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Journées Équations aux dérivées partielles
Biarritz, 6 juin–10 juin 2011
GDR 2434 (CNRS)

Effective Evolution Equations in Quantum Physics
Benjamin Schlein

Abstract
In these notes, we review some recent mathematical results concerning the

derivation of effective evolution equations from many body quantum mechan-
ics. In particular, we discuss the emergence of the Hartree equation in the
so-called mean field regime (for example, for systems of gravitating bosons),
and we show that the Gross-Pitaevskii equation approximates the dynamics
of initially trapped Bose-Einstein condensates. We explain how effective evo-
lution equations can be derived, on the one hand, by analyzing the so called
BBGKY hierarchy, describing the time-evolution of reduced density matrices,
and, on the other hand, by studying the dynamics of coherent initial states in
a Fock-space representation of the many body system.

1. Introduction
Systems of interest in physics are typically characterized by a very large number of
interacting degrees of freedom. Direct application of fundamental theories to study
the properties of these systems is impossible. One of the main goals of statistical
mechanics consists therefore in the derivation of simpler effective theories, providing
a good approximation to the fundamental equations in the relevant regimes.

We consider here a quantum mechanical system of N particles moving in the three
dimensional space and described by a wave function ψN ∈ L2(R3N , dx1 . . . dxN).
Physically, the absolute value squared |ψN(x1, . . . , xN)|2 determines the probabil-
ity density for finding particle one at x1, particle two at x2 and so on. More
generally, an observable of the system is a self-adjoint operator A acting on the
L2(R3N , dx1 . . . dxN); the physical expectation of this observable in the state de-
scribed by the wave function ψN is given by the L2-inner product 〈ψN , AψN〉. The
positions of the N particles are associated with multiplication operators (the op-
erator A = xj, acting by multiplication with xj, measures the position of the j-th
particle). The momenta of the particles are associated with differential operators
(the operator A = −i∇xj measures the momentum of the j-th particle).

In nature, there exist two different types of particles, known as bosons and
fermions, which behave differently with respect to permutations of the particles. The
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wave functions of bosonic systems are symmetric with respect to any permutation of
the N particles (in the sense that ψN(xπ1, . . . , xπN) = ψN(x1, . . . , xN) for any per-
mutation π ∈ SN). The wave functions of fermionic systems, on the other hand, are
antisymmetric with respect to permutations (ψN(xπ1, . . . , xπN) = σπψN(x1, . . . , xN),
where σπ is the sign of the permutation π ∈ SN). In these notes, we will exclusively
consider bosonic systems, and therefore we will always assume the wave function
ψN to be symmetric with respect to permutations. We will denote by L2

s(R3N) the
subspace of L2(R3N) consisting of all permutation symmetric functions.

The evolution of the quantum system is governed by the N -particle Schrödinger
equation

i∂tψN,t = HNψN,t (1.1)

for the time dependent wave function ψN,t (the subscript t just indicates the time
dependence of the wave function; time derivatives will always be written as ∂t).
On the r.h.s. of the Schrödinger equation, HN is a self-adjoint operator acting on
L2
s(R3N) and commonly known as the Hamilton operator (or Hamiltonian) of the

system. It typically has the form

H =
N∑
j=1

(
−∆xj + Vext(xj)

)
+ λ

N∑
i<j

V (xi − xj) (1.2)

where Vext is an external potential, λ ∈ R is a coupling constant and V (xi − xj)
describes the interaction between particles i and j. Here, and in the following, we
restrict our attention to Hamilton operators with two-body potentials, neglecting
interactions which depend at the same time on three or more particles.

The Schrödinger equation (1.1) is a linear equation and its unique solution can be
obtained by applying the unitary group generated by the self-adjoint operator HN

to the initial wave function ψN,t=0, i.e. ψN,t = e−iHtψN,0. in other words, the well-
posedness of the N -particle Schrödinger equation (1.1) is not an issue (although,
depending on the properties of the potentials Vext, V , it may not be easy to show
that the unbounded operator H, defined on an appropriate domain, is self-adjoint).
When studying systems of interest in physics, however, it is generally very difficult
to extract qualitative or quantitative information (beyond its well-posedness) from
(1.1). The reason is that, in typical situations, the number of particles involved in
the dynamics is huge. It varies between N ' 103 in extremely dilute samples of
Bose-Einstein condensates, to N ' 1023 in chemical samples, up to N & 1045 in
stars and other astronomical and cosmological systems. For such values of N , it is
impossible to solve (1.1) directly. Instead, it is desirable to derive effective equations
approximating the dynamics governed by (1.1) in the relevant interesting regimes.

Probably the simplest non-trivial situation where it is possible to obtain an effec-
tive approximation of the dynamics (1.1) is the so-called mean field limit. The mean
field regime is characterized by a large number of particles which interact very weakly
with all other particles in the system, so that, effectively, the two-body interaction
experienced by each particle can be approximated by an averaged, mean field, po-
tential. The Hamiltonian (1.2) describes a mean field regime if N � 1 (large number
of particles) and λ� 1 (weak coupling), so that Nλ =: κ remains of order one (this
guarantees that the total potential, the total force acting on each particle is of order
one). To study the evolution in the mean field regime we consider a factorized initial
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wave function ψN = ϕ⊗N (meaning that ψN(x1, . . . , xN) = ∏N
j=1 ϕ(xj)) for an arbi-

trary one-particle orbital ϕ ∈ L2(R3) and we study its evolution ψN,t = e−iHN tψN,0,
as generated by the mean field Hamilton operator

HN =
N∑
j=1

(
−∆xj + Vext(xj)

)
+ κ

N

∑
i<j

V (xi − xj) (1.3)

in the limit of large N . Because of the interaction, factorization cannot be pre-
served by the time-evolution. Nevertheless, because of the mean field character of
the Hamiltonian, we may expect that factorization is approximately preserved in
the limit of large N . If this is true, we would have

ψN,t(x1, . . . , xN) '
N∏
j=1

ϕt(xj) (1.4)

in an appropriate sense and for an appropriately evolved one-particle orbital ϕt ∈
L2(R3). Under this assumption, it is simple to find a self-consistent equation for the
evolution of the orbital ϕt. In fact, if (1.4) holds true, the particles are approximately
distributed in space independently of each others, with the probability density |ϕt|2.
The total potential experienced by, say, particle j, can therefore be approximated
by

κ

N

∑
i 6=j

V (xi − xj) '
κ

N

∑
i 6=j

∫
dy |ϕt(y)|2V (y − xj) ' κ(V ∗ |ϕt|2)(xj) .

We conclude that the one-particle orbital ϕt must evolve according to the self-
consistent, non-linear, Hartree equation

i∂tϕt = −∆ϕt + Vextϕt + κ(V ∗ |ϕt|2)ϕt . (1.5)

To understand in which sense (1.4) can be correct, we introduce the concept of
reduced density matrices associated with a bosonic wave function ψN,t. We define,
first of all, the density matrix associated with ψN,t as the orthogonal projection
γN,t = |ψN,t〉〈ψN,t| onto ψN,t (we use here the shorthand notation |ψ〉〈ψ| to denote
the orthogonal projection onto ψ). For k = 1, . . . , N , we define then the k-particle
reduced density matrix γ(k)

N,t by taking the partial trace of γN,t over the last N − k
variables, i.e.

γ
(k)
N,t = Trk+1,...,N γN,t . (1.6)

In other words, the k-particle reduced density matrix γ
(k)
N,k is defined as the non-

negative, trace-class operator on L2(R3k) with the integral kernel

γ
(k)
N,t(x1, . . . , xk;x′1, . . . x′k)

=
∫
dxk+1 . . . dxN ψN,t(x1, . . . , xk, xk+1, . . . , xN)ψN,t(x′1, . . . , x′k, xk+1, . . . , xN) .

(1.7)

By definition Tr γ(k)
N,t = 1 for all k = 1, . . . , N . Using the k-particle reduced den-

sity γ
(k)
N,t one can compute the expectation of k-particle observables (observables

depending non-trivially on at most k particles). In fact,

〈ψN,t,
(
O(k) ⊗ 1(N−k)

)
ψN,t〉 = Tr

(
O(k) ⊗ 1(N−k)

)
γN,t = TrO(k)γ

(k)
N,t .
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It turns out that reduced density matrices provide the correct language to under-
stand the convergence (1.4) in the limit of large N .

Theorem 1.1. Under appropriate assumptions on the potentials V, Vext (see dis-
cussion below), consider the factorized N-particle wave function ψN = ϕ⊗N , for an
arbitrary ϕ ∈ H1(R3). Let ψN,t = e−iHN tψN be the evolution of ψN , as generated by
the mean field Hamiltonian (1.3). Then, for any fixed k ∈ N and t ∈ R, we have, as
N →∞,

γ
(k)
N,t → |ϕt〉〈ϕt|⊗k (1.8)

where ϕt is the solution of the nonlinear Hartree equation (1.5) with initial data
ϕt=0 = ϕ. The convergence in (1.8) is in the trace class topology.

In particular, Theorem 1.1 implies that, for any bounded k-particle observable
O(k), and for any fixed t ∈ R, we have〈

ψN,t,
(
O(k) ⊗ 1(N−k)

)
ψN,t

〉
→
〈
ϕ⊗kt , O(k)ϕ⊗kt

〉
as N → ∞. In other words, as long as we compute the expectation of observables
depending only on a fixed number of particles, the solution of the full Schrödinger
equation ψN,t can be approximated, as N →∞, by the product ϕ⊗Nt of solutions of
the Hartree equation (1.5).

The first proof of this result was obtained by Spohn in [28], for bounded interaction
potential V ∈ L∞(R3). Later, Spohn’s approach was extended by Erdős and Yau
in [11] to interactions with Coulomb singularity V (x) = ±1/|x| (partial results for
the Coulomb case were also obtained by Bardos-Golse-Mauser in [1]). Note that, in
all these works, the important assumptions concern the interaction potential; only
very minor conditions have to be imposed on the external potential Vext (to make
sure that the operator HN is self-adjoint).

The main idea of the approach developed in [28] and then extended in [11, 1]
is to study directly the time-evolution of the reduced density matrices. From the
Schrödinger equation (1.1) for the wave-function ψN,t it is simple to derive a hier-
archy, commonly known as the BBGKY hierarchy (BBGKY stands for Bogoliubov,
Born, Green, Kirkwood, Yvon), consisting of N coupled equations describing the
evolution of the reduced densities. For k = 1, . . . , N , we find

i∂tγ
(k)
N,t =

k∑
j=1

[
−∆xj + Vext(xj), γ(k)

N,t

]
+ 1
N

k∑
i<j

[
V (xi − xj), γ(k)

N,t

]

+
(

1− k

N

)
k∑
j=1

Trk+1
[
V (xj − xk+1), γ(k+1)

N,t

]
.

(1.9)

Here, we use the convention that γ(N+1)
N,t = 0. In the last term, Trk+1 indicates the

partial trace over the (k+ 1)-th particle. It is simple to understand the origin of the
three terms on the r.h.s. of (1.9). The first term corresponds to the kinetic energy
of the first k particles. The second term describes the interactions among the first
k particles. The last term, on the other hand, describes the interaction between
the first k particles and the other (N − k) particles, which are integrated out in
the definition of γ(k)

N,t (this is why the last term depends on γ(k+1)
N,t and not only on

γ
(k)
N,t). As N →∞, the BBGKY hierarchy converges, at least formally, to an infinite

hierarchy of equations. Suppose that {γ(k)
∞,t}k≥1 denotes a limit point of the sequence
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{γ(k)
N,t}Nk=1 (with respect to an appropriate product topology). Then, from (1.9), we

may expect the limit point to satisfy the infinite hierarchy (k ≥ 1)

i∂tγ
(k)
∞,t =

k∑
j=1

[
−∆xj + Vext(xj), γ(k)

∞,t

]
+

k∑
j=1

Trk+1
[
V (xj − xk+1), γ(k+1)

∞,t

]
. (1.10)

It is then worth noticing that this infinite hierarchy has a factorized solution. In fact,
it is simple to check that the ansatz γ(k)

∞,t = |ϕt〉〈ϕt|⊗k solves (1.10) if and only if ϕt
solves the nonlinear Hartree equation (1.5). This observation suggests that, in order
to obtain a rigorous proof of Theorem 1.1, one can proceed as follows. First, one has
to show the compactness of the sequence {γ(k)

N,t}Nk=1 with respect to an appropriate
(weak) topology. In the second step, one has to identify the limit points {γ(k)

∞,t}k≥1 of
the sequence {γ(k)

N,t}Nk=1 as solutions of the infinite hierarchy (1.10). Finally, one has to
show the uniqueness of the solution of the infinite hierarchy (1.10). These three steps
immediately imply the convergence of the sequence {γ(k)

N,t}Nk=1 towards the factorized
solution {|ϕt〉〈ϕt|⊗k}k≥1 with respect to the weak topology; since |ϕt〉〈ϕt|⊗k is a rank
one projection, it is then easy to check that the weak convergence also implies strong
convergence (in the trace-norm topology). Let us remark here that, as noticed by
Chen and Pavlović in [5], this approach can also be extended to many-body systems
interacting via three-body potentials (namely potentials depending at the same time
on three particles).

2. Dynamics of Bose-Einstein Condensates

A trapped Bose gas can be described by the Hamilton operator

Htrap
N =

N∑
j=1

(
−∆xj + Vext(xj)

)
+

N∑
i<j

N2V (N(xi − xj)) (2.1)

acting on the Hilbert space L2
s(R3N , dx1, . . . dxN). Here Vext is a confining potential

(with Vext(x) → ∞ as |x| → ∞), and V is a short range (possibly compactly
supported), repulsive (meaning that V (x) ≥ 0, for all x ∈ R3), bounded interaction
potential. In (2.1), the interaction potential scales with the number of particles N ,
so that its scattering length is of the order 1/N . The scattering length is a physical
quantity which measures the effective range of the potential V . It is defined through
the solution of the zero-energy scattering equation(

−∆ + 1
2V (x)

)
f = 0 (2.2)

with the boundary condition f(x)→ 1 as |x| → ∞. For large |x|, f(x) has the form

f(x) ' 1− a0

|x|
+ o(|x|−1)

for an appropriate constant a0, which is defined to be the scattering length of V .
Equivalently, the scattering length a0 can be defined through

8πa0 =
∫
dx V (x)f(x) . (2.3)
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It is simple to check that, for repulsive potentials, a0 > 0. By scaling, it is also clear
that, if a0 denotes the scattering length of the potential V , the scattering length of
the rescaled potential VN(x) = N2V (Nx) appearing in (2.1) is given by a = a0/N .

In [22], Lieb, Seiringer and Yngvason proved that, in the limit of large N , the
ground state energy of the Hamiltonian (2.1) can be approximated, for large N ,
minimizing the so called Gross-Pitaevskii energy functional. More precisely, they
showed that, if EN denotes the bottom of the spectrum of the operator (2.1), then

lim
N→∞

EN
N

= min
ϕ∈L2(R3):‖ϕ‖=1

εGP(ϕ)

where we defined the Gross-Pitaevskii energy functional

εGP(ϕ) =
∫
dx
(
|∇ϕ(x)|2 + Vext(x)|ϕ(x)|2 + 4πa0|ϕ(x)|4

)
(2.4)

for arbitrary ϕ ∈ H1(R3). In particular, in first order, the ground state energy
depends on the interaction potential V only through its scattering length a0 (the
precise profile of the potential is irrelevant). In [21], Lieb and Seiringer also showed
that the ground state of (2.1) exhibits complete Bose-Einstein condensation, in the
sense that, if γ(1)

N denotes the one-particle reduced density matrix associated with
the ground state vector ψN of (2.1), then

γ
(1)
N → |φGP〉〈φGP| , as N →∞ , (2.5)

where φGP ∈ L2(R3) denotes the minimizer of the Gross-Pitaevskii energy functional
(2.4). Physically, (2.5) tells us that, in the ground state of (2.1), almost all particles
(all particles up to a fraction vanishing as N → ∞) are in the one-particle state
described by φGP.

The analysis of [22, 21] implies that if we prepare a trapped Bose gas at suffi-
ciently small temperatures, the system will condensate into the minimizer of the
Gross-Pitaevskii energy functional. It seems then natural to ask what happens if we
perturb the gas, for example by removing the external traps (typically consisting of
strong magnetic fields). The system will immediately react to the perturbation and
it will begin to evolve. The evolution will be generated by the translation invariant
Hamiltonian

HN =
N∑
j=1
−∆xj +

N∑
i<j

N2V (N(xi − xj)) . (2.6)

While the results of [22, 21] show the validity of the Gross-Pitaevskii theory for
predicting the ground state properties of trapped Bose gases, the next theorem
shows that it also correctly describes the evolution of initially trapped Bose-Einstein
condensates.

Theorem 2.1. Suppose V ≥ 0, V (−x) = V (x), |V (x)| ≤ (1 + |x|2)−σ, for some
σ > 5/2 and define HN as in (2.6). Consider a sequence of N-particle wave functions
ψN ∈ L2(R3N) such that

• ψN has finite energy per particles; there exists a constant C > 0 with 〈ψN , HNψN〉 ≤
CN .

• ψN exhibits complete condensation; the one-particle reduced density matrix
γ

(1)
N associated with ψN is so that γ(1)

N → |ϕ〉〈ϕ| for some ϕ ∈ H1(R3).
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Let ψN,t = e−iHN tψN . Then, for every fixed k ∈ N and t ∈ R, we have

Tr
∣∣∣γ(k)
N,t − |ϕt〉〈ϕt|⊗k

∣∣∣→ 0
as N →∞, where ϕt is the solution of the time-dependent nonlinear Gross-Pitaevskii
equation

i∂tϕt = −∆ϕt + 8πa0|ϕt|2ϕt (2.7)
with initial data ϕt=0 = ϕ. Here a0 denotes the scattering length of the (unscaled)
interaction potential V .

This theorem, which was proven in [7, 8, 9, 10], states that complete condensation
is preserved by the time-evolution and that the condensate wave function evolves
according to the Gross-Pitaevskii equation (2.7). Note that a different derivation of
the Gross-Pitaevskii equation was proposed by Pickl in [26].

The Hamilton operator (2.6) can be written as

HN =
N∑
j=1
−∆xj + 1

N

N∑
i<j

N3V (N(xi − xj))

and one may try to interpret HN as a mean field Hamiltonian, with interaction
potential vN(x) = N3V (Nx). This observation suggests that, in order to show The-
orem 2.1, one can use again the strategy outlined at the end of Section 1. It turns
out, however, that one should be very careful with this analogy, and that, although
the general strategy based on the study of the BBGKY hierarchy still applies, sev-
eral changes are needed and here a much deeper analysis of the N -particle dynamics
is required.

Let us briefly explain the new challenges appearing in the proof of Theorem
2.1, as compared with the mean field regime discussed in Section 1. Since, for-
mally, vN(x)→ b0δ(x), with b0 =

∫
dx V (x), the naive analogy with the mean field

situation suggests that the dynamics generated by the Hamiltonian (2.6) can be
approximated, for large N , by the Hartree equation

i∂tϕt = −∆ϕt +
(
b0δ ∗ |ϕt|2

)
ϕt = −∆ϕt + b0|ϕt|2ϕt .

This equation has the same form as the Gross-Pitaevskii equation (2.7), but the
wrong coupling constant in front of the non-linearity. From the physical point of
view, it is not surprising that the mean field analogy fails. The mean field regime
is characterized by a large number of very weak collisions among the particles. The
dynamics generated by (2.6), on the other hand, is characterized by rare and, at the
same time, very strong collisions (particles only interact when they are at distances
of order 1/N from each others). As a consequence, it turns out that the correlations
among the particles, which were negligible in the mean field regime, play here an
important role and, in particular, are crucial to understand the emergence of the
scattering length a0 in the Gross-Pitaevskii equation (2.7).

Because of the singularity of the interaction potential, the solution of the
Schrödinger equation ψN,t = e−iHN tψN develops a short-scale correlation structure
which lives on the same length scale 1/N characterizing the potential. The singular
correlation structure can be approximately described by the zero-energy scattering
equation f(x) defined in (2.2) (more precisely, the singular structure is described
by the solution fN(x) = f(Nx) of the zero-energy scattering equation with rescaled
potential N2V (Nx)). So, the effective, average potential which is experienced say,
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by particle j due to the interaction with the other (N − 1) particles can be approx-
imated here by∑

i 6=j
N2V (N(xi − xj)) '

∑
i 6=j

∫
dy N2V (N(y − xj))f(N(y − xj))|ϕt(y)|2

'
∫
dyV (y)f(y)|ϕt(xj + y)|2 ' 8πa0|ϕt(xj)|2

where we used the characterization (2.3) of the scattering length a0. Hence, taking
into account the correlations, we obtain the Gross-Pitaevskii equation (2.7) with the
correct coupling constant in front of the nonlinearity. This heuristic argument shows
that one of the main new challenges consists in proving that the N -body dynamics
really develops a singular correlation structure which can be described, in good
approximation, by the solution of the zero-energy scattering equation (2.2). Another
major challenge, compared with the results obtained in the mean field regime, is
the proof of the uniqueness of the infinite hierarchy. The main problem here is
that the interaction potential given in the limiting hierarchy by a delta-function
cannot be controlled, in three dimensions, by the kinetic energy. As a consequence,
uniqueness is proven in [7] by expanding the solution in a complicated diagrammatic
expansion in terms of Feynman graphs; to control the many contributions in this
expansion, it is very important to use the smoothing effects of the free evolution,
which effectively regularize the singular interaction potential. A new and simpler
proof of the uniqueness of the infinite hierarchy was obtained by Klainermann and
Machedon in [18] (later, this approach was extended by Chen and Pavlović in [4]).
These works show the uniqueness of the infinite hierarchy in a class of densities
satisfying certain space-time bounds. Unfortunately, so far it has not been possible
to show that the limit points of the sequences {γ(k)

N,t}Nk=1 satisfy these bounds; as
a consequence, so far it was not possible to apply the results of [18, 4] to prove
Theorem 2.1 (in one and two dimensions, on the other hand, the results of [18, 4]
can be applied to show the analogous of Theorem 2.1; see [17]). For more details of
the proof of Theorem 2.1, we refer to [7, 8, 9, 10].

3. Mean Field Evolution of Coherent States
The main drawback of the methods outlined in Sections 1 and 2 is the lack of
precise bounds on the difference between the many body dynamics and the effective
Hartree evolution. With an expansion of the solution of the BBGKY hierarchy (1.9),
it is possible to show (at least for bounded interaction potentials) that there exists
constants C, T0 > 0 such that

Tr
∣∣∣γ(1)
N,t − |ϕt〉〈ϕt|

∣∣∣ ≤ C

N
(3.1)

for all t ∈ R with |t| ≤ T0. Similar bounds can also be obtained for the reduced
k-particle densities, for fixed k ≥ 2. Unfortunately, (3.1) is only valid for short times;
for t > T0, one can still iterate (3.1), but one only obtains much weaker estimates
of the form

Tr
∣∣∣γ(1)
N,t − |ϕt〉〈ϕt|

∣∣∣ ≤ CN−
1

2t .

It turns out that one can derive stronger (optimal) bounds on the rate of the
convergence of the many body evolution towards the mean field Hartree dynamics
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using techniques originating in quantum field theory. These techniques, which were
first introduced by Hepp in [16] for the analysis of the classical limit of quantum
mechanics, and later extended by Ginibre-Velo in [13], are based on a Fock-space
representation of the bosonic systems and on the study of the dynamics of so-called
coherent states. A different approach, which also leads to explicit bounds on the
rate of convergence was proposed by Pickl in [25], and then applied by Knowles and
Pickl to the derivation of the Hartree equation with singular potentials in [19].

The bosonic Fock-space over L2(R3) is defined as the direct sum

F = C⊕
⊕
n≥1

L2
s(R3n, dx1, . . . dxn)

where L2
s(R3n) denotes the subspace of L2(R3n) consisting of functions symmet-

ric with respect to permutation of the n particles. Vectors in the Fock-space are
sequences Ψ = {ψ(n)}n≥0, where ψ(n) ∈ L2

s(R3n) is an n-particle bosonic wave func-
tion. The idea behind the introduction of the Fock-space is that we want to study
states where the number of particles is not fixed. Clearly, F has the structure of a
Hilbert space with the inner product

〈Ψ,Φ〉 = ψ(0)φ(0) +
∑
n≥1
〈ψ(n), φ(n)〉 .

The vector Ω = {1, 0, 0, . . .} ∈ F is called the vacuum and describes a system with
no particles. An important operator on F is the number of particle operator N ,
which is defined by

N{ψ(n)}n≥0 = {nψ(n)}n≥0 .

The vacuum Ω is an eigenvector of N with eigenvalue zero. More generally, vectors
of the form {0, . . . , 0, ψ(m), 0, . . .}, having a fixed number of particles, are eigen-
vectors of N (with eigenvalue m). On F , we define the Hamilton operator HN by
HN{ψ(n)}n≥1 = {H(n)

N ψ(n)}n≥1, with

H(n)
N =

n∑
j=1

(
−∆xj + Vext(xj)

)
+ 1
N

n∑
i<j

V (xi − xj) .

By definition, HN leaves each n-particle sector Fn (defined as the eigenspace of N
associated with the eigenvalue n) invariant. Moreover, on the N -particle sector, HN

agrees with the mean field Hamiltonian HN defined in (1.3). In particular, if we
consider the Fock-space evolution of an initial vector with exactly N particles, we
find

e−iHN t{0, . . . , 0, ψN , 0, . . .} = {0, . . . , 0, e−iHN tψN , 0, . . .}

exactly as in Section 1. The advantage of working in the Fock space is that we
have more freedom in the choice of the initial data. We will use this freedom by
considering a class of initial data, known as coherent states, with non-fixed number
of particles.

It is very useful to introduce, on the Fock space F , creation and annihilation
operators. For f ∈ L2(R3), we define the creation operator a∗(f) and the annihilation
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operator a(f) by setting

(a∗(f)ψ)(n) (x1, . . . , xn) = 1√
n

n∑
j=1

f(xj)ψ(n−1)(x1, . . . , xj−1, xj+1, . . . , xn)

(a(f)ψ)(n) (x1, . . . , xn) =
√
n+ 1

∫
dx f(x)ψ(n+1)(x, x1, . . . , xn) .

The operators a∗(f) and a(f) are densily defined and closed. It is easy to check
that, as the notation suggests, a∗(f) is the adjoint of a(f). Creation and annihilation
operators satisfy the canonical commutation relations

[a(f), a∗(g)] = 〈f, g〉 and [a(f), a(g)] = [a∗(f), a∗(g)] = 0
for any f, g ∈ L2(R3) (here 〈f, g〉 denotes the L2-inner product). Physically, the
operator a∗(f) creates a particle with wave function f , while a(f) annihilates it.
As a consequence, a state with N particles all in the one-particle state ϕ, can be
written as

{0, . . . , 0, ϕ⊗N , 0, . . .} = (a∗(ϕ))N√
N !

Ω .

It is also useful to introduce operator-valued distributions ax, a∗x defined so that

a(f) =
∫
dxf(x)ax, and a∗(f) =

∫
dx f(x) a∗x .

With this notation, a∗xax gives the density of particles close to x ∈ R3. The number
of particles operator can formally be written as

N =
∫
dx a∗xax .

Similarly, the Hamilton operatorHN can be formally expressed in terms of operator-
valued distributions as

HN =
∫
dx (∇xa

∗
x∇xax + Vext(x)a∗xax) + 1

2N

∫
dxdy V (x− y)a∗xa∗yayax .

The fact that every term in the Hamiltonian contains the same number of creation
and annihilation operators means that HN commutes with the number of particles
or, equivalently, that the number of particles is preserved by the time-evolution
enerated by HN .

For later use, we observe that the creation and annihilation operators are not
bounded; however, they can be bounded by the square root of the number of particles
operator, in the sense that

‖a(f)ψ‖ ≤ ‖f‖ ‖N 1/2ψ‖ and ‖a∗(f)ψ‖ ≤ ‖f‖ ‖(N + 1)1/2ψ‖ (3.2)

for every ψ ∈ F , f ∈ L2(R3) (here ‖f‖ indicates the L2-norm of f).
As mentioned above, we are going to study the evolution of initial coherent states.

For arbitrary ϕ ∈ L2(R3), we define the Weyl operator
W (ϕ) = ea

∗(ϕ)−a(ϕ) .

The coherent state with wave function ϕ is then defined as W (ϕ)Ω. The Weyl
operator W (ϕ) is a unitary operator; therefore the coherent state W (ϕ)Ω always
has norm one. Moreover, since

W (ϕ)Ω = e−‖ϕ‖
2/2 ∑

j=0

a∗(ϕ)j
j! Ω = e−‖ϕ‖

2/2{1, ϕ, ϕ
⊗2
√

2!
, . . . ,

ϕ⊗j√
j!
, . . .} ,
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the coherent state W (ϕ)Ω does not have a fixed number of particles. One can nev-
ertheless compute the expectation of the number of particles in the state W (ϕ)Ω;
it is given by

〈W (ϕ)Ω,NW (ϕ)Ω〉 = ‖ϕ‖2 .

More precisely, it turns out that the number of particle in the coherent stateW (ϕ)Ω
is a Poisson random variable with expectation and variance ‖ϕ‖2. The main reason
why coherent states have nice algebraic properties (which will be used later on in the
analysis of their evolution) is the fact that they are eigenvectors of all annihilation
operators. Indeed

a(f)W (ϕ)Ω = (f, ϕ)W (ϕ)Ω
for every f, ϕ ∈ L2(R3). This is a simple consequence of the fact that Weyl operators
generate shifts of creation and annihilation operators, in the sense that

W ∗(ϕ)a(f)W (ϕ) = a(f) + (f, ϕ), and W ∗(ϕ)a∗(f)W (ϕ) = a∗(f) + (ϕ, f) .
(3.3)

Next, we study the evolution of an initial coherent state with respect to the
dynamics generated by the Hamilton operator HN . To reproduce the mean field
regime analyzed in Section 1, we choose the initial coherent state to have expected
number of particles equal to N (the number of particles cannot be fixed, but at least
we should fix its average to be given by N ; otherwise the resulting evolution will
not have anything to do with the mean field Hartree dynamics).

Theorem 3.1. Suppose that the interaction potential V is such that, as an operator
inequality V 2 ≤ (1−∆). For ϕ ∈ H1(R3), consider the initial coherent state

W (
√
Nϕ)Ω = e−N/2

{
1,
√
Nϕ, . . . ,

N j/2ϕ⊗j√
j!

, . . .

}
.

Let ΨN,t = e−iHN tW (
√
Nϕ)Ω, and let Γ(1)

N,t denote the one-particle reduced density
associated with ΨN,t. Then there exist constants C,D ≥ 0 such that

Tr
∣∣∣Γ(1)
N,t − |ϕt〉〈ϕt|

∣∣∣ ≤ C
eD|t|

N
(3.4)

for all t ∈ R. Here ϕt denotes the solution of the nonlinear one-particle Hartree
equation (1.5) with initial data ϕt=0 = ϕ.

Observe that the operator inequality V 2 ≤ C(1−∆), which means that∫
dx V (x)|ϕ(x)|2 ≤ C‖ϕ‖H1

for all ϕ ∈ H1(R3), is satisfied for potentials with Coulomb singularities V (x) '
±1/|x|.

From the convergence towards the Hartree dynamics for the evolution of initial
coherent states, one can deduce a similar result for the evolution of initially fac-
torized states with a fixed number of particles. To this end, one can use the fact
that

{0, . . . , 0, ϕ⊗N , 0, . . .} = a∗(ϕ)N√
N !

Ω = dNPNW (
√
Nϕ)Ω
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where PN is the orthogonal projection onto the N -particle sector of F , and dN =
eN/2N−N/2

√
N ! ' N1/4. Alternatively, one can write

{0, . . . , 0, ϕ⊗N , 0, . . .} = dN

∫ 2π

0
dθ e−iNθW (

√
Neiθϕ)Ω

to express the factorized state as a linear combination of coherent states.
Corollary 3.2. Let the potential V be so that V 2 ≤ (1−∆) and define the Hamilton-
ian HN as in (1.3). Let ψN = ϕ⊗N and ψN,t = e−iHN tψN . Then there exist C,D > 0
such that

Tr
∣∣∣γ(1)
N,t − |ϕt〉〈ϕt|

∣∣∣ ≤ C
eD|t|

N
for all t ∈ R. Here ϕt is the solution of the Hartree equation (1.5), with initial data
ϕt=0 = ϕ.

The details of how Corollary 3.2 follow from Theorem 3.1 can be found in [27, 2].
In the following let us briefly present the main ideas behind the proof of Theorem
3.1. The main idea is to use the fact that the evolution of a coherent state remains
approximately coherent. As we will see, it is possible to extract the coherent part
of the evolved state, and then to focus on the evolution of the fluctuations, which,
thank to the algebraic properties of the coherent states, can be expressed in simple
and compact form. Let us remark that, in [14, 15], Grillakis, Machedon and Margetis
proposed to approximate the evolution of the coherent state not just by a coherent
state but by a larger manifold of so-called Bogoliubov states; this allows them to
obtain more precise approximation of the many-body evolution (this approach has
been extended to systems with three-body interactions by Chen in [3]).

The first observation is that the one-particle density matrix Γ(1)
N,t associated with

the Fock-space state ΨN,t has the integral kernel

Γ(1)
N,t(x; y) = 1

〈ΨN,t,NΨN,t〉
〈ΨN,t, a

∗
xayΨN,t〉 = 1

N
〈ΨN,t, a

∗
xayΨN,t〉 .

Expanding a∗x and ay around their mean field values
√
Nϕt(x),

√
Nϕt(y), we obtain

Γ(1)
N,t(x; y)− ϕt(x)ϕt(y)

= 1
N

〈
Ω,W ∗(

√
Nϕ)eiHN t

(
a∗x −

√
Nϕt(x)

) (
ay −

√
Nϕt(y)

)
e−iHN tW (

√
Nϕ)Ω

〉
+ ϕt(x)√

N

〈
Ω,W ∗(

√
Nϕ)eiHN t

(
ay −

√
Nϕt(y)

)
e−iHN tW (

√
Nϕ)Ω

〉
+ ϕt(y)√

N

〈
Ω,W ∗(

√
Nϕ)eiHN t

(
a∗x −

√
Nϕt(x)

)
e−iHN tW (

√
Nϕ)Ω

〉
.

Using (3.3), we rewrite the last equation as

Γ(1)
N,t(x; y)− ϕt(x)ϕt(y)

= 1
N

〈
Ω,W ∗(

√
Nϕ)eiHN tW (

√
Nϕt)a∗xayW ∗(

√
Nϕt)e−iHN tW (

√
Nϕ)Ω

〉
+ ϕt(x)√

N

〈
Ω,W ∗(

√
Nϕ)eiHN tW (

√
Nϕt)ayW ∗(

√
Nϕt)e−iHN tW (

√
Nϕ)Ω

〉
+ ϕt(y)√

N

〈
Ω,W ∗(

√
Nϕ)eiHN tW (

√
Nϕt)a∗xW ∗(

√
Nϕt)e−iHN tW (

√
Nϕ)Ω

〉
.
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Introducing the two-parameter group of unitary transformations

U(t; s) = W ∗(
√
Nϕt)e−iHN (t−s)W (

√
Nϕs), (3.5)

we find

Γ(1)
N,t(x; y)− ϕt(x)ϕt(y) = 1

N
〈Ω,U∗(t; 0) a∗xay U(t; 0)Ω〉+ ϕt(x)√

N
〈Ω,U∗(t; 0)ay U(t; 0)Ω〉

+ ϕt(y)√
N
〈Ω,U∗(t; 0)a∗x U(t; 0)Ω〉 .

(3.6)

Let us first consider the first term on the r.h.s. of the last equation; recalling the
bounds (3.2), we conclude that the contribution of this term to the l.h.s. of (3.4) can
be controlled by the r.h.s. of (3.4) if we can control the growth of the expectation of
the number of particles operator N with respect to the fluctuation dynamics U(t; 0),
i.e. if we can prove that

〈Ω,U∗(t; 0)NU(t; 0)Ω〉 ≤ CeD|t| . (3.7)

It is worth noticing that the fluctuation dynamics U(t; s) satisfies the Schrödinger
equation

i∂tU(t; s) = L(t)U(t; s), with U(s; s) = 1

with the generator

L(t) =
∫
dx

(
∇xa

∗
x∇xax + Vext(x) a∗xax + (V ∗ |ϕt|2)(x)a∗xax

)
+
∫
dxdy V (x− y)ϕt(x)ϕt(y)a∗xay

+ 1
2

∫
dxdy V (x− y)

(
ϕt(x)ϕt(y)a∗xa∗y + ϕt(x)ϕt(y)axay

)
+ 1

2
√
N

∫
dxdyV (x− y) a∗x

(
a∗yϕt(y) + ayϕt(y)

)
ax

+ 1
2N

∫
dxdy V (x− y) a∗xa∗yayax .

(3.8)

In contrast with the Hamiltonian HN , the generator L(t) contains terms (the terms
on the second and third line) which do not commute with the number of particles
operator N (because the number of creation operators does not match the number
of annihilation operators). Hence, not surprisingly, the expectation of N is not
preserved by the fluctuation dynamics U(t; 0). Nevertheless, it turns out that, if the
condition V 2 ≤ C(1−∆) is satisfied, it is still possible to control the growth of the
expectation of N , and to prove the bound (3.7). For the details, we refer to [27].

The analysis of the second and the third term on the r.h.s. of (3.6) requires slightly
more works. Formally these terms seem to be of the order N−1/2. To show that
they really are of the order N−1, and prove the bound (3.4), one needs to compare
the fluctuation dynamics U(t; 0) with a limiting dynamics U∞(t; 0), satisfying the
Schrödinger equation

i∂tU∞(t; s) = L∞(t)U∞(t; s)
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with the generator

L∞(t) =
∫
dx

(
∇xa

∗
x∇xax + Vext(x) a∗xax + (V ∗ |ϕt|2)(x)a∗xax

)
+
∫
dxdy V (x− y)ϕt(x)ϕt(y)a∗xay

+ 1
2

∫
dxdy V (x− y)

(
ϕt(x)ϕt(y)a∗xa∗y + ϕt(x)ϕt(y)axay

)
obtained by formally letting N →∞ in (3.8). The point is that if we replace U(t; 0)
by U∞(t; 0) in the second and in the third term on the r.h.s. of (3.6), these terms
vanish. In fact

〈Ω,U∞(t; 0)∗ax U∞(t; 0)Ω〉 = 〈Ω,U∞(t; 0)∗a∗x U∞(t; 0)Ω〉 = 0

because, although U∞(t; 0) does not preserves the number of particles, it does pre-
serve the parity (in the sense that it commutes with the operator (−1)N ). This
observation implies that, in the second and third terms on the r.h.s. of (3.6), the
unitary evolution U(t; 0) can be replaced by the difference U(t; 0) − U∞(t; 0); this
produces the additional factor N−1/2 (because the difference between the two gen-
erators, L(t) and L∞(t), is of this order), and explains why also the second and the
third term on the r.h.s. of (3.6) are of the order N−1. Again, we refer to [27] for
further details.

4. Gravitational Collapse of Boson Stars

As an application of the techniques discussed in Section 3, the last part of these notes
is devoted to the study of the dynamics of so-called boson stars. These are systems of
bosons with relativistic dispersion law interacting through classical Newtonian grav-
ity (such particles are usually called semi-relativistic, or pseudo-relativistic bosons).
The Hamilton operator has the form

Hgrav
N =

N∑
j=1

√
1−∆xj −G

N∑
i<j

1
|xi − xj|

.

We are interested here in the mean field regime, characterized by N � 1 and
G� 1, so that κ := NG remains fixed, of order one. Since, in the units we use, the
gravitational constant G is approximately given by G ' 10−45, this means that we
are interested in systems with approximately N ' 1045 particles. To analyze this
regime, we consider the time-evolution generated by

HN =
N∑
j=1

√
1−∆xj −

κ

N

N∑
i<j

1
|xi − xj|

(4.1)

in the limit N → ∞. Inspired by the results discussed in the previous sections, we
expect that, in this limit, the evolution generated by HN on factorized initial data
can be approximated by the mean field semi-relativistic Hartree equation

i∂tϕt =
√

1−∆ϕt − κ
(

1
|.|
∗ |ϕt|2

)
ϕt . (4.2)

It turns out that the system under consideration is critical. This follows from the
observation that, for large momenta, the kinetic energy

√
1−∆ ' |∇| scales like
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the potential energy, as an inverse length. This implies that, for arbitrary N ∈ N,
there exists a critical coupling κcr(N) > 0 such that

inf
ψN∈L2(R3N ),‖ψN‖=1

〈ψN , HNψN〉 ≥ 0

for κ ≤ κcr(N), and

inf
ψN∈L2

s(R3N ),‖ψN‖=1
〈ψN , HNψN〉 = −∞

for κ > κcr. In other words, for small κ > 0, the kinetic energy controls the potential
energy, and the total energy is bounded below. For κ > κcr, on the other hand, the
potential energy dominates and leads the total energy to arbitrary negative values.
Criticality can also be observed on the level of the semi-relativistic Hartree equation
(4.2). As proven in [20], (4.2) is locally well-posed in the energy space H1/2(R3) for
arbitrary coupling constants. Its global behavior, however, depends on the value of
κ. There exists namely a critical coupling κcr > 0 with the following properties.
For κ < κcr, (4.2) is globally well-posed in H1/2(R3), in the sense that all local
solutions extend to all times. For κ > κcr, on the other hand, (4.2) has local solutions
ϕt ∈ C([0, T ), H1/2(R3)) exhibiting blow up in finite time, in the sense that

‖ϕt‖H1/2 →∞

as t → T−. In [12], Fröhlich and Lenzmann proved that arbitrary spherically sym-
metric initial data with negative energy lead, if κ > κcr to blow up in finite time (the
spherical symmetry is believed to be just a technical condition). In the physics liter-
ature, the blow up solutions of the semi-relativistic Hartree equation (4.2) have been
used to describe the phenomenon of stellar or gravitational collapse, first predicted
by Chandrasekhar.

Mathematically, it seems important to understand whether the relation between
the many body evolution and the semi-relativistic Hartree dynamics (4.2) can be
established rigorously. The first step in this direction was accomplished by Lieb and
Yau; in [23], they proved that κcr(N) → κcr as N → ∞, and that, for κ < κcr,
the ground state energy per particle converges, as N →∞, to the minimum of the
Hartree energy functional

εHartree(ϕ) =
∫
dx

∣∣∣(1−∆)1/4ϕ
∣∣∣2 − κ

2

∫
dxdy

|ϕ(x)|2|ϕ(y)|2
|x− y|

over all ϕ ∈ L2(R3) with ‖ϕ‖ = 1. This proves that the Hartree theory successfully
predicts the ground state properties of the boson star. Does it also describe their
time-evolution?

A first positive answer to this question was obtained in [6], for the subcritical
case κ < κcr. To consider the supercritical case κ > κcr, we first have to give
a precise mathematical definition of the many body evolution. In fact, for κ >
κcr(N), it is not so simple to define the many body evolution because HN is not
bounded below. As a consequence, HN does not have a unique and natural extension
as a self-adjoint operator on the Hilbert space L2(R3N). Therefore, it is not clear
how to define the unitary group e−iHN t and it is not clear how to solve the many
body Schrödinger equation. A possible way to avoid this problem is to consider
weak solutions of the many body Schrödinger equation. Here, we follow a different
approach. To circumvent the fact that the Hamiltonian is unbounded from below,
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we introduce an arbitrarily small, N -dependent cutoff αN in the interaction, defining
the regularized Hamiltonian

Hα
N =

N∑
j=1

√
1−∆xj −

κ

N

∑
i<j

1
|xi − xj|+ αN

.

The cutoff αN is assumed to be strictly positive for all N ∈ N, and to vanish in the
limit of large N . For arbitrary N ∈ N, Hα

N is now bounded below and generates
therefore a well-defined unitary evolution on L2(R3N). On the other hand, since αN
vanishes as N → ∞, we do not expect it to considerably affect the macroscopic
properties of the dynamics. From the physical point of view, the introduction of the
N -dependent cutoff is justifiable by the fact that, anyway, at very small distances,
Newton’s gravity is effectively regularized by the presence of other forces.

Now, we are ready to study the relation between the many body evolution gen-
erated by Hα

N and the semi-relativistic Hartree dynamics (4.2). The next theorem,
proven in [24], shows that, if the nonlinear dynamics is well defined in a time in-
terval [−T, T ], then, in this time interval, (4.2) really approximates the many body
evolution in the limit of large N .

Theorem 4.1. Let ϕ ∈ H2(R3), αN > 0 such that αN → 0 as N → ∞, ψN,t =
e−iH

α
N tϕ⊗N . Let ϕt be the solution of the semi-relativistic Hartree equation (4.2),

with initial data ϕt=0 = ϕ. Fix T > 0, and assume that

λ := sup
|t|≤T
‖ϕt‖H1/2(R3) <∞ .

Then, for every k ∈ N, there exists a constant C = C(k, T, λ) > 0 such that

sup
|t|≤T

Tr
∣∣∣γ(k)
N,t − |ϕt〉〈ϕt|⊗k

∣∣∣ ≤ C
( 1
N1/2 + αN

)
. (4.3)

What happens now if the Hartree dynamics exhibits blow-up. The next theorem,
which was also proven in [24], shows that, if the Hartree dynamics blows up at
time T , then also the many body evolution collapses if t→ T , and, simultaneously,
N →∞ (at a sufficient fast rate). By collapse of the solution ψN,t of the many body
Schrödinger equation, we mean the following. The kinetic energy per particle, given
by

〈ψN,t, (1−∆x1)1/2ψN,t〉 = Tr (1−∆)1/2γ
(1)
N,t ,

is finite, uniformly in N , for all t < T , while it diverges to infinity if t → T and
N →∞.

Theorem 4.2. Assume that, in the definition of Hα
N , αN ≥ N−` for some (arbi-

trarily large) ` > 0. Let ϕ ∈ H2(R3), ψN,t = e−iH
α
N tϕ⊗N . Let ϕt be the solution of

the semi-relativistic Hartree equation (4.2) with initial data ϕt=0 = ϕ. Assume that
ϕt is locally well posed in H1/2(R3) in the interval [0, T ) and that it blows up at time
T , that is ‖ϕt‖H1/2 <∞, for all t ∈ [0, T ) and

lim
t→T−

‖ϕt‖H1/2 =∞ .

Then, for every 0 ≤ t < T , we have

Tr (1−∆)1/2γ
(1)
N,t <∞ (4.4)
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uniformly in N . Moreover, if N(t)→∞ as t→ T− sufficiently fast, we have

lim
t→T−

Tr (1−∆)1/2γ
(1)
N(t),t =∞ . (4.5)

This theorem establishes the (dynamical) gravitational collapse of the boson star
directly on the level of the many body evolution, justifying the use of the semi-
relativistic Hartree equation (4.2) for the description of the dynamics.

The proof of Theorems 4.1 and 4.2 relies on the ideas discussed in Section 3.
In particular, we use a Fock-space representation of the system and we study the
evolution of initial coherent states. The main new challenge is that, in order to prove
Theorem 4.2 (in particular, in order to show (4.4)), we establish the convergence
of the one-particle reduced density Γ(1)

N,t associated with the evolution of the initial
coherent state towards |ϕt〉〈ϕt| in an energy norm (in Section 3, convergence was
established in the trace norm, which, in the language of density matrices, is the
equivalent of an L2-norm). More precisely, we show that, for any t0 < T (recall that
T is the blow-up time of the nonlinear Hartree equation (4.2)),

sup
t∈[0,t0]

Tr
∣∣∣(1−∆)1/4

(
Γ(1)
N,t − |ϕt〉〈ϕt|

)
(1−∆)1/4

∣∣∣ ≤ CN−1/2 (4.6)

where the constant C > 0 depends only on t0 and on supt∈[0,t0] ‖ϕt‖H1/2 . In Section
3, the proof of the convergence of the reduced density matrix Γ(1)

N,t in the trace norm
reduced to the problem of controlling the growth the number of particles opera-
tor with respect to the fluctuation dynamics U(t; 0) defined in (3.5). Similarly, the
proof of (4.6) reduces to the problem of controlling the growth of the expectation
of the (relativistic) kinetic energy operator with respect to the fluctuation dynam-
ics. The fundamental reason why this is possible is that, after factoring out the
(super-critical) Hartree dynamics from the (super-critical) many body evolution,
the dynamics of the fluctuation is sub-critical. For further details, we refer to [24].
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