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Microlocalization of resonant states and estimates
of the residue of the scattering amplitude
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Abstract
We obtain some microlocal estimates of the resonant states associated to

a resonance z0 of an h-differential operator. More precisely, we show that the
normalized resonant states are O(

√
|Im z0|/h +h∞) outside the set of trapped

trajectories and are O(h∞) in the incoming area of the phase space.
As an application, we show that the residue of the scattering amplitude

of a Schrödinger operator is small in some directions under an estimate of
the norm of the spectral projector. Finally we prove such bound in some
examples.

1. Introduction

Our original motivation is the study of the residue of the scattering amplitude
associate to a Schrödinger operator P (h) = −h2∆ + V (x) on Rn. The first works
treating this question are due to Lahmar-Benbernou [11] and Lahmar-Benbernou
and Martinez [12]. In these papers, they consider the case where the potential V (x)
is a “well in an island” with non-degenerate local minimum. In this situation, the
form of the resonances is given by the work of Helffer and Sjöstrand [8]. Near a
resonance z0 simple, isolated and close to the energy of this local minimum, the
scattering amplitude can be written

f(ω, ω′, z, h) =
f res(ω, ω′, h)

z − z0

+ fhol(ω, ω′, z, h),

with fhol holomorphic near z0. Using the form of the resonant states associate to
z0, Lahmar-Benbernou and Martinez proved that

|f res(ω, ω′, h)| = g(h)|Im z0|,

where g(h) has an asymptotic expansion with respect to h. Moreover, they showed
that for some directions (ω, ω′), determined by the Agmon distance to the well, the
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residue is O(h∞) while for some other ones, they obtained an explicit non-vanishing
principal term for g(h). Their proof is based on the knowledge of the resonant states
given by [8].

In [20], Stefanov generalized some parts of this result and proved that for V ∈
C∞

0 (Rn) and z0 a resonance which is simple and isolated in a sens precised in [20],
one has

|f res(ω, ω′, h)| ≤ Ch−
n−1

2 |Im z0|. (1)

This result was next improved by the second author in [15] where estimate (1) is
established for general long-range potentials under a weaker separation condition
on resonances. In [20] and [15], the method employed stands on the semiclassical
maximum principle of Tang and Zworski [22] and a resolvent estimate of Burq [2].

In the case where |Im z0| ≤ ChM for M � 1 and |Im z0| 6= O(h∞), it proves
only that |f res| = O(hN) for N ∈ R, whereas it is proven in [12] that the decay of
the residue may depend on the direction considered. In particular, one can think
that there exists some couple of directions (ω, ω′) such that the associate residue
is O(h∞). One of our motivations is to show the existence of such directions for
resonances “far” from the real axis.

In the case where the potential V is compactly supported, we have a nice rep-
resentation formula for the scattering amplitude, so that one can see easily the
link between the problem of the residue and the estimate of the resonant states
announced in the title. Indeed, as it is proven in [16], one has

f(ω, ω′, z, h) = c(z; h)

∫
Rn

e−i
√

z〈x,ω′〉/h[h2∆, χ1]R(z, h)[h2∆, χ2]e
i
√

z〈x,ω〉/hdx, (2)

where R(z, h) : L2
comp → H2

loc denotes the meromorphic continuation of the resolvent
of P to a conic neighborhood of the real axis and

c(z; h) =
1

2
z

n−3
4 (2πh)−

n+1
2 e−i

(n−3)π
4 .

Assume that z0 is a simple resonance and that there is no other resonance in a disk
D centered in z0, then the residue is given by the formula

f res(ω, ω′, h) = c(z0; h)〈[h2∆, χ1]Πθ[h
2∆, χ2]e

i
√

z0〈x,ω〉/h, ei
√

z0〈x,ω′〉/h〉

where Πθ is the spectral projector of Pθ, the operator obtained from P by analytic
dilatation, associate to z0. Moreover, as Πθ is a rank one operator, there exist
uθ, vθ ∈ L2 such that Πθ = 〈., vθ〉uθ and one can show that (Pθ − z0)uθ = 0 and
(P−θ − z0)vθ = 0. It follows that

f res(ω, ω′, h) = −c(z0; h)〈uθ, [h
2∆, χ1]e

i
√

z0〈x,ω′〉/h〉〈[h2∆, χ2]e
i
√

z0〈x,ω〉/h, vθ〉. (3)

On the other hand, it is easy to see that the functions [h2∆, χ∗]e
i
√

z0〈x,ω∗〉/h are
microlocalized near {(x, ξ); R1 < |x| < R2, ξ/|ξ| ∼ ω∗}. Our approach consists
to show that for suitable directions, the resonant sate uθ is microlocalized out of
this set. In fact, the microlocal estimate that we will prove holds for more general
operators than Schrödinger ones.
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2. Microlocalization of the resonant states

In this talk, we consider P (h) an h-differential operator on Rn, having the form

P (h) =
∑
|α|≤2

aα(x; h)(hDx)
α, (4)

where aα(x; h) ∈ Scl
n (1) and aα(x; h) doesn’t depend on h for |α| = 2 (see the book of

Dimassi–Sjöstrand [3] for more details on h-pseudodifferential calculus). We assume
that P is formally self-adjoint on L2(Rn), that is

∀u, v ∈ C∞
0 (Rn)

∫
(Pu)v dx =

∫
u(Pv) dx.

We suppose also that P is elliptic so that we have∑
|α|=2

aα(x)ξα ≥ |ξ|2/C. (5)

To define the resonances, we assume that the coefficients aα(x; h) extend holo-
morphically in x in the domain

Υ = {x ∈ Cn; |Im x| ≤ δ0〈Re x〉 and |x| ≥ R0},

R0 > 0, δ0 ∈]0, 1[ and that P converge to −h2∆ at infinity in the following sens:∑
|α|≤2

aα(x; h)ξα −→ ξ2, (6)

as |x| → +∞, x ∈ Υ, uniformly with respect to h. Under these assumptions, it is
clear that P is a self-adjoint operator with domain H2(Rn) and one can define the
resonances associate to P by the method of analytic distortions of Sjöstrand–Zworski
[19].

Let F : Rn → Rn be a smooth vector field such that F (x) = 0 if |x| ≤ R0 and
F (x) = |x| for |x| large enough. For ν ∈ R small enough, we consider the unitary
operator Uν on L2(Rn) defined by:

Uνϕ(x) = det(1 + νdF (x))−
1
2 ϕ(x + νF (x)).

Then, the operator UνP (h)U−1
ν has coefficients which are analytic with respect to

ν near 0 and can be continued to complex values of ν. For ν = iθ, with θ > 0
small enough, we get a differential operator denoted by Pθ. It is well-known that the
spectrum of Pθ is discrete in the sector Sθ = {z ∈ C; Re z > 0 and −2θ < arg z ≤ 0}
(see [19]) and by definition, the resonances of P are the eigenvalues of Pθ.

We denote by p(x, ξ; h) ∈ Scl
2n(〈ξ〉2) the Weyl symbol of P and

p0(x, ξ) =
∑
|α|≤2

aα,0(x)ξα, (7)
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is its principal symbol. The Hamilton vector field associated with p0 is

Hp0 =

(
∂ξp0

−∂xp0

)
,

and exp(tHp0), t ∈ R is the corresponding Hamiltonian flow. We define the outgoing
tail and the incoming tail at the energy E by

Γ±(E) = {(x, ξ) ∈ p−1
0 (E); exp(tHp0)(x, ξ) 9 ∞, t → ∓∞},

and we have the following theorem which says that a resonant state is outgoing.

Theorem 2.1 Let E0 > 0 be a fixed energy level, ε > 0 small enough, h/C < θ <
Ch ln(1/h) with C > 0, let z ∈ C be a resonance of P with Re z ∈ [E0 − ε, E0 + ε],
|Im z| < εθ, and let uθ ∈ L2(Rn) be a resonant state associated to z:

(Pθ − z)uθ = 0.

If w(x, ξ) ∈ C∞
0 (R2n) with supp(w) ⊂ Γ+([E0−ε, E0+ε])C, then for h > 0 sufficiently

small, one has
‖w(x, hDx)uθ‖ = O(h∞)‖uθ‖. (8)

Remark 2.2 It is possible to generalize this result to the black-box setting (see
[19] for a precise formulation). Assume that the black-box is contained in D(0, R0),
let χ ∈ C∞

0 (Rn) with χ = 1 near D(0, R0) and let w be supported in {|x| > R0}
and satisfying the assumptions of the above theorem. If uθ is a resonant state, then
‖w(x, hDx)(1− χ(x))uθ‖ = O(h∞)‖uθ‖.

Before we state our second result, we introduce the set of trapped trajectories:

T (E) = Γ+(E) ∩ Γ−(E)

= {(x, ξ) ∈ p−1
0 (E); t 7→ exp(tHp0)(x, ξ) is bounded on R}.

For E > 0, T (E) is a compact set (see the appendix of the paper of C. Gérard–
Sjöstrand [7]). We give another proof of a result of Stefanov [20, 21] on the local-
ization of the resonant states:

Theorem 2.3 Let uθ be a resonant state associated to a resonance z as in Theorem
2.1 with θ = h/C, C > 0. If w(x, ξ) ∈ S2n(1) with supp(w)∩T ([E0−ε, E0 +ε]) = ∅,
then

Opw
h (w)uθ = O

(√
|Im z|

h
+ h∞

)
‖uθ‖. (9)

3. Microlocal exponential estimate

In this section, we give a microlocal exponential weighted estimate first introduced
by Codoba–Fefferman. For this purpose, we use a Fourier–Bros–Iagolnitzer trans-
form (in fact a Bargman transform), widely studied by Sjöstrand [17]. The book of
Martinez [13] gives a detailed presentation.
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For u ∈ S ′(Rn), the FBI transform of u is given by

Tu(x, ξ; h) = αn(h)

∫
ei(x−y)ξ/h−(x−y)2/2hu(y)dy, (10)

with αn(h) = 2−n/2(πh)−3n/4. It is know that Tu ∈ C∞(R2n), eξ2/2hTu(x, ξ; h) is an
holomorphic function of z = x− iξ and that

‖Tu‖L2(R2n) = ‖u‖L2(Rn).

Let A be a h-differential operator of Weyl symbol a(x, ξ; h) ∼
∑

j≥0 aj(x, ξ)hj ∈
Scl

2n(〈ξ〉d). As a is polynomial with respect to ξ with coefficients in Sn(1), one can
find an almost analytic extension ã(x, ξ; h) ∈ Scl

2n(〈ξ〉d) of a which satisfies

ã|R2n = a,

∂xã = O(|Im x|∞)〈ξ〉d.

Following Proposition 3.1 of Martinez [13], we get

Theorem 3.1 (Martinez) Let f(x, ξ) ∈ S2n(1) with compact support in ξ and
G(x, ξ) ∈ C∞

0 (R2n). Then there exists a symbol q(x, ξ; t, h) ∼
∑

j≥0 qj(x, ξ; t)hj ∈
Scl

2n(1) uniformly with respect to t and an operator R(t, h) such that for all u, v ∈
C∞

0 (Rn), one has〈
fe−tG/hT Opw

h (a)u,e−tG/hTv
〉

L2(R2n)

=
〈(

q(x, ξ; t, h) + R(t, h)
)
e−tG/hTu, e−tG/hTv

〉
L2(R2n)

, (11)

where supp qj ⊂ supp f for all j ∈ N,

q0(x, ξ; t) =f(x, ξ)ã0

(
x + 2t∂zG(x, ξ), ξ − 2it∂zG(x, ξ)

)
,

q1(x, ξ; t) =
(
fa1 − f∂2

xxa0/4− f∂2
ξξa0/4− ∂xf∂xa0/2− ∂ξf∂ξa0/2

)
(x, ξ)

+
i

2

(
∂ξa0∂xf − ∂xa0∂ξf

)
(x, ξ) +O(t),

(here ∂z = (∂x + i∂ξ)/2), and∥∥R(t, h)
∥∥
L(L2(Rn))

= O(h∞ + h−3n/2|t|∞e2 sup |G||t|/h),

uniformly with respect to t and h small enough.

Theorem 3.1 is really useful for |t| < Ch ln(1/h), since, in that case, the qj are
independent (modulo O(h∞)) of the choice of the almost analytic extension ã and
R(t, h) = O(h∞).
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4. Proof of Theorem 2.1

Using the properties of T , it is enough to prove that

wTuθ = O(h∞)‖uθ‖. (12)

Since (Pθ − z)uθ = 0, we can assume that supp(w) ⊂ p−1
0 ([E0 − ε, E0 + ε]).

As supp(w)∩Γ+([E0− ε, E0 + ε]) = ∅, we have exp(−THp0)(supp(w)) ⊂ {(x, ξ);
〈x, ξ〉 < −|x||ξ|/2}, for T large enough. Then, one can find 0 ≤ w̃(x, ξ) ∈ S2n such
that w̃ = 1 on exp(−THp0)(supp(w)) and

Hp0w̃ ≤ 0. (13)

We define χ(x, ξ) = w̃(exp(THp0)(x, ξ)).
Since p(x, ξ; h) is close to ξ2 for x large (6), we have, for p0(x, ξ) ∈ ([E0−ε, E0+ε]),

−Im pθ(x, ξ; h) ≥

{
cθ for |x| ≥ R,

−Mθ for |x| ≤ R,
(14)

with c > 0.
Now we recall the following geometric result.

Lemma 4.1 (C. Gérard–Sjöstrand [7]) Assume that K ⊂ p−1
0 ([E0 − ε, E0 + ε])

is compact and satisfies K ∩ T ([E0 − ε, E0 + ε]) = ∅. Then, one can find a function
F (x, ξ) ∈ C∞b (R2n) such that Hp0F ≥ 0 on p−1

0 ([E0− ε, E0 + ε]) and Hp0F > 1 on K.

We use Lemma 4.1 with K = supp(χ) ∩D(0, R) and we set G = CF with C large
enough.

Then, we apply Theorem 3.1 with A = Pθ − z and t = θ = O(h ln(1/h)). The
inequality (13), (14) and Lemma 4.1 imply that

0 = −Im
〈
χ2(x, ξ)e−tG/hT (Pθ − z)uθ, e

−tG/hTuθ

〉
≥ cθ

∥∥χe−tG/hTuθ

∥∥2
+O(θ2)

∥∥χ̃e−tG/hTuθ

∥∥2
+O(h∞)

∥∥e−tG/hTuθ

∥∥2
,

where χ̃ satisfies the same properties as χ. So∥∥χe−tG/hTuθ

∥∥2
= O(θ)

∥∥χ̃e−tG/hTuθ

∥∥2
+O(h∞)

∥∥e−tG/hTuθ

∥∥2

= O(h∞)
∥∥e−tG/hTuθ

∥∥2
,

by induction, and (12) follows from the fact that e−tG/h = O(h−C). �

5. Residue estimate of the scattering amplitude

In this section, we assume that P is a Schrödinger operator

P = −h2∆ + V (x), (15)
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where V (x) ∈ Sn(1) extends holomorphically to the domain Υ. To define the
scattering amplitude, we make a long-range assumption on V (x):

∃ρ > 0 ∃C > 0 ∀x ∈ Γ, |V (x)| ≤ C|x|−ρ.

In particular, P satisfies the assumptions of section 1. We can define the scattering
matrix S(z; h), z ∈ R∗

+, related to P0 = −h2∆ and P , as a unitary operator:

S(z; h) : L2(Sn−1) −→ L2(Sn−1). (16)

Next, introduce the operator T (z; h) defined by S(z; h) = Id − 2iπT (z; h). From
Isozaki–Kitada [9], it is known that T (z; h) has a kernel T (ω, ω′, z; h), smooth in
(ω, ω′) ∈ Sn−1 × Sn−1 \ {ω = ω′} and the scattering amplitude is given by

f(ω, ω′, z; h) = c1(z; h)T (ω, ω′, z; h), (17)

with

c1(z; h) = −2π(2z)−
n−1

4 (2πh)
n−1

2 e−i
(n−3)π

4 .

In [6], C. Gérard and Martinez have shown that for ω 6= ω′ fixed, the scattering
amplitude has a meromorphic continuation to a conic neighborhood of R∗

+, whose
poles are the resonances of P . Moreover, the multiplicity of each pole is exactly the
multiplicity of the resonance.

In this section, we still assume that z0(h) is a simple resonance of P such that
Re z0 ∈ [E0 − ε, E0 + ε] and 0 < − Im z0 < Ch ln(1/h). Under this condition the
scattering amplitude takes the form

f(ω, ω′, z; h) =
f res(ω, ω′; h)

z − z0

+ fhol(ω, ω′, z; h), (18)

where fhol(ω, ω′, z; h) is holomorphic near z0. Our aim is to give an estimate of the
residue f res in some special directions:

Definition 5.1 We say that ω ∈ Sn−1 is an incoming direction (resp. outgoing
direction) for the energy E0 iff there is ε, R > 0 and W ⊂ Sn−1, a neighborhood of
ω, such that, for all (x, ξ) ∈ p−1([E0 − ε, E0 + ε]),

|x| ≥ R and
ξ

|ξ|
∈ W =⇒ lim

t→−∞
exp(tHp0)(x, ξ) = ∞.

(resp. lim exp(tHp0)(x, ξ) = ∞ as t → +∞)

Remark 5.2 If ρ > 1, ω is an incoming direction iff there is R > 0 such that

p(x, ξ) = E0, |x| ≥ R and
ξ

|ξ|
= ω =⇒ lim

t→−∞
exp(tHp0)(x, ξ) = ∞.

This is a consequence of the Proposition 6.1 of [14].
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For θ ≥ C|Im z| with C > 0 sufficiently large, we denote by Πθ the spectral
projector associate to the resonance z0:

Πθ =
1

2iπ

∫
∂D

(z − Pθ)
−1dz, (19)

where D = D(z0, r(h)) ⊂ C is a small disk such that z0 is the only resonance in D.

Theorem 5.3 Let E0 > 0 and ω, ω′ ∈ Sn−1 with ω 6= ω′. If ω is an outgoing
direction or if ω′ is an incoming direction, then there exists ε, C ′ > 0 such that for
all simple resonance z0 ∈ [E0 − ε, E0 + ε] − i[0, θ/C ′] with h/C < θ < Ch ln(1/h),
C > 0 one has

f res(ω, ω′, h) = O(h∞)‖Πθ‖. (20)

Proof. We assume that V has compact support and we use the formula (3). If ω′

(resp. ω) is an incoming (resp. outgoing) direction, Theorem 2.1 implies that uθ =
O(h∞)‖uθ‖ (resp. vθ) microlocally near the microsupport of [h2∆, χ1]e

i
√

z0〈x,ω′〉/h

(resp. [h2∆, χ2]e
i
√

z0〈x,ω〉/h). Then

f res(ω, ω′, h) = O(h∞)‖uθ‖‖vθ‖ = O(h∞)‖Πθ‖.

In the long range case, the proof is a little more technical since the amplitude is
calculated with the method of Isozaki–Kitada. �

6. Estimate on the spectral projector

In this section, we give some examples where the spectral projector Πθ is bounded
by O(h−C).

• Resonances near the real axis

If the resonance z0 satisfies |Im z0| = O(hM) with M >> 1, one can apply
the semiclassical maximum principle and the a priori exponential estimate of the
modified resolvent (Pθ−z)−1 obtained by Tang–Zworski [22]. Using these techniques,
Stefanov [21] has proved that

Proposition 6.1 (Stefanov) Assume that V is compactly supported and let E0 >
0. Let z0 be a simple resonance of P such that Res(P )∩D(z0, h

M1) = {z0}, for M1

sufficiently large and |Im z0| ≤ ChM2 with M2 ≥ M1 + 2n + 2. Then

‖Πθ‖ = O(1), (21)

uniformly with respect to h/C < θ < Ch log(1/h).

• Estimate in dimension one

Proposition 6.2 We assume that n = 1 and that the critical points of p0(x, ξ) on
the energy level are non-degenerate (i.e. the points (x, ξ) ∈ p−1

0 ({E0}) such that
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∇p0(x, ξ) = 0 satisfy Hess p0(x, ξ) is invertible). Then there exists M , ε > 0 such
that, for E ∈ [E0 − ε, E0 + ε] and θ = Nh with N > 0 large enough,

‖(Pθ − z)−1‖ = O(h−M)
∏

zj∈Res(P )∩ΩE,εθ

θ

|z − zj|
, (22)

where z ∈ ΩE,εθ/2, ΩE,δ = E + D(0, δ) and h is small enough.

Proof. The proof is based on the a priori estimate of the resolvent given by
Tang–Zworski [22] and on the fact that the number of resonances in D(E0, Ch)
is O(ln(1/h)h1−n) = O(ln(1/h)). �

As a direct consequence, we get

Corollary 6.3 Under the hypotheses of Lemma 6.2, if #Res(P )∩D(E0, θ) = O(1)
and z0 ∈ Res(P ) is separated by hC from the other resonances of P , then

Πθ = O(h−C′
). (23)

We can also study the following example. Consider a short range potential V (x)
which is holomorphic in

{x ∈ C; |Im z| ≤ 〈Re z〉/C},

and has the following form:

x

E0

V (x)

xc

At xc, V (x) has a non degenerate maximum. Such type of potential have been study
by Fujiié and Ramond [4] and [5]. In particular, the formula (41) of [5] implies that
the resonances in ΩE0,εθ are of the form

zj = E0 +
S0 − (2j + 1)πh + ih ln(2)

K ln(h)
+O(h/ ln(h)2),

with j ∈ Z and S0, K are some fixed constants.

Corollary 6.4 Under the previous hypotheses, the projector associated to a reso-
nance zj satisfies, for h small enough,

Πθ = O(h−C). (24)

In this case +1 ∈ S0 is an incoming direction and −1 is an outgoing direction.
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• Estimate near critical energy

Let P = −h2∆+V (x) where V (x) is a short range potential which is holomorphic
in

{x ∈ Cn; |Im z| ≤ 〈Re z〉/C}.

We assume that V (x) has a non-degenerate critical point at xc at the energy E0

(i.e. V (xc) = E0, V ′(xc) = 0 and V ′′(xc) is invertible with signature (p+, p−)) and
T (E0) = {(x0, 0)}. In this situation Sjöstrand [18] described all the resonances in
D(E0, Ch). In particular, if the λj are Z-independent, we know that the distance
between two resonances in this set is of order h.

Under these hypotheses, the center-stable manifolds Theorem (see [1, Theorem
7.2.2]) gives Λ+ ⊂ Γ−(E0)

c, (resp. Λ− ⊂ Γ+(E0)
c) p+-dimensional manifold passing

through the origin and invariant under the Hp0-flow. Moreover, ω ∈ Sn−1 is not an
incoming (resp. outgoing) direction iff there is (x(t), ξ(t)) = exp(tHp0)(x, ξ) ∈ Λ+

(resp. Λ−) such that ξ(t)/|ξ(t)| → ω as t → +∞.
For instance, in dimension 2, for the following potential:

ω2

ω1

the incoming (resp. outgoing) directions are S1 \ {ω1, ω2} (resp. S1 \ {−ω1,−ω2}).

Proposition 6.5 Let z0 ∈ D(E0, Ch), C > 0, be a resonance of P separated by hC

from the other resonances. For θ = C ′h ln(1/h), C ′ > 0, the projector associated to
z satisfies

Πθ = O(h−C′′
). (25)

Proof. This is a slight modification of some parts of the works of Sjöstrand [18]
and Kaidi–Kerdelhué [10]. �
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