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On the global existence for the axisymmetric Euler
equations

Hammadi Abidi Taoufik Hmidi Sahbi Keraani

Abstract
This paper deals with the global well-posedness of the 3D axisymmetric

Euler equations for initial data lying in critical Besov spaces B
1+ 3
p

p,1 . In this case
the BKM criterion is not known to be valid and to circumvent this difficulty
we use a new decomposition of the vorticity .

1. Introduction
The evolution of homogeneous inviscid incompressible fluid flows in R3 is governed
by the Euler system

(E)


∂tu+ (u · ∇)u+∇π = 0,
divu = 0,
u|t=0 = u0.

Here, u = u(t, x) ∈ R3 denotes the velocity of the fluid, π = π(t, x) the scalar
pressure which is determined through the incompressibility assumption, that is,
divu = 0.
The local well-posedness theory of the system (E) seems to be in a satisfactory state
and several results are obtained by numerous authors in many standard function
spaces. In [9], Kato proved the local existence and uniqueness for initial data u0 ∈
Hs(R3) with s > 5/2 and Chemin [5] gave similar results for initial data lying in
Hölderian spaces Cr with r > 1.
Other local results are recently obtained by Chae [4] in critical Besov spaces B

3
p

+1
p,1 ,

with p ∈]1,∞[ and by Pak and Park [11] for the space B1
∞,1. Notice that these

spaces have the same scaling as Lipschitz functions (the space which is relevant for
the hyperbolic theory) and in this sens they are called critical.
The question of global existence is still open and continues to be one of the most
leading problem in mathematical fluid mechanics. Nevertheless there are many cri-
teria of finite time blowup. One of them is the well-known BKM criterion [1] which
ensures that the development of finite time singularities is related to the blowup of
the L∞ norm of the vorticity near the maximal ime existence. A direct consequence
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of this result is the global well-posedness of two-dimensional Euler solutions for
smooth initial data since the vorticity is only advected and then does not grow. We
emphasize that new geometric blowup criteria are recently discovered by Constantin,
Fefferman and Majda [6].
Let us recall what the vorticity is? In space dimension three it is defined by the
vector ω = ∇× u and satisfies the equation

∂tω + (u · ∇)ω − (ω · ∇)u = 0.
The main difficulty for establishing global regularity is to understand how the vortex
stretching term (ω · ∇)u affects the dynamic of the fluid. While global existence is
not proved for arbitrary initial smooth data, there are partial results in the case
of the so-called axisymmetric flows without swirl. We say that a vector field u is
axisymmetric if it has the form:

u(x, t) = ur(r, z, t)er + uz(r, z, t)ez, x = (x1, x2, z), r =
√
x2

1 + x2
2,

where
(
er, eθ, ez

)
is the cylindrical basis of R3 and the components ur and uz do not

depend on the angular variable. The main feature of axisymmetric flows arises in the
vorticity which takes the form (more precise discussion will be done in Proposition
3.1 and 3.2),

ω = (∂zur − ∂ruz)eθ
and satisfies

∂tω + (u · ∇)ω = u
r

r
ω. (1)

Consequently the quantity α := ω/r is only advected by the flow, that is
∂tα+ (u · ∇)α = 0. (2)

This fact induces the conservation of all the norms ‖α‖Lp , 1 ≤ p ≤ ∞. In [15],
Ukhovskii and Yudovich took advantage of these conservation laws to prove the
global existence for axisymmetric initial data with finite energy and satisfying in
addition ω0 ∈ L2 ∩ L∞ and ω0

r
∈ L2 ∩ L∞. In terms of Sobolev regularity these

assumptions are satisfied if the velocity u0 belongs to Hs with s > 7
2 . This is far

from the critical regularity of local existence theory s = 5
2 . The optimal result in

Sobolev spaces is done by Shirota and Yanagisawa in [14] who proved global existence
in Hs, with s > 5

2 . Their proof is based on the boundness of the quantity ‖ur
r
‖L∞

by using Biot-Savart law. We mention also the reference [13] where similar results
are given in different function spaces. In a recent work [7], Danchin has weakened
the Ukhoviskii and Yudovich conditions. More precisely, he obtains global existence
and uniqueness for initial data ω0 ∈ L3,1 ∩ L∞ and ω0

r
∈ L3,1. Here, we denote by

L3,1 the Lorentz space.
As we have seen above the global strong solutions are constructed in Hs, with s > 5

2 ,

but the best known spaces for local well-posedness are B
1+ 3
p

p,1 , with p ∈ [1,∞]. In
this paper we address the question of global existence in these spaces. Comparing to
the sub-critical spaces this problem is extremely hard to deal with because we are
deprived of an important tool which is the BKM criterion. Even in space dimension
two we encounter the same problem. Although the quantity ‖ω(t)‖L∞ is conserved,
this is not sufficient to propagate for all time the initial regularity. As it was pointed
by Vishik in [16] the significant quantity is ‖ω(t)‖B0

∞,1
and its control needs the use
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of the special structure of the vorticity, which is only transported by the flow. The
key estimate is the following,

‖ω(t)‖B0
∞,1
≤ C‖ω0‖L∞

(
1 +
∫ t

0
‖∇v(τ)‖L∞dτ

)
.

Owing to the streching term ω ur/r, the estimate of ‖ω(t)‖B0
∞,1

for axisymmetric
flows is more complicated and needs as we shall see a refined analysis of the geometric
structure of the vorticity.
The main result of this paper can be stated as follows (for the definition of function
spaces see next section).
Theorem 1.1. Let u0 be an axisymmetric divergence free vector field belong-
ing to B

3
p

+1
p,1 , with p ∈ [1,∞]. We assume in addition that its vorticity satisfies

ω0

r
∈ L3,1. Then the system (E) has a unique global solution u belonging to the space

C(R+; B
1+ 3
p

p,1 ). Besides, there exists a constant C0 depending on the initial data norms
such that for every t ∈ R+

‖u(t)‖
B

1+ 3
p

p,1

≤ C0e
eexpC0t . (3)

The rest of this paper is organized as follows. In section 2 we recall some function
spaces and gather some preliminary estimates. Section 3 is devoted to the study of
some geometric properties of any solution to a vorticity equation model. The proof
of Theorem 1.1 is done in several steps in section 4.

2. Notations and preliminaries
Throughout this paper, C stands for some real positive constant which may be
different in each occurrence. We shall sometimes alternatively use the notation X .
Y for an inequality of type X ≤ CY .
Let us start with a classical dyadic decomposition of the full space (see for instance
[5]): there exist two radial functions χ ∈ D(R3) and ϕ ∈ D(R3\{0}) such that

i) χ(ξ) +
∑
q≥0
ϕ(2−qξ) = 1 ∀ξ ∈ R3,

ii)
∑
q∈Z
ϕ(2−qξ) = 1 if ξ 6= 0,

iii) supp ϕ(2−p·) ∩ supp ϕ(2−q·) = ∅, if |p− q| ≥ 2,

iv) q ≥ 1⇒ suppχ ∩ supp ϕ(2−q) = ∅.
For every u ∈ S ′(R3) one defines the nonhomogeneous Littlewood-Paley operators
by,

∆−1u = χ(D)u; ∀q ∈ N, ∆qu = ϕ(2−qD)u and Squ =
∑

−1≤j≤q−1
∆ju.

One can easily prove that for every tempered distribution u,
u =

∑
q≥−1

∆q u. (4)
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The homogeneous operators are defined as follows
∀q ∈ Z, ∆̇qu = ϕ(2−qD)v and Ṡqu =

∑
j≤q−1

∆̇ju.

We notice that these operators can be written as a convolution. For example for
q ∈ Z, ∆̇qu = 23qh(2q·) ? u, where h ∈ S and ĥ(ξ) = ϕ(ξ).
For the homogeneous decomposition, the identity (4) is not true due to the polyno-
mials but we have,

u =
∑
q∈Z

∆̇qu ∀u ∈ S ′(R3)/P [R3],

where P [R3] is the whole of polynomials (see [12]).
We will make continuous use of Bernstein inequalities (see for example [5]).

Lemma 2.1. There exists a constant C such that for k ∈ N, 1 ≤ a ≤ b and for
u ∈ La(Rd),

sup
|α|=k
‖∂αSqu‖Lb ≤ Ck 2q(k+d( 1

a
− 1
b

))‖Squ‖La ,

C−k2qk‖∆̇qu‖La ≤ sup
|α|=k
‖∂α∆̇qu‖La ≤ Ck2qk‖∆̇qu‖La .

Let us now introduce the basic tool of the paradifferential calculus which is Bony’s
decomposition [3]. It distinguishes in a product uv three parts as follows:

uv = Tuv + Tvu+R(u, v),
where

Tuv =
∑
q

Sq−1u∆qv, and R(u, v) =
∑
q

∆qu∆̃qv,

with ∆̃q =
1∑
i=−1

∆q+i.

Tuv is called paraproduct of v by u and R(u, v) the remainder term.
Let (p, r) ∈ [1,+∞]2 and s ∈ R, then the nonhomogeneous Besov space Bsp,r is the
set of tempered distributions u such that

‖u‖Bsp,r :=
(

2qs‖∆qu‖Lp
)
`r
< +∞.

We remark that we have the identification Bs2,2 = Hs. Also, by using the Bernstein
inequalities (see [5] Lemma 2.1.1) we get easily

Bsp1,r1 ↪→ B
s+3( 1

p2
− 1
p1

)
p2,r2 , p1 ≤ p2 and r1 ≤ r2.

Let us now recall the Lorentz spaces that will be used here. For a measurable function
f we define its nonincreasing rearrangement by

f ∗(t) := inf
{
s, µ
(
{x, |f(x)| > s}

)
≤ t
}
,

where µ denotes the usual Lebesgue measure. For (p, q) ∈ [1,+∞]2, the Lorentz
space Lp,q is the set of functions f such that ‖f‖Lp,q <∞, with

‖f‖Lp,q :=


(∫ ∞

0
[t

1
pf ∗(t)]q dt

t

) 1
q

, for 1 ≤ q <∞

sup
t>0
t

1
pf ∗(t), for q =∞.
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Notice that we can also define Lorentz spaces by real interpolation from Lebesgue
spaces:

(Lp0 , Lp1)(θ,q) = Lp,q,
where 1 ≤ p0 < p < p1 ≤ ∞, θ satisfies 1

p
= 1−θ
p0

+ θ
p1

and 1 ≤ q ≤ ∞. We have the
classical properties:

‖uv‖Lp,q ≤ ‖u‖L∞‖v‖Lp,q . (5)

Lp,q ↪→ Lp,q′ ,∀ 1 ≤ p ≤ ∞; 1 ≤ q ≤ q′ ≤ ∞ and Lp,p = Lp. (6)
The following result will be needed.

Proposition 2.2. Given (p, q) ∈ [1,∞]2 and a smooth divergence free vector field
u.Let f be a smooth solution of the transport equation

∂tf + u · ∇f = 0, f|t=0 = f0.

1. For f0 ∈ Lp,q, we have for every t ∈ R+,

‖f(t)‖Lp,q ≤ ‖f0‖Lp,q .

2. For f0 ∈ Bsp,r(R3) and g ∈ L1
loc(R+;Bsp,r). we have for every t ∈ R+,

‖f(t)‖Bsp,r ≤ Ce
CU1(t)

(
‖f0‖Bsp,r +

∫ t
0
e−CU1(τ)‖g(τ)‖Bsp,rdτ

)
,

where U1(t) =
∫ t

0 ‖∇u(τ)‖L∞dτ and C is a constant depending on s.
The above estimate holds also true in the limiting cases:

s = −1, r =∞, p ∈ [1,∞]) or s = 1, r = 1, p ∈ [1,∞],

provided that we change U1 by U(t) := ‖u‖L1
tB

1
∞,1.

In addition, if f = curl u, then the above estimate (2) holds true for
all s ∈ [1,+∞[.

3. Special structure of the vorticity

In this section we will describe some special geometric properties of axisymmetric
flows.

Proposition 3.1. Let u = (u1, u2, u3) be a smooth axisymmetric vector field. Then
we have

1) the vector ω = ∇× u = (ω1, ω2, ω3) satsifies ω × eθ = (0, 0, 0). In particular,
we have for every (x1, x2, z) ∈ R3,

ω3 = 0, x1ω
1(x1, x2, z) + x2ω

2(x1, x2, z) = 0 and

ω1(x1, 0, z) = ω2(0, x2, z) = 0.

2) for every q ≥ −1, ∆qu is axisymmetric and

(∆qu1)(0, x2, z) = (∆qu2)(x1, 0, z) = 0.
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In this last part we study a vorticity equation type in which no relations between
the vector field u and the solution Ω are supposed.

(V)


∂tΩ + (u · ∇)Ω = Ω · ∇u,
divu = 0,
Ω|t=0 = Ω0.

We will assume that u is axisymmetric and the unknown function Ω = (Ω1,Ω2,Ω3)
is a vector field. The following result describes the preservation of some initial geo-
metric conditions of the solution Ω.

Proposition 3.2. Let u be an axisymmetric vector field belonging to the space
L1

loc(R+,Lip(R3)) with zero divergence and Ω be the unique global solution of (V )
corresponding to smooth initial data Ω0. Then we have the following properties:

1) If div Ω0 = 0, then div Ω(t) = 0 for every t ∈ R+.

2) If Ω0 × eθ = (0, 0, 0), then we have

∀t ∈ R+, Ω(t)× eθ = (0, 0, 0).
Consequently, Ω1(t, x1, 0, z) = Ω2(t, 0, x2, z) = 0, and

∂tΩ + (u · ∇)Ω = u
r

r
Ω.

Proof. 1) We apply the divergence operator to the equation (V) leading under the
assumption divu = 0, to

∂tdiv Ω + u · ∇div Ω = 0.
Thus, the quantity div Ω is transported by the flow and consequently the incom-
pressibility of Ω remains true for every time.
2) We denote by (Ωr,Ωθ,Ωz) the coordinates of Ω in cylindrical basis. It is obvious
that Ωr = Ω · er. Recall that in cylindrical coordinates the operator u · ∇ has the
form

u · ∇ = ur∂r + 1
r
uθ∂θ + uz∂z = ur∂r + uz∂z.

We have used in the last equality the fact that for axisymmetric flows the angular
component is zero. Hence we get

(u · ∇Ω) · er = ur∂rΩ · er + uz∂zΩ · er
= (ur∂r + uz∂z)(Ω · er)
= u · ∇Ωr,

Where we use ∂rer = ∂zer = 0. Now it remains to compute (Ω · ∇u) · er. By a
straightforward computations we get,

(Ω · ∇u) · er = Ωr ∂ru · er + 1
r

Ωθ ∂θu · er + Ω3 ∂3u · er

= Ωr∂rur + Ω3∂3u
r.

Thus the component Ωr obeys to the equation

∂tΩr + u · ∇Ωr = Ωr∂rur + Ω3∂3u
r.
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From the maximum principle we deduce

‖Ωr(t)‖L∞ ≤
∫ t

0

(
‖Ωr(τ)‖L∞ + ‖Ω3(τ)‖L∞

)
‖∇u(τ)‖L∞dτ.

On the other hand the component Ω3 satisfies the equation

∂tΩ3 + u · ∇Ω3 = Ω3∂3u
3 + Ωr∂ru3.

This leads to

‖Ω3(t)‖L∞ ≤
∫ t

0

(
‖Ω3(τ)‖L∞ + ‖Ωr(τ)‖L∞

)
‖∇u(τ)‖L∞dτ.

Combining these estimates and using Gronwall’s inequality we obtain for every
t ∈ R+, Ω3(t) = Ωr(t) = 0, which is the desired result.
Under these assumptions the stretching term becomes

Ω · ∇u = 1
r

Ωθ∂θ(urer)

= 1
r
urΩθeθ = 1

r
urΩ.

�

4. Proof of Theorem 1.1

The proof of Theorem 1.1 will be done in several steps and it suffices to establish
the a priori estimates. The hard part of the proof will be the Lipschitz bound of the
velocity.

4.1. Some a priori estimates
We start with the following estimates:

Proposition 4.1. Let u be an axisymmetric solution of (E), then we have for every
t ∈ R+,

1) Biot-Savart law: ∥∥∥ur(t)/r∥∥∥
L∞

.
∥∥∥ω0/r

∥∥∥
L3,1
.

2) Vorticity bound:

‖ω(t)‖L∞ . ‖ω0‖L∞eCt‖ω0/r‖L3,1

3) Velocity bound:

‖u(t)‖L∞ .
(
‖u0‖L∞ + ‖ω0‖L∞

)
eexpCt‖ω0/r‖L3,1 .

Proof. 1) According to Lemma 1 in [14] (see also [7]) one has,

|ur(t, x)| .
∫
|y−x|≤r

|ω(t, y)|
|x− y|2

dy + r
∫
|y−x|≥r

|ω(t, y)|
|x− y|3

dy,
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with r =
√
x2

1 + x2
2. Thus, one can estimate

|ur(t, x)| .
∫
|y−x|≤r

|ω(t, y)|
r′

r′

|x− y|2
dy + r

∫
|y−x|≥r

|ω(t, y)|
r′

r′

|x− y|3
dy

. r
∫
|y−x|≤r

|ω(t, y)|
r′

1
|x− y|2

dy + r
∫
|y−x|≥r

|ω(t, y)|
r′
r′ − r + r
|x− y|3

dy,

where we use the notation r′ =
√
y21 + y22. In the first term of the right-hand side we

have used the general fact |r′ − r| ≤ |x− y| which leads to
|x− y| ≤ r ⇒ r′ ≤ 2r.

Since |r′ − r| ≤ |x− y|, then we get easily

|ur(t, x)| . r
∫

R3

|ω(t, y)|
r′

1
|x− y|2

dy.

It follows that
|ur/r| . 1

| · |2
? |ω/r|.

As 1
|·|2 ∈ L

3
2 ,∞(R3), then Young inequalities on Lq,p spaces imply∥∥∥ur/r∥∥∥

L∞
.
∥∥∥ω/r∥∥∥

L3,1
.

Since ω/r satisfies (2) then applying Proposition 2.2 gives∥∥∥ur/r∥∥∥
L∞

.
∥∥∥ω0/r

∥∥∥
L3,1

(7)

2) From the maximum principle applied to (1) one has

‖ω(t)‖L∞ ≤ ‖ω0‖L∞ +
∫ t

0

∥∥∥ur(τ)/r∥∥∥
L∞
‖ω(τ)‖L∞dτ.

Using Gronwall’s lemma and inequality (7) gives the desired result.
3) To estimate L∞ norm of the velocity we write

‖u(t)‖L∞ ≤ ‖Ṡ−Nu‖L∞ +
∑
q≥−N
‖∆̇qu‖L∞ ,

where N is an arbitrary positive integer that will be fixed later. By Bernstein in-
equality we infer ∑

q≥−N
‖∆̇qu‖L∞ . 2N‖ω‖L∞ .

On the other hand using the integral equation we get

‖Ṡ−Nu‖L∞ ≤ ‖Ṡ−Nu0‖L∞ +
∫ t

0
‖Ṡ−N

(
P(u · ∇)u

)
‖L∞dτ

. ‖u0‖L∞ +
∑
j<−N

∫ t
0
‖∆̇j
(
P(u · ∇)u

)
‖L∞dτ,

where P denotes the Leray’s projector over divergence free vector fields. Since ∆̇jP
maps Lp to itself uniformly in j ∈ Z, we get

‖Ṡ−Nu‖L∞ . ‖u0‖L∞ + 2−N
∫ t

0
‖u(τ)‖2L∞dτ.
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Hence we obtain

‖u(t)‖L∞ . ‖u0‖L∞ + 2N‖ω(t)‖L∞ + 2−N
∫ t

0
‖u(τ)‖2L∞dτ.

If we choose N such that

22N ≈ 1 + ‖ω(t)‖−1
L∞

∫ t
0
‖u(τ)‖2L∞dτ,

then we obtain

‖u(t)‖2L∞ . ‖u0‖2L∞ + ‖ω(t)‖2L∞ + ‖ω(t)‖L∞
∫ t

0
‖u(τ)‖2L∞dτ.

Thus Gronwall’s lemma and the L∞ bound of the vorticity yield

‖u(t)‖L∞ .
(
‖u0‖L∞ + ‖ω‖L∞t L∞

)
e
Ct‖ω‖L∞

t
L∞

.
(
‖u0‖L∞ + ‖ω0‖L∞

)
e

expCt‖ω‖L∞
t
L∞ .

�

4.2. Lipschitz estimate of the velocity
The Lipschitz estimate of the velocity is heavily related to the following interpolation
result which is the heart of this work:

Theorem 4.2. There exists a decomposition (ω̃q)q≥−1 of the vorticity ω such that

1) For every t ∈ R+, ω(t, x) = ∑q≥−1 ω̃q(t, x).

2) For every t ∈ R+, div ω̃q(t, x) = 0.

3) For every q ≥ −1 we have ‖ω̃q(t)‖L∞ ≤ ‖∆qω0‖L∞eCt‖ω0/r‖L3,1 .

4) For all j, q ≥ −1 we have
‖∆jω̃q(t)‖L∞ ≤ C2−|j−q|eCU(t)‖∆qω0‖L∞ ,

with U(t) := ‖u‖L1
tB

1
∞,1

and C an absolute constant.

Proof. We will use for this purpose a new approach similar to [8]. Let q ≥ −1 and
denote by ω̃q the unique global vector-valued solution of the problem{

∂tω̃q + (u · ∇)ω̃q = ω̃q · ∇u
ω̃q |t=0 = ∆qω0.

(8)

Since div ∆qω0 = 0, then it follows from Proposition 3.2 that div ω̃q(t, x) = 0. On
the other hand we have by linearity and uniqueness

ω(t, x) =
∑
q≥−1
ω̃q(t, x). (9)

We will now rewrite the equation (8) under a suitable form.
As ∆qω0 = curl ∆qu0 and ∆qu0 is axisymmetric then we obtain from Proposition
3.1 that (∆qω0)× eθ = (0, 0, 0). This leads in view of Proposition 3.2 to ω̃q(t)× eθ =
(0, 0, 0) and {

∂tω̃q + (u · ∇)ω̃q = ur

r
ω̃q

ω̃q |t=0 = ∆qω0.
(10)
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Applying the maximum principle and using Proposition 4.1 we obtain

‖ω̃q(t)‖L∞ ≤ ‖∆qω0‖L∞e
∫ t

0 ‖u
r(τ)/r‖L∞dτ

≤ ‖∆qω0‖L∞eCt‖ω0‖L3,1 . (11)
Let us move to the proof of the last point which is more technical. From the fact
ω̃q(t)×eθ = (0, 0, 0) we see that the solution ω̃q has two components in the cartesian
basis, ω̃q = (ω̃1

q , ω̃
2
q , 0). The analysis will be exactly the same for both components,

so we will deal only with the first component ω̃1
q .

From the identity ur
r

= u1

x1
= u2

x2
, which is an easy consequence of uθ = 0, it is plain

that the functions ω̃1
q is solution of{

∂tω̃
1
q + (u · ∇)ω̃1

q = u2 ω̃1
q

x2
,

ω̃1
q |t=0 = ∆qω1

0.

Remark that the desired estimate is equivalent to
‖ω̃q(t)‖B±1

∞,∞
. ‖∆qω0‖B±1

∞,∞
eCU(t).

We start with the propagation for the positive sign. Unfortunately, we are not able
to close the estimate in Besov space B1

∞,∞ due to the invalidity of a commutator
estimate, see Proposition 2.2 for the limiting case s = 1. Nevertherless we will be
able to do it for Besov space B1

∞,1. From Proposition 2.2 we have

e−CU(t)‖ω̃1
q (t)‖B1

∞,1
. ‖ω̃1

q (0)‖B1
∞,1

+
∫ t

0
e−CU(τ)

∥∥∥∥u2 ω̃
1
q

x2
(τ)
∥∥∥∥
B1
∞,1

dτ. (12)

For the last term we write from Bony’s decomposition,∥∥∥∥u2 ω̃
1
q

x2

∥∥∥∥
B1
∞,1

≤
∥∥∥∥T ω̃1

q
x2

u2
∥∥∥∥
B1
∞,1

+
∥∥∥∥Tu2
ω̃1
q

x2

∥∥∥∥
B1
∞,1

+
∥∥∥∥R(u2, ω̃1

q/x2)
∥∥∥∥
B1
∞,1

.

To estimate the first paraproduct we write by definition,∥∥∥∥T ω̃1
q
x2

u2
∥∥∥∥
B1
∞,1

.
∑
j

2j‖Sj−1(ω̃1
q/x2)‖L∞‖∆ju2‖L∞

. ‖u‖B1
∞,1
‖ω̃1
q/x2‖L∞ . (13)

The remainder term is estimated as follows,
‖R(u2, ω̃1

q/x2)‖B1
∞,1

.
∑
k≥j−3

2j‖∆ku2‖L∞‖∆̃k(ω̃1
q/x2)‖L∞

. ‖u‖B1
∞,1
‖ω̃1
q/x2‖L∞ . (14)

The treatment of the second term is more subtle and needs the axisymmetry of the
vector field u, ∥∥∥∥Tu2

ω̃1
q

x2

∥∥∥∥
B1
∞,1

.
∑
j∈N

2j‖Sj−1u
2(x)∆j(ω̃1

q (x)/x2)‖L∞ .

Now we write

Sj−1u
2(x)∆j(ω̃1

q (x)/x2) = Sj−1u
2(x)∆jω̃1

q (x)/x2 + Sj−1u
2(x)
[
∆j,

1
x2

]
ω̃1
q

:= Ij(x) + IIj(x).
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Since Sj−1u est axisymmetric then it follows from Proposition 3.1 that
Sj−1u

2(x1, 0, z) = 0. Thus from Taylor formula we get

‖Ij‖L∞ . ‖∇u‖L∞‖∆jω̃1
q‖L∞ .

This yields ∑
j

2j‖Ij‖L∞ . ‖∇u‖L∞‖ω̃1
q‖B1

∞,1
. (15)

For the commutator term IIj we write by definition

IIj(x) = Sj−1u
2(x)/x2 23j

∫
R3
h(2j(x− y))(x2 − y2)ω̃1

q (y)/y2dy

= 2−j(Sj−1u
2(x)/x2) 23jh̃(2j·) ? (ω̃1

q/y2)(x),

with h̃(x) = x2h(x). Now we claim that for every f ∈ S ′ we have

23jh̃(2j·) ? f =
∑
|j−k|≤1

23jh̃(2j·) ?∆kf.

Indeed, we have ̂̃h(ξ) = i∂ξ2ĥ(ξ) = i∂ξ2ϕ(ξ). It follows that supp ̂̃h ⊂ suppϕ. So we
get 23jh̃(2j·) ?∆kf = 0, for |j − k| ≥ 2. This leads to∑

j∈N
2j‖IIj‖L∞ .

∑
|j−k|≤1

‖Sj−1u
2/x2‖L∞‖∆k(ω̃1

q/x2)‖L∞

. ‖∇u‖L∞‖ω̃1
q/x2‖B0

∞,1
. (16)

Using (15) et (16) one obtains∥∥∥Tu2ω̃1
q/x2

∥∥∥
B1
∞,1

. ‖∇u‖L∞
(
‖ω̃1
q‖B1

∞,1
+ ‖ω̃1

q/x2‖B0
∞,1

)
. (17)

Putting together (13) (14) and (17) we find∥∥∥∥u2 ω̃
1
q

x2

∥∥∥∥
B1
∞,1

. ‖u‖B1
∞,1

(
‖ω̃1
q‖B1

∞,1
+ ‖ω̃1

q/x2‖B0
∞,1

)
Therefore we get from (12),

e−CU(t)‖ω̃1
q (t)‖B1

∞,1
. ‖ω̃1

q (0)‖B1
∞,1

+
∫ t

0
e−CU(τ)‖ω̃1

q (τ)‖B1
∞,1
‖u(τ)‖B1

∞,1
dτ

+
∫ t

0
e−CU(τ)‖u(τ)‖B1

∞,1
‖ω̃1
q (τ)/x2‖B0

∞,1
dτ.

According to Gronwall’s inequality we have

‖ω̃1
q (t)‖B1

∞,1
. eCU(t)

(
‖ω̃1
q (0)‖B1

∞,1
+ ‖ω̃1

q/x2‖L∞t B0
∞,1

)
. (18)

It is easy to check that ω̃1
q/x2 is advected by the flow, that is (∂t + u · ∇) ω̃

1
q

x2
= 0

ω̃1
q

x2 |t=0 = ∆qω1
0

x2
·

Thus we deduce from Proposition 2.2,∥∥∥ω̃1
q (t)/x2

∥∥∥
B0
∞,1
≤
∥∥∥∆qω1

0/x2

∥∥∥
B0
∞,1
eCU(t), (19)
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At this stage we claim the following estimate:∥∥∥∥∆qω1
0/x2

∥∥∥∥
B0
∞,1

. 2q‖∆qω0‖L∞ .

In fact, since u0 is axisymmetric then according to Proposition 3.1, ∆qu0 is too. Con-
sequently ∆qω0 is the curl of an axisymmetric vector field and then by Proposition
3.1 and Taylor expansion

∆qω1
0(x1, x2, z) = x2

∫ 1

0
(∂x2∆qω1

0)(x1, τx2, z)dτ.

Hence we get in view of Proposition 5.1∥∥∥∆qω1
0/x2

∥∥∥
B0
∞,1
≤
∫ 1

0
‖(∂x2∆qω1

0)(·, τ ·, ·)‖B0
∞,1
dτ

. ‖∂x2∆qω1
0‖B0

∞,1

∫ 1

0
(1− log τ)dτ

. 2q‖∆qω1
0‖L∞ , (20)

as claimed. Thus combining (18) with (19) and (20) we obtain

‖ω̃1
q (t)‖B1

∞,1
≤ C2q‖∆qω0‖L∞eCU(t).

This can be written as

‖∆jω̃1
q (t)‖L∞ ≤ C2q−jeCU(t)‖∆qω0‖L∞ . (21)

The same calculus gives a similar estimate for ω̃2
q . It remains to show the following

estimate
‖∆jω̃q(t)‖L∞ ≤ C2j−qeCU(t)‖∆qω0‖L∞ .

We will use for this purpose the alternative equation (8). According to Proposition
2.2 one has

e−CU(t)‖ω̃q(t)‖B−1
∞,∞

. ‖∆qω0‖B−1
∞,∞

+
∫ t

0
e−CU(τ)‖ω̃q · ∇u(τ)‖B−1

∞,∞
dτ. (22)

To estimate the last term we write in view of Bony’s decomposition

‖ω̃q · ∇u‖B−1
∞,∞

≤ ‖Tω̃q · ∇u‖B−1
∞,∞

+ ‖T∇u · ω̃q‖B−1
∞,∞

+ ‖R
(
ω̃q · ∇, u

)
‖B−1
∞,∞

. ‖∇u‖L∞‖ω̃q‖B−1
∞,∞

+ ‖R
(
ω̃q · ∇, u

)
‖B−1
∞,∞
.

Since div ω̃q = 0, then the remainder term can be treated as follows

‖R
(
ω̃q · ∇, u

)
‖B−1
∞,∞

= ‖divR
(
ω̃q⊗, u

)
‖B−1
∞,∞

. sup
k

∑
j≥k−3

‖∆jω̃q‖L∞‖∆̃ju‖L∞

. ‖ω̃q‖B−1
∞,∞
‖u‖B1

∞,1
.

Il follows that
‖ω̃q · ∇u‖B−1

∞,∞
. ‖u‖B1

∞,1
‖ω̃q‖B−1

∞,∞
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Inserting this estimate into (22) we get
e−CU(t)‖ω̃q(t)‖B−1

∞,∞
. ‖∆qω0‖B−1

∞,∞

+
∫ t

0
‖u(τ)‖B1

∞,1
e−CU(τ)‖ω̃q(τ)‖B−1

∞,∞
dτ

Hence we obtain by Gronwall’s inequality
‖ω̃q(t)‖B−1

∞,∞
≤ C‖∆qω0‖B−1

∞,∞
eCU(t)

≤ C2−q‖∆qω0‖L∞eCU(t).

This gives by definition
‖∆jω̃q(t)‖L∞ ≤ C2j−q‖∆qω0‖L∞eCU(t),

which achieves the proof of the theorem. �

In the next proposition we give some precise estimates of the velocity.

Proposition 4.3. The Euler solution with initial data u0 ∈ B
1+ 3
p

p,1 such
that ω0

r
∈ L3,1 satisfies for every t ∈ R+,

1) Case p =∞,
‖ω(t)‖B0

∞,1
+ ‖u(t)‖B1

∞,1
≤ C0e

expC0t.

2) Case 1 ≤ p <∞,
‖u(t)‖

B
1+ 3
p

p,1

≤ C0e
eexpC0t ,

with C0 depends on the norms of u0.

Proof. 1) Let N be a fixed positive integer that will be carefully chosen later. Then
we have from (9)

‖ω(t)‖B0
∞,1
≤
∑
j

‖∆j
∑
q

ω̃q(t)‖L∞

≤
∑

|j−q|≥N
‖∆jω̃q(t)‖L∞ +

∑
|j−q|<N

‖∆jω̃q(t)‖L∞

:= I + II. (23)
To estimate the first term we use Theorem (4.2) and the convolution inequality for
the series

I . 2−N‖ω0‖B0
∞,1
eCU(t). (24)

To estimate the term II we use two facts: the first one is that the operator ∆j maps
uniformly L∞ into itself while the second is the L∞ estimate (11),

II .
∑

|j−q|<N
‖ω̃q(t)‖L∞

. eC0t
∑

|j−q|<N
‖∆qω0‖L∞

. eC0tN‖ω0‖B0
∞,1
.

(25)

Combining this estimate with (25), (24) and (23) we obtain
‖ω(t)‖B0

∞,1
. 2−NeCU(t) +NeC0t.
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Putting
N =

[
CU(t)

]
+ 1,

we obtain
‖ω(t)‖B0

∞,1
.
(
U(t) + 1

)
eC0t.

On the other hand we have
‖u‖B1

∞,1
. ‖u‖L∞ + ‖ω‖B0

∞,1
,

which yields in view of Proposition 4.1,
‖u(t)‖B1

∞,1
. ‖u(t)‖L∞ + ‖ω(t)‖B0

∞,1

≤ C0e
expC0t + C0e

C0t
∫ t

0
‖u(τ)‖B1

∞,1
dτ.

Hence we obtain by Gronwall’s inequality
‖u(t)‖B1

∞,1
≤ C0e

expC0t,

which gives in turn
‖ω(t)‖B0

∞,1
≤ C0e

expC0t.

This concludes the first part of Proposition 4.3.
2) Applying Proposition 2.2 to the vorticity equation we get

e−CU1(t)‖ω(t)‖
B

3
p
p,1

. ‖ω0‖
B

3
p
p,1

+
∫ t

0
e−CU1(τ)‖ω · ∇u(τ)‖

B
3
p
p,1

dτ. (26)

As ω = curl u, we have
‖ω · ∇u‖

B
3
p
p,1

. ‖ω‖
B

3
p
p,1

‖∇u‖L∞ . (27)

Indeed, from Bony’s decomposition we write
‖ω · ∇u‖

B
3
p
p,1

≤ ‖T∇u · ω‖
B

3
p
p,1

+ ‖Tω · ∇u‖
B

3
p
p,1

+ ‖R(ω,∇u)‖
B

3
p
p,1

. ‖∇u‖L∞‖ω‖
B

3
p
p,1

+ ‖Tω · ∇u‖
B

3
p
p,1

.

From the definition we write
‖Tω · ∇u‖

B
3
p
p,1

.
∑
q∈N

2q
3
p‖Sq−1ω‖L∞‖∇∆qu‖Lp

. ‖ω‖L∞
∑
q∈N

2q
3
p‖∆qω‖Lp

. ‖∇u‖L∞‖ω‖
B

3
p
p,1

.

We have used here the fact that for p ∈ [1,∞] and q ∈ N the composition operator
∆qR : Lp → Lp is continuous uniformly with respect to p and q, where R denotes
Riesz transform. Combining (26) and (27) we find,

e−CU1(t)‖ω(t)‖
B

3
p
p,1

. ‖ω0‖
B

3
p
p,1

+
∫ t

0
e−CU1(τ)‖ω(τ)‖

B
3
p
p,1

‖∇u(τ)‖L∞dτ.

Gronwall’s inequality yields

‖ω(t)‖
B

3
p
p,1

≤ ‖u0‖
B

3
p+1
p,1

eC
∫ t

0 ‖∇u(τ)‖L∞dτ ≤ C0e
eexpC0t .
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Let us estimate the velocity. We write

‖u(t)‖
B

1+ 3
p

p,1

. ‖∆−1u‖Lp +
∑
q∈N

2q
3
p2q‖∆qu‖Lp

. ‖u(t)‖Lp + ‖ω(t)‖
B

3
p
p,1

Thus it remains to estimate ‖u‖Lp . For 1 < p < ∞, since Riesz transforms acts
continuously on Lp, we get

‖u(t)‖Lp ≤ ‖u0‖Lp + C
∫ t

0
‖u · ∇u(τ)‖Lpdτ

. ‖u0‖Lp +
∫ t

0
‖u(τ)‖Lp‖∇u(τ)‖L∞dτ.

It suffices now to use Gronwall’s inequality.
For the case p = 1, we write

‖u(t)‖L1 ≤ ‖Ṡ0u(t)‖L1 +
∑
q≥0
‖∆̇qu(t)‖L1

. ‖Ṡ0u(t)‖L1 +
∑
q≥0

2−q‖∆̇q∇u(t)‖L1

. ‖Ṡ0u(t)‖L1 + ‖ω(t)‖L1 .

However, it is easy to see that

‖ω(t)‖L1 ≤ ‖ω0‖L1e
∫ t

0 ‖∇u(τ)‖L∞dτ .

Concerning Ṡ0u we use the equation on u leading to

‖Ṡ0u(t)‖L1 . ‖Ṡ0u0‖L1 +
∑
q≤−1
‖∆̇q((u · ∇)u(t))‖L1

. ‖u0‖L1 +
∑
q≤−1

2q‖∆̇q(u⊗ u(t))‖L1

. ‖u0‖L1 + ‖u(t)‖2L2

. ‖u0‖L1 + ‖u0‖2L2 .

This yields
‖u(t)‖L1 ≤ C0e

eexpC0t .

The proof is now achieved.
�

5. Appendix

The following result describes the anisotropic dilatation in Besov spaces.

Proposition 5.1. Let f : R3 → R be a function belonging to B0
∞,1 and denote by

fλ(x1, x2, x3) = f(λx1, x2, x3). Then, there exists an absolute constant C > 0 such
that for all λ ∈]0, 1[

‖fλ‖B0
∞,1
≤ C(1− log λ)‖f‖B0

∞,1
.
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Proof. Let q ≥ −1, we denote by fq,λ = (∆qf)λ. From the definition we have

‖fλ‖B0
∞,1

= ‖∆−1fλ‖L∞ +
∑
j∈N
‖∆jfλ‖L∞

≤ C‖f‖L∞ +
∑
j∈N
q≥−1

‖∆jfq,λ‖L∞ .

For j, q ∈ N, the Fourier transform of ∆jfq,λ is supported in the set{
|ξ1|+ |ξ′| ≈ 2j and λ−1|ξ1|+ |ξ′| ≈ 2q

}
,

where ξ′ = (ξ2, ξ3). A direct consideration shows that this set is empty
if 2q . 2j or 2j−q . λ. For q = −1 the set is empty if j ≥ n0, this last number
is absolute. Thus we get for an integer n1

‖fλ‖B0
∞,1

. ‖f‖L∞ +
∑

q−n1+logλ≤j
j≤q+n1

‖∆jfq,λ‖L∞

. ‖f‖L∞ + (n1 − log λ)
∑
q

‖fq,λ‖L∞

. ‖f‖L∞ + (n1 − log λ)
∑
q

‖fq‖L∞

. (1− log λ)‖f‖B0
∞,1
.

�
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