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The solution of Kato’s conjecture (after Auscher,
Hofmann, Lacey, McIntosh and Tchamitchian)

Philippe Tchamitchian

Abstract
Kato’s conjecture, stating that the domain of the square root of any ac-

cretive operator L = −div (A∇) with bounded measurable coefficients in Rn

is the Sobolev space H1(Rn), i.e. the domain of the underlying sesquilinear
form, has recently been obtained by Auscher, Hofmann, Lacey, McIntosh and
the author. These notes present the result and explain the strategy of proof.

1. Introduction

Let A = A(x) be an n × n matrix of complex bounded coefficients, defined on Rn,
and satisfying the ellipticity condition

|A(x)ξ · ζ∗| ≤ Λ |ξ| |ζ| and λ |ξ|2 ≤ ReA(x)ξ · ξ∗,

for all x ∈ Rn, ξ, ζ ∈ Cn. Here, λ and Λ are positive; also, if u, v ∈ Cn, u · v stands
for u1v1 + · · ·+ unvn, v∗ is the complex conjugate of v, and thus u · v∗ is the usual
inner product in Cn.

To A is associated the sesquilinear accretive form

J(f, g) =

∫
Rn

A∇f · ∇g,

whose domain is the Sobolev space H1(Rn); Its accretivity allows to define the
second order operator

L = −div (A∇),

which is itself maximal accretive. Therefore, it has a functional calculus, and in
particular a square root

√
L.
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When A is real symmetric, so that L = L∗, it is elementary to check that D(
√
L),

the domain of
√
L, is H1(Rn) and more precisely that∥∥∥√Lf∥∥∥2

2
= 〈Lf, f〉 ∼ ‖∇f‖2 .

In the beginning of the 60’s, motivated by the study of time-dependent evolu-
tion equations, Kato asked how, in this case, the square root

√
L depends on the

coefficients of A [K]:

Question 1. Is the application A 7→
√
L, defined from the set of real symmetric

elliptic matrices to the space of bounded operators from H1(Rn) to L2(Rn), analytic?

Through a standard Cauchy integral argument, it is enough to show that D(
√
L)

is equal to H1(Rn) when A is complex-valued with, at least, a small imaginary part,
to get a positive answer to Question 1. This leads naturally to

Question 2 (The square root problem). In the general case, is it still true that
D(
√
L) = H1(Rn)?

These two questions have been answered affirmatively. First, in 2000, Auscher,
Hofmann, Lewis and Tchamitchian proved the analyticity result [AHLT]; then, a
few months later, Auscher, Hofmann, Lacey, McIntosh and Tchamitchian solved the
square root problem [AHLMT]. Both proofs have the same starting point and rely
on Carleson measures estimates, which are obtained by different means.

Here, we will concentrate on the proof of the strongest result, which can be
precisely stated as follows.

Theorem 1. For any operator as above the domain of
√
L coincides with the Sobolev

space H1(Rn) and
‖
√
Lf‖2 ∼ ‖∇f‖2

with constants only depending on λ and Λ.

Proving this theorem amounts to show that

(K) ‖
√
Lf‖2 ≤ C‖∇f‖2

for f in some dense subspace of H1(Rn), with C depending only on n, λ and Λ
(since, using the accretivity of the form J, this inequality for L∗ implies the converse
inequality for L).

Further comments, references and generalisations may be found in [M83], [AT],
[AHLT], [AHLMT], [AHLLMT].

2. A few words on the abstract problem

Actually, Kato formulated his two questions in an abstract setting, i.e. for general
maximal accretive operators defined through accretive forms [K]. In 1972, McIntosh
gave a negative answer to both of them [M72]. However, his counter-examples
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were not differential operators, so that the questions remained entirely open for
divergence second order operators.

Here is a somewhat simplified abstract counter-example, extracted from [AT],
which relies on classical harmonic analysis.

TakeH = l2(Z), choose (bj)j∈Z such that its symbol b(θ) =
∑

j bje
ijθ is a bounded

function with ‖b‖∞ = 1, and define two operators D and B by

D : (cj)j∈Z 7→ (2jcj)j∈Z,

B : (cj)j∈Z 7→ (
∑

k

cj−kbk)j∈Z.

Then, D is unbounded with domain V dense in H, while B is bounded with norm
1.

For any z ∈ C, |z| < 1, the form

Jz(u, v) = 〈(I + zB)Du,Dv〉H
has domain V and is accretive. We define the operator

Lz = D(I + zB)D,

and consider Rz =
√
Lz.

Let us assume that there exists r > 0 such that

∀u ∈ H ‖Rzu‖H ≤ C ‖Du‖H

for some C > 0, whenever |z| < r. Then the application z 7→ Rz is differentiable at
z = 0, and we must have

(1) ∀u ∈ H ‖R′
0u‖H ≤ C ′ ‖Du‖H .

Starting from the identity

R′
0D +DR′

0 = DBD,

one can compute R′
0u, u ∈ H: it is the convolution between Du and the sequence

(b̃j)j∈Z defined by

b̃j =
2j

2j + 1
bj.

Therefore its symbol b̃(θ) =
∑

j b̃je
ijθ is bounded if and only if the conjugate function

of b is itself bounded. This shows that R′
0D

−1 may not be bounded, contradicting
(1).

As the reader may see, this counter-example is not a differential operator. The
same observation was true for the original counter-examples of McIntosh, who con-
sequently specified Kato’s questions, giving them their present form.

Moreover, McIntosh came to the feeling that the square root problem and the
so-called Calderón conjectures were probably linked [M82]. Indeed, his counter-
examples are related to the fact that some abstract commutator may not be bounded,
while in the setting of differential operators in dimension one, this commutator be-
comes the first Calderón commutator, the boundedness of which has been obtained
by Calderón in 1965 [C].
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3. The one-dimensional case

The intuition of McIntosh was correct. In their celebrated paper where they proved
L2-continuity of the Cauchy operator on Lipschitz curves, Coifman, McIntosh and
Meyer also solved the square root problem in dimension one [CMM] (and later the
two problems were shown by Kenig and Meyer to be equivalent: see [KM]). They
used techniques of multilinear analysis, which subsequently lead to partial results on
the square root problem in several dimensions [CDM], [FJK], [M85], [J]. All these
results are of perturbative nature, reflecting the fact that the underlying multilinear
operators have norms with presumably exponential growth when n ≥ 2.

Let us instead introduce some different ideas, relevant whatever the dimension
is, and give a “modern” proof of the one-dimensional case.

We note a for A, and D for 1
i

d
dx

. The operator L writes DaD, and we want to
show that ‖

√
Lf‖2 ≤ C ‖Df‖2 for suitable f . There are three steps.

Step 1: reduction to a quadratic inequality. Abstract results of Yagi and
McIntosh ([Y], [M86]) show that the Littlewood-Paley quadratic functionals on
L2(Rn), classically defined with functions of the laplacian, may also be defined with
maximal accretive operators under suitable conditions. In particular, we have∫ +∞

0

‖(I + t2L)−1t
√
Lg‖2

2

dt

t
∼ ‖g‖2

2

for all g ∈ L2(R). Taking f in D(L) and g =
√
Lf, inequality (K) becomes

(2)
∫ +∞

0

‖(I + t2L)−1tDaDf‖2
2

dt

t
≤ C‖Df‖2

2 ,

which (because we are in dimension one) is equivalent to

(3)
∫ +∞

0

‖(I + t2L)−1tDa g‖2
2

dt

t
≤ C‖g‖2

2 , g ∈ L2(R).

Before going further, let us explain why we prefer to deal with quadratic func-
tionals like in (3) instead of singular integrals, like in Kato’s formula

√
L =

2

π

∫ +∞

0

(I + t2L)−1tL
dt

t
.

This formula would lead to proving the L2-continuity of the operator

T =
2

π

∫ +∞

0

(I + t2L)−1tDa
dt

t
,

as in [CMM] and other earlier papers. Hence, the singular integral approach gives
operators of the form ∫ +∞

0

Ut
dt

t
,
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and the quadratic functionals yield to∫ +∞

0

‖Ut · ‖2
2

dt

t
.

By developing ‖Utg‖2
2 = 〈U∗

t Utg, g〉, we see that a quadratic estimate also involves
a singular integral operator, namely∫ +∞

0

U∗
t Ut

dt

t
.

The point is that in most cases each Ut is a rough integral operator (with a rough
kernel), while U∗

t Ut is less rough, since its kernel writes

U∗
t Ut(x, y) =

∫
Ut(z, x)Ut(z, y)dz.

Moreover, two-sided regularity properties of U∗
t Ut(x, y) are linked to one-sided reg-

ularity properties of Ut(x, y), with respect to the y variable only.
In the square root problem, it turns out that there is not much difference in one

dimension between the two points of view. Our comment will be, however, very
relevant in higher dimensions.

Step 2: reduction to a Carleson estimate. Define θt = (I+ t2L)−1tDa, t > 0.
For any complex-valued a, the resolvent operator (I + t2L)−1 has a kernel with
pointwise exponential decay off the diagonal: see [AMT], where this property is
shown to hold when n = 1 or 2. Moreover, thanks to the ellipticity of the operator
D (dimension one again!), this property transfers to θt(x, y), the kernel of θt, and
its derivatives:

∀x, y ∈ R ∀t > 0 |θt(x, y)| ≤ C
1

t
e−α

|x−y|
t ,(4)

∀x, y ∈ R ∀t > 0 | ∂
∂y
θt(x, y)| ≤ C

1

t2
e−α

|x−y|
t ,(5)

where C and α only depend on λ and Λ ([AT95]). Such estimates allow to apply
the following general criterion.

Theorem 2 (Christ and Journé [CJ]). For any (θt)t>0 fulfilling (4) and (5), the
quadratic inequality

(6) ∀g ∈ L2(R)

∫ +∞

0

‖θtg‖2
2

dt

t
≤ C‖g‖2

2

is equivalent to the Carleson measure estimate

(7)
∫ |I|

0

∫
I

|θt(1)(x)|2
dxdt

t
≤ C|I|,

where I is any interval in R, and |I| denotes its length.
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This is a T (1) theorem for quadratic functionals. Provided (4) and (5) be suitably
generalised, it is valid in any dimension, with kernels polynomially decreasing off
the diagonal fastly enough.

The idea behind its proof is that the operator θt(1)Pt, where the function

θt(1)(x) =

∫
Rn

θt(x, z)dz

acts as a pointwise multiplier, and with (Pt)t>0 a smooth approximation of the
identity, mimicks the operator θt itself. This is expressed by the inequality

(8)
∫ +∞

0

‖θtg − θt(1)Ptg‖2
2

dt

t
≤ C‖g‖2

2 ,

where C depends on the constants in (4) and (5).
This inequality is an almost-orthogonality estimate. Define

θ̃t = θt − θt(1)Pt

so that θ̃t fulfills (4) and (5), with in addition the cancellation property

(9) θ̃t(1) = 0.

Then, expand

g =

∫ +∞

0

Q2
tg
dt

t

in a standard way (Qt = ψ(−t2∆) for suitable ψ). Properties (4), (5) and (9) imply
that

(10) ‖θ̃tQs‖2,2 ≤ Cmin

(
t

s
,
s

t

)β

for some β > 0 and for all s, t > 0, from which it is easy to deduce (8).
Now, inequality (8) shows that the quadratic inequality (6) is equivalent to∫ +∞

0

∫
R
|θt(1)(x)|2|Ptg(x)|2

dxdt

t
≤ C‖g‖2

2,

and by Carleson’s lemma this is equivalent to (7).

Step 3: checking the Carleson measure estimate. This part of the argument
is heavily specific to dimension one. Following Semmes [S], it starts with the obser-
vation that θt(

1
a
) = 0, while Re 1

a
≥ δ a.e. for some δ > 0. Therefore, RePt(

1
a
) ≥ δ,

whence the simple but crucial inequality

(11) |θt(1)(x)| ≤ 1

δ
|θt(1)(x)Pt(

1

a
)(x)|.

One then writes
0 = θt(

1

a
) = θt(1)Pt(

1

a
) + θ̃t(

1

a
),

and by standard localisation arguments based on (4), inequality (8) implies∫ |I|

0

∫
I

|θ̃t(
1

a
)(x)|2dxdt

t
≤ C|I|.

The desired Carleson measure estimate immediately follows from this and (11).
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4. The proof in any dimension: the Carleson measure crite-
rion

The proof in dimension n is organised along the same steps. The first one remains
unchanged until we arrive at the quadratic inequality

(12)
∫ +∞

0

‖(I + t2L)−1t divA∇f‖2
2

dt

t
≤ C‖∇f‖2

2.

This time, as we will see, it is important to keep the term ∇f, without replacing it
by an arbitrary L2 vector-valued function.

Denote again θt = (I + t2L)−1t divA, which is now an operator mapping vector-
valued functions to scalar functions. The second step is devoted to the

Lemma 3. The quadratic inequality (12) is implied by the Carleson measure esti-
mate ∫ `Q

0

∫
Q

|θt(I)(x)|2
dxdt

t
≤ C|Q|,

where Q is any cube with sides parallel to the axes, measure |Q| and sidelength `Q,
and θt(I) denotes the vector-valued function (θt(e1), · · · , θt(en)).

Only the stated implication is needed, though one may prove the full equivalence
between the two inequalities: see [AT].

As in the one-dimensional case, Lemma 3 relies on the comparison between θt

and θt(I) · Pt, applied to gradients of scalar functions:

(13)
∫ +∞

0

‖θt∇f − θt(I)·Pt∇f‖2
2

dt

t
≤ C‖∇f‖2

2,

where Pt acts coordinatewise.
Here, Christ and Journé theorem is no more available, for the pointwise size

estimates on θt(x, y) are no longer valid — but there is a substitute —, and there
is no more regularity property with respect to y.

Let us be more detailed and begin with a discussion of size estimates. We have

(14) θt(x, y) = −tA(y)∇yRt(x, y),

where Rt(x, y) is the kernel of the resolvent operator (I + t2L)−1. The best possible
case is that of A being real-valued, for then Rt(x, y) fulfills pointwise estimates like

(15) |Rt(x, y)| ≤ Ct−2|x− y|−n+2e−α
|x−y|

t .

From this one can deduce weighted integral size estimates for θt(x, y) of the type

(16)
∫

Rn

|θt(x, y)|eα′ |x−y|
t dy ≤ C.

However, in the general complex-valued case, inequality (15) may fail, in quite
a strong way:
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Theorem 4 ([ACT]). When n ≥ 5, there exists an operator L such that, for all
t > 0, (I + t2L)−1 is not bounded on L∞.

The adequate substitute to (15) is then the following:

Lemma 5. Let E,E ′ be two closed subsets of Rn with d(E,E ′) > 0, and F ∈
L2(Rn; Cn) with SuppF ⊂ E ′. Then∫

E

|θtF (x)|2dx ≤ Ce−α
d(E,E′)

t

∫
E′
|F (x)|2dx

for each t > 0, with C and α only depending on λ and Λ.

This result, obtained from the Caccioppoli inequality, is the size estimate on the
kernel of θt to be used constantly.

Regarding the regularity property of θt(x, y), a look at (14) shows that we cannot
expect any hölderian behaviour with respect to y, even in a weak integral sense,
unless the matrix A has additional regularity. Nevertheless, the formula

(17) (I + t2L)−1tL =
1

t
I − 1

t
(I + t2L)−1

implies that the divergence divy θt(x, y) behaves like 1
t
Rt(x, y) when x 6= y. This is

a key cancellation property of θt, which explains the importance of keeping in (13)
the gradient ∇f. The same inequality with F instead of ∇f is also true, but proving
it is equivalent to proving (K).

The proof of (13) starts with the decomposition

θt − θt(I)·Pt = θt(I − Pt) + (θt − θt(I))Pt.

The first term in the right hand side leads to

θt(I − Pt)∇f = θt∇(I − Pt)f.

Using (17) we obtain

‖θt(I − Pt)∇f‖2 ≤ C
1

t
‖(I − Pt)f‖2,

and Plancherel theorem gives∫ +∞

0

‖(I − Pt)f‖2
2

dt

t3
≤ C‖∇f‖2

2.

To handle the second term, we set Ut = (θt−θt(I))Pt and prove, using Lemma 5,
that the kernel of U∗

t Ut satisfies size and regularity properties similar to (4) and (5),
in their multidimensional versions. Since by construction Ut(I) = 0, we conclude as
in the proof of (8). Note that we use here the right regularisation induced by the
multiplication by Pt, and the left regularisation induced by the U∗

t Ut trick.
Once (13) is proved, Lemma 3 is obtained by appealing to Carleson’s lemma as

in dimension one.
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5. The Carleson measure estimate in any dimension

We thus have to prove the inequality∫ `Q

0

∫
Q

|θt(I)(x)|2
dxdt

t
≤ C|Q|

for all cubes Q.
Select a cube Q and a direction w, i.e. a unit vector in Cn. The main lemma is

the following:

Lemma 6. There exists η > 0, M > 0 only depending on n, λ and Λ, and a function
fQ,w ∈ H1

loc(Rn) such that

(i) ∫
5Q

|∇fQ,w|2 ≤M |Q| ;

(ii) fQ,w is in the domain of L over 5Q, in the sense that LfQ,w is square-integrable
over 5Q, with ∫

5Q

|LfQ,w|2 ≤M`−2
Q |Q|;

(iii) the mean values of ∇fQ,w, at scales varying from 0 to `Q, are oriented along
w∗ (the complex conjugate of w) over a substantial part of the Carleson box
BQ = ]0, `Q]×Q: there exists a partition of BQ of the form

BQ =
⋃
Q′

BQ′ ∪
⋃
Q′′

RQ′′ ,

where RQ′′ =]1
2
`Q′′ , `Q′′ ] × Q′′ is the upper half of the Carleson box over Q′′,

and

• the cubes Q′ are mutually disjoint dyadic subcubes of Q, with

(18)
∑
Q′

|Q′| ≤ (1− η)|Q|,

• the cubes Q′′ are those dyadic subcubes of Q which are not contained in
any Q′, with

(19) Re

∫
Q′′
∇fQ,w · w ≥ 3

4
|Q′′|,

(20)
∫

Q′′
|∇fQ,w| ≤M |Q′′|.
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Let us admit this statement for the moment, and show how we use it.
We start with defining an angular localisation: to each direction w associate a

cone Γw of small aperture, and select a finite set W of directions such that

Cn =
⋃

w∈W

Γw

is a partition, up to negligible sets. Then write

θt(I) =
∑
w∈W

θt(I)1θt(I)∈Γw

def
=

∑
w∈W

γt,w,

so that it suffices to prove a Carleson measure estimate for each γt,w.
Then we use Lemma 6 to obtain a comparison between two measures, in the

spirit of the one-dimensional third step. We have indeed∫∫
BQ

|γt,w|2
dxdt

t
=

∑
Q′′

∫∫
RQ′′

|γt,w(x)|2dxdt
t

+
∑
Q′

∫∫
BQ′

|γt,w(x)|2dxdt
t
.

When (t, x) ∈ RQ′′ , set

1

|Q′′|

∫
Q′′
∇fQ,w = SQ

t ∇fQ,w(x).

The operator SQ
t is the dyadic approximation of the identity associated to the cube

Q.
By (19), (20) and the definition of γt,w (with an appropriate choice of the aperture

of Γw) we have
|γt,w(x)| ≤ 10 |γt,w(x) · SQ

t ∇fQ,w(x)|
pointwise. Therefore we get∫∫

BQ

|γt,w|2
dxdt

t
≤ 100

∑
Q′′

∫∫
RQ′′

|γt,w(x) · SQ
t ∇fQ,w(x)|2dxdt

t

+
∥∥|γt,w|2

dxdt

t

∥∥
c

∑
Q′

|Q′|.

Here, ‖µ‖c denotes supQ
1
|Q|µ(BQ).

We may assume that
∥∥|γt,w|2 dxdt

t

∥∥
c

is finite, thanks to a standard truncation over
the variable t. Invoking (18), dividing by Q and taking the supremum over Q, we
obtain the following comparison∥∥|γt,w|2

dxdt

t

∥∥
c
≤ 100

η
sup

Q

1

|Q|

∫∫
BQ

|γt,w(x) · SQ
t ∇fQ,w(x)|2dxdt

t
.

Now we are done: each integral in the right hand side is comparable to
‖
√
LfQ,w‖2

L2(5Q), as can be seen by taking the second step in reverse order, and
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suitably modifying it with localisation arguments. Since the function fQ,w is in the
domain of L over 5Q, the operator

√
L acts nicely on it, and we get the desired

control, using (i) and (ii) in Lemma 6.

It remains to prove this lemma. We choose

fQ,w = (I + ε2`2QL)−1 ΦQ · w∗

where ΦQ(x) = x − xQ, xQ being the center of Q. The real ε is a small parameter
that will be chosen independently of Q and w.

The estimates (i) and (ii) are proved by studying the commutator between the
resolvent and the multiplication operator by a Lipschitz function. Another useful
estimate is

(21)
∫

5Q

|fQ,w − ΦQ · w∗|2 ≤ Cε2`2Q|Q|.

With (i), this implies that ∇fQ,w is in the mean close to w∗:

(22)
∣∣∣∫

Q

∇fQ,w − w∗
∣∣∣ ≤ C

√
ε|Q|.

This inequality is a direct consequence of the following result, applied to g = fQ,w−
ΦQ · w∗.

Lemma 7. If g ∈ H1(Q) then∣∣∣∫
Q

∇g
∣∣∣ ≤ C`

n−1
2

Q

(∫
Q

|g|2
) 1

4
(∫

Q

|∇g|2
) 1

4

for some absolute constant C.

Inequality (22) is the cornerstone of the stopping-time argument defining the
subcubes Q′ and Q′′. Let us say that Q′′, a dyadic subcube of Q, is good when (19)
and (20) hold true.

Up to choosing ε small enough, (22) shows us first that Q is good. We subdivide
it in 2n subcubes and check whether each one is good or not. If not, we stop and
label the bad subcube in question as a Q′. If yes, we subdivide it and continue
the process. This is a classical procedure, reminiscent of the Calderón-Zygmund
decomposition.

We end up with a collection of bad dyadic subcubes Q′ which are maximal with
respect to the condition

Re

∫
Q′
∇fQ,w · w <

3

4
|Q′|

or ∫
Q′
|∇fQ,w| > M |Q′|.

The union of those cubes fulfilling the second part of the condition is a small
subset of Q, provided M is appropriately chosen. Now, if Q′ satisfies the first part,
we have

|Q′| < 4 Re

∫
Q′

1−∇fQ,w ·w ,

XIV–11



and therefore ∑
|Q′| < 4

∣∣∣Re

∫
∪Q′

1−∇fQ,w ·w
∣∣∣.

But inequality (22) prevents the set ∪Q′ from being too big in Q. When quantifying
precisely this, we arrive at∑

|Q′| ≤
(
1−

√
ε+ o(

√
ε)

)
|Q|.

This leads to fixing ε, and concludes the proof of the main lemma (it is indeed
obvious that the good subcubes Q′′ do satisfy the required conditions).

The reader will have understood that the aim of these notes is to introduce the
ideas of the proof, and — hopefully — to help the lecture of [AHLMT], where all
the omitted arguments may be found.
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