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CONCENTRATION 0F MEASURE
AND ISOPERIMETRIC INEQUALITIES IN PRODUCT SPACES

hy MICHEL TALAGRAND

ABSTRACT. Thé concentration ofmeasure phenomenon m product spaces roughiy states that, if a set A m a product W
of probability spaces has measure at least one haïf, (< most " of thé points of ON are " close " to A. We proceed
to a systematic exploration ofthis phenomenon. Thé meaning ofthe word " most " is made rigorous by isoperimetric-
type inequalities that bound thé measure of thé exceptional sets. Thé meaning of thé work " close " is defined in
three main ways, each ofthem giving rise to related, but différent inequalities. Thé inequalities are ail proved through
a common scheme of proof. Remarkably, this simple approach not oniy yieids qualitatively optimal results, but,
m many cases, captures near optimal numerical constants. A large number of applications are given, in particular
to Percolation, Géométrie Probability, Probability in Banach Spaces, to demonstrate in concrète situations thé
extremely wide range of application of thé abstract tools.
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Dedicated to Vitali Milman
I. INEQUALITIES

1. Introduction

Upon reading thé words " isoperimetric inequality ?î thé average reader is likely
to think of thé classical statement:

(1.1) Among thé bodies of a given volume in R^ thé bail is thé one with thé
smallest surface area.

This formulation, that needs thé notion of surface area, is not very appropriate
for generalizadon in abstract setting. A less known (équivalent) formulation is as follows:

(1.2) Among thé bodies A of a given volume in R^ thé one for which thé set A(
of points within Euclidean distance t of A has minimum volume is thé Euclidean bail.
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It should be intuitive, taking t -> 0, that (1.2) implies (1.1). We will, however,
rather be interested in large values of t. At first sight, this is uninteresting; but this first
impression is created oniy by our déficient intuition, that functions correctiy oniy for
N ^ 3 , and miserably fails for thé large values of N that are ofinterest hère.

For our point of view, thé main feature of (1.2) is that it gives a lower bound
on thé volume of A( that dépends oniy on t and thé volume of A.

From now on, ail thé measures considered will be probabilities (i.e. of total mass
one). Following [G-M], [M-S], thé basic ideas of concentration of measure may be
described in thé following way. Gonsider a (Polish) metric space (X, d). For a subset
A of X, consider thé û?-ball A( centered on A, i.e.

(1.3) \ = { x e X : d { x , A ) ^ t } .

Gonsider now a Borel probability measure P on X. Thé concentration funcdon a(P, t)
is defined as

oc(P, t) = sup { 1 - P(A,) : P(A) ^ - AC X, A Borel).

In other words

(1.4) P(A)^ =>P(A,)^ l -a(P,^) .

It turns out that in many situations thé fonction a(P, t) becomes extremely small when
t grows. In rough words, if one starts with any set A of measure ^ 1/2, A( is almost thé
entire space. This is thé concentration of measure phenomenon. This idea started with
thé work of V. Milman on Dvoretzky's theorem on almost Euclidean sections of convex
bodies [Mil]. Most importantly, Milman understood that concentration of measure
occurs extremely often [Mi2], and most vigorousiy promoted thé idea. (In pardcular
we refer to his paper [Mi3] to supplément our sketchy discussion.) Concentration of
measure plays an important rôle in local theory of Banach spaces, and has become thé
central concept ofthe area of probability known as Probability in Banach spaces. (See thé
book [L-T2], and subséquent work such as [T6], [T7].)

A prime example of space where concentration of measure hoids is thé Euclidean
sphère S^ ofR^1 equipped with its géodésie distance d and normalized Haar measure P^,
for which it can be shown that

(1.5) .(P^X^.^-f1^'),).

(Thé central fact in Milman's approach to Dvortzky's theorem.) Closely related, and
more in line with thé topic of thé présent paper is thé case X = R^ equipped with thé
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Euclidean distance and thé canonical Gaussian measure YN (whose covariance is thé
Euclidean dot product). In that case

(1.6) a(Y^ t) < f ——— e-^2 du^1 e-^2.
J, V2rc 2

It should be pointed out that more is known. Thé Gaussian isoperimetric inequality
states that

(1.7) ÏN(A) = ïi((- oo, a]) => YN(A,) > ïi((- oo, a + t])

which implies (1.6) when a = 0. However, it is sufficient for many applications to
know (1.6) or even thé weaker inequality

(1.8) o^^K.-^

where K is a universal constant.
In thé présent work we perform a systematic investigation of thé concentration

of measure phenomenon in product spaces. Thus with thé terminology above, X will
be a product of probability spaces, and P a product measure. Thé statements will hâve
thé form (1.4). However, thé set A( , which consists of points close in a certain sensé
to A (and that, for convenience, we will call thé ^-fattening ofA), will not aiways hâve
thé form (1.3). This is thé crucial différence between thé présent work and previous
investigations, such as [A-M], [M-S]. Indeed, it turns out that it is extremely fruitfui
to consider various notions of fattening. We will define three rather distinct notions of
fattening. Thèse notions are studied respectively in Ghapters 2 to 4. Each of thèse notions
can be studied with various levels of sophistication, and they are at times closely connected.
Discussing thé whole theory in this introduction would require too much répétition
and is inappropriate for an article of thé présent length. Thereby, we hâve decided to
mention hère oniy thé main new thème (that did not appear in this author's previous
work) as well as a simple resuit that appears to hâve a considérable potential for
applications.

Assume that X = Q^ is a product of probability spaces, and that P == ̂  is a
product probability. We recall that thé Hamming distance d on X is given by

(1.9) d{x,y) =card{z< N:^+j/J .

When A( is given by (1.3), where d is thé Hamming distance, an important resuit,
proved in a spécial case in [A-M] (see [M-S] with a proof that extends Verbatim to
thé général situation) is that thé concentration function a(P, t) satisfies

(1.10) a(P,^Kexp(-^l

where K is a universal constant.
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One could interpret (1.9) by saying that we put a penalty 1 for each coordinate i
where ^ =t= y^. One recurring thème of thé présent paper is thé investigation of what
happens when, instead, we put a penalty h{x^,jy^, where h(x, y ) is a non-négative funcdon
on û2. A striking and unexpected finding is that in several instances there is a high
disymmetry between thé rôles of x and y. For example, in one of thé main results of
thé paper (Theorem 4.4.1) if one requires that h[x^y) should dépend on x oniy, it has
to be bounded; but, ifit dépends onj/ oniy, weak integrability conditions suffice.

Suppose now that (a,),^ are positive numbers, and let us replace thé
distance (1.9) by

4(^) ==.S a, 1^,+y,).
iîS$ N

It is then shown in [M-S] that (1.10) can be extended into

(1.11) a(P^)<Kexp(- ,—— 2 ——1
\ ^^N^/

One way to spell out this resuit is as follows:

Given ACt^, with P(A) ^ -, then, for ail numbers (a,),<^, a, ^ 0, S a,2 = 1,
, 2. i^Nwe hâve

(1.12) P(A^ l-Kexp(-^

where A^ = {x eÛ^ : 3y e A, S; a, 1{^+^.} ^ t}.
i^ N

Thé first resuit of Ghapter 4 states that (1.12) can be improved into

(1.13) P(riA^)^ l - K e x p ( ^ )
\ K/

where thé intersection is over ail families a = (a,),^ as above. Thé power of this
principle (that will be considerably perfected in Ghapter 4) is by no means obvious
at first sight, but will be demonstrated repeatediy through Ghapters 6 to 9 (thé easiest
applications being in Ghapters 6 and 7).

We hâve explained in terms of sets what is thé concentration of measure pheno-
menon. However, rather than sets, one is more often interested in functions. In that case,
thé concentration of measure phenomenon takes thé following form: if a fonction/on X
is sufficiently regular, it is very concentrated around its médian (hence around its mean).
IfM^is a médian of/, this is expressed by a (fast decreasing) bound on P(|/— M/ [ > t).
For a simple example, (1.4) implies that if/has a Lipschitz constant 1 with respect
to thé underlying distance, then
(1.14) P(]/-M,|^)^2a(P^).

Despite thé fact that functions are potentially more important than sets, ail our
concentration of measure results are stated in terms of sets. (This is done in Part I.)
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Thé essential reason for this choice is that thé power and thé generality of thèse results
largely arises from thé fact that they require oniy minimal structure (a condition better
achieved by considering sets oniy). A secondary reason is that much of thé progress
reported in thé présent paper (including on some rather concrète questions presented
in Part II) has been permitted, or at least helped by thé abstract point of view; and
thereby, it seems worthwhile to promote this approach. Nevertheless, thé natural demain
of application of thé tools of Part 1 is obtaining bounds on P( [y— My [ ^ t), when
yis a function defined on a product ofmeasure spaces. We will, however, give no abstract
statement of this type. We prêter instead to analyze a number of spécifie situations,
reducing each time to statements about sets (thé gréât variety of situations encountered
indicates that this is possibly a clever choice). This is thé purpose of Part II, where we
will demonstrate thé efficiency of thé tools of Part I. It must be said that thèse spécifie
situations hâve been of considérable help in pointing out thé directions in which thé
abstract theory should be developed. Most of thé abstract results are indeed directiy
motivated by applications.

Certainly there is a considérable number of situations where fonctions that are
defined on a product of many measure spaces naturally occur, or equivalently that
dépend on many independent random variables. Thé examples presented hère are
certainly influenced by thé past interests of thé author. Their boundary, however, is
likely to reflect thé limited knowledge of this author rather than thé limit of thé power
of abstract tools of Part I. (Should a reader be aware of another potential demain of
application, he is urged to mention it to this author.) Quite logically, several of thé
examples we présent hâve an < c applied " flavor. This is simply because stochastic models
occur in physics (such as in Percolation and Statistical Méchantes) and Computer
Science (bin packing, assignment problem, géométrie probability). Thé reason for thé
later is that thèse stochastic models do shed some light on thé behavior of computationally
intractable problems, and, for this reason, are widely studied today; see e.g., [C-L].
No previous knowledge whatsoever of thèse problems is required for reading thé material
of Part II, that we briefly describe now.

Each of thé examples of Part II studies thé déviation of a spécifie function / of
many independent random variables from its mean. In every example but one, thé
function f is obtained as thé solution of an optimization problem. This is not a coïn-
cidence, but rather reflects thé fact that such situations are well adapted to thé use of
our methods. In Chapter 6, we apply (4.1.3) to stochastic bin packing. This simple
application is presented first since it is while considering this problem that thé power
of (4.1.3) beyond Probabilities in Banach spaces was first realized. Thé application
is not really typical. More typical is thé application of Chapter 7, to thé length of thé
longest increasing subsequence of a random permutation. This application puts forward
thé fact that when one studies thé size of substructures whose existence is determined
by a comparatively small number of random variables, rather than by thé whole collection
of random variables, inequality (4.1.3) fully takes advantage of that feature. This
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characteristic occurs agam in Ghapter 8, where is presented a général resuit that
allows, as a rather weak and spécial corollary, to improve upon H. Kesten's récent
results on fîrst time passage in Percolation [K2J. In Ghapter 9, we show how (4.1.3)
again provides a natural approach to questions on random graphs. Thé challenge of
thé assignment problem considered in Section 10 is that thé objective fonction/considered
there is very small; it is of order one, while depending on N2 independent variables of
order one, each of them with a potentially disastrous influence on thé objective function.
In Ghapter 11, we consider situations where thé objective function y is defined in a
geometrical manner from a random set of N points in thé unit square. Thé common
objective is to prove that/has Gaussian-like tails. However, thé richness ofthe situation
is unsuspected beforehand; apparently similar définitions require rather différent levels
of sophistication. In Chapter 12, we provide a simple dérivation of thé free energy in
thé Sherrington-Kirpatrick model for spin glasses at high température. Finally, in
Ghapter 13, we discuss how thé study of sums of vector-valued independent random
variables motivated thé approach of this paper, and we discuss a few new spécifie results.

We now comment on thé methods of Part I, their history, and compare them
with competing methods.

There is a général method, that is becoming increasingly popular, to prove déviation
inequalities for \f— E/'|. (That thé mean rather than thé médian is involved is very
much irrelevant.) It is to décompose y as thé sum of a martingale différence séquence
f •== S ̂ , and to use martingale inequalities. Thé generality of thé method stems from
thé fact that such a décomposition is easy, simply writing ^ = ïÂ{f\ ̂ i) — E(y| <^_-i)
for any increasing filtration (^). This method was used in Probability in Banach Spaces
(under thé name of (< Yurinski's method") for thé study of f === || S X^ ||, where

i^N

X^ are independent Banach space random variables (r.v.). (After an important step
by B. Maurey [Maul], thé generality ofthe method was understood byG. Schechtman [S].
It soon became apparent, however, that this method would not aiways yield optimal
results ; this is what prompted thé invention of thé isoperimetric inequality of [T2] (more
détails on history are given in Chapter 12). An inequality very similar to thé inequality
of [T2], but with a much simpler proof, appears in thé présent paper as Theorem 3.1.1.
Thé phenomenon described by this inequality was completely new at that time, and
had a major impact in Probability in Banach spaces (prompting, in particular, thé
writing of thé book [L-T2]). One could reasonably hope that this inequality would
find applications to other domains; but as oftoday, this has not been thé case. Another
inequality that was discovered in relation with Probability in a Banach space is a pre-
decessor of (4.1.3) [Tl]. Thé inequality of [Tl] did not, however, play a crucial rôle
in that theory, because, for most applications, it could be replaced by thé Gaussian
isoperimetric inequality (1.7) to which it is related. For this reason, thé discovery that
(4.1.3) was thé direction to pursue for applications outside Probability in Banach spaces
was delayed until very recently. It does not seem possible to prove either (4.1.3), or
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even some of its most interesting conséquences we will présent in Part II through thé
martingale method. This should not be so surprising, since thé inequalides of thé présent
paper hâve been developed precisely to achieve what martingales seem unable to attain.
Among thé results of Chapters 2 to 5, apparently oniy those of Sections 2.1, 2.2 can
be obtained using martingales; and thé oniy reason why thèse are included hère is that
they provide an excellent and very simple setting to introduce our basic scheme of proof.
A major thesis of thé présent paper is that, while in principle thé martingale method
has a wider range of applications, in many situations thé abstract inequalities of Part 1
are not oniy more powerfui, but require considerably less ingenuity to apply. In ail
thé examples we examined, oniy in some rare situations, where thé martingale is close
to a sum of independent r.v., and where thé value of numerical constants is crucial
(such as [M-H]), did our methods fail to supersede martingales.

We now comment on thé method of proof of thé inequalities of Part I. Isoperi-
metric inequalities such as (1.7) are proved via rearrangements. That is, one produces
a (simple if possible) way to transform thé set A in a set T(A), of thé same measure,
but more regular, so that thé measure of T(A)< is not more than thé measure of A<.
Thé procédure is then iterated, in a way that thé itérâtes ofA converge to thé <( extremal
case ". Rearrangements are thé oniy known technique to obtain perfect inequalities
such as (1.5), (1.6). Thé inequality of [T2], that started thé présent line ofwork was
proved using rearrangements. Thé difficult proof requires différent types of transfor-
mations, some of which prevent from obtaining thé extremal sets.

Despite considérable efforts, rearrangements did not yield a proof of thé inequality
of [Tl]. (As pointed out to me by N. Alon, thé reason could be thé complicated nature
ofthe extremal sets.) A completely new method was developed there. Thé main discovery
was that of a formulation that allows an easy proof by induction upon thé number of
coordinates. Thé wide applicability of thé method became apparent oniy gradually.
This method and its variations provide a unified scheme of proof of ail our inequalities,
that, in its simplest occurrence, is described in gréât détail in Section 2.1. Ironically
enough, this method is, in its principle, rather similar to thé martingale method; thé
extra power is gained from thé possibility of abstract manipulations in product spaces.
A considérable advantage of thé method is that, proving thé induction hypothesis reduces
to proving certain statements involving oniy fonctions on t2. At times this is extremely
easy; sometimes it is a bit harder. But certainly thé nature of thé statements that hâve
to be decided is such that they are bound to yield to sufficient effort. What on thé other
hand, is not entirely clear, is why this simple procédure seems so miraculousiy sharp;
in thé situations where explicit computations of thé best possible constants given by
thé method has been possible, thèse constants hâve proved very close to thé optimal.
In thé cases where oniy less précise estimâtes hâve been possible, thèse estimâtes appear
nonetheless to capture, up to a constant, thé exact order of what really happens, and
this, in every single situation that has been investigated.

Thé paper has been written to be read without any knowledge of this author's
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previous work or of thé topic in général. For thé saké of completeness, thé oniy previous
resuit of thé author that has not been either vastly generalized or considerably simplified
has been reproduced (as Theorem 4.2.4). Significant effort has been made in writing
thé paper in an easily accessible form. For example, it turns out in several situations
that thé simplest occurrence of a new principle is aiso thé most frequently used. In thèse
cases, we hâve made a point to give a separate proof for this most important case. Thèse
(short) proofs aiso serve as an introduction to thé more complicated proofs of subséquent
more specialized results.

During thé préparation of this paper, 1 asked a number of people whether they
were aware of récent or potential uses of thé martingale method. 1 am pleased to thank
D. Aldous, E. Bolthausen, A. Frieze, C. McDiarmid, B. Pittel, M. Steele, W. Szpankowski
for their precious suggestions. Spécial thanks are due to H. Kesten, who communicated
to me preprints of his récent work on percolation [K]. Analysis of his results pointed
thé way to several of thé major developments that are presented in thé présent paper.
Thé material of Chapter 5 was directiy motivated by questions of G. Schechtman
concerning thé <( correct form 5Î ofthe concentration ofmeasure on thé symmetric group.
A. Frieze, J. Wehr and particularly S. Janson most helpfully contributed to literally
hundreds of improvements upon an earlier version of this work. 1 aiso followed several
precious suggestions from M. Ledoux. Finally, it must be acknowledged that this paper
would not hâve been written if Vitali Milman had not, over thé years, convinced this
author of thé central importance of thé concentration of measure phenomenon and if
Wansoo Rhee had not introduced him to most of thé topics considered in Part II.

2. Control by one point

2.1 . Thé basic principle

Throughout thé paper we will consider a probability space (Q, S, {ji) and thé
product (Q^ pi^). Thé product probability ^N will be denoted simply by P.

Consider a subset A of Û^. For x e ti^, we measure how far x is from A by

(2 .1 .1) /(A,^) =min{card{^N;^+^};^eA}.

This is simply thé Hamming distance from x to A. Thé reason that we use a différent
notation is that at later stages, we will introduce différent ways to measure how far x
is from A. Thèse ways will not necessarily arise from a distance.

It should be observed that thé fonction f(A, ' ) need not be measurable even
when A is measurable. This is thé reason for thé upper intégral and outer probability
in Proposition 2.1.1. below. On thé other hand, measurability questions are well
understood, and are irrelevant in thé study of inequalities. Since it would be distracting
to spend rime and energy on routine considérations, we hâve feit that it would be better
to simply ignore ail measurability questions, and treat ail sets and functions as if they
were measurable. This is certainly thé case if one should assume that Q is Polish, (A is a

11
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Borel measure, and that one studies oniy compact sets, which is thé oniy situadon that
occurs in applications. Thé reader will keep in mind that in thé sequel, when measurability
problems do arise, certain intégrais (resp. probabilides) hâve to be replaced by upper
intégrais (resp. outer probabilides) just as in thé statement of Proposidon 2.1.1. (Thé
reader who desires to hâve a proof of our statements without measurability assumpdon
should be warned that it does not work to try to extend thé proofs we give by putdng
outer intégrais rather than intégrais—thé reason being that Fubini theorem fails for
outer intégrais. Rather one has to dérive thé général resuit from thé spécial case of well-
behaved sets by approximadng général sets from inside by well-behaved sets.)

Proposition 2 .1 .1 . — For t> 0, we hâve

r 1 / 1 ^4- ̂ ^(2.1.2) ^A,^p(^l^L+^
P(A)\2 1 4

.(2 N/4< flt2 N/4
;̂ ^, * x ^P(A)

In particular,

(2.1.3) p^A,.)^})^——.-^.
r(Aj

As was pointed out in thé introduction, thé power of our approach largely rests
upon thé fact that it reduces thé proof of an inequality in Q^ such as (2.1.2) to thé proof
of a much simpler fact about funcdons on i2. In thé présent case, thé méat of Propo-
sidon 2.1.1 is as follows.

Lemma 2.1.2. — Consider a (measurable) fonction g on iî. Assume 0 ̂  g ̂  1. Then
we hâve

f / 1 \ F
(2.1.4) min [e^—— ^(co) ^(œ) ^(œ) ^ a(t)

Jo V êW) Jo

/1 ^ -(- ^-<\
where we hâve set a(t} = |- + —————)•

Proof. — If we replace g by max(^, e"^, this does not change thé first intégral,
but increases thé second. Thus it suffices to prove that if e~1' ^ ^^ 1, we hâve

r i r\ - d [ L \ gdy.^ a{t).
JQ ô Jo

Consider thé convex set %7 of measurable funcdons g on Q for which e~t ^ g^ 1.

On ^, thé funcdonal g i-> g~1 d[i is convex. On thé subset ^ of ^ that consists of
J a
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thé functions with intégral b, this functional attains its maximum on an extrême point.
There is no loss ofgenerality to assume that [L has no atoms; then it is well known that
an extrême point of ^ takes oniy thé values e ~ t and 1. Thereby it suffices to show that
for 0 ̂  u ̂  1 we hâve

(1 — u + ue^ (1 — u + ue-^ ^ a{t).

But thé left hand side is invariant by changing u into 1 — u, so that thé maximum is
obtained at u == 1/2 by concavity of thé left-hand side, and is a{t). D

Thé proof of Proposition 2.1.1 goes by induction over N. Thé case N = 1 follows
from thé application of (2.1.4) to g •== 1^.

Suppose now that thé resuit has been proved for N, and let us prove it for N + 1 •
Consider AC ̂ N+l == 0^ x Q. For œ eQ, we set

(2.1.5) A(cù) ^ { x e O ^ ; (^ co) eA}

and B = { x e 0^; 3 <o e Q, (^ œ) e A }.

With obvious notation, we hâve

/(A,(^œ))^/(A(œ),^).

Indeed, ifj/ eA(cù), then (^, œ) eA, and thé number of coordinates where (jy, œ) and
(A:, co) dijBer is thé number of coordinates where x and y differ. Thus, by induction
hypothesis, we hâve

(2.1.6) f exp(f/(A, (x, «))) dPÇx) < -awï—.
J^ -——"-"' " / / / ————P(A((O)) '

We aiso observe that

/(A,(^œ))^/(B,^) +1

so that, by induction hypothesis, we hâve

F €tad^
tf(A,(x,(ù)) /7p/y\ < v /

e â ï . [ x ) ^ p/^ ?
JQN P(B)

and combining with (2.1.6) we get

i•"'t•l•••"d^s^''mm\W^M
^ 1

Integrating in <x), we hâve

j^ .„.,,.,.„ „(„ ̂ i < ,(„» ̂  ̂  ̂ , ̂ ) ,,(„).
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To complète thé induction, it suffices to show, by Fubini theorem, that

r • / € t l \ . , x û^ au)
[ mm {W PW^) *("' < P^(A) - J,p(AM)^)-

But this follows from (2.1.4) applied to thé function ^(œ) == P(A(co))/P(B).
We now finish thé proof of Proposition 2.1.1. We note that

-("=l+.2,2(^.•

Now 2(2n) ! ̂  4" ^!. Indeed, this hoids for n = 1, n == 2, while if % + 1 ̂  4, we hâve

w == (^ + 1) ... (2^) ^ 4\

Thus

û(^) < 1 + S ^^^ ni = exp(^/4).
n^l

Finally, (2.1.3) follows from Chebyshev inequality

P({/(A, .) ^ k}) ̂  e-^ [e^^ dî{x)

^ _L-^-<*+N<a/4
P(A)

for t = 2À/N. D

Remark 2.1.3. — Consider a séquence (ûj^y ^ positive numbers. If we now
replace (2.1.1) by

(2.1.7) f{A,x) = i n f { S { ^ : ^ N ; ^ + ^ } : j / e A }

thé proof of Proposition 2.1.1 shows that

(2.1.8) f^^ dPÇx) ̂  —L^s^a?/4
J ^(A)

and, by Ghebyshev inequality,

(2.1.9) P({/(A, .) ^ u}) ̂  ———e-^i^
r(AJ

A number of inequalities presented in Chapters 2 to 5 allow extensions that
parallel thé way Remark 2.1.3 expands Proposition 2.1.1. Thèse extensions are
immédiate, and will not be stated. It should be pointed out, on thé other hand, that
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no gain ofgenerality would be obtained in Proposition 2.1.1 by replacing thé product Q ,̂
y^ by a product II f2,, ® ^,. This comment aiso applies to many inequalities that

i^N KN
we will subsequently prove.

2.2. Sharpening

Having proved (2.1.2) 3 it is natural to wonder whether this could be improved
by allowing another type of dependence of thé right-hand side as a function of P(A).
Thé most obvious choice is to replace P(A)~1 by P(A)~a for some a> 0.

Proposition 2.2.1. — For t ^ 0, we hâve

(2.2.1) [e^dPW ^ a<-^-
J ^W

where
a / < __ -< /a \ l+a

(2.2.2) û(a^)== ( )

(a+ l)014"1 (1 -e-^) (^ - l)"'

Proof. — Following thé scheme of proof of Proposition 2.1.1, (2.2.1) hoids
provided that, for each funcdon 0 ̂  g ^ 1 on 0, we hâve^ ^ ̂

/• \ a
f / 1\ ( \ \min ^-^ ^ gW ^ a(a^).

JQ \ ê I \JQ /

Following thé proof of Lemma 2.1.2, we see that we can take

(2.2.3) û(a, t) == sup (1 + u^ - 1)) (1 - u{ï ~ ^-</a))a,
O^M^l

from which (2.2.2) follows by calculus. D
Gertainly neither thé author nor thé reader are enthusiasdc about thé prospect

ofusing (2.2.1) and optimizing in Chebyshev inequality. Thé purpose ofthe next resuit
is to obtain a more manageable bound, that aiso makes clearer thé gain obtained by
taking large values of a.

Lemma 2.2.2.
t 2 / 1\

û(a,^ exp- 1 +- .
0 \ a/

Proof. — Interestingly, rather than using (2.2.2), it seems simpler to go back
to (2.2.3) and to show that, whenever 0 ̂  u ̂  1, we hâve

(1 + u^ - 1)) (1 - u{\ - ̂ r^))^ exp^l + 1),
o \ a/
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or, equivalently (after removing 1 from each term of thé left-hand side)

(2.2.4) log(l +u{et - 1)) +oclog(l - u{l - e-^)) ̂  ̂  (l +v\.
0 V °7

Since (2.2.4) hoids for t = 0, it suffices to show that thé derivative ofthe left-hand
side is bounded by thé derivative of thé right-hand side for t^ 0, Le.,

ue^ ue-^ t l \\
^^l+^-^- l - .d- . -^^^+a)-

or, equivalently

(2•2•5) ^ ° -1 +^1-1) -1 - .7-%)< i(1 + ̂
Again (2.2.5) hoids for t = 0. So it suffices to show that for t^ 0, thé derivative

of thé left-hand side of (2.2.5) is bounded by thé derivative of thé right-hand side,
or, equivalently, that

.\___e____ 1 e-^ 1 ^ J_
^ ~" u) [(i _ ^ + ^ ( ) 2 + ^ (i ^u-{-ue-^Y\< 4 + 4a'

Now, using thé inequality 4ab ^ (a + é)2? we see that

u ( Ï - u ) e t 1 ^ ( l -^^ -^ 1
^-T; 7——————————T^^T. D(1 ^u+ue^2 49 {\ -u +u€-t/oi)2" 4

Corollary 2.2.3. — For ̂  0, we hâve

(2.2.6) f^(A,^p^^^expN^l + ̂ .

/ N r ~
/% particular^ for k ^ / — log , ^^ Aa^

'V 2 F(A)

(S.2.7) P({/(A,.)^})<„p(-^t-yl[log^)').

Proo/: — Certainly (2.2.6) follows from (2.2.1) and Lemma 2.2.2. Optimization
over t in Ghebyshev inequality yieids

P({/(A,.)»»})<p^exp(-^^,).
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/N 1
For k ^ / — log_—, making thé (optimal) choice

A/ 2 P(A)

2A2

a = = - 1 +
Niog: 1

'v ' ^PÇA)
yieids (2.2.7). D

It is an mterestmg fact that (2.2.7) is exactiy thé best bound that has been proved
on P({/(A, •) ^ k}) using mardngales (see [McD]). It is a natural question to wonder
whether, when P(A) ^ 1/2, one indeed has

/ 97,2\

P({/(A, . )^})^Kexp(--^

for some universal constant K. More or less standard arguments (e.g., those contained
in [T2]) show that it suffices to consider thé case where Q == { 0, 1 }, where P is thé
product ofmeasures (^)^N on ^? an(^ wllere A is even " hereditary ". Thé case where
^({ 1 ̂ ) == 1/2 for each î ^ N i s known, as a conséquence of more précise results, such
as Harper's inequality. Intuitively, this is thé worst case.

Having obtained (2.2.6), one must wonder whether further improvements upon
(2.2.6) are possible by considering yet other général dependencies of thé right-hand
side as a fonction of P(A). Thé reader who wishes to truly penetrate this paper will
convince himself that this is not thé case.

2.3. Two point space

Let us now consider thé case where û = = { 0 , 1 }, and set p = [L[{ 1 }), so that
^ ({0} )=1-^ .

Proposition 2.3.1. — For t^ 0, a ̂  1, we hâve

^t,P^
P(A)a 5(2.3.1) [e^dPW^5-^^

where, for p > 1/2, we hâve set

(2.3.2) b^t,p) = ((1 -/,).' +p) Çp+ (1 -/^-'/T,

and, for f^ 1/2,

(2.3.3) é(a, t,p) = b{^t, 1 - p ) = ((1 - p ) e-1 + p) (p + (1 - p) ̂ T.

Proof. — Following thé proofs of Propositions 2.1.1 and 2.2.1 it suffices to show
that for any fonction 0 < g < 1 on û we hâve

/ i \ / r ^
min [e*,—^ \dy. \\ê^\ < é(a, t,p).

t \ ê f \J 1
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As in thé proof of Lemma 2.1.2, we reduce to thé case where g ^ e~</<x. Setdng
a = gW, b == ^(1), it suffices to show that, for e~^ ^ a, h ̂  1 we hâve

((1 -P) ̂  + Û ((1 -P) a+pbY^ è(a, t,p).

Setdng x = b/a, it suffices to show that

e-^^ x^ e^ => ^{x) ̂  è(a, t,p)

where we hâve set

^)={{l-p)xot+p)^l——p+p\\
\ x i

Now,

ç'W = a^(l -^) Ix-1 - ̂  f1——^ +p\'~1

\ x / \ x ]

so that 9 decreases for x^ 1, increases for x^ 1.
Aiso, we hâve

y 'w-^Qy
= aj&(i -p) li - —-\ ((i - p ) +pxr-1 - ((i --^ x +pr-^

\ x !

so that, for x ^ 1, this has thé sign of 2p — 1. Thus for p < 1/2, y attains its maximum
on thé interval [é?"^01, e^] at thé right end of this interval, while for p ^ 1/2 it attains
its maximum at thé left end. (One should observe that changing A; in \jx and p in 1 — p
leave 9 invariant.) D

A pardcularly important example is when

A=={x= (^{O,!}^ S x^k}.
KN

Thé use of (2.3.1) for this set and of Ghebyshev inequality will in pardcular produce
bounds for thé tails of thé binomial law. Thereby, it is not surprising that thé compu-
tadons involved in thé use of (2.3.1) do run into thé same type of difficuldes as those
involving thé tails of thé binomial law. We now show how, nonetheless, some simple
and reasonably sharp results can be deduced (for général sets A) from (2.3.1). Thé
reader will observe that thé bound (2.3.1) is (of course) invariant when p is replaced
by 1 -— p, so that there is no loss of generality in assuming p ^ 1/2. Let us fix p, a ^ 1,
and consider

f{t) - log&(a, t , p ) = log((l - p ) e1 +?) + alog(^ + (1 - p) e-^).
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Thus /(O) = 0, and

f•w=(l-^J^=^-î?^L^
Thus/'(0) == 0, and

f"(t) ^pÇÏ-p^kÇe-^ +î-hÇet'a))
OC

where h{x) == x x
{RX+ 1 -J&)2 (1 -(1 - x ) p ) 2 9

Simple computations show that when x ^ !/<?, we hâve | h(x) — 1 | ^ K | x — 1
for some universal constant K. It follows that

^ i =>rw ^ p(\ - p ) Hi +l\+ 4Kt\
and, by integradon, that

^ i ^ /w^^i -^ i ï i+^+KA
Thus, we hâve shown thé first haïf of thé following.

Corollary 2.3.2. — For a ^ 1, 0 ̂  ̂  1, we hâve

(2.3.4) f^) dW ^ ——. exp NLl - p) I I + 1̂  + KÂ
J ( ) L \ a/ •& J

Jra particular, for
1 i M/a
(4^1-^Nlogp^j <^(1-/,)N

WÉ Aaw

(2.3.5) P({/ (A,^)^À})

/ i /, r~————r^2 K^3 \^^(-z.o^Nry^1-^1^^^) +^l-^)8N^
To obtain (2.3.5), one proceeds as m thé proofof (2.2.7), using first Chebyshev

inequality for t - J^ (T-^N' then ̂ ë

a = - l +
2/>(l-/ONlogp^'

12
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It is of interest to compare thé bound (2.3.5) with thé isoperimetric inequalides
obtained in [Lea] $ thèse isoperimetric inequalides are opdmal, but apply oniy to spécial
sets (thé so-called hereditary sets). Thé bound (2.3.5) is more général, and provides
estimâtes of essentially thé same quality.

We now turn to a rather différent situation. Beside thé measure (JL, we consider
on Î2 another probability ^, with p^ == [JL^{ 1 }) > p, and we set P^ == (xf.

Theorem 2.3.4. — For a subset A ofQ^, and x eQ^ we consider

/(A, x) == min{ card{ i ̂  N; x, == \,y, = 0 }\y e A }.

Then, for t ̂  0,

(2.3.6) f^A.^p^^^^!

where a(a, t) = max(l, (1 - p + pe1) (^ e-^ + 1 - p^).

Comment. — Thé really new phenomenon hère is that for small t, one has a(a, t) = 1.
In particular, if a = 1, this occurs whenever ^ ^ p^\ — p)lp{l — pi) so that one has

P /. /i ^\/(A,a?) -

^•7) K )̂ dr^-
Thé remarkable feature about this statement is that it is independent of N (and

so is in essence an infinité dimensional statement). This is thé first ofthe results we présent
that apparently cannot be obtained via mardngales (so it deserves to be called a theorem
rather than a proposition). Thé reader that would like to gain intuidon about
thé phenomenon captured by Theorem 2.3.4 should consider thé case where
A = { x e { 0, 1 }N; S x, ̂  n }. In order to hâve Pi(A) of order 1/2, one takes n equal

i^ N

to Nj&i, assuming for simplicity that this number is an integer. Observing that

f(A,x)>ko S x,>n+k==^+k==Np+ (è+N(^-/0)
î  N

thé quandty P({/(A, x) > k}) can be esdmated through thé tails of thé binomial law;
thé most interesdng values of N are such that NQS^ — p) ̂  k.

Thé induction scheme of Proposition 2.1.1 will reduce Theorem 2.3.4 to an
elementary two-point inequality, that is thé object of thé next lemma.

Lemma 2.3.5. — If a ̂  b < 1, we hâve

p.3,8) ———^^(-^ "••"
»• "• •—\<i-»•;-(»A + »(1-/•i))''
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Proof. — If we set x == min(è/û, ^/oc), we are reduced to show that

1 ̂  x ̂  e^ => <p(A;) < û(a, t)

I p . Y
where 9^) = (1 -^ +^0 - + (1 -Pi)] < û(a, ^).\x )

But 9'(A;) has thé sign of p(\ — p - ^ x^^1 — p^{\ — p ) , so it is négative for values of x
close to one, and then, possibly, becomes positive. Thus 9 attains its maximum on thé
interval [1, ^</oc] at one of thé endpoints. D

Proof of Theorem 2.3.4. — We proceed by induction over N. For N == 1, since
/(A, co) = 0 when 1 eA, it suffices to consider thé case A =={0}, in which case thé
resuit follows from (2.3.8) with a = 0, b = 1.

Assuming now that thé theorem has been proved for N, we prove it for N + 1.
Consider A C ̂ ^^ and set A^ == { x e t^; (x, 1) e A }. Consider thé projection B of A
on î^. We observe that

/(A,(^œ))^ 1+/(B,^)

/(A,(^œ))^/(A^)

so that setdng a = Pi(Ai), b •== Pi(B) and using thé induction hypothesis, thé resuit
follows from (2.3.8). D

2.4. Penalties, 1

A (somewhat imprécise) way to reformulate (2.1.1) is that we measure how far
x is from A by simply counting thé smallest number of coordinates of x that cannot be
captured by a point of A. Rather than just giving a penalty of 1 for each coordinate
we miss, it is natural to consider, given a non-négative fonction h on Q, X t2, thé quantity

(2.4.1) /,(A, x) = inf{ S h{x^) l^.pj/eA}.
t ̂  N

To simplify thé notation, we will assume

(2.4.2) VA; eu, h{x,x) =0

so that (2.4.1) becomes

(2.4.3) f^x) =inf{ S h[x^,y e A}.
t^N

Concerning (2.4.2), we should point out that we will let x,jy dénote points in 0^
as well as points in Î2; when there is too much danger of confusion, however, points
ofQ will be denoted by (ù, o/.
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Thé funcdon h will aiways be assumed to be measurable. Thé following simple
resuit is aiready usefui, as will be demonstrated in Ghapter 11.

Theorem 2.4.1. — For each measurable subset A of Ù^, and each t> 0 for which

expth{x,jy) d^x) d^{y) < oo, we hâve, setting y(co, œ') == max(A(<o, œ'), h[^1, co)), thatJJ
(2.4.4) [ e^^dfÇx)^——-!1^ (^^ + e-^^) ^(co) ^(o/)^.

J^ A(-A) V JQ2 /

Thé crucial point of Theorem 2.4.1 is as follows.

Proposition 2.4.2. — Consider afunction g ^ 0 on ii, and set

(2.4.5) gW=^{g^+th{x^)).

Then

r - r i r(2.4.6) \e° d^\ e-^^^ _ (^(^w-) ̂  ^-<.(w.^ ̂ ^) ̂ ^,^
J J 2' Joa

Indeed, a simple truncadon argument shows that Proposition 2.4.2 remains true
if one allows g to take values in R+ u{oo} (using obvious convendons). To prove
Theorem 2.4.1 by induction over N, considering a subset A ofQ1^1, we set

A(œ) ^{xeO^9, (^ o) eA}

for û) ei2, and we define g by P(A(co)) = e-^. It should then be clear that (2.4.6)
is exactiy what is needed to make thé inducdon work.

Proof of Proposition 2.4.2. — For simplicity we assume g measurable. Then thé
left-hand side of (2.4.6) coïncides with

iï e^-^d^d^).
JJo2

We set u(x,jy) = g ( x ) - g(y ) . By définition of g, we hâve g{x) ̂  g{jy) + th{x^). Since
h(x, x) = 0, we aiso hâve g(x) ^ g{x). Hence

(2.4.7) u(x^) ̂  th{x^); u{x,y) ̂  g{x) - g^).

We now observe that for two numbers a, b, if a + b < 0, then
ffi -L (ft < ^max(o, &, 0) i .— max(o, b, 0)

Thereby, by (2.4.7), we hâve

(2.4.8) e^v) + e^x) ̂  e^v) + e~tv(x1 y).

Thé resuit follows by integradon. D
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It is of interest to get simpler bounds. Let us observe thé following elementary
fact (that is obvious on power séries expansions). For ̂  1,

^ _L 0 ^ /2
(2.4.9) ——g—— ^ 1 + ^ (^ + e- - 2).

We note that, for an increasing funcdon 9,

y(max(û, b)) ̂  max(<p(û), 9(6)) < ^Ça) + <pW.

Using this for 9^) = ^ + ̂  — 2, a == A(co, co'), è = A(œ', œ), using then (2.4.9)
and integradng, we get thé following from (2.4.4).

Theorem 2.4.3. — If

(2.4.10) f f exp h{x^) d^x) d^y) < oo,
JJQ2

we hâve for ^1,

f
(2.4.11) eW^dV^x)

/^ \
^ __ exp W {^<ùl) + e-^^ - 2) ^(co) d^) .

F(A) \ JJo2 /

Corollary 2.4.4. — Assume

ff(2.4.12) exp A(^) ^M d^y) ̂  2.
JJo2

rA^ for ail u < 2N we hâve

(2.4.13) P({/,(A, .) ^ ̂ ) ̂  ̂  e-^.

Proof. — Since ^"^^ 1, under (2.4.12), thé right-hand side of (2.4.11) becomes
bounded by P(A)-1 exp N^2, from which (2.4.13) follows by Ghebyshev inequality. D

Thé following resembles Bernstein's inequality.

Corollary 2.4.5. — Assume that \\ h ||oo = sup h{x,y} is finite. Then
x,ve^

(2.4.14) P({/,(A, .) ̂ )) ̂  exp (- min (^^, ̂ ))

/ /y \1/2

where we hâve set \\ h ||a = M ^(œ, (x)') rf^(co) rf^(û)') ( .
\JJcî2 1
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Proof. — By homogeneity, we can replace h by V = hf\\ h [|^. For ̂  1, by (2.4.9)
taking v == 1, t == x, we hâve ^ + e-" - 2 ̂  x\e + e-1 - 2) ^ 2^2. Thereby thé right-
hand side of (2.4.11) becomes bounded by P(A)-1 exp 2W [[ h ||2, from which thé
resuit follows by Ghebyshev inequality.

Remark. — Thé reader has possibly observed that we hâve made no spécial efforts
to get sharp numerical constants (in contrast with thé previous sections) and we hâve
used thé simplest estimâtes, however crude. This feature will occur repeatediy. For a
number of thé results we will présent, thé proofs do not seem adapted to obtaining sharp
constants. Thereby, there is actually no point to track explicit values of thé numerical
constants involved. Throughout thé paper, K will dénote a universal constant, that
may vary at each occurrence.

2.5. Pénalités, II

It should be apparent from (2.4.1) that^ dépends on h oniy through thé properùes
of thé following functional, defined for subsets B of Q

(2.5.1) A(œ,B) = inf{A(œ,<û ' ) ;œ ' eB}.

(Thé reader should carefully compare this définition with (2.4.3) and note that in
both cases thé infimum is taken over thé second variable.)

Thereby, one should expect that thé exponential integrability of h can be replaced
in Theorem 2.4.1 by a weaker condition on thé functional h{x, B). This is indeed thé case.

Theorem 2.5.1. — Assume that for each subset B ofQ, we hâve

(2.5.2) f exp 2h{x, B) d^(x) ̂  ——
JQ y-W

Then, for each subset A ofÙ^, and each 0^ ̂  1, we hâve

r ^fi N
(2.5.3) eW^dPÇx)^——.

JQN -P(A)

Discussion. — 1) It is good to observe and keep in mind that by Hôlder's inequality,
we hâve for a ̂  1

(2.5.4) p^(f^J
«/ \J /

Thus, thé précise value of constants such as thé constants 2, e that occur in (2.5.2) is
completely irrelevant. Actually we will use thé following conséquence of (2.5.2):

(2.5.5) exph{x,B)d^{x)^ -^^—L^.
Jo V^(B) A/o(B)
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2) Is it very instructive to compare (2.5.2) with a condition such as (2.4.10).
Indeed, under (2.4.10), we hâve for ail x

p
(2.5.6) ^(B) exp h{x, B) = ^(B) ̂  exp h{x,y) ̂  exp h{x,y) d^).

Jo
Integrating in x gives

f i rrexp h{x, B) d^x) ̂  —_ exp h{x,y) d^x) d^).
J ^•"J JJQ2

Thus (with thé exception of thé largely irrelevant factor 2), (2.4.10) appear stronger
than (2.5.2). It is indeed much stronger, a fact that is not surprising in view of thé
crudeness of (2.5.6). To get a concrète example, consider thé case where Q is itself
a product of m spaces (and ^ a product measure), and dénote byfÇx^) thé Hamming
distance in ti. Then Proposition 2.1.1 asserts that thé fonction h = m-112/ satisfies
(2.5.2). On thé other hand (except in trivial cases) thé function//û will fait (2.4.12)
uniess a is of order m.

To prove Theorem 2.5.1, thé induction method reduces to thé proof of thé
following.

Proposition 2.5.2. — Consider 0^ t^ 1, and a fonction g ̂  0 on 0 For s ̂  0, we
set B, = { g < s }, and we consider

(2.5.7) g(x) =^+^,BJ.

Then under (2.5.2) we hâve

f F
(2.5.8) \e^d^ p-^^ e^2.

J J

Proof. — We observe that

(2.5.9) iW-^)^^,B,J.

We then follow thé argument of Proposition 2.4.2, using (2.5.9) rather than
thé first part of (2.4.7). Combining with thé argument of Theorem 2.4.3, we are led
to show that

rr
^B^ d^{x) d^) ̂  4.

JJn2

Using (2.5.5) and Fubini theorem, it suffices to show that

(2.5.10) f—————^( j / )<2 .
JoV^(B^)
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Thé best way to prove this inequality is to observe that thé left-hand side dépends
oniy on thé function s -> ^.(BJ. Thus there is no loss of generality in assuming that
Q == [0, l], that (JL is thé Lebesgue measure, and that g is nondecreasing. But then

^(B,J^, and f lJ- l/2^=2. D
•/o

As pointed out in thé discussion, a natural applicaùon of Theorem 2.5.1 is to
thé case where tî is aiready a product space. This will be used implicitly, but crucially
in Section 11.5. To fbrmulate in words what happens, Proposition 2.1.1 states that
i f A i s a subset ofa product 0^ ofN spaces, of measure 1/2, ail but exceptional points x
of ù^ are such that there is a point in A that captures ail but about VN of their coor-
dinates. Suppose now that N = N\ N3, and we think of thé N coordinates as N3^ blocks
of N3 coordinates. Then, using Theorem 2.5.1, we know that (but for exceptional
points x) not oniy we will find a point in A that misses oniy about VN coordinates of x,
but thèse coordinates will be concentrated in oniy about VNi blocks. An interesting
question would be to quantify precisely what can be said when, rather than considering
oniy two c< levels 55, one considers a large number of levels.

2.6. Penalties, I I I

In this section, we explore a new phenomenon, that will aiso be met in Sections 3.3.3
and 4.4.4. Thé notation of thé présent section will be used throughout thé paper.
Roughiy speaking, what happens is that if, in (2.5.3), one allows a more général type
of dependence in P(A) of thé right-hand side, then a weaker condition than (2.5.2)
will suffice; this will mean in practice weaker integrability requirements on A.

Thé dependence in P(A) we will consider will be of thé type ^e(p(A)). Throughout
thé paper, 6 will dénote a convex decreasing function from ]0, 1] to R4', such that
6(1) ==0, lim Q(x) =00. Thé most important example is 6 (x) == — log x, in which
case ^e(p(A)) is thé familiar quantity 1/P(A). We will aiways dénote by ^ thé inverse
function of 6, so that Ç is a convex fonction from R"^ to ]0, l], with ^(0) = 1. We will
aiways assume thé following

(2.6.1) Ç" decreases; V b > 0, Ç"(é) ^ | S'(é) |.

For x eR, we set x^ = max(A:, 0), and we will keep thé following notation, for x eR,
b eR+

(2.6.2) S(x, b) == ̂ +) - W - ̂  - b) S'W.

We dénote by X thé Lebesgue measure on [0, 1]. Thé measure of a Borel set B
is simply denoted by | B |.

Central to this section is thé following technical condition, that relates Ç and a
fonction w ^ 0 defined on [0, I],
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Condition H(Ç, w).

(2.6.3) V è ^ O , V^, 0 < ^ 1 , f S(^ - ̂ ), b) d\Çu) ̂  t2 | Ç'(é) |.
•/o

First we will investigate conditions that imply (2.6.3) under two simple choices of Ç.
Then we will look at a rather général situation where thé meaning of (2.6.3) can be
considerably clarified; and before stating thé main resuit (Theorem 2.6.5) we will
prove a technical lemma that will explain thé précise purpose of condition H(Ç, w).

Proposition 2.6.1. — When ï,[x) == ^-a!, condition H(Ç, w) hoids provided | ^ ^ À < 2.

Proof. — Indeed, we hâve

S(x, b) = e-^ - e-^ + (^ - b) e-^

^ é^- a 5~<?- b+ {x-b^e-^

=^-^-(a;-b) + ( x - b ) - 1).

Thus (2.6.3) hoids provided

t^ 1 => f(^ -tw- \}d\^ t2.

But, since thé funcdon x~2(ex — x — 1) increases for x ^ 0, we hâve
(^ _ ̂  - 1) ^ ^2^ _ ^ _ 1)^ Q

Proposition 2.6.2. — ^SW == ——., ^72 (2.6.1) hoids and condition H(Ç, co) Ao^
^ -f~ 4

provided w2 </X < 2.

Proo/'. — Setting y == ^+, we hâve

_ 1 1 j^- ^ù^é)-J^-i^^+(^T2)"2
( y — b}2 1

= ———-——-——— ̂  - ( y — b)2 | ̂ (M |. D
(^+2) (é+2) 2 2 - / 1 ' / / '

One obvious conséquence of (2.6.3), taking t == 1, is that

(2.6.4) |{^é}|3((U)< |Ç'(é) |.

In practice for è large 3(0, b) is of order 1; so (2.6.4) is really a tail condition. Thé
next resuit shows that a condition of a similar nature is indeed sufficient, provided Ç'
varies smoothly (i.e., satisfies thé Ag-condition; which is not thé case when Ç(A?) = ^-aî).

13
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Proposition 2.6.3. — Assume that for a certain number L> 0, we hâve

(2.6.5) V6>0 , V^l, yl^\ ^Lt2|TO|.

Then (2.6.3) hoids provided thé following two conditions hold:

(2.6.6) w2 d\ ̂  -
Lt

(2.6.7) Vé>0, | { îOé}|<S^|TO|.

Proof. — We write

r
(2.6.8) 3(é-fw,é)rfX< S(é — ft», é) rfX + | {tw ̂  bf2} |.

•' ->{tw^W}

By Taylor's formula, since Ç" decreases, and Ç"(è) < | Ç'(è) |, we hâve, by (2.6.5)

^t/a^s^tX^rd)

< (< - bY
^

(x-b)^
< L ——„—— | S (o) |.

Thus

3(è - tw, b) d\ < IJ21 Ç'(é) | | a»2 d\.
•»{(»< 6/2}

Aiso, by (2.6.7), (2.6.5)

| { to^é/2}|<- Ç' - <o lTO| .2L 2t

Thé resuit follows, combining with (2.6.8). D
Thé reader should observe that thé funcdons î,{x) == (1 -}-x)~°' (a< 1) sarisfy

(2.6.5).
Thé following lemma explains thé purpose of condition H(Ç, w).

Lemma 2.6.4. — Consider a fonction /> 0 on Q. Assume that for a certain t, 0^ t^. 1
and ail s < é we hâve

(2.6.9) (</'<•?})< |{^> l > - s ) \ =\{b-tw^s)\.
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Then, under condition H(Ç, w), we hâve

(2.6.10) h(/)^
*/c

< Ç(é) (X(G) + TO [ (/- b) d^ + ^ | TO | + 1 ̂ (&) f (/-« fr)2^
Je Jcn{/^&)

yi?r ^û^A ̂  G.

Proof. — By definidon of 3, (2.6.10) is équivalent to

f s(/, b) ̂  < fi \ TO | + \ rw f (/- by d^.
J e J c n { / ^ b )

By Taylor's formula, and since Ç" decreases, for x > b we hâve

S^b) ̂  j (A; - b)^-{b)

and thus

f S^^^^^^wf (f-^dy..
Jcn{/^b} Jcn{ /^&}

If we remember that S ̂  0, and if we use condition H(Ç, w), we then see that
it suffices to show that

(2.6.11) 3(/, b) d^^\ 3(b - tw, b) d\.
J { f ^ b } J

Now, (2.6.9) implies that for ail s < b we hâve

^({/<^})^ \ ( b - ^ t w ^ s } \ .

Thus, since S{x, b) decreases for x^ é, we hâve, for ail z> 0,

(x(l^^S(/,è)^ z)^ \{S(b^tw,b)> z}\,

from which (2.6.11) follows. D

Theorem 2.6.5. — Consider a function h on il x Q, and a nonincreasing fonction w

on [0, 1] such that ( w2 d\^ 1. Assume that for each subset K qfQ, we hâve

(2.6.12) f exp h{x, B) d^x) < exp(^(pt(B))),
JQ
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where we keep thé usual notation h{x, B) = inf{ h{x,jy) \y e B }. CWAr a fonction 6 ̂  ^û;,
W Û^MW^ that thé condition H(Ç, z£;) holds. Then, for each subset A ofQ^ and ail t^ 1, we
hâve, for ail t^ 1,

^(A,^) ̂ p^ ^ exp(4N^2 + 6(P(A))).
Jo11

To understand better (2.6.12) it is of interest to specialize to thé case
where h dépends oniy on x (resp. y ) . If A dépends on x oniy, (2.6.12) means that

exph{x) d^{x) ^ expw(O). If h dépends onjy oniy, then (2.6.12) becomes
JQ

inf{A(j/) ; jeB}^^(B)).

Taking B == { A ^ s}, we get j^ w ( { j i ( { A ^ ^})) and, since w m nonincreasing, this
implies

^{h> s})^ \{w^ s}\.

It is easy to see that, conversely, this implies (2.6.12) when h dépends uponj/ oniy and
when w is left continuous.

To prove Theorem 2.6.5, it suffices, using induction over N, to prove thé following.

Proposition 2.6.6. — Consider a fonction g on Q, 0 < g ^ 1, and set

9g{x)==^{Q(g^)+th{x^)}.

Then, under thé conditions of Theorem 2.6.5, for t^, 1, we hâve

1^4^ exp^+e^L^Y
v \ \ J / /

Clearly, this is équivalent to thé following.

Proposition 2.6.7. — Consider a fonction f on t2, f ^ 0, and set

fW^^{f^)+th{x^}.

Then, under thé conditions of Theorem 2.6.5, for t^. 1, we hâve

(2.6.13) f ^^expf4^+ef fç ( / )^ .
J \ \j l ï

Proof. — Thé problem is that we hâve on thé right of (2.6.13) thé quanrity

® ( | ̂ {f) ̂ } rather than thé larger quantity fd\L. We consider t as fixed through

thé proof.
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Step 1. — We set B, = {/< s } for s^ 0, and

é=mf{^+fw(^(B,))}.

We note that/(A;) <f(x). We consider thé fonction/' given by

f'(x) =/W if f(x) > b,

f'(x)=b iîf(x)^b<f(x),

f'W =f(x) iffÇx) < b.

Since/</, we hâve /</'</. Thus ( e7 dy. ̂  ! er dy., and Ç(/) < Ç(/'), so

JS(/) ̂  < jç(/') ̂  and 6 (J^(/') ̂  < 6 ik{f) dy\. Thereby, it suffices to prove

that

(2.6.14) p' dy. < exp ̂ f2 + 6 1 fç(/') rf^.
J V \J / /

6'fc/» 2. — By définition of b, we hâve, for î < b,

to((x(B,)) > A - s.

Since w is nonincreasing,

(2.6.15) \{tw^ b-s}\^ (A(BJ.

Since f'{x) =f{x) whenf(x) < b, we see that (2.6.9) hoids (for/' rather than/). Since
/' =/when/'(A;) > b, by (2.6.10) used for G = û, we get, since Ç"(é) ^ | Ç'(A) |,

(2.6.16) fç(/') dy.^ ^b) + Ç'(è) f(/' - b) dy.
J J

+l^)l^+ lf (f-^dl
\ ~hî>b} 1

Step 3. — Ifj eB,, we hâve

fW < f{y} + th{x,y) < s + th{x,y),

so that f{x) < s + fA(A;, B,).

Thus, by (2.6.12) we hâve

r
h-'-17^ exp(r1^ + fw((A(B.)))).
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Taking thé infimum over s yieids

(2.6.17) l^-1^^ 1.

Since e^ < 1 + ^, we get

(2.6.18) p-1^'^ 2.j
.Ste/» 4. — Thé inequality ^ ̂  1+^/2 for x ̂  0, and (2.6.18), show that

(((/- b^Ydy.^ 2f2. Combining with (2.6.16), we get

(2.6.19) fç(/') ̂ < ^b) + Ç'W [(/' - b) dy. + W | Ç'W |.
v J

Thé convexity of6 impUes that Q{x) > 6(j»>) + (x —j) 6'(j0. Aiso, since 6(Ç(a;)) = 1,
we hâve 9'(Ç(è)) = 1/Ç'(À). Thus (2.6.19) implies

(2.6.20) e IU(f) dy\^ b + f(/' - 6) ̂  - 2f2
\»/ / J

=[f'dv.-ît\
J

Step 5. — To finish thé proof, it is thereby sufficient to show that

(2.6.21) p 4^ exp (ît2 + I/' d^\.
v \ J 1

Consider thé function r{x) == ^ — x — 1, so that

f^-^pL - 1 + f(/' - b) ̂  + fr(/' - b) ̂
J J J

<exp( f ( / ' - é )^+f r ( / ' - ^ )^
^J J /

and thus it suffices to show that |r(/' — è) ̂ ^ 2^2. We observe by (2.6.18) that

f rÇrV7-^))^!
J{ / '>&)
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and, since as aiready observed, thé function x~2 r{x) increases for x> 0, this implies

r
^/'-é)^ t\

J{f>b}

Aiso, it is elementary to see that r{x) ^ x2^ for x< 0. Now, by (2.6.15), we hâve

f r
{ f / - b ) 2 d ^ ^ t 2 \w2d^^t2. D

J{f<b} J

2.7. Pénalités, IV

This section is devoted to thé remarkable fact that if (2.5.2) is suitably reinforced,
thé term exp t2 N can be removed in (2.5.3).

To express conveniently thé conditions we need, we introduce thé function c{a, t)^
defined for 0<a< 1, t> 0, as follows {c stands for concentration): if v^ is thé

measure on R of density - e~^ with respect to thé Lebesgue measure, we hâve

c{a, t) == vi((— oo, b + f\), where b is given by a == Vi((— oo, é]). Simple considérations
show that

a ̂  ^ => c(a, t) = 1 - e-^ï - a)

a< y e1 a^^ => c(a,t) = ^ a

a^^ €ia^ g =>c{a,t)== 1 -^.

Theorem 2.7 A. — Assume that for each subset îi ofîl we hâve

(2.7.1) « 1 = > ^ ( { A ( . , B ) ^ ^ } ) ^ ^ ( B ) ^ )

(2.7.2) ^ 1 = > ( X ( { A ( . , B ) ^ ^ } ) ^ ^ ( B ) ^ ) .

rA^Tî, yor each subset A ç/* û1 ,̂ we hâve

(2.7.3) f ^(A,^P(^__
JQN ^(^

where f^ is given by (2.4.3) and where K is universal.

Our first task should be to give natural examples of situations where (2.7.1),
(2.7.2) occur.
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Proposition 2.7.2. — Consider thé probabilité ^ on R, of density -e~^\ with respect

to thé Lebesgue measure. Then thefunction h{x,y) == min(| x —y [, [ x —y |2) satisfies (2 .7 .1) ,
(2.7.2) (for vi, rather than .̂

Proof. — For a subset G of R, and /> 0, let us set G( == { x eR; d{x. G) ^ t}.
To prove (2.7.1), (2.7.2), it suffices to show that

^i(C<) ^(vi(C),^).

This is proved in [T4] using rearrangements.
We sketch below a simpler alternative argument to prove thé weaker resuit

(2.7.4) v3(C,)^(vi(C),^/2).

(Thé reader should observe that this suffices to prove that A/4 satisfies (2.7.1), (2.7.2).)
First, we reduce to thé case where G is a finite union of intervais. Setdng

u(t) =mf{\x\;xeC,ICt},

it should be clear that

(2.7.5) ^(G^exp^^)).

By définition of u(t), we see that thé interval [— u[t), u{f)] is either contained
in thé closure of G(, or eise it does not meet G(. Thereby, we hâve either

^(C,) ^ 1 - 2^([^), œ)) == 1 - e-^

or eise ^{C,) < 2^([^), oo)) = e-^

so that, in any case

e-^ ̂  min(v,(G<), 1 - ̂ (G,)).

Combining with (2.7.5) shows that as long as VI(G() ^ 1/2, we hâve — (log Vi(C()) ^ 1/2,
dt

so that Vi(C^) ^ e^^^^C), Similar considérations complète thé proof. D
Other examples can be generated using Proposition 2.7.2 and thé following

simple observation.

Proposition 2.7.3. — Consider a probabilité space (t2, pi) and a function h on Q2, that
satisfies (2.7.1), (2.7.2). Consider a measurable map r\ from 0, to a measured space Q', and
thé measure ^ = Y] (pi) on û'. Consider a fonction A' on ti'2 such that

(2.7.6) V^eiî, A'(7îW,7^))^(^).

Then A', (x' ̂ ^ (2.7.1) , (2.7.2).
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Proof. — This is obvious using thé relations

pt^-^B)) = (X'(B), h{x, ̂ (B)) ^ A^), B). D

Thé use of Propositions 2.7.2 and 2.7.3 will allow thé construction of a wide
class of examples.

Proposition 2.7.4. — Consider a convex symmetricfunction ̂  ̂  0 on R, with lim ̂ {x) == oo,
X-><X)

and thé probability ^ of density a^ e~ ̂ (x) with respect to thé Lebesgue measure, where a^ is thé
normalizing constant. Then there is a constant K(^) depending on ̂  oniy such that thefunction h{x,y)
on R2 given by

(2.7.7) | x -y \ < 1 => h^y} == , | x ^y p

(2.7.8) ^-y^^^-^^^^v^
satisftes (2.7.1), (2.7.2) with respect to ^.

Proof of Proposition 2.7.4. — Consider thé nondecreasing map T] from R to R that
transports v^ to v^. Thus

(2.7.9) f a^e-^dHt)^^ ^e-^d^t).
^•n(x) Jx

By Proposition 2.7.2, 2.7.3, it suffices to show that

(2.7.10) h(^x), ̂ )) ̂  min(| x -y |, | x -j. |2).

It is simple to see that (2.7.10) will follow from (2.7.7), (2.7.8) (with a suitable
choice of thé constant there) provided we can show that

(2.7.11) \ri{x)-^)\^KW\x-^\

(2.7.12) ^ L— | 7)W - ̂ y) l) < | x -y \.

There, as in thé rest of this proof, K(^) dénotes a constant depending on ^ oniy, that
may vary at each occurrence.

To prove (2.7.11), it suffices to prove that ^(x) is bounded when x> 0. DifTe-
rentiating (2.7.9), we get a^^{x) e-^^ = e-^î, and plugging back in (2.7.9),
we get

f00

r^\x) = e^^-^dt.
J-n(x)

14
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Thereby, it suffices to show that
pco

sup e-^+^dKœ.
"3SO J»

Given MO > 0, thé supremum for u < y, is certainly bounded. On thé other hand, for
u S» «o> by convexity of ^ we hâve ^(t) — ^(a) ^ {t — u) y(uo), so it suffices to choose KO
with <{/(«o) > 0.

We now turn to thé proof of (2.7.12). It suffices to prove that, for _y> x -a. 0,
we hâve ^{_y) - Ï)(.())/K(^)) <^ - x. Setring a == «JT1^ - x), it suffices to show
that f^{x + (Ka)) < ^{x) + K(4») a, i.e., that

r°° i
(2.7.13) a^\ e-^dt^-e-"-^.

•'»l(!c>+K(<Ha

First, we note that, since ^(t) > ^(jy) + (t —y) i(/(^), we hâve, forj>0,

['^^m'^
so that

(2.7.14) ^ f e-^dt^ , , . g ^ , ̂ (x}^.
J^)+20 ^ (^W + 2û)

Aiso,

i r00
(2.7.15) , e-16 = ̂  ^-tp(o ̂  ̂  ^ ̂ -^^+»>.

•/TKa;)

Since ij/(^) increases for ^> 0, we hâve ^(x) + 2a) ̂  ^(f}(x) + a) + <{/(a).
Thus, from (2.7.14), (2.7.15) we see that (2.7.13) hoids provided K(^) ^ 2,
^W +2a)^ a^.

On thé other hand, using again convexity, we see that

f e-^dt=[
J-n{x)+a JTI(

e- ̂ t) dt ==\ e~ ̂  + a) dv ̂  e~ ̂ wx)) e-(p(v) dv
^•n(x)+a Jfï{x) J^a;)

<- __ f tW^ 'Wx)) -x
^ o— €

2a^

Thereby, if K(^) > 1, (2.7.13) will hold provided <4'(^)) ^ ^(û), and in
pardcular if 73 {x) ^ a.

Thus we can assume -^{x) < û, ^^'(^(A:) + 2a) < û^. This means that a and ^
remain bounded; but thé conclusion is then obvious. D
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It is of pardcular interest to consider thé case where ^(x) == x\ so that v^ is
Gaussian. In this case, Proposidon 2.7.4 shows that one can take h(x^) == 'K~l(x —y)2.
This recovers thé concentradon of measure for thé Gauss space, as expressed by (1.7).
There is, however, a big loss of informadon in (2.7.10); and thé resuit obtained by
taking

h(x^) == min(| ̂ (x) - ̂ (jO 1, ^-\x) - 7T1^))2)

is rather more précise than (1.7).
Thé inducdon step of thé proof of Theorem 2.7.1 reduces to thé following.

Proposition 2.7.5. — There exists a universal constant L with thé following property.
Consider afunction g on Q, and define

(2.7.16) g(x) -^(j0 + ,̂j0.

Then, under (2.7.1), (2.7.2), we hâve

(2.7.17) ] ^rf(x| e-°d^^ 1.
JQ Jn

Let us recall that we dénote by v^ thé probability measure on R of density e" ^/Z
with respect to thé Lebesgue measure. During thé end of this secdon, for x e R we set
<p(A?) == min(| x |, x2).

Thé proof of Proposidon 2.7.5 is considerably simplified by thé following
observadon.

Proposition 2.7.6. — Consider afunction g on Q, and g given by (2.7.16). Then we can
find two nonincreasing func fions g^ g^ on R with thé following properties

e^d^ == e^d^ e^9 d^ == e-^
Jo JB JQ JR

(2.7.18) ^rf(Ji== e^d^; e^9d^^\ e'^d^
Jo JB JQ JR

(2.7.19) V..6R, ^X^^^+^d^-^l)-

In pardcular, this implies that we hâve reduced to thé case (A = Vi, ̂  nonincreasing,
A(^)= 9(j^-^i).

Proof. — We define, forj' eR,

(2.7.20) ^(jc) == inf{ f; ̂ ({^«}) > Vi([^, oo)) },

(2.7.21) g^x) = sup{«; (i({^> «}) ^ vi((- œ,x])}.



108 MICHEL TALAGRAND

Thereby both g^ g^ are nonincreasing; it should be obvious that (2 .7 .18) holds. We
prove (2.7.19). Gonsider x ^ y . By (2.7.20), we hâve (JL(B) ^ Vi([jy, oo)), where
B={^^)}. By (2.7.1), (2.7.2), we hâve

( x ( { A ( . , B ) < 9 W } ) ^ ^ ( B ) , ^ )

^ ^i(L^oo))^)

=^([j/-^,a))).

Since g^, g^{y) + 9(^)/L on thé set { A ( - , B) ^ <p(<) }, we get

/ <p(<) \
^ i< ^(J^) + -— ? ̂ ([^ - ̂  oo)).

\ J" /

On thé other hand, by (2.7.21) we hâve

^({i ̂ <?2W})^l((-00^:1)-

Thus, if t>y - x, we hâve g^x) < g^jy) + 9(^)/L. Thus g{x) ̂  g(jy) + ̂ {y - A;)/L,
and (2.7.19) follows. D

We next show that we hâve reduced thé proof of Proposition 2.7.5 to thé following.

Proposition 2.7.7. —There exists a universal constant L with thé following property.
Consider a nonincreasing function f on R, with jf(0) = 0. Define

/(^)=^/(^)+^(p(|^-j/|).

Then^iffhas a Lipschitz constant ^ 2/L, we hâve

r - r\ef d^ p-7^^ 1.
J J

We prove thé daim stated before Proposition 2.7.7. In view of Proposition 2.7.6

and (2.7.19), it suffices to prove that e01 d^ e~ald^^ 1, where g^ is given by thé

right-hand side of (2.7.19). Define now

(2.7.22) f{y) =sup^M-1 ^{\x-y\).
a;eB ^

Since for ail x andj/ we hâve g^{x) < g^{y) + ,- ç( |^ — • J ' D î W e see that/(j^) ^ .?i(^).
-L<

Thus, [e-'d^ f^-'i^.AIso, by (2.7.22), we hâve gi{x)^f{y} + - <p(| x —y\)
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for ail x, y, so that gi^f. Thereby it suffices to prove that ( e^d^ ^ e~f d^^ Ï . Thé

condition /(O) == 0 is certainly not restrictive, and / has a Lipschitz constant < 2/L
by (2.7.22) since 9 has a Lipschitz constant ^ 2.

Upon seeing thé resuit of [T4] exposed in a seminar, B. Maurey produced a rather
magie proof of Proposition 2.7.7 [Mau2]. Thé proofwe will give is more in thé spirit
of thé arguments of thé présent paper, and is likely to be more instructive as it prépares
for thé considerably more délicate results to be presented in Chapter 4. We start by
a simple lemma.

Lemma 2.7.8. — Consider a nonincreasing function u on R, such that u(0) = 0. Then

f
u2 d^ < K S (u{- k) - M(- k + l))2 é?-*.

JB- ^1

Proof. — For simplicity we set u^ = u{— A). Thus

u^d^ S=: S ^-fc+l.
JR- ^1

Since u^ 2^_i + 2(^ — ^_i)2, we hâve

S^ 2 S u^e-^1 +2 S (^-^-i)2^"^1.
fc^i fc^i

But since i/o = 0, thé first sum is exactiy 2S/^, so that

S (l - 2) ^ 2e S (^ - u^Y e-\ D
\ // ^i

During thé proof of Proposition 2.7.7, we will consider another number 1 ̂  M ̂  L.
Thé numbers M, L will be chosen later. Thé crucial part ofthe proof of Proposition 2.7.7
is as follows.

Proposition 2.7.9. — Consider a non-increasing function u on R, with u{0) == 0. Assume
that | u | ̂  1/M, and set u{x) = mfu{y) + ̂ {\x —^|)/L. Then, ifL^ KM, we hâve

F TV/T (*
(2.7.23) Çu-u)d^^—\ u^d^.

JB K JB

Moreover, if M > K, zw Adw

(2.7.24) f ̂  + f c-»^ 2 - M f u2^.
JB JB K JB
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Proof. — To prove (2.7.23), it suffices to prove it when thé right-hand side is

replaced by u2 d^ (resp. M2^). Thé arguments for thèse two cases are
J{u^Q) \ J{u^0} 1

similar so we treat thé first case oniy. We set ^ = u{— k), so that ^< M~1, and
M(^ — ^-i) ^ 1- We set N^ == [2/M(^ — ^_i)]. Thus we hâve N^2 and

^•^ 2^îs"&-"l-l<^^•

For k ^ 1, / ^ 0 we set ^ ^ = — k + 1 —^/N^, and ̂  = u{a^f). Thus ^ o = ^_i,
^,Njt == ^- For è ̂  1, 1 ̂  t < N^, we consider thé subset R^ ^ of R2 given by

I^^K/^^I: X minj^^^^i + j ,^J.
J V -^V L

We observe that no point belongs to more than two intervals l^^+i, û^[, for 1 ̂  l ^ N^,
^ ^ 1, so that thé rectangles R^ ^ hâve thé same property. Since u(x) ^ u^ { for A; < û^ ^, Rj^ /
is below thé graph of u; but, since u{a^^^) = ^/_i, we hâve S(;c) ^ ^^-i + 4/LN^
on [ûjfc.^4.1» ûjfc,/]. Thus R^ / is above thé graph of S, and hence

( (u - u) d^
JR ^ i ^1 x^s./^^-^1' "̂ ^ (̂ ^ -min (^ uk't-l + dy)-

Since Vi([a»,/+i, a»,/]) > "̂"̂ /KN,,, we hâve

r i <"'' / 4 \
(a — u) rfvi > __ S .— S a»,/ — K,,,/_i - -—^

Jg K tssi Nj,; K/<NA\ LNt/

- 1 v '"^ 4 \
"KÀN.r'^""1'0"^;

1 e-^l 4 \
-K^^^-^-Ï^J

> rr S ff-*^ — «»_i)2

K t3si

by (2.7.25), and provided L> 16M. Thus, (2.7.23) follows from Lemma 2.7.8.
To prove (2.7.24), we use thé inequality <;*< 1 + x + x^ for \ x \ < 1. Thus

f , F f f f
eu d^ + e~ttdv^^2+ \ {u - u) d^ + y2 d^ + a2 rfvi.

•'B JR JB «'B •IB
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Now,

u2^ 2u2 + 2(u - u)2^ 2u2 + — (u - u) < 2u2 + î- (u - u)

provided M ^ 4, and thus

e^d^ + e^d^^ 2 + 3 u2 d^ - 1 | {u - 2) ̂
JB JB JR ^JR

and thé resuit follows from (2.7.23). a

Proof of Proposition 2.7.7. — We observe that, for a eR, we hâve a(2 — a) < 1.
Thus it suffices to show that

r - r(2.7.26) e^^ + e-^^^ 2.
JB JB

We set u = min(l/M, max(/, - 1/M)). Thus

(2.7.27) [ e-^^^ f <î-u^+ f (e-^e^d^
JB JB Jb

where f(b) = — 1/M. We observe that if u{x) < 1/M, then f{x) < Q(x). Indeed
if S(A;) < 1/M, then given s with U{x) < s< 1/M, there exists y with

^OO+L^çd^-j/l^e.

Thus u(jy) < 1/M, and/(^) < u[y), so that/(^) < e. Then, if c is thé largest constant
so th3itf(c) == 1/M, we hâve

(2.7.28) ( e^dv^ | ^ ̂  + | (^- ^/M) rfvi.
JB JB J-oo

Since /(O) == 0, we hâve c < 0 < b. Since / has a Lipschitz constant ^ 2/L, we hâve,
for x ^ b,

-fw^+^-^
and thus

r00 r 0 01
e-fd^ ̂  - ̂ M4-2(»-6)/L ^-a. ̂

Jft Jft "

.1/M

-T^2/L''•"'-°°»-
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Hence,

f (,-/-^)^<^M^^____^_lL,([é,0)])

TÇ
^^([é,oo[)

KM2 f , ,
^ ——— u2 ûfv1 3

Ll Ji</R

since u(x) = — 1/M for x ^ é. Using (2.7.27), (2.7.28), and making a similar compu-

tation for | (/— ^/M) d^ yieids
J— 00

f* f* /* /* •ĵ ' 1 ,rg /*

^^i + ^ûfvi^ ^ r f v i + e~u^l+—j—\ u2 d^.
JR JR JB JB JB

It then follows from (2.7.24) that (2.7.26) hoids provided M > K, L ̂  KM2. D
It would be of interest to understand exactiy which are thé functions 9 such that,

if one sets
f{x)^^f^) +9(^-J),

then ef ûtvi | e~f d^^ ̂  1. On thé other hand, thé situation is considerably clearer if one

considers thé standard Gaussian density yi rather than v^. In that case, thé obvious adapta-

tion ofMaurey's argument shows that if a ̂  1, and i!f{x) = inf a/*(j?) + ^7———,-- (^ —jO2?y ^= ® 2(oc -4" 1)
/• ^ / /• \ a ^ .

then j ef ûfyi ( e~f ̂ ïi) ^ !• Thereby, by induction, and with thé notation of (1.7),

we get

YN(At) ^ ' ~ T^"2 '̂

hence, by optimization over a and for t ^ V2 log(l/YN(A)),

Y^(A<) ^ 1 - exp - ̂  (^ - V21og(l^(A)))2

which is not so far from (1.7).

3. Control by q points

In Section 2 thé basic thème was that thé < c distance " from a point x to a set A
was measured by how many coordinates ofA; can be c < captured " by a single point ofA.
Thé thème of thé présent section is that we allow several points of A to capture as many
coordinates of x as possible.



CONCENTRATION 0F MEASURE 113

3.1. Basic resuit

Gonsider an integer q ̂  2. For subsets A^ ...,A, of Q^ and xe^, we set
(3.1.1) /(A,,...,A^)=

inf{ card{ ̂  N : x, ̂ {^, .. .,jf}};y eA^ .. .,y eAJ.

Theorem 3.1.1. — M^ hâve
/»

(3.1.2) L^.-.A,,^P(^___
J 11 ^(AJ

»^ ff

/TZ particular,

(3.1.3) P(^A,..,A,.)^})<^^.

Thé inducdon method will reduce this statement to a simple fact about functions.

Lemma 3.1.2. — Consider a fonction g on Q, J^A ^A^ l / q ^ g^ 1. 7^72

r i / r v
(3.1.4) -^ ^^1.

JQ g VJo / -

Proç/: — We could use thé extrême point argument of Lemma 2.1.2. One alter-
native method is as follows. Observing that logx^ x — 1, to prove that ab9^ 1 it
suffices to show that a + qb < q + 1. Thus, it suffices to show that

f 1 f
-^ + q \ g d ^ ^ q + 1.

JQ ° JQ

But this is obvious since x~1 + qx ̂  q + 1 for q~1 ̂  x < 1. n

Corollary 3.1.3. — Consider functions g, on û, ^ ̂  1. r^Tz

(3.1.5) min {y, 1) ̂  n f& ̂  ̂  1.
Jo^ \ &/ ^J

Proç/: — Set g = (^m(?, &~1))""1, observe that & ̂  g, and use (3.1.4).

We now prove Theorem 3.1.1 by induction over N. For N == 1, thé resuit follows
from (3.1.5), taking g, == 1 .̂.

We now assume that Theorem 3.1.1 has been proved for N, and we prove it
for N + 1. Gonsider sets A^ . . . , A, of ^N+l. For œ eî2, we define thé sets A,(co) as
in (2.1.5) and we consider thé projection B, ofA, on tî^ Thé basic observation is that

(3.1.6) /(Ai,...,A^co))< 1+/(B^...,B^)

15
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and that, ifj^ q,

/(Ai, ..., A,, (^ <o)) ^/(Ci, . . . , G,, x),

where G, = B, for i +j, G, == A,.((o).
If we set ^(œ) = P(A^(<o))/P(B,), using Fubini theorem and thé induction

hypothesis, we are reduced to show that

. / . 1 \ 1
min î, mm — — < ——,———,
\ ^gi{^ n g^

v Q i^ f fJO

which is (3.1.5). D

3.2. Sharpening

Given a > 1, we can now, in thé spirit of Proposition 2.2.1, look for thé largest
number a == a{q, a) for which we can prove that

/»»
(3.2.1) a{q,oLy(A^"•1Arx)dî(x)^———1——.v / \ï' ) v / n P^A ^an PW

i^q

Following thé proof of Theorem 3.1.1, we see that we can take for a(q, a) thé unique
number x > 1 such that

(3.2.2) x + ?a;^l/a == 1 + ?a.

It then follows from (3.2.1) that
a{q, a)-^

(3.2.3) P({/(A,...,A^)^A})^^f-^-^.

There is no obvious way to compute thé right-hand side of (3.2.3). However, for large q,
we hâve thé following, that improves upon (3.1.2) for large values of k {k > q log q).

Proposition 3.2.1. — There exists a universal constant qç such that, if q ̂  ^o, we hâve

( e \16 I 1 V^eQ
(3...4) P((/(A,..,A,,)^})<^^^)(^) .

Proof. — We take a == log q, and we show that, for q large enough,

a{q,(x) ̂  a:= l +n —-\qlogq.
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For large q, we hâve a ̂  q, so that û170' ^ ^, hence

^^^(ï-^)
and thus a + yaûTl/a ^ 1 + qoi. D

It is interesting to note that Proposition 3.2.1 is rather sharp. Gonsider thé case
where û == { 0, 1 }, and where [L gives weight p to 1 (p ^ 1/2). Assume for simplicity
that r =j&N is an integer. Gonsider thé set A == { x eû3^; S x^ r}. Then P(A) is

i^N

of order 1/2. Gonsidering s = rq + A, we clearly hâve that S x. = j implies
i^N

/(A, ..., A,x) ̂  k. Thus P({/(A, . . . , A,x) ̂  k }) ^ ^(1 - ̂ N-a (N).
/N\When .?< N/2, we hâve > (N/2^)8, so that
\ J /P({/(A, . . . , A,x ) ^ A}) ^ (^y .-̂  ^ (^y

/ i y^^
^ ^(y+A/r); •

If we take k^ q log y, fixed, and then r of order kfq log y, we get a lower bound of
order (1/Kylog qY.

3.3. Penalties

Thé resuit of this section is thé one single major theorem of Part 1 that has not
been motivated by direct applications. Rather, it has been motivated by a désire of
symmetry with Sections 2.7 and 4.4.

We consider a (< penalty function " A(œ, <x)1, ..., c^) on û^1. We assume h ̂  0 and

(3.3.1) co e{œ1 , . . . .œ0} =>À(ûï,co1, . . . .œ3) =0.

For subsets A^, ..., Ay of Q1 ,̂ we consider

(3.3.2) /,(A,, ...,A,^) = in f{ 2 h(x^ ...^?);y eA,, ...,yeAJ.
t^ N

Thé case considered in Section 3.1 is where A((O, œ1, ..., (ù®) = 1, uniess (ù e {<x>\ ..., co^},
in which case it is zéro.

Given subsets B^, ..., Bç of Q, we set

(3.3.3) A((O,B^ . . . ,BJ =inf{A(ô),œ1, ..., œ^; ù)1 eB,, ...^^eB,}.

To control how large h is, we will consider a nonincreasing function y from ]0, 1]
to R4", and assume that

(3.3.4) V<oe î2 , VB,,. . . ,B,cû, A(û), Bi, . . . , BJ < S ï(pi(B,)).
«a
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A typical case where this condition is sadsfied is when

A(œ,û)1, ...,0 = 2 A,(œ1)
»^fl

for functions A, that sadsfy thé tail condition pi({ A, ^ yW }) ^ t a^d when y is left
continuous. Indeed, if t< ^(B,), then B, contains a pointa with ^(^) < y^).

We consider a convex funcdon 6 : ]0, 1] -^R^ and we make thé mild technical
assumption that thé inverse funcdon Ç sadsfies

(3.3.5) ?+1)1^1^)1.

(We put . rather than . simply to allow thé case ?,{x) == e'36.}\ ô z, J

Theorem 3.3.1. — There exists a universal constant K such that for q ̂  K, under (3.3.1),
(3.3.4), (3.3.5), if, for each s^ 1, we hâve

(3.3.6) f y-(e(.) - Q{t)) dUt) ̂  l-of^-

then, for each subsets A^, ..., Aç ofÙ^, we hâve

r(3.3.7) ^(AI,...,A,,.) ^p^ ^ exp ( S 6(P(A,))).
J *^«

To understand (3.3.6) better, we observe that thé term 6'(J) arises simply because
Q{s) — Q{t) resembles {s — t) Q^s) for t close to.r. Actually, since6(j) — Q{t) ̂  (s — t) e'(^),
change of variable and Lebesgue's theorem show that (3.3.6) implies that
/•oo

^~l{u)du^q~~llog(q|'K.). In thé case where y is constant, one can takeJ o
A(œ, œ1, .. ., œ3) = ^y whenever œ ^ { œ1, . . ., co9} (and otherwise A = 0). Then thé
intégral in (3.3.6) has to be interpreted as | { t : s ̂  t; Q{t) ̂  Q{s) — y} |. When
Q(x)==—logx, this is s^ — 1), and (3.3.6) hoids whenever ^^ q~1 log(qlK).
We then almost recover Theorem 3.1.1.

To prove Theorem 3.3.1, it suffices, by thé induction method, to prove thé
following.

Proposition 3.3.2. — There exists a universal K such that, under conditions (3.3.1),
(3.3.4), (3.3.5), (3.3.6), if we consider functions (î ),̂  on i2, 0^ u,^ 1, and define

(3.3.8) y(co) = inf S e(^(œ1)) + Â(œ, co1, ..., œ3),
û>l,...,û>î «a

then we hâve

(3.3.9) f ^ ̂  ̂  exp f S 6 f f M. rf^V
J,n V^9 \Jn / /
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Proof. — For clarity, we will replace (3.3.6) by

r1

(3.3.10) Y-i(6(,) - 6(f)) rfX(f) <———.
«J 8 1 \ / 1

and we will détermine in due dme a good choice for T. We aiready assume T< 1. Thé

two main parts of thé proof are thé search of upper bounds for ev rfpi, and of lower

U Y JQ

bounds for S 6 ^ d\L \.
^î ^ /

Step 1. — For î ^ q, we set S, == inf6(^(o))) = 6(sup ^(<o)). By (3.3.8) and
<0 Cù

(3.3.1), taking o^ == <o, we see that if we set S = S S,, we hâve
i^ f f

(3.3.11) y(co) < 6(^(œ)) + S S, = 6(^(û))) + S - S,.
i + i

tStej& 2. — We make thé convendon that y(0) == 00- For i < q, we define ^ by

Q{s,)=mf{^{{u^t}))+Q{t)}.
<^o

Thus we hâve 6(^) ^ S, and, for t> s,,

(3.3.12) ^ { ^ ^ ^ « ^ ï - W ^ - e W ) .

Step 3. — We show that, for any subset G of t2,

r
(3.3.13) ^rf^ ^(C) exp ( S 6^)).

Je ^fl

By définition ofj,, given s > 0, we can find ^ such that yÇ^^)) + 6(^) < 6(^) + s,
where B, == { u, ̂  t,}. Since 6(^(co1)) < 6(^) for œ1 eB,, we hâve, by (3.3.8),

^(œ)< S 6^) +Â(co,Bi, ...,B,),
î ^ f f

so that (3.3.13) follows by (3.3.4), since s is arbitrary.

Step 4. — Gonsider now a number m. We set

f(3.3.14) z == min((y — m)^ 1) d^ and C = { » ^ w + l } .
J

Thus, in pardcular pi(C) ^ z.
Using thé inequality ^a! ̂  1 + 2^ for x^: 1, we get, using (3.3.13),

r r r
^-M ̂  < + < 1 + 2^ 4- {^(C) exp ( S 6(^) - m),

JQ Jo\c Je i^q
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SO that
f

(3.3.15) ^-w^^ 1 + z(î + exp( S 6(^) - m)).
Jo ^a

•SÏ̂  5. — We now turn to lower bounds for S 6 ( ^ d[L (. For each i ̂  y,
i^a \Jo /

consider a number m^ and set

(3.3.16) ^(œ) = y(œ) — S + S, — 6(w,),

f
(3.3.17) W, = min«, 1) d^

Jo
We show that

r w / w \
(3•3•18) L.,("•-^)^<^(=-3F;À)î)•

By(3.3.11), we hâve

(3.3.19) 9(^((ù)) ^ y(œ) - S + S, = w,(œ) + 9(^).

Now, by (3.3.5), we hâve, forj/^ x,

^)^W+^f{x)mm{l^^x).

Taking x = Q(m^), y = x + ^(co), combining with (3.3.19) and recalling that
Ç'(6(^)) = 6'(m,)-1, yieids, when ^(œ) ^ 0, that

^(co) < W, + ̂ 7 / x ï11111^ ^C^))'

from which (3.3.18) follows by intégration.

Step 6. — We take m, = s,. It follows from (3.3.12), (3.3.10) that
/•

(^-^) rf(A< T—————-

J<^,) l6^)!
Combining with (3.3.18), observing that ^(co) > 0 implies ^(û>) < w, by (3.3.19),
and using convexity of 6 yield

/ r \ w
(3.3.20) 6 u,d^ ^e ( ^ ) -T+—.

\Jn / <J

We choose thé number m of Step 4 as thé smallest for which

card{ î^ ?; S - S, + 9(^) < w}^ j.
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We observe that if S — S, + 6(^) ^ m, then W, ^ z, where W, is given by (3.3.17)

and z by (3.3.14). Thus (3.3.20) shows that if we set R = S; ô( f u,dy}, we hâve
K« \Jn /

(3.3.21) S 6(^)< R + ^ T - I ^
i^fl 6

Gombining with (3.3.15) gives

e^^^d^^ l + z{2+eîs'+qr-lx-m)
Jo

^ 3 + ^"I2^-^

Galculus show that sup ze~W/Q = G/ge. Thus, if we assume

(3.3.22) ^^,

we hâve

L?''-"1^ 3 +-^E-m.
J

For R — m ̂  2, this is < ^B-w, so thé proof is finished.

Step 7. — Thus, we oniy hâve to consider thé case R ^ m + 2. By définition of w,
thé set

I = = { ^ ? $ m ^ S-S,+9(^)}

has cardinality ^ y/2. For i in I, we hâve

R ^ w + 2 ^ 2 + S + 6(^) — S,

and summadon over i e I yieids

(3.3.23) R - S^ 2 + ——— S (6^) - S,)^ 2 + 2 S (6(^) - S,)
card l i e z ? i^a

since 9(j,) -- S, ^ 0 for ail î^ q. On thé other hand, (3.3.21) implies that

S (6(^) - S,) < R - S + ?T
«a

which, combined with (3.3.23), yieids (for y > 3, T^ 1) that

(3.3.24) S e(^) - S < (l - 2) 1 (2 + ?T) ^ K + yr.
i^ff \ y/
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Step 8. — We assume that q ̂  3, r^ 1, so that (3.3.24) hoids, and we finish thé
proof. In Step 5, we take m, = sup ^(co), so that 6(^) = S,, and w, == v - S does
not dépend on i. From (3.3.18) and convexity, we get

e( f ^4^s,+^
\JQ / -

where W == W, = f min(l, w4-) du..
Jn

We now hâve by summation that

(3.3.25) Ç^R-^s.

In Step 4, we take m == S, so that z = W. From (3.3.15), (3.3.24) we get

r
(3.3.26) ^-s d^^l + 3Wexp(K + qr)

Jo
< exp(3Wexp(K+ qr)).

According to (3.3.25), thîs is less than exp(R - S) provided exp(K + qr) ̂  ?/9,
i.e. T^ q llog(y/K). Moreover, this requirement implies (3.3.22).

Thé proof is now complète. D

3.4. Interpolation

One can express Proposition 2.1.1 as thé fact that, if P(A) > 1/2, then for most
of thé éléments x of ti^, ail but of order VN coordinates can be copied by an élément
of A. On thé other hand, Theorem 3.1.1 asserts that for most of thé éléments x of Q^,
ail but a bounded number of coordinates of x can be copied by one of two éléments
of A. A rather natural question is whether both phenomena can be achieved simulta-
neousiy (using thé same éléments ofA). In this section, we will show that this is indeed
thé case.

This fact seems to be a spécial case of a rather général phenomenon that can be
informally formulated as follows: Suppose we hâve defined two notion of thé idea " thé
points x andj/ are within « distance» r5; we call thèse 1 and II respectively. Assume
that there is good concentration of measure when thé fattening A( of A is defined as
thé collection of points x that are within distance t of A, when thé meaning of this is
defined with respect to notion 1 (resp. II). Then, in ail thé cases we hâve considered,
it remains true that we hâve good concentration of measure when A< is now defined
as thé collection of points x for which there exists a point y which is within distance /
of x with respect ofthe two notions simultaneousiy. Two spécifie examples are presented,
one m this section, thé other in Section 4.5. In both sections, we présent an inequality,
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that quantitadvely contains two rather separate inequalities presented before. Gonsi-
derably more difficult (if at ail possible) would be thé task of finding a formulation
that would allow to recover sharp forms of thèse two inequalities. This direction of
finding inequalities that " merge " several other inequalities is very natural. It remains
at an embryonic stage. Thé reason is partiy thé intrinsic difficulty, partiy thé lack of
concrète applications that would help to formulate précise needs.

We now go back to question of finding an inequality encompassing at thé same
time thé essence of Proposition 2.1.1 and Theorem 3.1.1. For simplicity, we consider
oniy thé case q == 2 in Theorem 3.1.1. For two subsets A^, Ag of 0^, x e û^, a, t > 0,
we set

(3.4.1) /(Ai, A^ a, t, x) = inf{/(y,y2, a, t, x);y e A^f eA,},

where /(V^ ̂  t, x) = a card{ i^ N; x, +j^; x, + f,}

+fcard{i^ N$ ̂ +J^ or ̂ +jf}.

Theorem 3.4.1. — For each a< log 2, there exists ÏQ> 0 such that

^
(3.4.2) t< /o ^ ^(Ai,A2,a,(,^) ̂ ^ ̂

P(Ai) P(A,)

In particular, by Chebyshev inequality, this implies that for u^ 8N^, we hâve

/ / 1~ \ \ ^-u/2

''(^••^'•ysN-r'riwptA,)'
WhenVJAi, Ag, û, /—, x) < u, we can, by définition, find y1 e A^, jy2 e Ag such that

\ ^ 8N /

acard{i^ N; x, ^{j^,j^}}+ / - u card{^^ Nî^^^or^+J/?}^ ^
/\/ 8N

so that, in particular,

card{^N;^{^, j f}}<^,

card { i < N; x, + ̂  or ̂  + j/?} ̂  VSNÏ.

We would like to point out that thé factor ^4N( in (3.4.2) is not optimal. This
factor can be improved, in particular, with greater effort on thé calculus computations
of thé proof we will présent. Further improvement would be possible as in Section 1.2,
but we hâve not pursued that direction since it is not clear at thé présent time what
would be an optimal quantitative form ofthe phenomenon described by Theorem 3.4.1.

Thé key to Theorem 3.4.1 is thé following.
16
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Proposition 3.4.2. — Given b < log 2, ^?r<? ̂ '̂  ^ > 0 J^À that, if t<t^ for any
two functions g^g^^ 1 on Q, w<? hâve

(3-4-3' [min (-1 ̂ . ̂ . i,̂ ) *•(") « j^j^.
Proof. — Thé relatively simple method we présent does not yield thé optimal

dependence in t in thé right hand side of (3.4.3), but it avoids lengthy unpieasant
computations. Arguing as in thé proof of Lemma 3.3.2, we see that

f f f fA d^ h?i ̂  h?2 ̂  ̂  exp (A + gi + g^ — 3) d[L.

Thus, if we set
„ , . ( , ^ e1 1 \
h{gi,g2)== mm ^ - , - , ——L

\ <?! S2 glg2)

it suffices to show that, for t small enough and ail numbers ^1,^2^ l? we hâve

(3.4.4) ^,^)+^i+ ̂ 3+4A

Certainly, we can assume g^ ^ ̂  and 2^ < b.

Case 1: g^^ gi^ ^-a. In that case

h[g^ g2) +gl+g2-ï^eb+ 2^ - 3.

Since ^<2, we hâve eb+2e~b—3<0, so that we can find ^ such that
^ ^ 2 ^ < - f r _ 3 ^ Qi f^ ^-

CâLy^ 2: ^2< ^"b^ .?r In that case
^

A(^,^) + gi + g2 - 3 ̂  - + ,?i + g2 - 3
Si

< eh +2et~b -3,

since thé funcdon x -\- e^x decreases for x < 1, and we conclude as above.

Case 3: e ^ h ^ g ^ ^ e ' ^ In that case, using again that thé fonction x+e^x
decreases for x^ 1, and thé inequality g^ ^ g^, we hâve

^
h{gl,g2) + êl + g2 - 3 < - + gl + g2 - 3

gl
e1

^-+2g^3^e2t +2e-t ~3
g2

since thé function 2x + e^x is convex, and thus is bounded on thé interval [^'""^ e"1]
by thé maximum of its values at thé endpoints. Aiso, we note that e^ + 2e~t — 3 < 4t2.
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Case 4: g^ ̂  e~t. Then

h(gi, g2) + gi + g2 - 3 < —— +gl+g2-3^e2t +2e-t ^3
glê2

since, when c > 1, thé function x + cfx decreases for x ̂  1. We then conclude as above. D
We will let thé reader complète thé proof of Theorem 3.4.1 using thé induction

method and Proposition 3.4.2. Thé basic observation is that, ifB, dénotes thé projection
of A, on Q^ we hâve for x e Û^, ù> e Q,

/(Ai, Ag, û, t, {x, œ)) < a + t +/(Bi, B^, û, t, x),

/(Ai, Ag, a, t, (x, œ)) ^ t +/(Bi, A^), a, t, x),

/(Ai, Ag, û, t, (x, co)) ^ t +/(Ai(<o), Bg, û, t, x),

/(Ai, Ag, û, t, (x, œ)) ^/(Ai(œ), A2(û>), a, ^ <o).

For thé induction hypothesis, one then fixes a < b < log 2, and takes ^ small enough
so that a + ÎQ^ b.

4. Convex HuU

4.1. Thé basic resuit

Thé main idea of this section is thé introduction of a rather différent way of
measuring how far a point x is from a subset A of Û^. We introduce thé set

UA^) == { (^<N e { 0, 1 }N; 3y e A, ^ = 0 => ^ ==j,}.

We dénote by V^(A;) thé convex hull of U^(^), when U^) is seen as a subset of R^.
Thus V^(^) contains zéro if and oniy if x belongs to A. We dénote by fç{A, x) thé
^-distance from zéro to V^(^) (thé letter c refers to " convexity"). Thé corresponding
notion of <( enlargement " of A is as follows:

(4.1.1) A^^eû^A^)^}.

This notation will be kept throughout thé paper.

Theorem 4 .1 .1 . — For every subset A ofÛ^, we hâve

(4.1.2) fexp^^A^) dî{x) ̂  ——.4^cv-- , " / -^- p^.

In particular

(4.1.3) f^^ï^——e-^.
^W

In order to understand better (4.1.1) it is worthwhile to note thé following simple
resuit.
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Lemma 4.1.2. — Thé following are équivalent:

(4.1.4) xeA^

(4.1.5) V(a,)^, 3^eA, S{oc^+^}^
i<N . ^ i<N

Pnw/. — Thé linear functional a : x -> S a, x, on R^ provided with thé Euclidean
_ _____ i^N

norm, has a norm || a || = J S a?. Since V^) contains a point of norm ^/,(A, A-),

thé infimumofa on V^x) is ̂ /,(A, ^) | [ a 1 1 ; but since V^A;) is thé convex hull of U^), thé
infimum ofa on V^(x) is thé same as thé infimum on V^). Thus (4.1.4) implies (4.1.5).
Thé converse (that is not needed in thé paper) follows from thé Hahn-Banach theorem. D

It is very instructive to compare (4.1.3) with (2.1.3). If one takes t = A/VN,
a, == 1, one sees that (4.1.3) implies

P(/(A, x) ̂  k) ̂  —l— e-^.w v 5 / / P(A)

Thé oniy différence with (2.1.3) is thé worse numerical coefficient in thé exponential.
But thé strength of (4.1.3) is, of course, that ail choices of a, are possible. This makes
Theorem 4.1.1 a principle of considérable power, as will be demonstrated at length
in Part II. It does, however, take some effort to fully understand thé potential of Theo-
rem 4.1.1. To illustrate one use of Theorem 4.1.1, let us consider thé case where
^ == { O? 1 L ^d where thé probability ^ gives mass p to 1 (and mass 1 — p to zéro),
where p ^ 1/2. Consider a subset A of{ 0, 1 J^ and assume that A is hereditary, i.e., that
ifj/ = (j^^ ^^A, and if (^)^^ is ^ch that z,^y, for ail i, then z e A. Consider
x e { 0 , 1}^ a n d j = { î ^ N; x, = 1}. Set m{x) = card J. Define a, = 1 if i ej, a, = 0
otherwise. Then Lemma 4.1.2 shows that we can findj/ eAsuch that

card { i ej; x, =(= y,} ̂  /,(A, x) Vm(x).

Since A is hereditary, we hâve/(A, x) ^fc(A, x) VmÇx).
Thus we hâve, for ail m',

P({/(A, •) ^ t}) ̂  P((/,(A, .) ^ ——}} + V{m[y) > m-)
\{ Vm'}]

^P(X)exp(-^)+p^)>-')•
Since thé last term becomes very small for m' >^N, we recover thé correct order I/NJ&
of thé coefficient of t2 in (2.3.5).

Thé key to Theorem 4.1.1 is thé following simple lemma.

Lemma 4.1.3. — Consider 0^ r^ 1. Then

^•1:6) oM.^P^1-^2-^
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This lemma is taken from [J-S]. This paper played an important rôle in thé
development of Theorem 4.1.1 and of thé présent paper. Roughiy speaking, thé author
had proved Theorem 13.2 below in thé case where P(X, = 1) = 1/2 = P(X, = — 1).
Johnson and Schechman extended this to thé présent formulation of Theorem 13.2.
Thé author's désire to hâve thé last word prompted thé discovery of thé abstract setting
of Theorem 4.1.1. It is this abstract setting that is largely responsible for thé gréât range
of applications of Theorem 4.1.1, and that lead to thé présent systematic investigation.

Proof. — Taking X = 1 + 2 log r if r ^ e~1/2, and X == 0 otherwise, and taking
logarithms, it suffices to show that

f(r) = log(2 - r) + log r + (log r)2 ^ 0.

Now/(l) = 0, so it suffices to show that/'(r) < 0. Since/'(l) == 0, it suffices to show
that (^'(r))' ^ 0, or, equivalently, by calculation, that (2 — r)~2 — r~~1 ̂  0. But
(2-r) - 2^ l^r-1 . D

We now prove Theorem 4.1.1, by induction upon N. We leave to thé reader
thé easy case N == 1. For thé induction step from N to N + 1, consider a subset A ofti1^1

and its projection B on 0^. For co e tî, we set as usual

A(œ) =={x et^; (A:,(O) eA}.

Gonsider x eû^ œ eQ, z == {x, co). Thé basic observation is that

^V^{x) =>^,0) eU^),

teV^x) ^ ( ^ l ) e U ^ ) .

Thus, for s e V^{x), t e V^(x), 0 ̂  X ̂  1, we hâve (\s + (1 - À) t, 1 - X) e V^z).
Thé convexity of thé function u \-> u2 shows that

(4.1.7) /^(A, z) ̂  (1 - X)2 + À^(A(co), x) + (1 - À)^(B, x).

Thé main trick ofthe proofis to resist thé temptation to optimize now over X. By Holder's
inequality and induction hypothesis, we hâve

]exp^(A,(^,(o))^)
»'

< exp 1 (1 - X)2 ( f exp \ f^(A^), x) dP{x)\ ( \ exp 1 /^(B, x) d^x)}
1 VJn1' ' / VJn1' 4 /

1 „ . „ / 1 \'/ 1 V"'< e x p - ( l - X ) 2 ————
4 / \P(A((»)); ^P(B);

1 expl(l-X^P(A((ù))^x.
± A \ / \ T»/T»\ 1P(B) ' ' t ' 4 v "/ l P(B)
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This inequality hoids for ail O ^ X < 1. Using (4.1.6) with r == P(A(ûï))/P(B) ^ 1,
we get

L^'^'^pM2-^")-
Integrating with respect to co and using Fubini theorem yieids

1

J-^-'^XpM2-^)
1

^P0(x(A) 5 D

since ;c(2 — x) ^ 1 for ail real A;.

4.2. Sharpening

We now try to improve (4.1.2) by allowing a right-hand side P(A)~a for some
a ^ 0. In that case, it will be advantageous to measure thé " distance " of s to V^(^)
by thé funcdon

/,(A, x) == inf{ S Ç(a, s,); s e V^)}
i ̂  N

where

(4.2.1) Ç(a, 1̂ ) == a(l - u) log(l - ̂ ) - (a + 1 - a^) log P + a ̂  ^V
\ 1 +a ;

Thé reader should observe right away that/a(A, ^) corresponds (with thé notadon
of Secdon 4.1) to/^(A, A?) rather than to/,(A,A;). This will be thé case for ail thé
extensions of Theorem 4.1.1 we will consider.

As pointed out, Lemma 4.1.3 is thé key to Theorem 4.1.1. It is a somewhat
magie fact that when one tries to improve upon Lemma 4.1.3, thé best possible funcdon
that can be used instead of thé funcdon (1 — X)2^ can be computed exactiy, leading
to thé formula (4.2.1).

Lemma 4.2.1. — Consider 0< r< 1. Then

(4.2.2) inf r-^ exp Ç(a, 1 - X) = 1 + a - ar.o ̂  x ̂  i

Proof. — We will not give thé shortest possible proof (that consists in checking by
computadon that for À == r(a + 1 — ar)-1, we hâve r~^ exp Ç(a, 1 — X) = 1 + a — ar).
Rather, we will explain how (4.2.2) was discovered. We fix a, and we set/(A;) = a-1 Ç(a, A;) .
Thé best choice for À is such that a log r + a/'(l — X) == 0, Le., r == exp(—/'(l — X)).
So we would like to hâve, for 0< X ^ 1, thé idendty

exp(a/(l - X) + aÀ/'(l - X)) = 1 + a - a exp(-/'(l - X)).
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Setting v == 1 — X, and taking logarithms, we want

a/M + a(l - v)/'(v) == log(l + a - a exp(--/'(v))).

DifFerenriaring m v and setting ^(v) == exp(—/'(v)), we get

.a-„/"(,)--^M"\- '/./ \ ' / , , / ^ ?1 + a — a^(v)

so that ^(v) = — — _ — — — . Taking logarithms and integrating yieids (4.2.1). D

Lemma 4.2.2. — Thé function Ç(a, •) is increasing and convex on [0, 1] and

^••^î^"-

Proof. — Gomputadon shows that Ç(oc, 0) == -^ (a, 0) == 0, and
du

d2^ a a
^

A,2 (a + 1 - aK) (1 ~ ^) " a + 1

since u > 0. D

Lemma 4.2.3. — For a, a > 0, w<? to?

(4.2.3) 1 +a-aû< ̂ a,

(4.2.4) û + (1 - û) exp Ç(a, 1) ^ û-».

Proof. — To prove (4.2.3), we observe that thé graph ofthe convex function x-"
is above its tangent at thé point x = 1. To prove (4.2.4), we observe that
Ç(a, 1) = log(l + a), so that thé left-hand side is

a + (1 - a) (1 + a) == 1 + a - aa,

and thé resuit follows from (4.2.3). D

Theorem 4.2.4. — For a subset A of Q^, we hâve

1(4.2.5) exp/,(A, x) df{x) ̂
P(A)°

Proof. — It is an obvious adaptation of thé proof of Theorem 4.1.1. Thé case
N == 1 follows from (4.2.4), and (4.2.3) is used as a subsdtute for thé last inequality
of (4.1.8). D
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If we use Lemma 4.2.2, we see that (4.1.3) can be generalized into

1 / af2

ITO^ ^^T^exp --.(4.2.6)
P(A)a ^ 2 ( o c + 1 ) J

Optimizadon over a as in Corollary 2 .2 .3 yieids:

Corollary 4.2.5. — For each subset A ofÙ^,

(4.2.7) ^^^^-^^-^(-iv-y2108^))
It is an interesting question whether thé term V2 log 1/P(A) can be removed

in (4.2.7). We will, however, see in Section 4.3 that thé coefficient 1/2 cannot be
improved. It must be pointed out that Theorem 4.2.4 brings considerably more than
a simple improvement of thé coefficient of t2 in (4.1.3). Thé reason is that
Ç(a, 1) === log(a + 1) becomes very large when a is large. In that case, (4.2.5) recovers
certain features of (3.1.2) and, in some ways, improves simultaneousiy upon Theo-
rem 3.1.1 and Proposition 2.1.1. To see this, consider q ^ 1. We fix AC ti^ and for
x e û^. we consider

k{x) == inf À?; 3 s e V^) ; card î < N; s, ̂  1 ^ k

Then, certainly, we hâve

k{x)^iq,ï--\<f,ÇA,x).

Now,

^,l-^=log^-21og^

fl + <7)2 Q=log^^log|

so that

(4.2.8) k(x)\og^f,{A,x).

On thé other hand, by (4.2.5), we hâve

P(/,(A,^) > t) ̂  ̂
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so that, by (4.2.8),
,-«og|/4Y_l_

(4.2.9) Wx) ̂  k) < -p^, - y p^)<'

^1 :̂1^ ̂  -" - A-and coeffidmtt (••)'<-•
0 < a , ^ 1, S a , = = l , suchthat

' ^w

S i
f4.2.10) card i< N; S a, l(^»p > 1 - , < R'
\ * ' ] ^s Wi •z

On Ae other hand. if/(A, ..., A,.) < k, we can find /, .. ..Y in A such that
, 1 1

(4.2.11) card ^ N; ̂  l(^) > 1 --y ^ A-

Certainly (4.2.11) is more précise than (4,2-10);however, for some important
applications (see [T3]) (4.2.10) is just as powerfui as (4.2.11).

4 3. Two-point space
In this secdon we consider <hc case whcre 0 - { 0, 1 } and wherc |. gives weigho

1 - ̂ TIT '̂» 1. Th. riracle ,fL——— 4.2.1 do« no. ,«n, » happen agan,,
so we wHI oniy consider statements of thé type

r 1
(4.3.1) exp/,(A, x) iî{x) < p ;̂

J

where, for a couple « - («o, »x) of positive numbers, we set
^A,.)-inf{»oS{.t;.<=0}+«xS{^^=l}:^V^)}.

In other words, we take into account thé fact that thé points 0 and 1 do not play thé

same rôle. e-prinm 2 3 4 1 4 2 one sces that thé best
Ï̂̂ n^Z^^S:-3. ~ ̂  , ̂  -,

whenever a < b, we hâve ^

(1 -̂ ) o4^i ï-^^ éax^8 + ̂  «r̂ TT r̂
or, equivalently,

(4.3.2) (l-^.M^'^KT^Ï)'*^"''

f("' '"(Th'ê 'poribl. valu. of „ is ob^n.d in . shnila, way, changing^ in 1 -P.

and will not be considered.)
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Thé infimum in (4.3.2) is obtained for
/ a loff x\

^max^O,--^.

Thé left-hand side of (4.3.2) is constant for x^ exp(— 2^/a); thereby (4.3.2) hoids
provided we hâve, for x ^ exp(— 2^/a),

(4.3.3) (.-^-^J .̂-..

Determining thé best value of s for which this hoids is an unpieasant task, so we
will content ourselves with finding good values ots. Taking logarithms and diflEerendating,
one sees that (4.3.3) will hold provided we hâve, for x> 0,

- , ., a . , (1 - p ) x 6(1 -A"+1)(4.3.4) -^log^l-^g^^^J,

where we hâve set A = (1 — p ) x -}- p.
It suffices that for x > 0 we hâve

„ _ ., a . p 1 — A a + l

(4.3.5) -^log.>-^__^-.

We first consider thé case p == -, and we show that in this case we can take

s = ———. Since
a + 1

(4.3.6) 1 -A^^ (a+ 1)(1 -A) = ( a + 1) (1 - p) (1 - x),

it suffices to see that
2(1 — x}

0 < x ^ 1 => log x ̂  ————-.
1 + x

But thé funcdon

A^^-^

sadsfies /(l) = 0, f\x) == — (1 — x)2/^ + x)2^ 0. Using thé notation /,(A, x) of
Section 4.1.1, we then hâve proved thé following.

Theorem 4.3.1. — When û = { 0, 1 } and ̂  is uniform, for each a ̂  1 and each subset A
qfÙ^, we hâve

f1'3'7» {""'(.^T^^^^pà).-
Compared with (4.2.6), we hâve gained a factor 2 in thé exponent in thé spécial

case of thé two-point space.
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Corollary 4.3.2. — When Q == { 0, 1 } and [L is uniform,for each a ̂  1, and each subset
ofÙ^y we hâve

(4.3.8) ^ /log —— => P(AÎ) ^ 1 ~ exp (~ It - /log 1 u

P(A) ——— ' \ \ ^w & P(A)J

Proof. — From (4.3.7) and Ghebyshev inequality, we get

P(A;)»l-p^»p(-^^)

and we optimize over a as in thé proof of Gorollary 2.2.3.
It is a natural question whether (4.3.8) can be improved into

(4.3.9) P(A^) ^ 1 - K exp(~ t2).

It should, however, be pointed out that thé coefficient of t2 is optimal. We will
now show this, and at thé same time, thé optimality of thé coefficient 1/2 in (4.2.7).
Provide i2 == { 0, 1 } with thé probability (JL that gives mass p to 1. Set

A=={(^)^; S x^pN}.
i^N

(Thus, for N large, P(A) is about 1/2.) Gonsider y e{0, 1 }N, such that cardj = m,
where J = { i <; N$j^ == 1 }. Assume m > p~N. Then any élément x of A differs oî y in
at least m — j&N of thé coordinates indexed by J. Using Lemma 4.1.2 for a, = 1/V%
when i ej, a, == 0 otherwise, we see that

(4.3.10) /.(A,̂ ) > iM-^ = "•——N /N.
V^î VN ^ ^

Ifwe think o f w = = w ( j / ) a s a r.v., thé central limit theorem shows that, as n -^ oo,
(w —^N)/A/N is asymptotically normal, with standard déviation V^(l —^) . On thé
other hand, VN/W converges to VÎ/^ in probability. Thus

^mP(/,(A,.)^)^——_r exp^")2^
v2TC J(/V(i-r7) \ 2/
1 / f2 \

^^(-2(1-^))-

If^ = 1/2, thé coefficient of t2 is — 1, and if we let p arbitrary, we cannot do better
than thé coefficient — 1/2 of (4.2.7).

We now go back to our main line of discussion, and we consider thé case^ ^ 1/2;
we will show that in this case we can take

(4.3.11) ^min^log1 a ^
[K ^4(00+1)^
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In pardcular, for a large, this is oforder l/^, rather than order log(l/j&). This remarkable
fact is closely connected to Theorem 4.4.1 below. To prove (4.3.11), we prove (4.3.5),
depending on thé value of x.

Case 1: x^ 1/2. Then -logx^ 1 - x, 1 -A0^1^ (a + 1) (1 - p) (1 - x), so
that it suffices that

a ^ P{1 + a)
^îs^~~K~'

1 n
Now A $s ., so that it suffices that s < —————.

2' ' 4 />( l+a) '

Case 2: x^, ̂ /p. Then —\ogx^ — - log \jp, so that it suffices that

a , /1\ /»
T-^g 7 > TT————T-4. i:)^; ( l - ^ )A

Since A $î /», it suffices that

a ( l - />) , 1
^-^-10^-

Goy^ 3: -\/p < A; < -. It then suffices, since — log x > log 2 and A > (1 — p) ̂ /p,
that

s^^
a 1

which hoids when ^^ —log-.
K p

4.4. Penalties

We now consider a function A on Q x ti, such that h ̂  0 and A((O, (o) =0 for
<o e t2. For a subset A of û^, and x e 0^ we set

U^) ={(^) e R N ; ^ J e A ; V ^ < N , ^ ^ ^ ^ ) } .

We dénote by V^(x) thé convex hull of U^). Thé situation of Sections 4.1, 4.2
corresponds to thé case where A((O, o/) == 1 if œ =1= co'.

In order to measure thé < c distance " of zéro to V^(.v), we consider a convex
fonction ^ on R, with ^(0) == 0. We will assume

(4.4.1) x^ I=>^(A; )^ x2; x ^ l = > ^ { x ) ^ x .

We set

/^(A, ̂  = mf{ 2 ̂ ); ̂  = (̂ i, eV^)}.
<^N
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(Thus, thé situation of Section 4.1 corresponds to thé case ^{s) = s2 and thé situation
of Section 4.2 corresponds to thé case ^Çs) = Ç(a,^).) Thé material of this section is
connected to that of Section 2.6, and thé notation of Section 2.6 is in force in thé présent
section. Thus 6 dénotes a convex function from ]0, 1] to R4", with 6(1) == 0, lim Q{x) == oo,

x->0

and i; dénotes thé inverse function. We assume that (2.6.1) hoids, and assume moreover
that for a certain number y ̂  O? we hâve

(4.4.2) ^ 0 = > K ( é + l ) | ^ ï | Ç m

(4.4.3) l^l)]^ ^(1/2)^ ï.

We recall thé function S of (2.6.2), as well as condition H(Ç, w) of (2.6,3).

Theorem 4.4.1. — Consider a nonincreasing function w on ]0, l], w^ 9. Assume that

w2 d\^ 1, ûW //W condition H(Ç, w) À?/A. Assume that for each subset B of ̂  we hâve
Jo

1 f
(4.4.4) 0 < ^(B) ^ . => exp ^(A^, B)) d^x) ̂  exp w(pi(B)),

Jn

(4.4.5) ^ (B)>- ^ 1 ^ ^ ( { ^ î + ^ ^ B ) ) ^ ^ } ) ^ ^ - ^ ! - ^ ( B ) ) .

rA^^, yor each subset A ç/* û1^, we hâve

(4.4.6) f exp-/, ^A,x) df{x) ̂  exp6(P(A)),
J^ K

where K dépends on y o^«

We should observe first that oniy thé values of w{x) for x^ 1/2 matter.
In order to compare Theorem 4.4.1 with Theorems 2.6.5 and 2.7.1, we first

hâve to keep in mind that it is thé function ^ o h hère that plays thé rôle of h in thèse
theorems. Thé conclusion of Theorem 4.4.1 is stronger than that of Theorem 2.6.5
(thé way Theorem 4.1.1 improves on Proposition 2.1.1) but weaker than thé conclusion
of Theorem 2.7.1 (since one takes convex hulls). Condition (4.4.5) strongly resembles
(2.7.2). Condition (4.4.4) coïncides with Condition (2.6.12) when p.(B) ^ 1/2. A
simple calculation using (4.4.5) shows that for pi(B) ^ 1/2, condition (4.4.5) is of a
somewhat stronger nature than (2.6.12).

An interesting case where it is worth to spell out (4.4.4) and (4.4.5) is when
h[x,y} == h[y) dépends on y oniy. Denoting by m a médian of A, (4.4.5) will hold if
^(m) < 1. And, as seen after Theorem 2.6.5, (4.4.4) hoids provided w^[{h > t})) ̂  ^{t)
(a tail condition of h).
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To prove Theorem 4.4.1 when N = 1, we observe that, since w^ 6, (4.4.6)
follows from (4.4.4) when pi(B) ^ 1/2. When pi(B) > 1/2, a simple computadon using
(4.4.5) shows that given y? if K. is large enough, then

f exp - Wx, B)) d^x) ̂  1 + ï(l - (x(B)) ^ 6((x(B)) ^ exp 6(^(B)),
Jû K

since 6'(1) ^ y
For thé induction step, comparison with thé proof of Theorem 4.1.1 shows that

it suffices to prove thé following (used for g = S (Y)).

Proposition 4.4.2. — There exists a constant L, depending on y oniy, with thé following
property. Under thé conditions of Theorem 4.4.1, consider afunctionf^ 0 on Q. Set

(4.4.7) f{x) -^m^ (VW + (1 - X)/(jQ + ̂  ^((1 - À) A(^))).

rfeyi w^ hâve

(4.4.8) f/^^^).
j

Understandably, with thé level of generality considered hère, thé proof cannot be
very short. Thé reason why we hâve opted for gréât generality is that Theorem 4.1.1 is a
principle of considérable power (as will be demonstrated in Chapter 8) and that thereby
it seems worthwhile to prove extensions of it under weak hypothèses on thé function h.
Thé proof will incorporate in particular ideas from Theorems 4.1.1, 2.6.5, 2.7.1.

A simple idea is that we will need to control 6 ( j ̂ (f) d^ from below. This means

controlling thé lower tail of/. Set B, = {/^ s }, and dénote by m a médian of/, so that
p,(BJ ^ 1/2. We set

(4.4.9) b=^s+^wW^) .

Thé first step of thé proof will be to show that (x(BJ is not too big, i.e. that b is
not too small.

Proposition 4.4.3. — To prove Proposition 4.4.2, î^L> 4/y, we can assume

(4.4.10) m ^ b + 4 .

Proof. — We assume m > by for otherwise there is nothing to prove. Using (4.4.7)
with X = 0, we see that for each s we have/(^) ^ s + L~1 ^ o h(x, B,). Using (4.4.4)
together with Hôlder's inequality, it follows that

r - / i \
€fd^^exp[s+-w^{•S,))],

Jo \ LÂ /
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so that ef d^^ <?6 by taking thé infimum over s^ m. On thé other hand, (4.4.9)
•/Q

implies

(4.4.11) j < w = > è — j < — w({ji(B,))
JLi

i.e.

(4.4.12) _w^b-s\\> (A(B.).
JL» l

We can hence appeal to Lemma 2.6.4 with G = {/< b} and t = 1/L to see that

f Ç(/) ̂ < (^(C) ^(è) + ç'W f (/- é) ̂  + - | Sm
L2

But, by (4.4.12) we hâve
^1/2I f 1 \ \ 1\f-b\d^^ - \ w d [ L ^ _ [ \ w 2 d ^ } ^ _

Jb JL \ / JL

and thus

(4.4.13) S(/)rf(X^(x(C)^)+^|Ç'(é)|.

On thé other hand, wheny((>>) > b, we hâve

Ç(/(o))) ^ W - (W - W) l(/^((o)

and, by intégration, since y.{{f> rn}) > 1/2 (and m > b),

'la\c
Ç(/) 4^ (1 - tx(G)) Ç(é) - ̂  (Ç(é) - Ç(m)).

Gombining with (4.4.13) we get

f Ç(/) ̂ < Ç(é) + 2 | ̂ '(é) | - 1 (Ç(é) - Ç(m)).
Jn " 2-

Since we hâve shown that ( ef dy. sSs e6, there is nothing to prove uniess
J a

f Ç(/) dy. > Ç(é) (for otherwise 6 H ̂ (f) dy} > b). Thus
Jn \ \J / /

we can assume

(4.4.14) ^ (Ç(6) - Ç(OT)) < ^ | Ç'W |.
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Now, since m > b, from (4.4.2) follows that Ç(w) ^ Ç(6) - y | Ç'(é) | min((w - é), 1).
Gomparing with (4.4.14), we see that min(m - 6, 1) ^ 4/(Ly), so that if L> 4/y, we
must hâve m — b ̂  4/Ly. D

We consider thé smallest number a for which

\f s^ m, m — s^ aw(^i(BJ)

so that

(4.4.15) V^TTZ, |{a^ m-s}\^ pt(B,).

It is rather important to note that

(4.4.16) a<^.

Indeed, if m — j^ 8/Ly, then

m — s m — s 8
^ -T^T^ ^—..wW^) ' ̂ (1/2) " Ly2-

On thé other hand, if m - s ̂  8/Ly, then, by (4.4.10), we hâve m - s^ 2(6 - s),
so that

m — s b — s 2
<2————<- .wW,)) ^(B,)) " L-

We consider a second parameter M ̂  L. Throughout thé rest of this section, we
will hâve to put conditions on L, M, L/M. For simplicity we make thé convention that
thé expression " ifL is large enough "... means " there exists a constant K(y), depending
on y oniy, such that, if L ^ K(Y)... " and similarly for M, L/M.

We set m' ==m — 16/Ly2. We consider thé fonction

/'=min^+^j

and thé function g defined as

^(<o) =/(<o) iff^) ̂  rn',

g{<ù) == max [^, min (/(<o), m + _:)) if/(œ) > m'.

Since f^f, it is simple to see that g^f\ It is aiso simple to see that

(4.4.17) ^(œ)+/'(<o) =>^((ô), ff^)e\mf,m+ï-\.
[ MJ
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Indeed, thé right-hand side does not occur oniy when /(œ) < m1, and then
/(œ) =/'(œ) ==^(œ). We set

C={f^m}; D= f^m+-^ .

Lemma 4.4.4. — M^? Aaz^

(4.4.18) e ( f Ç(/)^L [/'^-oc2- f [ f ' - m Y d ^
\JQ / JQ Je

Proo/. — Since/'^/, we hâve Ç(/') ^ Ç(/) and

e( f Ç(/)^L6(f S(/')^.
\Jo / \Jo /

We now appeal to Lemma 2.6.4 with t = a. We hâve

f r
Ç(/') ^ W + ̂ '(m) (/' - m) ̂  + a2 | Ç'(m) |

Jn JQ /.
+Ç'W [r-mYd^

Je
By convexity of 6 and since Ç"(m) ^ | Ç'(m) | this implies

e ( f ^( /))^^+ f (/-m)^-a2- f {f^-mfd^ D
\JQ / JQ Je

Lemma 4.4.5. — IfL and M are large enough, we hâve

f -
(4.4.19) ^d^L

JQ

^ e x p ( 1 ! te+/ /)^+2a2+2f(/ '-m)2^+f (^—_,I/M)+^.
^JQ Je JQ /

Proof. — First, we observe that

(4.4.20) [ ^-w ̂  < | exp Lin [/- m, —)) ̂  + f (^-w - ̂ M)+ rfpt.
JQ JQ \ \ M// JQ

We observe that min ( /— m, _-\ ̂  g — m. Since ̂  ̂  1 + x + x2 for x ̂  1/M ^ 1,
we hâve v 1

(4.4.21) f expLin(/-^-)LpL
JQ \ \ lvl//

^ f ^-w^^ 1 + f \g-m)d^+ f {g-m^d^.
JQ JQ JQ

18
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Now, by (4.4.17), and provided L, M are large enough,

(4.4.22) (g - m)2^ 2(/' - m)2 + 2(g ~/')2^ 2(// - m)2 + !(/' -^).

We recall aiso that

r r
(/' - m)2 d^^ \ (/- m)2 dy. ̂  a2.

JÎAC Jo\c

Thé resuit follows by combining thèse inequalities, and using that 1 + x ̂  é6. D
It follows from Lemmas 4.4.4 and 4.4.5 that to prove Proposition 4.4.2, it

suffices to prove thé following when M, L/M are large enough.

f r r
(4.4.23) (/' - g) d^ ̂  6a2 + 6 (/' - m)2 d^ + 2 (^-w - ,1/M)+ d^

J^ Je Jo

This follows from thé next three lemmas.

Lemma 4.4.6. — We hâve

(4.4.24) f ^-m - e1^ dy.^ K ̂ (D) < KM2 f (/' - m)^ dy..
Jci IJ •L Jo

Lemma 4.4.7. — TjfL/M is large enough, we hâve

r '\/r /*
U'-ê)dy.>_-\ {f-m^dy..

Ja ^Jo

Lemma 4.4.8. — .y L/M is large enough, we hâve

[</•-. ̂K

Proof qf Lemma 4.4.6. — Thé définition of f (with X = 1) shows that
/((») < m + 1/M + L-1 ^(A((ù, Û\D)). Thus by (4.4.5) we hâve

( A ( /^ ^ "+^+^!)<^^(D)

and thus
1 1e

^-m - ̂ + ̂  ^ ̂  _ i) ^4-1 ̂ (D),
&^1

from which thé first inequality of (4.4.24) follows by elementary esdmates. (Thé second
inequality of (4.4.24) is obvious.) D
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Proof of Lemma 4.4.7. — Step 1. — For k ̂  0, we define

^=sup ^({/'^ t})^^

Thus m^ a^^ ^+1^ ^ + 1/M. We consider a set Z^C{/< ^} such that

^)=i-^
We set Z» = { cd; A(<», Z^) < 2 }. Since ^{x) ̂  xtor x^ 1, we hâve

Zp{o;^((û,Z,))^2}

so that, by (4.4.5), (A(Z;) > 1 - 1/2^+2. We set, for k > 0,

W, = Z; n (Z,^\Z^).

We observe that thé sets (W^^g are disjoint, and that

(4.4.25) jji(WJ > -1-, (ï- - ̂  > —!—.v / * ' A / n J k l - o î ' ^ r t ï . - t - a *2^\e e2) 2^+3'

Step 2. — We show that

F M
(4.4.26) | (/'--^^^(^-^(W^D).

Jw,. Jv36) (/'-.?)^K(at+l-^2'Jl(w»\D)•
^k K

Gonsider <ù eW^D. Then/'((û) =/(<<)), so that, given À e [0, 1] and w' eu

/'((.) -/((û) =/(<,) -/((O)(4.4.27)

^ (ï - x) (/(<o) -/((ù')) - - <K(I - x) A(<o, (o')).
L

We can find u' e Z^ such that A(<û, tu') ̂  3. Then /(a) —f(w') > a^— a^. We can
take 0< X< 1 such that 1 — X = M(a^i — a^)/3. Then (4.4.27) yieids, since ^{x) ̂  x^
for x^ 1, that

/'((O) -/(<0) ^ ̂  (^^ - ̂ )2 _ 9^2 (^^ _ ^)2.

Thus, if L/M is large enough,

M
/'(co)-/((.) >-(^,-^,

4
that is

M
/(<»)</'(œ)--^(a^-a,)2.
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Since û^ — a^ 1/M, and/'(œ) ^ ^+1, thé right-hand side is ^ ^ > m, so that

M
5(œ)^/'(œ)-^(^-^)2

Mand thus /'(œ) - ̂ (co) ^ -^- (^, - û,)2

from which (4.4.26) follows by intégration.

Step 3. — Dénote by k^ thé largest integer such that l^^04-3 ^ (Ji(D). Thus
^(W^) ^ 2(i(D) for A ^ A o , and, by (4.4.26) and summation, we get, since
^(W,\D) ^ pi(W,)/2,

r M
(4.4.28) (/'-^)^^ S (^-^-fc.

J IY A^fco

By thé argument of Lemma 2.7.8, we hâve

i r
S {^.-a^e-^^ (min(/',^ 4-^4-1) -^)2^.

*<&o ^ J^

Thus thé proof is completed if û._^ ^ 1/2 M.

5Ï̂  4. — Assuming now û^+i < 1/2M, we shall show that

(4.4.29) {^-g)^^^e-\

Since
M2

^-^_ S (^i-^)2^,
-IS. fc>Ao

combining with (4.4.28), we get

[(/' - g) ̂  ̂  ̂  ̂  (^+1 - ̂ )2 ̂ -^ ̂  f (/- m)2 ̂
v '̂  •/c

by (thé argument of) Lemma 2.7.8, completing thé proof of Lemma 4.4.7.
To prove (4.4.29), we observe that, by définition ofAo, we hâve e-^-6^ (JL(D).

Gonsider thé set

Z=={^A(.,Z^))^6}.
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Then, by (4.4.5), we hâve (x(Z) > 1 — g-*»-7, so that (x(Z n D) ^ <'-*»/K. Now, if
(ù e D, we hâve/'((») > OT + 1/M while if w ^ D, we hâve

/(<•>) < ̂ +, + m + ̂  W<o, Z^))

1 6
< C T + 2 M + L •

3
Thus ^((ù) < OT + ̂  if L/M is large enough. Hence, /— g ^ 1/4M on Z n D. a

Proof ofLemma 4.4.8. — Step 1. — We show that we can assume (x(D) < 1/8.

Indeed otherwise by Lemma 4.4.7 we hâve f(/' — g) dy.^ 1/K.M and, since a < 8/y2 L,

this is > La2 when L/M is large enough.

Step 2. — By définition of a, there exists s< m with m — s> aw((x(B.))/2. By
(4.4.5) and Chebyshev inequality, thé set

H==H(A( . ,B . ) )<2+w((x(B. ) )}

has measure > 3/4. Thus if we set G = H n (C\D), we hâve (x(G) ^ 1/8.

^/» 3. — Set

n_ >ra-^
p 3+o,((x(B.))'

Since w((x(B,)) > w(l/2) > y» and OT - s ^ aw((A(B,))/2, we hâve

YOC
^ < P < a.

Since (A(G) ^ 1/8, it suffices to show that

(4.4.30) V ù) e G, /'(o>) - g^) ̂  I^2 ̂
0

Step 4. — We prove (4.4.30). Consider co e G. Then/'(œ) ==/(œ) ^ w. Consider
co' e B, with A((O, co') ^ 3 + ^(pi(B,)). Then

1
i \ \ - --/ \"' " } ,~o^x^i JL

(4.4.31) /(co)-y(œ)^ sup ((1 - X) (m - s) - ̂ ((1 - X) (3 + w(^B,))))).

We choose 0 ̂  À ̂  1 such that

Ly2 ?

' "t A -.s

T..21 - À =
4 2+w((x(B,)) '
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This is possible since j3 ^ a < 8/Ly2. Then (4.4.31) yieids, since ^{x) ̂  x2 for x ̂  1, that

/(co) -f^) > L^2.

Thus/(co) ^/(<*)) —Ly2?2^. Since thé right-hand side is ^ w', we hâve

5(œ)^/((o) -LY'W

Thé proof is complète.

4.5. Interpolation

Thé resuit ofthis section will interpolate between (a weak form of) Theorem 3.1.1,
for q == 2, and (a weak form of) Theorem 4.1.1. Consider three points x == (^),<^,
y - (j^N,y = (^)i<N ow. set

^(^y?^2) === ( l{a ; ,+^}5 ̂ .^p l { ^ ^ { ^ , l / 2 } ) ) •

Thus r,(^y,y) e{0 , 1 }3. Set

r{x^\f) = (r,(^y,y))^ ̂  e ({ 0, 1 }3)N.

Given two subsets Ai, Ag of t^, let

UA,.A,W =={^y,y);y eAi,y eA^},

and consider thé convex hull V^ ^{x) of U^ AaÇ^). ^en U^ A (^) ^ seen as a subset
of (R3)^

Throughout this section, we define b > 0 by e^ == 3 — 2^~2&, so that b < 1/6.
We make thé convention to write a point r e (R3)^ as (r^, , ̂  ,, ^3 z ) i ^ N - we ^t

/(A,, A,, ^) = inf{ S ̂  + r2^ + r^; r eV^,^)}.
i ̂  N

Theorem 4.5.1. — M^? AÛW

exp é/(A,, A,, ^) ^PM ̂  ,^———^.
,N ' ' v " " / V / ' P ( A , ) P ( A 2 ) 1

To understand this statement better, set u =f{x, A^, A^). Consider r eV^ A W
such that

S ^i+^+r^^.
i ̂  N

Gonsider numbers {c^)^y, (c^,)^y. Then, forj'=l,2

S ^,<r, ,^(S 4.)1/2 ( 2 r^)1'2
*<N i<N «N

< K1'2 ( S ^ .)l/2.
«N '
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Thus

ĵ u ̂  + ̂  ̂  + br^ ^ t=: u + ̂  (y^^ + y î).
Ifwe recall that V^^W is thé convex hull of U^^^x), this implies that we

can find y e A^, y e Ag such that

S{ q,,; ̂  +V } + S{ ̂ ,; ̂  +y } + card{ î; ̂  1={y}^ }K t.

Thé proof of Theorem 4.5.1 goes by induction over N. Thé case N == 1 is left
to thé reader. For thé induction from N to N + 1, one observes, with thé usual notation,
that, when ûg ç, a^ o, a^ i, ̂  i ̂  0 are of sum one, then

/(Ai, Aa, (^ œ)) ^ ûo,o/(Ai(co), A^Çco), ̂  + ̂ o/(Bi, A2(œ), ^)

+ ûo,i/(Ai(œ), B^, A;) + fli,i/(Bi, B^, x)

+ (^1.0 + ûl,l)2 + (^0,1 + û^i)2 + ûî .

Thereby, to perform thé induction it suffices to show that, when ̂ , g^ are two functions
on t2, ^i,^^ ^ Aen

(4.5.1) infexp(^, + b(a^ + ̂ i)2 + é(^o + ̂ ,i)2) . 1^, 4-o —— ̂
J 1^1 ̂ J ' §2 f Si *

'r^J ^1 ^J ̂ 2 ̂

where thé infimum is taken over ail thé allowed choices o f f l o o , û o i , f l i o , û i i .

Lemma 4.5.2. — We hâve

(4.5.2) infexp(^ + b{a^ + a^)2 + b{a^ + a^)2) 1 ^ -̂

< V(3 - 2^) (3 - 2g,).

We first use (4.5.2) to prove (4.5.1). By (4.5.2) and Gauchy-Schwarz, thé
left-hand side of (4.5.1) is bounded by

/f(3 - 2 )̂ ̂  f(3 - 2 )̂ ̂  == AS ~ 2 f^^) (s - 2 L l̂
^ J J ^ \ J / \ J /

Thus it suffices to observe that for 0< x^ 1, we hâve 3 — 2x^ x~2, which expresses
thé fact that thé convex fonction x~2 is above its tangent at x == 1.
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ProofofLemma 4.5.2. — We will actually restrict thé infimum to thé cases fli i === 1
or ûi i == 0. We will prove

(4.5.3) min (<?86, inf ^ + ̂  —1— -1—} ̂  V(3 - ̂ \ (3 _ ̂ \
\ O^ai+Oa^l g 1 Çl~a2i

We distinguish cases.

Case 1: ^1^2^ ^-'26.
It suffices to see that

^V(3-2^)(3-2^).

Thé right-hand side has minimum at ^ = 1, ^ = e-2^ and our value of b has been
chosen so that inequality hoids in that case.

Case 2: g^g^ e-^.

For j == 1, 2, we take a, = — -^î. Thé purpose of thé condition g^g^ ̂  e-^

is to ensure that a^ + ̂ ^ 1. It suffices to prove thé inequality

1 (^eoi)2 ______
— e 4& ^ V3 _ 2^.
61

We will show that, for 0^ x^: 1,

^-(log^/2b^ ^2(3 _2^

or, equivalently that
(losx)2

9W = -^— + 2 log A: + log(3 - 2x) ̂  0.

Since 9'(0) == 0, <p(0) = 0 it suffices to show that {x^{x)Y ^ 0, i.e.

1 6x
~b ~ (3 - 2xY ^ 0-

But, since , ^ 6, it suffices to show that x^ (3 — 2x)2, which is true since x^ 1,

(3-2^ 1. D

5. Thé Symmetric Group

We dénote by S^ thé group of permutations o f { 1, ..., N}. Our interest in thé
symmetric group stems from thé tact that it is closely related to a product. To see this,
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let us dénote by ^, thé transposition of i and j\ Then, it is easily seen that every a e Sy
can be written in a unique way as

^ ) c == ^N,i(N) ° ^N-l.KN-l) • • • ° ^2 i,i(2)

where, forj^ N, we hâve i(j) ̂ j. This décomposition allows to transfer (2.1.3) to S,,.
Thé resuit thus obtained is thé resuit of Maurey [Ml]. Thé purpose of thé présent
chapter is to prove a version ofTheorem 4.1.1 for S^ that will improve upon Maurey's
resuit thé way Theorem 4.1.1 improves upon Proposition 2.1.1. Thé reason why
proving this is not such an easy task is that thé décomposition (5.1) is highiy non-
commutative.

For a subset A of S^, and a e S^, we set

UA(<T) =={se{0, 1}^ 3 r e A; W^ N , ^ = 0 => T(^) = a(l)}

and we consider thé convex hull V^((T) of V^(a) in [0, 1]̂  We set

/(A, o) = inf{ S ^2; s = (^) e V^(o)}.
€ ^ N

We dénote by P^ thé canonical (= homogenous) probability on S^.

Theorem 5.1. — For every subset A of S^ we hâve

f cxp ' - • - . - '(5.2) ] exp ̂ /(A, (T) ^((T) <
^SN le^^^^-p^A)'
•'Su

In a natural way, S^ can be considered as a subset of { 1, . . . , N }N by thé map
a ̂  (^( î )) i^N- If SN were equal to ail o f{ 1, ..., N}^ (5.2) would be a conséquence
of Theorem 4.1.1, but S^ is oniy a very small subset o f { 1, . . ., N}^

Thé challenge of Theorem 5.1 is that it is apparently not possible to prove (5.2)
by induction over N. Rather, we will use a stronger induction hypothesis. Given p ^ N,
we set

/(A, o, p) = inf{ s} + S s], s e V^((T) }.
t ^ N

Theorem 5.1 is obviousiy a conséquence of thé following.

Proposition 5.2. — For each subset A of S^ and each p ^ N, we hâve

(5.3)^ f exp1^,^)^^-1,16^^-NW^p^,

(5.4)^ f exp - /(A, o, a-\p)) dP^a) ̂  ——
^V-^- ^/ ^^P^A)'

Js^ D -Nt/

19
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We leave to thé reader to prove Proposition 5.2 when N == 1. We now assume
that Proposition 5.2 has been proved for N and we prove it for N + 1. A noticeable
feature of this proofis that thé proof of (5.3)^i (resp. (5.4)^) will require thé use
of (5.4)^. (resp. (5.3)^). Before thé proof starts, we need to introduce some notation.
Given p, m ̂  N, p + m, we set

(5.5) /(A,o,Am) =inf{4+ S ^; s eV^o), ̂  == 0}.
^^ N

Given i , j ^ N, we set

(5.6) g{A, (T, îj) == inf{ S ^eV^o)}.
^+i,.»

We start thé proof of (5.4)^+1. Gertainly there is no loss ofgenerality to assume that
p==N+L

Lemma 5.3. — Consider ij^ N + 1, i ̂  J\ creS^i, 0< À ^ 1. Then

(5.7) /(A, o, i) ̂  4(1 - X)2 + (1 - X) ^(A, o, ij) + À/(A, (T,J, i).

Proof. — Gonsider s eV^o), t eV^o), with ^ = 0. By convexity of V^(a), we

u= (1 - x )^+À^eVA(o) .
hâve

Thus
/(A, o, i) ^ S ^2 + 2u?.

f^i

Since ^ ̂  1 and since ^ == 0, we hâve

/(A, a, î) < S u] + 2(1 ~ X)2 + ((1 - X) s, + X^)2.

Since ^.^ 1, we hâve

((1 - X) s, + X/,)2 ^ 2(1 - X)2 s] + 2X2 t] ̂  2(1 - X)2 + 2^2.

Since thé function x ̂  x2 is convex, we hâve

u2^ (1 ~ X ) ^ + X ^ 2 .
Thus

/(A, (T, i) ^ (1 ~ X) S ^ + \[2t] + S ^2) + 4(1 - X)2.
t ^ i , j /^N

Thé resuit follows by taking thé infimum over s, t. D
Following thé idea of Theorem 4.1.1, (5.7) will be used together with Holder's

inequality. Some work is, however, needed to relate thé resulting terms to thé induction
hypothesis. For i^ N + 1, we set

G,={oeS^;o(i) = N + 1}.
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For simplicity, we dénote by t == ^+1,» th^ transposition of N + 1 and i. We
consider thé map R : p »-> p o ^. We observe that, if p e G,, then

R(p) (N + 1) = p o ^(N + 1) = p(î) = N + 1.

Thereby, we can consider R as a map from G, to S^. We set A, == A n G,.

Lemma 5.4. — If a e G,, we hâve

(5.8) /(A, oj, i) ^/(R(A,), R(a), ^(j)).

Proof. — We let thé reader consider thé essentially obvious case where i == N + 1,
and we assume î = [ = N + l . Given a séquence s e={0 , 1 }N, we consider thé séquence
7== (^) e { 0, 1 }N+1 defined by 7, == 0, ^4.1 = ̂  ^ == ^ if ^ + ?', N + 1. We note
that S{ = ^^.(^ for/' =t= î. Thus it suffices to prove that F e V^{a) whenever s e UR(A.)(R(^)).
Gonsider s e UR(^)(R((T)). By définition, there exists T e R(A,) such that, for l^ N

^ = = 0 =>^) =R((T)(^) .

Since T e R(A^), we hâve T = R(p) for a certain p e A,. Thus

(5.9) s, == 0 => p(^)) == o(^)).

We will show that, for /' ̂  N + 1,

7, == 0 => p(^) = o^).

This hoids for t == î, since p(î) = (r(i) = N + 1. For i + î, this follows from (5.9), since
J{ == .î(.^), and ^ o ^ is thé identity of S^. D

We dénote by Q^ thé uniform probability on G,.

Corollary 5.5. —

(5.10) fexp ̂ /(A, aj, i) d^a) ̂  1 1

^''^'^^(i^-^Ay
Proof. — Using (5.8) and (5.3)^, thé left-hand side of (5.10) is bounded by

Jexp^/(R(A,),R((T),^(j))rf^(o) = fexp^/(R(A,),p,^(j)) rfP^(p)

1 _ 1
^ P^(R(A,)) ^ Q^A)- D

Lemma 5.6. — .4.m/w^ ̂  4= î. Then

(5.11) [exp-^A,a,îJ)^(a)< 1
^gov-- ,^^^-^v^ - Q^A)'
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Proof. — Thé map S : p h-> p o t^ is one-to-one from G, to G^. We will prove
that setting B == R(S(A,)), we hâve

(5.12) ^A,(^,J)^/(B,R((T))

where we recall that R is seen as a map from G, to Sj^. Since P^ÇB) = Q^.(A), (5.11)
will follow from either (5.3)^ or (5.4)^ as in thé proof of Corollary 5.5.

Given a séquence s e { 0, 1 ̂  we consider thé séquence 7 e { 0, 1 }N +1 defined as
follows. We set ^ = Tj = 1. If N + 1 4= i,j, we set 7^+i = j,. If i ^{ i,j, N + 1 },
we set ï{ == Sf.

We will show that when s e V^RÇc)), then 7e U^cr). By définition of U^R^)),
there exists T e B such that

Sf == 0 => r(/) == R((T) (/) = a o t,{£).

Since T e B, we can write T == p o t^ o t^ where p e Aj. Thus

Sf == 0 => p o t^ o t^f) == G o t^{l).

We will show that for l ^ N + 1 we hâve

s, = 0 => p(^) = a(£).

Thé oniy nontrivial case is t == N + 1, when N + 1 + i,j- In that case, when
j^^ == 0, we hâve s, = 0, so that ï(i) = R(<r) (i) === or(N + 1). But

ï(z) = p o /,, o t,{i) = p o /,,(N + 1) = p(N + 1).

since N + 1 4= ^ J » 0
We now complète thé proof of (5.4)^.^. We sélecte such that Q,,(A) is maximum.

I f z < N + 1, i^ j\ for 0^ À ^ 1, we hâve, using Lemmas 5.3, 5.4, Gorollary 5.5 and
Holder's inequality

''exp 1 /(A, a, i) Q,,(a) < exp [1 (X - 1)21 1 1
^^..,.,.,^.^ -,^^ A / J Q.(A)^ Q,,(A)-^

1 [0.^^ 1^e'^-^
If we appeal to Lemma 4.1.3, we hâve

(5.13) Lp ̂  /(A,.,,) ̂ ,(.) < ̂  (2 - ̂
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It should be obvious from thé induction hypothesis that (5.13) sdll hoids for i =j.

Since P^+i === ^^N+livr——i O-o we hâve, from (5.13), and since i = CT'^N + 1)
for a e G, that

J cxp ̂  /(A, ., .-(N + l» ff,,,(.) < ̂ ) (î - t^)

<P»7,(A)• °
Having proved (5.4)^i, we turn towards thé proofof (5.3)^+i. We can assume again
p == N + 1. Thé proof is not identical to that of (5.4)^i, but is completely parallel.

Lemma 5.7. — For a e S N + i , J < N + \, j ̂  <r(N + 1), 0^ X ^ 1, we hâve

(5.14) /(A, o, N + 1) ^ 4(1 - X)2 + (1 - À) ^(A, o, N + 1, ̂ \J))

+?,(^-^,N+1).

Proof. — This is (5.7) if one replaces i by N + 1, j by cr""1^). D
We set

G ; = { o e S ^ ; G ( N + 1) =î}.

We fix î, and we consider thé map R' : p h^ t, o p. Thus, for p e G^, we hâve
R'(p) (N + 1) = ^(i) = N + 1, and we can view R' as a map from G^ to S^. We
set A,' = A n G,'.

Lemma 5.8. — If a e G,', i =t= j, ̂  to<?

(5.15) /(A, o, o-^j), N + 1) ^/(R'(AO, R'((T), R'^-^^j))).

Proof. — Given a séquence s e { 0, 1 }N, we consider thé séquence 7 = (7^) e { 0, 1 ̂  +1

defined by 7^ = = ^ i f ^ + N + 1, and ^+, == 0. Since a-^j) = R^Qr)--1^^^)) + N + 1,
it suffices to prove that s'eV^a) whenever s eV^^ÇR'Çcs)). Thus consider s in this
later set. By définition, there exists T e R'ÇA^) such that

V i < N, ^ = 0 => T(^) = R'(<r) W.

Since T eR'(A;), we hâve T = R'(p), p eA;. Thus,

V ^ ^ N , Sf == 0 = > ^ o p ( ^ ) =.t,oa(f) =>p(^) = CT^).

Since p(N + 1) == cr(N + 1) = i, we then hâve

W ^ N + 1 , ^ = 0 = > p^) == a(l}.

Thus FeU^o). D
We dénote by Q^ thé homogeneous probability on G,'.
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Corollary 5.9. — Ifj 4= i,

(5.16) Lxp^f(A, a, o-^), N + 1) ^,(0) ^ _—..

Proof, — Using (5.15) and thé fact that R' transports Q', to P^, thé left-hand
side of (5.16) is bounded by

J.XP ̂ /(RW, p, ?-«,(,))) ̂ ,(p) < ̂ ^ - ̂

using (5.4)^. D

Lemma 5.10. — If i: =f= j, z^ AÛZ^

(5.17) fexp - ^(A, o, N + 1, o-^j)) rf^(a) ^ ——^g^,.,., , .,. ^^-^,^/- Q:,(A)

Proo/*. — Thé map S' : p -> ̂  o p is one-to-one from G^ to G,'. We will prove
that, setting B = R/ o S'(A,.), we hâve, for a m G^ that

(5.18) ^(A, G, N + 1, o^U)) ^/(B, R'(o))

where we recall that R' is seen as a map from G^ to S^. Since P^ÇB) == Q'^A), (5.17)
will then follow from either (5.3)^ or (5.4)^.

Given a séquence ^ e { 0 , 1}^ we consider thé séquence F e { 0 , 1 }N+1 defined
as follows. We set j^+i = îo-iœ == ^ ^e set ^ = s{ if ^ ^ { N + 1, o"1^) }. To prove
(5.18) it suffices to prove that if s e U^R^o)), then s'eU^(a). Thus, consider
s eU^ÇR'((?)). By définition, there exists T eB such that

(5.19) Sf == 0 => T(^) === R'(o) (l) = t, o <s(l).

Since T e B, we can write T = ^ o t^ o p, where p e A^.. Thus, by (5.19)

Sf = 0 => ̂  0 p(^) = (T(^) => p(^) = ̂ , 0 (T^).

Now, for i 4= N + 1, CT'"'1^'), we hâve CT^) 4= î,J; thus ,̂ o a{£) = o(/'). Thus for thèse
values of/' we hâve

^ == 0 =î> s/ == 0 => ?(/') == (T^). D

Thé end of thé proof of (5.3)^i is similar to thé end of thé proof of (5.4)^i,
and is left to thé reader.
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II. APPLICATIONS

6. Bin Packing

Given a collection x^ . . . , A ^ of items, of sizes ^ 1, thé bin packing problem
requires finding thé minimum number B^i, ..., x^) of unit size bins in which thé
items A?i, ..., x^ can be packed, subject to thé restriction that thé sum of thé sizes of
items attributed to a given bin cannot exceed one. (For simplicity, we will dénote items
and item sizes by thé same letters.) Thé bin packing problem is a fundamental question
of computer science, and, accordingly, has received considérable attention. Much work
has been done on stochastic models [C-L]. In thé model we will consider, thé
items Xi, ..., X^ are independently distributed according to a given distribution pi.
One of thé natural questions that arises is thé study of thé fluctuations of thé random
variable B^(Xi, ..., X^). One early resuit, [R-T1], [McDl], using martingales, is
that for ail t > 0, one has

( 9/2\
(6.1) P(| B^X,, ..., X^) - EB^Xi, . . . , X^) | ̂  t) ̂  2 exp - ̂  .

However, especially when EX^ is small, one expects that thé behavior ofB^(Xi, ..., X^)
resembles thé behavior of S X,. Thereby one should expect that thé exponent in

<5$N

thé right-hand side of (6.1) should be oforder ^/N var(Xi), or, at least, less ambitiousiy,
^/NE(X^). This is apparently not so easy to prove, and despite several attempts, was
established oniy recently using non-trivial bin-packing theory [R4J. Thé purpose ofthe
présent section is to prove this resuit as an application of Theorem 4.1.1. Several features
ofthe proofwill appear repeatediy in future applications. One advantage of our approach
is that it uses oniy trivial facts about bin packing, such as thé following observation.

Lemma 6.1. — We hâve

B^i, . . . , ^ )^2 S x,+ 1.
i^N

Proof. — It suffices to construct a packing in which at most one bin is less than
haïf full. Such a packing exists since bins that are less than haïf full can be merged. D

We take Q = [0, 1]. For a subset A oft^, and x e i ,̂ we recall thé notation/,(A, x)
introduced in Section 4.1. For x == (^, . . . .A^) eû^ we write simply B^) rather
than BN^I, ..., x^). For x eQ^ we set || x \\^ == ( S ^1/2. Finally, for a > 0, we set

is$N

A(û) ^O'eÛ^B^Xa}.

Thé crucial observation is as follows.

Lemma 6.8. — For ail x e Ù^, we hâve

(6.2) B^) ̂ a + 2 I I x ||^(A(<!), x) + 1.
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Proof. — As follows from Lemma 4.1.2 (taking a, there equal to x,) we can find
y e A(û) such that, if 1 dénotes thé set of indices i ̂  N for which x, =j^, we hâve

^/^ IMl2/c(A(^).

By Lemma 6.1 thé items (^),çti can be packed using at most 2 || x \\^f,{A{a), x) + 1
bins. Thé items {x^ç^ are exactiy thé items (j^çi, so they can certainly be packed
using at most a bins, sincej/ eA(û). Thé resuit follows. D

We provide [0, 1] with thé measure (JL, and we dénote by P thé product probability
on [0, 1]̂  Thé term | [ x | [2 of (6.2) will be disposed ofby thé following simple observation.

Lemma 6.3. — We hâve

C6^) P(|| x \\^ 2 VN(EX^2) < exp(- 2NEX2).

Proof. — Since ^< 1 + 2x for x ^ 1, we hâve

E exp X? ̂  1 + 2EX? ̂  exp 2EX2

so that
Eexp( S X?)^ exp 2NEX2

i^N

from which (6.3) follows by Chebyshev inequality. D
We can now prove thé basic inequality.

Proposition 6.4. — We hâve, for ail t > 0 and ail a > 0, that

(6.4) P(B )̂ ^ a) P(B )̂ ^ a + 4tV:N{EXy/2 + 1) < e-^ + e-2^!.

Proof. — Indeed, by (6.2), if B^) ^ a + 4^VN(EX^1/2 + 1, we hâve either
/c(A(û), x) ^ t or [| x [ [ g ^ 2 VNÇEX^172. Thé resuit then follows from (4.1.2) and (6.2).

Theorem 6.5. — Dénote by M a médian of'Ky{x). Then for ail u ̂  8 V^NEX2 we hâve

P( | B^(X,, ..., X^) - M | ̂  1 + u) ̂  8 exp (- g^^).

Proç/; — First, we take a = M to obtain from (6.4), setting u == 4^^/N(EX^1/2

and since P(B^< M) ^ 1/2,

P(B^ ^ M + u + 1) ^ 2(<?-<2/4 + ^-2NEXî.)

^ 4<r-(2/4.

Thé bound for P(B^ ̂  M — u — 1) follows similarly taking û = M — u — 1. D

Remarks. — 1) One can aiso get bounds for larger values ofu, by adapting Lemma 6.3.
2) It is instructive to find an alternate proof of Theorem 6.5 using Corollary 2.2.4

rather than Theorem 4.1.1.
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7. Subsequences

7.1. Thé longest increasing sub séquence

Consider points x^ ...,^ of [0, 1]. We dénote by L^i, ...,^) thé length
of thé longest increasing subsequence of ^, ..., x^. That is, thé largest integer p such
that we can find i^< .. . < ^ for which x^ ̂  . .. < x^. It is simple to see that when
Xi, . . ., X^ are independent uniformiy distributed over [0, 1] (or, actually, distributed
according to any non atomic probability), thé r.v. L^(Xi, .. ., X^) is distributed like
thé longest increasing subsequence of a random permutation a o f { 1, . . ., N} (where
thé symmetric group S^ is of course provided with thé uniform probability). Thé
concentration ofL^(Xi, ..., X^) around its mean has been studied in particular in [F]
and [B-B]. Sharper results will be obtained hère as a simple conséquence ofTheorem 4.1.1.
We consider iî == [0, 1]̂  For x == (^)^ in Î2, we set L^{x) = L^i, . . . , ^)- For
a > 0, we set

A(û) ={x e£î,1L^x) ̂  a}.

Thé basic observation is as follows.

Lemma 7 .1 .1 . — For ail x eÛ^y we hâve

(7 .1 .1) a^L^x) -f,{A{a),x)VL^x).

In particular,

(7.1.2) L^)^+^/e(A(û),^——=.

Proof. — For simplicity, we write b == L^Çx). By définition, we can find a subset 1
of{ 1, ..., N } of cardinality b such that ifi,j G I, i<j, then x,< x,. By Lemma 4.1.2
(taking a, == 1 if i e 1 and a, == 0 otherwise), there exists y e A(a) such that
cardJ^/,(A(a),^) Vb, where J == { i e 1',^ 4= x, }. Thus (x^ç^j is an increasing
subsequence ofj/; since y eA(û), we hâve card(I\J) < a, which proves (7.1.1).

To prove (7.1.2), we observe that by (7.1.1) we hâve

f^^^b^1

VL^)
and that thé funcdon u \-> (a — a)l-^/u increases for a > a. D

We dénote by M ( = M^) a médian of L^.

Theorem 7.1.2. — For ail u> 0 we hâve

(7.1.3) P(L^ > M + M) < 2 exp -——^——,
4(M+u) '

(7.1.4) P(L^ M - «K 2 exp - ̂ .

20
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Proof. — To prove (7.1.3), we combine (7.1.2) with M == a and (4.1.2). To
prove (7.1.4), we use (7.1.2) with a == M — u, v = u to see that

L^x) ̂  M =>f,(A(M - M), x) ̂
VM

so that

(7.1.5) P(/,(A(M - u), x) ̂  u } ̂  1.
\ VM/ 2

On thé other hand, by (4.4.2),

(7.1.6) P^(A(M-^),^——L———1———
\ VM/ P(A(M - u))

u x l -à

Comparing (7.1.5), (7.1.6) gives thé required bound on P(A(M - u)). D
It seems worthwhile to state an abstract version of Theorem 7.1.2. Let us say that

a function L^ : 0^ -> N is a configuration function provided it has thé following property.

(7.1.7) Given any x == {x,)^ in Q^ there exists a subset J o f { 1, ..., N} with
cardj = Ly{x) such that, for eachj/ in Q^ we hâve L^jQ ^ card { i ej;^ = x,}.

Thé reason for this name is that, intuidvely, L^ counts thé size of thé largest
<< configuration " formed by thé points ^.

Thé proof of thé following is identical to that of Theorem 7.1.2.

Theorem 7.1.3. — If L^ is a configuration function, then (7.1.3) and (7.1.4) hold.

7.2. Longest common subsequence

Gonsider two séquences x == (^, .. . , ̂ ), y = (j^, .. .,j^) of numbers. We
define thé length 'Ly^{x;jy) of thé longest common subsequence of x, y as thé largest
integer p for which there exists 1 ̂  ^ < ... < ^ ̂  N and 1 ̂  Ji < ... < j'y ̂  N' such
that x^ ==j^ for each ̂  p. One interprétation of this is when x^, ..., x^ are chosen
among a (small) finite number of possibilities (thé letters of an alphabet) L^ y(x;jy)
is then thé length ofthe longest<c subword " of thé words x,jy (and N + N' — L^ y(x;jy)
is thé so-called c( edit distance 5Î ofthe two words). Thèse considérations arise in a number
of situations, such as genetics, speech récognition, etc. Gonsider now a r.v. X, and two
independent séquences (X,)^^, (Y,),^ independently distributed like X. We are
interested in thé random variable L^, = L^(Xi, ..., X^; Yi, ..., Y^).

Theorem 7.2.i.—Considéra médian M{==M^,) ofL^. Then, for ail u>0, we hâve

(7.2.1) P(L^^ M + ^ ) ^ 2 e x p |
32(M + ̂ 5

(7.2.2) P(L^ ^ M - ̂ ) < 2 exp
32M
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Comments. — It is known that Jrn^ E(L^)/N exists. However, this limit can
be very small, in thé case where X takes many possible values. In this case, we hâve
M< N, and (7.2.1), (7.2.2) give a better resuit than Azuma's inequality.

Proof. — Thé proof is very similar to thé proof of Theorem 7.1.2. Gonsider
û == [0, l], and for x eû^^, consider

"^W == -"N,N'(^15 • • • î ^N5 ^N+l? • • • 3 ^N-t-N')*

Consider thé set

A(û) =={x;L{x) < a}.

Thé basic inequality is that

(7.2.3) û ̂  L(x) - 2 V2/;(A(a), ^) A/L^.

To see this, we set b = L(A;) ; we can find indices

l^i,< ... < ^ < N < ^ < ... < ^ ^ N + N '

such that x^ = x^^ for 1 ̂  k < A. Gonsider thé set 1 = { 4; 1 ̂  k ̂  26 }. By
Lemma 4.4.2, we can findj eA(û) such that

(7.2.4) ca rd{zeI ;^+^K/ , (A(û) ,^ )V2&.

Gonsider then

J={A^é;^=^;^=j^}.

By (7.2.4) we see that

cardj ̂  b-2 card{ î e I; x, +^}^ è - 2 V2é/,(A(û), ^).

On thé other hand, L(j^) ^ cardj since, for k ej, we hâve j^ =^ . Aiso, since
y eA(û), we hâve L{y) ^ û. Condition (7.2.3) follows. Thé rest ofthe proof is identical
to that of Theorem 7.2.2. D

Remark. — It is aiso possible to find a more général version of Theorem 7.1.3
that contains Theorem 7.2.1.

8. Infimum and Percolation

Gonsider an independent séquence (X^^ of positive r.v. Gonsider a family SF
ofN-tuples a == (a,),^ of positive numbers. Our prime topic ofinterest in thé présent
section is thé random variable

(8.1) T =Z^= inf S a,X,.
aey »^N
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It does matter a lot that we take an infimum rather than a supremum. Thé fonction
of thé ' in Z' is to indicate that we take such an infimum. Rather that (8.1) one can
aiso write

Z' = - sup S (- a,) X,
a e y i ̂  N

but thé numbers — a^ are négative. In Section 13, we will hâve to study thé r.v.

(8.2) Z = sup i; a,X,
oi-ey i^N

where 0^ and X^ can possibly hâve any signs. In order to avoid répétition, we will study
thé variables Z given by (8.2).

8.1. Thé basic resuit

Consider a family 3^ of N-tuples a = (a^^. We make no assumpdon on thé
sign of o^. We set cr = sup |[ a Hg , where || a ||^ == ( S a?)172. We consider indepen-

a e y i ̂  N
dent r.v. X^, and we assume that for each i there is number r^ such that r^ X^ ^ r^ + 1.

Theorem 8 .1 .1 . — Consider thé r.v. Z given by (8.2), and a médian M of Z, Then, for
ail u > 0, we hâve

(8.1.1) P(| Z - M | ̂  ^) ^ 4 exp (- "Q.
\ 4CT/

Proç/'. — This will again follow from Theorem 4.1.1.

Step 1. — Set Q = [0, l], and for x = (^)^N eQN» set

ZW == sup S a,(r,+^).
ae^' î^N

Gonsider a eR, and A(û) == {j/ eti^; Z(j/) ^ a}. Thé basic observation is that

(8.1.2) V^eî^, Z(A:)^ a + q/;(A(a),^).

To prove this, consider a e ̂ r. By Lemma 4.1.2, we can find j/ eA(A;) such that, if
I == { i ̂  N$j, =t= ^ }, then

(8.1.3) ^ | aj < II a ||^(A(a), ̂  ^ q/;(A(^), ̂ ).

We then hâve
1 S a,(r, +J^ - S a,(r, + ̂ ) [ ^ S | aj |̂  - ̂  | ̂  S | aj.
i^N i^N »£I (£1

Thus, by (8.1.3)

2 a,(r, + ̂ ) ^ Z(j/) + q/o(A(û), ^) ^ û + q/c(A(a), ̂ ),
t ^ N

and taking thé supremum over a proves (8.1.2).
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Step 2. — We provide thé i-th factor [0, 1] with thé law ^ of X^ — r,. We dénote
by P thé product probability. Thus by (8.1.2) and (4.1.2)

P(Z(.) , t) < P (/.(A(«), ,) , ̂ ) < ̂  »p (- C )̂-),

i.e. P(ZM ^ b) P(ZM ̂ ) ^ exp f- (^^)

from which (8.1.1) follows as in Chapter 7, since thé law of Z{x) under P coïncides
with thé law of Z. D

8.2. Général moments

In thé présent section we rely on thé theory of Section 4.4. We start with some
preliminaries. Consider a convex function ^ on R4" that satisfies (4.4.1) and ^(0) = 0.
Gonsider a family y of N-tuples as in Section 8.1. For u > 0, we define

^{u) = inf{ 2 ̂ ); 3 a e^, S ^ | aj ^ ^}.
i^N i^N

Thé simplest case is when ^{x) == x2. In that case it is easily seen that ̂ (u) == u2!^,
where a2 = sup{ || a |[^; a e e '̂}. Thé most interesting case is arguably thé case where
^ == ^o is given by

^oW ==^ if ^< 1 ; W = 2 ^ - 1 if x ^ 1.

If we set

T = sup { | aj ; î ̂  N; a e ̂  },

we note that, for given a e ̂  for each s = (^),^N, setdngj == { i ̂  N; s, ̂  1 }, we hâve

S ^ | aj === S jj aj + S ^ | aj
»^N içj içfcj

< 0( S ^1/2 + T S ^
»GJ i^j

^ 0( S ^^J^+T S ^).
i^N KN

Thus, if S ^ ^ ^ l a J ^ ^ , then either S^^ +(^) ^ ^/4(r2, or eise S ̂ ) ^ r/2,
and thus ^ ^ N

.2.1) ^(")>"""(^^).

Thé basic observation is as follows.

(8
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Proposition 8.2.1. — Consider ̂  ^ as above. Set Q == R, and consider thé function
Z(x) == mp S a, x,. Consider a eR, W A(û) = {j^; Z(jQ < a}. Then

(8.2.2) V ^ eiî  /,.,(A(û), x) ̂  ̂ (Z{x) - û)

when thé function h is defined on R x R by

(8.2.3) A(œ,û/) = [ c o ~ œ ' | .

Moreover, when a, < 0/or <?^A î < N and each a e^; we can take

(8.2.4) A(œ,0 = (co'-co)^

Proo/: — By définition off^, given e> 0, we can find s eV^(x) such that

.S +(^)^/,^(A(û)^)+£.
i^N

Consider a == (a,) e^-. Then there exists s' e V^{x) such that S | ocj s' ^ S | a. | ̂ ..
. i^N KN' l ' l

This means that there is y e A{a) for which S | a, | h{x,^,) < S | aj ̂  where
I=={^N;^+^}. Now i61 ^N

^^ ^ai^^a^+j^a^-^•
We hâve a^ -j/,) ^ | aj | ^ -^ [. If a, is ^ 0 we hâve a,(^ -j/,) < [ aj (j, - ̂ +.
Thus in ail cases under considération, we hâve

S a,(̂  -^) ^ S | aj A(^^) < S | aj s,
ici »ei ,^N

so that, by (8.2.5),

S a, x, ̂  S a,̂  + S | aj ̂
i^N î^N i<N

^ a + S 1 aj j,.
«N

Taking thé sup over a yieids

sup S | aj ̂  ^ Z(x) — a
ae^- î^N

and thé resuit follows by définition of Y^-. D

Corollary 8.2.2. — Consider afamily y ofN-tuples a = (a,),^^. Consider a séquence
of independent r.v. (X^^ with common law [L. Assume that (4.4.6) hoids (for a certain
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fonction Q} when P = (A®^ and where h is thé fonction determined in Proposition 8.2.1. Then
thé r.v. Z = sup S a, X, satisfies

ae^-iiSN l -

(8.2.6) u ̂  0 => P(Z > M + M) < exp IQ l^\ - 1. Y^
\ \2/ K /

(8.2.7) u ̂  0 ^ P(Z ̂  M - «) < J- y^(») _ log 2]

where M is a médian of Z.

Proof. — Using (4.4.6) and Ghebyshev inequality, we hâve

IV^(A(a), x) > t) < exp (e(P(A(a;))) - -^|
\ K;

where A(«) is thé set of Proposition 8.2.1; thus, by (8.2.2), setdng t = Yy(è - a),
for Z(;v) > b we have^^(A(û), a;) ^ t, so that

P(Z ^ b} ̂  exp (e(P(Z <a ) ) - 1 T^(6 - a)V
V K /

Taking a == M, b = M + u imply (8.2.6). Taking b = M, a = M - u imply

1 / i \
„ < exp 6(P(Z < M - u)} - , Y^(«)
4 V — /

from which (8.2.7) follows. D
We now go back to our main line ofstudy, that ofthe r.v. Z' = sup S (— a.) X..

In order to apply Corollary 8.2.2, we need (4.4.6) for thé" "penalty funcdon
^y) ={y— x)-^. Since X. is positive, its law (A is supported by R+. Thereby, oniy
thé properties of h on R+ x R+ matter; but then {y - x)+ <j>. Thus, to hâve (4.4.6)
it suffices that thé funcdon h{x,y) =.y sadsnes thé condidons of Theorem 4.4.1. Thé
case where thé funcdon h(x,jy) dépends onjy oniy has been discussed after Theorem 4.4.1.
Thus, we hâve proved thé following.

Theorem 8.2.3. — Consider afamily y on N-tuples of positive numbers, and independent
identically distributed mnnegative r.v. variables (X,).̂ . Consider fonctions 6, Ç, w as in
Theorem 4.4.1. Assume that (2.6.1), (4.4.2), (4.4.3) hold, that condition H(Ç, w) hoids,
that thé médian m ofX^ is ^ 1, and that for t'es. m, we hâve

(8.2.8) w{P{X^t))^^t).
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Then if M. is a médian ofZf= inf S o^ X^, thé following hoids (where thé constant K
^ i^N

dépends oniy on thé parameter y ç/' Theorem 4.4.1^:

(8.2.9) u> 0 => P(Z' „ M -- ̂  exp (e fâ - 1 ̂ {u)\
\ \2/ K /

(8.2.10) ^ > 0 ^P(Z'^ M + t , ) ^ S^Y^)-log2).
^ /

Comment. — A striking feature of this resuit is thé différent forms of (8.2.9) and
(8.2.10). This phenomenon is well-known in thé case where y consists of a single
point a. In that case, ^ is a sum of positive independent r.v. Y^. Thé lower tails of Z
hâve a tendency to be < ( subgaussian " ([H]) while thé upper tails ofZ certainly dépend
much on thé upper tails of thé variables Y^.

Corollary 8.2.4. — There exists a universal constant K with thé following property.
Assume that ^ satisfies (4.4.1). Assume that

(8.2.11) V ^ l , P(X^^ exp(-2+W).

Then we hâve

(8.2.12) u^ 0 ^P( |Z- M | ^ u)^ Sexpl-^Y^^)).
\ K /

Proof. — We take ï,{x) = ^-aî, Q{x) = — logx. According to Proposidon 2.6.1,
r icondition H(Ç, w) hoids if ^w rfX ^ 2, so, in particular, if w(t) = — - log t. Aiso,

by (4.4.1), ^(1) == 1, so that (8.2.11) implies that thé médian of X^ is ^ 1. Thus Gorol-
lary 8.2.4 follows from Theorem 8.2.3.

Corollary 8.2.5. — Assume that (2.6.5) hoids for a certain number L. Then, for some
constant K depending on Ç oniy, if for ail t^ 1 we hâve

(8.2.13) P(X^)^|ÇW))|

then (8.2.9), (8.2.10) hold (for a constant K depending on Ç oniy).

Proof. — We simply hâve to find a function w that satisfies (8.2.8) and such that
condition H(Ç, w) hoids. It follows from Proposition 2.6.3 that ifwe take R large enough

( r°° \R can actually be taken depending on L and Ç d\ oniy » then thé funcdon w such that
Jo /

V^. |{^è} |=^|Ç'(é) |
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satisfies condition H(Ç, w). Now, if we take K == R in (8.2.13), then

| {^^^)} |=^ |Ç / (^ ) ) | ^P(X^^ ,

so that w(P(Xi^ t)) ^ ^(t) since w is non-decreasing. n
We now explain why Gorollary 8.2.5 is sharp. Consider thé case where ̂  consists

of thé single élément a = (a,), where a, == 1/A/N. Consider ^ such that ^){x) = x2 if
A;^ 1 and ^{x) =2x — 1 for x^ 1. Then, for M == VN, 'Vy(u) ̂  N/4 by (8 .2 .1) .
Gonsider a r.v. X, e{0,N}, with

P(X,=N)= j&=:^ | ^ (2N- l ) | .

Under condition (2.6.5), we hâve Jm x^{x) == 0, and it is not a restriction to assume
VSp ̂  1/2. Thus thé médian of Z =^ N-172 S,̂  X, is zéro.

Now

^"'-''fc»^")-^^-"
/N\

and thé bound Ç I^ j of (8.2.10) is indeed reasonably good, as x^{x) is of order ^(x)

for many choices of Ç.

8.3. jFzr^ time passage in percolation

Gonsider a graph (V, E) where V is thé set ofvertices, E thé set ofedges. Assume
that we hâve a family (XJ,ç ̂  of positive r.v. distributed like a given r.v. X (X, represents
thé passage time through thé edge e). Consider a family y ofsets ofedges, and for S e y,
consider Xg == S X,. In thé case where S is a path, i.e., consists of thé edses e

e e s ° v! ̂ 25

^35 • • • 5 ^k-i^k ^king vertices ^1 , . . . , ^ , Xg represents thé "passage time
through S 5Î. Let us set Zy = inf Xg and r = sup card S. Dénote M a médian of Z^

ae^ se^ "
Thé following is a conséquence of (8.2.1) and Corollary 8.2.4.

Proposition 8.3. — There exists a universal constant K such that if E expKX< 2,
z^ Aû^

(8.3.1) V ^ > 0 , P ( | Z ^ - M | ^ ^ ) ^ 4 e x p f - l m i n f c 2 , ^ .
\ K V //

Gonsider thé case where V = Z2, E consists ofthe edges that link any two adjacent
vertices. Dénote by Y thé sets of self-avoiding paths linking thé origin to thé point (0, %),

21
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and by <^(G) thé subset of y consisting of paths of length ^ Gn. It was proved by

H. Kesten [Kl] that if P(X == 0) < . then, for some constant G independent of n,
we hâve

P(Z^=Z^)^ \-Ge-nlc.

It then follows from (8.3.1) that for some constant G' independent of n, we hâve

(8.3.2) ^ - => P( | Z^ - M | ̂  „) < 5 exp (~ u2-}.
L-» ^ u nj

This improves récent results of H. Kesten [K2], based on thé use of martingales,
who proves (8.3.2) with an exponent u/Cf \/n. It should, however, be pointed out
that thé reason why martingales allow some success on this problem is because we
consider oniy sums of thé type S oCg Xg for very spécial families a = (aj. Mardngales
are apparently powerless to approach Gorollary 8.2.5.

It is pointed out in thé literature that (in thé case V = Z2) (8.3.2) apparently
does not give thé correct rate. In view of Gorollary 8.2.55 thé obvious approach to
improve (8.3.2) would be to show that ïy is very close to Zjr, where thé family SF of
séquences (a^gçg satisfies a == sup || a ||^ ^ n. There is an obvious candidate for y.

v.çy
Indeed, consider thé family y defined as follows: y\ seen as a subset of (R4')®, is thé
convex hull of thé family of points ûg given by ûg(^) == 1 if e e S and a^(e) = 0 if e ^ S,
for ail S e y. Then, obviousiy, Ïy = î'y.. Then consider thé family ^'(o) of
séquences (oCg)gçv of y for which || a H a ^ (T. Then ï'y^ Z^o). Thus if one could
show that, for some a = o{n), one still has ïy^ ^ Ïy + o[-\/n), with probability
1 — o{n~1), one would obtain that thé likely fluctuations of Zy from M are oÇ'\/n).
Roughiy speaking, this means that thé shortest passage time from (0, 0) to (0, n) is
(within oÇ^/n)) obtained through a number of rather disjoint paths. Proving such a
statement is apparently a long range program in Percoladon theory.

9. Chromatic Number of Random Graphs

Thé use of martingales has allowed several important progresses in thé under-
standing of thé chromadc number of random graphs. Use of martingales does require
ingenuity. This chapter will demonstrate that Theorem 4.1.1 achieves somewhat better
results than martingales in a completely straightforward manner.

For simplicity we call a graph G with vertice set V == { 1, . . ., n} a subset of
Eo = { (z, j )$ i'<j^}. If (î,j) belongs to G, we say that i, j are linked by an edge.

A subset I of V is called independent if no two points of I are linked by an edge
(thé word independent hère should not be confused with its probabilistic meaning).
Thé chromadc number 5c(G, A) ofa subset A ofV is thé smallest number of independent
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sets that can cover A; that is, thé vertices ofA can be given /(G, A) colors so that no
two points with thé same color are linked by an edge. We set

X(G, rn) == inf{ x(G, A) ; card A = m }.

Given p, 0<p< 1, thé random graph G = G{n,p) is defined by putdng each
possible edge {i, j) in G with probability p, independently of what is done for thé other
edges.

Thé chromatic number is remarkably concentrated, as thé following shows.

Theorem 9.1. — Consider k e N and t > 0. Then there exists an integer a such that

(9.1) WG{n,p),m)e[a-k,a])

^ 1 -2^-< 2 / 8-P(sup{5c(G(7î,^) ,F);FCV,cardF^ t>^m}>k).

Comments. — 1) Thé last term is aiways zéro for k> t-\/m. But when p =n~v•
(a > 0), it is still small for smaller values of k. See [S-S], [A-S, p. 88].

2) Another version ofthis Theorem could be proved, in thé spirit of Theorem 7.1.3,
concerning thé concentration property of thé number

max{ card F; 5c(G(^,^), F) ^ m }.

3) With a bit of care, we can replace m by m — 1 in thé right-hand side of (9.1),
and improve thé coefficient 1/8.

Proof. — We set

&=P(sup{îc(G(^) ,F) ;cardF^ t^/m}>k).

We then define a as thé largest integer for which

(9.2) WG{n,p),m)^a)^e-t2/s+b.

Thus

WG{n,p),m)>a)<e-t2/s+b.

In order to apply Theorem 4.1.1, we must represent thé underlying probability
space as a product space. Thé first idea that cornes to rnind would be to use {0 , 1 }EO;
this is not a good choice. For 2 < j ^ n, set O.y = { 0 , l}^"1. Set Q' = II f^. We

2^3^n

write œ etî' as (ûï,)^^ where co, == {^j)i^j-i €^- To co we associate thé graph G(co)
such that, for i<j, (z,j) e G(co) if and oniy if œ, , == 1. Thé oniy property of G(n,p)
we need is that it is distributed as G(œ) for a certain product rneasure P on II Q,.

Define A C ti' as thé set of <o for which ^N

5C(G(œ),w) ^ a; sup{ x(G(œ), F) : card F ̂  t^/m}^k.
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Thus by (9.2) we hâve P(A) ^ e-^9. Combining Theorem 4.1.1 and Lemma 4.1.2,
we see that P(B) ^ 1 — ^~<2/83 where we hâve set

(9.3) B==jo) ;V(a , )^ ,^ , 3o /eA; Sa, l^.^ ^ ^^ajj.

To finish thé proof, it suffices to show that

<o e B => ^(G(œ), m) ^ a — k.

So, consider co e B, and set r == ^(G((o), m). Consider a subset F ofV, of cardinal m,
such that ^(G(<o), F) == r. We use (9.3) with a,. == 1 if^' eF and zéro otherwise. Thus
there is o eA such that, i f J = = { j e F ; c .̂ 4= c^.}, then cardj^ t^/m. But obviousiy,

x(G(œ'), F\J) = ÎC(G((O), F\I) ^ r

and thus

a^ x(G(û)'), F) ^ r + x(G(co'), I)

^ r + A. D

In order to obtain an upper bound for /^, thé most obvious approach is thé
6t greedy " one: one chooses an independent set W^ of maximal size, and removes its
vertices and ail edges adjacent. One is then left with a graph on fewer vertices, and one
itérâtes thé process until exhaustion. To make this approach work one needs a compétent
bound on thé probability that a random graph contains at least one independent set
ofsize r. Such bounds were first obtained by B. Bollobas [B], using martingales. A récent
powerfui corrélation inequality ofjanson [J] is both simpler and more powerfui than
thé martingale approach (compare [A-S] p. 87 and p. 148). It is of some interest to
note that Theorem 4.1.1 does as well as Janson's inequality. We fix an integer r. For
e == (i,j) eEo, we dénote by N(G, é) thé number of independent sets of size r that
contain i, j.

Proposition 9.2. — Consider a number u, and assume that

(9.4) p ( u j S N(G(^),.)^ S N(G(^),.))>1

\ ^eeEo eGEo / 2.

Then

P(G(%, p) contains no independent set ofsize r) ̂  2 exp r\r - 1)^

Proof. — We set 0. = {0, 1 }, provided with thé probability that gives weight p
to 1 (and 1 — p to 0). Gonsider thé product probability P on tP0. For x e {x^ç^
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we define G{x) by e{i,j) e G{x) if and oniy if x^ = 1. Thé graph G(x) is distributed
like G{n,p).

Gonsider thé set A C Q^9, given by

A = {y\ G{y) contains no independent set ofsize r}.

Consider ^ === 2 Vlog(2/P(A)). Ifwe combine (9.4), Theorem 4.1.1 and Lemma 4.1.2,
we see that there exists x such that

(9.5) u /I; N(GM,<02^ 2: N(G{x),e)
^ e G E o ee-Eo

with thé property that

Y^LeEo. 3^eA, 2: a ^ ^ o / S a^
aîe^ye ' eGEo

In particular, there exists ̂  e A, such that if

G =={e eEo,^=t=j/J

we hâve

S N(G(^ ^) ^ ^o / S N(G(^)2

eGC V eGEo

(9.6)
^-0 S N(G(^)

M eGEo

where thé last inequality follows from (9.5). Thé total number N of independent sets
of G{x) of size r is

(9.7) N = (r(r-^-l J^N(GW, <').

We must hâve

N^ S N(G(^)
eec

for otherwise there would be an independent set of size r of G(x) that would contain
no edge of G, and thus would be an independent set of G(j), which is impossible.

2u
Combining with (9.6), (9.7), we get t^ ———,, so that

P(A)<2exp-^"2^. a
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In order to take advantage of Proposition 9.2, one must find compétent (= large)
values of u for which (9.4) holds. For example, one can take u == uju^, where

(9.8) P( S mG,p),e)^ul)>3

ee'Eo 4

(9.9) P( S N((G,^)^)>3

eCEo 4

We then find values ofu^ (resp. u^) using Ghebyshev inequality (resp. thé second moment
method). Not surprisingly that leads to unpieasant computations (as seems unavoidable
in this topic). Thèse are better not reproduced hère, and left to thé specialist that wants
to evaluate thé strength of Proposition 9.2.

10. Thé Assignment Problem

Consider a number N, and two disjoint sets I, J of cardinal N. An assignment
is a one-to-one map T from 1 to J. Gonsider a matrix a ==• (â^,),ç^,çj, such that
a^ j represents thé cost of assigning j to i. Thé cost of thé assignment T is S â^^ and
thé problem is to find thé assignment of minimal cost.

Assume now that thé costs û^. are taken equal to X^., where thé r.v. (X^ ,)^i jçj
are independent uniformiy distributed over [0, 1]. Gonsider thé r.v.

L^ = inf{ S X^^p T assignment}.

It is a remarkable fact [W] that E(L^) is bounded independently of L^. (Actually
E(I^) ^ 2 [Ka].)

In this section we try to bound thé fluctuations of L^ ; thé challenge is that thé
average value of L^ is of thé same order as thé average value of thé costs X^ y , and
that N2 of thèse costs are involved.

We will first show that we can replace thé costs X, _,. by Y^ ̂  == min(X^., v) for v
of order N'^logN)2; then we will appeal to Theorem 4.1.1.

A digraph D will be a subset of 1 X J. (If (î,j) e D, we think of î, j as being linked
by an edge.) Thé digraphs of use will mostly consist of those couples (i,j) for which
X, y is small. Gonsider a digraph D, and S C I. We set

D(S)=0'eJ; 3zeS , ( i J )ED} .

We will say that a digraph D is a-expanding (a ^ 2) if thé following occurs, for ail
subsets S of I:

N / N\
(10.1) card S^ . => card D(S) ^ min a card S, — ,

(10.2) card S ^ N => card D(S) ^ N - ï- (N - card S).
2 a

Our first lemma mimics an argument of Steele and Karp [S-K],
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Lemma 10.1. — Consider an oc.-expanding digraph D and an integer m such that a^ ̂  N/2.
Consider a one-to-one map T from 1 to J. Then, given any i e I, we can find n ̂  2m and disjoint
points î'i == i, ^, . . ., î^_^ == i such that for 1 ̂  £^ n, we hâve {i , T(^_^)) e D.

Proof. — We fix î e I. Gonsider thé set Sy of points of iy e I with thé property
that we can find î^ • • • ? ^ in I, for which (^, ï(^+i)) e D for 1 ̂  î < p. We observe
that, obviousiy, Sy+i 3 T'^DÇSJ). Since we can assume without loss of generality that
^m-i ^ ]N^ ^ç gçç ̂ ^ (10.1) and by induction that for p ^ m, we hâve card S y ^ a2'"1.
Then (10.1) shows that card S^i ^ N/2, and (10.2) shows that for p ^ 1,
N - card S^+i ^ a-^ N/2. Thus N - card S^+i ^ a-"1 N/2 < 1, which means
^m+i = I- TI1US ^Sg^+i. Consider then thé smallest n for which î'eS,^; thus
n < 2m. Then one can find ^ = z, î'g, 23, . . ., ^^3 == z such that, for 1 ̂ 7 ̂  ^, we hâve
(^,T(^+i)) eD. Thé minimality of n implies that thé points i{ are ail disjoint. D

Consider u > 0 and consider thé digraph D^ given by

(zj) e D, o X,,, < 2^N-1 log N.

Corollary 10.2. — Assume that thé digraph Dy is oi-expanding, and consider an integer m
such that (x"1 ̂  N/2. Then for an optimal assignment T we hâve X^^ ̂  4wd^I-llogN for
ail i ̂  N.

Proof. — Consider any i e I, and consider i = î\, ..., ̂ i == i as in Lemma 10.1,
used for D == D^. Define CT(^) = ï(^+1) for 1 ̂  /' < w, and ^(i') = ï(î') i f î ' ^ { î'i, ..., ̂  }.
Since T is optimal, we hâve

S ^i',T(i')^ S X,, (^,

i'^N i'^N

so that

X,^ S X^,^^2^N- llogN. D
1^5$n

It remains to do computations.

Proposition 10.3. — For some constant K û%^ ail u> K with u log N ̂  N, ̂  random
digraph Dy ^ ^ log 'N-expanding with probabilité ^ 1 — N"̂ .

Proo/'. — We explain why (10.1) is satisfied with probability ^ 1 — N"" .̂ Thé
case of (10.2) is similar and is left to thé reader. For simplicity, we set 6 = î/N"1 log N.

Gonsider a subset S o f { 1, . . ., N}, and set s == card S. Forj ej, we hâve

P(j i D(S)) = II - ̂ ÏiJ^y = (i _ 26)8 ̂  exp(- 26.)
N /

P(^'eD(S))^ 1 -exp{-2Qs).
and thus
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We observe that

0 < x ̂  1 => 1 — e-" ^ (1 — e~1) x.

Thus, if we assume

(10.3) .6^

we hâve

(10.4) P ( j eD(S) )^Y^

where we hâve set y == 2(1 — e~1) > 1.
Gonsider y' = (1 + y)/2. We daim that, under (10.3),

(10.5) P(card D(S) < y' ^N) ^ exp (- JeN).v K /
This follows from (10.4) and thé following général fact:

Lemma 10.4. — Consider independent events (A^^ with P(AJ == p, and cansider
S < 1. Then, thé probability that less than Sj&N events occur is at most exp(— N^/K(8)), where
K(8) dépends on S oniy.

Proof. — Set Y, = 1^., so that

Eexp(-XY,) =1-^(1 -e-^^ exp(-^(l - ̂ -À)).

Thus

E exp (- X S Y,) ^ exp(- N^(1 - ̂ -À)).
i ^N

By Ghebyshev inequality we get

P( S Y,^ Sj&N) ^ exp N^(À 8 - (1 - ^-À))
t^N

and thé resuit follows by taking À small enough so that X 8 — ( 1 — e~À) < 0. D
Thé number of subsets S of 1 of cardinal s is at most N8. For u ̂  K, we hâve

/ sQN\ 1 j6N\
N-exp^-^exp^-^

and 2 exp (- SQN} ̂  N-^.
s^i \ K /
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Thus, it follows that with probability ^ 1 — N"^, for ail subsets S of 1 such that
s == card S satisfies 6^ 1/2, we hâve card D(S) ^ y' 6NJ- Equivalently, we hâve

(10.6) u log N card S < N ^ card D(S) ^ y' u log N card S.

To complète thé proof that (10.1) hoids for a = ^ l o g N , it suffices to show that
card D(S)^ N/2 whenever a card S > N/2. This follows by applying (10.7) to a
subset S' of S for which card S' satisfies a card S' ^ N/2 and is as large as possible. D

We can now prove thé main resuit.

Theorem 10.5. — Dénote by M a médian ofL^. Then (for N ̂  3),

(10.7) ^ VîogN => P (| 1̂  - M ^ ^^g^2 '| < 2 exp(- ^2),
\ A/NloglogN/

(10.8) t ̂  VîogN => P (| L^ - M | ̂  ̂ ^g^ ̂  2 exp(- ^2).
\ VN log t2]

Proof. — Step 1. — Consider u^ N/(21ogN), a = u log N and thé smallest m
such that ^m ̂  N/2. Set v == 4muN-1 log N, and Y, ,. = min(X^,., v). Gonsider
thé r.v. L^ defined as L^ but using thé costs Y, y rather that X, ,. It follows from
Gorollary 10.2 that L^ = L^ whenever D^ is a-expanding, so that by Proposition 10.3

(10.9) P(L^ = 1^) ̂  1 - N-^.

^ 2. — When N-^ < 1/2, it follows from (10.9) that M is aiso a médian of L^.
It then follows from (8.1.1) (and scaling) that, for ail w > 0,

P(| L^ - M | ̂  w) ̂  2 exp ^
4Ny2

and, combining with (10.9), we get

( 2 \

P(| L^ - M | ̂  w) ̂  2 exp - ̂ y + N-^.

6'̂  3. — We choose thé parameters. We take w == 3 VN^. If ^2 ̂  log N, we
take M = K; if t2 ̂  log N, we take ^ = K^/log N.

Theorem 10.6 follows easily. D

Remark. — A simple computaùon using Theorem 10.6 shows that thé standard
déviation of L^ is not more than K(log Ny/A/N log log N.

22
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11. Géométrie Probabîlity

11.1. Irregularities of thé Poisson Point Process

In this Ghapter we will consider N points X^, ..., X^ that are independent
uniformiy distributed in [0, Ï.Y, where, except in Section 13.5, d == 2, and we will
study certain functionals L(Xi, .. ., X^) of this configuration X^, . . ., X^ (that is L
will dépend oniy on { X^, ..., X^} rather than on thé order in which thé points are
taken).

One would like to think that thé sample X^, . . ., X^ is rather uniform on [0, l]2;
say, that it meets every subsquare of side K/VN. This is not thé case ; there are empty
squares of side of order (N^logN)172 (an empty square will informally be called a
hole). More importantly, in exceptional situations there are larger empty squares.
Several of thé functionals we will study hâve thé property that, if one deletes or adds
a point to a finite set F, thé amount by which L(F) can vary dépends on whether F
has a " large î 5 hole close to x. Thereby thé first task is to study thé size and number
of holes.

It is not convenient to work with thé sample X^ .. . , X^. Thé difficulty is that
what happens, say, in thé left haïf of [0, l]2 (for example, if there is an excess of points
hère), affects what happens in thé right haïf (there must then be a déficit of points
there). Rather, one will work with a Poisson point process of constant intensity (JL. This
process générâtes a random subset n (= II J of [0, l]2 with thé following properties:

(11.1.1) If A and B are disjoint (Borel) subsets of [0, l]2, n n A and n n B
are independent.

(11.1.2) If A is a (Borel) subset of [0, l]2, thé r.v. card(II n A) is Poisson of
parameter (JL [ A [, where | A | dénotes thé area of A.

Let us recall that a r.v. Y is Poisson of parameter À if P(Y = k) = e~^ Tf/kl for
k ̂  0. Thus

E^) = S ^-À ̂  == exp(X(^ - 1)).
Jfc^o R\

For thé convenience of thé reader, we recall some simple facts.

Lemma 11.1.1. — If a r.v. Y satisfies

(11.1.3) E^) ^ exp(X(^ - 1))

for u ̂  0, then
1 t\

(11.1.4) P(Y^ t)^ exp -Hog- .
\ eh]
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Proof. — One can assume t^ À. Write

P(Y^ ̂ ^E^),

use ( 1 1 . 1 . 3 ) and take u = log(</X). D

Lemma 11 .1 .2 . — T/*^ r.y. Y ^ Poisson of parameter X, ^z

P(Y<^exp-l.

Proo/: — Write, for ail u > 0,

P (Y <^) < exp ̂  E.— = exp (^ + ̂ -" - 1))

and take u = 2. D
For A ^ 1, we dénote by ̂  thé family of thé 2^ " dyadic squares " of side 2" .

So thé vertices of thèse squares are of thé type (^ 2""^ ̂ 2~k), 0 ̂  t^ ^ ̂  2^, ^1,^2 e N.
For G e ̂ , we set

Zç = 1 if card(G n n) < ^2-2fc-^

Zç == 0 otherwise.

From (11.1.2) and Lemma 11.1.2, it follows that \ = P(Zç = 1) satisfies

(11.1.5) 8^ exp(- ^-2k-1).

Now, for u > 0,

(11.1.6) £^0= 1-S^+S^^
= 1 + W — 1) ^ exp 8^(^ - 1).

By (11.1.1) thé variables (Zç)ççç are independent; so that, by (11.1.6),

E^sce^zc ̂  ^p 2^ S^ ~ 1),

and by Lemma 11.1.1 we hâve

/ y \
[ S; Zç> y)^ exp - y l o g — , . .
ce^ \ rôw^/(11-1-7) p^z^o)<exP(-olo^)•

Observe that ^ = S Zç is simply thé number of squares of ^ that contain
ce^

no more than 1/8 ofthe expected number of points of II they should contain. Combining
(11.1.5) and (11.1.7) we see that

(11.1.8) VA, P(^ ^ 2^22fcexp(- ^2-2Â;-1)) ^ exp(~ 2^ 2^ exp(-~ pL2-2Â;-l)).
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We now fix a number t, and we study how thé number n^ can be controlled if
one ruies out an exceptional set of probability ^ ^"(2. We assume t^ 1, (A ^ 4.

We dénote by k^ thé largest integer such that

(11 .1 .9 ) e^^expÇ- ^jû-2^-1) ^ t\

Thus, Ai ^ 0 and for k > k^ we hâve

^^exp^ i^-2*-1) ^ ^.

We now observe that if a> 1, we hâve S exp(— 2^û) ^ 2 exp(— û), so that,
combining with (11.1.8), ^ °

(11.1.10) P(yk>k^ n^ 2^22Â;exp(-pl2-2&- l))^ 1 - 2e-^\

Lemma 11.1.3. — Ift^ V^t/K, we hâve

t2 1

^^-I^YV^'

Proo/: — It suffices to show that V\I[ ^ t2!^. Now, by (11.1.5) and (11.1.9),

V^^exp(-^2-^)^(,——)2.
\e z, i

Thus it suffices to show that 22*1 ̂  t^je\ i.e. 22(;l;l+l) ^ 4^^2. Thé function
f(x) =<?2;vexp(— (JI/2.A:) is increasing for A:>O. Thereby, since /(22(Â;l+l)) ^ ^ by
définition of ^i, it suffices to show that f(4:t-\/]^je'2) < t2, which is équivalent to
exp(— ^2/2) < l/16a for a = y^/^. D

We now apply (11.1.7), taking k = k^ — 1 and v = e2^ t2!^ We observe that,
by Lemma 11.1.3 and (11.1.5), we hâve, for t ̂  V^/K,

v 1
10g ——————————— ^ log , ^ L12"2*1,

e2^S^ 'VS^

so that
/ .92&i /2\

(11.1.11) P k _ ^ - — — ^ exp(-2^2).

We now go back to thé sample Xi, . . . , X^ and state our conclusions.

Proposition 1 1 . 1 . 4 . — Consider ^< VN/K. Dénote by hç thé largest integer for which
g2&o ̂  ^^ There exists an integer k-^ ̂  ko such that

(11.1.12) ^log^^-^Klog^
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and such that, with probability ^ 1 — Ke~f2, we hâve thé following properties, where m^ dénotes
thé number of squares G of ̂  satisfying

(11.1.13) card(Gn{Xi , . . . ,X^})^ N2-2"-6.

For each k^ ^ k ^ A^, w^ Aaz^

(11.1.14) m^ I^expÇ- N2-2fc-6)

and
92^1 ̂

(11.1.15) ^_^K-^.

Proç/; — 6fej& 1. — Consider thé process 11 == 11 ,̂ for [L = N/8. It follows from
(11.1.4) that with probability ^ 1 — exp(— N/K), we hâve card II ^ N. It is obvious
that, conditionally on thé event { card II ^ N }, thé number ^ of squares G of ^ for
which card (G n II) ^ N2-~2Â;~6 = pi/8 stochastically dominâtes thé number m^ Thus
it suffices to prove (11.1.13) to (11.1.15) for ^ rather than m^ since, as we consider
oniy ̂  VN/K, thé term exp(— N/K) is swallowed by thé term K exp(— t2).

Step 2. — We define k^ as in (11.1.9). We observe that, since 1 < N2"^^ 4
and t ̂  VN/K, we can assume t2 ̂  e2 2^° exp(— (JL2-2Â;0-1), so that ̂  ^ k^. By (11.1.9)
and thé définition of k-^ we hâve

„ o/,. , i v , t! ^ " iYrN
exp ^2-2(fcl+l)-l ̂  —,— ^ ——,

^22Jfci+2 j^

~^~^~T2

KN KN
so that ^2~2kl^ Kiog—^-, and thus 22(X•0-Â;1)^ Kiog-^-. By (11.1.9),

t t

, o 2& l^ <'222tl 2^» N / , KN\-1
exp(!.2-2^-1) > -^ > ^^_^, > ^ |K log -^-l

and this finishes thé proof of (11.1.12).

Step 3. — By (11.1.10), we hâve

(11.1.16) n^ 2^22Â;exp(-N2-2A;-4)

with probability ^ 1 — 2<?-2<2, for each k> k^. Now we observe that ^^ ^ +r This
is obvious, since, if G e ̂ , one of thé 4 squares of ̂  +1 contained in G must contain
at most card(II n G)/4 points. Therefore, by (11.1.16), we must hâve

^ ̂  8e2 2^ exp(- N2-2*-6)

for each k ^ k-^.
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Aiso, (11.1.11) shows that, with probability ^ 1 — ^-2<2, we hâve

„ . . . _, K.2 11(11.1.17) ^_^_^_.

Thé events described above occur simultaneousiy with probability ^ 1 — S^2^. a
Having studied when and how thé sample X^, . . . ,X^ can hâve a "déficit"

of points, we study how it can hâve excesses of points. While Proposition 11.1.4 is central
to this chapter, thé following resuit will be used oniy in Section 11.4.

Proposition 1 1 . 1 . 5 . — Consider thé integer ko of Proposition 1 1 . 1 . 4 , and consider k^ ̂  ko.
For k^ ̂  k ̂  ko consider a number ^ such that 2^ ̂  r^ 2^ ̂ /N. Then, with probability
^ 1 — K^"^, thé following occurs:

( 11 .1 .18 ) Given k^ ̂  k ̂  ko, and given a set S C ̂  with card S ̂  r^, then

card{ i ^ N ; X , e U { G : C e S } } ^ KN2-2fc r, + r, log ^22fe.
r^

Proo/. — For a subset U of [0, 1]2, we hâve

(11.1.19) P(card{^ N ; X , G U } ^ u) ̂  expf-^log——u——\.
\ e'N 1 U \j

This follows from (11.1.3) and (thé argument of) (11.1.6).
For a subset S of ^, dénote Ug thé union of thé éléments of S. It suffices to

consider thé sets S with card S == r^. For thèse we get from (11.1.19)

P(card{ i ̂  N; X, e U, } ̂  u) ^ exp (- u log u , ).
V e•L>2' W

/yk\
There are at most ^ exp(^ log^/r^)) choices for S. We take

Vfc/

^ = r^ log^lr^) + e3 N2-^ ̂ .

Thus we see that

[22k\ l u \ l22k\ 1 r V^
( rj exp (- " ̂  ,N2̂ 7J < ( J exp(- 2a) ^ (̂ ) exP(- f2)-

/ a; Y
Since —^ < 2-2ii; for 1 < A;< 2^, we see that (11.1,18) occurs with probability at

\ez, j
least 1 -Ke-^. D
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11.2. Thé Traveling Salesman Problem

Thé Traveling Salesman Problem (TSP) requires, given N points ^, .. . , x^ in
thé plane, to find thé shortest tour through thèse points; in other words, to minimize

N-l
II y ___ y | | 1 V | 1 y y II
II ^o(N) ^0(1) II I" ^ II ^a(i) ^od+l) II

i==l

over ail permutations a e S^. Thé charm of thé TSP is that it is thé archétype of an
untractable question. In this section, we dénote by L(F) thé length of thé shortest tour
through F, and we study thé r.v. L^ == L(X^, . . ., X^) where X^, . . ., X^ are inde-
pendent uniformiy distributed over [0, l]2.

While thé TSP is usually very hard, somewhat surprisingly, it turns out that as
far as thé concentration of L^ is concerned, it is thé easiest problem we will consider.
Thé reason for this is its good regularity properties. Thé oniy fact we will use about
thé TSP is as follows.

Lemma 1 1 . 2 . 1 . — Consider F C [0, l]2, G e ̂ , GC G, and assume that there is a
point ofï within distance 2-Â;+2 of G. Then

(11.2.1) L(F) ^ L(F u G) ^ L(F) + K^VcardG.

Proof. — An essential property of thé TSP is its monotonicity: L(F) < L(F u { x }),
as is seen by bypassing x in a tour through F u { x }. This implies thé left-hand side
inequality in (11.2.1). To prove thé right-hand side inequality, one first uses thé (well-
known, elementary) fact that there is a tour through G of length ^ K^"^ Vcard G,
and one connects this tour to a tour of F.

Theorem 11.2.2. — Assume that thé functional L satisfies thé regularity condition of
Lemma 1 1 . 2 . 1 . Then, if X^, . . ., X^ are independent uniformiy distributed over [0, l]2, for
each t ̂  0 thé r.v. L^ = L(Xi, ..., X^) satisfies P(| L^ — M | ̂  t) ̂  Ke-12^, where M
is a médian of L^.

Since thé TSP is thé simplest case we will consider, we will give thé shortest
proof we can, which is considerably simpler than thé original proof. Thé idea of this
proof is, however, a bit tricky; a more straightforward, but somewhat longer proof
will be given in Section 11.3.

Thé basic idea of thé whole chapter is as follows: consider 0. == [0, l]2, and thé
subset A(a) of^ that consists of thé N-tuplesj^, . . .,j^ for which L(j^, . . .5^) ^ af

When a = M is thé médian of L, Proposition 2.1.1 shows that, except for a set of
probability 2^-~<2, given Xi, . . . ,X^, we can find (j/i, ...îj^) EA(û) such that
cardj ̂  KJ VN, where J = { i ̂  N; X, =t= ̂  }. Thus we hâve a tour through { X,; i i ] }
of length^ M. Thé points X^, i ej, should be in average at distancer K/'\/N of thé
set { X^; i ^J }, so each of them can be inserted in thé tour by lengthening thé tour of at
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most K/VN, for a total lengthening ^ Kj. This would prove that P(L^ ̂  M + Kt) ̂  e~<2.
Thé problem with this argument is that thé points X,, i ej, could be precisely chosen
among those which are much further than K/VN from their closest neighbour. So we
hâve to find a way to show that this does not happen, or at least that thé effect of this
phenomenon does not afFect thé final resuit. Thé idea of this section is to give appropriate
weights a(X,) to each point X, (thé more isolated thé point is, thé higher its weight)
and then to use Theorem 4.1.1 to minimize thé influence of points with large weights.

For x e [0, l]2, throughout this chapter, Cj,{x) dénotes thé square G e ̂
containing x. Throughout this section, we will set F = { X^, . . ., X^ },

J^ == { G e ̂ ; card(F n G) ^ N2-2Â;-6},

and m^ = carder.
We fix ̂  VN/K, and we recall thé integers k^, k^ of Proposition 11.1.4.
For x e [0, l]2, we define

aM = SMp{2-k;k^k^k^ card({Xi, ..., X^} n C^x) }) ̂  N2-2fc-7}

when thé set on thé right is non-empty, and we set oL(x) = 2-A;0 otherwise.

Proposition 11.2.3. — With probabilité^ 1 — Kexp(— t2), we hâve

(11.2.2) S a^XJ^ K.
t ^ N

Proof. — It should be obvious that

S a 2 (X , )^K+ S 2-2<;card(F n u { C ; G e ^ } )
i^N fc i^fc^fco

^ K + S 2-2' X N2-2fc-6 cardj^.
k^^k^ko

By Proposition 11.1.4, we hâve

(11.2.3) m^ = cardJ^ K22fcexp(- N2-2fc-6)

with probability^ 1 — K^2, for ail k-^^ k^. k^. Thé resuit then follows from thé
elementary fact that S 2-2fcexp(- N2-2fc-6) ^ K/N. D

A^fco

Proposition 11.2.4. — In order to prove Theorem 11.2.2, it suffices to prove Proposi-
tion 11.2.5 below.

Proposition 11.2.5. — Consider X^ .. ., X^, and a subset] of{ 1, . . ., N}. Assume that

(11.2.4) S oc(X,)^ Kt,
i^J

^92fci ,2

(11.2.5) card^_^—^-.
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Then

(11.2.6) L(X,, . . . , X^) < L({ X,;. ej}) + K' t,

where K' dépends on thé constants in (11 .2 .4 ) and ( 1 1 . 2 . 5 ) oniy,

Proof of Proposition 11.2.4. — To prove Theorem 11.2.1, since Lj^ ^ K A/N, it
suffices to consider thé case t ̂  A/N/K. We fix such a t, and we consider a such that
P(L^^ a) ̂  e~^. We will prove that

(11.2.7) P(L^ a+Kt)^ Ke-12

and this clearly implies thé resuit. Thé condition P(L^ ^ a) ^ ^-(2 means P(A(a)) ^ e~1'2

(where P dénotes now thé product measure on tÏ^). If we combine Lemma 4.1.2 and
Theorem 4.1.1, we see that with probability ^ 1 — ^-<2, thé set { X^, . . ., X^ } has thé
property that we can find (j^, . . .,j^) e A(a) for which

S a(X,) ^ Kt / S a(X,)2,
éJ 'VI^Ni^J 'v î^N

where J == {i ̂  N; X, =j^}. Now, by Proposition 11.2.3 and Proposition 11.1.4,
we can moreover assume, with probability^ 1 —'K.e~t2, that S a(X^)2^ K and
that (11.2.5) holds. By Proposition 11.2.5, we than hâve ^N

L(Xi, ..., X^) ^ L({^; i ej}) +Kt^a+ Kt. n

Proof of Proposition 11.2.5. — We set F' == { X,; i ej}, G={X,;^J}. We
hâve to incorporate thé points of G into a tour through F' without lengthening too much
thé tour.

Step 1. — For 0 ̂  k < k^, we dénote by U^ thé collection of those G e ̂  that
saùsfy G n F' = 0; we set U^ = ̂ , and, for 0^ k^: Ao? we dénote by U^ thé
collecdon of those G e U^ that are not included in any G' e U^._i. Thus, if G e U^,
its distance to F' is ̂  2-fc+2.

By repeated applications of Lemma 11.2.1, we see that

L(X,, ...,X^L({X,;îeJ}) +K S S 2-^ Vcard(G n G).
O^k^ko CeVk

Thereby, it suffices to show that this double sum is ̂  K.t.

Step 2. — We consider three types of terms:

Type 1: card(G n G) ^ N2-2*-7.
In that case, since a(X,) ^ N"172, we hâve

(11.2.8) 2- fcVcard(GnC)< K card(G n G) < KS{a(XJ; X, e G n G}.
VN

23
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Type 2: k ̂  k^ card(G n G) < N2-2A;-7.
In that case, thé définition of a(X,) shows that a(XJ ^ 2"^ for X, e G. Thus

2- fcVcard(GnG)^ 2-^ card(G n G) ^ S{ a(X,); X, e G n G}.

We observe that thé total contribution of thé terms of Types 1 and 2 is < Kt by
(11.2.4), since for différent values of k, thé unions of thé sets in U^ are disjoint by
construction.

Type 3: k<k^ card(G n G) < N2-2*-7.

Step 3. — We control thé contribution of thé terms of Type 3. We dénote by V^
thé union of thé sets G e U^ for which card(G n G) < N2-2fc~'7. Denoting by [ V |
thé area of V, thé key observation is that, under (11.2.5) we hâve

1Ç/2
(11.2.9) | U V J < -

Â;<fci JN

Thé reason is simply that if G e ̂  satisfies card(G n G) < N2~2fc-7, when G e U^,
card(G n G) = card(F n G) < N2-2Â;-7, so that, among thé 22(Â•l-fc-l) squares G'
of ^_i that are contained in G, at least hait must satisfy card(G' n F) < N2-2(À;1-1)~6,
so belong to <^-i. Thereby thé area of U V^ can be at most twice thé area of thé
union of^_i. k<kl

There are 2^ | V^ | sets G of^ included in V^. Thus, by Gauchy-Schwarz, we hâve

S 2-JC Vcard(G n G) ^ 2-^ Vcard(G n VJ 2^ | V. |
ce^ccvk 1 '

== Vcard(G n V^) | V^ |.

Using Gauchy-Schwarz again, thé sum of thèse terms over k < k^ is at most
V| V | card(G U V) ^ VN | V | where V = U V^. This is less than Kf by (11.2.8). D

11.3. Thé Minimum Spanning Tree

A spanning tree of a finite subset F of R2 is a connected set that is a union of
segments (called edges) each of which joins two points of F. Its length is thé sum of thé
lengths of thèse segments. We dénote by L(F) thé length of thé shortest (== minimum)
spanning tree of F. An interesting différence with thé TSP is that it can happen that
L(F u { x }) < L(F). This is e.g. thé case if F consists ofthe three vertices ofan equilateral
triangle and x is its center.

Thé regularity property of L that we will use is as follows.

Lemma 11.3.1. — Consider G e ̂  (k^ 1) and a subset F of [0, 1]2. Assume that
each G' e ̂ _i that is within distance 2-A!+6 of G meets F. Consider a subset G of G. Then

(11.3.1) |L(F uG) -L(F)|^ E^VcardG.
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Proof. — Step 1. — Thé inequality

L(F u G) ^ L(F) + K^-^card G)172

is proved as in thé case of thé TSP. Thé problem is thé reverse inequality.
Gonsider a minimum spanning tree of F u G. We remove ail thé edges adjacent

to G. This breaks thé spanning tree in a number of pièces, and we hâve to add edges
to connect it again. We will prove two facts.

Fact 1. — There is at most 6 card G pièces;

Fact 2. — Each of thé pièces contains a point within distance Kj^ of G.
Once this is known, we simply take a point in each of thèse pièces within

distance K2~k of G. We build a tour oflength^ K^'^card G)172 through thèse points
to reconnect thé pièces.

Step 2. Proof of Fact 1. — Consider three points x, a, b of F u G, such that thé
segments [x, a], [x, b] both belong to a minimum spanning tree of F u G. Then we
must hâve 1 1 û — b \\^- \\ x — a\\ for otherwise we could remove thé edge [x, d\ and
replace it by [a, b] to get a shorter spanning tree. Similarly, we hâve \\a — b [ [ ^ \\x — b \\.
Thus thé angle between thé Unes xa, xb is at least Tr/3. Thereby thé spanning tree must
contain at most 6 edges adjacent to each point. Thus removing k points and thé edges
adjacent créâtes at most 6k connected components.

Step 3. Proof of Fact 2. — Gonsider a finite set H of [0, l]2. Gonsider a, b in H, and
assume that [a, b] belongs to a minimum spanning tree of H. We show that thé " lens î?

(11.3.2) ^,={x;\\a-x\\< \\a-b\\,\\b-x\\< \\ a - b \\}

does not meet H. Indeed if we remove [a, b] from thé minimum spanning tree, we
split H into thé component H^ containing a and thé component H^ containing b. If
there existed c e L^ ^ n H^, we could remove thé edge [û, b] from thé minimum
spanning tree, and replace it by [c, é] to get a shorter spanning tree. Similarly,
L^nH,=0.

We apply thé above resuit to H == F u G. An edge [a, b] from a minimal spanning
tree of H is such that 'L^b does not contain a square G' in ^^-i within distance g"^5

of G, because it is assumed that ail such squares meet F, hence H. Thus, if a e G, then,
clearly, || b — a \\ ̂  E .̂ D

Thé main resuit of this section is as follows.

Theorem 11.3.2. — Assume that thé functional L satisfies thé regularity condition of
Lemma 1 1 . 3 . 1 . Then, ifX^, .. ., X^ are independent uniformiy distributed over [0, l]2, thé r.v.
L^ = L(Xi, . . ., X^) satisfies

V^O, P(|L^-M|^)< Ke-^

where M is a médian ofii^.
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One central idea ofthe approach will be to condition with respect to X^, . . ., X^,
where m === [N/2]. Thé size of thé holes of { X^, .. .5 X^} are then controlled by thé
sizes of thé holes o f { X i , .. ., X^ }, independently of X^_^, . . ., X^. Thé main part
ofthe proof of Theorem 11.3.2 is to obtain thé following statement. We set Q == [0, l]2.

N
Proposition 11.3.3. — Consider an integer n with — — n < 1. We write t^ == tP,

ûg == Q^ ~ n; we dénote by P^ Pg theproduct measures on Q.^, ûg respectively. Given 0 < t < VN/K,
there exists a subset H( ofO.^ such that Pi(H() ^ K^ ^-<2, and that, whenever (^3 .. ., x^) ^ H^
thé r.u.

L' == L'(X^^i3 ..., X^) == L^(A:i, ..., ̂ , X^i, ..., X^)

defined on Q.^ has thé following property

(11.3.3) fff^^ a) ̂  ̂ ^ ^(L' ̂ b)^ e-^, then b - a^ KJ.

First, we prove that Proposition 11.3.3 implies Theorem 11.3.2. To prove that
theorem, it suffices to prove thé following statement:

if P(L^ ̂  a) ^ 2^-t2/2, P(L^ ^ b) ̂  2^-t2/2, then b - a < Kt.

Gonsider thé set A = { L^ ̂  a} in û^. We will write Q^ == Qi X Qg (^i == ^^î
£22 ̂ ^"^ and P = = P i ® P 2 . Thus, given 0)3 eûi, we define L' on ûg by
L^cog) === L^CCÙI? ^2)- For coi eûi, we write

A(tôi) =={tô2 eQ2; (^l^ ^2) eA}.

Since P(A) > 2^<2/2, thé set

G^œle^P^A^))^-^}

satisfies Pi(Gi) ^ e-^. Consider G^ = Ci\H<, so that P^Cg) ^ ^-(2/2 - K, e-12.
When œi e Gg, we hâve PgÇL' ^ a) ^ ^"<2/2, so that by (11.3.3) we hâve

P^L'^ a+ Kï) ̂  1 -^-<2.

By Fubini theorem, we get

(11.3.4) P(Wi) ^ (1 - e-'2) P(G2 X 02).

where Wi = { L^ < a + Kt} n (G^ X 02)-
We observe that (11.3.3) implies

?2(L' ^ b) ̂  e-12 => PgÇL' > è - KJ) ^ 1 - ̂ -(2.

Thus, we can apply thé same argument as above to show that

(11.3.5) P(W^) ^ (1 - e-12} P(Di x D,),
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where W^ == { ̂  > b - Kî} n (0, x D,) and P,(D,) > e-^ - K, e-^. For t large
enough,

P((Û2 X û,)\Wi) + P((Q, x D,)\W,) < P(G, x D,)

so that Wi n Wg + 0. n
We now start thé proof of Proposition 11.3.3. Consider A-i, . . . , ;¥„ e£î == [0 112

and set F' = { A - i , .. ., ̂ }. Dénote by < thé number of squares of ^ that do not
meet F'. We consider thé integers k^, ky of Proposition 11.1.4 (defined using n rather
than N). We define H, as thé set ofw-tuples (^, ..., x^) for which

(11.3.6) For each k, k ^ ^ k ^ ko, we hâve < < K^ exp(- n2~2k-6),
V<)Ski f2

(11.3.7) <^K2^.

Thereby, Pi(H,) > 1 — Kc-'2 by Proposition 11 .1 .4 .
We now fix (^, . .., ̂ ) such that (11.3.6), (11.3.7) hold and we start thé proof

of (11.3.3). For x e [0, l]2, we dénote by £{x) thé smallest integer / such that there is
G e %/, G within distance 2 - /+4 of G/ (x), with thé property that F' n G = 0. Thus
by définition, we observe

(11.3.8) if/ = f(x), any square G' e ̂ _, that is within distance 2-^+6 of C({x)
meets F'.

We aiso observe that ifjy e C^(x), then l^) = t{x), so that V/ = { x; t(x) = t }
is a union of squares of %/.

Lemma 11.3.4. — a) We hâve, for each ̂  <S h < ky,

(11.3.9) IVJ^KexpÇ-tô-2"-6).

, , , ,. -, . KJ2 Kf2
b) U V/ < — < —.

/<&i n N

Proo/. — Let us dénote by U/ thé union ofthe éléments of ̂  that do not meet F',
and set U/ = U/\^U^U^. It suffices to observe that if x eV/, then G/(,) is within

distance 2-/+'t of U/, so that | VJ ^ K | U/1, and thé resuit follows from (11 36 )
(11.3.7). D ' '

We consider thé function g{x) = Z-1'""*1' /(a">. By (11.1.12), we hâve

(11-8.10) ||.||^2-.<^(log^"^.

By (11.3.9) and an obvious computation, we hâve

(11.3.11) 1)^11^ K/V«.
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To prove (11.3.3), we hâve to prove that if a, b are such that Pa(L' ̂  a) ^ ^-(2,
PgÇL' ̂  b) ^ e-12, then b — a^ Kt. We now appeal to Gorollary 2.4.5 with u = Kj,
for thé funcdon A(^) = ̂ ) +,§0). From (11.3.10), (11.3.11), we see that we
can findj^i, . . .,j^, ̂ i, . . ., z^ such that

(11.3.12) L'O^,, .. .,^) ^ a, L'(^, ..., ^) ^ é,

and

(11.3.13) 2 (^)+^))^K^,
a £~ Tiej

where J = { % + 1 ^ i ̂  N;j^ + z, }.
Gonsider thé set F that consists of thé points x^y ..., ̂ , as well as thé points y^

i ^J. We will prove:

(11.3.14) | L'(^^, .. .,^) - L(F)| < KJ.

Thé same argument will show that

|L /(^l , . . .^N)-L(F) |^EJ

and this will finish thé proof.
First we observe from (11.3.1) that if F^ 3 F, and ïf£{x) ^ k^, then

|L (F ,u{^}) -L(F) [^K^) .

Thereby, it follows from (11.3.13) that we can add to F ail thé points y^ i ej, for
which ^(j^) ^ Ai, without changing thé value of^by more than K.t. Dénote by G thé
set ofthe other points j^. We observe that G is contained in U V^. Gonsider G e ̂ ,

t<1c^

CC Vf. By (11.3.1), we hâve, for any set F^ containing F, that

[ L(Fi u (G n G)) - L(Fi) | ̂  K2-^(card G n G)172.

Therefore it suffices to show that

S 2-1 S (card G n G)172 ̂  Kt.
£<ki CCY/

But this is shown as in Step 3 of thé proof of Proposition 11.2.5. D

11.4. Gabriel Graph and Voronoi Polygons

Given a subset F of [0, l]2, its Gabriel graph is thé set of edges [a, b] such that
thé closure L^ ^ of thé set L^ ^ of (11.3.2) meets F oniy in a and b. When thé set F has
thé property that it does not contain points x, y, z such that || x —y || == [ [ x — z [ [ ,
(a property that is satisfied with probability one for random sets) this is équivalent to
saying that F contains thé edge [a, b] if and oniy if L^ ^ does not meet F. In that case,
thé Gabriel graph contains thé minimum spanning tree, as is shown in thé course of
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thé proofofLemma 11.3.1. As in thé case of thé MST, at most 6 edges are adjacent
to each point of F.

We dénote by L(F) thé length of thé Gabriel graph. An interesting feature of
this functional is that, in certain spécial configurations, adding a single point créâtes
a big decrease of L(F). A typical such configuration consists of thé points (Q.kfn),
(1, kfn), 0 ̂  k ^ 72. Thé Gabriel graph contains ail thé edges between (0, kfn) and (1, kfn).
AU thèse edges will disappear when one adds thé middie of thé unit square to F. Thé
following lemma shows that thé previous example is close to be thé worst possible
behavior.

Lemma 11.4.1. — Consider G e ̂ , F a subset of [0, l]2, and assume:

(11.4.1) every élément G' of ^_i that is within distance of î^^^ of G meets F.

Then, if G C G, we hâve

(11.4.2) |L(F) -L(F uG)|< K^card^F u G) nBtG.K^-')},

where B(C, r) dénotes thé set of points within distance r of G.

Comment. — Thé différence with Lemma 11.3.1 is that thé bound now dépends
upon F u G rather than G alone.

Proof. — As aiready seen, a point is adjacent to at most 6 edges, and, as in thé
case of thé MST, edges adjacent to G hâve a length^ IC?^. Thus

L(F u G) ^ L(F) + K2-" card G.

To prove thé reverse inequality, we observe that thé edges [û, b] that belong to
thé Gabriel graph of F but not to thé Gabriel graph of F u G are exactiy thèse for
which L^ ̂ \{a, b} meets G but not F. Then || a — b \\ ̂  K2~k, for otherwise there
would exist G' e ̂ -i within distance <2~k+s of G that would not meet F. This implies,
since L^ meets G, that û, b e B(G, K^"^). In thé Gabriel graph of F, there are at most
6-card(F n B(C, K2~k)) edges adjacent to points in B(C, KZ"^), so at most that many
edges can be removed. D

Another natural example of funcdonal that satisfies Lemma 11.4.1 is thé total
length of thé Voronoi polygons. If F is a subset of [0, l]2, and A; e F, let us define thé
Voronoi polygon V, ofx as thé set ofall points^ of [0, l]2 for which d{x,y) === d[y, F\{^}).
(This name is a bit abusive since when x is close to thé boundary of [0, l]2 this set is
not a polygon.) Dénote by L(F) thé sum of thé lengths of thé Voronoi polygons of ail
points ofF. We sketch a proofthat L(F) satisfies thé condition of Lemma 11.4.1. First,
we observe that if y e Vg, there is no point of F within distance less than [ [ x —y || oîy.
Thus, if x eG, thé Voronoi polygon of x (with respect to F u G) is under (11.4.1)
entirely contained in B{x, K^), so is of length^ K^"^ Thus

L(F u G) ^ L(F) + K^ card G.
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To prove thé reverse inequality, consider a point a belonging to thé Voronoi polygon
of x e F, with respect to F, but not with respect to F u G. Then there is no point of F
within distance less than [ [ x — a \\ ofû, but there is at least a point ofG. Under (11.4.1)
we hâve a, x eB(C, IC?"^); but thé total length of thé part of thé Voronoi polygons
of F contained in B(G, K2~1C) is easily seen to be < K^ card(F n B(G, KS-^).

Theorem 11 .4 .2 . — Consider a functional that satisfies thé condition of Lemma 1 1 . 4 . 1 .
Set, as usual, L == L^ = L(X^, .. ., X^), and consider thé médian M of L^. Then

(11.4.3) V t > 0, P( | L - M | ̂  t) < K exp i- ]- min [t2, [t VN)2^)).
\ K /

In particular, thé tails of L^ are subgaussian for values of t up to N174. We now
sketch, in thé case of thé Gabriel graph, why, within logarithmic terms, thé exponent
in (11.4.3) is correct for t^ N174. We give an informai argument, that could be made
rigorous. For simplicity, let us argue about L(II), where II is a Poisson point process
of intensity N. Gonsider u ̂  A/N, and let a = M/VN ^ 1. Dénote by k thé cardinality
of II n [0, a]2. When k is even, conditionally on k, with probability^ (l/K^4)^ thé
k points of II n [0, a]2 are such that each ofthe dises ofcenter (-/], îlafK)^ for T] e{0, a},
1 ̂  l ^ k/2, and of radius af4k2 contains exactiy one of thèse points. Then thé Gabriel
graph of II contains thé edge from thé point in thé dise of center (0, îta\K} to thé point
in thé dise of center (û, 2^a/k), for a total length of order ka. Now with overwhelming
probability k is of order u2; so, with probability ^ (1/K^8)"2 we get thé exceptional
configuration described above that créâtes an abnormal length of order t == u2 a = ̂ /VN.
Now ^^VN)173, and(ià'r ̂ exp (~ ^('VN)2/3 log 'VN)-
So this later quantity is a lower bound on thé probability that we get an abnormal length
of order t that will hâve L exceed thé médian by t.

To prove Theorem 11.4.2, we observe that, since | L^ | ^ KN by (11.4.2), it
suffices to prove ( 11.4.3) for t < N/K. We follow thé scheme of Section 11.3. It is enough
to modify Proposition 11.3.3 so that, when ^< VN/K, (11.3.3) can be replaced by

/ ^3 \
(11.4.4) IfP^L^ a) ̂  2^2, P2(L' ^ b) ^ îe-12, then b - a^ K [ t + —= .

\ VN/
Once this is known, as in Section 11.3, we prove that

/ ^ \
P(L^ a) ̂  2e-<2/2, P(L ^ è) ^ 2e--t2/2 imply b - a^ K [ t + —= .

\ VN/

Theorem 11.4.2 follows since, ifwe set u = t + ^/A/N, for u ̂  N/K we hâve t ̂  VN/K;
moreover, t2 ̂  K-1 min(^2, {u VN)2^).
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Thé construction ofH, and thé proofof (11.4.4) will parallel thé proofof Propo-
sition 11.3.3. In order to avoid répétition, we will not reproduce thé entire argument
but simply explain thé necessary modifications.

Thé construction of H( is modified as follows. We require that for ^ — 1 < k ^ k
and each subset S of ^, with card S < r^, one has

(11.4.5) card{^ n; x, e u { 0 ; G eS}}< E^-2^, + ^log^,
h

where we set r^_i == Z2^ t^n and, for k ̂  k^

Tfc == K/2^-3^0.

We observe that, using (11.1.12),
K"/ f2

2-^ ̂  ̂  KJ22fcl-3AO ^ —= 22fcl-2Â•o ̂  -
VN ^ 5

provided K is large enough. It then follows from Proposition 11.1.5 that imposing
thèse extra conditions does not change thé fact that Pi(H^) ^ 1 — K^2.

We change thé définition of thé function g<^x) to

a(v} ==__/9^o—max(fci,^(a;))\4
6 V / 9A;o v i •

Thus

("-<.°) ||,||.^(2..-).^(log^'<?

and, obviousiy, (11.3.11) still holds.
Suppose now that we are given a, h with

P^L^a)^ 2e-(2, P,(L'^ è) ^ 2^2.

Using Proposition 11.1.5 again, we see that we can find a set A C { L' < a},
PgÇA) ^ ^-(2, such that whenever (^+1, . . .,j^) eA, we hâve

(11.4.7) for each ̂  — 1 ̂  k < Ào and each subset S of ̂  such that card S < ^,
one has

02fc
c a r d { % + 1^ i^ N;^, e u { C ; G eS}}< KJ^-2^ +^ log——.

^

We then consider, using Proposition 11.1.5 again, a subset B of { L' ^ é } with
Pa(B) ^ é?-^2, such that when (^+1, . . ., ^) e B, thé property similar to (11.4.7) holds.

WenowappealtoCorollary2.4.5,tofind(^^,, ...,^) G A, (^^, ...,^) eB
such that i ! J = = { i ' , n + l ^ i ^ N,^, + -2',}, then

(11.4.8) S^(^) +^)<K^.
ieJ

24
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We dénote by F thé collection of points that consists of thé points (^i)^^ together
with thé points j^, i ^J. We dénote by G thé collection of points j^, i ej. We hâve to
show that

(11.4.9) | L(F u G) - L(F)| ̂  K{t + ̂ /y^)-

Let us dénote by S^ thé collection of squares G e ̂  that contain at least one
pointa, i ej, t[y,) == />. It follows from (11.4.1) that, if F C Fi C F u G, and if G e S^,
we hâve

| L(Fi u (G n G)) - L(Fi)| ̂  K2-^ card{(F u G) n B(C, K2-Q}.

Thereby, adding to F^ ail thé points of U^ n G, where Vf == u { G; G e S^}, we
cannot change thé value of L by more than

(11.4.10) 2- /card{(F u G) n B(U^ K2-Q}.

Since, for ^(j^) == £ ^ ^5 we hâve by définition

g^^^-^

and since S 5(^1) ^ KJ by (11.4.8), we see that
ieJ

cardS^ KJ2^-8fco.

Now, B(U^ K2~^) is contained in a union of< K card S/ squares G of ^.
Thereby, it follows from (11.4.5), (11.4.7) that thé quantity (11.4.10) is bounded by

î-1 K (m-21 rt + r^ log '2-| ̂  KJ2^-'°,
\ rt 1

and thèse quantities hâve a sum < K^.
Now we hâve to control thé influence of thé points j^ for which t[y^) < k-^.
We dénote by V^ thé set {^{x) == l}. We recall that by Lemma 11.3.4 we hâve

| U V/1 ̂  K^/N. Since V^ is union of squares of ^, we hâve in particular that
f<k^

Vf == 0 for t ̂  ^3, where 2"^ ^ KJ/VN. Adding to a set F^ such that F C Fi C F u G,
thé points of G n V^ can, by (11.4.1), change thé value of L by at most

2-{ card((F u G) n B(V^, K2-Q).

Now we observe that |B(V^,K2~Q|^ K [ V^ |. Thus thé total contribution of thé
points of G n Vf is bounded by

( 11 .4 .11 ) 2-^card((F u G) n V),
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where | V | < K^/N and V is a union of squares of ^_,. By (11.4.7), thé summation
of ail thèse quantifies over t ^ k^ is at most

K2-^ card((F u G) n V) < ̂  (N2-. ̂ _, + ̂  log ̂ )
\ k - i — 1 /

But, using thé définition of^i, thé last term is easily seen to be bounded by a constant. D

11.5. Simple matching

In this section (for reasons that will become apparent later) we work in [0, 1]^
for d > 2.

A matching of a set F is a décomposition of F as a union of disjoint pairs of points
(points of thé same pair are matched) ; we make thé convention that when card F is
odd, there is exactiy one point that is unmatched (does not belong to any pair). A
minimum matching is a matching that minimizes thé sum of thé distances of pairs of
matched points. We dénote by L(F) thé length of a minimum matching of F. For
simplicity, thé point to which a given point is matched is called its partner.

Our interest in that funcdonal stems from thé fact that it apparently does not
hâve good regularity properties. It is obvious that

L ( F u { ^ } ) - L ( F u O / } ) ^ \\x-y\\,

but in certain configurations this cannot be improved upon. Thé problem is that if
one tries to match y to a point différent from thé partner of x, thé partner of x has to
find a new partner, etc., and there is no apparent way to control this chain reaction.

While thé behavior of F is not good as far as thé change of one point of F is
concerned, thé situation is somewhat better when a significant number of points of F
are changed. We set L'(F) == sup{L(F'); F'C F}.

Lemma 1 1 . 5 . 1 . — One has \ L(F) - L(G)| ̂  L'(F AG) + Vd.

Proof. — Consider U == F\G, V = G\F. Consider a minimal matching J( of F,
and, for a eF, dénote its partner by 6(û). Set

H = = { û e F \ U ; 6 ( û ) eU}.

When we remove U from F, thé points ofH lose their partners. Set H' = { Q{a) $ a e H }.
Thus H' C U. To find partners for thé points o f V u H w e consider a minimum matching
of V U H'. This matching induces a matching J i ' of V u H, using thé bijecdon 6 of H
and H'. Thé union of thé trace ofJÏ on F\(U u H) and Jl1 is almost a matching of G,
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although it could happen that there remains an unmatched point in V u H and one
in F\(U U H). Thé two points are then matched together (crearing thé term Va).
Thé matching we hâve constructed witnesses that

L(G) ^ L(F) + L(V u H') + Vd

^ L(F) + L'(V u U) + Vd.

To see it, it suffices to use thé triangle inequality, and to observe that thé edges [a, 6(0)]
for a e U' do disappear from ̂  when U is removed. D

Hère is a simple observation.

Lemma 11.5.2. — Consider subsets F^, ..., F^ of [0, 1]^. Then

L'( U FJ^ S L'(F,) +Kpl'-l/d

i^p i s$ p

where, as in thé rest of this section^ K dénotes a constant that dépends on d oniy.

Proof. — It suffices to prove this for L rather than L'. Thé point is that if one
considers an optimal matching of each F,, their union fails to be a matching of U F^

i^s V

oniy because there could remain an unmatched point in each F^ while we are permitted
at most a single unmatched point. Thus, it suffices to match ail but at most one of thèse
points, using for example a shortest tour through them, and matching consécutive points
on thé tour. D

It seems an interesting question whether when d = 2 thé inequality of
Theorem 11.2.3 would hold, at least for smaller values of t. Possibly easier is thé
question whether thé variance of L^ is bounded. Thé best results in that direction
belong to Rhee. She proved that if d == 2, Var L^ K(logN)2 [R3], while if d^ 3,
VarL^^ KN1"1^ [R2]. Thé arguments for thèse results are différent. Our methods
do not allow to improve on thé resuit for d = 2, but allow significant improvement
when d^ 3 (and this is why we consider this case in this section). Although this has

not been checked, it seems to be an exercise to show that VarL^^ ^N1"2^ usingi\.
e.g., thé method of [RI]. What we will prove is that Var L^ (log N^ N1-2^. Thé
proofgoes by first proving a Poissonized version ofthe resuit, and then using " dePoisso-
nization 5?. Thé second part of thé argument is standard (see e.g. [RI]) and will not
be given hère.

Thé Poissonized version of thé problem is thé study of thé r.v. L^ == L(II^),
where 11̂  is thé random subset of [0, 1]^ that is generated by a Poisson point process
of constant intensity À. We consider thé space ti ofall finite subsets of [0, 1] ,̂ and on û,
we consider thé probability P^ induced by 11̂ . On Q2, we consider thé function

(11.5.1) /(F, G) =L'(FAG).
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For a subset B of û, we set

(11.5.2) /(F, B) = jnf^ /(F, G) = ̂  L'(F AG).

1 1
We set y = g - ̂ .

Theorem 11.5.3. — For ail \ S» 3 and ail subsets B of Q,, we hâve

•WB) ,_ ._ , .L-o^^p^
Ifwe combine dus resuit with Lemma 11.5.1 (and proceed as usual) we see that

if M^ dénotes a médian of L^, we hâve

1
KiogT^ y^P Tïï^^l^-^l ^K

which certainly implies thé previous daim about thé variance of L^. To prove
Theorem 11.5.3, we will prove thé following statement, whose form is adapted to proof
by induction.

Proposition 11.5 .4 . — There exists numbers Kg, a> 1 depending on d oniy, such that
for ail q > 0 we hâve, for ail \ 1 ^ À ̂  2^ and ail Borel subsets B of 0.,

^P-^^tFX———KÏ^ À v "P^B)

To see that this statement implies Theorem 11.5.3, we take thé smallest q such
that X ̂  20''7, so that a8 is of order log À, and K^ of order (log À)^

Thé proof of Proposition 11.5.4 is by induction over q. For thé case q = 1, one
uses thé brutal bound

/(F, G) ^ K(card F + card G)

and thé exponential integrability of Poisson random variables. Thé easy détails are
left to thé reader.

We will détermine, in due time, suitable values for Kg and a and we now start
thé proof of thé induction step from q to q + 1. Gonsider À such that 2°^ À ^ 2a<7+l.
Gonsider thé smallest integer n such that À' = À/^ ^ 2^. (Thus, we can apply thé
induction hypothesis to À'.) By définition of n, we hâve À/(^ — \Y ^ 2^, so that, since
À ^ 20t9+\ we hâve (n - 1)̂  y06-1^', and thus

(11.5.3) n^ ^ ^(a-l)ag^ 2d^(a-l)a^
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Aiso,

(11-5-4' -^M^-Cy1)''-^--
Gonsider a parddon of [0, l^ in ^ congruent cubes (C,),^. From

Lemma 11.5.2, we observe that

(11.5.5) L'(FAG)^ S L'((FAG) nU)+K^-1.
i^ n^

We set
^(F,G)=L' ( (FAG)nG,) .

Thus we hâve, from (11.5.5)

L'(FAG)< S ^(F,G) +Knd-l.
i^n^

If we set

g(F, G) = inf S ^(F, G),
GEB t^nrf

we get by (11.5.2) that

(11.5.6) /(F, B) ^ ̂ (F, B) +K^-1.

Thé crucial point is that (û, P^) is naturally isomorphic to thé product of ^ copies
of (Q, P^,). To see this, let us dénote by R, an affine map from G, to [0, 1]̂  for i^ n^.
Then thé isomorphism simply associâtes (R,(F n C,))^</ to F. We observe that

^(F, G) == ̂  L^R^F n CJ AR,(G n G,))

so that, under this isomorphism, each fonction j^ is distributed like thé function V on ii2

(provided with P^®P^), where ^(F, G) = -Î-L^FAG). Moreover, with thé notation

of Définition 2.4.1, we have^. = g. By induction hypothesis, and taking thé scaling
factor n into account, we hâve for each Borel set B C t2,

f exp(2A(F,B))^(F)^-———r\^\-5 -/y ^- -À '^y ^ p ,T»\ ?
Jo FX/(•B)

where A = ah', a = ?z(2K^ À^)-1. It then follows from Theorem 2.5.1 and thé définition
of g that

V ̂  1, f exp(^(F, B)) âTP,(F) < _ — — exp(3^ /2)
Jo ^x(b)
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for each Borel set BC Q. From (11.5.6), it follows that

f exp«(F, B)) ^P,(F) < _—— exp(3»•i t2 + K^-1 at).
Jn ^(B)

We see that if

(11.5.7) B^-^ïSK,

then, taking t == n-'^/2/K, we get

(11.5.8) f exp(——,/(F,B)Lp,(F)<———.
^d/2JV 5 /; ^ / Px(B)'

Now,
û 1 1

K^2 ~~ 2KKg À'Y ^/2 -1 2KKg XY

since d-^ = dfî — \. Thus, provided Ko = 2K, (11.5.8) is exactiy what we need to
complète thé induction.

It remains to check that (11.5.7) hoids, but by (11 .5 .3 ) , (11.5.4),

rf ^ y^-^^\

ain^ X'-^ 2^2-^,

so that (11.5.7) hoids for a = 1 + 2y. D

12. Thé free energy in thé Sherrington-Kirpatrick model at high température

Consider a séquence (sJ^N wlt^ ^ ̂  — l? 1 }• Eacll ^ represents thé two possible
values of thé spin of particule i. Gonsider numbers (A^)i^<,^N t^lat represent thé inter-
action between spins. Thé energy of a given configuration is given by S h^ s, s..

l^i<3^N

Consider a parameter (3 > 0 (that plays thé rôle of thé inverse of thé température).
Thé so-called " parti don function 5Î is given by

(12.1) Z^ == ZA) == 2^ S exp ( p S A, e, el
(e , )e{- l , l}N \VN l^K^N /

Thé rôle of thé factor VN is for normalization purposes that will become apparent later.
If we think of s^ as being a Bernoulli r.v., it is natural to write

(12.3) Z^^expC- S À.,S.£,).
\VN !^«.>'^N /
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In thé model we study, thé numbers h^ are random, and thé séquence (A,,)i^<,.<^
is i.i.d. We assume Eh^ = EA^. = 0, and we assume for normalization purposes that
EA^. == 1. We will aiso assume that E exp a [ h^ \ < oo for a small enough. Then EZ^
is well-defined for N large enough. We are interested in thé quantity N~1 E log Z^
(mean free energy per site), whose study relies ultimately on thé study of Z^. It is proved
in [A-L-R], and in [G-N] in thé case where h^ is gaussian, that for (î < 1 thé random
variable log Z^ — (32 N/4 converges in law to a (non-standard) normal r.v. Equally
interesting, but of a rather différent nature is thé research of tail estimâtes for
log Z^ — (32 N/4 that are valid for ail N.

Theorem 12.1. — There exists a universal constant K with thé following property. Assume
that E exp ± ̂ , < 2. Then, for 0 < t < N/K, (3 < 1,

(12.3) P ^g ̂  -
p2N
~4~ ^ K ^ + /log-^^VNL^-^.

V 'v l — P / /

In particular

(12.4) K / 2 1 _ , p2 K
^ElogZ,-1-^.v^^T^'N 4 N

Comments. — 1) Thé reader might like to start with thé significantly simpler gaussian
case. In that case, thé key déviation inequality (12.5) below can be replaced by

V t > 0, P( | log Z^ - M^ | ̂  /) ^ 2 exp (-
. M 0 ^ ^ , - -. - —————1^ N- 1^

as a direct conséquence of (1.6), (1.15). 2) In thé condition E exp db h^ ^ 2, thé
number 2 can be replaced by any other (with a différent constant K). It seems reasonable
to conjecture that (12.3) is not sharp in thé gaussian case, and that, for a given p < 1,

lim sup P
<-î-oo N

^g ̂  -

^N
r̂ ^ t\ ==0.

It should however be pointed out that (12.3) does not hold when thé factor \/N
is removed from (12.3). Indeed it would follow otherwise that for each n,
sup E(4Z^/(32 Ny < oo, and it is pointed out in [A-L-R], p. 6, that this is not thé case.

N

Thé key to Theorem 12.1 will be thé following déviation inequality

(12.5) 0< « 4VN(N - 1) => P(|logZ^ - MJ ^ t) ^ 2 exp LT————|
\ô^ ^1M \.)f

where M^ dénotes a médian of log Z^. We first show how to deduce this from Corol-
lary 2.4.4. Thé second crucial step will then be to relate M^ and (32 N/4 (» logEZj^).
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To prove (12.5), we observe that

(12.6) IlogZ^-logZ^I^-'L s 1^-^|
VN K«»<SN

as follows from thé fact that

1 S a.,S(e,|< S |a,,|.
1<«.>-^N lsS*<i<N

We now view log Z,, as a function on RN(N-i)/2, ̂ ç ̂ ^ ^ ^pply CoroUary 2.4.4

in thé case Q. == R, h(x,y) == ̂  | x -y |, y. thé law of^. We note that (2.4.12) hoids,
since

ff i / r i \2
exp ,; | x -y | dy.(x) dy.{y) ̂  exp - | x \ dy.{x)

JJw * \J 4 /

<(Eexp|A., |)1/2

< (E(exp A., + exp - h^Y'2 < 2.
Consider now v and thé set A ={logZ^< »}. Gombining (12.6) and (2.4.13) (used
for N(N - 1)/2 rather than N) we see that, for u > v, we hâve

u—v^ 4p\ /N(N— 1)

- P({log Z,> »}) P({log Z,< .}) < exp (- ————)-).
\ -^•<P ^•LN — l ) /

Taking successively u == My and o = My, (12.5) foiïows as usual.
In order to relate M^ and (î2 N/4, thé key step is thé elementary esdmates

(12.7) ^exp^.EZ^Kexp^,

(12.8) Ey^-^(EZ^.

Thèse will be proved later. First, we conclude thé main argument. Consider thé set
A={z^^EZ^. Then

EZ^ = E(Z^ Ï ^ ) + E(Z^ 1^)

< J EZ^ + E(Z§,)1/2 P(A)1/2,

so that

PfA^ > 1 (EZN)2
^W ^ 7 T.r-.o4 EZj,

(a fact going back to Paley and Zigmund). Gombining with (12.8), we get

P(A) > (1 — P^/K. To get a lower bound for M^, we can assume My < log^EZ^-

25
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We set t == log (. EZ^) — M^. Since log Z^ ^ 0, we hâve M^ ^ 0 and hence

^ K+N/4, by (12.7).
We certainly hâve

AC{logZ^ M^+/} .

Thus, by (12.5), we hâve

(1 - P2)
K

t2
< P(A) <2exp —

32(N- l);5

so that

and thus

( K V72

^KVN log^^j

M^ > log (J EzJ - K VN (log i^r.

We aiso hâve Mj^ ^ log(2EZ^). Gombining with (12.7) we get

M,,-^KVN(,o^)"2

so that (12.3) now follows from (12.5).
To prove (12.4), we first observe that thé lower bound follows from (12.3) and

a routine computation. Thé upper bound follows from thé concavity of log, which
implies E log Z^ ^ log EZ^, and (12.7).

It remains to prove (12.7), (12.8). We start with thé elementary inequality

x2 ^ ^ , ,
'•-•-*- 2 - y . " ï.'"'

that is obvions on power séries expansions. Thus, for | u \ < -, we hâve (since EAf^ = 1,
EA., = EA?, = 0)

(12.9)
Q 0

1 + I- - KM* < E exp(yA,,) < 1 + t- + K«4,

and for s == ± 1, p < 1,

/ p2 Kp4'
^éï-N-^^

spA,; P2 Kp4^
VN^^P Z N ' N ^

Since

EZ^=E,nEexp6.s,^
iî VN
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(12.7) follows. Turning to thé study of EZ^, we hâve, using (12.9), and for N ^ 8,
that, with obvious notation,

E%=EE.E.,«p(^2^(,.,+,.;))

<KE.E,»p(^S^ (.,..+.;.;).).

Now, (s, s, + < s^.)2 = 2 + 2e, ̂  ̂  s^. Aiso, s, s, ^ e^. is distributed like s, e,, so that

/ft2 AT\ / o2 \

E%<K»p(^)E.(^(_^S^2,..)).

Further,

S 2e, s, = ( S ^)2 - N.
K i < ̂  N l^i^N

Using thé subgaussian inequality

P,(|2;^J^)^2exp(-^V

we hâve

/ B2 N \ F00 d 1 B2 ^2\ / /2 \
E..xp(^(.^).)<l+2[^exp^)»p(-^)^

___ 1 +P 2

1 - P 2

and (12.8) follows. D

13. Sums of (vector valued) independent randoxn variables

Thé first objective of this section is to discuss thé genesis of thé key ideas of thé
isoperimetric approach as developed in thé présent paper, and to explain how thèse
ideas hâve permitted thé solution of thé main problems of Probability in Banach spaces.
In thé second part of this section we will discuss, in détail, a situation that parallels
thé situation ofChapter 8, but where thé infimum over a e ̂  is replaced by a supremum.
There are unexpected and subtie différences; this is closely connected to thé fact that
thé conditions on thé function h{x,y} in Theorem 4.4.1 are (and must be) highiy
disymmetric in x and y.

Gonsider a séquence (XJ^^ of r.v. valued in a Banach space W. A number
of classical problems of probability (in particular, laws of large numbers and laws of
thé iterated logarithm) dépend crucially on sharp estimâtes of thé tail probability
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P(|| S X^ I I ^ ^). For many years thèse estimâtes were found using martingales, and
«N

thé results were not optimal. One big obstacle is that there is no obvious substitute
for thé positivity arguments that are central to Ghapter 8. Although its importance
became clear oniy later, a crucial contribution was made by M. Ledoux [L], It was
known at thé time that in many situations, thé tails of || S X^ || resemble thé tails

i^N

of |[ 2 ^.XJL where (^)»<N ls an independent séquence of standard normal r.v.
i<N ^

that is independent of thé séquence X^. To study |[ S gi X^ ||, Ledoux wrote
i^N

(13.1) II 2 &XJ|=EJ[ S &XJ|+(|| S&XJI-EJ S &XJ|),
i^N KN i^N î^N

where Ey dénotes conditional expectation, given (X^^. Thé idea was that either
term of thé right-hand side should be easier to study than thé term of thé left-hand side.
This is particularly apparent for thé second term, where, arguing conditionally on X^,
one can take advantage of thé properties of Gaussian processes.

It turns out that thé first term in thé right of (13.7) has thé exact property needed
to replace positivity; namely, i f J C { l , . . . ,N}, we hâve

(13.2) EJ| S&X, | |<EJ | S&XJ|.
î e j i^N

Thé realization of thé importance of positivity-like properdes led first to thé charac-
terization of thé Banach-space valued r.v. that satisfy thé law of thé iterated loga-
rithm [L-T1]. Perhaps more importantly, (13.2) lead this author to thé belief that
some isoperimetric principle should be relevant, and hence to thé theorem of [T2] (that
is now superceeded by thé comparable, but much easier to prove Theorem 3.1.1),
and started thé line of investigation that culminâtes in thé présent paper.

Thé author aiso understood that Bernoulli r.v. hâve regularity properties
that almost match those of Gaussian r.v. (a crucial step is thé comparison theorem
of [T5]). They offer thé extra advantage that thé tails of | |2,^Ne,XJ| (where
P(s, == - 1) = P(£, = 1) == 1/2) aiways resemble thé tails of |[ S X, ||. Thus, rather
than (13.2) one should write ^

(13.3) II S £.XJ|=EJ[ S s,X.(|+(|| 2 s,X.||-EJ| S e.XJ|).
i^N is^N i^N i^N

Our first task is thé study of thé r.v.

(13.4) Z=EJ| S c,XJ|.
î^N

We dénote by || XJ[* thé non-decreasing rearrangement of thé séquence (|| XJD^^-
Thus

II X, II* == sup{^; card{j^ N; || X, || ^ t}^ i}.
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Proposition 13.1. — Consider a > 0, q, k e N. Then

(13.5) P(Z^a+^^,p^^+P(^||X.||>^).

Comment. — To obtain a usefui bound, one estimâtes thé last term using classical
methods; one then optimizes over k, q.

Proof. — We set û = W. Gonsider thé funcrion Z on Q^ given for x == {x).<^ e ̂
by

ZW==EJ| S s^H.
i^n

Consider thé product probability P on Q, when thé î'-th factor is provided with thé law
of X,. Gonsider thé set A =={x; Z{x) ^ a}. Setting, for simplicity

k{x) =/(A, ...,A,^)

(where A occurs q dmes), it suffices by Theorem 3.1.1 to prove that

(13.6) Z(^ qa+ S || x, \\\
i^k(x)

Indeed, we then hâve, for each A,

P(Z ̂  qa+t)^ î{k(x) > k) + P( 2 I I x, I I * ^ ^).
i^k

To prove (13.6), we considère1, . . .3^ in A such that ifwe set

I={^N;^{^.. . ,^}},

then card 1 ^ kÇx). Dénote by J thé complément of I. Then, by thé triangle inequality

(13.7) ZM=EJ| S ^JKEJI S ̂ ||+ S H^l l .
i^N i ç j iei

Now

(13.8) s 1 1 ^ 1 1 < s ii^ir,
îe i i^fc(a-)

since thèse last k{x) terms are thé k{x) largest terms of thé séquence (|| ̂  ID^^. By
définition ofj, we can find a partition Ji, . . .,Jg of this set such that, for f ̂  q,

V i ej^, ^ -^f.

Thus

(13.9) EJ| S ^J|=EJ| 2 s |̂|.
iej/ ieJf
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Thé essential fact is now that

EJ| S ^,||<;EJ| S s.^11.
»£J/ i^N

To see this, simply observe that, in thé left-hand side, thé expectadon in s,, i ̂  is
taken inside rather than outside thé norm. Sincej/ eA, combining with (13.9) we get

Eg [ | S s, A;J [ ^ a
i G 3t

and thus, by thé triangle inequality

E, [ I S; s,^ | [< qa.
»eJ

Gombining with (13.7), (13.8) yield thé resuit. D
To study thé last term of (13.3) condidonally on (X,),^, one can rely, in

pardcular, upon thé following resuit.

Theorem 13.2. — Consider vectors (»,)i^^N în a Banach space W, and set

(13.10) a == (sup { S w\v^ : uf eW*, || w^ || ̂  1 })l/2.
i ̂  N

Consider a séquence (Y^^ of independent real ualued r.y. such that | YJ < 1. Dénote by M
a médian of thé r.y. || S Y, yj|. Thenfor t> 0 we hâve

i^N

(13.11) P(||| S Y^J|-M|^^)<4exp(--^l
i^N ^ lb/

Proqf. — We observe that if we set

^={(^(^)) ;^eW*, | |^ | |^ 1}

then

Z == I I S Y,yj| = sup S a, Y,.
i^N ae^- i^N

Thus Theorem 13.2 is a spécial case of Theorem 8.1.1 (using scaling). n

Remarks. — Gertainly thé constant in thé exponent is not sharp, and could be
improved using (4.2.7) rather than (4.1.3), especially in thé case of Bernoulli r.v.,

where thé use of (4.3.8) would yield a bound of 2 exp — - (/ — Viog 2)2 for t ^ Viog 2.

Before we pursue thé study of (13.3), we digress on an interesting sharpening
of Theorem 13.2. There is another bound on thé tails of || 2 Y^ yJ| namely thé trivial

z G N

bound I I S Y, v, || < sup S | w*(v,)\, and it is, of course, possible to interpolate
i^N 11^*11^1 i^N i- r-
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between this bound and (13.11). This can be done as follows. For a séquence (r,),^
of real numbers, and t > 0, we write

Ki,̂ ), t) - mf{ S | u, | + t( S ^1/2; r, == u, + w,},
i^N is$N

where thé infimum is taken over ail possible décompositions ^ = ^ + w^. We set

K^) = sup{K^((^))^); ^ eW*, I I ^[ |-1 }.

We observe that K(^) ^ ta. Oniy rather trivial modifications to thé proof of Theo-
rem 8.1.1 are needed to see that one can improve (13.11) into

(13.12) P(||| S Y , y j | - M | ^ K ( ^ 4 e x p ( ^ ) .
i^N \ Iby

This inequality streamiines a resuit of [D-MS].
If one observes that K(2t) ^ 2ic(^) one obtains, through a routine computation,

that for ail p ^ 1,

I I S Y^||^ M + KK(V?),
î ̂  N'

a rather précise form of thé so-called Kintchin-Kahane inequalities. It should aiso be
pointed out that, by (13.12), || S Y, v,\\^ M - Kic(v^), that || S Y, v, ||^ ^ M2-l/2)

i^N i^N

(obviousiy) and that || 2 Y ^ y j l p ^ KK(-\/J&/K). To prove this last inequality, one
i^N

reduces to thé real-valued case; it is simple to see that this follows from [L-T1], Lemma 4.9
(see aiso [M-S]).

After this digression, we go back to thé study of ( 13.3). We will apply Theorem 13.2
to thé last term, conditionally on (X,)^^, for ^ = X^,j^ = e^. Thus we need control
of thé random quantity (r(X) given by

CT^X) = sup{ S ^*(X,)2; ̂  e W*. I l ^ | |^1 }.
iï$N

Let us define ti = W, P as in Proposition 13.1, and consider thé function a on û3^
given by

a\x) = sup{ S ^W; ^ e W*, || ̂  || ̂  1 }.
i^N

Thé basic idea is to control <r through thé use of Theorem 3.1 again. Gonsider b > 0,
and thé set B == { a ^ b }. We set

k{x) =/(B, . . . ,B ,^ )

where B occurs q times.

Proposition 13.3. —

(13.13) P,(|| S £^||^2EJ| S ^x,\\+u+ 2 | l^ir)<4exp(-——l
i^N i^N i^k(x) \ ibqÔ} ]
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Proof. — Considery, ...,y m B such that cardia k(x), where

I=={^N;^{y, . . . , j f}} .

Dénote by J thé complément of I. We hâve little control over thé éléments ^, i el,
so we write ii^,..ii<ii^,,.ii+^[i,.n

^-"•ii+Àii-ir-
Now, it should be clear that

sup{ S ^(A,)2; w- e W-, H ^ H ^ l } ^ qb\
i ç j

Denodng by M thé médian of || S; s, ̂  ||, Theorem 13.2 gives
i e j

P.(||^^,||>M+.)<4exp-^-,

Now

M^2EJ| S ^||^2EJ| S £^J|
iej <^N

and (13.13) follows. D
If we combine Proposition 13.3 with Theorem 3.1.1, we hâve thé following

relation, for any u, y, t > 0, and any k e N:

(13.14) P'(||^ ^x,\\^2v+u+t)
i ̂  N

^ f^W + p(Et I I ̂  s* ̂  I I ̂ ) + 4 exp (- ̂ y

+ P ( S n^i rx) ,
i^fc

where P' refers to thé fact that we now consider thé joint probability in (e,) and (x.).

Theorem 13.4. — Set

û = = 2 E | | S c,XJ|, ^==Esup{ S ^(X,)2; ^eWM|^| |^ 1}.
i ̂  N i ̂  y

Then, for q, k e N, a, f > 0 we Aaw

P([| S e , . X , | | > 2 ^ + 3 f + M )
i<N

2t+l / y2 \
^^+4exp^-^+2P(^||X.||.><).
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Proof. — We use (13.14) with v = aq + t and b2 == 2s\ so that P(B) ^ 1/2. We
then control thé term P(E^ [ [ S s,^ || ^ ^) using Proposidon 13.1. D

ii ̂  N

A slightiy more général bound (that allows truncation of thé variables XJ is
proved in [L-T2] Theorem 6.17, and (when combined with techniques to control thé
quantity b above) is at thé basis of numerous results. An alternative approach, that
relies rather on Theorem 4.2.4 is developed in [T3]. Thé bounds developed by iso-
perimetric methods are sharp in most situations (see however [Ro] for a beautifui
example where other ingrédients are needed).

We now turn to a more specialized topic and we continue thé investigation of r.v.
of thé type Z = sup 2; a, X, that was started in Chapter 8. In order to apply Gorol-

a G y i^N I A '

lary 8.2.2, we need to hâve (4.4.6), where h[x,y} == \ x —y [, or, if a, is aiways positive,
h{x,y) = {x — y ) ^ . When thé variable X^ is positive (i.e., its law [L is supported by R'1'),
inspection of Theorem 4.4.1 shows that (whatever choice of 6, Ç) no integrability
condition on X^ except boundedness, will insure that thé conditions of this theorem
hold for this choice of À. We will now give an example that shows that this is not an
artifact of our approach. We will show that (13.11) cannot be essentially jmproved,
even if P([ XJ + 0) is arbitrary small. This implies (by scaling) that, given ?iny finite

function <D : R+ -> R^ with <D(0) = 0, one can find a real r.v. Xi with f<D(|Xi |)^ 1,
and vectors {v,)^^ such that (13.11) is violated.

Example 13.5. — This example is essentially a re-interpretation of thé example
presented at thé end of Section 4.3. Consider an independent séquence (XJ^^ °^
Bernoulli variables such that P(X, == 1) == p is small. Consider thé family ̂  of N-tuples
of form a, == l/V^N if i e I, a, = 0 otherwise, where 1 varies over ail subsets of
{ 1 , . . ., N} of cardinality^ 2J&N. Then a == 1. Gonsider

Z = sup S ^ X, == ——= sup{ S X,; card I ^ 2N^}.
ae^- i ^N V2Np »ei

We can aiso view Z as || S X^ ^ ||jr, where ^ is thé canonical basis of R^, and where
i<N

thé norm \\.\\y is given by [| x \\y = sup S ocj^ |.
Thé main observation is that ^

S X, ̂  2N^ => Z = —= 2 X,.
^N V2N^^N

Since thé probability ofthe event on thé left goes to 1, as N -» oo, thé r.v. Z is asymptoti-
cally normal, of mean VN^/2 and variance V(l -—^)/2$ so its déviation from its médian
does not decay faster than exp — K^2.

Thé conclusion to be drawn from Example 13.3 is that, in order to extend Theo-
26
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rem 13.2 to thé case where X^ is unbounded, we must require conditions ofa différent
nature than integrability.

Theorem 13.6. — There exists a universal constant L with thé following property. Consider
a convex function ^ on R4^ such that ^(x) < x2 if x ̂  1 and ^{x) > x if x ^ 1. Consider a proba-
bilité measure (JL on R. Assume thé following:

(13.13) Yt>0, ^{x; \x\^ t})^ 2exp(-I4(2^)).

Given any subset B o/'R, Z^Â pi(B) ^ 1/2, fl^rf û7y/ / ^ 1, ̂  ^ûz^
(13.14) ^; ̂ (^ | ^ -^ I) ^}) „ ,-<(! - ̂ (B)).

Consider independent real valued r.v. (X^)^^ distributed like (JL, ûTZûf vectors (v^^ m

a Banach space W.
r̂ %, yi?r ail t > 0, w^ Aaz^

(13.15) P(||| S X^J| - M | ̂  ^ ^ 2 exp (- 1 Y^^Y
i^N \ •L /

zcA^r^ M is a médian of\\ S X, v^\\, where
is$N

^={(^(»<))^N;"'*eW*,||w'|]<l}

and where Yjr ^ defined in Section 8.2.

Proo/*. — According to Corollary 8.2.25 it suffices to prove that thé hypo-
thesis of Theorem 4.4.1 hoids when h{x,y) == \ x —y |, in thé case Q{x) == — log^

w{x) === — ^ l o g x (so that îî{^w) hoids by Proposidon 2 .6 .1 ) . Oniy (4.4.4) has to

be checked, since (13.14) is a rewriting of (4.4.5).
Gonsider BC R with (JI(B) < 1/2. Set

(13.16) . 9= in f{b | ; j / eB} .

Glearly, h(x, B) ^ | x [ + s. Thus, by convexity of ^ we hâve

J exp Wx, B)) d^x) ̂  exp ̂  W J exp ^ ̂ {2x) d^x).

On thé other hand, by (13.16) we hâve B n ]— s, s[ == 0, so that B C { A ; ; | ^ | ^ ^ }
and hence by (13.13) we hâve exp ^{2s) < (2/{Jl(B))l/L. Thus it suffices to show that
for L large enough we hâve

^ /2\1/2L 1
x^ - =>1 - <—=(== exp — w[x)\

2 \x/ Vx

r iwhere 1 == exp- ^{2x) d^[x). It remains to show that, under (13.13), 1m 1=0,
J R ^

uniformiy in ^, an easy exercise left to thé reader. D
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Theorem 13.6 can be applied to thé case where [L is a measure v^ of thé type
considered in Proposition 2.7.4, although in that case thé simpler Theorem 2.7.1 will
yield thé same conclusion. There are however, situations covered by Theorem 13.6
that are not covered by Theorem 2.7.1, because in (13.14) we require oniy t^ 1.

In particular, if thé law of X satisfies (13.14), and if || Z |[^ ^ 1, thé law of - (X + Z)
»3

satisfies (13.14) (it is not required that Z be independent of X). (Thé corresponding
statement for (13.13) is aiso true, under mild conditions on ^, replacing if needed 1/3
by a smaller number.)

In conclusion of this section, we want to discuss a question that apparently is not
fully clarified by thé results of thé présent paper. Gonsider numbers (^)^^, and
vectors (^)^N ln a Banach space. Of which order are thé fluctuations of thé r.v.
Z = 11 S ûp^) ^ | [ around its médian M, when p is seen as a random élément of thé

i <$ N

symmetric group S^, provided with thé uniform probability P?

Proposition 13.7. — a) Assuming \ a^ \ ̂  1 for each i, we hâve

(13.17) t^ 0 = > P ( | Z - M | ^ ^4exp-——
Ibcr

where as usual
a2 = sup{ S w\v^, vf e W*, || ̂  || ̂  1 }.

î^N

b) Assuming [ | ̂  1 1 ^ 1 for each i, we hâve

(13.18) t^ 0 => P(| Z - M | ̂  t) ̂  4 exp - ——l-——.
16 S <

î^N

Remark. — A first problem is to find a bound that contains simultaneousiy (13.17)
and (13.18).

Proof. — Thé prooffollows that of Theorem 8.1.1, using now Theorem 5.1 rather
than Theorem 4.1.1. Thus, we indicate oniy thé key points.

To prove a), one notes that if p, T e S^ and I = { i ̂  N; p(i) =(= T(Q}, then

I S w^v,) a^ - S w^v,) a^ \ ̂  S | w^v,) |.
i^N i^N ici

To prove b), one observes that Z has thé same distribution as || S ^ v^ ||, and,
with thé notation above, one now has ^

1 S w\v^) a, — S; ^(^)) a,\ ̂  S | a,\. D
i^N i^N ici

It should be pointed out that it seems likely that a phenomenon similar to that
of Example 13.5 occurs in case a, and that (13.17) cannot be improved even if a large
majority of thé numbers ^ are equal to zéro.

Note added in proof. — After this work was completed, several new extensions of
theorem 4.1.1 hâve emerged, with applications in particular to statistics [T7],
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