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ON THE PROJECTIVE CHARACTERS IN CHARACTERISTIC
OF THE GROUPS Suz(2™) AND Sp,(2")

by Leonarp CHASTKOFSKY (*) and Warter FEIT (1)

1. Introduction.

The purpose of this paper is to obtain an explicit formula for the first Cartan
invariant in characteristic 2 of the groups Suz(2™) and Sp,(2"). Formulas for the
degrees of the projective indecomposable characters for these groups are also obtained.

We need to introduce some notation before stating some of these results. This
notation will be used throughout the paper.

o - Spy(2™)  if m is even
Suz(2™)  if m is odd.

if m is even

qzq’”z{gm if m is odd.

Thus G,,=Sp,(¢) or Suz(q) according to whether m is even or odd. The S,-group
of G,, has order 2°™ in either case.

We write ¢, =o™ for the trivial irreducible Brauer character for the prime
p=2of G,, ®,=®™ for the corresponding projective indecomposable character and
¢ps=0™ for the corresponding Cartan invariant.

Define
e RCt)

2

Then T, is the n-th Lucas number and
T, .=T,.1+T, for =2n>o.
Let U,=o"+B"+v", where (x—a)(x—8)(x—y)=2>—3x2—x-+5.
(*) The first author was supported by the Canada Council and the second author was partially supported

by NSF contract GP-33591. Both authors with to express their thanks to the I.H.E.S. for their hospitality during
the spring of 1977 when part of this work was done.



10 LEONARD CHASTKOFSKY AND WALTER FEIT

Then U,.s=3U,,..+U, . ,—5U0, for =n>o,
Uy=3, U;=3, U,=11.
Theorem A.
QM (1) = 2™ (2*—T,, 2™ 4 (—1)™).

A proof of Theorem A is given in Section 6. It is a simple consequence of
Theorem (6.3). As an immediate consequence of Theorem A one gets

Corollary A.
O (x) = 2¥(2 1T, 2"+ (—1)") D).

The formula in Corollary A is somehow related to the fact that G,, is the twisted
form of G,,. It would of course be very desirable to find a more conceptual proof
of this result which explains this relationship between ®™ and @™,

Section 7 contains formulas for the degrees of the other projective indecomposable
characters of G,,.

Theorem B.
(:,(;Z)= 23m+ 22m+ 2m+(_1)m2m+1+ QmUm_ 2m+1(2m+ I)Tm.
The following consequence of Theorem B is easily verified.

Corollary B.
If m>3 then ¢™W>2%  Furthermore
(m)

lim %2

—-=1.
m—> oo 23’”

The proof of Theorem B is much more difficult than the proof of Theorem A.
The nature of the expression for ¢, in particular the existence of a term which involves
U,,, would seem to indicate that one should not expect to find a proof which does not
involve a cubic recursion.

The appearance of the polynomial f(x)=2x’—3x*—x+5 in connection with
Theorem B is rather mysterious. The discriminant of f(x) is 148 and the roots of f(x)
are approximately 2.6753, 1.5392, —1.2145. [Added in proof. — J.-P. Serre has pointed
out that 148 is the smallest discriminant of a totally real number field with S; as a
Galois group!]

The results of Section 6 show that in some sense the following statement is true.
As the structure of the irreducible Brauer character gets more complicated so the structure
of the corresponding indecomposable character gets simpler. For instance the Steinberg
character is the most complicated irreducible Brauer character and the simplest projective
character. Thus in Theorems A and B we are studying the most complicated projective
indecomposable character ®,. As an example of this phenomenon we show in Section 6
that certain Cartan invariants are easily computed.

10



ON THE PROJECTIVE CHARACTERS IN CHARACTERISTIC 2 11

The degrees of the indecomposable projective characters in characteristic p of
SL,(p") were found by Srinivasan [7]. The work of Jeyakumar [5] and Humphreys [4]
makes it possible to get a great deal of information about the structure of projective
modules for SL,(p"), and in particular to get information about the Cartan matrix
for these groups. In [1], Alperin gave a complete description of the Cartan matrix
for SLy(2"). Aside from the groups SL,(p"), very little information is known about
the projective characters of finite groups of Lie type. The results in this paper are
apparently the first in which ®,(1) or ¢,, has been computed for an infinite number
of groups of Lie type other than SL,(p").

In [6] Landrock computed the Cartan matrix for the prime p=2 of G;, the
smallest Suzuki group. He noticed in particular that ¢¥=160>|G,|,=64. This
result contradicts an old conjecture of Brauer which asserted that the Cartan invariants
of a group are bounded by the order of a Sylow subgroup. It is clear from Corollary B
that Landrock’s result is not an accident. In fact the conjecture was off by an order
of magnitude.

Motivated partly by trying to understand Landrock’s result, the second author
suggested to the first author early in 1976 that he study the projective characters of the
Suzuki groups for the prime p=-2. Later during that year the first author succeeded
in proving Theorems A and B in case m is odd, i.e. in case G,, is a Suzuki group. The
argument used was similar to the one in this paper, though the graph used was more
complicated than the one introduced in Section g. Shortly thereafter the first author
realized that a similar (even simpler) argument should apply to the symplectic groups G,,.
In fact it turned out that the simpler argument applied in all cases. Furthermore by
treating the groups G,, for m even and m odd simultaneously, various parts of the argument
were further simplified, and the induction on m needed in the proof of Theorem B was
made considerably less cumbersome. It is this work which is the content of the present
paper.

Analogous arguments can be used to study projective characters of the
groups SLs(2™) and SUj(2™). In a forthcoming paper we will prove a result analogous
to Theorem A for these groups and also derive some information concerning the first
Cartan invariant c,,.

2. Notation.

We write F, for the field of cardinality ¢, K for the algebraic closure of F,, ¢ for
the Frobenius automorphism of K or F,. Thus if ¢cK then a°=d

Let G=G,, ¢=g¢, bhave the same meaning as in the introduction. Let
G, =Spy(K). Let o also denote the automorphism of G, or G, induced by the
Frobenius automorphism.

Let = denote the graph automorphism of G,. See ([2], Section (12.3)) for a

detailed description of this automorphism. Then =6 on G,. Furthermore

11



12 LEONARD CHASTKOFSKY AND WALTER FEIT

Gy, 1 =8uz(2*") is the subgroup of Gy, q)=Sp,(2"**) consisting of all elements
fixed by z"*1,

Let G=G, or G,. If M is a K[G] module and 6 is an automorphism of G,
let M® denote the module obtained by letting geG act on M® as g° acts on M. If

G is finite and ¢ is the Brauer character afforded by M, let ¢® denote the Brauer character
afforded by M°.

Let S=S,=Z/mZ. For each subset I<S, let I'’=S—1I and let |I| denote
the cardinality of I. If m is even let E={2,4,6,...,m}<S.

1 or Iy denotes the trivial character or Brauer character of any finite group H.

T'=T,, is the Steinberg character of G,,.

If «, B are complex valued class functions defined on the finite group H let

. _
(o B)=(% B)n=gg], &, *(*)B(x)-

Define ||a|f=(x, «).

If 0 is a Brauer character of G,, then (I',0) is defined since I' vanishes on all
2-singular elements of G,,.

If ¢ is an irreducible Brauer character of G,, then it is well known that

(T, 9)=0 for oI, |[T|f=1.

3. The Brauer Characters of G,,.

Lemma (3.1x). — Let M be the 4-dimensional K[G,] module underlying the natural
representation of G, =Spy(K). Let g be a semi-simple element in G, . Then the characteristic
values of g on M are o, %, B, " for some «, BeK and the characteristic values of g on M*
are «f, (“B)—l’ “B_l, “—1B'

Proof. — Let a be a short root and & a long root in the root system B,. The results
of ([2], Chapter 11) imply that

1 ¢t o0 o ) (1 o o OW

o1 0 o0 o1t o
x (t)= X (1) = .
=10 o 1 —if o(4) 0 0o 1 o

0 oo 1 ) o o o 1)

Furthermore x_,(t), x_,(f) is the transpose of x,(¢), x,(t) respectively.
By definition n,(¢)=x,(8)x_,(— ¢ Nx, () and A,(t)=mn,(t)n,(—1). Similarly
ny(t) = xy(8)x_y(— ¢ 1), (t) and h,(¢) =n,(t)n,(—1). This yields that

t o o o [1 o o o

o t! o o o —t o 0

a(t) oo ¢t o] o(f) oo —tt1 o
\o o o ¢ o 0 o 1)

12



ON THE PROJECTIVE CHARACTERS IN CHARACTERISTIC 2 13

By ([2], (12.3.3))
v b () hy(£2)
By(8) > by (8).

Thus 7 : h,(8)hy(u)>h,(w)k(£%). The result now follows by setting a=¢ and B=1t"tu.
Fix the integer m. Let G=G,, and let ¢ denote the Brauer character of G

afforded by the natural 4-dimensional K[G] module. For any integer i, let o, =¢".
If m is odd, then ¢,=¢,=¢ by definition. If m is even, then ¢,=¢,=¢, since
w=0¢. Thus in any case we may define <p,~=<p"‘ for ¢€S.

For any subset 1<S define
or=H o;.

Tiel
Theorem (3.2). — Let G=G,,. Then {o|1=S} is the set of all irreducible Brauer
characters of G. Furthermore @,=1 and @g=T in the Steinberg character of G.

Proof. — In case m is odd and G =Suz(2™) this is proved in ([8], section 12),
since T=o™*2  Suppose that m=2 and G=Sp,(2)~S, (the symmetric group on
6 letters). Then there are 4 semi-simple conjugate classes C,, Gy, C3, G, of orders 1, 3, 3, 5
respectively. The following table is easily computed by using Lemma (3.1).

e’ | 16 —2 —2 I

Thus ¢4 is the Steinberg character of G, and so is irreducible. The result now follows
from the tensor product theorem. See [8].

Corollary (3.3). — Let G=G,,. Then every irreducible Brauer character of G is real
valued.

Proof. — Immediate from Lemma (3.1) and Theorem (3.2).

Theorem (3.4). — Let G=G,,. Let 1€S. Then
¢ =4+20i 1+ Pise

Proof. — This is a direct consequence of Lemma (g.1) since a Brauer character
is determined by its values on semi-simple elements.

Let G=G,. If I<=S let ®; denote the projective indecomposable character
of G which corresponds to ¢;. Then ¢g=®g=I'" and (@, ¢;)=3;; for I, J<S.

13



14 LEONARD CHASTKOFSKY AND WALTER FEIT

The next result will not be used directly in this paper but it indicates that the
results in this section capture all the essential properties in some sense of the ring of
Brauer characters of G,,.

Theorem (3.5). — Let G=G,, and let R(G) denote the ring of Brauer characters of G
(or equivalently the Grothendieck ring of G). Then R(G) s isomorphic fo the commutative
Z-algebra which is generated by elements x;, 1€S that satisfy

2 __
X =4+ 2%+ %,

Proof. — Let A denote the Z-algebra defined in the statement. By Theorem (3.4)
there exists an epimorphism f: A—R(G). By Theorem (3.2) R(G) has rank 2™ as
a Z-module. Since A is generated as a Z-module by the elements .l;[lx,. as I ranges

over all subsets of S it follows that A has Z-rank at most 2”. This implies that f is an
isomorphism.

4. The Graph 6.

Let m>2. We associate a directed graph & =6,, to the group G=G,, as
follows.

The vertices are labelled by the elements of S.  There is an edge from ¢ to j if and
only if j=i¢+41 or i+2. Anedge i—>i-+ 1 isa shortedge. An edge i—i+ 2 isa long
edge. By abuse of notation we will frequently identify S with the set of vertices of G.

Two vertices i, jeS are adjacent if |i—j|=1.

By Theorem (3.4) there is an edge from ¢ to j if and only if ¢; is a constituent
of ¢?. This is the reason that the structure of G is relevant to the study of the ring of
Brauer characters of G.

The graph & is most easily visualized by choosing m points on the unit circle and
labelling them 1, 2, ..., m in a clockwise direction. The edges are then the arcs from ¢
toi+41 and i to 1 +2 for 1<i<m. (Of course m+: is identified with 7.)

A path B is a set of vertices %y, ..., 4 and edges ¢_;—z for 1<j<k such that
t,+1, for s+t except possibly for {s,¢}={o0,%}. The set of all vertices in 9 is the
support of P.

The path 1—>2—>...—>m-—>1 will be denoted by €.

A path B is closed if B contains at least one edge and for any ordered pair of distinct
vertices ¢, j in P there exists a path from ¢ to j contained in .

A subset I of S is circular if it is the union of pairwise disjoint subsets, each of which
is the support of a closed path.

Lemma (4.1). — Let 1<S.

(1) I s circular if and only if no two elements in 1' are adjacent.
() If J<1 and J is circular then 1 s circular.

14



ON THE PROJECTIVE CHARACTERS IN CHARACTERISTIC 2 15

(i) If I is circular then |I|>m/2.
(iv) If I and 1" are both circular then m is even and 1=E or E’.

Proof. — (i) Clear by definition.

(i1) and (iii) are immediate consequences of (i).

(iv) If I and I’ are both circular then, by (iii), |I|>m/2 and |I'|>m/2. Thus
|I|=|1"|=m/2 and so m is even. The result now follows from (i).

Lemma (4.2). — Suppose that B is a path whose support contains the vertices i, i-+1, i-+2.
If i—i+-2 is an edge in P then m is odd, S is the support of P and P is the path

I>3—>5—>...>m—I—>1I.

Proof. — The edge i+ 1—¢+ 9 must bein P. Thus by induction it follows that
for any j the edges j—~j+2 and j+1—>j+9 must bein . Hence the support of P
is S and ‘B contains no short edges. Since P is a path, m cannot be even and the result
follows.

Lemma (4.3). — Suppose that 1 is circular and T+S.

(1) I is not the union of at least two pairwise disjoint subsets, each of which is the support
of a closed path.

(1) There is a unique path with support 1.

(i) The number of long edges in P is |1'].

Proof. — (i) Immediate by Lemma (4.1) (iii).

(i), (). Let 0<z<...<{<m—1, where I={;|0<t<k}. If P is not the
path iy—¢;—...—j, then there must exist vertices 7, ¢ 41, ¢ +2€I and an edge i—>i+2
contrary to Lemma (4.2). This proves (ii). Statement (iii) follows from the fact

that the number of long edges in B is clearly |I’|, the number of elements not in I.

Lemma (4.4). — (1) Suppose that m is even. Then S is the support of the unique path €.
Furthermore S=EVUE’ and E, E' are each the support of a unique path, and this path has no
short edges.

(i1) Suppose that m s odd. Then S is the support of & and of the path

I—)S-—>5——> e —>M—I > 1
and no others. Furthermore S is not the union of two pairwise disjoint circular sets.

Proof. — If S is the support of a path other than € then there must be an edge i—i-+2
in this path. Hence by Lemma (4.2) m is odd and the other path is the required one.
If S is the union of two pairwise disjoint circular sets then by Lemma (4.1) m is even
and the result follows immediately.

15



16 LEONARD CHASTKOFSKY AND WALTER FEIT

Theorem (4.5). — Let o+I<S.

(1) o is a constituent of % if and only if 1 is circular.

(i) If I is circular and 1%S then the multiplicity of ¢ as a constituent of o is
2”‘4‘_'1’[—_—2_’”4‘]1"

(iii) The multiplicity of @g=T as a constituent of T® is 2™+ 1.

Proof. — By Theorem (3.4) <p§=i1;[I (4+29;,1+®,2). Let 6 bea term in the

expansion of ¢f. Then 0 is an integer times a product of at most |I| characters g;.
Thus if 0 is a multiple of ¢;, then 6=2" ,IE_II ®i+ei)> Where e(z)=1 or 2 for each 7 and =
1

is the number of values iel with e(¢)=1. Since 0 is a multiple of ¢; it also follows
that {i+¢(s)|iel}=1I. Hence i—i-+¢(:) defines a disjoint union of closed paths with
support I and 7 is the number of short edges in these paths. This in particular implies
that (i) holds.

If I+S then, by Lemma (4.3), there is a unique path P with support I and the
number of long edges is |I’|. Thus the number of short edgesis |I|—|I'| =m—2|I’|.
This proves (ii).

If I=S. Then by Lemma (4.4) it follows that in any case there are two such
terms 6 and the multiplicity of ¢g in ¢} is 2™+ 1 as required to prove (iii).

5. Some Inner Products.
The following result is of basic importance for the rest of this paper.

Lemma (5.x). — Let 1, J be subsets of S. Then
(Tor, ¢5)=(T, ¢195) =(T P10 5-1n3%1n7)-

Furthermore
(Doy, ¢)=0 if TUJ+S.
=1 if TuJ=S, InJ=g, ie. J=TI".
=0 if TuJ=S, InJ=*e, IN]J is not circular.
=omy N 4f TuJ =S, InJ*S, INn] is circular.
=™t 1 if I=J=S.

Proof. — The first equation follows from Corollary (3.3). Thus we need only
compute (F: CP[UJ—IhJ(p%f\J)'
Suppose that InJ=e. Then (T, ¢;,;)=3g;,; and the result is proved.

Suppose that INnJ=+@. By Theorem (3.4) @?nJ=ie&J(4+2¢i+1+¢i+2). Let

0 be a term in the expansion of ¢? . y such that (I', @1, ;_1~30)%0. Then 0is an integer
times a product of & characters ¢; with 2<|INnJ|. By the choice of 6 it follows that
E+|Iu]J—InJ|=m. Hence [IUJ|=m and |[InJ|=~k. Thus in particular TUJ=S.

16



ON THE PROJECTIVE CHARACTERS IN CHARACTERISTIC 2 17

Hence 6 is a multiple of ¢;.;. Furthermore (T, ¢1,;_1~359%~s) 1 equal to the
multiplicity of ¢; - ; as a constituent of ¢, ;. The result now follows from Theorem (4.5).

Corollary (5.2). — Let 1=S. Then

(% o) =1 Y I=o.
=0 if I, I is not circular.
=omy W 4f 1%S, 1 is circular.
=241 ¢f I=8S.

Proof. — Let J=8 in Lemma (5.1).

Corollary (5.3). — Suppose that m is even. Then
(PZ’ (PE):(PZ’ op)=1.

Proof. — Let I=E or E’ in Corollary (5.2).

6. Projective Indecomposable Characters.

Lemma (6.1). — Let K<S. Then
Oy =Tog. — KEJ (T% @;_x)®;.

J — K circular

Proof. — Since I'gy. is a projective character it follows from the orthog-
onality relations that I’cpK,=§(I‘cpK,,<pJ)(DJ. If (Pog, @5)F0 then K'UJ=S by

Lemma (5.1) and so K< J. Furthermore

(F?K'» 95)=(T, ox 25) = (T, oxr 0 319x ~ 3) =(T, Tox 05) =(I% @5_x)-
Thus by Lemma (5.1)

Loy :KEJ(FZ, ‘PJ—K)(DJ=(DK+K§J(F2, ¢5-x) Py

By Lemma (5.1) (I, ¢;_¢)=0 unless J—K is circular.

Lemma (6.2). — Suppose that J is circular. Then ®;=Tq; except when m is even
and J=FE or E'. In the latter case ®;=Tq—TI.

Proof. — If J' is not circular then Lemma (4.1) (ii) implies that I—J is not circular
for any set I with J<lcS. Thus (I} ¢;_;)=o0 by Lemma (5.1) for JiISS.
Hence ®;=T¢; by Lemma (6.1).

Suppose that J' is circular. Then m is even and J=EorE’. If J<I<S and
I—]J is circular then I=S. Hence by Lemma (5.1) (I% ¢;_;)=o0 for J;E_Iis.
By Corollary (5.3) (I @g_j)=1. The result follows from Lemma (6.1).

17



18 LEONARD CHASTKOFSKY AND WALTER FEIT

Theorem (6.3). — Let KcS.
(i) If m is odd or K0 then

Qg =Tog — K§J (T% 95_x)Toy .
J — K ciroular

(i1) If m s even then
O, =T%— X (I* ¢;)loy + 2T\

J circular
Proof. — If J—K is circular then J is circular by Lemma (4.1) (ii). Thus
Lemma (6.2) implies that either I'p;, =®; ormiseven J=EorE’ and ®;=TI¢; —TI.
If J=E or E’ and J—K is circular then K=¢ by Lemma (4.1) (iii) and (I? ¢;)=1
by Corollary (5.3). The result now follows from Lemma (6.1).
It is now easy to prove Theorem A.

Proof of Theorem A. — By Theorem (6.3) and Corollary (5.2)
O,=I"— X o4 VMg, 4 (—1)"T. ‘

J circular
Since o (1)=4'""! it follows that
O, (1)=T(1)(2"—2" X 14(—1)™.

J circular

By the Corollary in the Appendix the number of circular subsets of S is T,,. This
completes the proof.

The next result shows, as mentioned in the introduction, that certain Cartan
invariants are easily computed.

Theorem (6.4). — Suppose that m>2. Let i,j€S. Then cyy iy = 49;.

Proof. — Since {i}' and {j} are both circular it follows from Lemma (6.2) that
@, =T¢, and @, =T¢;. Thus if i+; then Lemma (5.1) implies that
Cay, Gy =(T¢;, L) = (T2, @;9;)=0.
Since ¢f=4-+2¢;,;+¢;,, it follows from Lemma (5.1) that
2

cay, gy = (Doi, To) =(T% ¢f) =(I%, 4+ 20,11 + Piy2) =4-
7. Degrees of Projective Indecomposable Characters.

In this section we will compute ®g(1) for o+K =S.

If I<S then a component of I is a nonempty subset A of I which is the support
of a path with only short edges and is maximal with respect to this property. Thus
if |I'|<1 then I is the only component of I. If 4, jel’, 4, ¢4145 and if

A:{i—|—5|8=1, R (J—l)—l}gl,

then A is a component of I; and conversely, if |I'|>1, every component is of this form.
Clearly no two distinct components of I intersect and I is the union of its components.

18



ON THE PROJECTIVE CHARACTERS IN CHARACTERISTIC 2 19

Let K be a nonempty set in S and let |K|=£k>0. Then K={i, ..., 7} with
0<;y<...<g<m—1. For 1<s<k let

A, ={j|1,<j<t,;.}, 1<s<k—1
Ay={j]0< j<iy or §,<j<m—1}.

Thus the nonempty sets A, are the components of K’. Let a,=|A,| for all s. Then
|IK'|=m—k=a,+...+a.

The set {ay, ..., 4} is called the #ype of K.

Lemma (7.1). — Let K be a set of type {ay, ..., a}. Then K’ is circular if and only
if a,+o0 for all s.

Proof. — By Lemma (4.1) (i), K’ is not circular if and only if K contains a pair
of adjacent elements. This is clearly the case if and only if 4,=o0 for some s.

~ Define
)

Thus F, is the »-th Fibonacci number. Observe in particular that Fy=o.

Theorem (7.2). — Let 6+K<S. Let {ay,...,a} be the type of K. Then
k
(1) =2z I F,).

Progof. — Let X be the set of all sets J with K= J<8S and J—K circular. If
JeX then Corollary (5.2) implies that

(1-\2’ CPJ_K)___2m4——|(J-—K)'[ — 2m4—(m—|J[+k)=2m~2k4——m+ IJ].
Thus, by Theorem (6.3),

Dy (1) =1“(I)(4m—-k__ 2m—2kJ§X4am+ |J|4,,,_ IJI)

— 22m(22m——2k__ 2m—2k l X l) — 2:~>’m—2k(2m_ | X l)

k
Thus it suffices to show that |X|= I_IIFM.
If K’ is not circular then by Lemma (4.1) (ii) X=9¢ and so |X|=o0. By
k

Lemma (7.1) a,=o for some s and so l:[lF;J:o. The result holds in this case.

Suppose that K’ is circular. Let K={7, ...,%3} with 0<;{<...<{<m—1.
Let A, be defined as above and choose the notation so that a,=|A,;| for each s. A
set J is in X if and only if J satisfies the following two conditions:

(1) J contains the end points ¢,+1, ¢, ,—1 of A, for each s.
(ii) J does not omit adjacent points of any set A,.

19



20 LEONARD CHASTKOFSKY AND WALTER FEIT

By the Corollary in the Appendix the number of such subsets of A, is F,. Thus
k

| X|= I_IIF,,J as required.

Corollary (7.3). — If m>4 there exist subsets 1, J of S such that ¢ (1)=o (1) but
®y(1)%Dy(x).

Proof. — As an example let I={1,2} and J={1,3}. Then o¢;(1)=g¢;(1)=42
Since I is of type {o, m—2} and J is of type {1, m—3} it follows from Theorem (7.2)
that @;(1)=2"""* and

O (1)=2""*— 2’ 1F, _.<®(1).

8. Some More Inner Products

This section contains the computations of some inner products which are needed
for the proof of Theorem B.

Lemma (8.x). — Suppose that G =Suz(q). If 0 is a class function on the set of all
2'-elements of G then

(%, 8)=(T', 0) + (¢ +1)0(1).

Proof. — 1f x is a 2’-element in G, x+1 then I'(x)=+1. See for instance [9]
or [10]. Thus (I'*—T')(x)=o0 for xeG, x+1. Therefore

(¢°—¢%)0(1)
(q?+l)qz(q—l)

1

(03—, ) = e (T(0) T (1)}0(1) = =(g+1)0(x)

as required.
Throughout the rest of this section G=3Sp,(¢) and the following notation is used.
H is a cyclic subgroup of G of order ¢2—1. Thus every cyclic subgroup of G
of order ¢2—1 is conjugate to exactly one of the groups H, H*. See [3].
Ht is the subgroup of H of order ¢+1.
H™ is the subgroup of H of order ¢—1.

Lemma (8.2)
M()=—¢ i xeH*—{1}
¢ o xeH —{1}
=—1 f xeH—HtUH".
Progf. — See [3].

Lemma (8.3). — 15415 =2(I?—T).

Proof. — See [3].
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Lemma (8.4). — There exist linear characters m, § on H*, H™ respectively such that if
¢ =¢, then
Pwr=2+n+71""  ome=2(n+7n"").
ou-=2+C+LY  epe=2(+L7N.

Proof. — See [3].

Lemma (8.5). — Suppose that 1< S and 1’ is circular. Then
(1> (eo)u) =(1mv, (P)ws) & I+E or E
(18-, (98 +9)n) = (1m+, (Pe +9p)n+) +2(q+1).
Proof. — By Lemma (8.4)

(er)u- =ieg[n12(c2i+ an{)ieglm(Q + Cz;‘*‘ c—zi),
(o) =, I 2(n"+07%) II (2447 +97").

i€ENI
Since 0<i<m—1 it follows that X +2'%0 (mod ¢+1) and Z+2'=0 (mod ¢—1)

can only hold for +(14+2+4...2" Y)=+(¢—1). Hence (1g, (ppm)=2""F! and
if I+E or E, then (1y, (¢)y-)=2""Fl. Furthermore (1y, (@g)g-)=2¢ and
(1g-» (pg)u-)=2. This yields the result.

Lemma (8.6). — (i) (', I'?)=¢%+ ¢*+2¢%+ 29 +1.

(ii) (% Tog)=(I% Fog)=¢*(¢*+1)+(g+1).
(iii) If I’ is circular and 1+E or E’, then (T2, T'op)=4l"(g%+1).

Proof. — Let I<S. By Lemma (8.3),
(8.7) (I'%, Top) =(T*—T, Top) +(I'—1, Tey) +(T, o)
=(I?—T, (T+1)e1) +(T, 1) =
By Frobenius reciprocity
(1§18, (T+1) a0 =((T+ 1), (@) +(T+ s, ()
=((T'+1)g, (pr+9Dn)-
Thus Lemmas (8.2) and (8.4) imply that

(1§ + 1%, (T+1)e) +(T, ).

N[ =

(1, (C4De)=— (g + 024" +(g+1) T (o) +4i()

+(=g+1) X (o5(x)+i(x)))

zeH*— {1}

g —1

1
=q2___I (¢*—1)2.4" 4 (15-, (914 #D)u-)

—(1ges (Pr+¢Dmv)-
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Therefore (8.7) implies that
(8.8) (r?, P<p1)=(q2+1)4]”—}—(l‘, CPI)+'LI;((IH" (o1 + 9D u-) — (1g+, (o1 + @D p+))

(iy If I=S then ¢;=I. Lemma (8.2) implies that
2
g+1
=2(¢* +¢*+ 29— ¢* + ¢*) = 2(2¢* + 29).

Since (I, T')=1 and |I|=m the result follows in this case from (8.8).

(ii) Since ¢j=¢g, Lemma (8.5) and (8.8) yield that if I=E or E’ then

(T% T =(g"+1)2" +q+1=(¢+1)¢"+ ¢ +1.
(iii) By (8.8) and Lemma (8.5) (I'% T'g;)=(g*+1)4/" as required.

(13> 2T3) = (1 2T) = = (g 2)9)— = (4= g?)

9. Some Preliminary Computations for c¢,,.

Define
0= X (T2 ¢))Toy .

o417 %8
By Lemma (5.2) and Theorem (6.3)
O,=I"—(2"—(—1)"T'—0,

and 0= -21 2" 4~ 1T,
(.::[u:usa.l'
Thus
(9.1) Coo= || T?— (2" —(—1)")T|]* — 2(I* — (2" —(—1)")T, ©)+[|O|

Lemma (9.2). — Suppose that m is odd. Then
(i) [T*—(@"— (=" |P=¢"—2¢
(i) (*—(2"—(—1)"T, ©)=¢(¢+1)T,,—q(g +1).
Proof. — (i) By Lemma (8.1)
(T% T2 =(I%, T)=1-+(g+1)¢ = '+ g2 +1.
Thus by Corollary (5.2)
IT*— (2" —(—0)") TP =||T*|]*—2(g +1)(I*, T) + (¢ +1)*|| T[]
=+ +r—20g+1)2+(g+1)*=¢—2¢.
(ii) Since J and ]’ are never both circular it follows that (I, ®)=o0. Thus
(I (2" —(—1)")T, ) =(T%, )= T 24~ 1¥I(T%, To,).
T8
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By Lemma (8.1)
(T% Top) =(T% o5)=(T, ¢5) +(g+1)4'7.
Hence (%, @)=g(g+1) | X 1=¢(¢+1)(T,—1)

circular
J*8

by the Corollary in the Appendix. This implies the result.

Lemma (9.3). — Suppose that m is even. Then
() (T2 —(2"—(—)"T|P =g + 20 +4
(ii) (T*—(2"—(—0)"T, 0)=¢(¢"+1)T,,—¢'—3¢"+ 29 +4.
Proof. — (i) By Lemma (8.6) (i) and Corollary (5.2)
I T2 — (2" — (=)™ D | = [| T*|P— 2(¢ —1) (T%, T) (¢ —1)°
=¢’+¢'+2¢" +2¢+1
—2(¢"—1)(¢ +1)+(¢ —1)%
(i1) J and J’ are circular if and only if J=E or E’. Thus by Corollary (5.2)
(T, ©)=(T, Tgg) + (T, Tog) = 2.
By Lemma (8.6) (ii) and (iii) and the Corollary in the Appendix
(12, 0)= I 2mg~ 11470 1)+ 2(g+1)

J circular
J*8
=@ +1) I 1+2(0+1)=¢(¢+1)(Tu—1)+2(g+1).
J*8
Thus (T*— (2" — (—1)")T, ©)=(I*— (¢~ 1), ©)

=¢(¢+1)(T,—1)+2(g+1)—2(¢"—1).
This yields the result

Lemma (9.4). — To prove Theorem B it suffices to prove the following statements.
(1) If m is odd then
10]]*=gU,,—¢*—g¢.
(i1) If m is even then
10]|*=¢*U,—¢* — 3¢* +-2¢ +4-
The result follows directly from (9.1) and Lemmas (9.2) and (9.3).

10. The computation of ¢,, continued.

Define .
(o) Y=Y,= I (I%e)(T% )% 1)
LJ+8
(10'2) Z= Zm= In§=n (F2’ (PI’)(Pza cPJ’)(F2> (PIUJ)'
I,J#9,8
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By definition ||®||=Y+4Z. This section contains the computation of Z. The
much more difficult question of computing Y is the content of the rest of this paper.
We begin with a combinatorial result.

Lemma (10.3). — Let K be a circular set with |K'|>o0.  The number of ordered pairs (1, J)
of subsets of S with I, J' circular, InJ =0 and TUJ=K is 2/¥1,

Proof. — Since no two elements of K’ are adjacent, K has |[K’| components. No
two elements of I or J can be adjacent. Hence for each component of K the placement
of some vertex in either I or J determines the placement of all the other vertices in that
component, they must alternately belong to I and J. Thus there are 2 ways of placing
the elements of a component in I or J. Thus there are 2/¥! ways of choosing the
pair (I, J) as required.

Lemma (x0.4). — Suppose that 1, J', TU]J are circular and INnJ=0. Then one of
the following occurs.
(1 I, J, TuJ+S and
(T2 or) (I @5) (% ¢ryz) =2"

(ii) m s even. Either I'=S and J=E or E' or I=E or E' and J=8S; or
I=]'=E or E'. Furthermore

(Fz, <PI’) (an (PJ’) (F2> CPIUJ) =2" 1.
Progof. — If I'=S then J and J’ are both circular and so m is even and J=E or E’.

Similarly if J’=S then I=Eor E’. If IuJ=S then since |I|, |J|<m/2 it follows
that |I|=|J|=m/2. Thus m is even and I=]" =E or E'.

(i) Since InJ=o it follows that |IU]J|=|I|4|J|. Thus by Corollary (5.2)
(FZ, @I')(Iﬁ: @J')(PZ, CPIUJ)':23m4’—(”|+|J[+m—”UJ])=23m4’—m=2m

(ii) In each of the three cases {I’,J’, IUJ}={E, E’, S}. Thus by Corollary (5.2)
the expression is

(T% g) (T% o) (I, g5) =2" +1.
Lemma (x0.5). — (i) If m is odd Z=q(q—2).
(i) If m is even Z=q*—2¢%*+2.
Proof. — For any circular set K define
X(K)={I,N|T,J circular,IV]=K, InK=g,1, J+0, S}.
If K+S then Lemmas (10.3) and (10.4) imply that

(r0.6) « JEX(K)(W, or) (T? 05)(T? og) = 2m2l¥l,
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(i) If m is odd then Lemma (10.4) and (10.6) imply that

Z= 2 omalfl=om 3 oKl _om—om(am _9)=g(q—2)
K circular K circular
K+8§

by the Corollary in the Appendix.

(ii) If K is circular and (I, J)eX(K) with I=¢ or J=o then Lemma (10.4)
implies that K=E or E’ and there are exactly 4 such pairs. Thus by (10.6),
Lemma (10.4) and the Corollary in the Appendix

— 2 2 2 2 mo|K'| o™
Z 1, J)GX(S)(P ’ ‘PI)(F ’ (PJ)(P > (PS)+K0§“1M2 2 4.2
K+8
=2(2" 1)+ 2" —4.2m=2"—2. 2"} 2=¢"'—24} 2
as required.

Lemma (x0.7). — To prove Theorem B it suffices to prove the following statements.
(1) If m is odd then
Y, =qU,,—2¢+q¢.
(i1) If m is even then
Y,=¢U,—2¢*—q¢*+2¢+2.
Proof. — Clear by Lemmas (9.4) and (10.5).

11, Configurations in .

A configuration Q in ® is a set of edges and vertices of ® such that for each edge
in Q, the vertices at both end points are also in Q. Edges may occur more than once.
An edge which occurs n times is said to have multiplicity n.

For example, any subset of S or any union of paths is a configuration.

If Q is a configuration let s(Q) denote the number of short edges in Q and let
{(Q) denote the number of long edges in Q. Define ¢(Q)=1s(Q)+¢(Q). Thus ¢(Q)
is the total number of edges in Q.

If I,J=S and Kc<8 such that ¢g is a term in ¢;p; when it is expanded by
using Theorem (3.4) then we will associate a configuration Q to this situation as follows:
if at some point in the expansion we take the ¢, term in ¢} then we place the edge i—j
into Q together with the vertices ¢, . If we take the ¢, term then we simply place
the vertex 7 in Q. If this occurs » times then the edge i—j; has multiplicity » in Q.
We will say that Q is associated to the pair {1, J} and results in K. A configuration Q is
associated to the pair {I, J} if it is associated to the pair I, J and results in some K.

Let Q be a configuration associated to {I, J}. We wish to define partial configur-
ations Q,. RQ results in some set K. Let Q, be the empty configuration. For n>o
let Q, consist of Q,_, together with the vertices and edges in Q obtained by expanding
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every ¢ which had not been expanded at the previous step. Clearly Q=2Q, for
sufficiently large n.

Thus in particular Q, arises from all the expansions of ¢} with ieInJ. In
particular Q=1, is the empty configuration if InJ=e.

As an example let m=p5, I=]J={1,2,3} and K={1}. As a first step take
the ¢, term in both ¢? and ¢} and the ¢, term in ¢3. Then Q, is

2
1

4 3

As a second step take the ¢, term in ¢5. Then Q, is
2

-

4 3

where the double arrow indicates an edge of multiplicity 2. Finally take the ¢, term
in ¢f to get Q=12Q; which is

1{ ’2
4 3

Lemma (xx.x). — Suppose that I' and J' are circular with INJ+o. Let Q be a configur-
ation associated with {1, J}. Then none of the following four statements occur.

(1) Two distinct edges enter the same vertex in Q.

(ii) An edge occurs with multiplicity at least 2 in Q.

(1i1) Two edges emerge from the same vertex in Q.

(iv) For some i, both i—~i-+2 and i+1—>1+3 occur in Q.

Furthermore Q is a union of paths no two of which have a common edge, the first vertex of
each one being in 1NJ, and every other vertex, except perhaps the last in (IV])—(IN]J).

Proof. — Let Q, be defined as above for n=o0, 1, ... There are three ways in
which an edge can emerge from a vertex 7 in Q,:

(a) ¢ is the first vertex of a path in Q,.

(b) i is the end point of an edge in Q,_; and ie(IU])—(In]).

(¢) i is the end point of two edges in Q,_,.

We will now prove by induction on z that Q,, satisfies the conclusions of the Lemma

for all n. If n=o0, Q,is empty and the result is trivial. Suppose now that the result
has been proved for Q, with ¢<n.
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If (ii) or (iii) occurs in Q, then either (i) or (ii) must occur in Q,_,; which is not
the case. Thus neither (ii) nor (iii) occurs in Q,. Since (i) does not occurin Q,_;,
the possibility (¢) for having an edge emerge from a vertex does not occur in Q,.
Suppose that (i) occursin Q,. Then for somei, i—:+2 and i+1—>¢+2 are
both edges in Q,. Since (ii) and (iii) do not occur and the possibility (¢) does not
occur in R, it follows that two paths in £, can have at most one vertex in common,
and this must be the last one in each path. Thus if (i) or (iv) occurs there exist two
paths of one of the following forms:
J>j+2... or J=y 1.
e J—1—>j41... e J—I>j+I...
Since Q,_, satisfies the conclusions of the Lemma it follows that jeIn] and j—1elu].
Thus either I or J contains a pair of adjacent edges contrary to the fact that I’ and J’
are circular. Thus (i) and (iv) do not occur in Q,,. The last statement is an immediate
consequence. '

Corollary (1x.2). — Suppose that 1' and J' are circular with 1NJ+o. Let K49 and
let Q be the configuration associated to {1, J} which results in K. Then

Kn((Iu])—({In]))=Kn{j|j is not the end point of an edge in Q}.

Proof. — Suppose that jeK. Ifj is not the end point of an edge in Q then clearly
jeluJ and j¢IN] as ¢g is a component of ¢;¢;. If jis the end point of an edge then
this edge is unique by Lemma (11.1). Since gk is a component of ¢;¢; this now implies
that either jeIN] or j¢Iu] by Lemma (11.1). This proves the result.

Lemma (xx.3). — Suppose that 1 and J' are circular with InJ+o. Let K<S and
let Q be the configuration associated to {1, J} which results in K. Suppose that K s circular.
Then the following hold.

(1) If B is a maximal path in Q whick is not closed then either P consists of one vertex
and no edges or P is of the form i—i+1 for some 1.

(ii) - KNn[Iu]J—In]J]l=we. Thus every element in K is the end point of an edge in Q.

(iii) I=J=E or E' .and K=E or E'.

Proof. — (i) Suppose that P contains at least two vertices and let ¢ be the first
vertex in P. By Lemma (11.1), telIn]. Thus ¢+1,i—1¢IUJ as I’ and J' are
circular. By Corollary (11.2) ¢K. Hence i+1€K as K is circular and so ¢ 41 is
the end point of an edge by Corollary (11.2). Since i41¢IUJ it follows from
Lemma (10.1) that ¢+1 is the last vertex in 3. This completes the proof.

(ii) Suppose that ieKN((IU])—(IN])). By Lemma (11.1) and Corollary (11.2),
¢ is neither the beginning or end point of an edge in Q. Since I', J are circular, neither
t+1o0r¢—1isin INnJ. Since K is circular ¢:+eeK for e=1 or 2.

Suppose that i+4e¢(IUJ)—(INnJ). Then by Corollary (11.2), ¢+¢ is the end
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point of an edge in Q. If i4-celIN] then e=2 and the edge i+1—>7i+42 occursin Q.
Since I' and J’ are circular i+1¢IUJ contrary to Lemma (11.1).

If ¢+e¢IU] then either 14+1—>7i+2 or i—1—>i+1 occurs in Q. Sinceite¢
is the end of a nonclosed path by Lemma (11.1) it follows from (i) and Lemma (11.1)
that 41 or i—1€lN] contrary to what has been shown above.

Therefore i+ee(IU])—(IN]). If e=2 then i+1¢INJ asI’'and J’ are circular.
Thus if this argument is iterated it implies that no element of S isin IN]J contrary
to hypothesis. The second statement follows from Corollary (11.2).

(i) Let seIn]. We consider 2 cases.

Case (a). — The edge i—i+1 occurs in Q. As ¢4+1¢IUJ it follows from
Lemma (11.1) that 42 is not the end point of an edge in Q. Thus ¢42¢K by (ii),
and so :4+3€K. Hence i42€In] and the edge ¢+2—>743 occurs in Q. If this
argument is iterated it shows that m is even and {Q consists of either the edges 2j—>2j-+1
or the edges 2j—1—2j. This implies that I=]J=K'=E or E’.

Case (b). — The edge i—i+2 occurs in Q. Since i—1¢IU]J it follows that
t+1 is not the end point of an edge in Q. Thus i+ 1¢K by (ii) and so :€K. Thus
t—2elu] and i—2—7 is in Q. If this argument is iterated it shows that m is even
and Q consists of either the edges 2j—2(j-+1) or the edges 2j—1 — 2(j41)—1. This
implies that I=]J=K=E or E".

Lemma (xx.4). — Suppose that m is even. Let I1=E or E'. Then ¢; occurs with
multiplicity 1 as a constituent of @} and @y occurs with multiplicity 2™®=gq as a constituent

of ¢f.
Progf. — By Theorem (3.4)
oi=1L (4420 +00)=2"" o+ Il @y 5+ 0 =gop + o +6,
1€l el 1€l

where 0 is a sum of terms, each of which is a product of at most m/2 characters ¢;, and
none of which is ¢; or .

Suppose that I’ and J’ are circular with INnJ+g. A configuration Q is acceptable
JSor {1, J} if it is associated with {I, J} and results in @. A configuration Q is acceptable
if it is acceptable for some pair {I, J} with I' and J’ circular, and INnJ=+e.

Lemma (x1.5). — Suppose that Q is acceptable for {1, ]}, where INJ+e, I' and J'
are circular. Then Q is a disjoint union of nonclosed paths, the first vertex of each being in 1N]J
and every other vertex in (I1UJ)—(IN]). Every element in 1UJ is a vertex in Q.

Proof. — This is an immediate consequence of Lemma (11.1).

Lemma (xx.6). — Suppose that 1' and J' are circular with 1NnJ+w@. There is at most
one configuration Q which is acceptable for {I,J}.
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Proof. — Elements of INJ must be first vertices of the maximal paths in Q and
all the remaining vertices are the elements in (IUJ)—(INJ). If i is a vertex in Q
such that both 741 and 742 are in (IUJ)—(InJ]) then by Lemma (r1.1) (ii)
t—>1t4+1—>i+2 must occur in Q. Thus the paths of Q are completely determined.

Lemma (xx.7). — A configuration Q is acceptable if and only if Q is non-empty and a
disjoint union of paths such that the following hold.

(1) The first edge of every path which contains an edge is of the form i—i—+ 2.

(i1) If ¢ and i+ 1 are both vertices of Q then i—>i+1 occurs in Q.

Furthermore if Q satisfies these conditions then the number of ordered pairs (1, ]) such that
Q is acceptable for {1, J} is 2/9,

Proof. — Suppose that Q is acceptable for {I, J}. If ¢ is the first vertex of a path
in Q then ieInJ and so ¢4 1¢IUJ as I' and J’ are circular. Thus the path either
consists of ¢ or contains :—i-+42. GCondition (ii) follows from Lemma (11.1) (iv).
Since INJ#g it follows that Q is nonempty.

Conversely suppose that (i) and (ii) are satisfied. We will construct all possible
ordered pairs (I, J) such that Q is acceptable for {I, J}. By definition IN] is the set
of all first vertices of maximal paths in Q. Suppose that ¢ is in I (J respectively). 1f
t—i-41 isin Q then ¢+41 is in J (I respectively). If i—742 is in Q then we can place
i+2 in either I or J. In this way we construct 2//® ordered pairs (I,J). Because
of condition (ii) adjacent vertices cannot belong to distinct paths and so neither I nor J
contains adjacent vertices. Thus I’ and J’ are circular. Since {Q is non-empty,
InJ+e. This construction clearly yields all ordered pairs (I, J) such that Q is acceptable
for {1, J}.

Suppose that Q is an acceptable configuration. Let e=¢(Q). Let v=02(Q) be

the number of vertices in Q and let p=p(Q) be the number of maximal paths in Q.
Define

(xx.8) W(Q)=2"""2te,
Let W=W,= X W(@).
Q acceptable

Lemma (xx.9). — To prove Theorem B it suffices to prove that
W, = 2 W(Q):Q’"Um__22"'+1+(__I)m—12m.

Q acceptable

Proof. — If Q is acceptable for {I, J}, where I, J’ are circular and INJ<+g then
by Lemma (11.7) |I|+|J|=p+v. Thus by Corollary (5.2)

(1-\2’ CPI')(F2’ (PJ')': 2m—2|I|2m—2]J] — 22(m—p—v)'

Except in case I=]J=E or E' it follows from Lemmas (11.8) and (11.6) that
(T2, @rpy)=2%¥4P. By Lemmas (11.3) and (11.4)

(%, ) = (I, 9) =29+ (2" 4 1),
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Thus if m is odd then by Lemma (11.%)

Y,=_ X ofRgmmr-nl@r— ¥ W(Q)
2 acceptable Q acceptable

since ¢(Q)+s(Q) =e. The result follows from Lemma (10.%).
If m is even then by Lemma (11.7%)

Y,=_ 2 of@gmmrogs@yr oM )= X W(R)+2(g+1).

m™oQ acceptable Q acceptable

Thus the result also follows in this case by Lemma (10.7).

12, The computation of c,, completed.

Let ,, denote the graph obtained by deleting the vertex m and all edges on which
it lies together with the edge m—1—>1 from ©,.

Let ®,, denote the graph obtained from ®,, by deleting the vertex m—1 and
all edges on which it lies from ©,,.

If Q is an acceptable configuration containing 1 as the first vertex of one of its
maximal paths then by Lemma (11.7), neither the vertex m nor the path m—1—1
occurs in Q. Thus every vertex and edge in Q is in G,,.

Lemma (x2.1). — There is a graph isomorphism from ®,, onto ®,,_, which sends short
edges onto short edges and long edges onto long edges. Thus an acceptable configuration Q in ®,,
with 1 as first vertex of one of its maximal paths can be considered as a configuration in ®,, _, and

so in ®,,_,.

Proof. — The graph 6,, looks as follows:

m odd m even
1 > 2 1 > 2
Y Y Y Y
3 > 4 3 > 4
m-4 - m-3 m=-3 m-2
Y Y
m-2 —> m-1 m-1

The result is now obvious.
Let X, ,, be the set of all acceptable configurations Q which have exactly p maximal
paths such that 1 is the first vertex of one of these paths. We will partition X, into

three subsets.
Let %,,<X,, consist of all configurations Q which do not contain m—1 as

a vertex.
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Let B,,<X,, consist of all Q such that m—1 is a first vertex in some path.
Let €,,<X,, consist of all Q such that m—1 is a vertex in Q but is not the
first vertex of any path in Q.

Define
Apm= mnz‘z:r,.,mw(g)’
Bym= [ inESBp, m W),
C = o i!?‘.(asl,”’lW(Q).
Therefore
(12.2) ainzxp,,,.w(n)=A””"+B”"”+C”’""

For each acceptable configuration in &, we can specify an arbitrary element
of S, instead of 1, which is to occur as a first vertex of some path, and so obtain m acceptable
configurations in this way. However each configuration which contains p maximal
paths is then counted p times. Therefore by (12.2)

(12.3) W,= = wQ)=3%

™ Q acceptable p P

C, . by induction and so evaluate W,,.

(Ap,m + Bp,m + Gp,m) *

We will now compute A ., B

p,m? p,m?>

(i) f Qisin A, ,,, let 2 be the same configuration as Q but considered as a

configuration in ®,_,. By (11.8) W(Q)=4W(Q). Each configuration in X

pym—1
arises in this way from a unique one in ¥, ,. Hence
(12'4) Ap,m=4‘(Ap,m-—1+Bp,m—1+Cp,m—-1)'

(ii) If Qis in B, ,,, let Q denote the configuration in G,,_, obtained from Q by
deleting the vertex m—1 (there are no edges in Q with m —1 as a vertex). Since m—2
is not in Q, Q is in A,_; ,—1 and every configuration in U,_, ,_, arises in this way
from a unique Q in B,,. We have

(Q=1+0(L), €(Q)=¢(X).
Thus by (11.8) W(D)=W(fl) and so
(12.5) B, ,.=A

p,m p—1,m—1°

(iii) If Qisin E, ,,, let 2 be the configuration obtained by deleting the vertex m —1
and any edge with m—1 as end point. Such an edge is either m—2—->m—1 or
m—g->m—I.

If m—2—->m—1 is in Q then m—2 is not the first vertex in any maximal path
in Q and Q is in €, m—1. In this case

~

1(Q)=14+9(Q), Q=1 —l—e(ﬁ)
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and so W(Q)=2W(Q) by (11.8). Every configuration in €, m—y arises in this way
from a unique Q in ¢, ,.
If m—g—>m—1 occurs in Q, then the vertex m—2 is not in Q and so Q is in

Bym—2YCE, n_s. Every such L arises in a unique way from such 2 Q in €,,,. In
this case

v(Q)=1 +v(ﬁ), e(Q)=1 —|—e(fl)

~

and so by (11.8) W(Q)=8W(RQ). Therefore
(12.6) C,n=2GC, 1 +8B, 2+ GC,._s).

Equations (12.4) and (12.5) hold for m>g and (12.6) holds for m>4. Observe
that A ,=C,,=C, ;=0 for all p while B,,=o0 for all p+1 and B,,=4.
Define

flry)=2Z Z A xy"

m>2 p>0 pym

gx,p)= X X B, )"

m>2 p>0 2.m

h(x,9)= 2 2 C, , x"y"

m>2 p>0 P™
Equations (12.4) to (12.6) yield the following statements

S=4y(f+g+h)
g=9f+B,»'=nf+49"
h=8y*g +(8* 4 29)h.

If g is eliminated from these linear equations we get that
(49" + 4y —1)f +4yh=—161"
8’ f + (8" + 27 —1)h=— 320",

This in turn implies that

—160°(29—1)
(8 — 4" +32°—6y+1°

(12'7) f(xs.y)zx

By (12.3) and (12.4)

(12.8) W,=-2
p

Ap,m+ 1°

PN
>3

1
Let F(y) =f de. Then (12.8) implies that
o 4%

(12.9) F())= 2 W,"
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Computing F(») we find
f‘ —4 % (29 —1) .

0 ¥(8°—4)")+32°— 6y +1
=—log(40y*—4)*— 6y + 1)+ log(32)° — 6y +1).

F(y)=

Thus

— (1209 — 8y —6) (96y"—6)
12.10 F’ = .
( ) ©) 49°—4"—6p+1 32 —6y+1

Let H(y):%F’(y/Q). Then (12.9) implies that

(x2.11) H(y)= %12“’” "L
By (12.10)

H(y)— 15V Ftv+s 13
50— —3y+1  4)f—3y+1

Hence if «, B, y are the roots of x*—gx*—x+5 as in Section 1, it follows that

3 I
H(y)zl—afrIfﬂy+ljvy+l+y_lj2y'
Hence the coefficient of y"~! in H(y) is
o"m_*_pm_l_,{m_'_(_I)m—l__2m-+-1.
Hence (12.11) yields that

Wy = 2"( 4 B+ Y7+ (— 1) = ) = 27U (1)),

By Lemma (11.9) this completes the proof of Theorem B.
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APPENDIX

This Appendix contains some combinatorial results which are needed in this paper.

Lemma. — Let ¢>o. Let X, 5 (resp. Y,,) be the sum Zc!X|) where K ranges over
all subsets of m points arranged on a line (resp. circle) such that no points are adjacent. Then

sz : ((I +\/I+4c)m_(1_\/;——i__4—;)m)a be m_?_?b

\/1—}—41: 2 2
Ym:(I +\/21+4c) +(I—\/21+46) SJor m>1.

Proof. — A subset of the line or circle is admissible if no two points are adjacent.
Let x,, (resp. ,) denote the right hand side of the first (resp. second) equation
in the statement. Direct computation shows that

Xeg=x3=14¢, X,=x,=1-+2¢
Y=y =1, Yo =Jpy=1+2c.

It can furthermore be verified directly that X, =x, and Y, =y, for small values
of m so that it may be assumed that m is sufficiently large so that all quantities are defined.

The removal of an end point from the line with m points leaves a line with
m—1 points. The sum over the admissible subsets which do not contain this end point
is X, . 1, while the sum over the admissible subsets which contain this end point is ¢X,,.
Thus X, ,,=X, ., +¢X,. Itiseasily verified that x,  ,=%,,;+¢%,. Thus X =ux,
for all m>sg.

The removal of a fixed point from the circle with m + 2 points leaves a line with
m -1 points. Thus the sum over the admissible subsets which do not contain this point

is X, ., and the sum over the admissible subsets which do contain this points is ¢X
Therefore

m—1°
Yoo =XK1+ Xy 1 =X+ X+ X, p+EX 5 =Y, Y.
Since 3, =941+, it follows that Y, =y, for m>1.

Corollary. — (1) The number of subsets of m points arranged on a line which contains no

ot ot i ¥, = 7 (( +2\/§) - ( —2\/5) )
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(i) The number of circular subsets of S is T, — (I +2\/5) T (I _2\/5) :

(ii)) 2 2% 45 o™ for m even and 2™— 2 for m odd.
K circular
1K' %0

Proof. — (i) Let ¢=1 for X, _,.
(i) Let c¢=1 for Y,,.
(i11) Let c¢=2 for Y,.
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