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Dynamics of Singularity Surfaces for Compressible
Navier-Stokes Flows in Two Space Dimensions

David Hoff

Abstract
We prove the global existence of solutions of the Navier-Stokes equations of

compressible, barotropic flow in two space dimensions with piecewise smooth
initial data. These solutions remain piecewise smooth for all time, retaining
simple jump discontinuities in the density and in the divergence of the velocity
across a smooth curve, which is convected with the flow. The strengths of
these discontinuities are shown to decay exponentially in time, more rapidly
for larger acoustic speeds and smaller viscosities.

The Navier-Stokes equations describe the conservation of mass and the balance
of momentum:

ρt + div(ρu) = 0 (1)
(ρuj)t + div(ρuju) + P (ρ)xj

= ε∆uj + λdiv uxj
. (2)

Here t ≥ 0 is time, x ∈ R2 is the spatial coordinate, and ρ(x, t), P = P (ρ), and
u(x, t) = (u1(x, t), u2(x, t)) are the fluid density, pressure, and velocity. ε > 0 and
λ ≥ 0 are viscosity constants, and div and ∆ are the usual spatial divergence and
Laplace operators.

Specifically, we fix a positive, constant reference density ρ̃, and we assume that
Cauchy data (ρ0, u0) is given for which ρ0 − ρ̃ is small in L2 ∩ L∞, u0 is small in
Hβ for some arbitrary but positive β (the L2-norms must be weighted slightly), and
that ρ0 is piecewise Cα (0 < α < β), having simple jump discontinuities across a
C1+α curve C(0). We then show that there is a global weak solution (ρ, u) for which
ρ(·, t) and div u(·, t) are piecewise Cα, having simple jump discontinuities across a
C1+α curve C(t), which is the transport of C(0) by the velocity field u, and that
certain other features of the solution concerning its singularities, readily obtainable
from heuristic jump conditions, hold in a strict, pointwise sense.
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Extensions of the results of the present paper to three space dimensions and to
nonbarotropic flows, in which the pressure depends as well on the temperature, and
the energy-balance equation is appended, will be presented elsewhere.

We begin by reviewing certain heuristic considerations regarding the propagation
of singularities in solutions of (1)–(2) (see for example Hoff [3, 5], Serre [9], and even
Duhem [1]). Suppose then that (ρ, u) is a smooth solution of (1) except across a
hypersurface S in R2 × [0,∞), and that ρ, u, and ∇u have one-sided limits at each
point of S. (Of course, it is the existence of such a solution that is our goal here.)
Let (n, n0) be the normal to S at such a point, where n0 denotes the scalar time-
component and n the vector x-component. Then (ρ, u) will be a distribution solution
of (1) if and only if, at each point of S,

n0[ρ] + n · [ρu] = 0. (3)

Here [ · ] denotes the difference between the limit in a given quantity from one side of
S to the other, and (3) results by applying the divergence theorem in the definition
of weak solution. Now, we expect that, due to the diffusion terms in (2), u should
become continuous for t > 0, so that [u] = 0. It then follows from (3) that, if [ρ] 6= 0,

n0 + n · u = 0, (4)

that is, that the normal [ n
n0 ] to S is perpendicular to the vector [ u

1 ]. The latter
vector is tangent to the space-time trajectory of a fluid particle, so that, at least at
this heuristic level, S is the union of these particle trajectories, and singularities are
convected with the flow.

Before computing the jump condition for the momentum (2), we rewrite this
equation as follows:

(ρuj)t + div(ρuju) =
(
(ε + λ)uk

xk
− P (ρ)

)
xj

+ ε(uj
xk
− uk

xj
)xk

=
(
(ε + λ)divu− P (ρ)

)
xj

+ εωj,k
xk

,
(5)

where ωj,k = uj
xk
− uk

xj
is the vorticity, and summation over k is understood in (5).

Then (ρ, u) will be a weak solution of (2) if and only if, at each point of S, and for
j = 1, 2,

n0[ρuj] + n · [ρuju] = nj

[
(ε + λ)div u− P (ρ)

]
+ nk[εω

j,k]. (6)

The left-hand side of (6) is zero, by (4). Multiplying by nj and summing over j, we
then find that [

(ε + λ)div u− P (ρ) + P̃
]

= 0, (7)

by the skew-symmetry of ω. Here P̃ = P (ρ̃) is a constant, positive reference pres-
sure. Evidently, although u is continuous for t > 0, ∇u is not, nor is ρ; but the
jumps in (ε + λ)div u and P (ρ) should exactly cancel, so that the combination

F ≡ (ε + λ)div u− P (ρ) + P̃ (8)

should be continuous. Returning to (6), we then find that ω will be continuous as
well, so that

[F ] = [ω] = 0. (9)
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To summarize, we expect that a curve C(t) of singularity of the solution (ρ, u) should
be transported by the velocity field u, and that at each time t, u, F , and ω should
be continuous functions of x, but that ρ, P , and div u will be discontinuous across
C(t).

The quantity F , sometimes referred to as the “effective viscous flux,” plays an
enormously important role in the overall analysis. A differential equation for F can
be derived by writing the momentum equation (5) in the form

ρu̇j = Fxj
+ εωj,k

xk
, (10)

where u̇j =
(

∂
∂t

+ u · ∇
)
uj is the usual convective derivative. (10) thus gives a

Helmholtz decomposition of the acceleration density ρu̇, and, again because of the
skew symmetry of ω,

∆F = div(ρu̇). (11)

We remark that, for incompressible flow, div u = 0, F = P̃ − P , and (11) becomes
the well-known elliptic equation for the incompressible pressure.

These heuristic observations were made precise in a sequence of papers [3] – [5]
in both two and three space dimensions, and for the non-barotropic Navier-Stokes
system as well, in which P = P (ρ, e), where e is specific internal energy, and a third
equation, expressing the balance of energy, is appended to (1)–(2). The following
gives a version of these results adapted to the present case:

Theorem 1. Assume that P (ρ) = Kργ where K > 0 and γ ≥ 1, and that ε > 0
and λ ≥ 0. Fix positive but arbitrarily small constants ρ̃, b, and β, and let initial
data (ρ0, u0) for (1)–(2) be given for which

C0 ≡ |ρ0 − ρ̃|2L∞ +

∫
R2

[
(ρ0(x)− ρ̃)2 + |u0(x)|2

]
(1 + |x|2)bdx + |u0|2Hβ

is sufficiently small (Hβ is the usual Sobolev space of functions with β deriva-
tives in L2). Then the system (1)–(2) has a global weak solution (ρ − ρ̃, u) ∈
C

(
[0,∞); H−1(R2)

)
× C

(
(0,∞); L2(R2)

)
for which

sup
t

[
|ρ(·, t)− ρ̃|2L∞ + |u(·, t)|2Hβ

+

∫
R2

(
|ρ(x, t)− ρ̃|2 + |u(x, t)|2 + σ(t)1−β|∇u|2 + σ2−β(|u̇(x, t)|2 + |∇ω(x, t)|2)

)
dx

]

+

∫ ∞

0

∫
R2

[
|∇u|2 + σ1−β(|u̇|2 + |∇ω|2) + σ2−β|∇u̇|2

]
dx dt ≤ CC0 , (12)

where σ(t) = min{1, t}; and

u, F, and ω are locally Hölder continuous in {t > 0}. (13)

Theorem 1 is essentially the result of [3], the major difference being that here
u0 ∈ Hβ, whereas in [3] we assumed that u0 ∈ L2 ∩ L4. This small degree of extra
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regularity in the initial velocity is required for the derivation of the slightly more
favorable smoothing rates for u indicated in (12), and these in turn will be needed to
resolve certain initial–layer effects. The assumption that u0 ∈ Hβ also enables us to
avoid a restriction on λ/ε that was imposed in [3]. The conclusion (13) concerning
the regularity of F and ω is somewhat stronger than that given in [3].

The latter conclusion, (13), also gives a rather satisfactory rigorous expression of
the jump conditions (9) that we derived above at the heuristic level. The questions
which are not addressed by Theorem 1, and which we set out to answer here, are
those described at the beginning: if ρ0 is piecewise continuous, having simple jump
discontinuities across a curve C(0), will ρ(·, t) and div u(·, t) be piecewise continuous,
with simple discontinuities across C(t), the u-transport of C(0)? will the jump
conditions (9) hold in a strict, pointwise sense? what can be said about the evolution
in time of the strengths |[ρ]| and |[divu]| of these discontinuities? and finally, how
regular can C(t) be, given that it is transported by a velocity field u which is not
C1, the discontinuities in its derivatives being concentrated on C(t) itself?

Before stating a rigorous result in this direction, we return to the heuristic dis-
cussion preceding the statement of Theorem 1 in order to gain some insight into the
required analysis. Thus suppose that (ρ, u) is a weak solution of (1)–(2), and, with
benefit of hindsight, that ρ(·, t) is piecewise Cα, having simple discontinuities across
a C1+α curve C(t) : {y(s, t) : s ∈ I ⊆ R}, where I is an open interval, and that C(t)
is the u-transport of C(0):

y(s, t) = y(s, 0) +

∫ t

0

u
(
y(s, τ), τ

)
dτ. (14)

(Again, it is the existence of such a solution that is our goal here.) We shall attempt
to estimate

∣∣y(·, t)
∣∣
C1+α and

|ρ(·, t) |Cα
pw

= sup
x1 6=x2

|ρ(x2, t)− ρ(x1, t)|
|x2 − x1|α

,

where the sup is taken over points x1, x2 on the same side of C(t). We shall see shortly
that these norms can be bounded in terms of e

R t
0 |∇u(·,τ)|∞dτ and |u(y(·, τ), τ)|C1+α ,

and that these latter two quantities are in turn bounded in terms of |ρ(·, t)|Cα
pw

and
|y(·, t)|C1+α . The resulting four estimates will be coupled in a nonlinear way, and, as
we shall see, a certain dissipative effect will be required to effect their uncoupling.

To begin, we see immediately from (14) that

|y(·, t)|C1+α ≤ C0 +

∫ t

0

|u(y(·, τ), τ)|C1+αdτ , (15)

where C0 will now denote a generic positive constant determined by the initial
data. To estimate |ρ(·, t)|Cα

pw
, we fix two particle trajectories x1(t) and x2(t) (thus

ẋj(t) = u(xj, t)) and compute from (1) and (8) that

d

dt
[log ρ(x2, t)− log ρ(x1, t)] = −(ε + λ)−1 [F (x2, t)− F (x1, t) + P (x2, t)− P (x1, t)]
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so that

d

dt
[log ρ(x2, t)− log ρ(x1, t)] + A(t) [log ρ(x2, t)− log ρ(x1, t)]

= −(ε + λ)−1 [F (x2, t)− F (x1, t)] , (16)

where A = ρP ′(ρ) for some ρ is evidently strictly positive. We therefore expect that

|ρ(x2(t), t)− ρ(x1(t), t)| ≤ Ce−C1t|ρ0(x2(0))− ρ0(x1(0))|

+ C

∫ t

0

eC1(τ−t)|F (x2(τ), τ)− F (x1(τ), τ)|dτ, (17)

where C is a generic positive constant, and C1 is a constant bounded away from
zero, depending on pointwise bounds for ρ. The relation ẋj = u(xj, t) implies that

|x2(t)− x1(t)| ≤ e
R t
0 |∇u(·,τ)|∞dτ |x1(0)− x2(0)|,

so that, taking x2 and x1 on the same side of C, we find from (17) that

|ρ(·, t)|Cα
pw
≤ CC0e

R t
0 (|∇u|∞−C1)dτ + C

∫ t

0

e
R t

τ (|∇u|∞−C1)|F (·, τ)|Cαdτ.

A bound for |F (·, t)|Cα can be obtained by applying the bounds in (12) for u̇ and
∇u̇ in the fundamental relation (11). The result is that

|ρ(·, t)|Cα
pw
≤ CC0e

R t
0 (|∇u|∞−C1)dτ + CC0

∫ t

0

e
R t

τ (|∇u|∞−C1)σ(τ)β−α−1dτ, (18)

where again σ = min{1, t}. Clearly, we shall have to assume that α < β.
The bounds for e

R t
0 |∇u|∞dτ and |u(y(·, τ), τ)|C1+α required to close the estimates

in (15) and (18) are more subtle. First, the relation

∆uj = uj
xkxk

= (uk
xk

)xj
+ (uj

xk
− uk

xj
)xk

,

together with (8), shows that we may write

u = ∇Γ ∗ LC(F, ω) + (ε + λ)−1∇Γ ∗ (P (ρ)− P̃ ),

≡ uF + uP ,
(19)

where Γ is the fundamental solution of the Laplace operator on R2 and LC(F, ω)
denotes a linear combination of F and components of ω. Now, (13) implies that
uF will be globally C1+α at positive times; uP will be less regular, however, since
P (ρ(·, t)) is discontinuous. Indeed, letting Ω− and Ω+ be the two sides of C(t), we
might write

uP (x, t) = (ε + λ)−1

∫
Ω+∪Ω−

∇Γ(x− y)[P (ρ(y, t))− P̃ ]dy (20)

and apply a standard result of harmonic analysis to the effect that, if P (ρ(·, t)) ∈
Cα(Ω+), say, and if C = ∂Ω+ is C2+α, then

∫
Ω+

will be in C1+α(Ω+). This is far from
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adequate for our purposes, however, first because (15) shows only that C ∈ C1+α

if u ∈ C1+α, and the estimates would therefore not close, and second because it
does not address the question of regularity of

∫
Ω+

in Ω−, or its regularity across the
boundary C = ∂Ω±.

A more refined analysis, however, shows that, if C = ∂Ω± ∈ C1+α, if P (ρ(·, t))
is Cα separately in Ω+ and in Ω−, and if uP is as defined in (20), then ∇uP (·, t) ∈
L∞ and u(y(·, t), t) ∈ C1+α. This is the maximum that can be obtained, and the
minimum that our analysis requires. (We have been unable to locate these results
in the literature, and will therefore present their proofs in an appendix to [6].)
Specifically, we show that, with these assumptions,

|∇uP (·, t)|L∞ , |uP (y(·, t), t)|C1+α ≤ C
[
C0 + |ρ(·, t)|Cα

pw
+ |[ρ(·, t)]|L∞(C(t))|y(·, t)|2+1/α

C1+α

]
(21)

(plus lower-order terms of no consequence). Observe the superlinear dependence on
|y|C1+α . Of course, if [ρ(·, t)] ≡ 0, then P is globally Cα, and the dependence on
|y|C1+α drops out.

Can the four estimates in (15), (18), and (21) be closed? Ignoring completely
the effect of uF (recall (19)) we see very roughly from (15) and (21) that

d

dt
|y(·, t)|C1+α ∼ |u(y(·, t), t)|C1+α

∼ C|[ρ(·, t)]|L∞|y(·, t)|2+1/α

C1+α .

(22)

It thus appears that |y(·, t)|C1+α may blow up in finite time, and that no smallness
condition could prevent this blow-up. The analysis is saved, however, by the fol-
lowing fact, which reflects the dissipative effect referred to earlier, and which shows
that the coefficient in (22) decays exponentially in time:

Lemma.
∣∣[ρ(·, t)]

∣∣ ≤ CC0e
−C1t.

The (heuristic) proof is obtained from (17) by letting x1 and x2 approach C(t)
from different sides and by applying the Hölder continuity (13) of F .

Assuming then that C0/C1 � 1 (recall that C0 and C1 are generic positive
constants, C0 measuring the size of (ρ0 − ρ̃, u0) and C1 giving a lower bound away
from zero for ρ), we can then close the four estimates in (15), (18), and (21) to
obtain that

|∇uP (·, t)|L∞ , |uP (y(·, t), t)|C1+α , |ρ(·, t)|Cα
pw
≤ CC0 (23)

and
|y(·, t)|C1+α ≤ CeC1t (24)

These considerations form the basis of the proof of the following result:

Theorem 2. In addition to the hypotheses of Theorem 1, assume that P (ρ) = Kρ
(i.e., that γ = 1), that ρ0 is piecewise Cα, where 0 < α < β, having simple jump
discontinuities across a C1+α curve C(0), and that |ρ0|Cα

pw
is sufficiently small. Let

(ρ, u) be the corresponding solution of (1)–(2) given by Theorem 1. Then: ρ(·, t) is
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piecewise Cα, having simple jump discontinuities across a C1+α curve C(t), which is
the u-transport of C(0), as in (14); the estimates in (23) and (24) hold; for t > 0,
div u(·, t) has one-sided limits on C(t), and the jump conditions (9) hold in a strict,
pointwise sense; and

∣∣[ρ(·, t)]
∣∣
L∞

and |[div u(·, t)]|L∞ decay exponentially in time, as
in the Lemma.

Complete details of the proof will be presented in [6]. (There is an additional
technical hypothesis on the global structure of C(0) which must be imposed, and
which we have omitted here for the sake of brevity.)

Notice that the heuristic discussion given above, leading to the bounds (23)–
(24), is based on an analysis of a solution (ρ, u) which is assumed to exist, and
which is assumed to have all the qualitative properties described in Theorem 2. In
fact, no such solution was known to exist heretofore, even locally in time; indeed, it
is precisely the existence of such a solution that must be established in the proof of
Theorem 2.

We deal with this issue in [6] as follows. First, let (ρ, u) be the solution of The-
orem 1, which is known to exist, and let F and uF be the corresponding quantities
defined in (8) and (19). Then by (1) and (19), (ρ, u) = (ρ, u) is a solution of the
system 

u = uF + (ε + λ)−1∇Γ ∗ (P (ρ)− P̃ )

ρt + div (ρu) = 0,

ρ(x, 0) = ρ0(x).

(25)

We construct approximate solutions (ρa, ua) of (25) as follows. Let η = η(r) be a
C∞ function on [0,∞) which is zero on [0, 1), one on [2,∞), and increasing, and
define an operator ∇Γa∗ by

(∇Γa ∗ w)(x) =

∫
η

(
|x− y|

a

)
∇Γ(x− y)w(y)dy.

We then seek approximations (ρa, ua) to (ρ, u) as solutions to
ua = uF + (ε + λ)−1∇Γa ∗ (P (ρa)− P̃ )

ρa
t + div (ρaua) = (ε + λ)−1ρa

[
(ε + λ)div ua − P (ρa) + P̃ − F

]
,

ρa(x, 0) = ρ0(x).

(26)

(Actually, there is a further regularization involved, but this rather technical point
need not detain us here.) Observe that ua is now globally C1+α, and that, since ρa

satisfies a first-order equation, its singularities are the singularities in its initial data
ρ0 convected with characteristic speed ua. The heuristic analysis leading up to (23)
and (24) then applies to (ρa, ua) in a completely rigorous way.

The proof of Theorem 2 then consists of four parts: First, we show by an iteration
argument that (26) has a solution (ρa, ua) in a suitable sense, defined for all time.
We then apply the analysis given in the above heuristic discussion to show that
the approximations {(ρa, ua)} satisfy the bounds (23) and (24), independently of
a, as well as all the geometrical considerations described in Theorem 2 relating to
the propagation of singularities. This enables us to extract a sequence converging
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as a → 0 to a limit (ρ, u) which also satisfies (23) and (24), whose singularities
propagate as described in Theorem 2, and which is a solution of (25). The final step
is to show that solutions of (25) are unique, so that (ρ, u) is precisely (ρ, u), the
solution of (1)–(2) of Theorem 1, and therefore that (ρ, u) satisfies all the conclusions
of Theorem 2. It is only for this very last step, the uniqueness of solutions of (25),
that the assumption P (ρ) = Kρ is required.

We conclude with two remarks concerning the exponential decay of singularities
asserted in the Lemma. First, a closer examination of the argument leading to (18)
shows that the constant C1 measuring the rate of exponential decay of singularities
is essentially

C1 ≈ ρ̃P ′(ρ̃)/(ε + λ) ,

that is, density times the square of the sound speed divided by the viscosity. We
thus conclude that the singularities studied here actually result from the presence
of viscosity, that they decay more rapidly with smaller viscosity, and therefore that
they should disappear altogether in the inviscid limit, that is, in solutions of the
Euler equations of compressible flow. Indeed, while solutions of the Euler equations
may exhibit shock-wave singularities, these shock waves propagate at acoustic speeds
rather than particle speeds, and the singularities examined here for solutions of the
Navier-Stokes equations do not occur.

The second remark is that, for fixed viscosity, singularities disappear as well in
the large–time limit t → ∞, thereby giving a sort of “asymptotic compactness"
for the fluid density and the velocity gradient. This compactifying effect evidently
results from the fact that the pressure P is increasing (that is, from the positivity
of A in (16)), and this is equivalent to the hyperbolicity of the underlying Euler
equations for inviscid, compressible flow. It is instructive to contrast the parabolic
smoothing, which takes (ρ0, u0) from L2

loc ∩L∞×L2 into L2
loc ∩L∞×H1 (see (12)),

and which occurs instantaneously in time, with this “hyperbolic smoothing," which
appears to take (ρ0, u0) from L2

loc ∩ L∞ × L2 into H1
loc ∩H2, but which occurs only

in infinite time. These observations are made precise for one-dimensional flows, for
which a complete well-posedness theory is available, in Hoff–Ziane [7] and [8], where
the existence of a “global attractor" is established. The global attractor, which is
determined by an external force, attracts all solutions, even with singular initial
data, and is contained in H1

loc ×H2. These results thus give a precise and rigorous
expression, at least in one space dimension, to the observation that singularites in
ρ and in ∇u disappear in the time-asymptotic limit, and that the solution operator
is compact in infinite time. See also Feireisl [2] for related results.
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