
Journées Équations aux dérivées partielles
Plestin-les-grèves, 5–8 juin 2002
GDR 1151 (CNRS)

Absolutely Continuous Spectrum and Scattering in
the Surface Maryland Model

François Bentosela Philippe Briet Leonid Pastur

Abstract
We study the discrete Schrödinger operator H in Zd with the surface

quasi periodic potential V (x) = gδ(x1) tan π(α · x2 + ω), where x = (x1, x2),
x1 ∈ Zd1 , x2 ∈ Zd2 , α ∈ Rd2 , ω ∈ [0, 1). We first discuss a proof of the
pure absolute continuity of the spectrum of H on the interval [−d, d] (the
spectrum of the discrete Laplacian) in the case where the components of α
are rationally independent. Then we show that in this case the generalized
eigenfunctions have the form of the "volume" waves, i.e. of the sum of the
incident plane wave and reflected from the hyper-plane Zd1 waves, the form
that is well known in the scattering theory for decaying potential. These
eigenfunctions are orthogonal, complete and verify a natural analogue of the
Lippmann-Schwinger equation. We find the wave operators and the scattering
matrix in this case. We discuss also the case of rational α = p/q’s, p, q ∈ N
for d1 = d2 = 1, i.e. of a periodic surface potential. In this case besides
the volume waves there are also the surface waves, whose amplitude decays
exponentially as |x1| → ∞. For large q corresponding part of the absolutely
continuos spectrum consists of q exponentially narrow bands, lying all except
one outside the interval [−2, 2], and converging in a natural sense as q →∞ to
the dense point spectrum found before in [13] for the irrational Diophantine
α’s.

1. Introduction

This paper is in the framework of problems discussed in [10] and later in [13], [4]-
[9]. The problems concern spectral and related properties of differential and finite-
difference operators either defined on the half-space by mean of random, almost
periodic or periodic boundary condition or having the same type of coefficients
supported on hyper-planes Rd2 or Zd2 of the spaces Rd or Zd. In particular in
[13] the discrete Schrödinger operator H, acting in l2(Zd) and having the “surface”
potential

V (x) = gδ(x1) tanπ(α·x2+ω), x = (x1, x2), x1 ∈ Zd1 , x2 ∈ Zd2 , d1+d2 = d, (1.1)
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was considered. It was shown that for any g 6= 0, ω ∈ [0, 1), and for α ∈ Rd2

verifying the Diophantine condition:

|α · x2 −m| ≥ const./|x2|d2+ε, ε > 0, x2 ∈ Zd2 \ {0}, m ∈ Z, (1.2)

the spectrum of H = H0 + V , lying outside the spectrum [−d, d] of the discrete
Laplacian H0, is pure point, dense, of multiplicity one and the respective eigenfunc-
tions decay exponentially at infinity.

The “volume” version of this operator corresponding, to the case d1 = 0, has
been studied in [2, 19, 15]. It can be viewed as a simple explicitly soluble model
of a quasi periodic discrete Schrödinger operator in the strong localization regime.
The operator has a complete system of exponentially decaying eigenfunctions, corre-
sponding to the pure point dense spectrum of multiplicity one occupying the whole
spectral axis.

In this paper, we study the absolutely continuous spectrum of H, i.e. the part of
the spectrum complementary to that considered in [13]. This part of the spectrum
was already studied in [6] in the context of the boundary value problem defined
by (1.1) with x1 = 0 (see formula (3.2) below). It was proven that if the vector
α ∈ Rd2 has rationally independent components, then the lying in [−d, d] spectrum
of the boundary value problem is purely absolutely continuous, and that the suitably
defined wave operators for the pair exist and are complete. Besides, it was proven
in [9] that in this case the surfaces states (see [10, 9] for definitions) are absent.

We first present a rather transparent proofs of the absolute continuity of the
part σ(H) ∩ [−d, d] of the spectrum σ(H) of H for arbitrary d1, d2 ≥ 1 and of the
completeness of the wave operators Ω± for the pair (H,H0). Then we find a complete
and orthonormal system of generalized eigenfunctions Ψ±(x,k),x ∈ Zd,k ∈ Td (see
formula (3.6)), having a “Sommerfeld-like” form of the sum of the incident plane
wave of the unit amplitude and of the reflected waves and we prove that Ψ±(x,k)
are the kernels of the wave operators Ω±.

We report also certain results on the periodic two-dimensional case d1 = d2 = 1,
i.e. for α = p/q, p, q ∈ Z1. In particular, we find the surface states and study their
certain properties.

2. Generalities

Recall that we are studying the self-adjoint operator H, acting on l2(Zd) and having
the form

H = H0 + V, (2.1)

where
(H0Ψ)(x) = −1/2

∑
|x−y|=1

Ψ(y) := −1

2
∆Ψ(y) (2.2)

is a discrete Laplacian, and V is defined in (1.1). We will use now an analogue of
the Cayley transform introduced in [2] in the case of the “volume” potential (1.1)
(d1 = 0) and in [13] in the “surface” case (d1 = 1), in both cases to study the pure
point spectrum for the Diophantine α′s (see (1.2)).
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To put the subsequent simple argument in a general context, we rewrite the
potential (1.1) as follows:

V (x) = g tan π(α · x2 + ω)χS(x), x = (x1, x2), x1 ∈ Zd1 , x2 ∈ Zd2 , (2.3)

where χS is the indicator of the subspace S = Zd2 , and we assume that g > 0 (the
case g < 0 can be treated analogously). χS can be regarded as the matrix of the
orthogonal projection onto the subspace of l2(Zd) of functions having the support
in S. Denote respective projection PS and write the potential (2.3) as follows:

V = PSvPS, v(x2) = g tan π(α · x2 + ω)χs(x). (2.4)

Recall the well known formulas for the resolvent G(z) = (H − z)−1 of a pair of
selfadjoint operators (H,H0):

G(z) = G0(z)−G0(z)T (z)G0(z), (2.5)

where
G0(z) = (H0 − z)−1, T (z) = V − V T (z)G0(z). (2.6)

In our case of the potential of the form (2.3) the operator T (z):

T (z) = PSt(z)PS, (2.7)

where the operator

t(z) = v(1 + PSG0(z)PSv)
−1 = (v−1 + PSG0(z)PS)−1 (2.8)

acts on PSl
2(Zd) = l2(S). Denote by u the unitary operator on l2(S) defined as:

(uψ)(x2) = e−2iπα.x2ψ(x2), x2 ∈ S. (2.9)

We will also need the Fourier transform which we define as follows. For any function
(any sequence) Φ ∈ l2(Zν), ν ≥ 1, we set

Φ̂(k) =
∑
x∈Zν

e−2iπx·kΦ(x), k ∈ Tν . (2.10)

Then we have
Φ(x) =

∫
Tν

dke2iπx·kΦ̂(k), x ∈ Zν . (2.11)

By using the Fourier transform, we can write the following representation of the
Green function G

(ν)
0 (x− y; z) of the ν-dimensional Laplacian (2.2) for d = ν:

G
(ν)
0 (x− y; z) =

∫
Tν

dk
e2iπk·(x−y)

Eν(k)− z
, (2.12)

where

Eν(k) = −
ν∑

i=1

cos ki, (k1, . . . , kν) = k ∈ Tν . (2.13)

These formulas allow us to define the following operators on l2(S):

γ0(z) = PSG0(z)PS, b(z) = (gγ0(z)− i)(gγ0(z) + i)−1, (2.14)

and to prove that:
‖b(z)‖ < 1, =z 6= 0, (2.15)
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Lemma 2.1. The operator t(z) defined by (2.5)-(2.8) and acting in PSl
2(Zd) = l2(S)

can be represented in the form:

t(z) = g(1− σu)(1− σb(z)u)−1(gγ0(z) + i)−1, (2.16)

or

t(z) = g(gγ0(z)+ i)−1[1−2iσu

q−1∑
l=0

(σb(z)u)l(1− (σb(z)u)q)−1(gγ0(z)+ i)−1], (2.17)

where σ = e−2iπω and q ≥ 1 is an integer.

Proof. By using the Euler formula for the function x → tan(x) and the notations
introduced above, we obtain that:

v =
g

i
· 1− σu

1 + σu
. (2.18)

This observation and a simple algebra lead to (2.16) and (2.17).

Proposition 2.1. Let H be the operator defined by (2.1), (2.2) and (1.1). Then its
resolvent G(z) = (H − z)−1 can be represented as follows for =z > 0 :

G(z) = G0(z)− gG0(z)PS(gγ0(z) + i)−1PSG0(z) + 2igG0(z)PS(gγ0(z) + i)−1

× σu

q−1∑
l=0

(σb(z)u)l(1− (σb(z)u)q)−1(gγ0(z) + i)−1PSG0(z), (2.19)

where σ = e−2iπω, q ≥ 1 is an integer, and operators G0(z), γ0(z), u, and b(z) are
defined in (2.6), (2.9) and in (2.14).

Proof. The proposition follows easily from (2.5) , Lemma 2.1 and from bound (2.15).
Remark. Integrate formula (2.19) with respect to ω ∈ [0, 1) and denote this opera-
tion by 〈· · · 〉. We obtain:

〈G(z)〉 = G0(z)− gG0(z)PS(gγ0(z) + i)−1PSG0(z).

In view of the general formula t(z) = (v−1 +γ0(z))
−1, valid for any surface potential

v, we can interpret the equality 〈t(z)〉 = g(gγ0(z) + i)−1 = (−(ig)−1 + γ0(z))
−1

as the fact that 〈G(z)〉 is the resolvent of the Schrödinger operator whose surface
potential is the complex constant −ig. Similar fact is known in the case of the
volume potential (2.4) , i.e. for the case S = Zd [2, 19].

We will obtain now a useful representation for the Green function G(x,y; z) :=
(H − z)−1(x,y) of H.

Lemma 2.2. Let b(z) and u be the operators defined in (2.14) and (2.9). Then for
any integer m ≥ 1,

( ̂(b(z)u)mϕ)(k2) =

(
m−1∏
l=0

b̂(k2 + lα; z)

)
ϕ̂(k2 +mα), k2 ∈ Td2 , (2.20)

where for ϕ ∈ l2(Zd2), ϕ̂ denotes its Fourier transform,

b̂(k2; z) =
(gγ̂0(k2; z)− i)

(gγ̂0(k2; z) + i)
, γ̂0(k2; z) =

∫
Td1

dk1

Ed((k1, k2))− z
. (2.21)
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Proof. We first note that the operator γ0(z) of (2.14) acts on l2(Zd2). Its matrix

γ0(x2 − y2; z) = Gd
0((0, x2)− (0, y2); z) (2.22)

depends only on the difference (x2 − y2) and in view of (2.12) is,

γ0(x2; z) =

∫
Td2

dk2e
2iπk2.x2

∫
Td1

dk1

Ed(k)− z
, (2.23)

or

γ0(x2; z) =

∫
Td2

dk2e
2iπk2.x2 γ̂0(k2; z), (2.24)

where γ̂0(k2; z) is given in (2.21). This and (2.14) imply that the operator b(z) also
has the matrix depending on the difference (x2 − y2), thus it is the multiplication
operator by b̂(k2; z) of (2.21) after the Fourier transformation. Besides, it follows
from (2.9 that after the Fourier transformation the operator u is the shift by α i.e.

ûϕ(k2) = ϕ̂(k2 + α)

The above facts imply

Theorem 2.1. Let H be the operator defined by (2.1), (2.2) and (1.1). Then the
Green function G(x,y; z) = (H − z)−1(x,y) is given by the formula:

G(x,y; z) = G
(d)
0 (x− y; z)−

∞∑
m=0

∫
Td2

dk2e
2iπk2·(x2−y2)tm(k2; z)

×G
(d1)
0 (x1; z − Ed2(k2))G

(d1)
0 (y1; z − Ed2(k2 +mα))e−2iπmα·y2 , (2.25)

where tm(k2; z) is defined by

− g

gγ̂0(k2; z) + i


−1, m = 0

2iσ(gγ̂0(k2 + α; z) + i)−1, m = 1

2iσm(gγ̂0(k2 +mα; z) + i)−1
∏m−1

l=0 b̂(k2 + lα; z), m ≥ 2,

(2.26)

G
(d1)
0 (x1; z) is the Green function (2.12) of the d1-dimensional Laplacian, Ed2(k2) is

defined in (2.13) for ν = d2, and γ̂0(k2; z) and b̂(k2; z) are defined in (2.14) and in
(2.21).

Besides, the (generalized) kernel of the operator T of (2.5) and of Lemma 2.1 in
the momentum representation has the form:

T (k,p; z) =
∞∑

m=0

tm(k2; z)δ(k2 +mα− p2), (2.27)

where tm(k2; z) is defined in (2.26). In particular, the kernel is independent of the
components k1, p1 ∈ Td1 of its arguments k,p ∈ Td.
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Proof. According to (2.15), ‖b(z)‖ < 1 if =z 6= 0. Hence we can write the operator
(1 − σbu)−1 in (2.16) for q = 1 as the Neumann-Liouville series in power of σbu.
Applying to the each term of the series inequality (2.15), we get (2.25) after a simple
algebra. Formula (2.27) follows from (2.5) and (2.25).

Remark. Formulas (2.25) and (2.27) have to be compared with the formulas for
respective quantities in the cases of the point potential V (x) = vδ(x), (d2 = 0) and
of the constant surface potential V (x) = vδ(x1), v = const. In the first case we
have:

G(x,y; z) = G
(d)
0 (x− y; z)− v

1 + vG
(d)
0 (0; z)

G
(d)
0 (x; z)G

(d)
0 (y; z), (2.28)

and
T (k,p; z) =

v

1 + vG
(d)
0 (0; z)

; (2.29)

while in the second case:

G(x,y; z) = G
(d)
0 (x− y; z)−

∫
Td2

dk2
ve2iπk2.(x2−y2)

1 + vG
(d1)
0 (0; z − Ed2(k2))

×G
(d1)
0 (x1; z − Ed2(k2))G

(d1)
0 (y1; z − Ed2(k2)), (2.30)

and
T (k,p; z) =

vδ(k2 − p2)

1 + vG
(d1)
0 (0; z − Ed2(k2))

, (2.31)

Formulas (2.25) and (2.27) are the basic tools of spectral and scattering analysis
of the operator (2.1) presented in this paper. An advantage of the formulas is that
they are valid for all values of the spectral parameter z = E + iε, up to the real
values z = E±i0, |E| < d in the case of irrational α’s (quasi-periodic in x2 potential
(1.1)), and for all E ∈ R in the case of rational α’s (periodic in x2 potential (1.1)).
We discuss these cases in Sections 2 and 3 respectively.

3. Quasi Periodic Case

In this section we assume that the vector α ∈ Rd2 from (1.1) has rationally indepen-
dent components, i.e. the relation α1r1 + · · ·+ αd2rd2 = 0 with rational coefficients
r1, . . . , rd2 implies that all these coefficients are zero.

Besides, we restrict ourselves to the interval [−d, d] of the spectral axis. We first
prove

Theorem 3.1. Let H = H0 + V be the operator defined by (2.1), (2.2) and (1.1).
Then its spectrum σ(H) contains the interval [−d, d] = σ(H0) for all g ∈ R, α ∈ Rd2

and ω ∈ [0, 1].

The proof is a direct application of the H. Weyl criterion.

Theorem 3.2. Let H = H0 + V be the self-adjoint operator defined by (2.2) and
(1.1) in which α ∈ Rd2 has rationally independent components. Then the spectrum
of H on the interval [−d, d] is purely absolutely continuous.
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The proof of the theorem is based on Theorem 2.1, and on the relation

lim
m→∞

∣∣∣∣∣
m−1∏
l=0

b̂(k2 + lα;E + i0)

∣∣∣∣∣ = exp

{∫
Td2

dq2 log |b̂(q2;E + i0)|
}
, (3.1)

valid uniformly in k2 ∈ Td2 (see e.g [1]). It can be shown that if |E| ≤ d− γ, γ > 0,
then the integral in the r.h.s. is negative, and the product in the l.h.s. is exponen-
tially decaying in m as m→∞, implying the convergence of the series in (2.5). This
reveals a fairly simple mathematical mechanism responsible for the absolutely con-
tinuous spectrum for the "subspace" potential (1.1) with d1 ≥ 1 (recall that in the
"volume" case d1 = 0, d2 = d, the absolutely continuous spectrum is absent, more-
over if α is Diophantine then the spectrum is pure point [2, 15]). The mechanism is
the positiveness of the imaginary part of γ̂0(k2;E + i0) = G

(d1)
0 (0, E + i0 − E(k2))

in certain domain of (E, k2). This is most transparent in the "genuine surface" case
d1 = 1, where G(1)

0 (0, E+ i0) is pure imaginary if |E| < 1 and is pure real if |E| ≥ 1,
(see formula (3.13) below). In the latter case |b̂(q2;E + i0))| = 1 and the series
(2.25) diverges for a dense set of energies (see [2]). This leads to the pure point
spectrum everywhere outside of the spectrum σ(H0) of the Laplacian (similarly to
the volume case [2], where the analogue of γ̂0(k2;E) in (2.21) is real for all E ∈ R
and the whole spectrum is pure point). In the former case |b̂(k2;E + i0))| is strictly
less than 1 for any E ∈ (−d, d) on an open set of k2 ∈ Td2 , the series is convergent
and the spectrum inside of σ(H0) is pure absolutely continuous.

As usual in spectral theory involving the absolutely continuous spectrum and in
scattering theory, a fact of primary interest is existence and completeness of wave
operators Ω∓ = s−limt→∓∞ eitH0e−itHE0(∆), where E0 is the resolution of identity of
H0, and ∆ is an interval of the spectral axis. In the next theorem we prove existence
and completeness of wave operators in our case.

We mention that in papers [4, 5, 6, 9], the scattering theory was developed for
the operator H1, acting in l2(Zd

+) (with Zd
+ = {(x1, x2) ∈ Zd;x1 ≥ 0,x2 ∈ Zd−1}),

and defined as:

(H1Ψ)(x) =

{
−1/2(∆Ψ)(x), x1 ≥ 1,

−1/2Ψ(1, x2)− 1/2
∑

|x2−y2|=1 Ψ(0, y2) + v(x2)Ψ(0, x2), x1 = 0,

(3.2)
for certain random and almost periodic v′s. The operator can be viewed as defined by
the boundary value problem for the discrete Laplacian in l2(Zd

+) with the boundary
condition Ψ(−1, x2) = v(x2)Ψ(0, x2), x2 ∈ Zd−1. The ”unperturbed” operator H0

here is the discrete Dirichlet Laplacian, corresponding to v ≡ 0 in (3.2). The
operator H1 is closely related to our operator H of (2.1) for the surface case d1 = 1,
d2 = d− 1.

Theorem 3.3. Under the conditions of the Theorem 3.2, the wave operators Ω± for
the pair (H,H0), defined by (2.1), (2.2), and (1.1), exist and are complete for any
closed interval ∆ = [a, b] ⊂ (−d, d).

The proof combines a general argument of [9], and Theorem 2.1.
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The next theorem presents an explicit form of the generalized eigenfunctions
of the operator H on the interval (−d, d) in the case of rationally independent
frequencies α1, . . . , αd2 in (2.3). The proof of the theorem is based on formulas
(2.25), and (2.26) for the Green function of the operator H, and on relation (3.1).

Theorem 3.4. Let G(x,y : z) be the Green function of the operator H defined by
(2.1), (2.2), and (1.1). Set

G(x,k; z) =
∑
y∈zd

G(x,y; z)e2iπk·y, k ∈ Td, (3.3)

Ψz(x,k) = (Ed(k)− z)G(x,k; z), (3.4)

and

Ṫd2 = Td2 \ {
d2−times

(0, 0, . . . , 0)︸ ︷︷ ︸, d2−times

(π, π, . . . , π)︸ ︷︷ ︸}; Ṫd = Ṫd2 × Td1 .

Then, for z = Ed(k)∓ iε, the limits:

Ψ±(x,k) := lim
ε→±0

Ψz(x,k) |z=Ed(k)∓iε= lim
ε→±0

(±i)εG
(
x,k; (Ed(k)∓ iε)

)
(3.5)

exist for all k ∈ Ṫd, are bounded in x ∈ Zd for all k ∈ Ṫd and are continuous in k
varying in any compact set of Ṫd. They are given by the formula

Ψ±(x,k) = e2iπk·x +
∞∑

m=0

tm(k2 −mα; z)

×G
(d1)
0 (x1;Ed(k)∓ i0− Ed2(k2 −mα)e2iπ(k2−mα)·x2 . (3.6)

Moreover, we have:

(i) Ψ±(x,k) satisfy the Schrödinger equation:

((H0 + V )Ψ±)(x,k) = Ed(k)Ψ±(x,k). (3.7)

(ii) Ψ± are the unique solutions of the integral equations:

Ψ±(x,k) = e2iπk.x −
∑
y∈Zd

G
(d)
0 (x− y;Ed(k)∓ 0)V (y)Ψ±(y,k). (3.8)

in the class of sequences {Ψ(x)}x∈Zd whose restrictions {ψ2(x2) := Ψ(0, x2)}x2∈Zd2

and {(1+σe−2iπα·x2)ψ2(x2)}x2∈Zd2 are representable as the Fourier transform of mea-
sures of bounded variation on Td2, and the sum of the l.h.s. of (3.8) are understood
as the Fourier transform of the product of the respective function and the measure.

(iii) The families {Ψ±(.,k)}k∈Ṫd are orthonormalized, i.e. if for any continuous
function Φ̂(k) having compact support in Ṫd we set

Φ±(x) =

∫
Ṫ d

Ψ±(x,k)Φ̂(k)dk, (3.9)

then for any two such functions Φ̂(1) and Φ̂(2) we have:∑
x∈Zd

Φ1
±(x)Φ2

±(x) =

∫
Ṫd

dkΦ̂(1)(k)Φ̂(2)(k), (3.10)
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(iv) The functions Ψ± : Zd×Ṫd → C are the kernels of the wave operators Ω±, whose
existence and completeness are proved in Theorem 3.3, i.e. for any Φ ∈ l2(Zd):

(Ω±Φ)(x) =

∫
Ṫd

Ψ±(x,k)Φ̂(k)dk, (3.11)

where Φ̂ is the Fourier transform of Φ.

Remarks. 1) Ψ±(x,k) are analogous of the Sommerfeld solutions, known in the
scattering theory (i.e. in the case of a potential decaying in all directions) and
providing a complete set of generalized eigenfunctions in the part of the spectrum
that coincides with the spectrum of the Laplacian [16, 18]. Likewise, (3.8) is an
analogue of the Lippmann-Schwinger equation of scattering theory.

2) According to formula (3.6), Ψ±(x,k) depends on the component x2 ∈ Zd2 of
x = (x1, x2) via the product of eik2·x2 and of a 1-periodic function of the argument
αx2, i.e. of a quasi periodic function of x2 ∈ Zd2 . This fact is in agreement with the
widely accepted in the spectral theory expectation, according to which generalized
eigenfunctions of absolutely continuous spectrum of differential and finite difference
operators with almost periodic coefficients have the "almost Floquet-Bloch" form of
the product of the plane wave and of an almost periodic function with the same set
of the Fourier frequencies as the coefficients.

3) According to (2.12)) the Green function G
(ν)
0 (x;E + i0) of the ν-dimensional

Laplacian decays exponentially if |E| > ν and decays as |x1|
ν−1
2 if |E| < ν and

ν ≥ 2. In the one dimensional case G(1)
0 (x;E + i0) behaves as eiη(E)|x| for |E| < 1,

where η(E) is a real valued function (see formula (3.13), and (3.14) below ). Since
the expression Ed(k) − Ed2(k2 −mα) assumes values inside of (−d1, d1) as well as
outside of this interval as m varies, the Green function

G
(d1)
0 (x1;Ed(k)∓ i0− Ed2(k2 −mα)),

entering the expression (3.6), may be exponentially decaying or slowly decaying
as |x1|

ν−1
2 . Hence, despite that in the quasi periodic case the surface state are

absent (see [10, 9] for definitions of these generalized eigenfunctions), the "volume"
generalized functions (3.6) contain both slowly decaying or even only oscillating in
|x1| terms and exponentially decaying in |x1| terms. These terms can be interpreted
as the waves reflected from the surfaces and propagating correspondingly inside the
bulk and along the subspace Zd2 , the support of the quasi-periodic perturbation
(strongly corrugated quasi-periodic surface in the case d1 = 1). In other words, we
can write:

Ψ(x,k) = e2iπk·x + Ψvol(x,k) + Ψsurf (x,k). (3.12)

The scattering interpretation (3.12) of generalized eigenfunctions (3.6) allows us
to introduce transmission and reflection amplitudes. Consider the simplest case of
d1 = 1 and recall that:

G
(1)
0 (x1; z) =

ieiη(z)|x1|

sin η(z)
, (3.13)

where − cos η = z, or
η(z) = −i log(−z +

√
z2 − 1), (3.14)
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and we use the branch of the logarithm that has the cut along the negative semi-axis
and the branch of

√
z2 − 1 fixed by the condition

√
z2 − 1 = z(1+O(z−1)), z →∞.

In particular =η(z) ≥ 0 for =z ≥ 0 and

η(E + i0) ∈


(0, π), |E| < 1;

−iR+, E > 1;

+iR−, E < −1.

(3.15)

Combining these formulas and (3.6), we can present Ψvol(x,k) for d1 = 1 as

Ψvol(x,k) =
∑
m

Ψm(k)eiηm(k)|x1|+2iπ(k2+αm)x2 ,

where
∑

m denotes the sum of those terms in (3.6) in which ηm(k) := η(qm(k)) is
real, and qm(k) = Ed(k)− Ed−1(k2 −mα). Recall that the Sommerfeld solution in
the one-dimensional scattering problem for the potential vδ(x1), x1 ∈ Z, is

Ψ(x1, k1) = e2iπk1x1 − iv

iv + | sin(2πk1)|
e2iπ|k1||x1|,

and hence the quantities

t(k1) =
| sin(2πk1)|

iv + | sin(2πk1)|
, r(k1) =

i

iv + | sin(2πk1)|

are the transmission and the reflection amplitudes in this problem. This makes
natural to view

t0 = 1−Ψ0, r0 = Ψ0

as the transmission and the reflection amplitudes of the scattered by the surface
potential (1.1) plane waves, propagating in direction (k1, k2) of the incident wave
and in the opposite direction, and to view Ψm,m ≥ 1 as transmission and reflection
coefficients of the scattered plane waves propagating in directions (ηm, k2−mα) and
(−ηm, k2 −mα) respectively.

This interpretation of the solutions (3.6) is in agreement with the form of the
scattering matrix S in our case. We use the general formula ([16], formula (4.2.30):

S = 1− T , T = −2iπ × s · lim
ε1→0

ε2→0

∫
R
δε2(H0 − λ)T (λ+ iε1)E0(dE), (3.16)

where δε(A) = (2iπ)−1[(A + iε)−1 − (A − iε)−1], T (z) is defined in (2.5), E0 is the
resolution of identity of H0, and the limits have to be carried out in the following
order: first ε1 → 0, second ε2 → 0. Formula (3.16) implies that for any sufficient
smooth function Φ̂(k):

(T Φ̂)(k) = −2iπ × s · lim
ε1→0

ε2→0

∫
T d

dpδε2(Ed(k)− Ed(p))T (k,p;Ed(p) + iε1)Φ̂(p).
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This formula and formula (2.27) for the kernel of the T -operator imply that the
generalized kernel T (k,p) of the T -matrix of (3.16) is:

T (k,p) = −2iπδ(Ed(k)− Ed(p))T (k,p;Ed(p) + i0)

= −2iπδ(Ed(k)− Ed(p))
∞∑

m=0

tm(k2;Ed(k) + i0)δ(k2 +mα− p2).(3.17)

The next theorem shows that the family of the “Sommerfeld-like” solutions con-
structed in the previous theorem is complete on the interval (−d, d), the spectrum
of the discrete Laplacian (2.2). The proof of the theorem combines again a version
of standard means of the scattering theory, the resolvent equation in particular (see
e.g. [16, 18]), and the representation (2.25), (2.26) of the Green function of the
operator H.

Theorem 3.5. Let H = H0 + V be the self-adjoint operator on l2(Zd), defined by
(2.2) and (1.1). Then the family {Ψz(x,k);x ∈ Zd}k∈Ṫd defined in Theorem 3.4
(see (3.3), (3.5), (3.6) is the complete system of generalized eigenfunctions of H in
the part (−d, d) of the spectrum i.e.:

(i) for any Φ ∈ l2(Zd) the series:

Φ̂(k) =
∑
x∈Zd

Ψ±(x,k)Φ(x) (3.18)

converges in l2(Zd);

(ii) if E(∆) is the spectral projection of H, corresponding to the closed interval
∆ = [a, b] ⊂ (−d, d), then

‖E(∆)Φ‖2 =

∫
{k∈Td: E(k)∈∆}

|Φ̂±(k)|2dk, (3.19)

where E(k) is defined in (2.13));

(iii) the following relation is valid:

‖HE(∆)Φ‖2 =

∫
{k∈Td: E(k)∈∆}

|Ed(k)Φ̂±(k)|2dk. (3.20)

4. Periodic Case

In this section we discuss briefly the case where the vector α in (1.1) has commensu-
rate components, i.e. the potential (1.1) is periodic in x2. For the sake of technical
multiplicity we consider here the two dimensional case d1 = d2 = 1, i .e. the case of
the “line” periodic potential in which

α = p/q, (4.1)
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where p and q are mutually simple integers and q ≥ 2. Our analysis is based on the
formula (2.19) for the resolvent of H of (2.1), whose coordinate version is (cf (2.25)–
(2.26)):

G(x,y; z) = G
(1)
0 (x− y; z)−

q−1∑
m=0

∫
T 1

dk2e
2iπk2·(x2−y2)tm(k2; z)

×G
(1)
0 (x1; z + cos k2)G

(1)
0 (y1; z + cos(k2 +mα))e−2iπmα·y2 , (4.2)

where tm(k2; z) is equal to

− g

gγ̂0(k2; z) + i


−1, m = 0,

1
1−Pq(k2;z)

· 2iσ
gγ̂0(k2+α;z)+i

, m = 1,
1

1−Pq(k2;z)
· 2iσ

gγ̂0(k2+mα;z)+i
Pm−1(k2 + lα; z), m ≥ 2,

(4.3)

G
(1)
0 (x1; z) is the Green function (2.12) of the 1-dimensional Laplacian, γ̂0(k2; z),

and b̂(k2; z) are defined in (2.14) and in (2.21), and

Pm(k2; z) = σm

m−1∏
l=0

b̂(k2 + lα; z), ∀k2 ∈ T 1, m = 1, . . . , q. (4.4)

By using this formula, we show first that the spectrum of H is the set

σ(H) = [−2, 2] ∪ {E ∈ R : ∃k2 ∈ T1, Pq(k2, E) = 1}. (4.5)

If q is big enough, then the equation Pq(k2, E) = 1 has q solutions: E1(k2) <
E1(k2) < · · · < Eq(k2), k2 ∈ T1, thus the second term in (4.5) consists of q compo-
nents:

{E ∈ R : ∃k2 ∈ T1, Pq(k2, E) = 1} = ∪q
l=1∆l, (4.6)

where
∆l = {E : ∃k2 ∈ T1, El(k2) = E}. (4.7)

All the intervals ∆l except possible the first one lie outside of the interval [−2, 2],
their width is exponentially small in q and the distance between the neighbor ∆’s is
of the order 1/q. Moreover, the intervals ∆l tend in a natural sense to eigenvalues
of the operator H with an irrational Diophantine α as p → ∞, q → ∞, p/q → α
(recall that, according to [13], for such α’s the spectrum of H is pure point and
dense).

Next we show that the whole spectrum of H is purely absolute continuous. As
for the generalized eigenfunctions, they can be divided in two families with respect
to their dependence on x1. The first family consists of solutions of the Schrödinger
equation, similar to the solutions (3.6). They are of the Floquet-Bloch form in x2

with respective quasimomentum varying in the interval (0, 1/q] and are the plane
waves in x1. These eigenfunctions correspond to the values of the spectral parameter
belonging to [−d, d], i.e. to the first term in (4.5). We will call them the volume
states and will denote them Ψ

(v)
± (x,k). The second family has no analogue in the
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quasi periodic case of the previous section. The family consists of the solutions that
are of the Floquet-Bloch form in x2 but decay exponentially in x1 as x1 →∞. They
correspond to the values of the spectral parameter belonging to the set (4.6), (4.7),
i.e. to the second term in (4.5). We will call them the surface states and will denote
them Ψ

(s)
± (x, k2). Likewise, the intervals ∆l, l = 1, . . . , q will be called the surface

bands.
The generalized eigenfunctions of both families are orthonormalized in the sense

of relation (3.10), and the union of the two families is complete, i.e. if for any
Φ ∈ l2(Z2) we set

Φ̂
(v)
± (k) =

∑
x∈Z2

Ψ
(v)
± (x,k)Φ(x), (4.8)

and
Φ̂

(s)
± (k2) =

∑
x∈Z2

Ψ
(s)
± (x, k2)Φ(x), (4.9)

and if E is, as above, the resolution of identity of the operator H, then

‖E(∆)Φ‖2 =

∫
{k∈T2: E(k)∈∆}

dk|Φ̂(v)
± (k)|2

+

q−1∑
l

∫
{k2∈T1: El(k2)∈∆l}

dk2|Φ̂(s)
± (k2)|2, (4.10)

As was mentioned above, there exists at most one band of surface states that
intersects the interval [−2, 2], i.e. the spectrum of the two dimensional discrete
Laplacian. This coexistence of the volume states and the surface states on the
interval [−2, 2] is possible under rather special conditions on the parameters g and
ω in the potential (1.1).

The results for the periodic surface potential are in agreement with those ob-
tained for the continuous Schrödinger operator in dimensions 2 and 3 with the
potential of the form of the sum of the point potentials whose centers are periodic
on the line x1 = 0, and on the plane x1 = 0 [3, 11, 12].
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