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A minicourse on global existence and blowup
of classical solutions to multidimensional
quasilinear wave equations

Serge Alinhac

Abstract

The aim of this mini-course is twofold: describe quickly the framework of
quasilinear wave equation with small data; and give a detailed sketch of the
proofs of the blowup theorems in this framework.

The first chapter introduces the main tools and concepts, and presents the
main results as solutions of natural conjectures. The second chapter gives a
self-contained account of geometric blowup and of its applications to present
problem.

Introduction

In this course, we deal only with multidimensional situations. Results and references
on the analysis of small classical solutions for one dimensional systems may be found
in Kong [21]. In chapter I, we present the three models we are considering, and
explain a number of useful concepts. The results on the asymptotics of the lifespan
are given at the end of this chapter. In chapter II, we focus on the proofs of upper
bounds for the lifespans, trying to give a self-contained and unified account of results
scattered in different papers.

In some sense, this course is an extension of my intoductory book [13]: the ge-
ometric blowup mechanism is more extensively studied, and the results on small
solutions of quasilinear wave equations complete chapter V of the book, which con-
tains only preliminary sketches.
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Chapter I

SOME MODELS OF QUASILINEAR WAVE EQUATIONS
IN TWO AND THREE SPACE DIMENSIONS:
CONCEPTS AND RESULTS

We consider here quasilinear wave equations in R; x R”

(07 2)U+ Z 9ij (u, Ou)dZu = 0. (0.1a)
0<7,57<n
Here zy = t, © = (x1,...,2,), and Ju = (diu,...,0,u,du). Unless otherwise
indicated, indexes 7,7 etc. in sums will range from 0 to n. We will also use the
polar coordinates in R™ and the variable o defined by r = |z|, z = rw, wy = —1,
w=(wy,...,wpn), and ¢ = r — t. The initial conditons for u are
u(z,0) = euf(z) + Euy(r) + ..., Owu(r,0) = euy(x) + ug(x) +...,  (0.1b)

where the real functions u are smooth and supported in |z| < M.
The only case we consider where g;; depends on u is the simplest case in R?

Otu— A(w)Au =0, c(u)=1+u. (0.2)

In all other cases, g;; = ¢;;(0u), and the real smooth g;; verify

9:5(€) =Y gh&+ Y _hias + O(gf), & —o. (0.3)

We explain now some of the basic results and concepts needed to discuss our exam-
ples.

1. Free solutions of the wave equation

Following [16], we see that a solution u of d?u — Au = 0 with smooth compactly
supported data (say, in || < M) can be approximately written

U~ r_nT_ng(a,w),
where Fj is a smooth function which can be computed explicitly from the data,
using Radon transform (the occurrence of Radon transform in this context can be
easily seen by drawing backward light cones). For n = 2, Fj is a symbol in o of

order —1/2, while it is supported in |o| < M for n = 3 by Huyghens’ principle.
More precisely, we have for all & and r > ¢/2

|2 — 17" F Fp)| < O(1+ |o) /(1 + ¢)= (D2,
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2. The Z fields

We define, for n = 2, the angle derivative R = x10y — 1201 = 0,,. Similarly, for
n = 3, we define R = x A 0, that is

Ry = 2905 — x305, Ry = 2301 — 1103, R3 =110, — 220,.

These fields R are tangent to the sphere S”~!, and span the tangent space there. In
polar coordinates, we have

0= wili, 10, =10y, 0 =w,—1/r(wAR);, 1<i<3,
A=0>+1/r0, +1/r°02, n=2,
A=00?+2/r0, +1/r*A,, A,=Ri+R;+R; n=3.

We have the commutation relations [R;, A] = 0 and [0? — A, R;] = 0. The other
fields well commuting with the wave equation are

S =td, + ro,, (02 — A, 5] = 2(8? — A),

The fields R;, S, h; and 0; are the Z fields. Because of their homogeneity, the Z-
fields are essentially connected with the zero cone {r —t = 0}: S and the hyperbolic
rotations h; are only tangent to this cone; on the other hand, the rotations R; are
tangent to all cones {r —t = C'}.

Another aspect of the analysis is to consider, at each point, a special frame of
vectors. To this aim, we introduce T; = 0; + w;0;, R/r = w A T. We define also

L=0;+0, =Y wTi=(t+r)"(S+) wh), L=0 -0,

and note that the tangent space to any cone {r — ¢t = C} is spanned by the T; or
by (R;, L). On the other hand, the fields 7; do not commute well with the wave
equation. For more general geometries, analogous special vector fields are defined
in [19]. The relations between the Z fields and the T} are not simple:

T, = (1/t)hi — wi(o /)0y, S =) xT; — o0

Roughly, for |o| < C, T; behaves like (1/t)Z.
The following Klainerman’s inequality explains the importance of the Z fields:

(Ut 4 [2)" ™ (1 [l = el @ o < ¢ 3 120,08 @21)

la|<n+2/2

We note the double aspect of the decay property described by this inequality (as-
suming that the right-hand side is bounded):

1. For ||t| — r| bounded (that is, close to the boundary of the light cone), |u|
decays like t_nT_l,
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2. When moving towards the interior of the light cone, the decay improve by a
factor t~'/2. This improvement is optimal for n = 2, not for n = 3.

The first aspect is easily understood if we think of using Sobolev inequalities
for the variables (r,w), for fixed t. The second aspect is more subtle, and uses the
hyperbolic rotations h;.

A typical way of gaining control of the right-hand side is by commuting products
Z“ with the wave equation, and using the energy inequality.

In some situations, it is not possible to use all the fields Z. For instance, in elas-
ticity theory, two different wave equations, with two different propagation speeds,
occur: we can still use S, R;, but no longer the hyperbolic rotations h; which depend
on the speed. In compressible nonviscous fluid mechanics, the field 9; + u.V, essen-
tially governs the behavior of the vortex, and again, this prevents using the h;. In
[20], Klainerman and Sideris have found substitutes for Klainerman’s inequality in
these cases. These ideas have also been used by Sideris to study nonlinear elasticity

[23].
3. Energy inequalities

There exists now a wide range of energy inequalities for perturbations of the wave
equation. The definition of the standard energy of u is

Eu(t) = |(0u)(., t)[72.
The standard energy inequality is the following (see [10]).
Standard energy inequality. Let u € C? satisfy the equation
—Au+ > gile,)ou=f, 0<t<T, (3.1)

and assume u(.,t) has compact support. If > |gi;| < 1/2, we have fort < T

E,(t)Y? < 2 0)/2 + / If(.,8)|Le ds exp / 14’ (s |d8) (3.2)
where

(0 =D _10igin(, )]z

This inequality is obtained by integrating by parts fMu in the strip {0 < s <t}
for the multiplier Mu = w;. Note that the amplification factor exp(2 fo |’ (s |ds)
involves all derivatives of the coefficients.

For the wave equation itself, it is possible to control directly the Z derivatives
of u, instead of Ju. Defining a new energy

=D 1Zu( )7 + [u(, 1)]a,
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we have, for n > 3, the following Morawetz’s type inequality

E,(t)Y* < CE,(0)V/% + C/Ot(1 + 9)|f(., )| L2 ds. (3.3)

This inequality is obtained by integrating fMwu as above, but this time for the
(timelike) multiplier Mu = Kyu, where Ky = (r? + t*)0; + 2rt0,.

For perturbations of the wave equation, similar inequalities can be found in [10]
and [18]. Note that such inequalities are only available for n > 3, and that the
control of the Z, which have linear coefficients, is obtained at the cost of an extra
factor (1 + s) in the right-hand side.

In nonlinear problems, the coefficients g;; will be connected to the solution w,
and one can assume that they behave similarly; in particular, one can assume that
they can bear Z-fields. Such an appproach has been developped in [12], using the
fields 7; instead. Assuming (3.1) with > |g;;| < 1/2 and >|Zg;;| < C(14t)7" for
some 1 > 0, we obtain for any € > 0 and some C.

E,(t) + / (1+ o)t Z(TﬂL)Q dxds
(0<s<t)
<cro+c. [

(0<s<t)

|mww@+qu@@@w.@@
0

Here, the amplification factor A is defined by

t) = ‘Z(atgij)wiwj Lo

Compared with (3.2), we see that the amplification factor involves first order deriva-
tives of the g;; only through the symmetric sums

Z(@tgij)wiwj, Zgijwiwj.

We will see below that this may be important when cancellations occurs in such
sums. Compared with (3.3), we obtain without extra cost a better control of the
special derivatives T;u. This is in accordance with what we know for free solutions,
since

‘ (1+o])” Zgwwlw]

n+1

*)

actually behaves better than du. In some sense, (3.4) is like (3.3) divided by ¢ on
both sides, so to speak. Note also that (3.4) is true in any dimension.

ﬂ(r’%Fo(J, w)) ~O(r~

When we later refer to Klainerman’s energy method, we mean the following:
to estimate the solutions of some perturbed wave equations, we commute products
Z“ to the equation, and use one of the above energy inequalities. Finally, using
Klainerman’s inequality (2.1), one obtains pointwise decay of w.
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4. The function g(w) and the null condition

For an equation (0.1) with ¢ satisfying (0.3), we define

g(w) = Z gfjwiijk-

We will see in 5. how this function measures the strength of the quadratic nonlin-
earities. We will consider here three cases:

gw)#£0, n=2, (1)
gw) #0, n=3, (2)
gw)=0, n=2. (3)

When g # 0, (case (1) or (2)), the solution u will not exist globally in general.
Precise statements will be given below. When g = 0, we say, following Christodoulou
and Klainerman, that the null condition is satisfied. They proved that in this case,
if n = 3, global smooth small enough solutions exist. The situation for n = 2 is
more complicated, since we have to take into account the cubic nonlinearities as
well. Hence we define

h(w) = Z hgwiijkwl.
A nontrivial two dimensional example where g = 0 would be
Otu — Au — (01u)97u + (0,u)0fu + a(Ou)*Au = 0.

In this case, g = 0, and h(w) = a. It turns out that, if A # 0, the solution u will
not exist globally in general. If again h = 0 (which could be called the second null
condition), then u exists globally (see [9]).

In the above cases, when u exists globally (that is, for an equation satisfying the
null condition for n = 3 or both null conditions for n = 2), u behaves essentially
like a free solution:

_n—1
2 .

1Z%0u| < Ce(1+1)""7 (1 +|0])
This comes from Klainerman’s method (for n = 2) or (see [10]) from the use of
some conformal transformation (for n = 3). From this point of view, example (0.2)

appears to be intermediate between the blowup cases (1) or (2), and these cases.
In fact, we prove in [11] that the solution u exists globally, and satisfies

| Z90u| < Ce(1 + )11 4 |o|) /2.

We will see below that there is some evidence that the extra factor (1 + ¢)°° is
actually there: we say that this is an example of blowup at infinity.
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5. The slow time

A lot of insight into what happens to the equations (0.1) can be gained by trying
to construct approximate solutions. Let us try a series

un~eu® 4+ Eu® 4 (5.1)

We must take for u™™ the free solution with data u?, ul. From what we have seen
in 1,

ut) ~ T_nT_lFo(a, w).
Next, u® is the solution of the Cauchy problem

@ =) +Q=0, Q= ghouMoiull,
u®(z,0) = ud(z), Ou®(x,0) = ul(x).

From the approximation of u") we get
Q =1~ " Vg(w) (0, Fp) (2 F) + O(r™).

This is the origin of the function g introduced in 4. Hence the main term of u(®
behaves like (logt)/r for n = 3 and (t/r)'/? for n = 2. This gives

u=ert(Fy+*elogt+...), n=3,

w=er"VHFy+xet? 4., n=2
Thus we see that the terms of the series for u stop being smaller and smaller when
elogt ( respectively et'/?) is not small. This is the slow time effect, and we define
the slow time of the problem by

T=c¢€logt, n=3, and r=¢et'? n=2.

If n = 2 and the equation satisfies the null condition, we see that the cubic nonlin-
earities acting on u™") yield a term

=32 h(w) (9, Fo)* (02 Fy),

which is bigger than the bilinear term involving (! and u®. Hence the main term
in u® behaves like (logt)/r'/? and this gives

w=er V2 Fy+ x2logt + ...),
displaying the slow time 7 = €?log t.
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6. Reduced equations

A step further in the analysis of 5 will be, considering the series expansions (5.1),
to look for u for large time as

—1

u~ e T Gr—tw,T), (6.1)

G being such that its Taylor expansion at time 7 = 0 yields formally the series
expansions obtained before. If we define G by equality in (6.1), and write the
equation on v in terms of G, we obtain for cases (1) and (2)

—, 02 G+ g(w)(0,G)(2G) +O(e?) =0, az=1, az=2, (6.2)
and, in case (3),
—202,G + h(w)(9,G)*(92G) + O(¢*) = 0. (6.3)

The notation O(e?) means here the product by € of a second order operator in
(0, 7,w). We see that in all three cases the equation on G, for ¢ = 0, reduces to an
equation that we call reduced equation. It is of Burgers’type for the unknown 0,G.
It is natural to solve the Cauchy problem for the reduced equations with datum

G(o,w,0) = Fy(o,w).

We denote the corresponding solution by Gj.
If, in cases (1) or (2), max g(w)02F, > 0, the solutions Gy have only a finite
lifespan which is

1

7 = (a, max g(w)92Fy) . (6.4)
Similarly, in case (3), if max h(w)(9,Fy)(0%2Fy) > 0, Gy has the finite lifespan
7 = (max h(w) (9, F) (02 Fy)) . (6.5)

The same analysis as in case (2) can be carried out for the example (0.2). It
turns out that the slow time 7 = elogt is the same, the reduced Cauchy problem
being

85700 + GoagGo = 0, Go(O’,w, 0) = Fo(O',w). (66)

In contrast with the three cases considered above, it turns out that this Cauchy
problem has a global solution Gy. However, GGy and its derivatives satisfy

10,Gol < C, |0°

o,w,T

GO‘ < C€CT7

where the exponential growth actually occurs. This is why one can believe in global
existence with blowup at infinity for equation (0.2).

Remark that the procedure explained in 5 and 6 gives a sort of algorithmic
method to guess quickly what is likely to happen. It does not give a proof of long-
time existence, or of blowup, but it is very handy.
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Let us finally mention the precise results obtained in case (1), (2) or (3). If the
lifespan of u (that is, the largest time until which u stays C'*°) is denoted by T, we
call in each case 7, this lifespan expressed in the variable 7, that is

7. = e(T)Y?  in case (1),
7e =elogT. in case (2),

7. = ?logT, in case (3).

Theoreme. Under the generic assumption (ND) on the data, we have in all three
cases

lim7, = 7.

e—0

The assumption (ND) means that the maximum defining 771 in (6.4) or (6.5) is
unique, strictly positive and non degenerate. This theorem contains both

i) Large time existence theorems (liminf 7, > 7),
ii) Blowup theorems (limsup 7. < 7).

The large time theorems for case (1) and (2) have been proved by Hormander
[16]. For case (3), using the energy inequality (3.4), we see that the null condition
induces cancellations in the amplification factor A (see [9]). The blowup theorem
for case (1) is proved in [1], [5], while [10] contains both case (2) and case (3).

In the next part, we give a detailed sketch of the proofs of the blowup theorems.
It turns out that the very method we use also gives a precise description of the
manner in which the solution blows up at time 7,. The corresponding statements
can be found in the already mentioned references.

Chapter II
THE BLOWUP OF SMALL CLASSICAL SOLUTIONS IN
THE GENUINELY NONLINEAR CASES

We will sketch here the proofs of the blowup theorems of I. These proofs are rather
long, and are based on the concept of geometric blowup. They offer two very different
aspects:

1. An algebraic aspect, where various objects such as blowup system, blowup
solutions, linearized blowup systems, etc. are introduced and discussed. “Al-
gebraic” here does not refer to any theory, but describes simple manipulations
with derivatives, change of variables, etc.

2. An analytic aspect, involving

a. The asymptotic behavior of the small solutions for large time,

b. The proof that the blowup systems (written in appropriate reduced vari-
ables), actually have smooth solutions.
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All the details and proofs are unfortunately scattered among different papers.

i) The algebraic aspects are first explained in [l], where also local existence
of solutions to blowup systems is proved in the analytic case, using Cauchy
Kowalevski theorem. To obtain smooth solutions to blowup systems, one has
to analyze the corresponding linearized blowup systems: this is done in [5] for
second order scalar equations (the case we need here), in [2] for 1D systems
in a special case and in [3] for general multiD symmetric systems. This step
is essential, since in applications it is practically impossible to write down
explicitly these blowup systems, or (worse) to read from explicit formulas the
geometric information we need. It turns out that the blowup system of a first
order quasilinear symmetric system of size N is a completely nonlinear first
order system of size N + 1, where the symmetry seems to be lost. It is only
at the level of the linearized system that the symmetry can be restored. Parts
A and B below give a self-contained account of these algebraic aspects.

ii) a) The analysis of the asymptotic behavior of the solutions for large time has
been started in [10], where a rough approximate solution is constructed.
We need here a somewhat more precise information, which amounts es-
sentially to push the constructions of [16] to any order in e. The basic
ideas of these nonlinear geometrical optics constructions are explained in
[13], [16]. It turns out that the description of what happens close to the
boundary of the light cone, which is all we need here, can be obtained
quicker by a local argument using the Z fields and the equation again.
This argument is explained in C.1, referring to [10] for all the details.
This allows us to reduce the blowup problem to a problem on a compact
domain in the variables (o,w, 7). In part C.2, we explain why this prob-
lem is a free boundary problem, and how it can be reduced, through some
algebraic manipulations, to a problem on a fixed domain (the details can
be found in [1], [5], [10]). At this stage, we need a certain stability of the
way the solution is going to blowup: this is our condition (H), which is
itself a consequence of our assumption (ND) (see the end of chapter I).

b) Finally, part D is devoted to prove tame estimates ( in the sense of the
Nash-Moser theorem we use here, see for instance [11]) for the linearized
blowup systems. The fact is that these systems are degenerate precisely
at points corresponding to blowup points: the measure of this degeneracy
is given by (H). For the general case n = 2, details are given in [1], [5].
For the other cases, see [10].

A. GEOMETRIC BLOWUP

A.1. Focusing and blowup in one space dimension

Consider Burgers’equation

ou+ud,u=0, x€R, (1.1)

[-10



with some initial data u(z,0) = ug(z). If there exists a C' solution v in a strip
0 <t < T, the integral curves of the field Z = 0, + u0, are straight lines, since
Zu = 0 implies that u is constant along each such curve. Hence the curve (called
characteristic) starting from (xo, 0) is the line x = g+ tug(zo), and all these curves
are known from wg only. The solution is implicitely determined by

u(z,t) = uo(z — tu(z, t)).

For example, if ug is 1 for x < —1, —1 for x > 1 and —z inbetween, all character-
istics starting from (zo,0), —1 < 2o < 1 meet at (0,1), where u, becomes infinite:
this phenomenon is called focusing. A less degenerate example is obtained for
smooth and decreasing , being 1 for x < —2, —1 for x > 2, 0 at 0, with a non de-
generate minimum of u( at x = 0 with value —1. Then the characteristics “almost
meet” at (0, 1), in the sense that the mapping zg — o + ug(z) has values O(z3)
near ro = 0. Again in this case, u, becomes infinite at (0, 1).

Along each characteristic, Z(u;) + (u;)? = 0, hence

)
T+ tub (o)
If uy(wy) < 0, u, becomes infinite at time t~' = —u((xy). For X close to such a

point xg, let us consider the locus of these blowup points
v={(z,t), z=X+su(X), s '=-yy(X)}. (1.2)

In the case uj(xg) # 0, 7 is a smooth curve near my (the point corresponding
to X = x¢), and the solution u, defined on one side of ~, is singular all along ~y: we
call this situation a fold singularity of u.

In the case ug (o) = 0,ug (xo) > 0, the curve v has a cusp point at mg (pointing
downward), the solution is defined below 7 and is singular only at mg: we call this

situation a cusp singularity. In both cases, 7y is an envelope of the characteristics.

We can now rephrase the method of characteristics explained above by defining
O(X,T) = X + Tup(X), ®(X,T) = (6(X,T),T). (1.3)

We see that u(®(X,T)) = ug(X), and the image of the vertical line { X = X} is the
characteristic starting from (X, 0). In other words, the map ® just straightens out ,
or defocuses, the characteristics. Also, v is the image by ® of the set of points (X, T)
where @' is not invertible. The two cases “fold” and “cusp” correspond respectively
to the cases where the mapping ® has at the point corresponding to mg a fold or
a cusp singularity in the classical sense (see also 3.2 below). For instance, suppose
that, close to x = 0, ug is

up(r) = a—z/T + pB2*, B> 0.

Then x = 0 is a nondegenerate minimum of uy, and u, blows up along the charac-
teristic from (0,0) at time 7. We find

T-T T-T
¢(X,T):aT+?X+ﬁTX3, bx = 7 + 365X2.
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If we define a function ¥(z,t) by ¢(¢(z,t),t) = x, we obtain

Ve =1/0x, = —o¢7/dx,

and the equation ¢r = uo(X) is equivalent to ¢, + uh, = 0. In other words, 1 is
a singular phase function. Hence we can view ¢ = ug(X) as the eikonal equation
“turned inside-out”: the miracle is that ¢ is smooth, while v is not. We extend now
this way of looking at things to first order systems.

A.2. Geometric blowup in one space dimension
2.1. Some basic definitions
Consider a system
o+ A(w)0,u =0, ue€RY, (2.1)

where A(u) has eigenvalues 1 (u) < ... < py(u), with corresponding left and right
eigenvectors £;(u), rp(u): "ry = 0. Just as we did at the end of A.1, we can
introduce new coordinates (X,T") and set

uw(o(X,T),T) =v(X,T) (2.2)

for some functions ¢ and v to be determined. This change of variables yields the
new system

v
vr + (A(W) — dr) = = 0. (2.3)
dx
If, for some k, we impose
¢T = Mk(v)> (24&)

then, multiplying (2.3) to the left by */;(v), we obtain the equivalent system
Ue()or =0, 40)[(15(v) = pr(v))ox + dxvr] =0, j# k. (2.4b)

The system (2.4) is called the blowup system of (2.1) (for the eigenvalue py):
observe that its size is IV 4 1, and that it is not quasilinear anymore in general. For
instance, if we start from Burgers’equation, we obtain the (linear) blowup system

¢r=v, vpr=0,

which is another way of expressing the method of characteristics. It is interesting
to compare this with a “partial hodograph” approach which would be to take u as
a new space variable. This means that we define h(X,t) by u(h(X,t),t) = X, and
we have the new equation on h

ht:X.
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Comparing with (2.2), this hodograph trick would mean choosing a priori v to be
X, which is less flexible than leaving v free.

If we start from a 2 x 2 system in diagonal form (that is, the coordinates u; and
ug are Riemann invariants), we obtain for its blowup system (if, say, k = 1)

¢or = pa(v), Orvr =0, (2 — )(v)Oxv2 + ¢x0rvy = 0. (2.5)

Suppose now that there exists, near some point M, a smooth solution (¢, v) of the
blowup system such that

dx(Mp) =0, wvx(My) #0. (2.6)

Set ®(My) = myg. If there is a function u defined and smooth in some open domain
D with mg € D satisfying (2.2), such a u will blowup at mg since u,(®) = vx/¢x.
We call a function like u a blowup solution of the system, and we say that
the solution u displays geometric blowup, because the blowup of u does not come
from the blowup of v, but from the singularity of the change of variables ®.
Going back to (2.5), we see that

Opur (P) = Oxv1/dx, Opus(P) = —0rva/ (12 — p11).

In other words, solutions of the blowup system corresponding to p; yield solutions
of the system for which only 0,u; blows up. Of course, taking for the system two
uncoupled Burgers’equations, one could easily arrange that both d,u; and 0,us
blowup at the same point. However, we believe that this is an exceptional situation;
we believe that, in general, only one d,u; blows up, and does not induce the other
component in blowing up also. To see this, let us recall the classical computation

Digy + (O1p1)(exp —Hy)@; = 0,  Daga + (Oapa)(exp —Ha)gs = 0,

where D; = 0; + 11,0,, and the functions H;(u) satisfy

OoHy = (Oap1)/(p1 — p2),  OrvHa = —(Orpua)/(p1 — pi2).

Another interesting feature is the following: we have seen that, close to mg, the
blowup of d,u corresponds exactly to the vanishing of ¢y. But, from (2.5) we get

82#1

Or(¢x) = (Orp1)0xv1 — ((M2 )

aTUQ) Ox-

If 01411 were identically zero (that is if pq were linearly degenerate), ¢x, being zero
at mg, would be zero on the vertical line through mq (which corresponds to the 1-
characteristic), and 0,u; would blowup along this 1-characteristic. In other words,
the propagation of the singularities of d,u; along the characterisitc correspond to
the propagation of zeros of ¢x for the differential equation above. What prevents
this propagation is the genuine nonlinearity condition 0y # 0.

Remark that the point of this approach is that to obtain singular solutions of
(2.1), we are now looking for smooth solutions of (2.4).
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2.2. Simple waves revisited

Let us recall that a k-simple wave for (2.1) is a solution u(z,t) = U(¢(z,t)), where
¥ is a scalar real function, and

U/ = Tk:(U)a wt + #k(U)wz = 0.

Hence, for all (z,t), the image u(z,t) is contained in a single integral curve of ry.
When a k-simple wave blows up, only the r,-component of d,u blows up.

Consider now the blowup system (2.4) of a given system (2.1). A special class
of solutions to (2.4) is obtained by taking v = v(X), v/(X) parallel to ri(v) and
o1 = pur(v(X)). The corresponding solutions u are seen to be the simple wave
solutions of (2.1): thus the blowup solutions defined in 2.1 are more general than
the simple wave solutions which blowup. In fact, we believe that the class of blowup
solutions (in the sense of 2.1) is large enough to describe the local behavior of any
“generic” solution around its first blowup point. Let us remark, as can be easily
checked for simple waves, that for a blowup solution u, the singular part

qbiXUX(l’ —or)
of Vu has rank one, hence only one component of u, or u; is unbounded; similarly,
the only bad direction is the characteristic direction ({ =1, 7 = —pg(u)).

To finish this section, let us discuss briefly the issue of stability. Suppose we
have a simple wave with an initial datum wg, blowing up at mg. If we perturb a
little ug, the new solution will not be a simple wave again, but a blowup solution
for the same eigenvalue. Conversely, if we perturb a little a blowup solution for puy,
we will obtain again a blowup solution blowing up at a nearby point, for the same
tr. This has been proved for general symmetric systems in any number of space
dimensions, see [3].

A.3. Geometric blowup in multidimensional situations (sys-
tems)

3.1. Blowup systems

3.1.a. General definitions

Consider a quasilinear system (not necessarily symmetric at this stage)

Lu)= Y Aj(z,u)dju+B(xr,u)=0, zeR", ueR", (3.1)

1<j<n

where A and B are real and smooth. Set
A= A(z,u,§) = ZAj(a:,u)fj

the (matrix) principal symbol of the linearized system of L. We make the following
Assumption : At some point (2%, u% &% = (£0,...,£2)) (with £ > 0), the matrix
A(2° u°, £°) has zero as a simple eigenvalue.
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For (x,u, &) close to (z°,u°, %), we denote by A x,u, &), r(x,u,§), £(z,u,§) the
eigenvalue of A(z,u, &) continuing zero (A(z° u° €°) = 0) and the corresponding
right and left eigenvectors. We assume moreover that

O (a°,u’, %) # 0.
For some unknown function ¢(X) of the new variables X = (X;,...,X,,), set
O(X) = (0(X), Xp,.. o, X)), 0(X) = (1, =020(X), ..., =0,0(X)).  (3.2)

Definition. The blowup system of (3.1) (corresponding to the eigenvalue A and the
coordinate x,) is the (N + 1) x (N + 1) system in ¢,v € RN

= AM@(X), v(X),n(X)) =0, (3.3a)

R =", v,n)E =0, (3.3b)
Rj = "Y[A(®,v,n)0w+ (D1p)E] =0, 2<j<N. (3.3¢)
Here,
E=) " A;(®0)0v+ B(®,v), (3.4)
Jj=2

and the ¢;, j > 2 are any vectors such that ¢,¢,... ¢y is a basis of RY. The
first equation (3.3a) is called the eikonal equation, for reasons which will become
clear later on. In order for the system (3.3) to make sense, it is understood that we
consider only smooth solutions (¢, v) near a point M, satisfying

O(My) =2°, v(My) =u’, n(My)=pu, pn>0.

It is important to note that at a point where ¢x = 0, 0;v will be colinear to 7.

We have already seen in 2.1 some examples of blowup systems (with respect
to x) in the plane (x,t). Let us consider now, in R?® with coordinates (z,y,t), the
scalar equation

O2u+ (0yu)(D2u) + adiu = 0. (3.5)
Setting uy = J,u, uy = Jyu, we obtain the equivalent system
Owur + w1 0,uy + adyug =0,  Oyug — Oyuy = 0, (3.6)
we can be written

Al&vU -+ AgayU -+ AgatU - O

_fur O (0 a (1 0
a=(50) a5 5) 4= o)
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The determinant of A = Ay — ¢, Ay — ¢ As is O1v — ¢ + agbz. Hence the eikonal
equation is

b1 = O+ ag?.

The left eigenvectors corresponding to the eigenvalues p; = 0 and ps = 14 01v — ¢
of A are "y = (1,a¢,) and "¢y = (¢, 1). Multiplying the system to the left by ¢;
yields
Ri = Orvy + ady vy — a¢yayvl =0,
Ry = pa(@yO1vy + 01v2) + (0x)(—0vv1 + agy Oy Vo + ¢y Orvy) = 0,

which simplifies to give the blowup system of (3.6)

o7 = v1 + ady, (3.7a)
Orv1 — agydy vy + adyve = 0, (3.7b)
8Xv2 + gbyE)le — ngayUl =0. (37C)

At this stage, one has the feeling that all the geometry of the original system is lost.
This is not true, because, as we shall see, the geometry never gets lost! For instance,
let us compute

D1€ = (010)0s, A+ (V) (D1v) = Y (9, \)D;(916) = 0.

i>2
We see that, generalizing the remarks from 2.1, what prevents the zeroes of ¢ x from
propagating is the non vanishing of (9,A)(01v). If 0jv # 0, this is equivalent to the
non vanishing of 79, A, that is, to the (microlocal) genuine non linearity condition
of Lax.

3.1.b. Some explanations about the choice of the blowup system

If we perform in (3.1) the change u(®) = v, the system becomes
811}
A=) Aj0;0)—+E=0. 3.8
< 1 ]ZZ; 7Y >81¢ (3.8)

Getting an actual blowup solution u requires that 0;v should not be proportional
to 01¢, hence we require the matrix

A= A0i0

Jj=2

to be noninvertible, which gives the eikonal equation. Multiplying finally (3.8) to
the left by *0,%¢; yields (3.3b), (3.3c).

There is of course some arbitrariness in the choice of ® and v satisfying u(®) = v,
since we can replace ® by ®(®;) and v by v(®P;) for an arbitrary diffeomorphism ;.
What we are really looking for here is a mapping ® for which &’ is not invertible at
some point My, but such that ®'(M,) has one dimensional kernel. The choice
(3.2) is then no restriction, and allows simple formulations.
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3.2. Blowup solutions, folds and cusps
3.2.a. Definitions
We first give a precise meaning to u(®) = v.

Definition. Let be given a smooth solution (¢,v) of the blowup system (3.3). Sup-
pose that there exists an open domain D (x° € D) and a mapping ¢ € C°(D) with
values in R™ verifying

P(a%) =My, P(¢(x)) =z, det®(¢(x)) #0, =€ D.
Then the function u(x) = v(¥(z)) is a smooth solution of L(u) = 0 in D, continuous
in D. If in addition
81¢(M0> = O, 8111(M0) # 0,

then Vu blows up at x°. Such a solution u is called a (geometric) blowup solu-
tion.

Note that to the same solution (¢, v) one can associate several solutions u, de-
pending on the choices of D and v (see below the basic examples). The set of the
blowup solutions depends on the eigenvalue chosen to blowup the original system,
but not on the coordinate z; (one can take instead any z; provided 5;-) > 0). In
general, the following theorem describes the way v’ blows up at x°.

Theoreme. Let (¢,v) be a smooth solution of the blowup system for which
81¢(M0) = O, 8lv(M0) 7é 0,

and let (u,1, D) an associated blowup solution. Set {(x) = n(¢¥(x)). Then, for
reD,

u'(z) = C(2)[016(v(2))] 'r(z, u(x), §(2))'¢(x) + R(z),
where C' and R are continuous on D and C(z°) # 0.

This theorem generalizes what has been emphasized at the end of 2.2: only one
component of «’ blows up, and there is only one bad direction, namely, £(z). From
this theorem, we see that the analysis of the blowup of u’ for a blowup solution is a
purely geometrical local problem at My about the behavior of ® and .

The two simplest special cases are the following.

Definition. Assume that, for a smooth solution (¢,v) of the blowup system,
é71¢5(]\/[0) =0, 8%¢(M0) # 0,

that is, ® has a fold singularity at My. We call then any blowup solution associated
with (¢,v) a fold solution.
Assume that, for a smooth soluion (¢,v) of the blowup system,

ho(My) =0, Fop(My) =0, Kd(My) #0, d(81¢)(M,) # 0,

that is, ® has a cusp singularity at My. We call then any blowup solution associated
with (¢,v) a cusp solution.
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Define now S to be {X, 0;¢(X) = 0}, and S = ®(5)).

In the fold case, S is a characteristic surface (with normal £(x)), and the image
of ® is one of the closed “half-spaces” limited by S: if we take D to be some open
neighbourhood of 2° in this half-space, there are two possible choices for v, and in
either case one can show that

Cd'? < |91¢(¥(2))| < CdY?

for some C' > 0, d being the distance to S.

This has an important consequence. Suppose now we are considering a hyper-
bolic system or equation with respect to ¢, and look for a first blowup point m (that
is, a blowup point m = (x,T") where T is the lifespan of the solution). If the solution
close to m is a blowup solution in the sense above, it cannot be a fold solution, since
the corresponding characteristic surface through m cannot be contained in {t > T'}.
We suggest the following conjecture:

Conjecture (belief 7). Generically, the solution of a stricly hyperbolic system close
to a first blowup point is a blowup solution of cusp type for one eigenvalue of the
system.

Up to now, we have only considered blowup solutions corresponding to maps ®
with (M) having a one dimensional kernel. As emphasized in the above theorem,
these solutions behave, asymptotically near ® (M), pretty much like one dimensional
simple waves. It is also possible to construct solutions which display the behavior
of a superposition of two blowup solutions, corresponding to two different directions
&1 and &. Such solutions exist only in truely multidimensional situations. This has
been achieved for quasilinear wave equations in [6].

3.2.b. Existence in the analytic case

In view of the above definition of a blowup solution, it is important to show that it
is actually possible to find smooth solutions of the blowup system for which

81¢(M0) = 0, 811)(M0) 7& 0.

We only want here to make sure that no (hidden) degeneracy of the blowup system
forces 0yv to vanish when 01¢ does. It is enough for this to consider here the
analytic case where A; and B are assumed to be analytic of their arguments.
Without stating a precise theorem here (see [1]), let us state roughly the following:
by choosing appropriately Cauchy data and using the Cauchy-Kovalesvski theorem,
one can contruct

i) Fold solutions in all dimensions,
ii) Cusp solutions if n > 3,
iii) Cusp solutions for n = 2 if

(rduA) (2%, 4", €%) # 0. (3.9)

[-18



Let us comment a little about this: the definitions in 3.2 have been given in
general, and apply as well to a linear system; in this case, fold solutions will be
singular along a characteristic surface as in the general case, and cusp solutions will
correspond to a “propagated” plane cusp. It is not possible to obtain a cusp solution
in the plane for a linear system: the system has to be sufficiently nonlinear, and
condition (3.9) expressing the “genuine nonlinearity” of A (in the sense of Lax) is
the relevant condition.

A.4. Geometric blowup in multidimensional situations (scalar
second order equations)

We have given above the definitions and basic properties of blowup solutions for a
first order quasilinear system, since the geometry is more transparent in this case. In
practice, one often considers second order scalar equations. Though such equations
can be in principle written as first order systems (as we did for (3.5)), this leads
to oversized systems in higher dimensions, and it is better to stick to the scalar
character of the original equation. We give below an alternative approach to the
construction of the blowup system in this case. Let us consider a second order
equation

P(u) = Zpij(x, u, Vu)diu + q(x,u, Vu) = 0. (4.1)

We set © = (21,2'), ' = (22,...,2,). For new variables s € R, y = (y2,...,Yn),
and a function ¢(s,y), we define

0= (0782,!)7 ?5: (_17¢y)7
(I)(S7y) = ((b(say)?y)a w = u((I)), V= (81u)(<1>)

From the very definition, we note that
A=w, — p,0 =0,
and we call this the auxiliary equation.

Proposition. With the above notations, we have

P(u)(®) = 5% +R,

where
&= Zij(¢7 Yy, w, 5’[1} - ggv)qglqgj’
R=D_piil6,y,w, 0w = 60) [0w = v — (3:d; + 6,000] + a(@:y,w, 0w — Gv).

This Proposition leads us to define the blowup system of (4.1) as the 3 x 3
system in the unknown (¢, v, w)

A=0, £€=0, R=0,

I-19



the second and third equations being respectively the eikonal equation and the
residual equation .

Just as above, a blowup solution u will correspond to a smooth solution (¢, v, w)
of the blowup system for which ¢s(My) = 0, vs(My) # 0. Remark that v and Vu
are continuous in this case, only V2u blows up at z°: in fact, &u(P®) = vs/ds.

If we apply this procedure to the simple equation

uy — Oz (p(uz)) = 0,

we obtain
&= ¢? - Pl(v)a R = wy — 2004 — vy = 0.

If we choose for instance ¢; = ¢(v), we remark that R = 0;(w; — cv — C(v)), where
C' = ¢, hence we can integrate and write

wy —cv —C = f(s).

It is easy to check that this is just what can be obtained from writing the equation
as a p-system, writing the system using the Riemann invariants u; + C'(u,), and
straightening out the second characteristics!

If we apply this to the example (3.5), we find (with self-explaining notations)

E=—¢r+v+ aqS%/, R =uvpr+ a(@%w - v@%qﬁ — 2¢yvy).

Note that Rx is obtained by eliminating vy from the blowup system (3.7).

Remark that all singular solutions we have constructed so far (including that
of [6]) blow up like C(T — ¢)~'. This seems to be rather general for equations or
systems with genuinely nonlinear simple eigenvalues. There are many unanswered
questions about what the constants C' can be. An introduction to this problem and
some results can be found in [7].

B. STRUCTURE OF THE LINEARIZED BLOWUP SYSTEMS

We limit ourselves here to the case of scalar equations, which is simpler. The
corresponding theorems for general systems can be found in [3]. We would like
to emphasize here that the blowup process explained in A is a transformation at
the level of the nonlinear system: from a nonlinear system, it produces a new
nonlinear system. The linearization takes place on this new system: linearizing the
original system on an approximate singular solution would a disaster. This can be
seen for instance in the following way: suppose we have a blowup solution u of
Burgers’equation, with initial data ug. If we perturb this initial value and look for
the corresponding solution u as u = u + 1, one can compute an approximation of u
by linearizing on @. This leads to a very bad understanding of the new blowup time
for w.
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B.1. The linearized blowup system of a scalar second order
equation

In A.4, we discussed the equation
P(u) = pij(z,u, Vu)Ohu + q(z,u, Vu) = 0, (1.1)

and its blowup system

We denote by

g/

¢7v7w

(,9,1) = E' (¢, 0,1) = &

the differential of £ at the point (¢, v, w), and similarly for A and R. Let us define
now, with the notations of A.4,

T = (Z aVupijggiggj)an (1.2)

Zy = sz‘j(ggigj +6;0;), (1.3)

where as usual p;; = p;;(¢,y, w, ow — (ﬁv) If we call tangential the y-variables, we

see that Z; is a tangential field, and @) is the tangential part of the (principal part
of the) linearized operator of P.

The following straightforward proposition uses these notations to describe the
linearized blowup system.

Proposition. Set z = w — v{b. Then

EN$,0,10) = —Y0 + Z16 + Zoz + agd + boZ, (1.52)
R($,0,1) = Q% — Zyi + 105 + co? + €20 + c30, (1.5b)
A,(Q%? 7.17 'lU) = 25 + ,USQ'S - Cbs"[f, (15C)

where Zy is a tangential field and ag, by, co, c1, C2, c3 are smooth coefficients depending
on (¢,v,w), which we need not know explicitly here.

For instance, in the basic example A (3.5)
P(u) = 0Zu + (0yu)(02u) + adiu = 0,
we obtain

y=-1, Z=—(0r —2adydy), Q= ady,

E'=Zip+0, R =Qzi— Zyio+ (Qu)o.
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B.2. Geometric interpretation

i)

i)

iii)

We explain first the introduction of Z instead of w: when we linearize the

relation u(®) = w, we get 4(P) + ' (P)® = w. The “physical” object is u, not
w which depends on the choice of ®; hence the “physical” variable to consider
is u(®P), not w. Here, we have, because of the choice of @,

which is just 2. We can say that the introduction of z cancels the arbitrariness
in the choices of w and ® discussed in A.3.1.

We interpret now the eikonal equation £ = 0: if we set formally

¢~ (2) = (U(2),2),

we obtain
1 -
(V) (@) = —@b-

Hence the eikonal equation is equivalent to

Zpij (ZE, u, Vu) (azw)(aﬂb) = 07

that is, the (singular) lagrangean manifold A = {(z, V)} is characteristic
for the linearized equation of (1.1); more simply, 9 is a singular phase function.

The field Z; will play a crucial role in the sequence. To understand its ge-
ometrical meaning, let us return to the original “physical” coordinates = by
computing ®'Z;. We find

(I)/ZI = _¢S7T*Hp7 b= Zpl]<x7u7 vu)élfj

where H), is the Hamiltonian field of the principal symbol p of the linearized
equation on u, taken on A, and 7, H), is its projection as a field on the space R7.
In other words, ®'7; is (apart from the factor —¢;,) the transport equation
corresponding to A (or v).

B.3. Decoupling of the linearized blowup system

We introduce first a definition.

Definition. Let (¢, v, w) be smooth functions in the domain D. We say that we are
in the genuinely nonlinear case if the function

V= Z aakupij(¢7 Yy, w, ow — &U)ngﬁgﬂgk

defined in (1.2) does not vanish in D.
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For instance, in the simplest case of the equation

Ut — aac(p<um)) =0,

we get v = p"(v).
The remarkable fact is that in a genuinely nonlinear situation, the linearized
blowup system almost decouples, as indicated in the following theorem.

Theoreme. In the genuinely nonlinear case, we have, for smooth coefficients «;,
1 <7 <5 and By, B2 depending on (¢,v,w), the identities

(2105 — 65Q + Q1)% + 1 Z1d + o = —¢sR' + (Zy + az) A’ + au€/, (3.1)
(Z12 + 51Z1 + ﬁg)@b + QQZ = (Z1 + 015)5/ — ’YRI (32)

Here, )1 is a first order operator, and Qs a tangential second order operator.
Moreover, the coupling coefficients oy, oo are linear combinations of derivatives

of E(¢,v,w), R(¢,v,w), and A(p,v,w).

The point of this theorem is that, when solving the blowup system by an iteration
process, we linearize on (¢, v, w) for which £, R, A are already very small; hence
the coupling coefficients «q, as (which prevent the system (3.1) (3.2) from being
triangular) are also very small.

Rather than give general formulas which can be found in [5], let us display the
exact form of the theorem in the special case of our model operator

2pu+ (0,u)(02u) + adau = 0.

We find
Zlasz - a¢sa)2/z + (aa}Q/QS)aSZ + O‘lzlé + O-/QQB = _gbsR/ + (Zl - aa)Q/qS)A/ + Zl¢sg/a
(3.3)
Z2h + (aB20) Z1d + (ad20)d + ad? i = (Zy + ad2$)E + R.. (3.4)

Here,

ap = 0,E, ap= a@%A — O, R.

B.4. How to solve the linearized blowup system

Suppose that we can solve exactly in D the system (3.1), (3.2) in (%,¢) with &,
R’ and A’ replaced by given quantities f, g and h; determine now v from & = f,
thanks to (1.5a). For the functions (¢, v, ) thus obtained, we have then

£=f R=g (Zita)A~h=0.
Taking into account the boundary conditions on (¢,v,w) (hence on (qﬁ, 0,W)), sup-

pose we can ensure that A’ — h vanishes on some part I' of the boundary of D;
suppose also that D is under the influence of I' for Z;: then we obtain A" = h, and
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the linearized system is solved in D. We will see in C, in some special case, how
and why these conditions can be achieved.

Let us remark finally that we cannot just neglect the coupling terms oy Z;¢ and
s in (3.1), (3.2), though these are quadratic error terms: this would lead, in the
actual solution of the linearized system

g/:f7 R/:g7 Al:h?

to quadratic errors divided by ¢, a singularity which is not admissible for us, because
we want to solve in smooth functions.

We have seen in parts A and B the algebraic aspects of the geometric blowup
theory: definition of the blowup system, structure of the linearized system. We are
going to see now how the blowup of small classical solutions to quasilinear wave
equations can be fitted into this framework.

C. REDUCTION TO A PROBLEM ON A FIXED COMPACT DO-
MAIN

We go back now to one of the situations we have discussed in chapter I: genuinely
nonlinear wave equations in dimensions n = 2 or n = 3 (that is, cases (1) or (2));
equations satisfying the first null condition in dimension n = 2 (that is, case (3)).
In all three cases, we assume the condition (ND). To prove the blowup of u, the
idea is to construct a piece of blowup solution % in the form

n—1

u=-er 2 G(r—t,w,7),

where G is a smooth function of the reduced variables o = r —t, w, 7, blowing up for
T = T.. Recall that 7 is precisely the number we are looking for: it is the expression
of the lifespan in the slow time variable. As explained in chapter I, it is expected to
be closed to 7. Recall also that the slow time 7 depends on the particular problem
we are considering: for the three problems mentioned above, we have respectively

r=et'?, T =clogt, T=¢logt.
This piece @ will be defined in a domain
—C<o<M, 1<7<7,wesS" L

Arranging this domain to make it an influence domain, we obtain u = u there,
proving that the lifespan has to verify 7 < 7.
We set

u(z,t) = er’%v(x,t) = er’%G(r —t,w,T).
For this programm to work, an obvious necessary condition is that v can be con-

sidered, in a domain where 79 < 7 < 77 < 7, as a smooth function of the reduced
variables.
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C.1. The solution u close to the boundary of the light cone

1.1. A first approximation of u

In all three cases, the existence of the solution u has been obtained using Klain-
erman’s energy method. More precisely, following [16] (see also [9], [17] or [22] for
the third case), the method of proof uses an approximate solution u,, and yields a
control of 4 = u —u, . We will not enter into the details of the constructions of u,.
All we need here is that, in a strip —C <o < M, 19 < 7 < 711, we have

Uy = er’%Gg(U, w,T),

where (G is the solution of the reduced equation defined in I.6. We thus have in
this strip

_n—1
2 .

(1.1)

If we want a more precise construction for u,, it turns out that we only need add
to GGy above more and more terms which also are smooth functions of the reduced
variables. Thus, we can improve estimates like (1.1) to gain any power of € instead
of o(e) in the right-hand side of (1.1). This will allow us to consider G as a smooth
enough function of its variables. This is what we used in [1] and [5] for case (1).
For cases (2) or (3), we can use a better device.

| 2% (u — er ™" Go)| < o(e)(1+ 1)

1.2. The function G as a smooth function of its variables

It turns out that w has in fact an even better behavior than the one indicated in
(1.1). It is expressed in term of the special field X = ¢(0; + 0,).

Proposition (case (2)). Assume that u satisfies the estimates

_n—1
2 .

29| < Ce(1 + 1) (1.2)

Then we have
| Zo X | < Ok
Proposition (case (3)). Assume that u satisfies (1.2). Then we have
|7 X k| < O,
The meaning of these propositions is this: suppose we define G' by
G(o,w,7) = v(z,t).

Then G has bounded derivatives in its variables. In fact, v is already a smooth
function with bounded derivatives in the variables (r,w,t). Now

0, = (dt/dr)(8, + ),
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and, respectively, dt/dr = t/e*, dt/dr = t/e. Since
S+ wihi = (r+£)(0,+0,)

we can deduce |Z*X*v| < C from (1.2). The stronger information of the propo-
sitions is obtained using again the equation on u. To do this, we first rewrite the
equation using polar coordinates; then we factor the (main) radial part of this equa-
tion as

where Ay are close to £1. Finally, we rewrite the main part (involving 0;, 9,) using
X. We obtain respectively

(8, — M0 Xv =t V2 foXv+t7 V2 fo + €2 fy,
(0 — A0 Xv =t Xv+t"fo +efo.

Here, fy denotes any smooth function of €, o, w, t_nT_l, ZBv. This gives the propo-
sitions for k = 1. A more elaborate writing of (9; — A,.9,)(Z“X"v) gives the general
case.

C.2. The free boundary Goursat problem

2.1. The exact equation

Setting now

u= er_nT_lG(a,w, T),
we obtain a new equation on G, that we want to solve all the way up to the blowup
time 7., knowing already that a solution exists close to 75. Remember that this
equation is, for € = 0, the reduced equation obtained in I.6. For ¢ > 0, it contains
additionnal first and second order derivatives of G. Hence here, it is the equation

which is perturbed; this is different from the situation of [3], where we perturb the
data instead. To obtain such a G, we will blowup the full equation on G by setting
o= ¢(s,w,T)

and keeping the variables w and 7. According to the theory of A, we have now to
solve the blowup system L(¢, v, w) = 0 for ¢, v, w. Of course, the explicit writing
of this blowup system is extremely tedious, even in the simplest cases. For instance,
for the 2D model case

(]_ — ut)utt —Au=0

of [1], we obtain the equation
T T G G,.G
+ (12 + €20)1/2 ‘ (12 + €20)? ( 4 + + 2(72 + e20)1/2
G, —1G,, T € €2 €

(GU - _GT) (GUT +

- G, — ﬁGTT)] ~0.

472 (72 4 €20)1/2 473
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2.2. The stability lemma

Since we know the structure of the equations on G, the algebraic analysis of the
linearized blowup system B will tell us enough about its structure to allow us to
prove tame estimates. We have seen in chapter I that, for ¢ = 0, the equations on
G are essentially Burgers’equations. To understand the linearized blowup system,
we primarily have to know the structure of Z; and (). Since for € = 0, the linearized
blowup system reduces to

2 . _
07,2 =...,

we have to solve a Goursat problem. More precisely, it is easy to construct an
approximate solution of the blowup system, which is exact close to {7 = 7}, and
flat on {s = M} (which corresponds to o = M). The blowup time of the solution
corresponding to this approximation is, of course, 7. We are looking for a solution
of the blowup system which is a perturbation of this approximate solution: we will
solve the linearized system in flat functions on {7 = 79} and {s = M}.

The main difficulty here is this: ideally, one would like to solve the blowup
system in a big domain

—C<s<M, 179<7<T79,

with 7 > 7. The blowup time 7, would then be obtained as the lowest value of 7 on
the surface {¢s = 0}. This is the way one can work in 1D (see [2]), but it does not
seem possible in multidimensional situations. In fact, even for the simplified model
of the linearized blowup system

872'52 + 62¢883)2 = f7

it does not seem possible to obtain energy estimates in a domain where ¢, may take
both positive and negative values. Hence we have to stay in the domain 7 < 7.. But
T. is precisely part of the problem: we have a free boundary problem.

To handle this problem, we introduce a parameter A close to zero and perform
the change of variables (¢ has nothing to do with the old #!)

T =1+ 1t+ M(1—x(t)), (2.1)
where X(t) is one near ¢ = 0 and zero near t = t5 = 7 — 79. We denote by
L(A, ¢,v,w) = 0 the system obtained from L by the change (2.1). We have now to
solve £ = 0 in a fixed domain

D={-C<s<M, 0<t<t,, wecS" '}

We will arrange for ¢4 to vanish only at some point on {t = ¢y}, thus at the end the
lifespan will be just

Te = 7o + (1 + Nto.
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We say that ¢ satisfies condition (H) in D if, for some point M € D with t = t,, we
have

{ ¢s >0, os(s,w,t) =0 (s,w,t) =M, (1)

Pst(M) <0, VS,W(¢S)(M) =0, Viw(gbs)(M) >> 0.
The problem we want to solve in D is
i) LN, ¢,v,w) =0,
ii) ¢ satisfies (H) in D.

We start the solving process with A\ = 0, taking for ¢ the approximate solu-
tion hinted at above. This approximate solution is essentially a solution of Burg-
ers’equation with an initial datum Fy. Our assumption (ND) implies that this
approximate ¢ precisely satisfies (H). All we have to do then is to make sure that,
when solving £ = 0 by an iteration process, we can reproduce at each step this
condition (H).

Remark that condition (H) will ensure that the singularity of G is of cusp type
(in the reduced variables). Since £ comes from L, its linearization has a special
structure. With ¢ = 0\7/0,7, we obtain (see [1]) that

(E)/()\@,uw) ()‘7 é? 1}7 w) = f (22)
is equivalent to
(‘C>/¢>,v,w(¢)7 V? W) = f - q)\at*é (23)

Here, by an abuse of notation, the left-hand side denotes the transform of £’ by the
change of variables (2.1)

(s,w,T) = (s,w,1).
The new unknowns are
P :gﬁ—}\qqﬁt,v:D—}\qvt,W:w—}\qwt.

Assume now that, at some stage of an iteration process aimed at solving L =0, the
function ¢ satisfies (H). We solve first (2.3), neglecting AJ;L in the right-hand side,
since it is a quadratic error. We choose then A such that

¢+ ¢ =0+ + Aoy
again satisfies (H) (with possibly a different point M). One easily sees that this is

possible using the structure of (H) and the implicit function theorem (see [1]). More
precisely, we have the following lemma.

Lemme. Suppose ¢\© satisfies condition (H) for a point mmg. Assume that ¢ — ¢
and v are small enough in C*. Then there exist a function A($,v) and a point
m(p,v) such that

A(9©,0) =0, @m(¢!”,0) = g,
and the function ¢ + ¥ + A(@,1)0y¢ satisfies (H) for the point M = (m(p, 1)), to).

If we use a Nash-Moser iteration process, we have to take the smoothing process
into account in this argument, since we solve the linearized system not exactly on
® + ¢, but on a smoothed approximation of it. The details can be found in [3].
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C.3. More on the geometry of the fixed domain D

All we have said so far is valid assuming that we can understand the structure of the
linearized blowup systems in the fixed domain D. As explained in B.3, this can be
done if we are in a genuinely nonlinear situation, that is v # 0 in D. In the model
case uy — Au = uuy of [1], v is a non zero constant, we can take D as in C.2. In
the general situations of cases (1) or (2), however, we know that v = —g+o0(1). All
we know about g comes from our assumption (ND). If (09, wp) is the point where
the maximum is reached, we know only g(wp) # 0. Thus we have to shrink D in
such a way that w remains close to wy in D. At the same time, D has to remain
an influence domain for the linearized blowup system. This can be arranged with a
little care (see [5] for case (1) and [10] for case (2)).

The case (3) is more delicate, since one needs to know d,G # 0 in D to be in a
genuinely nonlinear situation. The way to attain this situation is to prove first that
u does not blowup in a strip corresponding to

o0 <01 <s<M, <7<, T>T,
where o7 is close to gg. After that, we can essentially take for D a domain for which
o1 <s<o, 0Zt<ty,

0_1 < 0g being close enough to o(, with the correct shape. The details are rather
tedious and can be found in [10].

D. HOW TO SOLVE THE LINEARIZED BLOWUP SYSTEM

We have seen in C how the problem of finding blowup solutions could be reduced
to the problem of solving the (modified) linearized blowup system in a fixed domain
D with the correct shape. It is important here to notice that the blowup system
has been linearized on a function ¢ satisfying (H). At this stage of the proof, one
should distinguish the three cases separately, since the linearized systems are a little
different from each other. We details we give here correspond to the general case for
n = 2 (case (1) of I) handled in [1], [5]; the similar statements for the other cases
can be found in [10].

Thus we have to solve a linear system of the form B.3 (3.1)-(3.2). Let us explain
on the explicit case (3.3)-(3.4) the strategy used here to solve this coupled system.
We set

t=Iok, P=27,0,Z1 - ¢,Q7Z + (Q9)0s 7).
Then we rewrite (3.4) as
Z(Zvd+ Qk) = . . ..

Assuming that we have good energy inequalities for P and Z;, and using the small-
ness of the coupling coefficients «;, we obtain an energy inequality for the coupled
system. Hence the problem is essentially to prove an inequality for P.

In the context of the present problem explained in C, we have to single out what
properties of P are relevant. It turns out that the important features are
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i) The structure of 77,

ii) The sizes and signs of the coefficients of @,
iii) The sizes of the coefficients of Q.

Simplifying a little bit here, we find
i) Z1 = (=14 0(€?))0; + O(€*)0.,,
ii) Q= e*(N1Z% + 262Ny Z,0,, + N30?), with
Ny =-n+0(?), nz=n3+0(?), n; >0, n3>0,

iii) Q1 = O(€?).

Since P degenerates for ¢, = 0, we expect to obtain a weighted energy inequality.
We set

5:t0_t7 g:exph<‘9—t>a p2 :5”9’ |f|L2(D) = |f|0

Here, > 1 is fixed, h is a big parameter, and ¢ is assumed to satisfy (H) and be
close to some fixed ¢(® in C*(D). We have then, assuming

k(s,w,O) = 8tl%:(s,w,0) =0, kM,w,t)=0,
the following inequality:
h|p35le%’§ + h}pil%:‘(z) + EQh‘palek‘?) + 64/5“_lg¢8(1 + (5h)|851%:‘2 < C’|pPl%’§.
The proof of such an inequality is straightforward, once the good multiplier is found!
Here we take
Mk = —ad, Z1k + €¢0*k + dZ2k,
with
a=¢;'6"g, c=dd"'g, d=—dd'g.

Here, ¢ and d’ are positive constants to be chosen. With this M, we compute
/ PkMkdsdtdw.
D

It turns out that to ensure positivity of the boundary terms and of the quadratic
form on 0%k we obtain by integrating by parts, we can take d’ = 1, ¢’ small enough.
The further steps to complete the proof are standard, though tedious:

i) We commute with P products of the fields Z;, 0s, d,,. One has to check that
the commutators can be absorbed in the left-hand side of the energy inequality.

ii) We deduce from the weighted L? control of such products tame estimates in the
standard Sobolev norms. Remark that the weights in the energy inequality
involve ¢,, hence may change at each step: the obtention of estimates in
Sobolev norms is important here since we have to work in a fixed scale of
spaces.

iii) Existence is obtained for P by truncation P in the w variables, and using the
already proved estimates.
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