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Viscous Limits for strong shocks of
one-dimensional systems of conservation laws
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Abstract
We consider a piecewise smooth solution of a one-dimensional hyperbolic

system of conservation laws with a single noncharacteristic Lax shock. We
show that it is a zero dissipation limit assuming that there exist linearly stable
viscous profiles associated with the discontinuities. In particular, following
the approach of [7], we replace the smallness condition obtained by energy
methods in [6] by a weaker spectra. The complete proofs can be found in [14].

1. Introduction

Consider a one-dimensional system of conservation laws

ut + f(u)x = 0, (1)

with a smooth flux f : Rn → Rn. We assume that (1) is hyperbolic, there exist
smooth matrices P (u), D(u) such that P (u)−1f ′(u)P (u) = D(u) where D(u) is a
diagonal matrix. The eigenvalues of D will be denoted by λ1(u), · · · , λn(u). We
consider a piecewise smooth solution u which is a distributional solution of (1) in
the domain R × [0, T ∗] with a single shock, that is to say that u(x, t) is smooth
at any point (x, t), x 6= s(t) where x = s(t) is a smooth curve in the (x, t) plane.
Moreover the limits

∂k
xu−(t) := ∂k

xu(s(t)− 0, t) = lim
x→s(t)−

∂k
xu(x, t),

∂k
xu+(t) := ∂k

xu(s(t) + 0, t) = lim
x→s(t)+

∂k
xu(x, t),

exist. We also assume that the shock is a noncharacteristic Lax shock that is

λ1(u
−(t)), · · · , λp−1(u

−(t)) < s′(t) < λp(u
−(t)) < · · · < λn(u−(t)), (2)
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λ1(u
+(t)), · · · , λp(u

+(t)) < s′(t) < λp+1(u
+(t)) < · · · < λn(u+(t)). (3)

A general conjecture is that the admissible solutions of (1) can be obtained as
limits of solutions of

uε
t + f(uε)x = εuε

xx, (4)

when ε tends to zero. This conjecture has been proved for scalar conservation laws
by using the maximum principle [15] and for some special 2 × 2 systems by the
method of compensated compactness [3]. This conjecture motivated the work of
Goodman and Xin [6], who have shown that u is the limit of a solution of (4) under
a smallness assumption on the amplitude of the shock

sup
t∈[0,T ]

|u+(t)− u−(t)| ≤ η0, (5)

η0 being sufficiently small. Their method was based on the construction of an
approximate solution of (4) thanks to matched asymptotic expansions techniques
and then validation of this expansion thanks to energy estimates. More recently
the convergence of uε has been proved in [1] for general initial data for (4) having
sufficiently small total variation by a completely different method. Here we still focus
on the case of a single shock as in [6] and on the matched asymptotic expansion
technique but our aim is to remove the smallness assumption(5).

At first let us briefly describe the construction of the approximate solution in [6].
Away from the shock, there is an outer expansion

O(x, t) = u(x, t) + εu1(x, t) + ε2u2(x, t) (6)

where u is the piecewise smooth solution of (1) that we considered, and ui, i ≥ 2
are solutions of some linear hyperbolic systems. Similarly, near the shock there is
an inner expansion

I(x, t) = V (ξ, t) + εV1(ξ, t) + ε2V2(ξ, t) (7)

where ξ = x−s(t)
ε

+ δ(t) is the stretched variable. There is also an expansion of δ(t)
which is a perturbation of the shock position :

δ(t) = δ0(t) + εδ1(t).

The viscous shock profile V (ξ, t) is a solution of

Vξ = f(V )− f(u−(t))− s′(t)(V − u−(t)) (8)

such that
lim

ξ→±∞
V (ξ, t) = u±(t). (9)

The higher order terms are solutions of some linear ordinary differential equations.
Taking a smooth function m such that m(x) = 1 when |x| ≤ 1 and m(x) = 0, when
|x| ≥ 2, one finally gets an approximate solution of (4)

uapp(x, t) = m

(
x− s(t)

εγ

)
I(x, t) +

(
1−m

(
x− s(t)

εγ

))
O(x, t) + d(x, t), (10)
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where d is an higher order correction term that allows to put the error term in
conservative form(see 2)and γ ∈ (2

3
, 1). The approximate solution uapp then solves

uapp
t + f(uapp)x − εuapp

xx = Rε
x

where Rε = O(εM). As explained in [5], it is better to deal with an integrated
equation when we study the stability of shocks through energy estimates since for
weak shocks it allows to use that ∂xλp(V ) < 0. By choosing the solution of (4) with
initial data uapp(0, x), it is then possible to set wx = uε − uapp. w then solves

wt + f ′(uapp)wx − εwxx = Q(uapp, wx) + (f(uapp)− f(uapp − d)), (11)

w(0, x) = 0.

The error term Q(uapp, wx) is O(|wx|2). The convergence of wx to zero is shown in [6]
by mean of energy estimates. This method leads to the smallness assumption (5).
The same kind of result with a more precise description of the convergence and the
study of the evolution of an initial layer into a shock layer is shown in [16] by the
method of approximate Green’s functions of [11], but there is still the restriction(5).
This smallness assumption is not sharp even when we study the linear stability of
shock profiles. There are strong viscous shocks V (ξ, τ) which are linearly stable for
zero-mass perturbation, that is to say that the solutions of

∂tu + f ′(V (ξ, τ))∂ξu− ∂ξξu = 0,

u(0, x) = u0(ξ)

tend to zero when t → +∞. However, when the shock does not satisfy a smallness
assumption, the classical energy estimates are not sufficient to prove the stability.
The main difficulty is due to the fact that the energy tends to zero when t → +∞ but
not in a monotonous way. To conclude, refined methods are needed as in [10], [17].
Note that these methods do not apply in our time dependent setting since they
both rely on the Laplace transform. The aim of this note is to explain the result
of [14] about the convergence of uε towards uapp when the viscous profiles are linearly
stable.

We now detail more precisely our hypotheses. At first, we assume that

(H0)∀t ∈ [0, T ], there exists a viscous profile V (·, t) which is a solution of
(8, 9).

Note that thanks to(2),(3), u+(t) and u−(t) are hyperbolic rest points for the ordi-
nary differential equation (8), consequently, we have for any α,

|∂α
t V (ξ, t)− ∂α

t u+(t)| ≤ e−ωξ,∀ξ ≥ 0, |∂α
t V (ξ, t)− ∂α

t u−(t)| ≤ eωξ,∀ξ ≤ 0,

|∂α
ξ V (ξ, t)| ≤ e−ω|ξ|,∀ξ,

for some ω > 0.
Now, let us formalize the notion of linear stability. Consider for each τ ∈ [0, T ],

the operator
Lτv = vξξ −

(
f ′(V (ξ, τ))− s′(τ)

)
vξ,

in Lp with domain W 2,p for p < +∞. For each time τ we want the profile V (ξ, τ) to
be linearly stable. As stated in [17], it is equivalent to the Evans function criterion
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(H)∀τ ∈ [0, T ∗], Lτ is such that Dτ (λ) 6= 0 ∀λ, < λ ≥ 0,

where Dτ is the Evans function of Lτ . We refer to [4] and [17] for a precise definition
of the Evans function which is a kind of characteristic polynomial for the operator
Lτ . This hypothesis means that Lτ does not have eigenvalues in the closed right
half plane (the unstable half plane)and that zero is not a generalized eigenvalue(note
that zero is in the essential spectrum of Lτ , hence this assumption on the Evans
function is necessary to overcome this neutral case in stability theory). Indeed this
hypothesis is necessary and sufficient for the linear stability of Lax shocks shocks as
stated in [17]. Note that(H)can be checked by energy methods in the case of weak
shocks. At this stage we see another justification of the fact that it is really better
to deal with an “integrated” equation. Actually if we deal with the original linear
operator

L̃τv = vξξ −
(
(f ′(V (ξ, τ))− s′(τ))v

)
ξ
,

the Evans function vanishes at zero(because of the translational invariance of the
problem the derivative Vξ of the viscous profile is in the kernel of L̃τ ), this yields
a much more complicated behaviour of the Green’s function of the evolutionary
problem [17]. The main theorem of this note is :

Theorem 1 Assuming (H0) and (H), there exists an high order approximate ex-
pansion under the form(10). Moreover, we have

||uε − uapp||L∞([0,T ],L1(R)) → 0

and
||uε − uapp||L∞([0,T ]×R) → 0

when ε tends to zero. Consequently, we have

||uε − u||L∞([0,T ],L1(R)) → 0

and for any η ∈ (0, 1)

sup
0≤t≤T,|x−s(t)|≥εη

|uε(x, t)− u(x, t)| → 0

when ε tends to zero.

We can also get a convergence in L∞([0, T ], Wm,1(R)) for any m. Note that this
theorem is sharp since(H)is necessary for linear stability of each profile and since
we can expect that linear instability implies nonlinear instability as in [2].

We have a convergence result in L1 du to the method of Green’s function con-
struction as in [7], [14]. More recently, another approach based on symmetrizors
construction was developped, it allows to recover convergence in L2 and to deal
with multidimensional systems [12], [8].

In the first part, we briefly explain how to find an high order approximate solution
uapp under the form(10). Note that the first terms u and V in the expansions(6),
(7) which are solutions of nonlinear equations exist by assumption.

In the second part, we give outlines of the proof of the stability result, the
complete proof with a generalization to nonclassical shocks is in [14].
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2. High order approximate solution

2.1. Construction

We explain how to construct u1, V1 and δ0 which are built simulaneously. A similar
construction can be done for the other terms. Note that another type of construction
based on boundary layers expansions is done in [9]. By the method of matched
asymptotic expansion we find that u1 is a solution of

u1t + (f ′(u)u1)x = uxx, (12)

for x 6= s′(t) and that V1 is a solution of the ordinary differential equation

V1ξξ =
(
(f ′(V )− s′(t))V1

)
ξ
+ δ′0(t)Vξ + Vt, (13)

Moreover we want the two solutions to be valid in an intermediate zone. This gives
the matching conditions

V1(ξ, t) = u±1 (t) + (ξ − δ0)∂xu
±
0 + o(1) (14)

when ξ → ±∞.
As in [6], it is more convenient to deal with bounded solutions, hence we can

choose a smooth D1 such that U1 = V1 −D1 solves

U1(ξ, t) = u±1 (t)− δ0(t)∂xu
±
0 (t) + o(1), ξ → ±∞, (15)

U1ξξ −
(
(f ′(V )− s′(t))U1

)
ξ

= δ′0(t)Vξ + g(ξ, t),

where
|g(ξ, t)| ≤ Ce−α|ξ|.

Setting

G(ξ, t) =

∫ ξ

0

g(η, t) dη, (16)

we get
U1ξ −

(
f ′(V )− s′(t)

)
U1 = δ′0(t)V + G(ξ, t) + c(t), (17)

where c(t) is an integration constant and G(ξ, t) → G±(t) when ξ → ±∞. To
solve the coupled systems(17),(12), (15), the method is to show that for every
(t, δ0(t), c(t)) we can find a solution of (17) which tends to some limits at ±∞
depending on (t, δ0(t), c(t)). Using these limits and the matching conditions (15) we
can rewrite (12) as an initial boundary value problem where u1 and δ0 are the only
unknowns. To solve (17) for each t and δ0, we use that thanks to our assumption
(H), the operator

Atv = v′ −
(
f ′(V (ξ, t))− s′(t)

)
v

defined from C1
b (R) to C0

b (R) is onto with a one-dimensional kernel. This comes
from classical results in ordinary differential equations [13]. Next, we show that
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every bounded solution U1 of (17) tends to some limits when ξ → ±∞. After the
computation of these limits, we can combine with (15) to get

A+(t)u+
1 (t)− A−(t)u−1 (t) +

d

dt

(
δ0(u

+ − u−)
)

=
d

dt
(u+ − u−) (18)

where A±(t) = f ′(u±(t)) − s′(t). Since our assumption (H) and more precisely the
assumption Dt(0) 6= 0 implies (see [18]) the Majda-Liu condition

det(r1(u
−(t)), · · · , rp−1(u

−(t)), (u+(t)− u−(t)), rp+1(u
+(t)), · · · , rn(u+(t))) 6= 0

we can solve(12), (18) with unknown u1, δ0 thanks to classical techniques(method
of characteristics).

2.2. Bounds on the error term

Since we want to integrate the equation, we need to choose an approximate solution
of (4) with an error term in a conservative form. If we choose an approximate
solution under the basic form

uapp(x, t) = m

(
x− s(t)

εγ

)
I(x, t) +

(
1−m

(
x− s(t)

εγ

))
O(x, t),

we find that
uapp

t + f(uapp)x − εuapp
xx = q.

we do not give the precise form of q, but we just point out that it is not a derivative.
Hence, following the idea of [6], we choose an approximate solution in the form (10)
where d is such that

dt − εdxx = −q(x, t),

d(0, x) = d0(x).

Thanks to this choice, uapp now solves

uapp
t + (f ′(uapp))x − εuapp

xx = (f(uapp − d)− f(uapp))x,

and we will be able to integrate the equation. Let us set Rε(t, z) = f(ũapp − d̃) −
f(ũapp), which is the error term of the approximate solution in(19). We can show
that

Proposition 2 There exists a positive constant C independent of ε such that for
all γ ∈ (2

3
, 1), t ∈ [0, T ]

||Rε(t, ·)||L1 ≤ Cε3γ, ||Rε
t (t·)||L1 ≤ Cε3γ− 1

2 , ||Rε
tt(t, ·)||L1 ≤ Cε3γ−1,

||Rε
z(t, ·)||L1 ≤ Cε3γ−1, ||Rε

zz(t, ·)||L1 ≤ ε2γ− 1
2 .
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3. Stability analysis

Let us go back to(11). After the change of variable z = x− s(t) + εδ(t), we find

w̃t +
(
f ′(ũapp(z, t))− s′(t) + εδ′(t)

)
w̃z − εw̃zz = Q(ũapp, w̃z) + Rε, (19)

where ũapp(z, t) = uapp(z + s(t)− εδ(t), t), d̃(z, t) = d(z + s(t)− εδ(t)) and w̃(z, t) =
w(z + s(t)− εδ(t), t). We note that now the viscous shock is located at z = 0.

Note that using the Green’s function G of the linear parabolic operator

Lεw = wt + (f ′(ũapp)− s′(t) + εδ′(t))wz − εwzz,

w̃ can be considered as a solution of the integral equation

w̃(t, z) =

∫ t

0

∫
R

G(t, τ, z, y)(Rε(z, τ)) + Q(uapp, w̃z)) dy dτ.

Consequently, it suffices to obtain good estimates on the Green’s function Gε to get
the nonlinear result of Theorem 1by classical continuous induction arguments for
parabolic equations. Let us recall that the Green’s function G(t, τ, x, y) is a solution
of LεG = 0 for t > τ such that

lim
t→τ+

G(t, τ, x, y) = δy(x)In,

and G(t, x, τ, y) = 0, t < τ . The difficult part of the Theorem is then to prove

Theorem 3 There exists a Green’s function G(t, τ, x, y) of Lε defined for 0 ≤ τ, t ≤
T , z, y ∈ R such that

sup
0≤τ≤T,y

∫ T

0

∫
R
|G(t, τ, z, y)| dzdt +

√
ε sup

0≤τ≤T,y

∫ T

0

∫
R
|∂zG(t, τ, z, y)| dzdt (20)

is bounded uniformly in ε.

Proof

We use the iterative construction of the Green’s functions given in [7]. We choose
an approximate Green’s function Gapp(t, τ, z, y) under the form

Gapp(t, τ, z, y) =
N∑

k=1

Sk(t, τ, z, y)Πk(τ, y)

where Sk(t, τ, z, y) are Green’s kernels and Πk ∈ C∞([0, T ]×R,L(Rn)) are such that

||Πk(t, x)v|| ≤ C||v||,∀x ≥ 0, t ∈ [0, T ], v ∈ Rn

and ∑
k

Πk = Id.

XVI–7



For each Sk, we define the error Rk(t, τ, z, y) = LεSk. We then define the matrix of
“error interactions” M(T1, T2) = (σkl(T1, T2))1≤k,l≤N , where

σkl(T1, T2) = sup
T1≤τ≤T2,y∈suppΠl

∫ T2

T1

∫
R
|Πk(t, z)Rl(t, τ, z, y)| dzdt.

This matrix describes how each part of the approximate Green’s function is handled
at the next step of the iterative method. Theorem 5 of [7] states that to prove (20)
it suffices to check that there exists η such that T2 − T1 ≤ η implies

lim
p→+∞

Mp(T1, T2) = 0.

Let us now introduce some definitions that are necessary for the construction of our
approximate Green’s function. We use two smooth cut-off functions χ+ and χ− such

that χ+(z) =

{
0ifz ≤ 1
1if z ≥ 2

and χ−(z) =

{
0ifz ≥ −1
1if z ≤ −2

. We also assume that the

cut-off function m already used was under the form (1 − χ+)(1 − χ−). We denote
by P±(t, z), D±(t, z) matrices such that

f ′(u(z + s(t), t))− s′(t) = P+D+(P+)−1,∀z > 0,

f ′(u(z + s(t), t))− s′(t) = P−D−(P−)−1,∀z < 0,

and D±(±z, t) = diag(λ1(u(s(t)±z, t))−s′(t), · · · , λn(u(s(t)±z, t))−s′(t)), if z > 0.
Setting

λ+
i (z, t) =

{
λi(u(z + s(t), t))− s′(t)if z > 0,
λi(u(s(t) + 0, t))− s′(t)if z ≤ 0,

and
λ−i (z, t) =

{
λi(u(z + s(t), t))− s′(t)if z < 0,
λi(u(s(t)− 0, t))− s′(t)if z ≥ 0,

we define the characteristic curves X±
i (t, τ, y) by

∂tX
±
i (t, τ, y) = λ±i (X±

i (t, τ, y), t), t ≥ τ,

with initial data X±
i (τ, τ, y) = y.

We also define the projections along incoming ant outgoing characteristics

P+
out(t, z) = P+(t, z)D+

out(t, z)(P+)−1(t, z),

P+
in(t, z) = P+(t, z)D+

in(t, z)(P+)−1(t, z),

P−out(t, z) = P−(t, z)D−
out(t, z)(P−)−1(t, z),

P−in(t, z) = P−(t, z)D−
in(t, z)(P−)−1(t, z),

where

D+
out = diag(0, · · · , 0, 1, · · · 1), with p + 1 null coefficients,

D+
in = diag(1, · · · , 1, 0, · · · , 0), with p unit coefficients,

D−
out = diag(1, · · · , 1, 0, · · · , 0), with p− 1 unit coefficients,

D−
in = diag(0, · · · , 0, 1, · · · , 1), with p unit coefficients.
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Let

G±
T (t, τ, z, y) = diag

e−
(z−X±

i
(t,τ,y))2

4ε(t−τ)√
4πε(t− τ)

 .

We define Green’s functions for the incoming and outgoing waves as

G+
out(t, τ, z, y) = χ+

(
z

M1ε

)
P+(t, z)D+

out(t, z)GT (t, τ, z, y)(P+(τ, y))−1 = χ+G̃+
out,

G+
in(t, τ, z, y) = χ+

(
z

M1ε

)
P+(t, z)D+

in(t, z)GT (t, τ, z, y)(P+(τ, y))−1 = χ+G̃+
in,

G−
out(t, τ, z, y) = χ−

(
z

M1ε

)
P−(t, z)D−

out(t, z)GT (t, τ, z, y)(P−(τ, y))−1 = χ−G̃−
out,

G−
in(t, τ, z, y) = χ−

(
z

M1ε

)
P−(t, z)D−

in(t, z)GT (t, τ, z, y)(P−(τ, y))−1 = χ−G̃−
in,

where M1 > 0 is to be chosen. We also define

Gshock(t, τ, z, y) = m

(
z

M3ε

)
GS

τ (t, τ, z, y)

where GS
τ is the Green’s function of the operator with time frozen in the coefficients

Lε
τw = wt +

(
f ′(V (

z

ε
, τ))− s′(τ)

)
wz − εwzz.

Thanks to the stability assumption (H), the analysis of [17] based on Laplace trans-
form applies. Hence, a very precise pointwise behaviour of the Green’s function GS

τ

is available. Actually we do not use the full expansion of the Green’s function given
in [17]. We just use that for bounded y the Green’s function can be described by
Gaussians moving along the outgoing characteristics see [7], [14].

The kernels of the theorem of [7] are S1 = S2 = G−
out, S3 = G−

in, S4 = Gshock,
S5 = G+

in, S6 = S7 = G+
out. The truncation functions will be

Π1(τ, y) = χ−
(

y

M2ε

) (
1− χ−

(
2y

M3ε

))
P−out(τ, y)

Π2(τ, y) = χ−
(

2y

M3ε

)
P−out(τ, y),

Π3(τ, y) = χ−
(

y

M2ε

)
P−in(τ, y),

Π4(τ, y) = m

(
y

M2ε

)
Π5(τ, y) = χ+

(
y

M2ε

)
P+

in(τ, y),

Π6(τ, y) = χ+

(
2y

M3ε

)
P+

out(τ, y),

Π7(τ, y) = χ+

(
y

M2ε

) (
1− χ+

(
2y

M3ε

))
P+

out(τ, y).
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The constants M1, M2 and M3 are such that M1 ≤ 4M2 ≤ 16M3 and are
carefully choosen at the end of the proof. G1 and G5 describe the creation and
propagation of outgoing waves in a vicinity of the shock layer, G2 and G6 describe
the creation and propagation of outgoing waves away from the shock layer, G3 and
G7 describe the creation and propagation of ingoing waves and G4 describes the
dynamics of the shock layer. It is important to describe very precisely the prop-
agation of outgoing waves in the vicinity of the shock layer because these waves
can interact with the shock layer to give a large but actually very localized error.
Note that with this choice we get a relevant approximate Green’s function since
Gapp(τ, τ, z, y) = δy(z)In. Moreover Gapp satisifies the estimate (20) hence we can
use theorem 5 of [7]. To prove the Theorem, we have to compute M that is to say
the various errors made by the approximate Green’s functions G1, · · · , G8. Most of
the time, these errors are made by the product of a moving gaussian and an expo-
nentially decreasing factor e−σ|z| or a truncation function supported in [Mi, 2Mi].
Consequently, a crucial lemma for the estimation of these terms is

Lemma 4 ([7]) Let us define for some trajectory X(t), such that X(0) = 0,

I(y) =

∫ +∞

0

∫ +∞

0

exp
(
−(x− y −X(t))2

t

)
exp(−σx)

dxdt√
t

,

K(y) =
1

M

∫ +∞

0

∫ 2M

M

exp
(
−(x− y −X(t))2

t

)dxdt√
t

,

i) If γ ≥ X ′(t) ≥ δ > 0, then I(y) is bounded uniformly in y ≥ 0, and go to 0 as
y → +∞.

ii) If −γ ≤ X ′(t) ≤ −δ < 0 then I(y) is bounded uniformly in y ≥ 0.

iii) If γ ≥ X ′(t) ≥ δ > 0 then K(y) is bounded uniformly in y ≥ 0 and M , and
goes to 0 as y − 2M goes to +∞.

iv) If −γ ≤ X ′(t) ≤ −δ < 0 then K(y) is bounded uniformly in y ≥ 0 and M .
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