nlog ) Sk<p(l —p) N

P(A)
we have

(2.3.5) P{f(A,x)=>k})

L[, [ [P S
<0 =gt~ 40— Nl | G )

To obtain (2.3.5), one proceeds as in the proof of (2.2.7), using first Chebyshev

o

k
p(1—p) 1+ N

E2
a=—l+/ T
2p(1 —p)Nlog—(TA—)

inequality for ¢ = , then taking

12
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It is of interest to compare the bound (2.3.5) with the isoperimetric inequalities
obtained in [Lea]; these isoperimetric inequalities are optimal, but apply only to special
sets (the so-called hereditary sets). The bound (2.3.5) is more general, and provides
estimates of essentially the same quality.

We now turn to a rather different situation. Beside the measure p, we consider
on Q another probability p,, with p; = #,({1}) > p, and we set P; = u¥.

Theorem 2.3.4. — For a subset A of QF, and x € QF, we consider
S(A,x) = min{card{i< N;x, =1, =0}yeA}

Then, for t > 0,

Ao a(a, £)N
2.3.6) J’e"‘ 4P < B o
where a(a, t) = max(l, (1 — p + pe*) (pye~"* + 1 — p,)%).

Comment. — The really new phenomenon here is that for small Z, one has a(«, £) = 1.
In particular, if « = 1, this occurs whenever ¢' < p,(1 — p)/p(1 — p,) so that one has

pa(l — p)\" 1
.3. — - P(x) < .
(2.3.7) J (p(l —pl)) P < 3 @)

The remarkable feature about this statement is that it is independent of N (and
so is in essence an infinite dimensional statement). This is the first of the results we present
that apparently cannot be obtained via martingales (so it deserves to be called a theorem
rather than a proposition). The reader that would like to gain intuition about
the phenomenon captured by Theorem 2.3.4 should consider the case where
A={xe{0,1}¥; i<2N x,< n}. In order to have P,(A) of order 1/2, one takes n equal

to Np,, assuming for simplicity that this number is an integer. Observing that
SR>k B 5> n+k=Np+k=Np+ (b + Npy — $)

the quantity P({f(A, x) > k}) can be estimated through the tails of the binomial law;
the most interesting values of N are such that N(p, — p) ~ k.

The induction scheme of Proposition 2.1.1 will reduce Theorem 2.3.4 to an
elementary two-point inequality, that is the object of the next lemma.

Lemma 2.3.5. — If a< b< 1, we have

1—p (1 ¢ a(e, )
(2.3.8) e T pmun (}’ 17) < (apy + b(1 — po))*
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Proof. — If we set x = min(b/a, ¢’*), we are reduced to show that

1< x< e’ = o(x) < a(a, £)
where o) = (1 =+ (2 4 0= ) < alo )

But ¢’(x) has the sign of p(1 — p;) 2*+! — p,(1 — p), so it is negative for values of x
close to one, and then, possibly, becomes positive. Thus ¢ attains its maximum on the
interval [1, ¢/*] at one of the endpoints. O

Proof of Theorem 2.3.4. — We proceed by induction over N. For N = 1, since
S(A, ) = 0 when 1 €A, it suffices to consider the case A ={0}, in which case the
result follows from (2.3.8) with a =0, b = 1.

Assuming now that the theorem has been proved for N, we prove it for N + 1.
Consider A CQN*?) and set A; = {x € Q¥; (x, 1) € A }. Consider the projection B of A
on QY. We observe that

SA, (%, @) < 1+ £(B, x)
SA, (%, ©) < f(Ay, %)

so that setting a = Py(A,), & = Py(B) and using the induction hypothesis, the result
follows from (2.3.8). O

2.4. Penalties, 1

A (somewhat imprecise) way to reformulate (2.1.1) is that we measure how far
x is from A by simply counting the smallest number of coordinates of x that cannot be
captured by a point of A. Rather than just giving a penalty of 1 for each coordinate
we miss, it is natural to consider, given a non-negative function £ on Q X Q, the quantity

(2.4.1) FA, %) =L B A5, 0) Tias y €A ).
To simplify the notation, we will assume

(2.4.2) VxeQ, hx,x)=0

so that (2.4.1) becomes

(2.4.3)  fi(Ax) —inf{ T Ax,2)ir cA).

Concerning (2.4.2), we should point out that we will let x, y denote points in QF
as well as points in Q; when there is too much danger of confusion, however, points
of Q will be denoted by o, «’.



92 MICHEL TALAGRAND

The function % will always be assumed to be measurable. The following simple
result is already useful, as will be demonstrated in Chapter 11.

Theorem 2.4.1. — For eack measurable subset A of QF, and each t> 0 for which
ff exp th(x, y) du(x) du(y) < oo, we have, setting v(w, »’) = max(k(w, o), k(e', ©)), that

1 (1 ~
$fp(A, ) = do(w, w') — tv(w, w') ’
(2.4.4) LNe W= dP(x) < —-*P(A) (2 Lz (e + ¢ ) dp (o) dp.(o )) .

The crucial point of Theorem 2.4.1 is as follows.

Proposition 2.4.2. — Consider a function g > 0 on Q, and set

(2.4.5) g(x) = inf (¢(») + th(x, 7).

Then

(2.4.6) Je? dpje—a dp. < éj (v w) 4 =t vy ) () dy(w').
Q2

Indeed, a simple truncation argument shows that Proposition 2.4.2 remains true
if one allows g to take values in RT U{ o} (using obvious conventions). To prove
Theorem 2.4.1 by induction over N, considering a subset A of Q¥*1, we set

Alw) ={xeQ¥; (v, w) €A}
for  €Q, and we define g by P(A(w)) = ¢~ 7. It should then be clear that (2.4.6)

is exactly what is needed to make the induction work.

Proof of Proposition 2.4.2. — For simplicity we assume g measurable. Then the
left-hand side of (2.4.6) coincides with

JJ @ — 0w du(x) du(y).

Q2

We set u(x, y) = g(x) — g(»). By definition of g, we have g(x) < g(») + th(x,y). Since
h(x, x) = 0, we also have g(x) < g(x). Hence

(2.4.7) u(x,9) < th(x,9);  u(x)) < &(*) — &())-

We now observe that for two numbers 4, b, if a 4 6 < 0, then

&8 + eb< emax(a, b, 0) + e—m&x(a, b,o).

Thereby, by (2.4.7), we have

(2.4.8) eu(z,v) + eu(v,z) < etv(z,v) + e w(w,u)_

The result follows by integration. O
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It is of interest to get simpler bounds. Let us observe the following elementary
fact (that is obvious on power series expansions). For ¢< 1,

etv + e—tv

(2.4.9) 5

12
<1 +—2—(e"+e””—2).

We note that, for an increasing function o,
¢(max(a, b)) < max(o(a), 9(8)) < o(a) + o(b).

Using this for ¢(x) = ¢* + ¢ ° — 2, a = h(o, o), b = k(o’, ®), using then (2.4.9)
and integrating, we get the following from (2.4.4).

Theorem 2.4.3. — If
(2.4.10) ” exp h(x,y) du(x) du(9) < o,
Q2
we have for t< 1,

(2.4.11) J A9 4P (x)
QN

<

PA) exp (Nt2 me () - gm M) 9 du(w) dp.(w')).

Corollary 2.4.4. — Assume

(2.4.12) J] exp k(x, y) du(x) du(y) < 2.
Q2
Then for all u< 2N we have
1 — u2/4N
(2.4.13) P{fi(A,-)>u})< m—)e /N

Proof. — Since ¢~ "< 1, under (2.4.12), the right-hand side of (2.4.11) becomes
bounded by P(A)~! exp N#% from which (2.4.13) follows by Chebyshev inequality. O
The following resembles Bernstein’s inequality.

Corollary 2.4.5. — Assume that || k||, = sup k(x,») is finite. Then

z,1EQ

1 : u* u
@418 PUAR ) > ) < prgy o (‘ i (BN AT 2T uw))

where we have set || k ||, = (ffnzlzz(m, o') dp(w) dy.(w’))llz.
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Proof. — By homogeneity, we can replace & by &' = &/[|| & ||, . For x< 1, by (2.4.9)
taking » = 1, = x, we have ¢® 4 ¢ — 2< #*(¢ + ¢ — 2) < 2x%. Thereby the right-
hand side of (2.4.11) becomes bounded by P(A)~!exp 2Nz || & ||3, from which the
result follows by Chebyshev inequality.

Remark. — The reader has possibly observed that we have made no special efforts
to get sharp numerical constants (in contrast with the previous sections) and we have
used the simplest estimates, however crude. This feature will occur repeatedly. For a
number of the results we will present, the proofs do not seem adapted to obtaining sharp
constants. Thereby, there is actually no point to track explicit values of the numerical

constants involved. Throughout the paper, K will denote a universal constant, that
may vary at each occurrence.

2.5. Penalties, I

It should be apparent from (2.4.1) that f, depends on % only through the properties
of the following functional, defined for subsets B of Q

(2.5.1) h(w, B) = inf { h(w, ©'); o’ €B}.

(The reader should carefully compare this definition with (2.4.3) and note that in
both cases the infimum is taken over the second variable.)

Thereby, one should expect that the exponential integrability of /& can be replaced
in Theorem 2.4.1 by a weaker condition on the functional &(x, B). This is indeed the case.

Theorem 2.5.1. — Assume that for each subset B of Q we have

e

w(B)’

Then, for each subset A of QF, and eack 0< t< 1, we have

(2.5.2) J exp 2h(x, B) du(x) <

32 N

(2.5.3) J D GP(x) < — .
o W< 2@

Discussion. — 1) It is good to observe and keep in mind that by Holder’s inequality,
we have for a< 1

(2.5.4) Je”dys (ff dy.)a.

Thus, the precise value of constants such as the constants 2, ¢ that occur in (2.5.2) is
completely irrelevant. Actually we will use the following consequence of (2.5.2):

(2.5.5) J xp h(x, B) du(x) < Ve < 2 )
ﬂep( ) dp(x) B Va®)
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2) Is it very instructive to compare (2.5.2) with a condition such as (2.4.10).
Indeed, under (2.4.10), we have for all x

(2.5.6) w(B) exp h(x, B) = u(B) inf exp h(x,y) < J exp h(x, 7) du( ).
Q
Integrating in x gives

Jexp (%, B) du(x) < —= ” exp h(x, 3) du(x) du( ).
w(B) JJqe

Thus (with the exception of the largely irrelevant factor 2), (2.4.10) appear stronger
than (2.5.2). It is indeed much stronger, a fact that is not surprising in view of the
crudeness of (2.5.6). To get a concrete example, consider the case where Q is itself
a product of m spaces (and p a product measure), and denote by f(x, y) the Hamming
distance in Q. Then Proposition 2.1.1 asserts that the function & = m~ 2 f satisfies
(2.5.2). On the other hand (except in trivial cases) the function f/a will fail (2.4.12)
unless a is of order m.

To prove Theorem 2.5.1, the induction method reduces to the proof of the
following.

Proposition 2.5.2. — Consider 0< t< 1, and a function g > 0 on Q. For s> 0, we
set B, ={g< s}, and we consider

(2.5.7) 2(x) = inf s + th(x, B,).

Then under (2.5.2) we have
(2.5.8) Je?dy.J‘e'“dy.s e,

Proof. — We observe that
(2.5.9) &(x) — &() < th(x, Byy).

We then follow the argument of Proposition 2.4.2, using (2.5.9) rather than
the first part of (2.4.7). Combining with the argument of Theorem 2.4.3, we are led
to show that

ﬂ &= Bow) dy () du( ) < 4.
Q2

Using (2.5.5) and Fubini theorem, it suffices to show that

1
2.5.10 ——du(y) < 2.
( ) L Vo) w(y) <
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The best way to prove this inequality is to observe that the left-hand side depends
only on the function s — (B,). Thus there is no loss of generality in assuming that
Q = [0, 1], that p is the Lebesgue measure, and that g is nondecreasing. But then

1
p'(BaW)) >, and f .y—llz dy=2. 0O
0

As pointed out in the discussion, a natural application of Theorem 2.5.1 is to
the case where Q is already a product space. This will be used implicitly, but crucially
in Section 11.5. To formulate in words what happens, Proposition 2.1.1 states that
if A is a subset of a product QN of N spaces, of measure 1/2, all but exceptional points x
of QF are such that there is a point in A that captures all but about /N of their coor-
dinates. Suppose now that N = N; N,, and we think of the N coordinates as N, blocks
of N, coordinates. Then, using Theorem 2.5.1, we know that (but for exceptional
points x) not only we will find a point in A that misses only about /N coordinates of x,
but these coordinates will be concentrated in only about VN, blocks. An interesting
question would be to quantify precisely what can be said when, rather than considering
only two  levels ”’; one considers a large number of levels.

2.6. Penalties, IIT

In this section, we explore a new phenomenon, that will also be met in Sections 3.3.3
and 4.4.4. The notation of the present section will be used throughout the paper.
Roughly speaking, what happens is that if, in (2.5.3), one allows a more general type
of dependence in P(A) of the right-hand side, then a weaker condition than (2.5.2)
will suffice; this will mean in practice weaker integrability requirements on #.

The dependence in P(A) we will consider will be of the type ¢#®*". Throughout
the paper, 6 will denote a convex decreasing function from ]0, 1] to R*, such that
0(1) =0, alcl_r)r(l) 0(x) = 0. The most important example is 6(x) = — log x, in which
case ¢®F4) is the familiar quantity 1/P(A). We will always denote by £ the inverse
function of 6, so that £ is a convex function from R* to ]0, 1], with £(0) = 1. We will
always assume the following

(2.6.1) " decreases; Vb6>0, E'(b)<|E'(d)].

For x e R, we set x7 = max(x, 0), and we will keep the following notation, for x € R,
beRt

(2.6.2) BE(x, b) = E(x%) — E(B) — (2t — b) E'(D).

We denote by A the Lebesgue measure on [0, 1]. The measure of a Borel set B
is simply denoted by | B |.

Central to this section is the following technical condition, that relates £ and a
function w > 0 defined on [0, 1].
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Condition H(E, w).
1
(2.6.3) V630, Vi 0<i<l], f E(b — tw(u), b) dr(w) < £] () |.

0

First we will investigate conditions that imply (2.6.3) under two simple choices of .
Then we will look at a rather general situation where the meaning of (2.6.3) can be
considerably clarified; and before stating the main result (Theorem 2.6.5) we will
prove a technical lemma that will explain the precise purpose of condition H(§, w).

Proposition 2.6.1. — When £(x) = ¢~ %, condition H(E, w) holds provided fe“’ dr< 2.

Proof. — Indeed, we have
BExb) = —e P (xF —b)e?
S e—e P+ (x—b)e®
— =Y 4 (v — b) — 1),
Thus (2.6.3) holds provided

t< 1 =>f(e“"—-tw— 1) drs £

But, since the function x~2?(¢* — x — 1) increases for x > 0, we have
(¢ —tw—1)< " —w—1). O
1
Proposition 2.6.2. — If E(x) = Pt then (2.6.1) holds and condition H(E, w) holds
prozr)z'dedJ‘w2 dr< 2.

Proof. — Setting y = x*, we have

= 1 1 y—b
Sl = e T2 T oy
(y—8)? 1
—_ < - —_— b 2 “(b): . 0
G A A
One obvious consequence of (2.6.3), taking ¢ = 1, is that
(2.6.4) [{w> b} E(0,8) < |€'(5) |-

In practice for & large E(0, ) is of order 1; so (2.6.4) is really a tail condition. The
next result shows that a condition of a similar nature is indeed sufficient, provided &’

varies smoothly (i.e., satisfies the A,-condition; which is not the case when §(x) = ¢™%).
13
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Proposition 2.6.3. — Assume that for a certain number L.> 0, we have

<La|E) |

(2.6.5) Vb>0, Vigl, .g(%)

Then (2.6.3) holds provided the following two conditions hold:

1
2.6.6 2dr< —
@os)  [wasg

1
(2.6.7) Vb>D0, |{w>b}|<§ilﬁ’(b)|.
Proof. — We write
(2.6.8) JE(b — tw, b) dxsj E(b — tw, b) d\ + |{tw > b[2}].
{tw <b2}

By Taylor’s formula, since " decreases, and £'(b) < | £'(b) |, we have, by (2.6.5)

x> b2 = E(x, b) < (—"—_Eﬂ-z g (g)

(x—0)2|_, (b
2 5(5))

(x — b)®
2

<

<L

| €'(5) |.
Thus
J B — tw, b) dr < 1_;_2 | &(8) | sz dh.
{tw < b/2}
Also, by (2.6.7), (2.6.5)

1 b 2
[{ tw > b/2}|<§ila'(2—t) <t§|€'(b) |-

The result follows, combining with (2.6.8). O

The reader should observe that the functions &(x) = (1 + x)~* (a< 1) satisfy
(2.6.5).

The following lemma explains the purpose of condition H(E, w).

Lemma 2.6.4. — Consider a function f> 0 on Q. Assume that for a certain t, 0< < 1
and all s< b we have

(2.6.9) p{f<sH < [{w>b—s}| = [{b—tw<s}].
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Then, under condition H(E, w), we have
(2.6.10) j E(f) du
c

< §(8) w(C) + E'(b)J

(o]

(F=D et PIEG | 4380 [ (- b

cn{r=b}

Sor each set C.
Proof. — By definition of E, (2.6.10) is equivalent to

J E(f8) du< #|E(0) | + % £”(6) J (f — 8)* dp.
C

cn{r=bs}

By Taylor’s formula, and since &'’ decreases, for x > b we have
1
E(x b) < 5 (x — 5)*E7(h)
and thus

f E(£, 8) du< =€ (3) f (f — B)* d.
CNn{r=s} 2

cn{r=bs}

If we remember that Z > 0, and if we use condition H(§, w), we then see that
it suffices to show that

(2.6.11) f E(f, b) dpsjE(b—tw, b) d.
{r<b}

Now, (2.6.9) implies that for all s < b we have
p{f<ssh) < [{b—tw< s}
Thus, since E(x, b) decreases for x < b, we have, for all z> 0,
u(liy<oy E(f0) > 2) < [{E(b — 1w, 8) > 2},
from which (2.6.11) follows. O

Theorem 2.6.5. — Consider a function k on Q X Q, and a nonincreasing function w
on [0, 1] suck tlzaz.‘J.w2 d\< 1. Assume that for each subset B of Q, we have

(2.6.12) f exp h(x, B) du(x) < exp((u(B)),
o]
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where we keep the usual notation h(x, B) = inf{ k(x, y); y € B}. Consider a function 0 as usual,
and assume that the condition H({, w) holds. Then, for each subset A of QN and all t< 1, we
have, for all t< 1,

J e d® JP(x) < exp(4Ne2 + 6(P(A))).
QN

To understand better (2.6.12) it is of interest to specialize to the case
where % depends only on x (resp. y). If 2 depends on x only, (2.6.12) means that

f exp h(x) du.(x) < exp w(0). If & depends on y only, then (2.6.12) becomes
Q
inf{ h(y); » € B}< w(u(B)).

Taking B={/> s}, we get s< w(n{{£< s})) and, since w in nonincreasing, this
implies

pi{h=sh) < [{w>s}]

It is easy to see that, conversely, this implies (2.6.12) when % depends upon y only and
when w is left continuous.

To prove Theorem 2.6.5, it suffices, using induction over N, to prove the following.
Proposition 2.6.6. — Cémider a function g on Q, 0< g< 1, and set
Og(x) = inf {6(2())) + th(x ) }.

Then, under the conditions of Theorem 2.6.5, for t< 1, we have

Jea" dp. < exp (4t2 + 0 (J\g dp.)).

Clearly, this is equivalent to the following.
Proposition 2.6.7. — Consider a function f on Q, f > 0, and set
73 = inf (F0) + th(x,9) )

Then, under the conditions of Theorem 2.6.5, for t< 1, we have
(2.6.13) Je?dy.s exp (4t2+6(j5(f) dy.)).

Progf. — The problem is that we have on the right of (2.6.13) the quantity
6 ( f E(f) dp.) rather than the larger quantity f fdu. We consider ¢ as fixed through
the proof.
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Step 1. — We set B, ={f< s} for s> 0, and
b =inf{s + tw(un(B,)) }.

We note that f(x) < f(x). We consider the function f’ given by
fix) =flx) if f(x) >

fl) =6 if fx) < b<flx),

f'x) =flx)  if fx) <

I

Since f<f, we have f<f'<f Thus fe?dp.sfef'dp., and E(f)<E(Sf'), so

f E(f) dp.< f E(f') du and 6 (j& ) <0 ( f E(Sf) dp,). Thereby, it suffices to prove
that ‘

(2.6.14) Je" dp. < exp (4—t2 + 6 (Ji(f’) du)).

Step 2. — By definition of b, we have, for s < b,
w(n(B,)) > b — .

Since w is nonincreasing,

(2.6.15) [{tw=b—s}|> u@B,)

Since f'(x) = f(x) when f(x) < b, we see that (2.6.9) holds (for f” rather than f). Since
f/ =f when f’(x > b by (2 6. 10) used for C = Q we get since En IE_, b) I

(2.6.16) J £(F") do< E(8) + E(B) J(f’ b de

+|&'(b)|(t2+%fﬂ (f_b)zdp.).
{7r> 0}
Step 3. — If_y € B,, we have
< f() + th(x,9) < s + th(x, ),
so that f(x) < s + th(x, B,).
Thus, by (2.6.12) we have

J ¢ dy < explt= (s + tw(u(B,))).
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Taking the infimum over s yields

(2.6.17) Jw”ﬂw du< 1.

Since €' < 1 + ¢*, we get

(2.6.18) Je‘_l‘f" D du < 2.

Step 4. — The inequality ¢*> 1 + #%/2 for x>0, and (2.6.18), show that
j((f— b)*)? dp. < 2¢*. Combining with (2.6.16), we get

(2.6.19) ja(f» dp < E(b) + E'() j(f' — b) du + 22| E(B) .

The convexity of 6 implies that 6(x) > 6(») + (x — ») 6'(y). Also, since 6(&(x)) = 1,
we have 0'(§(0)) = 1/€'(b). Thus (2.6.19) implies

(2.6.20) O(Ji(f') dp)> b+J(f’—b) dy — 2t%
= J S dp — 282
Step 5. — To finish the proof, it is thereby sufficient to show that
(2.6.21) Je" dp. < exp(2t2+J.f'dpL).
Consider the function r(x) = ¢ — x — 1, so that
Je"“bdu =1+ j(f’ — b) du. + Jf(f’ — b) dp.
<o ([0 =0 dut [ = 5 )
and thus it suffices to show that f r(f' — b) dp. < 2. We observe by (2.6.18) that

f (= (f' — b)) du< 1
{r>0b}
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and, since as already observed, the function x~?7r(x) increases for x> 0, this implies
J r(f' — b)du< 2
{1 >0}
Also, it is elementary to see that r(x) < x%/2 for x < 0. Now, by (2.6.15), we have
J (f'—b)zdp.Stzjwzdy.s 2. 0O
{5 <b}

2.7. Penalties, 1V

This section is devoted to the remarkable fact that if (2.5.2) is suitably reinforced,
the term exp 2N can be removed in (2.5.3).

To express conveniently the conditions we need, we introduce the function ¢(a, ¢),
defined for 0<a<1, >0, as follows (¢ stands for concentration): if v, is the

.1 .
measure on R of density 5 ¢!l with respect to the Lebesgue measure, we have

¢(a, t) = vy((— o0, b + t]), where b is given by a = v;((— o, b]). Simple considerations
show that

a>é—:>c(a,t)=l—-e“‘(l——a)
a<%, e‘a<%=>c(a,t)=e‘a
1, 1 1
a$§, ea>—2—=>c(a,t)——l—-et‘-.

Theorem 2.7.1. — Assume that for each subset B of Q we have
(2.7.1) 1< 1 = u({A(-,B)< 2}) > c(u(B),?)
(2.7.2) t>1=p{h(-,B)< t}) = c(u(B),?).
Then, for each subset A of QF, we have

1
~1f1(A, @)
(2.7.3) LNeK 9 dR() < g

where f, is given by (2.4.3) and where K is universal.

Our first task should be to give natural examples of situations where (2.7.1),
(2.7.2) occur.
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Proposition 2.7.2. — Consider the probability v, on R, of density —;-e_[”' with respect

to the Lebesgue measure. Then the function h(x, y) = min(| x — y |, | x — y|?) satisfies (2.7.1),
(2.7.2) (for vy, rather than p.).

Proof. — For a subset C of R, and > 0, let us set G, ={x eR;d(x, C) < t}.
To prove (2.7.1), (2.7.2), it suffices to show that

v(C,) = ¢(v1(Q), 2).
This is proved in [T4] using rearrangements.
We sketch below a simpler alternative argument to prove the weaker result
(2.7.4) vi(G,) = ¢(v1(Q), £/2).
(The reader should observe that this suffices to prove that %/4 satisfies (2.7.1), (2.7.2).)
First, we reduce to the case where G is a finite union of intervals. Setting
u(t) = inf{ | x|; x € G,/C, },
it should be clear that
(2.7.5) % (G,) = %exp(-—— u()).

By definition of u(¢), we see that the interval [— u(¢), u(¢)] is either contained
in the closure of G,, or else it does not meet G,. Thereby, we have either

(C) > 1 — 2y ([u(t), ) = 1 —
or else v1(C,) < 2vy([u(t), ©)) = e~ ¥
so that, in any case

e~ > min(v(Gy), 1 — v(Gy)).

d
Combining with (2.7.5) shows that as long as v,(C,) < 1/2, we have 7 (log v,(G))) = 1/2,

so that v,(C,) > ¢"? v;(C). Similar considerations complete the proof. O

Other examples can be generated using Proposition 2.7.2 and the following
simple observation.

Proposition 2.7.8. — Consider a probability space (Q, ) and a function h on Q2 that
satisfies (2.7.1), (2.7.2). Consider a measurable map n from Q to a measured space Q', and
the measure p' = w(w) on Q'. Consider a function k' on Q'? such that

(2.7.6) VxyeQ, k(n(x),n(r)< k).

Then k', ' satisfy (2.7.1), (2.7.92).
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Proof. — This is obvious using the relations
w(n™'(B)) = w'(B), A(x,n '(B)) = #'(n(x),B). O

The use of Propositions 2.7.2 and 2.7.3 will allow the construction of a wide
class of examples.

Proposition 2.7 . 4. — Consider a convex symmetric function § > 0 on R, with lilg ¢’(x) = oo,
x>

and the probability v, of density a, e~ ¥ with respect to the Lebesgue measure, where a, is the
normalizing constant. Then there is a constant K ({) depending on { only such that the function h(x, y)
on R? given by

1
@.7.7) 215 1= k) = g [ 1 =1
2.7.8) lx—2]> 1 = k(x) =—K—}@¢(R—:¢—) |x—y|)

satisfies (2.7.1), (2.7.2) with respect to v,.

Proof of Proposition 2.7.4. — Consider the nondécreésing map 7 from R to R that
transports v; to v,. Thus

(2.7.9) r a, eV dA(2) =r -;-e—ltldx(t).

n(x)

By Proposition 2.7.2, 2.7.3, it suffices to show that
(2.7.10) k(n(x), 2(9)) € min(| x —y |, | x — 2y [?).

It is simple to see that (2.7.10) will follow from (2.7.7), (2.7.8) (with a suitable
choice of the constant there) provided we can show that

(2.7.11) [ (%) — () [ < K@) | x—|

(2.7.12) tP(Kz—@In(x) —n(y)l)s | —7].

There, as in the rest of this proof, K({¢) denotes a constant depending on ¢ only, that
may vary at each occurrence.

To prove (2.7.11), it suffices to prove that »’(x) is bounded when x> 0. Diffe-
rentiating (2.7.9), we get a,n'(x) e " = ¢ %2, and plugging back in (2.7.9),
we get

n'(x) — J YN — b)) 1y

14
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Thereby, it suffices to show that

[+ o]
sup j e——tb(t)+¢(u) dt < oo.

=
=0 “

Given u,> 0, the supremum for # < #u, is certainly bounded. On the other hand, for

u > u,, by convexity of ¢ we have ¢(f) — ¢(u) > (£ — u) {’'(%,), so it suffices to choose #,
with §’(z,) > 0.

We now turn to the proof of (2.7.12). It suffices to prove that, for y > x> 0,

we have ¢((n(y) — n(*))/K(¢)) <y — . Setting a = ¢~!(y — x), it suffices to show
that n(x 4 ¢(a)) < n(x) + K(¢) g, i.e., that

(2.7.13) awf eV gy < ée“”“““’.

Nz + KW a

First, we note that, since ¢(¢) > ¢(») + (¢ —») ¢'(»), we have, for y > 0,

® 1
j e—*b(t) dt S e—&b(v)

v () 7
so that
a
(2.7.14) a f Vg b e+ 20
’ (@) + 2a d'(n(x) + 24)
Also,
(2.7.15) %e’” = ad“[ Y dt > a, ag Y+,
n(x)

Since {¢’(y) increases for y > 0, we have {(n(x) + 2a) > ¢(n(x) + a) + ¢(a).
Thus, from (2.7.14), (2.7.15) we see that (2.7.13) holds provided K(¢) > 2,
ad’(n(%) + 2a) > a.

On the other hand, using again convexity, we see that

© © ©
J e~ d(e) dt = J P Y(v+a) dv< e ad’ (n(x)) 4[ e $(v) dv

nx +a n(x) n(x)

1 .
< —e al’ (n(=) 2
2a¢

Thereby, if K(¢) > 1, (2.7.13) will hold provided a}’(n(x)) > ¢(a), and in
particular if 5(x) > a.

Thus we can assume %(x) < a, a{’(n(x) + 2a) < a,. This means that a and x
remain bounded; but the conclusion is then obvious. O
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It is of particular interest to consider the case where {(x) = x%, so that v, is
Gaussian. In this case, Proposition 2.7.4 shows that one can take A(x, y) = K~!(x — y)2
This recovers the concentration of measure for the Gauss space, as expressed by (1.7).

There is, however, a big loss of information in (2.7.10); and the result obtained by
taking

h(%,9) = min(| 97} (%) — 27() |, (07} (%) — 27 (1))*)

is rather more precise than (1.7).
The induction step of the proof of Theorem 2.7.1 reduces to the following.

Proposition 2.7.5. — There exists a universal constant L with the following property.
Consider a function g on Q, and define

1
(2.7.18)  Z(» = inf g(s) + 1 k()-

Then, under (2.7.1), (2.7.2), we have
(2.7.17) f e;dp.J e du< 1.
o Q

Let us recall that we denote by v, the probability measure on R of density ¢~ !*!/2
with respect to the Lebesgue measure. During the end of this section, for x e R we set
¢(x) = min(| x |, #%).

The proof of Proposition 2.7.5 is considerably simplified by the following
observation.

Proposition 2.7.8. — Consider a function g on Q, and g given by (2.7.16). Then we can
find two nonincreasing functions g,, gy on R with the following properties

(2.7.18) j & dy =J e dvy; J e dy =J % dv,
Q R Q R

, 1
(2.7.19) VreR, g(x)< inf £,0) +pellx—r]).

In particular, this implies that we have reduced to the case p. = v,, g nonincreasing,
k(% 5) = o(|x =y ])-

Proof. — We define, for y e R,
(2.7.20) &) =inf{#; p({g< 2}) 2 w(ly ) },
(2.7.21) &a(¥) = sup{u; p({Z> u}) 2 vy((— o, 2]) }.
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Thereby both g;, g, are nonincreasing; it should be obvious that (2.7.18) holds. We
prove (2.7.19). Consider x< . By (2.7.20), we have p(B) > v([y, «)), where
B={g< gy} By (2.7.1), (2.7.2), we have

w({ A(-, B) < 9(1) }) > ¢(u(B), £)
> G(Vl([j, w))5 t)
=w(ly =t «)).

Since g< g,(») + ¢(¢)/L on the set { (-, B) < ¢(¢) }, we get
( 9(t)
®

£< &) + T g) 2 v([y — ¢ o).
On the other hand, by (2.7.21) we have

w({ &> &:(%) }) = vi((— oo, 2]).

Thus, if t>y — x, we have g,(x) < g,(») + 9(#)/L. Thus g(x) < g(») + ¢(» — #)/L,
and (2.7.19) follows. O
We next show that we have reduced the proof of Proposition 2.7.5 to the following.

Proposition 2.7.7. — There exists a universal constant L with the following property.
Constder a nonincreasing function f on R, with f(0) = 0. Define

A . 1
F&) = o€ f5) + Lol % = ).

YER

Then, if f has a Lipschitz constant < 2[L, we have

Je?dvlje‘fdvl < L

We prove the claim stated before Proposition 2.7.7. In view of Proposition 2.7.6
and (2.7.19), it suffices to prove that fe?l dvy f e~ %dv; < 1, where g, is given by the
right-hand side of (2.7.19). Define now

@7.2) ) =& — 1 ollx—s)).

zER
| .
Since for all x and y we have g,(x) < g,(») + I o(|x —»|), we see that f{ ) < g,().
Thus,fe—fdvl>fe—vl dvy. Also, by (2.7.22), we have () < f(») —|—%cp(lx——y|)



CONCENTRATION OF MEASURE 109

for all #, y, so that g, < f. Thereby it suffices to prove that fe? dvlfe_’ dv; < '1. The

condition f(0) = 0 is certainly not restrictive, and f has a Lipschitz constant < 2/L
by (2.7.22) since ¢ has a Lipschitz constant < 2.

Upon seeing the result of [T4] exposed in a seminar, B. Maurey produced a rather
magic proof of Proposition 2.7.7 [Mau2]. The proof we will give is more in the spirit
of the arguments of the present paper, and is likely to be more instructive as it prepares
for the considerably more delicate results to be presented in Chapter 4. We start by
a simple lemma.

Lemma 2.7.8. — Consider a nonincreasing function u on R, such that u(0) = 0. Then

J wdv, < KX (u(—k) —u(—k+ 1))2e k.

k=1

Proof. — For simplicity we set u, = u(— k). Thus

J udv, < S =: 2 ule ¥,
R

k=1

Since u; < 2u}_, + 2(w, — u,_,)% we have

S<K2T 2 et 4+ 2T (4, —u_)2e FHL,
k=1 S
But since %, = 0, the first sum is exactly 2S/e, so that

S (l — E)< 2 X (w, —u,_,)%e¢ % O

4 k=1

During the proof of Proposition 2. 7.7, we will consider another number 1 < M < L.
The numbers M, L will be chosen later. The crucial part of the proof of Proposition 2.7.7
is as follows.

Proposition 2.7.9. — Consider a non-increasing function u on R, with u(0) = 0. Assume
that | | < 1/M, and set 2(x) = in€u(y) + 9| % — y|)[L. Then, if L> KM, we have

(2.7.23) J (4 — ) dvy > %J 1 dv,.
R

R

Moreover, if M > K, we have

: ~ M
(2.7.24) J 8"dv1+J' 8_“dV1< 2 '—EJ‘ u2 dvl'
R R R
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Proof. — To prove (2.7.23), it suffices to prove it when the right-hand side is

replaced by u? dp. (rcsp. J u? dp.). The arguments for these two cases are
{u=0} {u< 0}

similar so we treat the first case only. We set %, = u(— k), so that #,< M™!, and
M(u, —u,_,) < 1. We set N, = [2/M(4, — #,_,)]. Thus we have N, > 2 and

1 1
.71.25 — < u, — < ——.
(2.7.25) 2MN, Uy — Uy MN,
For 2> 1,(>0 we set ¢, = —k + 1 —¢N,, and u, , = u(a, ;). Thus o, =4, _,,

, n, = % For k> 1, 1 <¢< N;, we consider the subset R, , of R? given by

. 4
Rk,l = ]ak,l+1’ ak,l[ X ]mm (“k,h U t—1 + LNg), “k,l['
k

We observe that no point belongs to more than two intervals ]a, ,,,, . /[, for 1< /< N,
k > 1, so that the rectangles R, , have the same property. Since u(x) > u, , for x< a, ;,, R; ,
is below the graph of #; but, since u(a, ,_,) = %, ,_,, we have @#(x) < u, ,_, + 4/LN}
on [a,.,, %, . Thus R, , is above the graph of #, and hence

1 i *
> § > > Vl([ak,l+1’ ak',]) (uk’,——mm (uk,la Ut —1 +m:)).

Since vy([a; 1445 @, ]) = ¢ */KN,, we have

1 ek 4
J; (6 — @) dn> ¢ 2 N, 1<IZ<N,‘ (“k,z — oy — —Lﬁk\)
1 ek 4
“RKEN, ( 'LW)
1 ek 4
K kgl T\T_,, (uk o1 LNk)

1
= K k§1 e My — )

by (2.7.25), and provided L > 16M. Thus, (2.7.23) follows from Lemma 2.7.8.
To prove (2.7.24), we use the inequality < 1 + x + %2 for | | < 1. Thus

J e"zdvl—{—J e“"dv1<2-|-J. (@—u dvl—{-J uzdvl-i—J\ @* dv,.
R R R R
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Now,

2% < 2u2+2(u—i¢‘)2<2u2+%(u—ﬁ)< 2u2+%(u—z’2)

provided M > 4, and thus

J eadvl—{—J e *dv, < 2+3J uzdvl——lj (# — 2) dv,
R R R 2)e

and the result follows from (2.7.23). O

Proof of Proposition 2.7.7. — We observe that, for a e R, we have (2 —a) < 1.
Thus it suffices to show that

(2.7.26) J e dv, +J e dvy < 2.
R

We set « = min(1/M, max(f, — 1/M)). Thus

(2.7.27) J ¢ dv, sj e dv,y +J (67 — ¢™) dv,
R R

b

where f(b) = — 1/M. We observe that if #(x) < 1/M, then f(x)< @(x). Indeed
if @(x) < 1/M, then given & with #(x) < e< 1/M, there exists y with

u(3) + L (| 2 —y]) <.

Thus () < 1/M, and f(y) < u(y), so that f(x) < e. Then, if ¢ is the largest constant
so that £(¢c) = 1/M, we have

(2.7.28) J e?dvlsj
R R

e dv, + J (¢ — ™) dv,.

Since f(0) = 0, we have ¢ < 0 < 4. Since f has a Lipschitz constant < 2/L, we have,
for x> b,

1 2
+~(x_b):

—f¥) < I

4

and thus

-] [} 1
e~ 7 dv, < — pAMA2@—bIL 1~z g
b b 2

Pl

= g ()
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Hence,
f (61 — &My gy, < A (1 _12/L — 1) v,([6, 0])
< —IE v1([6, oo[)
< KII\‘/P L u? dvy,
since #(x) = — 1/M for x > b. Using (2.7.27), (2.7.28), and making a similar compu-

tation forf (¢ — ™) dv, yields

~ N KM?
j efdv1+J e—’dvlsf ¢ dvy —|—J e "dv, + I J u® dv,.
R R R R R

It then follows from (2.7.24) that (2.7.26) holds provided M > K, L > KM2. O
It would be of interest to understand exactly which are the functions ¢ such that,
if one sets

f@) = inf f(5) + o(x — ),

vER
thenfe? dvlfe“ 7dv, < 1. On the other hand, the situation is considerably clearer if one
considers the standard Gaussian density vy, rather than v,. In that case, the obvious adapta-

tion of Maurey’s argument shows that if « > 1, and if £ (x) = ,,ié‘g of () + 2(—0:’_—1) (x —)2

thenfe? dy,‘( J‘ e’ dyl) < 1. Thereby, by induction, and with the notation of (1.7),

we get
A 1 o
>1— 2(a +1)
YN( l) YN(A)ae b

hence, by optimization over « and for ¢ > V2 log(1/yx(A)),
1 —
Yx(A) > 1 — exp — 5 (¢ — V2 log(I/v(A))"
which is not so far from (1.7).

3. Control by ¢ points

In Section 2 the basic theme was that the ¢ distance ” from a point x to a set A
was measured by how many coordinates of x can be ¢ captured ** by a single point of A.
The theme of the present section is that we allow several points of A to capture as many
coordinates of x as possible.
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3.1. Basic result
Consider an integer ¢ > 2. For subsets A;, ..., A, of QF, and x eQF, we set
(3.1.1) SJAy, o AL X) =
inf{card{i< N:x ¢{y;, ....0f} ;)" €Ay, ..., )0 €A}
Theorem 3.1.1. — We have

1
T P(A) P(A)’

i<gq

(3.1.2) Jq"‘Al 1409 4P(x) <

In particular,

(3.1.3) PUFA, ..., A x) >k !

S _—
Vs ey
The induction method will reduce this statement to a simple fact about functions.

Lemma 3.1.2. — Consider a function g on Q, suck that 1)g< g< 1. Then

(3.1.4) J 1dp.(J gdpt)as 1.
ad a

Proof. — We could use the extreme point argument of Lemma 2.1.2. One alter-
native method is as follows. Observing that logx< x — 1, to prove that ab?< 1 it
suffices to show that a + ¢b < ¢ + 1. Thus, it suffices to show that

1
J ~du+qjgdu<q+l.
4

Q

But this is obvious since ¥ ' + gx< ¢+ 1 for ¢'<x< 1. O

Corollary 3.1.3. — Consider functions g, on Q, g, < 1. Then

1
(3.1.5) J min (q, )dp. I1 J,g,» dp< 1.
qQ iS¢ &i i<q

Progf. — Set g = (rinsi?(q, g 1))~?', observe that g, < g, and use (3.1.4).

We now prove Theorem 3.1.1 by induction over N. For N = 1, the result follows
from (3.1.5), taking g = 1,,.

We now assume that Theorem 3.1.1 has been proved for N, and we prove it
for N + 1. Consider sets A;, ..., A, of Q¥*!, For w €Q, we define the sets A;(») as
in (2.1.5) and we consider the projection B; of A; on Q. The basic observation is that

(3.1.6) SAs, oo Ay (5,0) < 1+ f(By, ..., By, )
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and that, if < ¢,
f(AIa LS Ap (x’ (.0)) S.f(c‘.l’ ey Cq, x),

where G, = B, for i + j, G, = A;(w).
If we set g(w) = P(A;(»))/P(B,), using Fubini theorem and the induction
hypothesis, we are reduced to show that

. . 1 1
min (q, m<1{11 ) < s
i<t g(w) I f d
ng’ w

Q iS¢

which is (3.1.5). O

3.2. Sharpening

Given « > 1, we can now, in the spirit of Proposition 2.2.1, look for the largest
number a = a(g, «) for which we can prove that

(3.2.1) J a(g, a)’ @40 dP(x) <

Following the proof of Theorem 3.1.1, we see that we can take for a(g, «) the unique
number x> 1 such that

(3.2.2) x + qux~V* =1 + qa.
It then follows from (3.2.1) that

(3.2.3) PHAA, ..., A %) > k) < nf %

There is no obvious way to compute the right-hand side of (3.2.3). However, for large ¢,
we have the following, that improves upon (3.1.2) for large values of % (¢ > ¢ log ¢q).

Proposition 3.2.1. — There exists a universal constant gy such that, if q > q,, we have

¢ k 1 \elze
(3.2.4) P{fIA, .., A %) 2 k) < ((e “T)qlog q) (P(A)) '

Proof. — We take a = log ¢, and we show that, for ¢ large enough,

1
a(g, ) > a:=1 +(1 —;)qlogq.
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For large ¢, we have a > ¢, so that a"*

1
a—lsqa(l——ﬁ)

and thus @ + gaa *< 1 + g O

It is interesting to note that Proposition 3.2.1 is rather sharp. Consider the case
where Q ={0, 1}, and where u gives weight p to 1 (p < 1/2). Assume for simplicity
that r = pN is an integer. Consider the set A ={xeQY; X x,< r}. Then P(A) is

iSN

of order 1/2. Considering s =rq + &, we clearly have that X x, =s implies
i<N

> ¢, hence

FA, ..., A %) >k Thus P{fA, ..., A x) > E}) > p'(1 ——p)N—’(lj).

When s < N2, we have (lj) > (N/25)", so that
r

P({f(A, ..., A %) > £)) > (’;_N) s (2_)

(g + A1)

If we take & > ¢log ¢, fixed, and then r of order %/qlog ¢, we get a lower bound of
order (1/Kgq log ¢)*.

3.3. Penalties

The result of this section is the one single major theorem of Part I that has not
been motivated by direct applications. Rather, it has been motivated by a desire of
symmetry with Sections 2.7 and 4.4.

We consider a ¢ penalty function ” k(w, o, ..., ®% on Q?*!, We assume % > 0 and

(3.3.1) wef{o,...,0} =>hko,o,...,0) =0

For subsets A,, ..., A, of QF, we consider
(3.3.2) FulAys ooy Agy 2) = inf{ T A%, - 50030 €Ay, 00" €A

i<N

The case considered in Section 3.1 is where /(o, o, ..., ©%) = l,unlessw e{ o, ..., 0%},
in which case it is zero.

Given subsets By, ..., B, of Q, we set
(3.3.3) h(w, B, ...,B) =inf{k(e, o', ..., 0%); ' €B,, ..., 0 B, }.

To control how large % is, we will consider a nonincreasing function y from ]0, 1]
to R*, and assume that

(3.3.4) VeeQ VB,...,B.cQ hwB,...,B)< T y(uB)).
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A typical case where this condition is satisfied is when

h(w, oy ..., 0% = X k(o)

iSgq
for functions k, that satisfy the tail condition p({% > y(¢)}) < ¢ and when vy is left
continuous. Indeed, if £ < u(B;), then B, contains a point y;, with £, y,) < v(¢).

We consider a convex function 6:]0, 1] - R*, and we make the mild technical
assumption that the inverse function £ satisfies

(3.3.5) | &'(x + 1)|>%|g'(x) .

(We put % rather than —;— simply to allow the case §(x) = e‘“.)

Theorem 3.3 .1. — There exists a universal constant K such that for ¢ > K, under (3.3.1),
(3.3.4), (3.3.5), if, for each s< 1, we have

1
_ log(¢/K)
3.3.6 1(6(s) — (£)) dA(2) < ,
(3.3.6) J‘v (06) — 00 dr(5) < ETS
then, for each subsets A,, ..., A, of QN, we have
(3.3.7) Je”““l """ 4% dP(x) < exp ( § 0(P(A)))-
i<q

To understand (3.3.6) better, we observe that the term 6’(s) arises simply because
0(s) — 6(¢) resembles (s — £) 6'(s) for ¢ close to s. Actually, since 8(s) — 6(¢) < (s — &) 0'(s),
change of variable and Lebesgue’s theorem show that (3.3.6) implies that

f v '(u) du< ¢ 'log(¢/K). In the case where y is constant, one can take
0

h(o, o, ..., %) = gy whenever o ¢{ o', ..., '} (and otherwise % = 0). Then the
integral in (3.3.6) has to be interpreted as |[{¢:5<¢;0(¢) > 6(s) —y}|. When
0(x) = — log x, this is s(¢* — 1), and (3.3.6) holds whenever y< ¢ !log(¢/K).
We then almost recover Theorem 3.1.1.

To prove Theorem 3.3.1, it suffices, by the induction method, to prove the
following.

Proposition 3.3.2. — There exists a universal K such that, under conditions (3.3.1),
(3.3.4), (3.3.5), (3.3.6), if we consider functions (u);<, on Q, 0< ;< 1, and define

(3.3.8) o(w) = inf T 0((e)) + ke, o ..., o),

wl,...,0f i<q

then we have

(3.3.9) J' ¢’ dy < exp(}] B(J' Y, dp.)).
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Progf. — For clarity, we will replace (3.3.6) by

(3.3.10) J Y7H0(s) — 8(0) M) < e

and we will determine in due time a good choice for v. We already assume 7 < 1. The

two main parts of the proof are the search of upper bounds forf ¢’ du, and of lower
Q
bounds for X 6 ( f A dp.).
Q

i<q

Step 1. — For 1< g, we set S, =i£)1f6(u,.(w)) = 0(sup %(w)). By (3.3.8) and
(3.3.1), taking o' = o, we see that if we set S = X S,, we have

iS¢

(3.3.11) v(0) < 0(k(w) + 2 S; =0(g(w) +S —§,.

i%i
Step 2. — We make the convention that y(0) = oo. For i < ¢, we define s; by
0(s) = inf {¥(u({u > t}) +0() }.
Thus we have 6(s;) > S; and, for > s,
(3.3.12) e{y > t}) <y 10(s) — 0(2)).

Step 3. — We show that, for any subset C of Q,
(3.3.13) J e du< p(C) exp (2 0(sy))-
N i<gq

By definition of s;, given &> 0, we can find # such that y(u(B,)) + 6(%) < 0(s;) + ¢,
where B, = {#, > t,}. Since 0(y(w")) < 68(2) for «' €B;, we have, by (3.3.8),

Z)(o.)) < 2 (ti) + h(w’ Bl; s Bq)s

i<q

so that (3.3.13) follows by (3.3.4), since ¢ is arbitrary.

Step 4. — Consider now a number m. We set
(3.3.14) Z=Jmin((v—m)+, )dp. and C={v>m+1}.

Thus, in particular u.(C) < 2.
Using the inequality ¢ < 1 + 2x* for x < 1, we get, using (3.3.13),

J 8”—’"du<J +j <1+ 22+ u(C) exp ( X b(s;) — m),
Q Q\c (o]

iSq
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so that

(3.3.15) ‘[ ¢~ "du< 1+ 2(2 4+ exp( X 0(s;) — m)).

i<q

Step 5. — We now turn to lower bounds for X 0(f u, dp.). For each i< g,
i<
consider a number m;, and set ‘ ?

(3.3.16) w(0) = o(0) — S + S, — O(m),
(3.3.17) W, =J min (i, 1) d.
We show that ’
(3.3.18) LWO} (4, — m,) du < 3;2’7;‘) (: — SITW(mTI)
By(3.3.11), we have
(3.3.19) b(u(w)) = v(w) — 8 + 8§, = w,(0) + 6(m,).

Now, by (3.3.5), we have, for y > x,
1 .
£(0) < &(x) + 3 &(*) min(l, y — %).

Taking x = 0(m,), y = x + w;(»), combining with (3.3.19) and recalling that
E'(6(m)) = 6'(m,)" ", yields, when w,(w) > 0, that

1
w(®) < o+ g min(l, (o)),

from which (3.3.18) follows by integration.
Step 6. — We take m; = s,. It follows from (3.3.12), (3.3.10) that

(ui - si) d("'< ' *
J{u.?a.-) |°(s]

Combining with (3.3.18), observing that w;,(w) > 0 implies #(w) <m; by (3.3.19),
and using convexity of 6 yield

(3.3.20) O(J uidp.)> 0(s;) ——’r—i—%.

We choose the number m of Step 4 as the smallest for which

card{i< ¢; S — 8, +0(s)<m}>

N



CONCENTRATION OF MEASURE 119

We observe thatif S — S, 4 6(s;) < m, then W, > z, where W, is given by (3.3.17)
and z by (3.3.14). Thus (3.3.20) shows that if we set R = X G(J~ u dp.), we have
Q

i<q

(3.3.21) > 6(s) < R—}—qr—-gz.

i<gq

Combining with (3.3.15) gives

J &L m dp.S 1 _|_ 2(2 _I_ eR+aT—-gz-—m)
0
<3+ 267 4% ¢,
Calculus show that sup ze~%/® = 6/ge. Thus, if we assume

qe

at
(3.3.22) < 1o

we have

1
J‘e”“”‘dp.s 3+ Een“”‘.

For R — m > 2, this is < ¢~ ™, so the proof is finished.

Step 7. — Thus, we only have to consider the case R < m + 2. By definition of m,
the set

I={i<q¢g;m<S —S; + 0(s)}
has cardinality > ¢/2. For 7 in I, we have
R<m+2<2+4+S+6(s) —§

and summation over ¢ € I yields

(3.3.23) R—S<2+

T (8(s) — )

¢

1,06 —8)<2 4>

cardI iex

since 6(s;)) — S; > O for all i< ¢. On the other hand, (3.3.21) implies that
2 (0(s) —S)<R—S ¢

i<e

which, combined with (3.3.23), yields (for ¢ > 3, < 1) that

iSa

(3.3.24) T 6(s) —S< (1 —g)_ 2 + ¢v) < K + g=.
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Step 8. — We assume that ¢ > 3, 1< 1, so that (3.3.24) holds, and we finish the
proof. In Step 5, we take m; = sup #(w), so that 6(m) = S,, and w, = o — S does
not depend on . From (3.3.18) and convexity, we get

O(J uidy.)> S,.—{—y,
a 3

where W = W, =f min(1, w") dp.
Q

We now have by summation that

(3.3.25) ¥<R——S.

In Step 4, we take m = S, so that z = W. From (3.3.15), (3.3.24) we get

(3.3.26) J e Sdp< 1+ 3Wexp(K + ¢7)
Q
< exp(3W exp(K + ¢7)).

According to (3.3.25), this is less than exp(R — S) provided exp(K + ¢r) < ¢/9,
i.e. < ¢7'log(¢/K). Moreover, this requirement implies (3.3.22).
The proof is now complete. O

3.4. Interpolation

One can express Proposition 2.1.1 as the fact that, if P(A) > 1/2, then for most
of the elements x of QY, all but of order VN coordinates can be copied by an element
of A. On the other hand, Theorem 3.1.1 asserts that for most of the elements x of QF,
all but a bounded number of coordinates of x can be copied by one of two elements
of A. A rather natural question is whether both phenomena can be achieved simulta-
neously (using the same elements of A). In this section, we will show that this is indeed
the case.

This fact seems to be a special case of a rather general phenomenon that can be
informally formulated as follows: Suppose we have defined two notion of the idea ¢ the
points x and y are within « distance» ¢”’; we call these I and II respectively. Assume
that there is good concentration of measure when the fattening A, of A is defined as
the collection of points x that are within distance ¢ of A, when the meaning of this is
defined with respect to notion I (resp. II). Then, in all the cases we have considered,
it remains true that we have good concentration of measure when A, is now defined
as the collection of points x for which there exists a point » which is within distance ¢
of x with respect of the two notions simultaneously. Two specific examples are presented,
one in this section, the other in Section 4.5. In both sections, we present an inequality,
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that quantitatively contains two rather separate inequalities presented before. Consi-
derably more difficult (if at all possible) would be the task of finding a formulation
that would allow to recover sharp forms of these two inequalities. This direction of
finding inequalities that ‘“ merge > several other inequalities is very natural. It remains
at an embryonic stage. The reason is partly the intrinsic difficulty, partly the lack of
concrete applications that would help to formulate precise needs.

We now go back to question of finding an inequality encompassing at the same
time the essence of Proposition 2.1.1 and Theorem 3.1.1. For simplicity, we consider
only the case ¢ = 2 in Theorem 3.1.1. For two subsets A,, A, of QF, x e Q¥, a,¢> 0,
we set

(3.4.1) S(Ay, Ay, a,t, x) = Inf{f()', 0% a, 8, x);0" € A, )" €A, ),
where SN a t,x) =acard{i< N;x + 95 + )7}
+ tcard{i< Njx + y or x; + 37 }.
Theorem 3.4.1. — For each a < log 2, there exists ty > 0 such that

2
e4N ¢

3.4.2 1<ty => | AL Anaha) gPay <
(8.4-2) 0 J ™)< 3 Pay

In particular, by Chebyshev inequality, this implies that for « < 8Nz, we have
—t_t— e Y2
P ALAa [— x|z ul)|S ——————.
(gf ( v ~/ 8N ) g) P(A;) P(A,)
When f (AI, A,, a, / g% , x) < u, we can, by definition, find »* € A;, »* € A, such that
acard{i< N; x;, ¢{ ), }} +A/8_ul\_1 card{i< Njx, + yl or x; + 12 }< u,

so that, in particular,

card{i< N ¢{J, 07 }}<

SR

b

card{1< N; %, % y orx; + y7 } < V8Nu.

We would like to point out that the factor ¢~ in (3.4.2) is not optimal. This
factor can be improved, in particular, with greater effort on the calculus computations
of the proof we will present. Further improvement would be possible as in Section 1.2,
but we have not pursued that direction since it is not clear at the present time what
would be an optimal quantitative form of the phenomenon described by Theorem 3.4.1.

The key to Theorem 3.4.1 is the following.

16
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Proposition 3.4.2. — Given b < log 2, there exists ty> O such that, if t< t,, for any
two functions g,, 8, < 1 on Q, we have

y € ¢t 1 et
(3.4.3) min (e, , R )dp.(co)s —_
. £1(0) " ga(0) ” g1(w) ga(w) [e1du [ gadu
Proof. — The relatively simple method we present does not yield the optimal

dependence in ¢ in the right hand side of (3.4.3), but it avoids lengthy unpleasant
computations. Arguing as in the proof of Lemma 3.3.2, we see that

Jh dy. ng dp. jgz dp. < exp J(h + & + g — 3) dp.

Thus, if we set

(3 $ 1
k(gy, gs) = min (e°, 2.5, )
81 82 818

it suffices to show that, for ¢ small enough and all numbers g;, g, < 1, we have
(3.4.4) h(81, 82) + &1 + 82< 3 + 41%
Certainly, we can assume g; > g, and 2¢< b.
Case 1: g,< g, < ¢~ ° In that case
h(gy,8) + 81+ 8 —3<e® + 22— 3.

Since <2, we have ¢ + 2% —-3<0, so that we can find {, such that
e+ 2 —3<0ift< ¢,.

Case 2: g, < ¢~ %< g,. In that case
t

e
h(gy, 8) + &1 + g —3< “g‘ +&+g—3
1
<4270 -3,
since the function x + ¢‘/x decreases for x < 1, and we conclude as above.

Case 3: ¢~ °< go< ¢ '. In that case, using again that the function x + ¢'[x
decreases for x< 1, and the inequality g, > g,, we have
t

e
h(glagz)+g1+g2—3<“g"+g1+gz"'3
1

¢

<l 4+ 2, —3< L2113
&2

since the function 2x + ¢'[x is convex, and thus is bounded on the interval [¢! % ¢~ ¢]
by the maximum of its values at the endpoints. Also, we note that ¢* 4 2¢7! — 3 < 442
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Case 4: g, > ¢~ *. Then

h(g1, 82) + 81+ 8 —3< +a+g—3< 42 —3

1582

since, when ¢ > 1, the function ¥ + ¢/x decreases for x < 1. We then conclude as above. O

We will let the reader complete the proof of Theorem 3.4.1 using the induction
method and Proposition 3.4.2. The basic observation is that, if B; denotes the projection
of A, on QF, we have for x e QF, v €Q,

S(AL, Agya,t, (%, 0)) < a+ ¢+ f(By, By, a, 8, %),
S(Ay, Ag, 6,8, (%, 0)) < £+ f(By, Ay(0), 4, £, %),
J(A1, Ay, .8, (%, m)) <t + flAy(w), By, a, 2, %),
S(A1, Ag, 4,8, (2, ) < fAy(0), Ag(w), 4, 4, w).

For the induction hypothesis, one then fixes ¢ < » < log 2, and takes #, small enough
so that a + f,< b

4. Convex Hull
4.1. The basic result

The main idea of this section is the introduction of a rather different way of
measuring how far a point x is from a subset A of QF. We introduce the set

Up(®) ={(s)icn €{0,1};3y €A, 5, =0 = x =y}

We denote by V,(x) the convex hull of U,(x), when U, (x) is seen as a subset of R¥.
Thus V,(x) contains zero if and only if x belongs to A. We denote by f,(A, x) the
£2-distance from zero to V,(x) (the letter ¢ refers to ¢ convexity ). The corresponding
notion of “ enlargement > of A is as follows:

(4.1.1) Al ={xeQN; f, (A, x)< t}.
This notation will be kept throughout the paper.

Theorem 4.1.1. — For every subset A of QF, we have

1
(4.1.2) fexp JEA, x) dP(x) < PA)
In particular
1 — 12/4
(4.1.3) P(A)) > 1 —P—(PT)G ",

In order to understand better (4.1.1) it is worthwhile to note the following simple
result.



124 MICHEL TALAGRAND

Lemma 4.1.2. — The following are equivalent:

(4.1.4) x € A,
(4.1.5) V(mhexs 32€A T {anen)< tA/iszNaf.

Proof. — The linear functional « : x — X «; x; on R, provided with the Euclidean
norm, has a norm ||« || = A/E? Since I\Zn(x) contains a point of norm < f,(A, x),

the infimum of @ on V,, (%) is< f,(A, x) || « || ; but since V , () is the convex hull of U, (x), the
infimum of « on U, (#) is the same as the infimum on V ,(x). Thus (4.1.4) implies (4.1.5).
The converse (that is not needed in the paper) follows from the Hahn-Banach theorem. O

It is very instructive to compare (4.1.3) with (2.1.3). If one takes ¢ = k/ VN,
o; = 1, one sees that (4.1.3) implies

1 —k2/4N
P(f(A,x);k)sm—)e .
The only difference with (2.1.3) is the worse numerical coefficient in the exponential.
But the strength of (4.1.3) is, of course, that all choices of «; are possible. This makes
Theorem 4.1.1 a principle of considerable power, as will be demonstrated at length
in Part II. It does, however, take some effort to fully understand the potential of Theo-
rem 4.1.1. To illustrate one use of Theorem 4.1.1, let us consider the case where
Q ={0,1}, and where the probability u gives mass p to 1 (and mass 1 — p to zero),
where p < 1/2. Consider a subset A of { 0, 1 }¥, and assume that A is hereditary, i.e., that
if » = (9)i<x €A, and if (z);<x is such that z <y for all 7, then z e A. Consider
xe{0,1}, and J ={i< N;x = 1}. Set m(x) = card J. Define o;, =1 if i €], ¢, =0
otherwise. Then Lemma 4.1.2 shows that we can find y € A such that

card {i €J; % + 2} < fi(A, ©) V().

Since A is hereditary, we have f(A, x) < f,(A, x) Vm(x).
Thus we have, for all m/,

HMA0>UKPGMAﬁ>j%D+HMﬁ>M)
P m

1 t2 ,
<mexp(—m + P(m(y) > m').

Since the last term becomes very small for m’ > pN, we recover the correct order 1/Np
of the coefficient of #2 in (2.3.5).
The key to Theorem 4.1.1 is the following simple lemma.

Lemma 4.1.3. — Consider 0< r< 1. Then
(1 —2)2

2 £2—r

(4.1“.6) inf r*exp
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This lemma is taken from [J-S]. This paper played an important role in the
development of Theorem 4.1.1 and of the present paper. Roughly speaking, the author
had proved Theorem 13.2 below in the case where P(X; =1) = 1/2 = P(X;, = — 1).
Johnson and Schechman extended this to the present formulation of Theorem 13.2.
The author’s desire to have the last word prompted the discovery of the abstract setting
of Theorem 4.1.1. It is this abstract setting that is largely responsible for the great range
of applications of Theorem 4.1.1, and that lead to the present systematic investigation.

Proof. — Taking A =1+ 2logr if r> ¢ ¥? and A = 0 otherwise, and taking
logarithms, it suffices to show that
Sflr) =1og(2 —r) + logr + (logr)2> 0.
Now f(1) = 0, so it suffices to show that f'(r) < 0. Since f'(1) = 0, it suffices to show
that (7f’(r))’ > 0, or, equivalently, by calculation, that (2 —r)72 — 7 '< 0. But
2—r"2:< 1< rl o
We now prove Theorem 4.1.1, by induction upon N. We leave to the reader

the easy case N = 1. For the induction step from N to N + 1, consider a subset A of Q¥ *!
and its projection B on Q. For w €Q, we set as usual

Alw) ={xeQ¥; (v, v) eA}.

Consider x € Q¥, w €Q, z = (x, ®). The basic observation is that
s €Uy(®) = (5, 0) € Uy(2),
teUg(x) = (£, 1) e U,(2).

Thus, for s eV, (#),t e Vy(x),0< A< 1, we have (As 4 (1 —2A) ¢ 1 — 1) eV, (2).
The convexity of the function # > u? shows that

(4.1.7) F2HA 2 < (1 =2 + W2 (A(0), 5) + (1 — 2) f2(B, 2).

The main trick of the proofis to resist the temptation to optimize now over A. By Holder’s
inequality and induction hypothesis, we have

1
[exp fo(A, (%, »)) dP(x)

< exp% (I —»)2 (J

Q

< 1 1 A)2 1 ' ! o
<exp (1—3) (P(A(w))) (P<B>)

1 1 P(A(w))\ *
=——exp- (1 —)\)2( (P(;)))) .

o

A 1—2A
exp ; 71ale), ) a2 (| exp 72,5 ap(o)
N ON
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This inequality holds for all 0< A< 1. Using (4.1.6) with r = P(A(w))/P(B) < 1,
we get

1, (- 2e)
= YA, (% o)) dP(x) < 2 — .
| e, (00 2P < g5 2 - P

Integrating with respect to  and using Fubini theorem yields

1, 1 P®u(A)
JCXPch(A, ) dP®p) < ) (2— PB) )

1
S s
POu(A)

since x(2 — x) < 1 for all real x.
4.2. Sharpening

We now try to improve (4.1.2) by allowing a right-hand side P(A)~“ for some
« > 0. In that case, it will be advantageous to measure the ¢ distance ” of s to V ,(x)
by the function

St 5) = inf{ B E(w 5055 € Vo(0)
where =

1 4+ o —au
(4.2.1) E(a, ) = a(l — ) log(l — u) — (« + 1 — au) log (——————)

1 4+«

The reader should observe right away that f,(A, x) corresponds (with the notation
of Section 4.1) to f%(A, x) rather than to f,(A, x). This will be the case for all the
extensions of Theorem 4.1.1 we will consider.

As pointed out, Lemma 4.1.3 is the key to Theorem 4.1.1. It is a somewhat
magic fact that when one tries to improve upon Lemma 4.1.3, the best possible function
that can be used instead of the function (1 — A)?/4 can be computed exactly, leading
to the formula (4.2.1).

Lemma 4.2.1. — Consider 0 < r< 1. Then
. — A _ — _
(4.2.2) oslglfsl 2 expl(a, ]l —2) =14 a — ar.

Proof. — We will not give the shortest possible proof (that consists in checking by
computation that for A = 7(a« + 1 — ar)™?, we have r * exp §(a, 1 — &) =1 + a — ar).
Rather, we will explain how (4.2.2) was discovered. We fix «, and we set f(x) = a~* (o, %).
The best choice for A is such that a log r + af'(1 — 1) = 0, i.e., r = exp(—f'(1 — })).
So we would like to have, for 0 < A< 1, the identity

exp(afll — ) + @f (1 — 1) = 1 + « — wexp(—f'(1 — ).
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Setting v = 1 — A, and taking logarithms, we want
of(v) + «(1 — ) f'(v) =1log(l + & — aexp(—f'(v))).

Differentiating in v and setting g(v) = exp(— f'(v)), we get

"(v) g(v
ol —970) = 8
@A —
so that g(v) = (aa—:_ )l (_ (X.VV). Taking logarithms and integrating yields (4.2.1). O

Lemma 4.2.2. — The function %(«, -) is increasing and convex on [0, 1] and

&, ) > u2,

o
2(x 4 1)
. ag
Proof. — Computation shows that &(«, 0) = o (¢, 0) =0, and

d*t o o

W Gl (—a «t1

since > 0. O

Lemma 4.2.3. — For «,a> 0, we have
(4.2.3) l+a—aa<a ¥
(4.2.4) a+ (1 —a)expk(a, 1)< a "

Proof. — To prove (4.2.3), we observe that the graph of the convex function x~*
is above its tangent at the point x = 1. To prove (4.2.4), we observe that
E(ax, 1) = log(l + «), so that the left-hand side is

a+(1—a) (1l +a)=14 o — aa,
and the result follows from (4.2.3). O

Theorem 4.2.4. — For a subset A of QF, we have

(4.2.5) Jexpﬁ,(A, x) dP(x) < PA

Progf. — It is an obvious adaptation of the proof of Theorem 4.1.1. The case
N =1 follows from (4.2.4), and (4.2.3) is used as a substitute for the last inequality
of (4.1.8). O
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If we use Lemma 4.2.2, we see that (4.1.3) can be generalized into

. 1 ot?
(426) P(A‘) = 1 — W exp (— é(a—_l_l—)).

Optimization over « as in Corollary 2.2.3 yields:

Corollary 4.2.5. — For each subset A of QF,

(4.2.7) t>«/210gP(lA) =>P(Af)>l—exp(—%(t—A/2logP(1A))).

It is an interesting question whether the term V2 log 1/P(A) can be removed
in (4.2.7). We will, however, see in Section 4.3 that the coefficient 1/2 cannot be
improved. It must be pointed out that Theorem 4.2.4 brings considerably more than
a simple improvement of the coefficient of # in (4.1.3). The reason is that
E(x, 1) = log(a + 1) becomes very large when « is large. In that case, (4.2.5) recovers
certain features of (3.1.2) and, in some ways, improves simultaneously upon Theo-
rem 3.1.1 and Proposition 2.1.1. To see this, consider ¢ > 1. We fix ACQ~, and for
x € QF, we consider

1
k(x) =inf{k;3s e V,(x); card {1 < N33¢>1—‘é <kl

Then, certainly, we have

1
k(x) E(q, 1 — 2) < f(A, x).
Now,
1 1 2
Elg,] — ) =1log—- —2lo
(q q) gq gl Tq
(1492 q
= log 4q > logz
so that
(4.2.8) k(x) loggsfq(A, %).

On the other hand, by (4.2.5), we have

P(f (A, %) > 1) <

P(A)
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so that, by (4.2.8),
e~—k,logg4 4 k 1

The relationship with (3.1.2) is as follows.

If k(x) < k, we can find a family (y);<,, of points of A, and coefficients (a,); < >
0<o;<1, ¥ « =1, such that

i<m
1
(4.2.10) card [i< N; 2 a; 1, .5y > 1 - < k.
i<m i T
On the other hand, if f(A, ..., A, x) < &, we can find »', ..., »? in A such that
1 1
4.2.11 d{ig<N; ¥ -1,.,»>1—-I<k
(¢ ) card {1 2.7 (=, + 9]} p

Certainly (4.2.11) is more precise than (4.2.10); however, for some important
applications (see [T3]) (4.2.10) is just as powerful as (4.2.11).

4.38. Two-point space

In this section, we consider the case where Q = {0, 1 } and where p gives weights
1 — p to zero and p to 1. The miracle of Lemma 4.2.1 does not seem to happen again,
so we will only consider statements of the type

1
(4.3.1) Jexpﬁ(A, %) dP(x) < PA

where, for a couple u = (u,, u;) of positive numbers, we set
filAyx) =inf{ug X {s%x =0} +u, D{stx=1}:5eV,(x)}.

In other words, we take into account the fact that the points 0 and 1 do not play the
same role.
If one analyzes the arguments of Sections 2.3, 4.1, 4.2, one sees that the best

value the induction method allows to take for u, is the largest number s such that,
whenever 2 < b, we have

: 1 1 e, 2 1
=2 B, 7 = * TES U —pat oy

or, equivalently,

1 1
4.3.2 Il—p)— i S P —
(%.3.2) N T L

for all 0 x< 1.

(The best possible value of u, is obtained in a similar way, changing pin 1 — p,
and will not be considered.)

17
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The infimum in (4.3.2) is obtained for
« log x)

2s

The left-hand side of (4.3.2) is constant for x < exp(— 2s/a); thereby (4.3.2) holds
provided we have, for x > exp(— 2s/a),

A=max(0,—

— 1
4.3.3 1 —p)e 6" < — .
(4.3.3) (= (Y PEY R
Determining the best value of s for which this holds is an unpleasant task, so we

will content ourselves with finding good values of s. Taking logarithms and differentiating,
one sees that (4.3.3) will hold provided we have, for x > 0,

(I—p)x _p(1 — AT
A _pAa+1 A ——pA““ ’

(4.3.4) ——;}logx> 1—

where we have set A = (1 — p) x + 5.
It suffices that for x > 0 we have

o p 1 —A**?
4.3.5 - — >
(4.3.5) 5 108%> T, 4
We first consider the case p = -;—, and we show that in this case we can take
o .
s = . Since
o+ 1
(4.3.6) 1 —A* g @+ 1) (1 —A) =(@+1)(1—p) (1—x),
it suffices to see that
2(1 —
0<x<1=logx> (IT:)
But the function
2(1 — x)
S(x) = log x — Trx
satisfies f(1) =0, f'(x) = — (1 — %)?/(1 + x)2< 0. Using the notation f,(A,x) of

Section 4.1.1, we then have proved the following.

Theorem 4.3.1. — When Q = {0, 1 } and p. is uniform, for each o > 1 and each subset A
of QF, we have

(4.3.7) Jexp (%_i_lff(A, x)) 4P() < praye-

Compared with (4.2.6), we have gained a factor 2 in the exponent in the special
case of the two-point space.
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Corollary 4.3.2. — When Q = {0, 1} and p. is uniform, for each « > 1, and each subset
of QF, we have

(4.3.8) t> “ogi’(iAS =>P(Af) > 1 — exp (-— (t — [log P(IA) ’z)

Proof. — From (4.3.7) and Chebyshev inequality, we get

a4+ 1

P(A) > 1 — P—({A—)—;exp (— x t“)

and we optimize over « as in the proof of Corollary 2.2.3.
It is a natural question whether (4.3.8) can be improved into

(4.3.9) P(AY) > 1 — K exp(— #).

It should, however, be pointed out that the coefficient of 2 is optimal. We will
now show this, and at the same time, the optimality of the coefficient 1/2 in (4.2.7).
Provide Q = {0, 1} with the probability p. that gives mass p to 1. Set

A = {(%)i<x; i<2N % < pN}.

(Thus, for N large, P(A) is about 1/2.) Consider y €{0, 1}¥, such that card J = m,
where J ={i< N; = 1}. Assume m > pN. Then any element x of A differs of y in
at least m — pN of the coordinates indexed by J. Using Lemma 4.1.2 for «; = 1/4/m
when i € J, «; = 0 otherwise, we see that

(m—pN) m—pN /N
4.3.10 A,y > = = =,
4:3.10)  flAy)> A =Rl

If we think of m = m( y) as a r.v., the central limit theorem shows that, as n — oo,
(m — pN) [VN is asymptotically normal, with standard deviation V(1 — p). On the

other hand, V' N/m converges to V' 1/p in probability. Thus

1 ® u\>
lim P(f,(A, -)Zt)Z—J exp(— —) du
N V2 Jyya=s 2

S 1 2

> 5; %P |— 501 —p))
If p = 1/2, the coefficient of 2 is — 1, and if we let p arbitrary, we cannot do better
than the coefficient — 1/2 of (4.2.7).

We now go back to our main line of discussion, and we consider the case p < 1/2;
we will show that in this case we can take

. [ 1 «
(4.3.11) s = mln(K lOg;, m).
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In particular, for « large, this is of order 1/p, rather than order log(1/p). This remarkable
fact is closely connected to Theorem 4.4.1 below. To prove (4.3.11), we prove (4.3.5),
depending on the value of x.

Case 1: x> 1/2. Then —logx>1—=x, 1 —A** ' (a + 1) (1 —p) (1 — x), so
that it suffices that

_x_p1+0

2s A

1 .
Now A > 2’ so that it suffices that s <

L
4p(1 + o)

Case 2: x< A/p. Then —logx > — %log 1/p, so that it suffices that

o | ?

—log|-]| 2> ———.

45 Og(p) (I—p A
Since A > p, it suffices that

a(l —p) 1
< ——log-.
5 2 ogp
Case 3: \/p< x<

that

. It then suffices, since — log x> log2 and A > (1 — p) /2,

RO =

(1—p2a
Vb2

log 2,

1
which holds when s< —;i log;.

4.4. Penalties

We now consider a function £ on Q X Q, such that 2> 0 and k(w, ®) = 0 for
© € Q. For a subset A of QF, and » € QF, we set

U,(x) = {(s) ERﬁ; dyeA; Vi< N, 5> k(x,)}

We denote by V,(x) the convex hull of U,(x). The situation of Sections 4.1, 4.2
corresponds to the case where k(o, ©') =1 if o + o',

In order to measure the ‘ distance > of zero to V,(x), we consider a convex
function ¢ on R, with ¢(0) = 0. We will assume

(4.4.1) <l =g <a? x> 1 =>4

We set
S oAy %) = inf{KZNLP(S,-); s = (5)icx € Va{#)}-
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(Thus, the situation of Section 4.1 corresponds to the case §(s) = s2 and the situation
of Section 4.2 corresponds to the case {(s) = &(«, s).) The material of this section is
connected to that of Section 2.6, and the notation of Section 2.6 is in force in the present
section. Thus 6 denotes a convex function from ]0, 1] to R*, with 6(1) = 0, il_r)r& 0(x) = oo,

and & denotes the inverse function. We assume that (2.6.1) holds, and assume moreover
that for a certain number v > 0, we have

(4.4.2) b>20=[E0®+1)|>v[E0)]
(4.4.3) 1) >y,  ®(1/2)> ¥

We recall the function E of (2.6.2), as well as condition H(§, w) of (2.6.3).

Theorem 4.4.1. — Consider a nonincreasing function w on 10, 1], w < 0. Assume that

1
f w?dr< 1, and that condition H(E, w) holds. Assume that for each subset B of Q, we have

0

(4.4.4) 0< u(B) < % —»J exp (k(x, B)) du(x) < exp w(u(B)),

(4.4.5) u(B) > % t> 1 = u({x; $(h(x, B) > 1)) < (1 — u(B)).

Then, for each subset A of QF, we have

(4.4.6) J exp %f,w(A, x) dP(x) < exp 0(P(A)),
QN

where K depends on y only.

We should observe first that only the values of w(x) for x < 1/2 matter.

In order to compare Theorem 4.4.1 with Theorems 2.6.5 and 2.7.1, we first
have to keep in mind that it is the function ¢ o % here that plays the role of % in these
theorems. The conclusion of Theorem 4.4.1 is stronger than that of Theorem 2.6.5
(the way Theorem 4.1.1 improves on Proposition 2.1.1) but weaker than the conclusion
of Theorem 2.7.1 (since one takes convex hulls). Condition (4.4.5) strongly resembles
(2.7.2). Condition (4.4.4) coincides with Condition (2.6.12) when p(B)< 1/2. A
simple calculation using (4.4.5) shows that for u(B) > 1/2, condition (4.4.5) is of a
somewhat stronger nature than (2.6.12).

An interesting case where it is worth to spell out (4.4.4) and (4.4.5) is when
h(x, ) = k(y) depends on y only. Denoting by m a median of %, (4.4.5) will hold if
¢(m) < 1. And, as seen after Theorem 2.6.5, (4.4.4) holds provided w(u({% > t})) > $(¢)
(a tail condition of %).
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To prove Theorem 4.4.1 when N = 1, we observe that, since w< 0, (4.4.6)
follows from (4.4.4) when u(B) < 1/2. When p(B) > 1/2, a simple computation using
(4.4.5) shows that given v, if K is large enough, then

1
f exp = $(h(x, B)) du(x) < 1 + v(1 — u(B)) < 0(1(B)) < exp 6(u(B)),
Q

since 6'(1) > .
For the induction step, comparison with the proof of Theorem 4.1.1 shows that
it suffices to prove the following (used for g = £( f)).

Proposition 4.4.2. — There exists a constant L, depending on vy only, with the following
property. Under the conditions of Theorem 4.4.1, consider a function f> 0 on Q. Set

. . 1
(4.4.7) S =ven,ltr)léxs1 M) + (1 =N ) + E¢((l — ) k(%,))).
Then we have
(4.4.8) Ie?dus HUenau)

Understandably, with the level of generality considered here, the proof cannot be
very short. The reason why we have opted for great generality is that Theorem 4.1.1isa
principle of considerable power (as will be demonstrated in Chapter 8) and that thereby
it seems worthwhile to prove extensions of it under weak hypotheses on the function £.
The proof will incorporate in particular ideas from Theorems 4.1.1, 2.6.5, 2.7.1.

A simple idea is that we will need to control 6 (f&( f) dy.) from below. This means

controlling the lower tail of f. Set B, = { f< s}, and denote by m a median of f, so that
w(B,) = 1/2. We set

(4.4.9) b= inf .

5+ 7 w(u(B)

The first step of the proof will be to show that u(B,) is not too big, i.e. that 4 is
not too small.

Proposition 4.4.3. — To prove Proposition 4.4.2, if L.> 4|y, we can assume

4
4.4.10 <b+ —.
( ) m< b+

Proof. — We assume m > b, for otherwise there is nothing to prove. Using (4.4.7)
with A = 0, we see that for each s we have f(x) < s + L™ ¢ o k(x, B,). Using (4.4.4)
together with Holder’s inequality, it follows that

f Fdu< exp ( = %w(u(B,))),
Q
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so that f ¢ du < ¢ by taking the infimum over s< m. On the other hand, (4.4.9)
Q

implies

1
(4.4.11) sSm=>b—s< 5 wpu®,)
ie.
(4.4.12) ‘ %w; b—si|> uB,).

We can hence appeal to Lemma 2.6.4 with C = {f< &} and ¢ = 1/L to see that
j E(f) dp.< u(C) E(b) +E’(b)J (f—10) du-l-—li(b |
c c

But, by (4.4.12) we have

1 1 e
{|f—b[dp.<ijwdp.<i(jw2du) <
c

(4.4.13) J £(/) din< w(C) EB) + 2 | EB) |

-

and thus

On the other hand, when f(w) > b, we have
E(f(w)) < E(b) — (E(8) — &(m)) 15 my(w)
and, by integration, since p({f> m}) > 1/2 (and m > b),

J E(f) dn< (1 — w(C)) E6) — 3 (5(5) — E(m).
a\c
Combining with (4.4.13) we get

[ e dusem + 31200 = 3 o) — g,

Since we have shown that f e’ dp.< ¢’ there is nothing to prove unless
Q

f Ef E(d) (for otherwise 0 (fi dp.) b). Thus we can assume

(4.4.14) (&(8) — &(m)) —|£’(b l

NI —
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Now, since m > b, from (4.4.2) follows that &(m) < §(6) — vy | £'(8) | min((m — &), 1).
Comparing with (4.4.14), we see that min(m — &, 1) < 4/(Ly), so that if L. > 4/y, we
must have m — b< 4/Ly. O

We consider the smallest number « for which
Vs<m, m—s< aw(pn(B,))
so that
(4.4.15) Vs<m, |[{aw>m—s}|>uB,).

It is rather important to note that

(4.4.16) *< 5

Indeed, if m — s < 8/Ly, then

m—s m—s 8

< < —.
w(u(B,)) ~ w(1/2) ~ Ly*

On the other hand, if m — s> 8/Ly, then, by (4.4.10), we have m — s< 2(b — s),
so that
m—s b—s 2

w(@(B,) S " w(uE) S L

We consider a second parameter M < L. Throughout the rest of this section, we
will have to put conditions on L, M, L/M. For simplicity we make the convention that
the expression  if L is large enough ... means “‘ there exists a constant K(y), depending
on y only, such that, if L > K(y)...”” and similarly for M, L/M.

We set m’ = m — 16/Ly®. We consider the function

f= min(f,m +—;Z)
and the function g defined as
glo) —flo) it fla) <,
g(0) — max (m min (f(w), m+ {z)) it f(w) > m.

Since < f, it is simple to see that g < f’. It is also simple to see that

(4.4.17)  g(o) +f(0) > g0), f(o) e[m',m+—$].
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Indeed, the right-hand side does not occur only when f(w)<m', and then

Sflo) =f'(0) = g(w). We set

C={f>m}; D= f>m+i—l/[%.
Lemma 4.4.4. — We have
(4.4.18) G(J E(Sf) dp.) Jf dp. — of ——J m)? du.
Proof. — Since f’'< f, we have £(f’) > £(f) and

e(J 5(S) 49)29(J 5 dp.).

We now appeal to Lemma 2.6.4 with ¢ = «. We have

J E(f) < &(m) + E'(m)J (f" —m) du + o* [ E(m) |
Q Q
+ £"(m) J (f — m)* dy.

(o]
By convexity of 6 and since £”(m) < | €'(m) | this implies

0([ E(f))> [(f m) dy. — o* —J(f’—m)zdu- O

Lemma 4.4.5. — If L and M are large enough, we have
(4.4.19) j ¢ dy
o

exr)( J (g +f") dp + 20 +2J (f' —m)*dy +J (e?“”‘—elm)*"dy.)-
C

Q

Proof. — First, we observe that

~ N l ~
(4.4.20) J e mdp < J exp (min (f— m, ﬁ)) dp. + j (=™ — &™) * dy.,
Q [9] Q

" 1
Wcobservethatmin(f—m,ﬁ) g—m.Sincee*< 1 +x+ »forx< 1/ Mg,
we have

(4.4.21) L exp (min (f— m, ﬁ)) du.

SJ e "du< 1 +J (g —m) du+J (g — m)*dp.
o] Q Q
18
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Now, by (4.4.17), and provided L, M are large enough,
’ ’ ’ 1 ’
(4.4.22) (6 —m2< 2(f" —m)* +2(¢ —f)*< 2(f" = m)* + 5 (f" —a).
We recall also that
J (f = M)249<J (f —m)?du< o
o\c a\c

The result follows by combining these inequalities, and using that 1 + x< ¢ O
It follows from Lemmas 4.4.4 and 4.4.5 that to prove Proposition 4.4.2, it
suffices to prove the following when M, L/M are large enough.

(4.4.23) J (f — g) du > 602 + GJ

(o}

(f — m)®dp + QJ (=™ — M)+ gy,

Q

This follows from the next three lemmas.

Lemma 4.4.6. — We have

- KM2
(4.4.24) J (7™ — &™M)* du < —IE M
o

vD) < — J (f" — m)*dp.
c
Lemma 4.4.7. — If LM is large enough, we have
M
J (f — &) du> —J (f — m)? dy.
a Ko

Lemma 4.4.8. — If LM is large enough, we have

, Ly o
Proof of Lemma 4.4.6. — The definition of f (with A =1) shows that

F@) < m + 1M + L §(k(e, Q\D)). Thus by (4.4.5) we have
o

N 1k
f (F=m — @Myt dy< T A(E — 1) e+ (D),
Q

k=1

~ 1 k
f>m+ﬁ+i:)< e * (D)
and thus

from which the first inequality of (4.4.24) follows by elementary estimates. (The second
inequality of (4.4.24) is obvious.) O
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Proof of Lemma 4.4.7. — Step 1. — For k> 0, we define

1

@ =sup t;u({f'>1})> 2 ("

Thus m< @, < @, < m 4 1/M. We consider a set Z,C{f< a,} such that

1

wZy) =1— 2

We set Z, ={ o; h(w, Z,) < 2}. Since ¢(x) > x for x> 1, we have
Z 2 {o; y(h(e, Z)) < 2}

so that, by (4.4.5), u(Z,) > 1 — 1/2&%2, We set, for k> 0,
W, =2Z, N (Z,  \Z;,,)-

We observe that the sets (W,),, are disjoint, and that

(4.4.25) p(w,,)>§1}(l 2)> !

e )" 2+

Step 2. — We show that
, M
(4.4.26) j (f = ) du> (641 — a)* u(WD).
Wk

Consider @ € W,\D. Then f'(») = f(®), so that, given A € [0, 1] and o’ €Q
(4.4.27) S'(0) = flo) =flo) — f(w)
> (1 =) (flo) = A1) — ¢ (1 =) ko, o).

We can find o' € Z, such that i(w, ©') < 3. Then f(o) — f(o') > ¢,,, — a,. We can

take 0 < A< 1 such that 1 — A = M(q,,, — 4,)/3. Then (4.4.27) yields, since {(x) < x?
for x< 1, that

, N M IM?
S'(w) _f(‘”) 2 3 (@41 — @)% — I (@1 — @)%

Thus, if L/M is large enough,

F10) = (o) > 5 (s — @)
that is

F0) < F/(0) = (s — @)
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Since a,,, — @, < 1/M, and f’(w) > @, ,, the right-hand side is > a, > m, so that

£(0) < S(0) = 3 (a2s — &)

M
and thus f(o) — g(w) > T (A AL

from which (4.4.26) follows by integration.

Step 3. — Denote by k, the largest integer such that 1/4¢*+2% > y(D). Thus
w(Wy) > 2u(D) for k< k,, and, by (4.4.26) and summation, we get, since
w(W\D) > (W) /2,

Y (a,,, —a)2e k.
kSko( e+1 — G)

~ =

(4.4.28) J(f’ — g du>
By the argument of Lemma 2.7.8, we have

1 .
X (G — @) > X J (min(f', m + ako+1) — m)® dy.
c

k< ko
Thus the proof is completed if 4, ,, > 1/2M.

Step 4. — Assuming now a, ., < 1/2M, we shall show that

(4.4.29) J(f’—g) dy > me"“’.

Since

2

M
> — B (G, — a)eF,
k> ko

combining with (4.4.28), we get

M M
(f'—gdu>+ Z (g 1-—ak)2e—">~J(f—m)2d
J‘ g I K + K o g

k=0

by (the argument of) Lemma 2.7.8, completing the proof of Lemma 4.4.7.
To prove (4.4.29), we observe that, by definition of &y, we have ¢~ * %< u(D).
Consider the set

Z ={ (-, Zy+1)) < 6}
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Then, by (4.4.5), we have p(Z) > 1 — ¢ %~7 so that w(Z N D) > ¢ /K. Now, if
o € D, we have f'(0) > m + 1/M while if & ¢ D, we have

~ 1
f(“’) SOy +m+ L $(A(o, Zko+1))

1 6
STtoM T L

3
Thus g(w) < m + M if L/M is large enough. Hence, f—g> 1/4M on Z nD. 0O

Proof of Lemma 4.4.8. — Step 1. — We show that we can assume p(D) < 1/8.
Indeed otherwise by Lemma 4.4.7 we havef( S’ — g) du > 1/JKM and, since « < 8/y* L,
this is > La® when L/M is large enough.

Step 2. — By definition of «, there exists s < m with m — s> aw(u(B,))/2. By
(4.4.5) and Chebyshev inequality, the set

H ={d(k(-, B,)) < 2 + w(u(B,)) }
has measure > 3/4. Thus if we set G = H n (G\D), we have p(G) > 1/8.
Step 3. — Set

. m=5
T3 4 w(n(®,)’

Since w(pn(B,)) = w(1/2) > vy, and m — s > aw((B,))/2, we have

B

R

YK <B<g
Since ©(G) > 1/8, it suffices to show that

2

(4.4.30) VoeG, f'(o)—glw)> L?Y g2

Step 4. — We prove (4.4.30). Consider » € G. Then f’(0) = f(w) > m. Consider
o’ € B, with A(w, ©') < 3 4+ w(u(B,)). Then

(4.4.31) flo) = flw)> sup ((1 —2)(m—s)— %4}((1 — ) (3 + w(w(By)))))-

0<A<1
We choose 0 < A< 1 such that

S S
b= = s ey
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This is possible since B < « < 8/Ly®. Then (4.4.31) yields, since ¢(x) < x* for x< 1, that

. L 2 N2
flo) —flo) >~

Thus f(w) < f(w) — Ly* B?/8. Since the right-hand side is > m’, we have
g(w) < flo) — Ly* g%/8.
The proof is complete.

4.5. Interpolation

The result of this section will interpolate between (a weak form of) Theorem 3.1.1,
for ¢ = 2, and (a weak form of) Theorem 4.1.1. Consider three points x = (x;);< x,

= isxs I = (i< x of Q% Set

n(%55%) = (Lgxtys Ligeotys Lo ¢ 02,021
Thus 7,(x, »", »*) €{0, 1 }*. Set

(%% 5%) = (n(%550%)i<x € (0, 1 )T
Given two subsets A, A, of QF, let

Uy, (®) ={r(%,0%,0%):0 € A, 0" € Ay},

and consider the convex hull V, , (x) of U,  ,,(x), when U, ,,(x) is seen as a subset
of (R®)¥.

Throughout this section, we define 4 > 0 by ¢® = 3 — 2¢~ %, so that b < 1/6.
We make the convention to write a point r € (R*)¥ as (r, ;,7,;, 75 ;)i<n- We set

S(Ar; Ay, %) = inf{(ZNrf,i + 15+ Tg,i5 7 EVAI,A2<x)}'

Theorem 4.5.1. — We have

1
xp bf(Ay, Ay, %) dP(x) < =
J P WS Py PAy)

To understand this statement better, set u = f(x, A;, A,). Consider 7 €V, ,, (#)
such that
Znitnitnisu

isN ’

Consider numbers (¢; ;);< x> (¢2,i)i<x- Then, for j = 1,2

Z Gi,iri,is ('Z C?,i)llz(.z r?'i>l/2
iISN iSN iSN

< u1/2( Z 63'5)1/2.
iSN
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Thus

‘_EN(”L;' it Coita + 0rg ) S E=tu 4wl (JiEN i+ "/iszN "g,s)-
If we recall that V, ,,(x) is the convex hull of U, , (x), this implies that we
can find y' € A,, »* € A, such that
Z{onm+0i b+ Z{eg 5+ 07} + card {455 ¢ {0}, 0} })< 8.

The proof of Theorem 4.5.1 goes by induction over N. The case N = 1 is left
to the reader. For the induction from N to N 4 1, one observes, with the usual notation,
that, when g, o, 4, 4, @ 1, 3, 1 > 0 are of sum one, then

S(AL Ay, (%, 0)) < ao,of(A1(‘°)> Ay(w), x) + al,of(Bn Ay(w), %)
+ a,, 1f(Aq(w), By, x) + a,, 1f(By, By, %)
+ (al,o + a,, )+ (@g,1 + @y, )+ a,1-

Thereby, to perform the induction it suffices to show that, when g,, g, are two functions
on Q, g,,8,< 1, then

1 1 1
—_— — ——du
(8182)%° g2-° g1

1
-
fgl d&‘fgz dp.

where the infimum is taken over all the allowed choices of a, o, @4 1, @y 9, @1,1-

(4.5.1) [infexp(bal,l + b(ao,1 + 01,1)2 + b(al,o + a,, )

Lemma 4.5.2. — We have
1 1 1
(81.82)™° gzv° g1t

< V(3 —22) (3 — 22).

(4.5.2) infexp(bal'l + b(al,o + ay, v*+ b(ao,1 + 4, )

We first use (4.5.2) to prove (4.5.1). By (4.5.2) and Cauchy-Schwarz, the
left-hand side of (4.5.1) is bounded by

s Cer e e P

Thus it suffices to observe that for 0< x< 1, we have 3 — 2x < x2, which expresses
the fact that the convex function x~2 is above its tangent at x = 1.
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Proof of Lemma 4.5.2. — We will actually restrict the infimum to the cases a; ; = 1

or a; ; = 0. We will prove
1 1
(4.5.3) min (e%, inf  ehei+ed —) <V(3 —2g) (3 — 2g,).

0<a;+a;<1 g gl n

We distinguish cases.
2b

Case 1. g, g,< €
It suffices to see that

< V(3 —2g) (3 — 22,).

2b

The right-hand side has minimum at g, = 1, g, = ¢~ *, and our value of » has been

chosen so that inequality holds in that case.

2b

Case 2: g, 8, > ¢ 2.

1 .
For j = 1,2, we take a; = — Ogbg, . The purpose of the condition g, g, > ¢~ %
is to ensure that @, + a, < 1. It suffices to prove the inequality
1 _ Uoggy?
—w <43 — 2g4.

&1
We will show that, for 0< x< 1,
. (log )%/2b < x2(3 — 2%x)

or, equivalently that

_ (log x)*
() =5

+ 2 log x + log(3 — 2x) > 0.

Since ¢’(0) = 0, ¢(0) = O it suffices to show that (x¢'(x))" > 0, i.e.

1 6x
—_———— >0,
b (83— 2x)2

But, since — < 6, it suffices to show that x< (3 — 2x)2, which is true since x< 1,

S|

(3 —2x)2> 1. O

5. The Symmetric Group

We denote by Sy the group of permutations of { 1, ..., N}. Our interest in the
symmetric group stems from the fact that it is closely related to a product. To see this,
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let us denote by #; ; the transposition of 7 and j. Then, it is easily seen that every o € Sy
can be written in a unique way as

(5-1) 6 = Iy i ° In—1,in—1) - - - ol i2)

where, for j < N, we have i(j) < j. This decomposition allows to transfer (2.1.3) to Sg.
The result thus obtained is the result of Maurey [M1]. The purpose of the present
chapter is to prove a version of Theorem 4.1.1 for Sy that will improve upon Maurey’s
result the way Theorem 4.1.1 improves upon Proposition 2.1.1. The reason why
proving this is not such an easy task is that the decomposition (5.1) is highly non-
commutative.

For a subset A of Sy, and o € Sy, we set

U,(6) ={se{0,1};I1eA; VISKN,5,=0=1() =0}
and we consider the convex hull V,(s) of U,(s) in [0, 1]¥. We set

J(A; o) =inf{ X st;s = (%) € V(o) }.
We denote by Py the canonical (= homogenous) probability on Sy.

Theorem 5.1. — For every subset A of Sy we have

1
(5.2) J exp = f(A, o) dPy(0) < Po(A)’

In a natural way, Sy can be considered as a subset of {1, ..., N} by the map
o (o(1));< - If Sy were equal to all of { 1, ..., N}¥, (5.2) would be a consequence
of Theorem 4.1.1, but Sy is only a very small subset of {1, ..., N}~

The challenge of Theorem 5.1 is that it is apparently not possible to prove (5.2)
by induction over N. Rather, we will use a stronger induction hypothesis. Given p < N,
we set

f(A, 6,p) =inf{s2 + l§ s3;5€V,(0)}.
<N
Theorem 5.1 is obviously a consequence of the following.

Proposition 5.2. — For each subset A of Sy and each p < N, we have

1 1
(5-3)x j exp 16 S(A, 6, p) dPyg(0) < PN(A)’
L AA, o, -1(p)) dPy(0) < —

19
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We leave to the reader to prove Proposition 5.2 when N = 1. We now assume
that Proposition 5.2 has been proved for N and we prove it for N + 1. A noticeable
feature of this proof is that the proof of (5.3)yx,, (resp. (5.4)yx.,) will require the use
of (5.4)y (resp. (5.3)y). Before the proof starts, we need to introduce some notation.
Given p, m< N, p + m, we set

(5.5) f(A, o, p, m) = inf {2 + lZ 3355 €V,(a),s, =0}
<N
Given 7,5 < N, we set

(5.6) g(A; 0,0, j) =inf{ X s755€V,(o)}
*1i,7

We start the proof of (5.4)x, ;. Certainly there is no loss of generality to assume that
p=N+1

Lemma 5.3. — Consider i, j<S N+ 1, 1% j, 6 €Sg ., 0S A< 1. Then
(5.7) SAs0,1) < 4(1 =22 + (1 — 1) g(A, 0,3,)) + M(A, 0,5, 1)

Proof. — Consider s € V,(a), t € V,(o), with £ = 0. By convexity of V,(q), we
have

u=(1—2)s+neV,(o).
Thus
flA, 6,1) < /Z uf 4+ 202,
+i

Since 5; < 1 and since ¢ = 0, we have

SA e, 0)< 2T w4+ 2(1 =22+ ((1 — N s; + My)2

I IN]

Since s5; < 1, we have
(1T —=2)s; +M;)2< 2(1 — 0285 4+ 2287 < 2(1 — A)® 4 20
Since the function x — x2 is convex, we have

ui < (1 — ) s§ + M
Thus
SAo,0)< (1 —2) X s§ 4+ M2+ 2 #F) + 4(1 — N2
i, 5 ISN

The result follows by taking the infimum over s, ¢ O

Following the idea of Theorem 4.1.1, (5.7) will be used together with Holder’s
inequality. Some work is, however, needed to relate the resulting terms to the induction
hypothesis. For i< N + 1, we set

G, ={0eS8y,;;0(6) =N+ 1}
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For simplicity, we denote by # = f,, ; the transposition of N 4+ 1 and i. We
consider the map R:p - pot. We observe that, if p € G;, then

R(e) N+ 1) =pof(N+ 1) =p@) =N+ 1.
Thereby, we can consider R as a map from G; to Sg. We set A, = A N G,.
Lemma 5.4. — If 6 €G;, we have
(5-8) SA; 0,4, 1) < fIR(A), R(a), 4(J))-

Proof. — We let the reader consider the essentially obvious case where i = N + 1,
and we assume 7+ N 4 1. Given a sequence s €{0, 1 }¥, we consider the sequence
5= (5) €{0, 1 }¥*! defined by 5, =0, 5y,, =39, ;=95 if £+ i, N + 1. We note
that 5, = s, for¢ + i. Thus it suffices to prove that s € U, () whenever s € Ug,,(R(5)).
Consider s € Ug,,(R(0)). By definition, there exists = € R(A;) such that, for /< N

sp =0 =1(¢) = R(o) ().
Since = € R(A;), we have © = R(p) for a certain p € A;. Thus
(5.9) s =0 = p(4(0)) = o(40))-
We will show that, for /< N + 1,

5 =0 = o(t) = o(t).

This holds for £ = 1, since p(t) = (1) = N + 1. For ¢ = 1, this follows from (5.9), since
5t = Sy and # 0 4 is the identity of Sy. O
We denote by Q; the uniform probability on G;.

Corollary 5.5. —

1 . 1 !
(5.10) J'exp Ef(A’ 0,7,%) dQ,(c) < Q.(A) = Q.(A)°

Proof. — Using (5.8) and (5.3), the left-hand side of (5.10) is bounded by

&w%ﬂmmxwmmwgw=%w%ﬂMmeﬁuam

1 1
= . 0

SPRRA) 4@

Lemma 5.6. — Assume j & i. Then

1 ..
(5.11) Jexpﬁg(A, 0,1,]) dQ (o) < 0.A)
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Proof. — The map S:p > poty; is one-to-one from G; to G;. We will prove
that setting B = R(S(A;)), we have

(5.12) 8(A; 0,1,5) < f(B, R(0))

where we recall that R is seen as a map from G; to Sy. Since Pg(B) = Q ,(A), (5.11)
will follow from either (5.3)y or (5.4)y as in the proof of Corollary 5.5.

Given a sequence s €{ 0, 1 }¥, we consider the sequence 5 €{0, 1 }¥** defined as
follows. We set 5;, =5, =1. If N4+ 14 14,5, we set sy, =s,. If £¢{s, 5, N+ 1},
we set 5, = §;.

We will show that when s € Uz(R(0)), then 5 € U, (o). By definition of Ug(R(s)),
there exists © € B such that

s =0 =1(f) = R(o)(f) = oo t(f).

Since v € B, we can write T = po;o¢f, where p € A;. Thus
s =0 =pot;ot(f) = cot(f).

We will show that for /< N + 1 we have
5 =0 = () = ot).

The only nontrivial case is / =N + 1, when N + 1 % ¢,;. In that case, when
Sx+1 =0, we have s5; = 0, so that (i) = R(o) (¢) = o(N + 1). But

(1) =pot;ot(i) =pot;(N 4+ 1) =p(N +1).

since N+ 1+147 O
We now complete the proof of (5.4)y,,. We select j such that Q ;(A) is maximum.

Ifi< N+ 1,74, for 0< A< 1, we have, using Lemmas 5.3, 5.4, Corollary 5.5 and
Holder’s inequality

1 1
QA Q (A

— 1 (Qt(A))—A expl (1 . )\)2‘

If we appeal to Lemma 4.1.3, we have

1
Jexp % f(A o,1) Q;(6) < exp [Z n— 1)2]

(5.13) fexp 8 0,1) 4Q(0) <
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It should be obvious from the induction hypothesis that (5.13) still holds for ¢ = j.

. 1
Since Py, ; = Zicn s N1 Q;, we have, from (5.13), and since : = ¢~ *(N + 1)
for o € G; that
L 1 Py, (A)
exp — f(A, 6,67 I(N + 1)) dPy (o) < (2 -5 )
J 16 N Q) Q,(A)
1
O

L s
Py41(A)

Having proved (5.4)y . ,, we turn towards the proof of (5.3)yx,,. We can assume again
p = N + 1. The proof is not identical to that of (5.4)y,,, but is completely parallel.

Lemma 5.7. — For 6 €Sy, JS N+ 1,7+ o(N+ 1), 0< A< 1, we have
(5.14) JA N+ 1)<4(1 -2+ (1 —2)g(A 6, N+ 1,067()))
+ M(A, 0, 671()), N + 1).
Proof. — This is (5.7) if one replaces i by N + 1, j by ¢~ !(j). O
We set
G ={oceSy 3o(N+1)=1i}

We fix 7, and we consider the map R’:p+>fo0p. Thus, for p €G], we have
R'(p) (N 4+ 1) =¢#(z) = N 4 1, and we can view R’ as a map from G; to Sy. We
set Al =ANnG;|. '

Lemma 5.8. — If 6 € G/, i % j, we have
(5.15) S(A; 0,671()), N 4 1) < fR'(A), R (o), R (0)7(5(,)))-

Proof. — Given a sequence s € {0, 1}¥, we consider the sequence s = (s;) €{0, 1}¥*?
defined by 5, = 5, if £+ N + 1, and 5y, = 0. Since 67 '(j) = R'(6)"*(4(J)) # N + 1,
it suffices to prove that s € U,(s) whenever s € Uy ,;(R’(s)). Thus consider s in this
later set. By definition, there exists T € R'(A;) such that

VSN, s,=0=1(f) =R'(c) (¢).
Since = € R'(A]), we have © = R'(p), p € A;. Thus,

VSN, s55=0=¢op(f) =to0o(t) =p(f) = c(f).
Since p(N + 1) = o(N + 1) = ¢, we then have

VISN+ 1, 55=0=p() = o(f).

Thus 5 e U,(s). O ’
We denote by Q’; the homogeneous probability on G;.
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Corollary 5.9. — If j + i,

1

1 . ,
(5.16) Jexpl—ﬁﬂA, o 07 () N + 1) dQi(0) < s

Progf. — Using (5.15) and the fact that R’ transports Q’; to Py, the left-hand
side of (5.16) is bounded by

1 , PP 1 1
JCXP Ef(R (A, s 071 (5())) dPy(p) < PLR(A) ~ QA

using (5.4)y. O

Lemma 5.10. — If ¢ + j, we have

1 . ,
(5.17) Jexpﬁ 880, N+ 1,07(1)) dQi0) < -

Proof. — The map S’:p —£;0p is one-to-one from G; to G;. We will prove
that, setting B = R’ 0 S’(A;), we have, for ¢ in G| that

(5.18) g(A, 0, N + 1, 677(5)) < f(B, R'(0))

where we recall that R’ is seen as a map from G; to Sy. Since Py(B) = Q',(A), (5.17)
will then follow from either (5.3)y or (5.4)y.

Given a sequence s €{0, 1}¥, we consider the sequence s €{0, 1}¥*! defined
as follows. We set 5y, = S,-1; = 1. Weset 5, =5, if £ ¢{N + 1,67'(j) }. To prove
(5.18) it suffices to prove that if s e Ug(R’(s)), then s €U,(s). Thus, consider
s € Ug(R’(s)). By definition, there exists v € B such that

(5.19) 55=0 = (f) = R'(c) (£) = 4 0 5(f).
Since v € B, we can write © = ¢, 0 t;; 0 p, where p € Aj. Thus, by (5.19)
s =0 =1;0p() = o(f) = p(f) = t;00(/).

Now, for £+ N + 1, 67 (j), we have o(¢) * i, ; thus ¢; 0 6(¢) = 6(f). Thus for these
values of ¢/ we have

$5=0=s5=0=p(() =0(). O

The end of the proof of (5.3)y,, is similar to the end of the proof of (5.4)y .,
and is left to the reader.
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II. APPLICATIONS

6. Bin Packing

Given a collection x,, ..., #y of items, of sizes < 1, the bin packing problem
requires finding the minimum number By(x,, ..., xy) of unit size bins in which the
items #,, ..., xy can be packed, subject to the restriction that the sum of the sizes of
items attributed to a given bin cannot exceed one. (For simplicity, we will denote items
and item sizes by the same letters.) The bin packing problem is a fundamental question
of computer science, and, accordingly, has received considerable attention. Much work
has been done on stochastic models [C-L]. In the model we will consider, the
items X,, ..., X are independently distributed according to a given distribution p.
One of the natural questions that arises is the study of the fluctuations of the random
variable Bg(X,, ..., Xy). One early result, [R-T1], [McDI1], using martingales, is
that for all ¢> 0, one has

22
(6.1) P(| By(Xy, .., Xy) — EBg(Xy, ..., Xg)| > £) < 2 exp (~ N)-

However, especially when EX, is small, one expects that the behavior of By(Xj, ..., Xy)

resembles the behavior of .<ZN X;. Thereby one should expect that the exponent in
the right-hand side of (6.1) should be of order /N var(X,), or, at least, less ambitiously,
#2/NE(X3). This is apparently not so easy to prove, and despite several attempts, was
established only recently using non-trivial bin-packing theory [R4]. The purpose of the
present section is to prove this result as an application of Theorem 4.1.1. Several features
of the proof will appear repeatedly in future applications. One advantage of our approach
is that it uses only trivial facts about bin packing, such as the following observation.

Lemma 6.1. — We have
By(%y, « ooy %) <2 2 % + 1.

i<N

Progf. — Tt suffices to construct a packing in which at most one bin is less than
half full. Such a packing exists since bins that are less than half full can be merged. O
We take Q = [0, 1]. For a subset A of QF, and » € QF, we recall the notation f,(A, x)
introduced in Section 4.1. For x = (xq, ..., xy) € Q, we write simply By(x) rather
than By(xy, ..., xx). For x e Q¥, we set || x ||, = (i<ZN x?)V2, Finally, for a > 0, we set

Aa) ={y eQ¥;By(y) < a}.
The crucial observation is as follows.
Lemma 6.2. — For all x € QF, we have
(6.2) By(*) < a4 2| #|[o/.(A(), %) + 1.
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Progf. — As follows from Lemma 4.1.2 (taking «, there equal to x;) we can find
» € A(a) such that, if I denotes the set of indices i < N for which x, = y;, we have

3 5< | 2 L f(A), #).
i¢ElI

By Lemma 6.1 the items (;);¢; can be packed using at most 2 || x ||, f,(A(a), x) + 1
bins. The items (x;);,c; are exactly the items (,);cy, so they can certainly be packed
using at most a bins, since » € A(a). The result follows. O

We provide [0, 1] with the measure yu, and we denote by P the product probability
on [0, 1]¥. The term || x ||, of (6.2) will be disposed of by the following simple observation.

Lemma 6.3. — We have
(6.3) P(|| # ]|, > 2 VN (EX2)™) < exp(— 2NEX?).

Proof. — Since < 1 + 2x for x< 1, we have

Eexp X?< 1 4+ 2EX? < exp 2EX?
so that
Eexp( X X?) < exp 2NEX?
iSN

from which (6.3) follows by Chebyshev inequality. O
We can now prove the basic inequality.

Proposition 6.4. — We have, for all t> 0 and all a > 0, that
(6.4) P(By(%) < a) P(By(%) > a + 4t VN(EXH)Y? 4 1) < ¢~ 4 o~ 28K,

Proof. — Indeed, by (6.2), if By(x) > a + 4¢ VN (EX2)" + 1, we have either
So(Aa),x) > tor||x]||y> 2 /N (EX2)"2, The result then follows from (4.1.2) and (6.2).

Theorem 6.5. — Denote by M a median of By(x). Then for all u< 8 V2NEX? we have

u2
P(|By(Xys .-, X)) =M |21+ 1)< 8‘”‘1’(“ 64NEX2)'
1

Proof. — First, we take a = M to obtain from (6.4), setting z = 4 V/N (EX2)"2
and since P(By< M) > 1/2,
P(By> M + u + 1) < 2(e /4 ¢~ 2NEX])
< 4‘8_ tall_
The bound for P(By < M — u — 1) follows similarly taking a =M —u — 1. O

Remarks.— 1) One can also get bounds for larger values of #, by adapting Lemma 6. 3.
2) It is instructive to find an alternate proof of Theorem 6.5 using Corollary 2.2.4
rather than Theorem 4.1.1.
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7. Subsequences
T.1. The longest increasing subsequence

Consider points #;, ..., %y of [0, 1]. We denote by Ly(#,, ..., *y) the length
of the longest increasing subsequence of x,, ..., #y. That is, the largest integer p such
that we can find 7, < ... <4, for which x < ... < %, . It is simple to see that when
X45 ..., Xy are independent uniformly distributed over [0, 1] (or, actually, distributed
according to any non atomic probability), the r.v. Ly(X,, ..., Xy) is distributed like
the longest increasing subsequence of a random permutation ¢ of {1, ..., N} (where
the symmetric group Sy is of course provided with the uniform probability). The
concentration of Ly (X, ..., Xy) around its mean has been studied in particular in [F]
and [B-B]. Sharper results will be obtained here as a simple consequence of Theorem4.1.1.
We consider Q = [0, 1]¥. For x = (xi);<y in Q, we set Ly(x) = Ly(#y, ..., xy). For
a> 0, we set

A(e) ={xeQ;Lyg(x)< a}.

The basic observation is as follows.

Lemma T.1.1. — For all x € QF, we have

(7.1.1) a > Ly(x) — f.(A(a), x) V' Ly(x).
In particular,
(7.1.2) Lo(x) > a+ v > f,(A@), %) > ——

\/a—i—v.

Proof. — For simplicity, we write & = Ly(x). By definition, we can find a subset I
of {1, ..., N} of cardinality & such that if ¢, €I, : <, then x; < »,. By Lemma 4.1.2
(taking o, =1 if 7€l and « = 0 otherwise), there exists y €e A(¢) such that
card J < f,(A(a), x) Vb, where ] ={ie I;y,# %} Thus (x);cn; is an increasing
subsequence of y; since y € A(a), we have card(I\J) < @, which proves (7.1.1).

To prove (7.1.2), we observe that by (7.1.1) we have

Le(x) —a

and that the function u — (u — a)/4/u increases for > a. O
We denote by M (= My) a median of Ly.

Theorem T.1.2. — For all u> 0 we have

u2
(7.1.3) P(LN> M+u)< 28xp—4(—M-+—u),
u2
(7.14) P(LNS M—u)< 2CXP—m.

20
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Proof. — To prove (7.1.3), we combine (7.1.2) with M = a and (4.1.2). To
prove (7.1.4), we use (7.1.2) with a =M — u, v = u to see that

u

Ly(*) 2 M = f(AM — u), x) >

2

so that
(1.1.5) P(fc(A(M—u),x)z \/uK/I)Z é
On the other hand, by (4.4.2),
u 1 -
(7.1.8) P(fc(A(M—u),x)z m)s P(A(M—u))e .

Comparing (7.1.5), (7.1.6) gives the required bound on P(A(M — %)). O
It seems worthwhile to state an abstract version of Theorem 7.1.2. Let us say that
a function Ly : Q¥ — N is a configuration function provided it has the following property.

(7.1.7) Given any x = (x,);<y in QF, there exists a subset J of {1, ..., N} with
card J = Ly(x) such that, for each y in Q¥, we have Ly(y) > card{i € J; 3 = x; }.

The reason for this name is that, intuitively, Ly counts the size of the largest
‘ configuration ’ formed by the points x;.

The proof of the following is identical to that of Theorem 7.1.2.

Theorem T.1.3. — If Ly is a configuration function, then (7.1.3) and (7.1.4) hold.
7.2. Longest common subsequence

Consider two sequences x = (%, ..., Xg), ¥ = (J1, ..., ¥y) Of numbers. We
define the length Ly y(x; y) of the longest common subsequence of x, » as the largest
integer p for which there exists 1< 74, < ... <7, < Nand 1<, <...<j, < N’ such
that x;, = y,, for each /< p. One interpretation of this is when #,, ..., xy are chosen
among a (small) finite number of possibilities (the letters of an alphabet) Ly x(#;%)
is then the length of the longest *“ subword ”* of the words x, y (and N + N’ — Ly x.(x; )
is the so-called ¢ edit distance * of the two words). These considerations arise in a number
of situations, such as genetics, speech recognition, etc. Consider now a r.v. X, and two
independent sequences (X;);<x, (Y;);<x independently distributed like X. We are
interested in the random variable Ly v = Ly n(Xq, .oy Xg; Yy, .00, Yoo

Theorem T.2.1. — Consider a median M(= My ) of Ly . Then, for all u> 0, we have

u2
(7.2.1) Pl > M+ u) < 2 exp (— 32(M + u))’

u2
(7.2.2) P(Lyw < M — 1) < 2exp (— 32M)'
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Comments. — It is known that b}m}n E(Ly, x)/N exists. However, this limit can

be very small, in the case where X takes many possible values. In this case, we have
M <N, and (7.2.1), (7.2.2) give a better result than Azuma’s inequality.

Proof. — The proof is very similar to the proof of Theorem 7.1.2. Consider
= [0, 1], and for x € Q¥ +*¥'| consider

L(%) = Lg,x (%15 5 %5 &x 15«0 o5 B px0)-
Consider the set
A(a) ={x;L(x)< a}.
The basic inequality is that
(7.2.3) a> L(x) — 2V2f,(Aa), x) VL(z)
To see this, we set & = L(x); we can find indices
1<, < ... << N<4, , <...<iZp<N+N

such that x, =« , for 1<k<b. Consider the set I ={4;1<k<2b}. By
Lemma 4.4. 2 we can find y € A(a) such that

(7.2.4) card{i eI; x + 5 } < £,(A(a), x) V/2b.
Consider then
J={k< bsx, =05 %, =2,
By (7.2.4) we see that
card] > b — 2card{i el; 5+ 5} > b — 2 V2f,(A(a), %).

On the other hand, L(y) > card J since, for £ €J, we have y, =y, ,. Also, since
» € A(a), we have L( ) < a. Condition (7.2.3) follows. The rest of the proof is identical
to that of Theorem 7.2.2. O

Remark. — It is also possible to find a more general version of Theorem 7.1.3
that contains Theorem 7.2.1.

8. Infimum and Percolation

Consider an independent sequence (X),<y of positive r.v. Consider a family &
of N-tuples « = («); <y Of positive numbers. Our prime topic of interest in the present
section is the random variable

(8.1) Z =7, = inf T aX.

aEF i<N
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It does matter a lot that we take an infimum rather than a supremum. The function
of the ' in Z’ is to indicate that we take such an infimum. Rather that (8.1) one can
also write

Z'=—sup X (—ao)X;

aEF i<N

but the numbers — «; are negative. In Section 13, we will have to study the r.v.

(8.2) Z=sup X X

aEF i<N

where «; and X can possibly have any signs. In order to avoid repetition, we will study
the variables Z given by (8.2).

8.1. The basic result

Consider a family & of N-tuples « = («;);<x. We make no assumption on the
sign of «;. We set ¢ = sup || « ||, where || «||; = ( 2 «f)¥2. We consider indepen-
aEeF i<N

1

dent r.v. X;, and we assume that for each ¢ there is number 7, such that7, < X; < 7; 4+ 1.

Theorem 8.1.1. — Consider the r.v. Z given by (8.2), and a median M of Z. Then, for
all u> 0, we have

2
(8.1.1) P(]Z_M|>u)<4exp(_4_“_2),
(o]

Proof. — This will again follow from Theorem 4.1.1.
Step 1. — Set Q = [0, 1], and for x = (x;); < € QF, set
Z(x) = sup 2 o(r; + x).

aEF i<N
Consider @ € R, and A(a) ={y € Q¥; Z(») < a}. The basic observation is that
(8.1.2)  VxeQN, Z(x)<a+ of,(Aa), %).

To prove this, consider « € #. By Lemma 4.1.2, we can find » € A(x) such that, if
I ={i< N;y+ «}, then

(8.1.3) Z o<l 2]l £i(A(), %) < of (Ala), %).
We then have

| Bl +2) = B+ x) < Dlalln—xl< Z 1ol
Thus, by (8.1.3)

2 o(r 4 %) < Z(9) + of(Ala), %) < @ + of (Ala), ),

i<N

and taking the supremum over « proves (8.1.2).
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Step 2. — We provide the i-th factor [0, 1] with the law p,; of X; — 7,. We denote
by P the product probability. Thus by (8.1.2) and (4.1.2)

b—a 1 (b — a)?
P@@>®<P@mwww G)smMmmﬂ__@fy

ic. P@w>wpww<@<m4~@;ﬁj

from which (8.1.1) follows as in Chapter 7, since the law of Z(x) under P coincides
with the law of Z. O

8.2. General moments

In the present section we rely on the theory of Section 4.4. We start with some
preliminaries. Consider a convex function ¢ on R* that satisfies (4.4.1) and ¢(0) = 0.
Consider a family & of N-tuples as in Section 8.1. For « > 0, we define

bgp(u) =inf{ X §(5); JaePF, X s5|o|>u}.
iSN iSN

The simplest case is when §(x) = #% In that case it is easily seen that {z(u) = u*/d%
where o® = sup{ || « |3; « € # }. The most interesting case is arguably the case where

b = ¢ is given by
Po(#) =2 fx<l; Yola) =20—1 ifx> 1.

If we set
t=sup{|o|;i< N;axeF},

we note that, for given a € &, for each s = (s,);<x, setting J = {¢< N; 5;< 1}, we have
igNsi | o | =‘§J~‘i o | + 4?.15‘ | o |

<o(T "4y

ieJ i
S °'(.<ZN‘~P(5«'))1/2 + 7 E:N b(s).

Thus, if Zcys|o|>u then either X,y {(s;) > w’f40® or else I U(s) > 7/2,
and thus SN
2

L [u o
(8.2.1) Vs (u) > min (Z;é’ 5’;)

The basic observation is as follows.
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Proposition 8.2.1. — Consider F, { as above. Set Q = R, and consider the function
Z(x) = asgpy ;EN o, %;. Consider a eR, and Aa) ={y;Z(y) < a}. Then
(8.2.2) VxeQY, f ,(Aa),x)> ¥Ye(Z(x) — a)
when the function k is defined on R X R by
(8.2.3) h(w, o) =] —o|
Moreover, when o, < O for each i < N and eack o € F, we can take

(8.2.4) ko, o) = (o — w)t.

Proof. — By definition of f; ,, given €> 0, we can find s € V,,(x) such that

2 Y(s) < S, o(Ala), x) + e

i<N

Consider « = () € #. Then there exists s’ € U, (x) such that Z | o | s 2 [ o | 8.

This means that there is y e A(a) for which Z | o | B(x;, y, Z |oc,| 5;, where
I={i<N;x+ 5} Now <N

(8.2.5) Y oo x = Z % + 2 (% — )

i<N

We have o(x; — ) < | o | | % — ;|- If o; is < 0 we have oy(x; — 3) < | o | (05 — %)™
Thus in all cases under consideration, we have

(%, — 9) < ; ) < s
igl a’l(xi .yi) iglla'zlh(xt .y) iSZNIG ‘S

so that, by (8.2.5),

2 oo X< Zoci_}a—}— Z | o | 5

i<N

Sa+ X |ols.
iSN

Taking the sup over « yields

sup X oy ]85> Z(x) —a
aEF IiKN

and the result follows by definition of ¥z. O

Corollary 8.2.2. — Consider a family F of N-tuples « = (o;);<x. Consider a sequence
of independent r.v. (X,);<x with common law . Assume that (4.4.6) holds (for a certain
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JSunction ) when P = u®N, and where h is the function determined in Proposition 8.2.1. Then
the rv. Z = sup X o X, satisfies

eEF i<N
(8.2.6) u20=>PZ>M+u)<exp (6 (%) —%‘I’,{u))
(8.2.7) u20=>PZ<M—u)< E(—Il{‘l’,(u) —log2)

where M is a median of Z.

Progf. — Using (4.4.6) and Chebyshev inequality, we have

P(f4(A(0), 5) > 1) < exp (6<P<A<x)>> - é)

where A(a) is the set of Proposition 8.2.1; thus, by (8.2.2), setting ¢ = ¥s(b — a),
for Z(x) > b we have f, ,(A(a), x) > t, so that

P(Z > b) < exp (e(P(z <a) — —IK V(b — a)).

Taking a =M, b =M + » imply (8.2.6). Taking b =M, a = M — u imply
1 1
5< exp(0BZ < M — ) — = ¥y ()

from which (8.2.7) follows. O

We now go back to our main line of study, that of the r.v. Z' = sup X (—«) X,.
AEF i<N

In order to apply Corollary 8.2.2, we need (4.4.6) for the penalty function
k(x,y) = (» — x)*. Since X is positive, its law p is supported by R*. Thereby, only
the properties of 4 on R* X R* matter; but then (» — x)* < ». Thus, to have (4.4.6)
it suffices that the function k(x, y) = y satisfies the conditions of Theorem 4.4.1. The

case where the function %(x, ») depends on y only has been discussed after Theorem 4.4.1.
Thus, we have proved the following.

Theorem 8.2.3. — Consider a family F on N-tuples of positive numbers, and independent
identically distributed nonnegative r.v. variables (X;);<y. Consider functions 6, &, w as in
Theorem 4.4.1. Assume that (2.6.1), (4.4.2), (4.4.3) hold, that condition H(E, w) holds,
that the median m of X, is < 1, and that for t > m, we have

(8.2.8) w(P(X, > 1) > ().
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Then if M is a median of Z' = inf X o, X;, the following holds (where the constant K
F i<N
depends only on the parameter v of Theorem 4.4.1): ‘

(8.2.9) uz20=>PZ'<M —u) < exp (0 (l) ——i‘lfy(u))
2/ K
(8.2.10) uz20=>PZ >M+u) < E(é‘l’,(u) —10g2).

Comment. — A striking feature of this result is the different forms of (8.2.9) and
(8.2.10). This phenomenon is well-known in the case where & consists of a single
point «. In that case, & is a sum of positive independent r.v. Y;. The lower tails of Z
have a tendency to be ‘‘ subgaussian ’ ([H]) while the upper tails of Z certainly depend
much on the upper tails of the variables Y,.

Corollary 8.2.4. — There exists a universal constant K with the following property.
Assume that § satisfies (4.4.1). Assume that

(8.2.11) Viz1, P(X;>1t)< exp(— 2¢(2)).
Then we have
1
(8.2.12) u?O:P([Z—M[?u)SBexp(—K‘Fy(u)).
Proof. — We take E(x) = ¢ %, 0(x) = — log x. According to Proposition 2.6.1,
condition H(&, w) holds if fe"’ dr< 2, so, in particular, if w(?) = — %log t. Also,

by (4.4.1), ¢(1) = 1, so that (8.2.11) implies that the median of X, is < 1. Thus Corol-
lary 8.2.4 follows from Theorem 8.2.3.

Corollary 8.2.5. — Assume that (2.6.5) holds for a certain number L. Then, for some
constant K depending on £ only, if for all t > 1 we have

8.2.18)  P(X>f)< | E0)]

then (8.2.9), (8.2.10) kold (for a constant K depending on & only).

Proof. — We simply have to find a function w that satisfies (8.2.8) and such that
condition H(&, w) holds. It follows from Proposition 2.6.3 that if we take R large enough

(R can actually be taken depending on L and f Edx only) then the function w such that
0

Vo>ec |[{w> b}[=%|£'(b)|
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satisfies condition H(§, w). Now, if we take K = R in (8.2.13), then
1
[{w> 4O} | = g [E0®)] > P(X, <),

so that w(P(X, < t)) > ¢(¢) since w is non-decreasing. O
We now explain why Corollary 8.2.5 is sharp. Consider the case where &% consists
of the single element « = (o;), where «, = 1 /\/ﬁ . Consider ¢ such that {(x) = x2 if

<1 and ¢(x) =2x — 1 for x> 1. Then, for u =N, Ys(u) > N/4 by (8.2.1).
Consider a r.v. X; {0, N}, with

P(X,=N) = p =i [£(2N — 1)].

Under condition (2.6.5), we have lim x£’(x) = 0, and it is not a restriction to assume
& -—> 0

Np < 1/2. Thus the median of Z = N2 X, _ X, is zero.
Now

P(Z;u):P(L_ X X,->u)~Np=—EE’(2N—-1)

NisN

N
and the bound E(K) of (8.2.10) is indeed reasonably good, as x£’(x) is of order §(x)

for many choices of &.
8.3. First time passage in percolation

Consider a graph (V, E) where V is the set of vertices, E the set of edges. Assume
that we have a family (X,), ¢ g of positive r.v. distributed like a given r.v. X (X, represents
the passage time through the edge ¢). Consider a family & of sets of edges, and for S € &,
consider Xy = X X,. In the case where S is a path, i.e., consists of the edges e

vy vg?

eEs
€og0q5 -+ > Cup_y,u LDKING vertices vy, ..., 5, X represents the ¢ passage time
through S ”. Let us set Z, = inf Xg and r = sup card S. Denote M a median of Z,,.

sey ses
The following is a consequence of (8.2.1) and Corollary 8.2.4.

Proposition 8.3. — There exists a universal constant K suck that if E exp KX < 2,
we have

1 2
(8.3.1) Vu>0, P({Zy——M[>u)<4exp(—imin(l—:-,u)).

Consider the case where V = Z2, E consists of the edges that link any two adjacent
vertices. Denote by & the sets of self-avoiding paths linking the origin to the point (0, ),

21
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and by &(C) the subset of & consisting of paths of length < Cn. It was proved by

H. Kesten [K1] that if P(X =0) <
we have

then, for some constant C independent of z,

1
23
P(Zy = Zg) 2 1 — Ce™"°.

It then follows from (8.3.1) that for some constant G’ independent of n, we have

(8.3.2) usa=>P(|Z;,——M[>u)<56xp(——0u—,2n).

This improves recent results of H. Kesten [K2], based on the use of martingales,
who proves (8.3.2) with an exponent #/C’4/n. It should, however, be pointed out
that the reason why martingales allow some success on this problem is because we
consider only sums of the type X a, X, for very special families « = («,). Martingales
are apparently powerless to approach Corollary 8.2.5.

It is pointed out in the literature that (in the case V = Z2) (8.3.2) apparently
does not give the correct rate. In view of Corollary 8.2.5, the obvious approach to
improve (8.3.2) would be to show that Z is very close to Zz, where the family & of
sequences (a,),c g satisfies ¢ = sup || « ||; < n. There is an obvious candidate for F.

eF

Indeed, consider the family &’ defined as follows: #’, seen as a subset of (R")®, is the
convex hull of the family of points ag given by ag(¢) =1 if e€ S and ag(e) =0ife ¢S,
for all S e &. Then, obviously, Z, = Zz.. Then consider the family #(s) of
sequences («,),cy of F' for which || «||;< 6. Then Zy, < Zjz,,. Thus if one could
show that, for some o = o(n), one still has Zz, < Zy + o(4/n), with probability
1 — o(n™*), one would obtain that the likely fluctuations of Zj from M are o(y/n).
Roughly speaking, this means that the shortest passage time from (0, 0) to (0, n) is
(within o(4/n)) obtained through a number of rather disjoint paths. Proving such a
statement is apparently a long range program in Percolation theory.

9. Chromatic Number of Random Graphs

The use of martingales has allowed several important progresses in the under-
standing of the chromatic number of random graphs. Use of martingales does require
ingenuity. This chapter will demonstrate that Theorem 4.1.1 achieves somewhat better
results than martingales in a completely straightforward manner.

For simplicity we call a graph G with vertice set V={1, ...,7} a subset of
E, ={(1,7);i<j}. If (3,5) belongs to G, we say that 7, j are linked by an edge.

A subset I of V is called independent if no two points of I are linked by an edge
(the word independent here should not be confused with its probabilistic meaning).
The chromatic number % (G, A) of a subset A of V is the smallest number of independent
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sets that can cover A; that is, the vertices of A can be given %(G, A) colors so that no
two points with the same color are linked by an edge. We set

2(G, m) = inf{ x(G, A); card A = m }.

Given p, 0 < p< 1, the random graph G = G(n, p) is defined by putting each
possible edge (7, j) in G with probability p, independently of what is done for the other
edges.

The chromatic number is remarkably concentrated, as the following shows.

Theorem 9.1. — Consider k e N and t > 0. Then there exists an integer a such that
(9.1) P(x(G(n, p), m) € [a — &, a])
>1— 2" — P(sup{x(G(n, p),F); FCV,card F< t4/m}> k).

o

Comments. — 1) The last term is always zero for k> t4/m. But when p = n~
(e > 0), it is still small for smaller values of 2. See [S-S], [A-S, p. 88].

2) Another version of this Theorem could be proved, in the spirit of Theorem 7.1.3,
concerning the concentration property of the number

max { card F; x(G(n, p), F) < m}.

3) With a bit of care, we can replace m by m — 1 in the right-hand side of (9.1),
and improve the coefficient 1/8.

Proof. — We set
b = P(sup { x(G(n, p), F); card F < t4/m} > k).

We then define a as the largest integer for which
(9.2) P(x(G(n, p), m) > a) > ¢~ 4 b

Thus
P(x(G(n, p), m) > a) < e~ 18 4 b,

In order to apply Theorem 4.1.1, we must represent the underlying probability
space as a product space. The first idea that comes to mind would be to use {0, 1 }®o;
this is not a good choice. For 2< j< n, set Q;, ={0,1} 7% Set Q' = II Q,;. We

2<Jisn
write o € Q' as (®;);<,, Where ; = (o, ;);<;_; €Q;. To @ we associate the graph G(w)
such that, for i <j, ({,j) € G(w) if and only if ; ; = 1. The only property of G(n, p)
we need is that it is distributed as G(w) for a certain product measure P on II Q.

Define A C Q' as the set of » for which SN
x(G(w), m) > a; sup{y(G(w), F):card F< t4/m}< k.
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Thus by (9.2) we have P(A) > ¢~ **8, Combining Theorem 4.1.1 and Lemma 4.1.2,
we see that P(B) > 1 — ¢~ **® where we have set

9.3) B =V (4)cscn 30 €A; Tay 1y a, < t/?«?}

To finish the proof, it suffices to show that

weB = y(G(w),m) > a — k.

So, consider » € B, and set 7 = y(G(w), m). Consider a subset F of V, of cardinal m,
such that y(G(w), F) = r. We use (9.3) with «; = 1 if j € F and zero otherwise. Thus
there is @ € A such that, if ] ={j e F; 0, + o;}, then card J < t4/m. But obviously,

x(G(), F\]J) = x(G(w), F\I) < r
and thus
a< x(G(o), F) <7 + x(G(o"), I)

<r4+k 0O

In order to obtain an upper bound for y,, the most obvious approach is the
¢ greedy ” one: one chooses an independent set W, of maximal size, and removes its
vertices and all edges adjacent. One is then left with a graph on fewer vertices, and one
iterates the process until exhaustion. To make this approach work one needs a competent
bound on the probability that a random graph contains at least one independent set
of size r. Such bounds were first obtained by B. Bollobas [B], using martingales. A recent
powerful correlation inequality of Janson [J] is both simpler and more powerful than
the martingale approach (compare [A-S] p. 87 and p. 148). It is of some interest to
note that Theorem 4.1.1 does as well as Janson’s inequality. We fix an integer r. For
¢ = (i,j) € Ey, we denote by N(G,¢) the number of independent sets of size r that
contain i, j.

Proposition 9.2. — Consider a number u, and assume that
1
(0.4) P(u [ NG P, 9* < T NG® 1. 4)>5.
e€Eo e€ Ko 2
Then
. . . u?
P(G(n, p) contains no independent set of size r) < 2 exp (-— m)

Proof. — We set Q ={0, 1}, provided with the probability that gives weight p
to 1 (and 1 — p to 0). Consider the product probability P on Q®. For x € (¢,),c g,
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we define G(x) by e(7,5) € G(x) if and only if x, = 1. The graph G(x) is distributed
like G(n, p).
Consider the set AC QF, given by

A ={y; G(») contains no independent set of size 7 }.

Consider z, = 2V'1og(2/P(A)). If we combine (9.4), Theorem 4.1.1 and Lemma 4.1.2,
we see that there exists x such that

(9.5) u | X N(G(x),e)2< 2 N(G(x),e)

e€ Eo e€ Eg

with the property that

v (ae)eeEor 3.}) GA, E “e< to Z (XE.

ze¥ Ve ¢€EEo
In particular, there exists y € A, such that if

C:{eEEO’xe*,ye}

we have

2 N(G(x),e) < ty | 2 N(G(x),¢)?

eeC e€Eo
(9.6) f
<2 T N(G(#),e)

U e€Eo

where the last inequality follows from (9.5). The total number N of independent sets
of G(x) of size r is

eEEo

(9.7) N — (r(’_ 1))_1 3 N(G(x), ¢).

We must have

N< 3 N(Gx),¢)

e€C

for otherwise there would be an independent set of size r of G(x) that would contain
no edge of C, and thus would be an independent set of G(y), which is impossible.

2
Combining with (9.6), (9.7), we get f, > . r_l_‘ 0 so that

u2

P(A) < 2 exp — 7?6‘:—1)—2.

O
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In order to take advantage of Proposition 9.2, one must find competent (= large)
values of u for which (9.4) holds. For example, one can take = u,[u,, where

9.8) P( S N((G,p), o< 1) >,
e€ Ey 4
(9.9) P( 3 N((G,p), ) > 1) > .
e€ Ey 4'

We then find values of u, (resp. #,) using Chebyshev inequality (resp. the second moment
method). Not surprisingly that leads to unpleasant computations (as seems unavoidable
in this topic). These are better not reproduced here, and left to the specialist that wants
to evaluate the strength of Proposition 9.2.

10. The Assignment Problem

Consider a number N, and two disjoint sets I, J of cardinal N. An assignment
is a one-to-one map <t from I to J. Consider a matrix ¢ = (4; ,);c1 jes, Such that
a; ; represents the cost of assigning j to 7. The cost of the assignment = is ¢§1 @+ and
the problem is to find the assignment of minimal cost.

Assume now that the costs g, ; are taken equal to X, ;, where the r.v. (X; ,)ic1 jes
are independent uniformly distributed over [0, 1]. Consider the r.v.

Ly = inf{ X X, _,; 7 assignment }.
i€l ’

It is a remarkable fact [W] that E(Ly) is bounded independently of Lyg. (Actually
E(Ly) < 2 [Ka].)

In this section we try to bound the fluctuations of Ly; the challenge is that the
average value of Ly is of the same order as the average value of the costs X, ;, and
that N? of these costs are involved.

We will first show that we can replace the costs X; ; by Y, ; = min(X; ;, v) for »
of order N~ !(log N)?; then we will appeal to Theorem 4.1.1.

A digraph D will be a subset of I x J. (If (3,5) € D, we think of ¢, j as being linked
by an edge.) The digraphs of use will mostly consist of those couples (¢, ) for which
X, ; is small. Consider a digraph D, and S C I. We set

D(S) ={jeJ;3ieS, (i,j) eD}.

We will say that a digraph D is a-expanding (x > 2) if the following occurs, for all
subsets S of I:

N
(10.1) card S < g = card D(S) > min (oc card S, —2-),
N 1
(10.2) card S > 7= card D(S) > N — — (N — card S).
o

Our first lemma mimics an argument of Steele and Karp [S-K].
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Lemma 10.1. — Consider an a-expanding digraph D and an integer m such that «™ > N/2.
Consider a one-to-one map < from I to J. Then, given any i € I, we can find n< 2m and disjoint
points iy =i, iy, ..., 1, 1 =t such that for 1 < {< n, we have (i ,<(3,,)) €D.

Proof. — We fix ¢ e I. Consider the set S, of points of i, eI with the property
that we can find 4,, ..., 7, in I, for which (4, (5,,,)) € D for 1 <¢< p. We observe
that, obviously, S, , 2 =~ *(D(S,)). Since we can assume without loss of generality that
a™~ 1< NJ2, we see from (10.1) and by induction that for p < m, we have card S, > «? 2.
Then (10.1) shows that cardS,, ,> N/2, and (10.2) shows that for p> 1,
N —cardS,,,,;<«”?N/2. Thus N —card$§,,,, <« N/2<1, which means
Semi1 =1I. Thus ¢ €S,, ,. Consider then the smallest » for which €S, ,; thus
n < 2m. Then one can find ¢, =1, 75, %3, ..., 7,y = ¢ such that, for 1 < /< n, we have
(¢, %(4,,)) € D. The minimality of n implies that the points 7, are all disjoint. O

Consider # > 0 and consider the digraph D, given by

(4,7) e D, < X, ;< 2uN~'log N.

Corollary 10.2. — Assume that the digraph D, ts a-expanding, and consider an integer m
such that o™ > N|2. Then for an optimal assignment © we have X, .. < 4muN~'log N for
all :< N.

Proof. — Consider any ¢ €I, and consider ¢ = ¢;, ..., 1,,; = ¢ as in Lemma 10.1,
used for D = D, . Define 6(¢)) = 7(¢y, 1) for 1 <¢< n, and o(¢') = =(¢') if ¢ ¢{¢;, ..., 1, }.
Since < is optimal, we have

Z XiinsS 2 Xpoans
PN

i'SN
so that
Xi,r(i) S X

1<l<n ip, olig)

< 2nuN~"'logN. O

It remains to do computations.

Proposition 10.3. — For some constant K and all > K with ulog N < N, the random
digraph D, is ulog N-expanding with probability > 1 — N~¥K,

Proof. — We explain why (10.1) is satisfied with probability > 1 — N~%%, The
case of (10.2) is similar and is left to the reader. For simplicity, we set 6 = «N~" log N.
Consider a subset S of {1, ..., N}, and set s = card S. For j € J, we have

2u log N\*
N

P(j ¢ D(S)) = (1 — — (1 — 20)° < exp(— 20s)

and thus
P(j eD(S)) > 1 — exp(— 20s).
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We observe that

0l =1 —e*2 (1l —e¢)a

Thus, if we assume

(10.3) 50 < l
2
we have
(10.4) P(j e D(S)) > vs6

where we have set y = 2(1 —e™ 1) > 1.
Consider ¥ = (1 + ¥y)/2. We claim that, under (10.3),

0
(10.5) P(card D(S) < v’ s6N) < exp (— %)

This follows from (10.4) and the following general fact:

Lemma 10.4. — Consider independent events (A,);<x with P(A;) = p, and consider
8 < 1. Then, the probability that less than 3pN events occur is at most exp(— Np/K(3)), where
K(3) depends on 3 only.

Proof. — Set Y; = 1,,, so that
Eexp(—2Y;) =1 —p(1 —e™*) < exp(—p(1 —¢7%)).
Thus
E exp (— 7\i<ZNYi) < exp(— Np(1 — e7%)).

By Chebyshev inequality we get

P(X Y, < %N)< expNp(A 8 — (1 —e™?))

i<N

and the result follows by taking A small enough so that A3 — (1 —e¢ %)< 0. O
The number of subsets S of I of cardinal s is at most N*. For u > K, we have

( sON) ( sGN)
N*® exp - K < exp -

ON
and 2 exp (— sf) < N7vE,

§=1
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Thus, it follows that with probability > 1 — N~%K for all subsets S of I such that
s = card S satisfies Os < 1/2, we have card D(S) > y’ 6Ns. Equivalently, we have

10.6 ulo NcardS<1E:>cardDS > v ulog N card S.
g 2 g

To complete the proof that (10.1) holds for « = ulog N, it suffices to show that

card D(S) > N/2 whenever acard S > N/2. This follows by applying (10.7) to a

subset S’ of S for which card S’ satisfies « card S’ < N/2 and is as large as possible. O
We can now prove the main result.

Theorem 10.5. — Denote by M a median of L. Then (for N > 3),

_ Ki(log N)?

(10.7) 1< VigN = P(| Lg — M| > ——(i)—) < 2 exp(— ),
\/NloglogN‘
K# log N

(10.8) t>4logN = P(| Le — M|> —_fg——) < 2 exp(— £).
VN log ¢

Proof. — Step 1. — Consider < N/(21logN), « = ulog N and the smallest m
such that o«”> N/2. Set » =4muN~'log N, and Y, ;= min(X;,,v). Consider
the r.v. L defined as Ly but using the costs Y; ; rather that X, ;. It follows from
Corollary 10.2 that LY = Ly whenever D, is a-expanding, so that by Proposition 10.3

(10.9) P(Ly = L&) > 1 — N—vE,

Step 2. — When N~% < 1/2, it follows from (10.9) that M is also a median of L% .
It then follows from (8.1.1) (and scaling) that, for all w > 0,

w2
PL{ — M| > w)<2exp (— 4N112)
and, combining with (10.9), we get
2

P|Ly—M|> w)< 2exp (— 4_:@) + N—vK,

Step 3. — We choose the parameters. We take w = 3 VN, If £2< log N, we
take u = K; if #* > log N, we take u = K#*/log N.
Theorem 10.6 follows easily. O

Remark. — A simple computation using Theorem 10.6 shows that the standard
deviation of Ly is not more than K(log N)*/v/N log log N.
22
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11. Geometric Probability

11.1. Irregularities of the Poisson Point Process

In this Chapter we will consider N points X, ..., X that are independent
uniformly distributed in [0, 1]%, where, except in Section 13.5, d = 2, and we will
study certain functionals L(X,, ..., Xy) of this configuration X,, ..., X (that is L
will depend only on { X,, ..., Xy} rather than on the order in which the points are
taken).

One would like to think that the sample X;, ..., Xy is rather uniform on [0, 1]%;

say, that it meets every subsquare of side K/\/N . This is not the case; there are empty
squares of side of order (N~!log N)** (an empty square will informally be called a
hole). More importantly, in exceptional situations there are larger empty squares.
Several of the functionals we will study have the property that, if one deletes or adds
a point to a finite set F, the amount by which L(F) can vary depends on whether F
has a ¢ large ” hole close to x. Thereby the first task is to study the size and number
of holes.

It is not convenient to work with the sample X, ..., Xy. The difficulty is that
what happens, say, in the left half of [0, 1]* (for example, if there is an excess of points
here), affects what happens in the right half (there must then be a deficit of points
there). Rather, one will work with a Poisson point process of constant intensity w. This
process generates a random subset II (= II,) of [0, 1]* with the following properties:

(11.1.1) If A and B are disjoint (Borel) subsets of [0,1]*, INA and II N B
are independent.

(11.1.2) If A is a (Borel) subset of [0, 1]% the r.v. card(Il N A) is Poisson of
parameter p | A |, where | A| denotes the area of A.

Let us recall that a r.v. Y is Poisson of parameter A if P(Y = &) = ¢~ * M/k! for
k > 0. Thus

k

E(eY) = X ¢%¢e? r_ exp(A(e* — 1)).

k=0 k!

For the convenience of the reader, we recall some simple facts.

Lemma 11.1.1. — If a rv. Y satisfies
(11.1.3) E(e"Y) < exp(A(e" — 1))
Jor u> 0, then

¢
(11.1.4) PY>1)< cxp(—tlog;)—\).
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Progf. — One can assume ¢ > A. Write
P(Y > t) < e ™ E(e¥Y),
use (11.1.3) and take z = log(¢/A). O
Lemma 11.1.2. — If the r.v. Y is Poisson of parameter \, then
A A
P(Y< g)s exp — 5

Proof. — Write, for all u > 0,

A A A
P (Y< §) < exp —é—l Ee ¥ = exp (Eu + A ¥ — l))

and take u = 2. O

For & > 1, we denote by %, the family of the 2% ¢ dyadic squares > of side 2 .
So the vertices of these squares are of the type (¢, 27%,£,27%), 0< 4y, £, < 2%, ¢,,¢, eN.
For C € %, we set

Zy=1 if card(C N II) g p2—%%,

Z, =0 otherwise.

From (11.1.2) and Lemma 11.1.2, it follows that 3, = P(Z, = 1) satisfies
(11.1.5) 3, < exp(— p2~ %1,
Now, for u > 0,
(11.1.8) Eet%c =1 — §, + §, ¢
=14 §(¢" — 1) < exp §,(¢* — 1).
By (11.1.1) the variables (Z;)¢e, are independent; so that, by (11.1.6),

EeFce; %0 < exp 2% § (e — 1),

and by Lemma 11.1.1 we have

v
(11.1.7) P(cgek Zy> v) < exp (— v log oTY 31;).

Observe that n, = X

CE ¥,
no more than 1/8 of the expected number of points of II they should contain. Combining
(11.1.5) and (11.1.7) we see that

Z is simply the number of squares of %, that contain
%

(11.1.8) VEk, Pn, > 2 2% exp(— p2=%~1)) < exp(— 2¢® 2% exp(— p2~%1)),
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We now fix a number #, and we study how the number 7, can be controlled if
one rules out an exceptional set of probability < ¢~ . We assume > 1, u> 4.
We denote by %, the largest integer such that

(11.1.9) ¢? 2% exp(— 2~ 1) < 2
Thus, £, > 0 and for £ > %, we have
¢ 2% exp(— pu2=%~1) > £,

We now observe that if a> 1, we have X exp(— 92! a) < 2 exp(— a), so that,
combining with (11.1.8), >0

(11.1.10) P(VE> ky, n,< 262 2% exp(— p27 %7 1) > 1 — 272,
Lemma 11.1.8. — If t< 4/u[K, we have

2 1
> ——.
® 8kl—1 \/skl—l

Proof. — It suffices to show that V'3, _, < #/u. Now, by (11.1.5) and (11.1.9),

— 2 \?
81:1—1 < exp(— p27 %) < (—') .

82 22k1

Thus it suffices to show that 2%:1> t4/pfe?, ie. 22M1+Y > 4¢4/pfe?. The function
f(x) = e? x exp(— pu/2x) is increasing for x> 0. Thereby, since f(22%1+V) > 2 by
definition of %, it suffices to show that f(4t4/pfe?) < #2, which is equivalent to
exp(— ae?/2) < 1/16a for a = 4/p[4t. O

We now apply (11.1.7), taking & =k, — 1 and v = ¢2%*1*/u. We observe that,
by Lemma 11.1.3 and (11.1.5), we have, for ¢< 4/p/K,

0
> log > p2 %,

1
0
ge22(k1—1) 81 1/8,c ,

1

so that

e22k1 t2

(11.1.11) P (nkl_l > )< exp(— 282).

We now go back to the sample X,, ..., Xy and state our conclusions.

Proposition 11.1.4. — Consider ¢ < VN/K. Denote by ko the largest integer for which
2%0 < N. There exists an integer ky < ko such that

1 N N
(11.1.12) Elog;gs 22k —ky) Klog;E
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and such that, with probability > 1 — Ke™ %, we have the following properties, where m, denotes
the number of squares G of €, satisfying

(11.1.13) card(C Nn{X,, ..., Xy }) < N2= %6,

For each ky < k< ky, we have

(11.1.14) m, < K% exp(— N2~ %)

and

(11.1.15) m,

Proof. — Step 1. — Consider the process II = II,, for u = N/8. It follows from
(11.1.4) that with probability > 1 — exp(— N/K), we have card II < N. It is obvious
that, conditionally on the event { card Il < N}, the number =, of squares C of %, for
which card(C N IT) < N27%~% = 448 stochastically dominates the number m,. Thus
it suffices to prove (11.1.13) to (11.1.15) for =, rather than m,, since, as we consider

only ¢< VN/K, the term exp(— N/K) is swallowed by the term K exp(— #%).

Step 2. — We define %, as in (11.1.9). We observe that, since 1< N27%0 g 4
and ¢ < V/N/K, we can assume 2 < ¢* 2% exp(— u2~%~1), so that &, < ko. By (11.1.9)
and the definition of 2, we have

e2 22k1 +2 KN
N

t2

exp p2 =2+ H—1

KN KN
so that p2~ %1 < Klog o and thus 2**%~* < K log — By (11.1.9),

exp(u2-*1) >

&% 2% 9%o N KN\?
2 = £2 92k —kp) Z t_z

and this finishes the proof of (11.1.12).
Step 3. — By (11.1.10), we have
(11.1.16) m, < 2% 2% exp(— N272%1)

with probability > 1 — 26", for each &> k,. Now we observe that n, < n, ,,. This
is obvious, since, if C € €, , one of the 4 squares of €, ,, contained in G must contain
at most card(IT n C)/4 points. Therefore, by (11.1.16), we must have

n, < 86* 2% exp(— N2~ %~9)

for each & > %,.
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Also, (11.1.11) shows that, with probability > 1 — ¢~ 2, we have

K2%: 2
N

(11.1.17) My —1 <

The events described above occur simultaneously with probability > 1 — 3¢72%, O

Having studied when and how the sample X,, ..., Xy can have a ‘ deficit”
of points, we study how it can have excesses of points. While Proposition 11.1.4 is central
to this chapter, the following result will be used only in Section 11.4.

Proposition 11.1.5. — Consider the integer ky of Proposition 11.1.4, and consider ky < Ey.
For ky< k< ky consider a number r, suck that 2% > r, > 2% *[N. Then, with probability
> 1 — Ke™ ¥, the following occurs:

(11.1.18) Given ky < k< kg, and given a set S C €, with card S < r,, then

2k
card{i< N; X; e U{C:CeS}}< KN2‘2’°rk+rklogef—.

k

Progf. — For a subset U of [0, 1]%, we have
(11.1.19) P(card { i < N;XieU}zu)<exp(—ulogeN—lum).

This follows from (11.1.3) and (the argument of) (11.1.6).
For a subset S of %,, denote Uy the union of the elements of S. It suffices to
consider the sets S with card S = r,. For these we get from (11.1.19)

Plcard{:< N; X, e Ug } > u) < CXP(_ulog;ﬁiﬁ"zk—;)'
k

2K

There are at most ( )< exp(r, log(e2%/r,)) choices for S. We take

Ty
u = 1, log(e2%[r,) + ¢ N2~ % r,.

Thus we see that
22k u 22k rk Tk
— ————|< —2u) < |2 — ).
( ’k) exp ( u log No- % ’k) ( 7k) exp(— 2u) (e 2%) exp(— %)
z

Since (&%c) < 27% for 1< x< 2%, we see that (11.1.18) occurs with probability at

least 1 — Ke= . O
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11.2. The Traveling Salesman Problem

The Traveling Salesman Problem (TSP) requires, given N points x,, ..., #g in
the plane, to find the shortest tour through these points; in other words, to minimize

N—1
|| %oty — %oy || + i§1 | %oty — %o+ Il

over all permutations ¢ € S;. The charm of the TSP is that it is the archetype of an
untractable question. In this section, we denote by L(F) the length of the shortest tour
through F, and we study the r.v. Ly = L(X,, ..., Xy) where X,, ..., Xy are inde-
pendent uniformly distributed over [0, 1]

While the TSP is usually very hard, somewhat surprisingly, it turns out that as
far as the concentration of Ly is concerned, it is the easiest problem we will consider.
The reason for this is its good regularity properties. The only fact we will use about
the TSP is as follows.

Lemma 11.2.1. — Consider ¥ C [0, 1]%, C € ¥,, G C C, and assume that there is a
point of ¥ within distance 2=%*2 of G. Then

(11.2.1) L(F) < L(F U G) < L(F) + K2-*4/card G.

Proof. — An essential property of the TSP is its monotonicity: L(F) < L(F u{x}),
as is seen by bypassing x in a tour through F U {x}. This implies the left-hand side
inequality in (11.2.1). To prove the right-hand side inequality, one first uses the (well-
known, elementary) fact that there is a tour through G of length < K27% 4/card G,
and one connects this tour to a tour of F.

Theorem 11.2.2. — Assume that the functional L satisfies the regularity condition of
Lemma 11.2.1. Then, if X,, ..., Xy are independent uniformly distributed over [0, 112, for
each t > 0 the ro. Ly = L(Xy, ..., Xy) satisfies P(| Ly — M | > t) < Ke "%, where M
is @ median of Ly.

Since the TSP is the simplest case we will consider, we will give the shortest
proof we can, which is considerably simpler than the original proof. The idea of this
proof is, however, a bit tricky; a more straightforward, but somewhat longer proof
will be given in Section 11.3.

The basic idea of the whole chapter is as follows: consider Q = [0, 1]% and the
subset A(a) of QN that consists of the N-tuples y,, ..., yy for which L(p;, ...,y < a.
When a = M is the median of L, Proposition 2.1.1 shows that, except for a set of
probability 2¢~*, given X, ..., Xy, we can find (p;, ...,y €A(a) such that

card ] < Kt V/N, where ] = {i< N; X, + }. Thus we have a tour through { X;;7 ¢ J }
of length < M. The points X, 7 € J, should be in average at distance < K/\/ﬁ of the
set { X;; 7 ¢ J }, so each of them can be inserted in the tour by lengthening the tour of at
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most K/ VN, for a total lengthening < K¢ This would prove that P(Ly > M + Kt) < e~ ¥,
The problem with this argument is that the points X;, ¢ € J, could be precisely chosen

among those which are much further than K/v/N from their closest neighbour. So we
have to find a way to show that this does not happen, or at least that the effect of this
phenomenon does not affect the final result. The idea of this section is to give appropriate
weights «(X;) to each point X; (the more isolated the point is, the higher its weight)
and then to use Theorem 4.1.1 to minimize the influence of points with large weights.

For x €[0, 1]?, throughout this chapter, C,(x) denotes the square C € %,
containing x. Throughout this section, we will set F ={X,, ..., Xy},

#, ={C €€, card(F Nn Q) < N2~ %~6}

and m, = card /.

We fix < VN / K, and we recall the integers %y, %, of Proposition 11.1.4.
For x € [0, 1]%, we define

a(x) = sup{2 %k, < k< kp; card({ X, ..., X} N Cy(x) }) < N2~ %7}
when the set on the right is non-empty, and we set «(x) = 27 % otherwise.
Proposition 11.2.3. — With probability > 1 — K exp(— %), we have
(11.2.2) 2 (X)) < K

i<N
Progf. — It should be obvious that
2EX)< K+ X 27 %card(Fnu{G;Ces,})

i<N K <k<ko

<K+ X 27% x N27%~%card J#,.

ky<k<ky

By Proposition 11.1.4, we have
(11.2.3) m, = card #, < K2% exp(— N2~ %~¢)

with probability > 1 — Ke™*, for all k,< k< k,. The result then follows from the
elementary fact that X 2 % exp(— N2 %7¢) < K/N. O

k<ko

Proposition 11.2.4. — In order to prove Theorem 11.2.2, it suffices to prove Proposi-
tion 11.2.5 below.

Proposition 11 .2.5. — Consider X,, ..., Xy, and a subset J of {1, ..., N}. Assume that

(11.2.4) 2 «(X,) < Ky,
i¢Jy
K 2ky t2
(11.2.5) card # _; < 2 .

N
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Then
(11.2.6) L(X, .., X)) < L{X;;ie]J}) + K¢
where K' depends on the constants in (11.2.4) and (11.2.5) only.

Proof of Proposition 11.2.4. — To prove Theorem 11.2.1, since Ly < K VN, it

suffices to consider the case < VN /K. We fix such a ¢, and we consider a such that
P(Ly < a) > e~ . We will prove that

(11.2.7) P(Ly>a+ Ki)< Ke ®

and this clearly implies the result. The condition P(Ly < a) > ¢~ ** means P(A(a)) > ¢ ¥
(where P denotes now the product measure on Q). If we combine Lemma 4.1.2 and
Theorem 4.1.1, we see that with probability > 1 — ¢~ ¥, the set { X, ..., Xy } has the
property that we can find (yy, ...,9y) € A(a) for which

2 a(X) <Kt | X a(X)

iy iSN
where J ={i< N; X, = }. Now, by Proposition 11.2.3 and Proposition 11.1.4,
we can moreover assume, with probability > 1 — Ke™*, that 2 «(X)*’< K and
that (11.2.5) holds. By Proposition 11.2.5, we than have SN

LXy, .., X)) < L{{ys7e]J)) + Ki<a + Kt O

Proof of Proposition 11.2.5. — We set F' ={X;;ie]J}, G={X;;:¢]J}. We
have to incorporate the points of G into a tour through F’ without lengthening too much
the tour.

Step 1. — For 0< k< &y, we denote by U, the collection of those C € %, that
satisfy CNF' = 0; we set U, = %,, and, for 0< k< %,, we denote by U, the
collection of those G € U, that are not included in any G’ € U,_,. Thus, if G e U,,
its distance to F' is< 27% %2,

By repeated applications of Lemma 11.2.1, we see that

LX, ... X< L{X;ieJ}) + K X 2 27%4/card(G n C).

0<k<k CET;
Thereby, it suffices to show that this double sum is < Kt¢.

Step 2. — We consider three types of terms:

Type 1: card(G N C) > N2— %7,

In that case, since a(X;) > N™"2 we have

(11.2.8) 27%4/card(G N C) € \/—ﬁﬁ card(G N C) < KX{a(X)); X, eC nG}.

23
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Type 2: k > ky, card(G N C) < N2—%*~7,
In that case, the definition of «(X;) shows that «(X;) > 27* for X, € C. Thus

27%¥4/card(G N C) < 27*card(G N Q) < Z{«(X,); X, eC NG}

We observe that the total contribution of the terms of Types 1 and 2 is < K¢ by
(11.2.4), since for different values of %, the unions of the sets in U, are disjoint by
construction.

Type 3: k< ky, card(G N C) < N2~ %*—7,

Step 3. — We control the contribution of the terms of Type 3. We denote by V,
the union of the sets G e U, for which card(G n C) < N27*~7, Denoting by | V|
the area of V, the key observation is that, under (11.2.5) we have

(11.2.9) | U V,,|<I—{i2.
k<ky N

The reason is simply that if C € €, satisfies card(G N C) < N2~ %*~7 when C € U,,
card(G N C) = card(F Nn C) < N27%~7 5o that, among the 2*¥1~*~1 squares C'
of %, _, that are contained in C, at least half must satisfy card(C’ n F) < N2~ *h—1-6,
so belong to 5, _,. Thereby the area of U V, can be at most twice the area of the
union of ¥ _,. <

There are 2% | V, | sets C of €, included in V,. Thus, by Cauchy-Schwarz, we have

Y 27%4card(G N C) < 27*Vcard(G N V,) 2% | V, |
CE%, CC Vg
=Vcard(G N V,) | V,|.

Using Cauchy-Schwarz again, the sum of these terms over k< %, is at most
V|V | card(G U V)< VN| V| where V =kl<Jk V,. This is less than Kz by (11.2.8). O
1

11.3. The Minimum Spanning Tree

A spanning tree of a finite subset F of R? is a connected set that is a union of
segments (called edges) each of which joins two points of F. Its length is the sum of the
lengths of these segments. We denote by L(F) the length of the shortest (= minimum)
spanning tree of F. An interesting difference with the TSP is that it can happen that
L(F u{x}) < L(F). This is e.g. the case if F consists of the three vertices of an equilateral
triangle and x is its center.

The regularity property of L that we will use is as follows.

Lemma 11.3.1. — Consider G €%, (k> 1) and a subset F of [0, 1]2. Assume that
each C' € €, _, that is within distance 2~ **° of C meets F. Consider a subset G of C. Then

(11.3.1) | L(F U G) — L(F)| < K2~*4/card G.
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Proof. — Step 1. — The inequality
L(F U G) < L(F) + K2 *(card G)'?

is proved as in the case of the TSP. The problem is the reverse inequality.

Consider a minimum spanning tree of F U G. We remove all the edges adjacent
to G. This breaks the spanning tree in a number of pieces, and we have to add edges
to connect it again. We will prove two facts.

Fact 1. — There is at most 6 card G pieces;

Fact 2. — Each of the pieces contains a point within distance K2~ of C.

Once this is known, we simply take a point in each of these pieces within
distance K27* of C. We build a tour of length < K27 *(card G)"* through these points
to reconnect the pieces.

Step 2. Proof of Fact 1. — Consider three points x, a, b of F U G, such that the
segments [x, a], [x, b] both belong to a minimum spanning tree of F U G. Then we
must have ||[a — & || > || x — a|| for otherwise we could remove the edge [x, a] and
replace it by [a, 4] to get a shorter spanning tree. Similarly, we have ||a — b || > ||x — & ||
Thus the angle between the lines xa, xb is at least =/3. Thereby the spanning tree must
contain at most 6 edges adjacent to each point. Thus removing % points and the edges
adjacent creates at most 6& connected components.

Step 3. Proof of Fact 2. — Consider a finite set H of [0, 1]2. Consider 4, b in H, and
assume that [a, 5] belongs to a minimum spanning tree of H. We show that the ¢ lens

11.8.2) L, ={xlla—x[<l[la—b[, |6 —=x]<lla—b]}

does not meet H. Indeed if we remove [a, 4] from the minimum spanning tree, we
split H into the component H, containing a and the component H, containing 5. If
there existed ¢ eL, , "H,, we could remove the edge [a, 4] from the minimum
spanning tree, and replace it by [¢, 4] to get a shorter spanning tree. Similarly,
L,,nH,=0.

We apply the above result to H = F U G. An edge [4, 4] from a minimal spanning
tree of H is such that L, , does not contain a square C’ in €, _, within distance 27**5
of C, because it is assumed that all such squares meet F, hence H. Thus, if ¢ € G, then,
clearly, || 6 —a||< K27% O

The main result of this section is as follows.

Theorem 11.3.2. — Assume that the functional L satisfies the regularity condition of
Lemma 11.3.1. Then, if X,, ..., Xy are independent uniformly distributed over [0, 112, the r.0.
Ly = L(X,, ..., Xy) satisfies

Vi>0, P(|Ly—M]|>¢<Ke K

where M is a median of Ly.
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One central idea of the approach will be to condition with respect to X,, ..., X

m>

where m = [N/2]. The size of the holes of { X, ..., Xy} are then controlled by the
sizes of the holes of { X;, ..., X, }, independently of X, ,,, ..., X5. The main part
of the proof of Theorem 11.3.2 is to obtain the following statement. We set Q = [0, 1]

Proposition 11.3.3. — Consider an integer n with lg —n|< 1. We write Q = Q",

Q, = QN~"; we denote by Py, P, the product measures on Q,, Q, respectively. Given 0 < t < VN / K,
there exists a subset H, of Q, such that P,(H,) < K, e~ **, and that, whenever (x,, ..., x,) ¢ H,,
the r.0.

L'=L"(X, 415+ Xy) =Ly, ooy %, X015 00 Xyy)
defined on Q, has the following property
(11.3.3) IFP(L'<a)> e Pyl >b)> e ¥, then b — a< Kt.

First, we prove that Proposition 11.3.3 implies Theorem 11.3.2. To prove that
theorem, it suffices to prove the following statement:

if P(Ly< @) > 22, P(Ly > b) > 22, then b — a< K.

Consider the set A ={Ly< a} in QF. We will write Q¥ = Q, X Q, (Q, = Q";
Q,=0Q%"" and P=P,®P,. Thus, given o, €Q,, we define L’ on Q, by
L'(wy) = Lyg(0;, w,). For o, €Q,, we write

Aw;) ={ 0y €Qy; (007, 0p) €A}
Since P(A) > 2¢ "2, the set
C,={0w €Q;Py(A(wy)) = €~ c?/z}

satisfies P;(C,) > ¢~ *”2. Consider C, = C,\H,, so that Py(C,) > ¢ — K e ¥,
When w, € G;, we have P,(L’ < a) > ¢~ **2, so that by (11.3.3) we have

PL'<sa+Ke)>1—e "
By Fubini theorem, we get
(11.3.4) P(W) > (1 —e ) P(Cy X Q,),

where W, ={Ly< a 4+ Kt} n (C; X Q,).
We observe that (11.3.3) implies

P,(L'>0)2e®>P(L'>b—Kt)>1—e¢ ¥,

Thus, we can apply the same argument as above to show that

(11.3.5) P(W,) > (1 — e ) P(Q; X D,),
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where Wy, ={Ly> b6 — Kt} N (Q; X D,) and Py(D,) > ¢ 2 — K, ¢~ *". For ¢ large
enough,

P((Cy X Q)\W)) + P((Q; X Dy)\W,) < P(Cy X Dy)

so that W, n' W, + 0. O
We now start the proof of Proposition 11.3.3. Consider x,, ..., x, € Q = [0, 1]%
and set F' ={x,, ...,%,}. Denote by m, the number of squares of %, that do not

meet F'. We consider the integers Z,, %, of Proposition 11.1.4 (defined using n rather
than N). We define H, as the set of n-tuples (#,, ..., x,) for which

(11.3.6) For each %, k< k< ky, we have m, < K2% exp(— n2~%~9),
. Komp
(11.3.7) My < =

Thereby, P;(H,) > 1 — K¢~ ** by Proposition 11.1.4.
We now fix (%4, ..., x,) such that (11.3.6), (11.3.7) hold and we start the proof
of (11.3.3). For x € [0, 1]%, we denote by #(x) the smallest integer ¢ such that there is

C e %,, C within distance 27°*+* of C,(x), with the property that F' n C = @. Thus,
by definition, we observe

(11.3.8) if £ = £(x), any square G’ € €,_, that is within distance 27*% of G,(x)
meets F'.

We also observe that if y € G,,,(x), then ¢( y) =¢(x), so that V, ={x;¢(x) =¢}
is a union of squares of %,.

Lemma 11.3.4. — a) We have, for each k, < k< Ry,

(11.3.9) | Vi | < Kexp(— n27%79),
K# K
V)| € —< —.
b) Ill<Jk1 ‘l n N

Progf. — Let us denote by U, the union of the elements of €, that do not meet F’,
and set U, = U,\ UIU,’C. It suffices to observe that if x € V,, then G, is within
k<

distance 27/** of U,, so that | V,|< K| U,|, and the result follows from (11.3.6),
(11.3.7). O

We consider the function g(x) = 27 ™./ By (11.1.12), we have

K

K n\"?
11.3.10 27hg —(log=| < —.
(1310 llglo< e (o) <5

By (11.3.9) and an obvious computation, we have

(11.8.11)  lgllh< Kiv/a
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To prove (11.3.3), we have to prove that if a, b are such that P,(L’'< a) > ¢~ ¥,
Py(L'> b) > ¢ % then b — a< Kt. We now appeal to Corollary 2.4.5 with » = Ki,
for the function A(x, y) = g(x) + g(»). From (11.3.10), (11.3.11), we see that we
can find 9, .1, - .y ¥xs Zns1s - - -5 &y Such that

(11.3.12) L'(ppirsovon)Sa; L2, 00, 000, 29) 2 b,

and

(11.3.13) Z (g +&(=) < K,

iEJd

where J ={n 4+ 1< i< N;5 % 2z}
Consider the set F that consists of the points x,, ..., x,, as well as the points y,,
i ¢J. We will prove:

(11.3.14) | L/ (Js1s - - > 0w) — L(F)| < K.

The same argument will show that
| L (zn 15 - - 05 2w) — L(F)[ < Ks

and this will finish the proof.
First we observe from (11.3.1) that if F, > F, and if ¢(x) > &,, then

| L(Fy v{x}) — L(F)| < Kg(x).

Thereby, it follows from (11.3.13) that we can add to F all the points y,, 7 €], for
which #( »,) > k,, without changing the value of f by more than K¢ Denote by G the

set of the other points ;. We observe that G is contained in lU V,. Consider C € %,,
<k

CC V,. By (11.3.1), we have, for any set F; containing F, that
| L(F, U (G n Q) — L(F,)| < K27/(card G n C)*2.
Therefore it suffices to show that

¥ 27¢ ¥ (card G n C)*< Kt

{<ky cCvy
But this is shown as in Step 3 of the proof of Proposition 11.2.5. O

11.4. Gabriel Graph and Voronoi Polygons

Given a subset F of [0, 1]2, its Gabriel graph is the set of edges [a, 4] such that
the closure L, , of the set L, , of (11.3.2) meets F only in @ and 4. When the set F has
the property that it does not contain points x, », z such that |[|x —y || = || x — z ]|,
(a property that is satisfied with probability one for random sets) this is equivalent to
saying that F contains the edge [, 8] if and only if L, , does not meet F. In that case,
the Gabriel graph contains the minimum spanning tree, as is shown in the course of
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the proof of Lemma 11.3.1. As in the case of the MST, at most 6 edges are adjacent
to each point of F.

We denote by L(F) the length of the Gabriel graph. An interesting feature of
this functional is that, in certain special configurations, adding a single point creates
a big decrease of L(F). A typical such configuration consists of the points (0, &/n),
(1, k[n), 0 < k< n. The Gabriel graph contains all the edges between (0, 2/z) and (1, k/n).
All these edges will disappear when one adds the middle of the unit square to F. The
following lemma shows that the previous example is close to be the worst possible
behavior.

Lemma 11.4.1. — Consider C € 6, F a subset of [0, 112, and assume:
(11.4.1) every element G’ of €,_, that is within distance of 27 %2 of C meets F.

Then, if GCQ, we have
(11.4.2) | L(F) — L(F uG)|< K27 % card{(F U G) n B(C, K27%)},

where B(C, r) denotes the set of points within distance r of C.

Comment. — The difference with Lemma 11.3.1 is that the bound now depends
upon F U G rather than G alone.

Proof. — As already seen, a point is adjacent to at most 6 edges, and, as in the
case of the MST, edges adjacent to G have a length < K27*. Thus

L(F U G) < L(F) + K2 * card G.

To prove the reverse inequality, we observe that the edges [a, ] that belong to
the Gabriel graph of F but not to the Gabriel graph of F U G are exactly these for
which L, \{ 4, b} meets G but not F. Then ||a — & || < K27%, for otherwise there
would exist C’ € %,,_, within distance 27**? of C that would not meet F. This implies,
since L, , meets G, that a, b € B(C, K27%). In the Gabriel graph of F, there are at most
6-card(F n B(C, K27%)) edges adjacent to points in B(C, K27%), so at most that many
edges can be removed. O

Another natural example of functional that satisfies Lemma 11.4.1 is the total
length of the Voronoi polygons. If F is a subset of [0, 1]%, and x € F, let us define the
Voronoi polygon V,, of x as the set of all points y of [0, 1]2 for which d(x, ) = d(», F\{x}).
(This name is a bit abusive since when x is close to the boundary of [0, 1]? this set is
not a polygon.) Denote by L(F) the sum of the lengths of the Voronoi polygons of all
points of F. We sketch a proof that L(F) satisfies the condition of Lemma 11.4.1. First,
we observe that if y € V,, there is no point of F within distance less than || x — y || of y.
Thus, if x € G, the Voronoi polygon of x (with respect to F U G) is under (11.4.1)
entirely contained in B(x, K27%), so is of length < K27% Thus

L(F U G) < L(F) + K2~ * card G.
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To prove the reverse inequality, consider a point @ belonging to the Voronoi polygon
of x € F, with respect to F, but not with respect to F U G. Then there is no point of F
within distance less than || x — a || of a, but there is at least a point of G. Under (11.4.1)
we have g, x € B(G, K27%); but the total length of the part of the Voronoi polygons
of F contained in B(C, K27*) is easily seen to be < K27* card(F n B(C, K27%)).

Theorem 11.4.2. — Consider a functional that satisfies the condition of Lemma 11.4.1.
Set, as usual, L = Ly = L(X,, ..., Xy), and consider the median M of Ly. Then

1
(11.4.3) V>0, P(JL—M|> 1)< Kexp (— & min (22, (t\/N)m)).

In particular, the tails of Ly are subgaussian for values of ¢ up to NV, We now
sketch, in the case of the Gabriel graph, why, within logarithmic terms, the exponent
in (11.4.38) is correct for ¢ > N"%, We give an informal argument, that could be made
rigorous. For simplicity, let us argue about L(II), where II is a Poisson point process
of intensity N. Consider < VN, and let ¢ = #/A/N < 1. Denote by k the cardinality
of II N[0, a]2. When % is even, conditionally on %, with probability > (1/KZ&*)*, the
k points of II N [0, a]? are such that each of the discs of center (v, 2fa/k), for n €{0, a },
1 < ¢< k/2, and of radius a/4k? contains exactly one of these points. Then the Gabriel
graph of II contains the edge from the point in the disc of center (0, 2/a/k) to the point
in the disc of center (a, 2/afk), for a total length of order ka. Now with overwhelming
probability % is of order u2; so, with probability > (1/Ku®)** we get the exceptional
configuration described above that creates an abnormal length of order t = 4% a = u3[V/N.
Now # = (¢4/N)", and

(—1—)“2> exp (— % (tV/N)2e logt\/N).

Ku?

So this later quantity is a lower bound on the probability that we get an abnormal length
of order ¢ that will have L exceed the median by ¢.

To prove Theorem 11.4.2, we observe that, since | Ly |< KN by (11.4.2), it
suffices to prove (11.4.3) for ¢ < N/K. We follow the scheme of Section 11.3. It is enough

to modify Proposition 11.3.3 so that, when ¢< vV N/ K, (11.3.3) can be replaced by

t3
(11.4.4) IfPy(L'< @) > 2 Py(L/ > b) > 2%, then b — a < K(t + \/—N)

Once this is known, as in Section 11.3, we prove that

3
P(L< a) > 2 %2 P(L > b) > 22 imply b —a< K(t + W)

Theorem 11.4.2 follows since, if we set u = £ + ts/\/N, for u < N/K we have ¢ < \/ﬁ/K,
moreover, > K~ min (s, (u VN )2’3).
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The construction of H, and the proof of (11.4.4) will parallel the proof of Propo-
sition 11.3.3. In order to avoid repetition, we will not reproduce the entire argument
but simply explain the necessary modifications.

The construction of H, is modified as follows. We require that for 2, — 1 < k< &,

and each subset S of %,, with card S < r,, one has
2k
(11.4.5) card{i< n;x, e U{C;CeS}}< KN2=%*y + . log 67—,
k
where we set 7, _, = 2% #*/n and, for & > k,,

r, = Ki2% 3k,

We observe that, using (11.1.12),

K¢ 7
2—2k 7, > Kt22k1—3k0 > — 221c1~2ko > —
n

H

provided K is large enough. It then follows from Proposition 11.1.5 that imposing
these extra conditions does not change the fact that P,(H,) > 1 — Ke™ ¥,
We change the definition of the function g(x) to

1 ‘0 — max x
g(x) — Q_k_o (210 (e, £ )))4.

Thus

1 K
(11.4.6) e Il < 55 (20 )t< W(log —) <

and, obviously, (11.3.11) still holds.
Suppose now that we are given a, b with

Py(L'< a) > 2%, Py(L' > b) > 2%,

Using Proposition 11.1.5 again, we see that we can find a set AC{L'<a},

P,(A) = ¢, such that whenever (J,,,, --.,75) €A, we have
(11.4.7) for each &, — 1 < k< &, and each subset S of %, such that card S< 7,
one has

2k
card{n + 1< i< N;» eu{C;CeS}}< KN2~%*r, + rklogi2—-_
Ty
We then consider, using Proposition 11.1.5 again, a subset B of { L’ > 4} with
P,(B) > ¢ *, such that when (2, ,,, ..., 2y) € B, the property similar to (11.4.7) holds.
We now appeal to Corollary 2.4.5, to find (9,1, -- -, x) €A, (2415 --+» 2y) €B
such that if J ={¢;n + 1< i< N,y + 2}, then

(11.4.8) T g(5) +glx) < K
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We denote by F the collection of points that consists of the points (x,);<,, together

with the points y;, ¢ ¢ J. We denote by G the collection of points y;, 7 € J. We have to
show that

(11.4.9) |L(F UG) — L(F)| < K(¢ + #/4/n).

Let us denote by S, the collection of squares C € €, that contain at least one

point y;, ¢ € J, £( y;) = {. It follows from (11.4.1) that, if FCF,CF UG, and if C €S,,
we have

| L(F, U (G N Q)) — L(F,)| < K27’ card{(F U G) n B(C, K27%)}.
Thereby, adding to F, all the points of U, N G, where U, = U{G; C€eS,}, we

cannot change the value of L. by more than

(11.4.10) 2! card{(F U G) n B(U,, K279 }.
Since, for ¢(y,) =?¢ > k,, we have by definition
1
&) = o (2=f)s,
and since X g(;) < Kt by (11.4.8), we see that
i€
card S, < Ki24 %k,

Now, B(U,, K27¢) is contained in a union of < K card S, squares C of %,.
Thereby, it follows from (11.4.5), (11.4.7) that the quantity (11.4.10) is bounded by

2
2-‘K (N?‘z’ 7, + 1, log %—l) < Ki2f "o,
t

and these quantities have a sum < K.

Now we have to control the influence of the points y; for which ¢( y,) < &,.

We denote by V, the set {{(x) =¢}. We recall that by Lemma 11.3.4 we have
[’l<Jk1V, | < K#?/N. Since V, is union of squares of %,, we have in particular that

V, = 0 for £ < k,, where 2~ < Ki/V/N. Adding to a set F, such that FC F,CF UG,
the points of G NV, can, by (11.4.1), change the value of L. by at most

9-¢ card((F U G) n B(V,, K2-7)).

Now we observe that | B(V,, K27%)|< K|V,|. Thus the total contribution of the
points of G NV, is bounded by

(11.4.11) 2=¢card((F U G) N V),
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where | V| < K#?/N and V is a union of squares of €, _,. By (11.4.7), the summation
of all these quantities over £ > k, is at most

. K: w (9% —2
K27 % card((F U G) N V) < _\/—N N2~ %17, _, + 1, _,log

Xy —1
SUNU PN

VN

But, using the definition of %, , the last term is easily seen to be bounded by a constant. O

K ( 2% KN)

11.5. Simple matching

In this section (for reasons that will become apparent later) we work in [0, 1]¢
for d> 2.

A matching of a set F is a decomposition of F as a union of disjoint pairs of points
(points of the same pair are matched); we make the convention that when card F is
odd, there is exactly one point that is unmatched (does not belong to any pair). A
minimum matching is a matching that minimizes the sum of the distances of pairs of
matched points. We denote by L(F) the length of a minimum matching of F. For
simplicity, the point to which a given point is matched is called its partner.

Our interest in that functional stems from the fact that it apparently does not
have good regularity properties. It is obvious that

LEV{z}) —LEVOY<|x—0]

but in certain configurations this cannot be improved upon. The problem is that if
one tries to match y to a point different from the partner of x, the partner of x has to
find a new partner, etc., and there is no apparent way to control this chain reaction.

While the behavior of F is not good as far as the change of one point of F is
concerned, the situation is somewhat better when a significant number of points of F
are changed. We set L'(F) = sup{ L(F'); F'CF}.

Lemma 11.5.1. — One has | L(F) — L(G)| < L'(F AG) + V.
Proof. — Consider U = F\G, V = G\F. Consider a minimal matching .# of F,
and, for @ € F, denote its partner by 6(a). Set
H={aeF\U;0(a) eU}L
When we remove U from F, the points of H lose their partners. Set H' ={0(a);a e H}.
Thus H' C U. To find partners for the points of V U H we consider a minimum matching

of V U H'. This matching induces a matching .#' of V U H, using the bijection 6 of H
and H’. The union of the trace of # on F\(U U H) and .#' is almost a matching of G,
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although it could happen that there remains an unmatched point in V U H and one

in F\(U U H). The two points are then matched together (creating the term V/d).
The matching we have constructed witnesses that

L(G)< L(F) + L(V UH') +Vd
< L(F) + L'(VuUU) +V4d

To see it, it suffices to use the triangle inequality, and to observe that the edges [a, 6(a)]
for a € U’ do disappear from .# when U is removed. O
Here is a simple observation.

Lemma 11.5.2. — Consider subsets ¥y, ..., F, of [0, 1]% Then
L'(UF)< X L'(F) 4 Kp~

i< i<p
where, as in the rest of this section, K denotes a constant that depends on d only.

Proof. — 1t suffices to prove this for L rather than L’. The point is that if one

considers an optimal matching of each F;, their union fails to be a matching of U F;
iSop
only because there could remain an unmatched point in each F;, while we are permitted

at most a single unmatched point. Thus, it suffices to match all but at most one of these
points, using for example a shortest tour through them, and matching consecutive points
on the tour. O

It seems an interesting question whether when d =2 the inequality of
Theorem 11.2.3 would hold, at least for smaller values of ¢ Possibly easier is the
question whether the variance of Ly is bounded. The best results in that direction
belong to Rhee. She proved that if d = 2, Var Ly < K(log N)? [R3], while if d> 3,
Var Ly < KN'~%4 [R2]. The arguments for these results are different. Our methods
do not allow to improve on the result for d = 2, but allow significant improvement
when d > 3 (and this is why we consider this case in this section). Although this has

. . 1 .
not been checked, it seems to be an exercise to show that Var Ly > 4 N'~2/4 using

e.g., the method of [R1]. What we will prove is that Var Ly < (log N)* N*~24, The
proof goes by first proving a Poissonized version of the result, and then using ¢ dePoisso-
nization ”’. The second part of the argument is standard (see e.g. [R1]) and will not
be given here.

The Poissonized version of the problem is the study of the r.v. L, = L(II,),
where II, is the random subset of [0, 1]% that is generated by a Poisson point process
of constant intensity A. We consider the space Q of all finite subsets of [0, 1]% and on Q,
we consider the probability P, induced by II,. On Q? we consider the function

(11.5.1) Ff(F, G) = L/(F AG).
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For a subset B of Q, we set

(11.5.2) f(F,B) = inf f(F,G) = inf L'(F AG).

We set vy =

If we combine this result with Lemma 11.5.1 (and proceed as usual) we see that
if M, denotes a median of L,, we have

1
— | L, — M, ||dP< K

J\exp ((log )\)K )\Y l A A l)
which certainly implies the previous claim about the variance of L,. To prove
Theorem 11.5.3, we will prove the following statement, whose form is adapted to proof
by induction.

Proposition 11.5.4. — There exists numbers Ky, o> 1 depending on d only, such that
Sor all ¢> 0 we have, for all A, 1< A< 2 and all Borel subsets B of Q,

£(E, B) ¢
dP, (F) < ——.
L e P A )

To see that this statement implies Theorem 11.5.3, we take the smallest ¢ such
that A < 2%, so that «¢ is of order log %, and K¢ of order (log \)¥.

The proof of Proposition 11.5.4 is by induction over ¢. For the case ¢ = 1, one
uses the brutal bound

f(F, G) < K(card F + card G)

and the exponential integrability of Poisson random variables. The easy details are
left to the reader.

We will determine, in due time, suitable values for K, and « and we now start
the proof of the induction step from ¢ to ¢ + 1. Consider A such that 2°< A< L
Consider the smallest integer n such that A’ = A/n? < 2*°. (Thus, we can apply the
induction hypothesis to 2".) By definition of 7, we have A/(n — 1)? > 2, so that, since
A< 27, we have (n — 1)7< 2%V and thus

n

(11.5.3) nt < (7—_1—)"2(a—1)aq< 9d ga—1ol
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Also,

— 1\4 __1\@
(11.5.4) N o= -2\&- > (ﬂ 1) ( A )d > (n 1) 2¢q > 20“1_.‘1.
n

n n n—1

Consider a partition of [0,1]% in »* congruent cubes (C));<,.. From
Lemma 11.5.2, we observe that

(11.5.5) L'(FAG)< 3 L/((FAG) nG) + Kr' ™.
i<n

We set
Ji(F, G) = L'((F AG) n G)).

Thus we have, from (11.5.5)
L'FAG) < X dﬁ(F, G) + Kn#~ 1,

i<n
If we set

gF,G) = inf X f(F,G),

GEB i<nd
we get by (11.5.2) that
(11.5.6) S(F,B) < g(F,B) + Kn*~,
The crucial point is that (Q, P,) is naturally isomorphic to the product of n* copies

of (Q, P,.). To see this, let us denote by R; an affine map from C; to [0, 1]%, for ¢ < n%
Then the isomorphism simply associates (R;(F N G))); <,z to F. We observe that

AF, G) = T L/(R(F 1 G) AR,(G 1 C))

so that, under this isomorphism, each function f; is distributed like the function 4’ on Q*
(provided with P,, ® P,.), where #'(F, G) = ;ZI—L'(F AG). Moreover, with the notation
of Definition 2.4.1, we have f,- = g. By induction hypothesis, and taking the scaling
factor n into account, we have for each Borel set BC Q,

L exp(2H(F, B)) dPy(F) < 5o

where & = al’, a = n(2K2\'Y)~ % It then follows from Theorem 2.5.1 and the definition
of g that

1
Vi<, J exp(atg(F, B)) dP,(F) < ——— exp(3n® *)
Q PK(B)
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for each Borel set BC Q. From (11.5.6), it follows that

J exp(atf(F, B)) dP,(F) < exp(3n® 2 + Kn®~! at).
Q

P, (B)
We see that if
(11.5.7) =1 gg K,

then, taking ¢ = n~ %K, we get

(11.5.8) J exp (K‘:ﬁ F(F, B)) B < 5

Now,

a 1 1
Ko 2KKINTn2-1  QKKIN

since dy = df2 — 1. Thus, provided K, = 2K, (11.5.8) is exactly what we need to
complete the induction.

It remains to check that (11.5.7) holds, but by (11.5.3), (11.5.4),
n g 92991 aq,
afn< N TY QMY

so that (11.5.7) holds for « =1 4 2y. O

12. The free energy in the Sherrington-Kirpatrick model at high temperature

Consider a sequence (g,);<y With g, e{ — 1, 1}. Each ¢, represents the two possible
values of the spin of particule . Consider numbers (%;;), <; < j<x that represent the inter-

action between spins. The energy of a given configuration is given by X k¢ s;.
1<i<ji<N
Consider a parameter 8> 0 (that plays the role of the inverse of the temperature).

The so-called ‘¢ partition function  is given by

_ p
12.1 Ze =7 (k) =2"% — k.cce.l).
( ) N why) =2 Y= {2_:1, 1)y P (\/ﬁ 1<i<2:i<N s e’)

The role of the factor V/N is for normalization purposes that will become apparent later.
If we think of ¢, as being a Bernoulli r.v., it is natural to write

_ B
(12.2) Zy(k;;) = E, exp (—\/_ﬁ 1<i<2iSN}z“ & 5;‘)'



192 MICHEL TALAGRAND

In the model we study, the numbers %;; are random, and the sequence (%;);<;<;<n
is ii.d. We assume Ek; = EA}; = 0, and we assume for normalization purposes that
ER;, = 1. We will also assume that E exp a | %;| < oo for « small enough. Then EZ,
is well-defined for N large enough. We are interested in the quantity N~' E log Z
(mean free energy per site), whose study relies ultimately on the study of Z. It is proved
in [A-L-R], and in [C-N] in the case where #;; is gaussian, that for 8 < 1 the random
variable log Z; — f2N/4 converges in law to a (non-standard) normal r.v. Equally
interesting, but of a rather different nature is the research of tail estimates for
log Z; — %2 N/4 that are valid for all N.

Theorem 12.1. — There exists a universal constant K with the following property. Assume
that E exp + h;; < 2. Then, for 0 < t< N/K, 8 <1,

2N K
(12.3) P( log Zy — RN K(t + [log 1—?2) \/N) < 21
In particular
K 2 1 B2 K
12.4 — <—ElogZy — =< —.
( ) \/ﬁ log 1 _ Bz< N Og N 4 N

Comments. — 1) The reader might like to start with the significantly simpler gaussian
case. In that case, the key deviation inequality (12.5) below can be replaced by

t2
V>0, P(llogZN—MNIZt)<2exp(—N 1)
as a direct consequence of (1.6), (1.15). 2) In the condition E exp + ;< 2, the
number 2 can be replaced by any other (with a different constant K). It seems reasonable
to conjecture that (12.3) is not sharp in the gaussian case, and that, for a given g8 < 1,
2

log Zy; —

lim sup P (

t—->o N

> 1) =

It should however be pointed out that (12.3) does not hold when the factor v'N
is removed from (12.3). Indeed it would follow otherwise that for each =,
sup E(4Z/p* N)" < oo, and it is pointed out in [A-L-R], p. 6, that this is not the case.

N

The key to Theorem 12.1 will be the following deviation inequality

— 12
(12.5) 0<t<4VN(N — 1) = P(|log Zy — My| > ) < 2 exp (———32(N — 1))

where My denotes a median of log Z;. We first show how to deduce this from Corol-
lary 2.4.4. The second crucial step will then be to relate My and B2 N/4 (= log EZy).
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To prove (12.5), we observe that

(12.6) | log Z(k;;) — log Z NMEAIES '\/_ 1<i§j<N | By — ki |

as follows from the fact that

PX ;& €; | < | @; |-

1Si<j<N 1<1<9<N

We now view log Z as a funcﬂon on R¥N-12_ We wish to apply Corollary 2.4.4

in the case Q = R, A(x, ») =32 [ x — ¥ |, u the law of ;. We note that (2.4.12) holds,

SlnCC
” exp 1 | ¥ — | du(x) du(5) < ( J exp || du(x))
R3

< (Eexp | Ay |)”
< (E(exp ky; + exp — ky;))V2 < 2.

Consider now v and the set A = {log Z < v}. Combining (12.6) and (2.4.13) (used
for N(N — 1)/2 rather than N) we see that, for ¥ > v, we have

u—o< 4B VNN — 1)

(v —2)
= P({log ZN> u}) P({lOg ZN< I)}) < exp ('— 3—2—6—2—(—:&_—:—{)— .
Taking successively ¥ = My and v = My, (12.5) follows as usual.
In order to relate My and P2 N/4, the key step is the elementary estimates

(12.7) %exp9?< EZ,< Kexp— B“N
K
(12.8) BZ < 1= ga (B2
These will be proved later. First, we conclude the main argument. Consider the set
A= {zN > %EZN}. Then
EZy = E(Zy 14) + E(Zy 1,)
; EZ, + E(Z%)* P(A)"2,
so that
EZ,)*
PA) > 1 (EZb;)

(a fact going back to Paley and Zigmund). Combining with (12.8), we get
P(A) > (1 — B?)/K. To get a lower bound for My, we can assume My < logéEZN.

25
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1
We set ¢ = log (—2- EZN) — My. Since logZy> 0, we have My > 0 and hence

t< K + N/4, by (12.7).
We certainly have

AC{logZy> My + ¢t}.
Thus, by (12.5), we have

(I—8% 2

so that

K 1/2
i< K\/N(logl — Bz)
and thus
1 K \”
My > log (5 EZN) — KVN (log l—ﬂz) .
We also have My < log(2EZy). Combining with (12.7) we get

2 1/2
BN < K\/N(logl Kﬂz)

-

so that (12.3) now follows from (12.5).
To prove (12.4), we first observe that the lower bound follows from (12.3) and
a routine computation. The upper bound follows from the concavity of log, which
implies E log Z < log EZy, and (12.7).
It remains to prove (12.7), (12.8). We start with the elementary inequality
S

— 1 —x—= —_ Z el
c-l-= 2 3'<4'

that is obvious on power series expansions. Thus, for | u | < ;, we have (since Ef}; = 1,
Ek; = ER};, = 0)

2
(12.9) + Y _Ru'< Eexp(ub,)< 1+ "5 + Kat,

and fore =+1, < 1,

Since
Bh’l]

EZ, =E, HEexpe,sj
v_
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(12.7) follows. Turning to the study of EZ%, we have, using (12.9), and for N > 8,
that, with obvious notation,

k; '
EZ%T = EE.z Ee, exp (1<i§j<N f/———ﬁj (3.' &; + & Gj))

1<i<i<n 2N

2
< KE, E,. CXP( % £ (sie + & a;)z)_

Now, (g;¢; + & &) =2 + 2¢, ¢ ¢/ &;. Also, g ¢; ¢ &) is distributed like ¢ ¢;, so that

A ] )

EZ% < Kexp (ﬁ2 N) E, (Ez_ ( X 25 s,.)).

2 2N “1<i<i<N

Further,
Y2 2e=( X g)P—N

1Si<j<N 1<i<N

Using the subgaussian inequality

N 2
Pt(ligl g|>1) < 2exp (— EN_),

we have

E B o Serlcr ol 4fexptl £ )
sexp Q_N-(i=1s") = + zt expaﬁ exp —2N

0

and (12.8) follows. O

13. Sums of (vector valued) independent random variables

The first objective of this section is to discuss the genesis of the key ideas of the
isoperimetric approach as developed in the present paper, and to explain how these
ideas have permitted the solution of the main problems of Probability in Banach spaces.
In the second part of this section we will discuss, in detail, a situation that parallels
the situation of Chapter 8, but where the infimum over « € % is replaced by a supremum.
There are unexpected and subtle differences; this is closely connected to the fact that
the conditions on the function #A(x,y) in Theorem 4.4.1 are (and must be) highly
disymmetric in x and y.

Consider a sequence (X,);<y of r.v. valued in a Banach space W. A number
of classical problems of probability (in particular, laws of large numbers and laws of
the iterated logarithm) depend crucially on sharp estimates of the tail probability
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P(]] £ X;|| = ¢). For many years these estimates were found using martingales, and
i<N

the results were not optimal. One big obstacle is that there is no obvious substitute

for the positivity arguments that are central to Chapter 8. Although its importance

became clear only later, a crucial contribution was made by M. Ledoux [L]. It was

known at the time that in many situations, the tails of || X X || resemble the tails
i

=

of || £ g X;||, where (g);<x is an independent sequence of standard normal r.v.
i<N

that is independent of the sequence X;. To study || X & X ||, Ledoux wrote
iSN

(13.1) | _E & X |l = E, I .2 & X |+ (Il .2 & X |l — E, I ,E & X))
i<N i<N i<N i<N
where E, denotes conditional expectation, given (X));<x. The idea was that either
term of the right-hand side should be easier to study than the term of the left-hand side.
This is particularly apparent for the second term, where, arguing conditionally on X;,
one can take advantage of the properties of Gaussian processes.

It turns out that the first term in the right of (13.7) has the exact property needed
to replace positivity; namely, if JC{1, ..., N}, we have

(13.2) EGH'Z gi)QSHSEaH,Z & X ||
ied iSN

The realization of the importance of positivity-like properties led first to the charac-
terization of the Banach-space valued r.v. that satisfy the law of the iterated loga-
rithm [L-T1]. Perhaps more importantly, (13.2) lead this author to the belief that
some isoperimetric principle should be relevant, and hence to the theorem of [T2] (that
is now superceeded by the comparable, but much easier to prove Theorem 3.1.1),
and started the line of investigation that culminates in the present paper.

The author also understood that Bernoulli r.v. have regularity properties
that almost match those of Gaussian r.v. (a crucial step is the comparison theorem
of [T5]). They offer the extra advantage that the tails of || X, <y& X;|| (where
P(s; = — 1) = P(g; = 1) = 1/2) always resemble the tails of || X X ||. Thus, rather
than (13.2) one should write SN

. X | = X X || — E X D).
(13.3) I aX =Bl 5 eXll+ (1 5 aX )l — Bl Z a %0
Our first task is the study of the r.v.

(13.4) Z=E/| Z X|
i<N

We denote by || X, ||* the non-decreasing rearrangement of the sequence (|| X; [|)i<x-
Thus

I X, || = sup{ 5 card {j< N3 | X, || > 3> i),
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Proposition 13.1. — Consider a > 0, ¢, k € N. Then
1
13.5 > < e e A= 2).
(13.5) P(Z> g0 +0) < rrpzean + M X3
Comment. — To obtain a useful bound, one estimates the last term using classical

methods; one then optimizes over %, g.

Progf. — We set Q = W. Consider the function Z on QF given for x = (¥;);<x € Q¥
by

Z(x) = E. || Z & x|
i<n
Consider the product probability P on Q, when the i-th factor is provided with the law
of X;. Consider the set A ={x; Z(x) < a }. Setting, for simplicity
k(x) :f(A> v Ay x)
(where A occurs ¢ times), it suffices by Theorem 3.1.1 to prove that

(13.6) Zx)y< ga+ 2 || x|
Ry

x)
Indeed, we then have, for each &,

P(Z> ga+ )< P(x) > k) + B( 2 || 51" > ).
i<k

To prove (13.6), we consider »', ..., »? in A such that if we set
I *_‘{7'< N; x; ¢{)’:, "".yiq}}’

then card I < %(x). Denote by J the complement of I. Then, by the triangle inequality

(13.7) Zix) =E || Z x|l <E | 2 ex|l + Z |||l
ISN iEJ i€l
Now
(13.8) Zllxll< Z (1=l
i€l i< k(z)

since these last k(x) terms are the k(x) largest terms of the sequence (|| #;||);<,- By
definition of J, we can find a partition J,, ..., J, of this set such that, for /< ¢,

VieJl: % =yf'
Thus
(13.9) E |l 2 exll =E | Z &
1EJ( iEJy
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The essential fact is now that
E |l Z gnll<E | Z )]
iEJ, i<N
To see this, simply observe that, in the left-hand side, the expectation in g;, ¢ ¢J, is
taken inside rather than outside the norm. Since j’ € A, combining with (13.9) we get

E |l X gxl[<a
iedy

and thus, by the triangle inequality

E [| 2 &% < ga.
i€d

Combining with (13.7), (13.8) yield the result. O
To study the last term of (13.3) conditionally on (X,);<y, one can rely, in
particular, upon the following result.

Theorem 13.2. — Consider vectors (v,);<;<x ™ a Banack space W, and set
(13.10) o= (sup{ X w'(z,)?:w' e W", || w"||< 1A
iSN

Consider a sequence (Y,);<x of independent real valued r.v. such that | Y, |< 1. Denote by M
a median of the rv. || X Y, v, ||. Then for t> 0 we have
i<N

t2
(13.11) P(|| S Yo |l — M| > to) < 4 exp (_ _).
iSN 16

Proof. — We observe that if we set
F ={(w@);w e W, [|w"||< 1}
then
Z=| X Y,y|=sup X Y,
iSN

eEF i<N

Thus Theorem 13.2 is a special case of Theorem 8.1.1 (using scaling). O

Remarks. — Certainly the constant in the exponent is not sharp, and could be
improved using (4.2.7) rather than (4.1.3), especially in the case of Bernoulli r.v.,

where the use of (4.3.8) would yield a bound of 2 exp — 1 t —Vlog 2)” for ¢ > Vog 2.
y 1 g

Before we pursue the study of (13.3), we digress on an interesting sharpening
of Theorem 13.2. There is another bound on the tails of || £ Y, ¢, || namely the trivial
iEN

bound || ¥ Y, 7 || < sup X |w'(y)|, and it is, of course, possible to interpolate
i<N [Jw*|[<1 i<N
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between this bound and (13.11). This can be done as follows. For a sequence (7,); <
of real numbers, and ¢ > 0, we write

Kl,z((ri)? t) = inf{igNI w | + t(i:Z‘N wp)'?; o= u, + w, b

where the infimum is taken over all possible decompositions r; = u; + w;. We set
k(f) = sup{ K, ,((w'(%)), ); " e W, [[w" || = 1}.

We observe that k() < f6. Only rather trivial modifications to the proof of Theo-
rem 8.1.1 are needed to see that one can improve (13.11) into

(13.12) Pl = Yio || — M[>x(®) < 46""(" %)
iSN

This inequality streamlines a result of [D-MS].
If one observes that k(2¢) < 2x(f) one obtains, through a routine computation,
that for all p > 1,

”iENYi 7 ||, < M + Kx(y/p),

a rather precise form of the so-called Kintchin-Kahane inequalities. It should also be
pointed out that, by (13.12), || £ Y, ||, > M — Kk(4/p), that|| £ Y,7||,> M2~
i<N i<N
(obviously) and that || £ Y, ||, > Kk(y/p/K). To prove this last inequality, one
i<N

reduces to the real-valued case; it is simple to see that this follows from [L-T1], Lemma 4.9
(see also [M-S]).

After this digression, we go back to the study of (13.3). We will apply Theorem 13.2

to the last term, conditionally on (X});<x, for s, = X;, 3, = . Thus we need control
of the random quantity ¢(X) given by

o(X) = sup{ T w'(X)% ' e W, [|w || < 1}.
i<N
Let us define Q = W, P as in Proposition 13.1, and consider the function ¢ on Q¥

given by
o*(x) =sup{ X w'(x)% w' e W* [|w"||< 1}
i<N

The basic idea is to control ¢ through the use of Theorem 3.1 again. Consider b > 0,
and the set B={o<5}. We set

k(x) =f(B, ..., B, x)
where B occurs ¢ times.

Proposition 13.3. —

u2
‘ TS 1. 1) < 4 ——.
(13.43) PRI T anll> ) T anlfut I xl) exp( i)
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Proof. — Consider y', ..., % in B such that card I < k(x), where
I={i<N;x ¢{s,....0f} 1

Denote by J the complement of I. We have little control over the elements x;, ¢ €1,
SO we write

| Zeax|l<|] Z x|+ 2|l
ISN ieEJ iel
< Zex|l+ 2 (=]
iEJ I< k(x)
Now, it should be clear that

sup{ T w(x); w' e W', || || < 1}< gbt.
ieJ

Denoting by M the median of || X & x; ||, Theorem 13.2 gives
ieJ

2

Ps(”ia% %||> M+ u)< 4exp — T6g5*"
Now

M< 2Ee” pX six'iH< 2Ez” Z & % ||
ied i<N

and (13.13) follows. O

If we combine Proposition 13.3 with Theorem 3.1.1, we have the following
relation, for any u,,¢> 0, and any k£ e N:

(13.14) P(| Z &xll>2+u+)
isSN
L P(E, || 5, 4 u?
= f+1 P(B “ iSN &KX ” + €xp 16qb2

+ (3 [ 5] > 0,
ISk
where P’ refers to the fact that we now consider the joint probability in (g;) and (x;).

Theorem 13.4. — Set
a=2E|| ¥ ¢X/||, s$=Esup{ X w’(X)* weW,||w]| <1}
i<N i<N

Then, for ¢,k €N, u, > 0 we have
Pl Z & X |l > 209 + 3t + u)

2¢+1

2
q,c+1—|—4exp( g )-{-QP 2[|X||>t.
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Proof. — We use (13.14) with v = ag + ¢ and #* = 25% so that P(B) > 1/2. We
then control the term P(E, || 2 ¢ «;|| > v) using Proposition 13.1. O
iSN

A slightly more general bound (that allows truncation of the variables X;) is
proved in [L-T2] Theorem 6.17, and (when combined with techniques to control the
quantity b above) is at the basis of numerous results. An alternative approach, that
relies rather on Theorem 4.2.4 is developed in [T3]. The bounds developed by iso-
perimetric methods are sharp in most situations (see however [Ro] for a beautiful
example where other ingredients are needed).

We now turn to a more specialized topic and we continue the investigation of r.v.

of the type Z = sup 2 «; X, that was started in Chapter 8. In order to apply Corol-

*EF i<N
lary 8.2.2, we need to have (4.4.6), where k(x, ») = | x — y |, or, if «, is always positive,
k(x,9) = (x — »)". When the variable X, is positive (i.e., its law u is supported by R*),
inspection of Theorem 4.4.1 shows that (whatever choice of 0, £) no integrability
condition on X, except boundedness, will insure that the conditions of this theorem
hold for this choice of 2. We will now give an example that shows that this is not an
artifact of our approach. We will show that (13.11) cannot be essentially improved,
even if P(| X; | # 0) is arbitrary small. This implies (by scaling) that, given any finite

function ® : Rt — R*, with ®(0) = 0, one can find a real r.v. X, with f@(l X;)darg 1,
and vectors (7;); <y such that (13.11) is violated.

Example 13.5. — This example is essentially a re-interpretation of the example
presented at the end of Section 4.3. Consider an independent sequence (X);<x of
Bernoulli variables such that P(X; = 1) = p is small. Consider the family & of N-tuples

of form o, =1 /\/ Qp—T\T if i el, «y = 0 otherwise, where I varies over all subsets of
{1, ..., N} of cardinality < 2pN. Then ¢ = 1. Consider

Z=s 2oy X = 00—
ag.};isuaX' \/QNP

sup{ X X;; card I < 2Np}.
iex

We can also view Z as || £ X, ¢, ||#, where ¢; is the canonical basis of RY, and where
i<N

=

the norm ||.||& is given by || x || = sup E:Na,- | x; |-
The main observation is that < '
S X<WNp>Z = —— 3 X
< = _—
i< $ AV 2Np i<N

Since the probability of the event on the left goes to 1, as N — oo, the r.v. Z is asymptoti-

cally normal, of mean v/ Np/2 and variance V (1 — p)/2; so its deviation from its median
does not decay faster than exp — K#*
The conclusion to be drawn from Example 13.3 is that, in order to extend Theo-

26
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rem 13.2 to the case where X, is unbounded, we must require conditions of a different
nature than integrability.

Theorem 13.6. — There exists a universal constant L with the following property. Consider
a convex function § on R* suck that $(x) < x* if x < 1 and §(x) = x if x > 1. Consider a proba-
bility measure p. on R. Assume the following:

(13.13) Vi>0, p{x; |[x]|=1}) < 2exp(— L{(28)).
Given any subset B of R, with w(B) > 1/2, and any t > 1, we have
(13.14) wl{x; $(int | % —y) > £3) < (1 — u(B)).

Consider independent real valued r.v. (X)), <y distributed lke ., and vectors (v;);<x 0
a Banach space W.

Then, for all t> 0, we have
(13.15) P(]]]iszNX,.v,.]| —M|z1)< QCXp(—-Il—“Fy(t)),
where M is a median of || isZN X, v, ||, where
F ={(@'(#))ign; 0" e W, [|w"||< 1}
and where Vg is defined in Section 8.2.

Progf. — According to Corollary 8.2.2, it suffices to prove that the hypo-
thesis of Theorem 4.4.1 holds when A(x, y) = |x — ], in the case 6(x) = — log x,

w(x) = — % log x (so that H(§, w) holds by Proposition 2.6.1). Only (4.4.4) has to

be checked, since (13.14) is a rewriting of (4.4.5).
Consider BC R with u(B) < 1/2. Set

(13.16) s=inf{|y|; yeB}.
Clearly, k(x, B) < | x| 4+ s. Thus, by convexity of ¢ we have
1 1
[ exp ahts, BY) das) < exp @) | exp g 9(28) ).

On the other hand, by (13.16) we have BN ]— s, s[ = @, so that BC {x; | x| > s}

and hence by (13.13) we have exp ¢(2s) < (2/u(B))*™. Thus it suffices to show that
for L large enough we have

! 1(2)”“ L (%)
<= = < — (= exp — w(x)),
X 2» N \/} p

where I =f cxp% {(2%) dp.(x). It remains to show that, under (13.13), [}1330 I=0,
R

uniformly in ¢, an easy exercise left to the reader. O
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Theorem 13.6 can be applied to the case where p is a measure v, of the type
considered in Proposition 2.7.4, although in that case the simpler Theorem 2.7.1 will
yield the same conclusion. There are however, situations covered by Theorem 13.6
that are not covered by Theorem 2.7.1, because in (13.14) we require only t> 1.

In particular, if the law of X satisfies (13.14), and if || Z ||, < 1, the law of (X + Z)

satisfies (13.14) (it is not required that Z be independent of X). (The correspondmg

statement for (13.13) is also true, under mild conditions on ¢, replacing if needed 1/3
by a smaller number.)

In conclusion of this section, we want to discuss a question that apparently is not
fully clarified by the results of the present paper. Consider numbers (4);<y, and
vectors (7;);<x in a Banach space. Of which order are the fluctuations of the r.v.
Z=|| <ZN i v || around its median M, when p is seen as a random element of the

i<

symmetric group Sy, provided with the uniform probability P?
Proposition 13.7. — a) Assuming | a; | < 1 for eack i, we have

2

(13.17) 120 =P(Z —M|>1t)< 4exp— 5
o}

where as usual
=sup{ X w*(v)% w' e W, ||w*||< 1
iI<N
b) Assuming || v, || < 1 for each i, we have
t2
13.18 t20=>P|Z-—M|>t)<4exp — ——-
(13.18) ~P(Z-M|> < 4ep— oo

i<N
Remark. — A first problem is to find a bound that contains simultaneously (13.17)
and (13.18).

Progf. — The proof follows that of Theorem 8.1.1, using now Theorem 5.1 rather
than Theorem 4.1.1. Thus, we indicate only the key points.

To prove a), one notes that if p, 1 €Sy and I ={i< N; p(¢) + ©(¢)}, then
| 2. 2@) 4 — T w'(0) 4 | < Z |0 (@)].

To prove b), one observes that Z has the same distribution as || 2 v, ||, and,
with the notation above, one now has

|i§Nw p(w)) 2 w ( T(t)) l Z la l o

It should be pointed out that it seems likely that a phenomenon similar to that
of Example 13.5 occurs in case a, and that (13.17) cannot be improved even if a large
majority of the numbers 4; are equal to zero.

Note added in proof. — After this work was completed, several new extensions of
theorem 4.1.1 have emerged, with applications in particular to statistics [T7].
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