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The Schrödinger equation on a compact manifold :
Strichartz estimates and applications

Nicolas Burq Patrick Gérard Nikolay Tzvetkov

Résumé
Nous établissons des estimations de Strichartz avec perte de derivée frac-

tionnaire pour l’équation de Schrödinger sur toute variété riemannienne com-
pacte. Nous en deduisons des théorèmes d’existence globale pour le problème
de Cauchy d’équations de Schrödinger non–linéaires sur les surfaces dans le cas
de non–linéarités polynomiales défocalisantes, et sur les variétés de dimension
trois dans le cas de non–linéarités quadratiques. Nous discutons également
l’optimalité de ces estimées de Strichartz sur les sphères.

Abstract
We prove Strichartz estimates with fractional loss of derivatives for the

Schrödinger equation on any riemannian compact manifold. As a conse-
quence we infer global existence results for the Cauchy problem of nonlinear
Schrödinger equations on surfaces in the case of defocusing polynomial non-
linearities, and on three–manifolds in the case of quadratic nonlinearities. We
also discuss the optimality of these Strichartz estimates on spheres.

1. Introduction

Let (M, g) be a complete riemannian manifold. The nonlinear Schrödinger equation
on M reads

i∂tu+ ∆gu = P ′(|u|2)u, u(0, x) = u0(x). (1.1)

where ∆g denotes the Laplace–Beltrami operator on M , and P : R+ → R is a
(at least C1) function, for instance polynomial. It is classical that equation (1.1)
satisfies the following formal conservation laws :

‖u(t)‖L2 = ‖u0‖L2 (1.2)
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and ∫
M

|∇gu(t, x)|2dx+

∫
M

P (|u(t, x)|2)dx = E0. (1.3)

Typical questions of interest about this equation are

(i) Global existence of strong solutions in the energy space (E0 < +∞) for defo-
cusing nonlinearities (namely, P ≥ 0, or more generally E0 and ‖u0‖L2 control
the H1 norm of u).

(ii) Regularity of u if u0 and P are regular.

(iii) Stability of particular global solutions.

(iv) Blow up of solutions for focusing nonlinearities (for instance P (r) = −rm for
m large enough).

Here we shall focus on the first two questions above. Observe that these problems are
more involved than the corresponding ones for the wave equation. Indeed, equation
(1.1) does not satisfy finite propagation speed, so the geometry of M is expected to
have a much stronger influence on the behavior of solutions. In the present work,
we begin the systematic study of equation (1.1) in the particular case of a compact
manifold. It turns out that our methods can also be applied to metrics on Rd with
uniformity assumptions at infinity. Before stating our results, let us recall briefly
what is known in the two cases which were already studied in the literature, namely
the standard flat metrics on Rd and on Td.

1.1. The case of Rd with the standard metric.

If d = 1, the Sobolev imbedding H1(R) ⊂ L∞(R) and standard Hs estimates for eit∆

imply easily global existence of finite energy solutions for defocusing nonlinearity
P , as well as regularity if P is regular. The situation is more intricate in two space
dimensions, since in this case H1(R2) 6⊂ L∞(R2). However, the criticality of the
latter imbedding is expressed by the following logarithmic estimate,

‖u‖L∞ ≤ C ‖u‖H1

(
log
(
2 +

‖u‖H2

‖u‖H1

))1/2

.

Using this estimate, Brézis and Gallouët proved in [6] the global existence of smooth
(H2) solutions in the case of a defocusing cubic nonlinearity (P (r) = r2). It should
be observed that this approach holds as well on compact surfaces or on bounded
plane domains, as stressed in [6]. However, even in R2 it does not yield global exis-
tence of H1 solutions, nor does it allow to handle higher–degree nonlinearities. This
program has been developed for about twenty years by many authors, including
Ginibre–Velo [12],[13], Kato [18], Yajima [30], Cazenave [8] and Cazenave–Weissler
[9], by proving and using the following inequalities, named after Strichartz in refer-
ence to the paper [28]. Given v0 ∈ L2(Rd), set

v(t, x) = eit∆v0 (x).
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Then, for every pair (p, q) satisfying

2

p
+
d

q
=
d

2
, p ≥ 2, (p, q) 6= (2,∞), (1.4)

we have
‖v‖Lp(R,Lq(Rd)) ≤ C‖v0‖L2(Rd). (1.5)

Notice that the endpoint above estimates corresponding to p = 2, q = 2∗ if d ≥ 3
were obtained recently by Keel and Tao [19]. These inequalities lead for instance to
global existence and regularity of energy solutions to (1.1) on Rd for any defocusing
polynomial nonlinearity if d = 2, and for any defocusing subquintic nonlinearity if
d = 3. The quintic nonlinearity was solved in the case of three–dimensional radial
data by Bourgain [5], while the case of general data is still open.

The key of inequalities (1.5) lies in the following estimate

‖eit∆‖L1(Rd)→L∞(Rd) ≤
C

|t|d/2
(1.6)

which expresses the dispersive property of the linear Schrödinger equation on Rd.
Notice that this inequality is immediate from the explicit formula

eit∆v0(x) =
1

(4iπt)d/2

∫
Rd

ei
|x−y|2

4t f(y) dy.

The path from the dispersion estimate (1.6) to the Strichartz estimates (1.5) is
now classical through a functional–analytic argument which comes back to Tomas
[29] in the context of the related problem of restrictions of Fourier transforms (see
Keel–Tao [19] for an abstract presentation of this argument).

1.2. The case of flat tori.

If Rd is replaced by a compact manifold M , the analogue of dispersion estimate
(1.6) fails globally in time, as the example of constant solutions shows. It is less
obvious, but still true, that it also fails locally in time (see the discussionin the
beginning of section 3 below). In [2], [3] (see also [4]) Bourgain proposed a different
approach to Strichartz estimates on the flat torus M = Td, based on the Fourier
series representation of the Schrödinger group,

v(t, x) = eit∆v0(x) =
∑
k∈Zd

e−it|k|2+k.xv̂0(k) . (1.7)

Notice that this representation shows that the solution is also periodic in time. By
computing explicitly

‖v‖4
L4(T×Td) = ‖v2‖2

L2(T×Td)

by means of the Parseval identity, Bourgain obtains the following estimates.

(i) If d = 2, ‖v‖L4(T×T2) ≤ Cε‖v0‖Hε(T2) for all ε > 0. By interpolating with
Sobolev inequalities, this implies global existence for equation (1.1) with any
polynomial defocusing nonlinearity.
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(ii) If d ≥ 3,

‖v‖L4(T×Td) ≤ C‖v0‖Hs(Td), s >
d

4
− 1

2
. (1.8)

Unfortunately, even if d = 3, this estimate is not sufficient to prove global existence
results for nonlinear equations (it corresponds to a gain of 1

2
− ε derivative with

respect to the Sobolev imbedding, hence it only implies local wellposedness inH1+ε ).
However, by proving more precise conormal estimates on nonlinear terms, Bourgain
is able to derive global existence results : for instance, if d = 3, he obtains global
wellposedness for subquintic nonlinearities, the same result as in R3.

The goal of this work is to extend such results to more general compact manifolds.

2. Statement of the results

We begin with a generalization of Strichartz estimates.

Theorem 1. Let (M, g) be a riemannian compact manifold of dimension d ≥ 1 and
∆ be the Laplace Beltrami operator on M . Given p, q satisfying the scaling condition
2/p + d/q = d/2 and p ≥ 2, q <∞, the solution v of (1.1), satisfies, for any finite
time interval I,

‖v‖Lp(I,Lq(M)) ≤ C(I)‖v0‖H1/p(M). (2.1)

Remark 2.1. 1. Notice that the loss of 1/p derivative in estimate (2.1) above is half
of the loss of derivative which is predicted by the Sobolev imbedding Hs ⊂ Lq.

2. Theorem 1 can be easily generalized if one replaces ∆ by any elliptic selfadjoint
operator P of order m, assuming that the vertical Hessian of the principal symbol
of P does not vanish outside the null section.

3. Other generalizations (abstract lower order perturbations, Riemannian metrics
on Rd) are given in section 4 below.

As a consequence, we infer a general result on nonlinear Schrödinger equations
in dimension d = 2 (see section 5 below for local well-posedness for equation (2.2)
in more singular Sobolev spaces and arbitrary space dimensions).

Theorem 2. Let (M, g) be a riemannian compact surface, and let P be a polynomial
function with real coefficients. For every u0 ∈ H1(M), there exists a unique maximal
solution u ∈ C(I,H1(M)) of the equation

i∂tu+ ∆u = P ′(|u|2)u, u(0, x) = u0(x). (2.2)

Moreover we have the following additional properties:

(i) If ‖u0‖H1(M) is bounded from above, the length of I∩R± is bounded from below
by a positive constant.

(ii) For any finite p, u ∈ Lp
loc(I, L

∞(M)).

(iii) If P (r) −→ +∞ as r −→ +∞, I = R.
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(iv) If u0 ∈ Hs(M) for some s > 1, u ∈ C(I,Hs(M)). In particular if u0 ∈
C∞(M), u ∈ C∞(I ×M).

Remark 2.2. 1. If P (r) → +∞ when r → +∞, the existence of global weak solutions
in H1 is easy. A consequence of our estimates is that such solutions satisfy property
(ii)and therefore are strong and uniquely determined by their Cauchy data.

2. Theorem 2 and Remark 2.1 can be extended with very slight modifications to
other kinds of nonlinearities (for instance P ∈ Sm(R), P (r) = λrσ+1).

In three space dimensions, we are unable to deduce global existence of strong H1

solutions in the defocusing case from Theorem 1. However our methods can be used
to prove the following three-dimensional analogue of Brézis-Gallouët’s theorem.

Theorem 3. Assume M is three–dimensional. Given P ∈ S3/2(R), for any u0 ∈
H2(M), there exists a unique global solution u ∈ C(R;H2(M)) to the quadratic
nonlinear Schrödinger equation

i∂tu+ ∆u = P ′(|u|2)u, u(0, x) = u0(x). (2.3)

Let us come back to Theorem 1. On (M, g) a natural generalization of Fourier
series expansions is of course spectral decomposition of Laplace-Beltrami operator.
However our knowledge of the spectrum of this operator on arbitrary riemannian
manifolds is too poor for trying to adapt Bourgain’s method at this level of general-
ity. Rather, our proof of inequalities (2.1) relies on families of dispersive estimates
on small time intervals depending on the size of the frequencies of the data. The
strategy for proving such estimates is based on a simple time rescaling, first used by
Lebeau [20] in the context of control theory, which allows us to use WKB construc-
tion of semiclassical parametrices. These WKB constructions are to be related to
those used by Kapitanski [17] for proving Strichartz inequalities for wave equations
with variable coefficients.

Let us now discuss the optimality of estimates (2.1). As we shall see in section 5,
the endpoint estimates corresponding to p = 2 are sharp on spheres. On tori, Bour-
gain’s estimates (1.8) show that intermediate Strichartz estimates are not optimal.
It is therefore natural to try to improve these intermediate estimates in some other
specific manifolds. This is the aim of our fourth result.

Theorem 4. Assume (M, g) is a riemannian compact manifold of dimension d ≥ 2,
all of whose geodesics are closed with a common period. Then estimate (2.1) can be
improved as

‖v‖L4(I×M) ≤ C(I)‖v0‖Hs(M), s > s0(d), (2.4)

where s0(2) = 1
8
, s0(d) = d

4
− 1

2
for d ≥ 3. Moreover, if M = Sd is endowed

with canonical metric, then (2.4) is sharp in the sense that similar estimates with
s ≤ s0(d) (resp. s < s0(2)) fail if d ≥ 3 (resp. d = 2).

The above geometric hypothesis has been studied extensively (see e.g. Besse [1]).
Here we use it through a theorem by Guillemin [15] and Colin de Verdière [10] which
states that the spectrum of −∆ is clustered around the sequence ((k + α/4)2)k∈N
where α is a fixed integer.

V–5



A consequence of estimate (2.4) in three space dimensions is the local wellposed-
ness of the quintic nonlinear Schrödinger equation in H1+ε(M). A natural open
question is of course whether this solution is global in the defocusing case.

In the rest of this note, we discuss briefly the main ingredients in the proof of
the above theorems, refering to [7] for more details.

3. Sketch of the proof of Theorem 1

As we already observed, the analogue of dispersion estimate (1.6) cannot hold glob-
ally on a compact manifold M . Moreover, if it would hold for some time t, it would
imply that L∞ norms of eigenfunctions of the Laplace operator would be estimated
by their L1 norms, which is known to be false in many cases. This remark suggests
that such inequalities have more chance to hold on time intervals which shrink as
the frequency of the data is growing. Therefore it is natural to introduce spectral
cutoff as follows.

Given ϕ ∈ C∞
0 (R) and h ∈]0, 1], consider the operator ϕ(h2∆) : L2(M) → L2(M)

given by the functional calculus of the Laplace operator. For a given h > 0, this
operator is of course given by a smooth kernel. By standard pseudodifferential
methods, one can prove that, as h goes to 0, this family of operators behaves in
every coordinate patch of M , as a semiclassical pseudodifferential operator with
C∞

0 symbol (see e.g. Robert [22] and Helffer–Sjöstrand [16] for related results). As
a consequence, we have the following basic estimates.

(i) Spectral Sobolev estimates : if 1 ≤ q ≤ r ≤ ∞,

‖ϕ(h2∆)‖Lr(M) ≤ Ch
d
r
− d

q ‖ϕ(h2∆)‖Lq(M).

(ii) Spectral dyadic inequality. Let ϕ̃ ∈ C∞
0 (R), ϕ ∈ C∞

0 (R \ {0}), such that

ϕ̃(λ) +
∞∑

k=0

ϕ(2−2kλ) = 1, λ ∈ R.

Then, for q ∈ [2,∞[,

‖f‖Lq(M) ≤ Cq‖ϕ̃(∆)f‖Lq(M) + Cq

(
∞∑

k=0

‖ϕ(2−2k∆)f‖2
Lq(M)

) 1
2

. (3.1)

At this stage we can make more precise the remark about dispersion in the beginning
of this section. Let ϕ ∈ C∞

0 (R \ {0}). The operator eit∆ϕ(h2∆) is represented by
the following C∞ kernel

Kh(t, x, y) =
∑

λ∈σ(∆)

eitλϕ(h2λ)eλ(x) eλ(y)
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where σ(∆) denotes the spectrum of ∆ and (eλ) is an orthonormal basis of L2(M)
with ∆eλ = λeλ. Therefore,

‖eit∆ϕ(h2∆)‖L1(M)→L∞(M) = ‖Kh(t, ·, ·)‖L∞(M×M)

≥ C‖Kh(t, ·, ·)‖L2(M×M)

≥ C

( ∑
λ∈σ(∆)

|ϕ(h2λ)|2
) 1

2

≥ C

h
d
2

(3.2)

by the Weyl formula, if h is small enough and ϕ is, say, nonnegative and non
identically zero on ]−∞, 0[.

The above inequality has two consequences. First, since ϕ(h2∆) is uniformly
bounded on L∞(M), it implies that eit∆ is never bounded from L1(M) to L∞(M).
Hence it is natural to look for modified dispersion estimates of the form

‖eit∆ϕ(h2∆)‖L1(M)→L∞(M) ≤
C

|t| d
2

as t varies in an interval depending on h. Then inequality (3.2) implies that such
an interval is necessarily of the form [−αh, αh] for α sufficiently small. The main
step in the proof of Theorem 1 is that this information is sharp.

Lemma 3.1. Let M be a compact riemannian manifold of dimension d. Let ϕ ∈
C∞

0 (R). There exists α > 0 and C > 0 such that, for every h ∈]0, 1],

‖eit∆ϕ(h2∆)‖L1(M)→L∞(M) ≤
C

|t|d/2
(3.3)

for every t ∈ [−αh, αh].

The proof of Lemma 3.1 is based on the following elementary observation :
setting t = hs transforms the usual linear Schrödinger equation into the semiclassical
one, namely

ih∂sw + h2∆w = 0 . (3.4)

Moreover, the spectral cutoff ϕ(h2∆) allows to assume that the Cauchy data has
essentially, in every coordinate patch, a Fourier transform supported in a ball of
radius O(1/h). As a consequence, one can solve approximately equation (3.4) by
the usual WKB ansatz,

w̃(s, x) =

∫
Rd

e
i
h

φ(s,x,ξ)a(s, x, ξ, h)ŵ0(
ξ

h
)

dξ

(2πh)d
(3.5)

where

a(s, x, ξ, h) =
N∑

j=0

hjaj(s, x, ξ). (3.6)

and N is to be chosen large enough. The eikonal equation for φ and the transport
equations for the aj’s can be solved locally for any ξ in a compact subset. Moreover,
from the construction of φ one observes that

φ′′ξiξj
(s, x, ξ) = −2sgi,j(x) +O(s2), s −→ 0,
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so that estimate (3.3) follows from the stationary phase formula.

Let us now draw the main steps from Lemma 3.1 to estimates (2.1) of Theorem 1.
First we appeal to the following TT ∗ abstract argument.

Proposition 3.2 (Keel-Tao [19]). Let (X,S, µ) be a σ-finite measured space, and
U : R 7→ B(L2(X,S, µ)) be a weakly measurable map satisfying, for some A, σ > 0,

(i)
‖U(t)‖L2→L2 ≤ A, t ∈ R,

(ii)

‖U(t1)U(t2)
?f‖L∞ ≤ A

|t1 − t2|σ
‖f‖L1 , t1, t2 ∈ R.

Then for every pair (p, q) satisfying

2

p
+

2σ

q
= σ, p ≥ 2, (p, q) 6= (2,∞), (3.7)

one has (∫
R
‖U(t)f‖p

Lqdt

) 1
p

≤ B‖f‖L2 . (3.8)

and (∫
R
‖
∫ t

−∞
U(t)U(τ)∗f(τ)dτ‖p

Lqdt

) 1
p

≤ C‖f‖
Lp′ (R,Lq′ )

(3.9)

for all pairs (p, q), (p′, q′) satisfying condition (3.7).

Apply the above proposition to

U(t) = 1lJ(t)eit∆ϕ(h2∆)

where J is an interval of length ≤ αh, and α is given by Lemma 3.1. Let us forget
for a while estimate (3.9), and focus on (3.8). We obtain(∫

J

‖eit∆ϕ(h2∆)v0‖p
Lqdt

) 1
p

≤ C‖v0‖L2 .

for all (p, q) satisfying (1.4). Writing [−1, 1] as a union of N intervals Jk of length
≤ αh with N . 1

h
, we obtain finally

(∫ 1

−1

‖eit∆ϕ(h2∆)v0‖p
Lqdt

) 1
p

≤ C̃

h1/p
‖v0‖L2 . (3.10)

The proof is completed by combining the above estimate for h = 2−k and the spectral
dyadic inequality (3.1).
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4. An analogue of Theorem 1 on Rd.

In this section, we briefly draw how methods used in the proof Theorem 1 can be
generalized to Schrödinger equations on Rd. Let g be a riemannian metric on Rd

satisfying the following uniform bounds

∃m > 0,M > 0; ∀x ∈ Rd, m Id ≤ g(x) ≤M Id

∀α ∈ Nd, ∃Cα; ∀x ∈ Rd, |∂αg(x)| ≤ Cα

(4.1)

In the case where g is a compactly supported perturbation of the standard metric
and if every geodesic of the metric g goes out of any compact set after some time
(i.e. g is non-trapping), then it is known that the corresponding linear Schrödinger
equation satisfies the same Strichartz estimates as in Rd with the standard metric
(see Staffilani and Tataru [27]). Here we can prove the following (weaker) statement,
without any geometric assumption on g.

Theorem 5. Assume that (4.1) holds. Let V be an unbounded symetric operator
on L2(Rd) with domain D(V ) = H1(Rd) and satisfying

‖V f‖L2 ≤ C‖f‖H1(Rd) (4.2)

Then the solution to the linear Schrödinger equation

(i∂t + ∆ + V )u = 0, u(0, x) = u0(x) (4.3)

satisfies the same estimates as in Theorem 1,

‖v‖Lp(I,Lq(Rd)) ≤ C(I)‖v0‖H1/p(Rd) (4.4)

for all (p, q) such that 2
p

+ d
q

= d
2
, p ≥ 2, q <∞, and all finite intervals I.

Observe that the abstract perturbation V typically covers potentials associated
to N–body problems. The selfadjointness of A = ∆ + V is an easy consequence of
the Kato–Rellich theorem (see e.g. Reed–Simon [21]).

Let us indicate the main steps of the proof of Theorem 5. First a perturbation
argument allows to compare spectral cutoff for A and ∆g, namely for any ϕ ∈
C∞

0 (R), 0 ≤ r ≤ 1, 0 ≤ s ≤ 1,

‖ϕ(h2A)− ϕ(h2∆g)‖Hr→Hs ≤ Ch1−s+r . (4.5)

Then we prove the modified dispersion estimate in the case V = 0,

Lemma 4.1. Given Ψ ∈ C∞
0 (Rd), there exists α > 0, C > 0 such that, for every

h ∈]0, 1], t ∈ J = [−αh, αh],

‖eit∆gΨ(hD)‖L1(Rd)→L∞(Rd) ≤
C

|t|d/2
(4.6)
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Indeed, although the WKB method is used in Lemma 3.1 locally with respect
to the x variable, here, according to assumptions (4.1), the solutions to eıkonal and
transport equations are defined globally on [−α, α]× Rd.

Applying Proposition 3.2 to U(t) = Ψ(hD) eit∆g , we obtain, if |J | ≤ αh,(∫
J

‖Ψ(hD)eit∆gv0‖p
Lq

)1/p

≤ C‖v0‖L2 , (4.7)

Assume Ψ ∈ C∞
0 (Rd \ {0}) ; comparing the action of Ψ(hD) with the action of a

suitable spectral cutoff ϕ(h2∆g) for ϕ ∈ C∞
0 (R \ {0}), we infer(∫

J

‖Ψ(hD)eit∆gv0‖p
Lq dt

)1/p

≤ C‖ϕ(h2∆)v0‖L2 + CNh
N‖v0‖L2 . (4.8)

As a third step, we are going to take advantage of the conservation of the L2 norm

‖eitAu0‖L2 = ‖u0‖L2 (4.9)

to treat the perturbation as a source term: write the solution of equation (4.3) as

u(t) = eit∆gu0 −
∫ t

0

eit(t−τ)∆g(V u(τ))dτ. (4.10)

Using estimates (4.8) we obtain, if J = [0, αh],

‖Ψ(hD)u‖Lp(J,Lq) ≤ C‖u0‖L2+C‖ϕ(h2∆g)(V u)‖L1(J,L2)+CNh
N‖V u‖L1(J,L2) (4.11)

Since ϕ is compactly supported,

‖ϕ(h2∆g)(V f)‖L2 ≤ 1

h
‖ϕ(h2∆g)(V f)‖H−1 ≤ C

h
‖f‖L2 (4.12)

since V is bounded from L2 to H−1 by duality.
Taking advantage of the length of J , we conclude

‖Ψ(hD)u‖Lp(J,Lq) ≤ C‖u0‖+ CNh
N‖u0‖H1 (4.13)

Next we apply the above estimate to ϕ(h2A)u0 in place of u0. Then u is replaced
by ϕ(h2A)u, and since

‖ϕ(h2A)u0‖H1 ≤ C

h
‖ϕ(h2A)u0‖L2 (4.14)

we obtain
‖Ψ(hD)ϕ(h2A)u‖Lp(J,Lq) ≤ C‖ϕ(h2A)u0‖L2 . (4.15)

Then we sum on intervals J of length |J | ≤ αh to get an estimate on intervals of
fixed length

‖Ψ(hD)ϕ(h2A)u‖Lp(I,Lq) ≤ Ch1/p‖ϕ(h2A)u0‖L2 ≤ C‖ϕ(h2A)u0‖H1/p . (4.16)
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It remains to sum on frequencies. Observe that

Ψ(hD) = Ψ(hD)ϕ(h2A) + Ψ(hD)(1−ϕ(h2∆)) + Ψ(hD)(ϕ(h2∆)−ϕ(h2A)) (4.17)

The second term in the right hand side is small due to the choice of ϕ. For the third
term we apply estimate (4.5) with s = 2

p
= d(1

2
− 1

q
) and r = 1

p
, and we conclude

‖Ψ(hD)u‖Lp(I,Lq) ≤ C‖ϕ(h2A)u0‖H1/p + Ch1− 1
p‖u0‖H1/p . (4.18)

Therefore the theorem follows by summing on frequencies according to the usual
dyadic Lq inequality.

5. The nonlinear problems.

First we observe that estimates (2.1) in Theorem 1 yield classically estimates for
nonhomogeneous Schrödinger equation.

Corollary 5.1. If p, q satisfy 2
p

+ d
q

= d
2
, p ≥ 2 and q <∞,∥∥∥∥∫ t

0

ei(t−τ)∆f(τ)dτ

∥∥∥∥
Lp([0,T ],Lq(M))

≤ CT‖f‖
L1([0,T ],H

1
p (M))

. (5.1)

From this we deduce easily the following general local wellposedness result below
the energy threshold.

Proposition 5.2. Let F be a polynomial of degree β ≥ 2 with F (0) = 0, and

s >
d

2
− 1

β − 1
, s >

d− 1

2
.

For every u0 ∈ Hs(M), there exists T > 0 and a unique solution

u ∈ C([−T, T ], Hs(M)) ∩ Lp([−T, T ], L∞(M))

of the equation
i∂tu+ ∆u = F (u), u(0, x) = u0(x) (5.2)

with t ∈ R, x ∈ M , and where F is a (nonlinear) polynomial, F (0) = 0 for some
p > β − 1. Moreover

(i) If ‖u0‖Hs is bounded, then T is bounded from below by a positive constant.

(ii) If u0 ∈ Hr for some r > s, u ∈ C([−T, T ], Hr(M)).

The proof is a standard contraction principle in a suitable Banach space, which
is selected upon the following constraints. Since F has degree β,

‖F (u)‖Hs ≤ C(1 + ‖u‖L∞)β−1‖u‖Hs

for every s ≥ 0. As a consequence we need to control u in Lp
tL

∞
x for some p > β−1,

where the strict inequality guarantees contraction. If moreover p ≥ 2, this will be
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achieved through the Lp
tL

q
x estimate (5.1) combined with the Sobolev imbedding

W σ,q ⊂ L∞, with σ > d/q = d/2− 2/p. Since the Lp
tW

σ,q
x norm is controlled by the

Hs norm of the data with s = σ + 1/p > d/2 − 1/p, the natural Banach space is
therefore

YT = C([−T, T ], Hs(M)) ∩ Lp([−T, T ],W σ,q(M)).

Theorem 2 in two space dimensions can be easily deduced from Proposition 5.2,
since the regularity s can be chosen < 1 for all degree β. One can therefore combine
local wellposedness with conservation laws (1.2) and (1.3).

In three space dimensions, the situation is more intricate. Indeed, the gain of
derivative provided by Theorem 1 is 1/p ≤ 1/2 derivative. On the other hand,
assuming a control of the H1 norm, Sobolev inequality imposes us to gain at least
1/2 derivative in order to handle nonlinear terms. As a consequence, we are forced
to use endpoint Strichartz estimates, which correspond to p = 2. Moreover, in this
situation, Proposition 5.2 above only yields local wellposedness in H1+ε for cubic
nonlinearities. In order to get global existence in Theorem 3, we shall rather appeal
to the nonhomogeneous estimate on a small interval which is directly issued from
Proposition 3.2, namely, for any ϕ ∈ C∞

0 (R), there exists C > 0 such that for any
h ∈]0, 1], f supported in J ,(∫

J

‖
∫ t

−∞
ei(t−τ)∆ϕ(h2∆)f(τ)dτ‖2

L6dt

) 1
2

≤ C‖ϕ(h2∆)f‖
L2(J,L

6
5 )

(5.3)

if |J | ≤ α
2
h. Applying this inequality to the quadratic equation

i∂tu+ ∆u = P ′(|u|2)u (5.4)

where P ∈ S3/2, and summing on N ≤ C/h intervals, we obtain, after some work,
finally

∞∑
k=0

‖ϕ(2−2k∆)u‖2
L2(I,L∞) ≤ C(1 + ‖u‖2

L∞(I,H1))
2 (5.5)

for any finite interval I, where C is bounded if the length of I is bounded. Observe
that the right hand side of (5.5) is controlled by conservation laws. As a consequence,
we derive the following logarithmic inequality,

‖u‖L2([0,T ],L∞) ≤ C
(
log(2 + ‖u‖L2([0,T ],H2))

) 1
2 (5.6)

Finally we come back to equation (5.4) and we apply the standard propagation
estimates in L2,

‖u(T )‖H2 ≤ ‖u0‖H2 + C
(
log(2 + ‖u‖L2([0,T ],H2))

) 1
2 ‖u‖L2([0,T ],H2) (5.7)

Taking the square of the later inequality and integrating on [0, s] we observe that
F (s) = ‖u‖2

L2([0,s],H2) satisfies

F (s) ≤ C

(
1 +

∫ s

0

F (t) log(2 + F (t))dt

)
(5.8)

hence is bounded if s is bounded. Coming back to (5.7), this completes the proof.
Remark 5.3. Of course the above arguments apply as well to nonlinear perturbations
of problems on R3 studied in section 4.
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6. On the optimality of Strichartz estimates

On compact manifolds it is natural to test the optimality of Strichartz estimates on
eigenfunctions of the Laplace operator. Indeed, if ∆v0 = λv0, then

v(t) = eit∆v0 = eitλv0

thus ‖v‖Lp(I,Lq(M) = |I|1/p‖v0‖Lq(M) while ‖v0‖Hs(M) ∼ λs/2‖v0‖L2(M) if s ≥ 0 and λ
is large. Thus we are led to discuss the growth of Lq norms (q > 2) of eigenfunctions
with respect to their L2 norms. In this context one disposes of the following general
result.

Proposition 6.1 (Sogge [24], [25]). For all k ≥ 1, denote by Πk the spectral
projector

Πk = 1l−∆∈[k2,(k+1)2],

where ∆ is the Laplace-Beltrami operator on a compact riemannian d-manifold M ,
d ≥ 2. We have

‖Πk‖L2(M)→Lq(M) ≤ Cks(q) (6.1)

where

s(q) =

{
d−1
2

(1
2
− 1

q
), if 2 ≤ q ≤ 2(d+1)

d−1
,

d−1
2
− d

q
, if 2(d+1)

d−1
≤ q ≤ ∞.

Moreover, these estimates are sharp.

In particular, the above estimates give bounds on the growth of Lq norms of
eigenfunctions normalized in L2. However the sharpness of these bounds is a much
more difficult problem (see Sogge-Zelditch [26] for recent results in this direction),
except in specific geometries. For instance, if M = Sd, for all q ≥ 2 one can find a
sequence (hk) of spherical harmonics, such that

‖hk‖Lq ≈ c(q)ks(q)‖hk‖L2 , k −→∞ (6.2)

where s(q) is the exponent in estimate (6.1) (see [23]). If d ≥ 3, observe that
s(2∗) = 1/2. Therefore estimate (6.2) implies that the endpoint Strichartz estimates
of Theorem 1 (p = 2, q = 2∗, s = 1/2) are optimal on Sd for d ≥ 3. Similarly, in
the case d = 2, letting p tend to 2, the argument gives the optimality of the LpLq

estimate on S2 up to the loss of ε derivatives.

Finally we turn to intermediate Strichartz estimates corresponding to q = 4 as
in Theorem 4. Rather than giving a complete proof of Theorem 4, for which we refer
to [7], we shall discuss in detail the case of M = S3. In this case, Sogge’s estimate
for q = 4 reads

‖fk‖L4 ≤ Ck
1
4‖fk‖L2 , k →∞

for spherical harmonics of degree k, and optimality of the above estimates is attained
for instance by zonal spherical harmonics, which in this particular dimension have
the following simple expression,

hk(x) =
sin((k + 1)θ)

sin θ
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where θ ∈ [0, π], cos θ = 〈x, x0〉, for a chosen point x0 ∈ Sd. Notice that the volume
element in variable θ becomes sin2 θ dθ (up to a multiplicative constant), so that
‖hk‖L2 ≈ 1 and (6.2) can be easily checked for q ≥ 4.

First let us prove the estimate of Theorem 4 in this case. A solution of the linear
Schrödinger equation reads

v(t, x) =
∞∑

k=0

eit(1−(k+1)2)fk(x)

where fk are spherical harmonics of degree k. Observe that v is 2π–periodic in time.
Therefore the inequality we have to prove is

‖v‖L4(T×S3) ≤ Cs‖v(0)‖Hs(S3) (6.3)

for all s > 1/4. By dyadic decomposition, we may assume that N ≤ k ≤ 2N , so
that (6.3) is equivalent to

‖v‖L4(T×S3) ≤ C N s

(∑
k

‖fk‖2
L2(S3)

) 1
2

.

But the above inequality is an easy consequence of the following computation,

‖v‖4
L4(T×S3) = ‖v2‖2

L2(T×S3) =
∑

2N2≤τ≤9N2

∥∥∥∥ ∑
(k,l):(k+1)2+(l+1)2=τ

fk fl

∥∥∥∥2

≤ sup
2N2≤τ≤9N2

r2(τ)

(∑
k

‖fk‖2
L4

)2

where r2(τ) = #{(k, l) : (k + 1)2 + (l + 1)2 = τ} = O(N ε) (see e.g. Grosswald[14]).
Using Sogge’s estimate, we infer (6.3) for s > 1/4.

Finally we prove that estimate (6.3) fails for s = 1/4. As in Bourgain [2] the
argument is based on Gauss sums. We start from the following estimate,∣∣∣∣∣

∣∣∣∣∣∑
n∈Z

e−
2iπ
p

an2

ψ
( n
N

)∣∣∣∣∣− N
√
p

∣∣∣∣∫
R
ψ(y) dy

∣∣∣∣
∣∣∣∣∣ ≤ p

∫
R
|ψ′(y)| dy , (6.4)

where ψ is C1 and compactly supported on R, N ∈ N, p is a prime odd number,
a ∈ {1, . . . , p − 1}. This estimate is an easy combination of the celebrated Gauss
identity ∣∣∣∣∣

p−1∑
r=0

e−
2iπ
p

an2

∣∣∣∣∣ =
√
p

and of the elementary inequality∣∣∣∣∣∑
q∈Z

ψ

(
pq + r

N

)
− N

p

∫
R
ψ(y) dy

∣∣∣∣∣ ≤ p

∫
R
|ψ′(y)| dy .
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Then we define the following solution of the Schrödinger equation on S3,

vN(t, θ) =
∞∑

n=1

eit(1−n2)χ
( n
N

) sin(nθ)

sin θ
,

where χ is C1, nonnegative, not identically zero, and compactly supported in ]0,+∞[.
We claim that there exits some δ > 0 such that, for all N large enough, for all odd
prime number p such that p << N2/3, for all a ∈ {1, . . . , p− 1},

|vN(t, θ)| ≥ N2

2
√
p

∣∣∣∣∫ ∞

0

y χ(y) dy

∣∣∣∣ (6.5)

on the set
Ωa,p = {(t, x) :

∣∣∣∣t− 2πa

p

∣∣∣∣ ≤ δ

N2
, |θ| ≤ δ

N
} .

Indeed, write t = 2πa
p

+ s
N2 , θ = γ

N
with |s| ≤ δ and |γ| ≤ δ. Then

vN(t, θ) =
eit

sin(γ/N)

∑
n

e−
2iπ
p

(an2)ψ
( n
N
, s, γ

)
with

ψ(y, s, γ) = χ(y)e−isy2

sin(γy) .

Observe that
1

sin(γ/N)

∫ ∞

0

ψ(y, s, γ) dy ∼ N

∫ ∞

0

y χ(y) dy

as N tend to ∞ and s, γ tend to 0, with similar estimates on the integral of |ψ′|.
Thus estimate (6.5) is a consequence of inequality (6.4). It remains to notice that
sets Ωa,p are all disjoint as p varies among odd prime numbers much smaller than
N , so that

‖vN‖4
L4(T×S3) ≥ C

∑
p<<N2/3

N8

p2
p

1

N2

1

N3
= C N3

∑
p<<N2/3

1

p

while ‖vN‖2
H1/4(S3)

≈ N3/2. Thus the divergence of
∑

p
1
p

implies that estimate (6.3)
fails for s = 1/4.
Remark 6.2. 1. The proof of estimates (2.4) in Theorem 4 is an adaptation of the
above argument, using the clustering property of the spectrum of the Laplacian and
the full strength of Sogge’s estimates (6.1), see [7]. The proof of optimality for d ≥ 3
also proceeds the same way as above, using Gauss sums, but is more technical.

2. In three space dimensions, 2(d + 1)/(d − 1) = 4, thus estimates (2.4) and (2.1)
for p = 2 imply by interpolation

‖v‖Lp
t Lq

x
≤ C‖v0‖Hs , s > s(q)

for every (p, q) satisfying (1.4). Observe that, by the information (6.2) on eigen-
functions, we know that these estimates are optimal on S3 (apart from ε derivative)
with respect to (q, s). It would be interesting to know whether such estimates can
be generalized to other manifolds, or if a bad distribution of eigenvalues can be
combined with concentration of eigenfunctions to yield a higher loss of derivative.
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