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LIOUVILLE FORMS IN A NEIGHBORHOOD
OF AN ISOTROPIC EMBEDDING^*)

by Frank LOOSE

1. Introduction.

Consider a symplectic manifold (X,o;). If the symplectic 2-form (j is
exact, a choice of a potential, i.e., a 1-form f3 satisfying —d{3 = d;, is called
a Liouville form on X. Since uj is non-degenerate there is a unique vector
field 77 on X given by i^ = (3. Here i^uj denotes the contraction of the
form uj by 77, i.e., (^o;, $} = (a;, 77 A $) for all $ C TX. The vector field 77 is
called the associated contracting vector field.

The importance of Liouville forms and contracting vector fields for
symplectic geometry has been pointed out among others by Eliashberg and
Gromov [EG]. The aim of the present paper is to investigate the flexibility
of Liouville forms in a special case, i.e.: When is it possible to transform
one Liouville form into another by a symplectomorphism, at least locally?

The center of a Liouville form f3 is the set M = {x G X | f3{x) = 0}.
Equivalently, it is the fixed point locus of the associated contracting vector
field.

As a basic example consider the standard symplectic vector space
i

of dimension 21 with its canonical 2-form uj = ^ dxx A dyx, ( x ^ y )
\=i

being a coordinate for R2^. A natural choice for a Liouville form is

(*)The research was partially supported by the SFB 237 of the DFG.
Key words: Symplectic manifold - Liouville form - Isotropic embedding - Normal form.
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I
a = ^ (yxdxx — xxdyx) (e.g., a is the unique Sp2^(R)-invariant potential

A==l
of a;). The center is M = {0} and the associated contracting vector field is
up to the factor -\ the Euler vector field, rj = -j ̂ (xx9/9xx-{-yx9/9yx).

Another basic example is given by the cotangent bundle C = T*M
of a differentiable manifold (of dimension n). In fact, C carries a canonical

n
1-form a given by ^ v^du^y where n is a coordinate on M and (n,^) is

i/=i
the corresponding bundle chart of TT: G —> M. The canonical symplectic
structure on C is given by uj = —da; thus a is a Liouville form. Obviously
the center of a is given by the zero section a:M ^-> C of TT and the
associated contracting vector field is up to the factor —1 the Euler field

n
of the vector bundle TT, i.e., rj = — ^ vl/9/9vv.

i/=i

The submanifolds M = {0}CR2^ and a: M ^-> r*M are both extreme
cases of the notion of an isotropic embedding. Recall that a submanifold
i\ M c—^ X of a symplectic manifold (X, c*;) is isotropic, if L^UJ = 0. Its
dimension n = dimM can vary between n = 0 (i.e., M is a point) and half
of the dimension of X (i.e., M is Lagrangean). Thus we let dimX = 2{n-\-l)
with I € Z+.

Now, let X be a manifold, let /? be a 1-form on X so that cj := —df3
is non-degenerate, and let M := /^(D) be smooth (and non-empty). It is
easy to see that M must be necessarily isotropic. If one wants to find a
normal form for /3 in a neighborhood of its center (as we do), it is natural
to look first for a normal form for uj around M.

Weinstein's isotropic embedding theorem (see [Wel]) gives the ap-
propriate answer. To formulate that recall that i: M ̂  X isotropic means
that TMmCTM^. Thus Em := TM^/TMm is a symplectic vector space
and E = {Em}meM a symplectic vector bundle over M. N(i) := E is
called the symplectic normal bundle of i: M ̂  X. If i\\ M ̂  (Xi, 0:1) and
i^\ M ^-f (Xs, 0:2) are isotropic embeddings and N(i^) ̂  N(i'z) as symplec-
tic vector bundles, then there exists neighborhoods ?7iCXi, U^C_X^ of M
and a diffeomorphism /: U\ —> U^ with f\M = id^ and f*(^2 = ̂ i. More-
over Weinstein proved the following existence result. Given a symplectic
vector bundle E over a manifold M, then there exists a canonical symplec-
tic manifold C = C(E), together with an isotropic embedding a: M <—^ (7,
so that N(a) = E.

In the Darboux case, i.e., n = 0 (i.e., M = pt), the canonical model
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E comes down to H21 with its standard structure and the theorem reduces
to the classical Darboux theorem. In the Lagrange case, i.e., if I = 0 (i.e.,
dimM == - dimX), the canonical model is just C = T*M. In both cases
we already observed that there is a canonical choice of a Liouville form.
In the general case, the model C = C(E) is a combination of the extreme
cases n = 0 and I = 0 using the Marsden-Weinstein reduction procedure.
As a general fact we will show that the reduction procedure is also valid
for Liouville forms, not only for symplectic forms. (For a precise statement
see section 2.) In particular, Weinstein's canonical model C = C(E) for
isotropic embeddings carries a canonical 1-form, i.e., a Liouville form a.

What we have discussed so far, results in the following. If one starts
with a manifold X, with a 1-form (3 so that —d/3 is non-degenerate, and
with M = /^(O) smooth, and one is interested in a normal form for /3 in
a neighborhood of M, one may assume that X == C(E) (where E is the
symplectic normal bundle of M '—> X), M ^-> X is the standard isotropic
embedding a, and — d / 3 = c < ; = = — d a , where a is the canonical 1-form on C.
We want to characterize those potentials f3 of uj which we can transform
into a, i.e., those potentials for which a is a normal form.

The following argument shows that there is a necessary condition
coming from considerations on the first order of f3 along M. Precisely, if
j3 is a Liouville form vanishing along the isotropic submanifold M c-^ X,
then so does the associated vector field rj. The derivative of rj in m C MCX
is a linear transformation Lm'-TXm —> TXm- Now, from the symplectic
nature, one computes easily that L/m + -id e sp(TXm)i the symplectic
linear algebra. Moreover, the subspaces TMm and TMm are Lyn-mvariant.
Thus Lm induces a linear transformation t^m'-Em —^ Em which is again
conformal symplectic, Km + jid C sp(Em)' In conclusion one gets a bundle
homomorphism A: E —> E with A + ^id C sp(£"). The canonical Liouville
form on C = C(E) fulfills. A = —|id, as is easily shown. It is clear that
this is invariant under diffeomorphisms / of C with f\M = id^? since
the induced /*(A) coming from /*a is just a conjugation of A. We call
therefore a Liouville form /3 on a manifold X special if the associated
bundle transformation A: E —> E fulfills A = —^id. We can state now the
main result of that paper.

THEOREM (Existence). — Let E —^ M be a symplectic vector
bundle, let C be the canonical model associated with E, and let a be
the canonical Liouville form on C. If (3 is any potential of uj = —da,
vanishing along M, and being special in the above sense, then there exist
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neighborhoods U and V of M in C and a diffeomorphism f: U —> V with
f\M = [(IM satisfying /*/3 = a.

The theorem was proved in the Lagrangean case by Kostant-Sternberg
[GuSt], chap. 5. However, to the best of our knowledge it is even unknown in
the other extreme, i.e., the Darboux case M = pt. Kostant-Sternberg also
proved that the diffeomorphism / is unique. In section 3 it is shown that
the canonical model C comes along with a certain fibre bundle structure
over M and that the standard embedding is given by the zero section of
that bundle. Moreover there is a natural sequence of fibre bundles

0 —, r*M —> C —>E —> 0
over M. Using that we are able to state the following uniqueness result.

THEOREM (Uniqueness). — Let TT: C —>- M be the fibre bundle pro-
jection of the standard model C and assume that there are neighborhoods
U and V of the zero-section o". M '—> C and a diffeomorphism f:U —> V
satisfying f\M = id^ ^d /*a = a, where a is the canonical 1-form on C.
Then f is already (restriction of) a bundle isomorphism of C which fixes
the subbundle T^MCC.

2. Proof of the existence theorem.

We start with the observation that the natural reduction procedure
for Hamiltonian K-spaces is valid for Liouville forms. Recall that a Hamil-
tonian K-space is given by a symplectic manifold (X,o;), a (connected) Lie
group K acting on X by symplectic diffeomorphisms, and a moment map
<I>: X —> k* (here k denotes the Lie algebra of K and k* its dual vector
space), i.e., a I^-equivariant map (with respect to the given K -action on X
and the coadjoint action on k*) satisfying the moment condition

d4>a = iax^-

Here <t>a denotes the a-th component of <I>, i.e., <I>a = (^,a), and ax the
vector field on X associated with a E k.

An important case where a moment map exists is the following.
Suppose {X,uj) is symplectic, suppose f3 is a Liouville form (i.e., —df3 = c<;),
and suppose that K acts by diffeomorphisms respecting /?, k * / 3 = (3 for all
k € K. Then a natural moment map is given by the formula

(1) ^=(/?,ax).
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Consider next the moment level Z = ̂ >~1(0)CX. Suppose now that
K acts freely and properly on X. Then Z is a submanifold and the natural
projection v\ Z —> Z / K gives Z the structure of a ^-principal bundle over
XQ := Z / K . Marsden-Weinstein observed that there exists a unique 2-form
LJQ on XQ so that V^UJQ = %*o;, where i: Z ^-> X is the inclusion map.

PROPOSITION. — Let (X,o;) be symplectic, let (3 be a Liouville
form, let K be a Lie group acting freely and properly and respecting f3. Let
<I> be the natural momentum, i: Z ^-> X the inclusion and v. Z —> XQ the
natural projection. Then there exists a unique 1-form (3o on XQ satisfying
^f3o = z*/3.

Proof. — Since f3 is JC-invariant it suffices to prove that /3(z) vanishes
in the fibre direction, for every z € Z. A typical vector ^ tangent to the
fibre of v\ Z —>• XQ is given by ^ = ax(z) for some a C k. Thus

</?(^,0=(^),ax(^))=^a(^)=0,

by the definition of Z. D

Remark. — (a) By the uniqueness of the Marsden-Weinstein sym-
plectic structure UJQ on X it follows that —d(3o = 0:0, i.e., (3o is a Liouville
form on XQ.

(b) Sjamaar-Lerman [SjLe] have proved a much more general state-
ment of a symplectic structure on the quotient space Xo, when K is acting
not necessarily freely. In particular they proved that XQ is a stratified space
where on each stratum (which is a smooth manifold) there exists a unique
symplectic structure compatible with the projection map. The above argu-
ment shows that in case of a Liouville form (3 on X, there exists a unique
Liouville form /?o on XQ in the appropriate sense, in particular a Liouville
form on each of the strata.

An application of the proposition is given by the existence of a
canonical 1-form a on the standard symplectic manifold C associated to a
symplectic vector bundle E (of rank 21) over a manifold (of dimension n)
due to Weinstein [We2].

We recall the construction. Let Q be the standard symplectic vector
space of dimension 21. Let TT'.P —>• M be the Sp^ (R)-principal bundle of
symplectic frames of E —> M. Then Q as well as T*P carry a natural
structure of a Hamiltonian JC-space, K = Sp2^(R), coming from the
natural Liouville forms. Therefore the product space T*P x Q is again a
Hamiltonian JC-space and the moment map comes from the Liouville form
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(see ([!])). Moreover, since K acts freely and properly on P, the Marsden-
Weinstein quotient C := (T*PxQ)o exists and the above proposition shows
that C carries again a canonical 1-form.

Consider now a manifold X and let /3 be a 1-form on X such that
uj := —d/3 is non-degenerate. Let L'. M ^-> X be a submanifold ofX sitting in
the zero level of/?, i.e., /3\M = 0. Further let rj be the associated contracting
vector field on X given by i^ = /3. Then rj vanishes on M, too. For every
m C M we therefore can build the derivative of 77, i.e., Lm'-TXm —> TXm
given by Lm(^) == K^K772) (where ^ is an arbitrary vector field on X with
i(m) = 0.

The so-called infinitesimal conformal symplectic transformations of
a symplectic vector space (V,^) are defined by linear transformations
T: V —^ V satisfying

(a;, Tv\ A 2:2) + (ci;, ̂ i A Tv^) = A(cj, 2:1 A v^)

for some A € R. It is not difficult to see (cf. [GuSt], chap. 4) that our
derivative Lm'-TXm —> TXm is conformal symplectic with factor A = —1,
i.e., Lm + ^id 6 sp(TXm)' We conclude that the characteristic exponents
of 77 in m are symmetric with respect to v = —- i.e., —- -\-v is an exponent
if and only if —| — v is an exponent. From

(Ujm, Lm^l A $2) + {^m, $1 A Lm^) = -(^m, ̂ 1 A ^2),

for all m G M and $1, ^2 ^ TXm, it follows now easily that M is necessarily
isotropic in (X, —d/3). In fact, since L^|rM^ = 0, we have (cjyn, $iA^2) = 0
for all $1,^2 ^ TMm' Furthermore TM^ is an Ly^-invariant subspace of
TXm- For this let $1 e TM^ and ^2 ^ TMm and compute again:

-^, Lm^i A $2) = (^m^i A Lm^) + (o;^, ̂ i A ^2) = 0 + 0 = 0.

Moreover, again using that TM^Cker(L^), Lm induces a transforma-
tion Am on the symplectic normal vector space Em = TMm/TMm^
Am(fi+TMm) '-= Lm(^)+TMm, which is again an infinitesimal conformal
symplectic transformation with factor —1, i.e.,

Am + ̂ Em ^ Sp(£m).

Recall that we have called /3 a special Liouville form with center M,
if Am = —^id for every m € M. What we just required is, that the
tangent space TXm decomposes into the direct sum of eigenspaces of Lm
corresponding to the eigenvalues v = 0, v = —1 and v = —- ,

TXm = Eig(Lm,0) + Eig(Lm, -1) + Eig^m, -J).
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In fact, a similar computation as above using the conformal symplectic
property of Lm shows that ker(L^)CTM^. Thus, since rM^Cker(L^)
and since \m is m particular injective, Eig(Lyyi,0) = ker(Lyn) = TMm'
Then, using the conformal symplectic property of Lm again, one must have
an eigenspace Eig(Lyn, —1) of the same dimension n = dimM. Moreover,
for an infinitesimal symplectic transformation T of a symplectic vector
space (V,ci;) one similarly observes (cf. [GuSt], chap. 4) that uj induces a
non-degenerate pairing on the pair of eigenspaces Eig(r,z/) x Eig(T, —v)
for any eigenvalue v of T. This gives an identification of T*Mm with
Eig(Ly^, —1). Therefore the eigenspace of Lm corresponding to v = — ^ is
a realization of the symplectic normal space Em in TXm and in particular
such a special Liouville form f3 induces a splitting of the vector bundle
sequences

0—>TM—>TX\M—>NX/M—^

and
0—>TM—>TM1-—>E—>0

over M. Here N^/M = (TX\M)/TM denotes the geometric normal bundle
of M in X.

EXISTENCE THEOREM. — Let Xj be a manifold and f3j a special
Liouville form with center MCXj (j = 0,1). Suppose that the symplectic
normal bundles are isomorphic. Then there exists neighborhoods UjCXj of
M and a diffeomorphism f: UQ —^ U\ with f\M = idM satisfying /*/?i = f3o.

Let us regard Xj as a germ around M. Thus we omit the notion of
neighborhoods in the sequel and write, e.g., that there exists a diffeomor-
phism /: XQ —^ X\ satisfying certain conditions, and so on.

Since MC(X^, —df3j) (j = 0,1) is isotropic with isomorphic symplec-
tic normal bundle, there exists a diffeomorphism fj: C —^ Xj with fj\M =
idj^ and /*(—d/3j) = —da, where a is the canonical 1-form on (7, by Wein-
stein's isotropic embedding theorem. Moreover, Weinstein's version of the
Darboux-Moser-Weinstein theorem (see [Wel]) shows that one can even
achieve that not only fj\M = idM but moreover fj^\(TX\M) = idrxjM-
Thus the Liouville forms /*/3j are again special. We may therefore assume
that XQ = X\ = G, /?o = <^ and -d/?i = -da = uj.

Proof of the theorem. — By using an appropriate bundle isomor-
phism one may assume that f3\ =: {3 and f3Q = a coincide along M up to
the first order (since both are special). Following the usual proof of the
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Darboux-Moser-Weinstein theorem, let

A:=A)+^(/?I-A)) ,
t € [0,1], be the straight line curve of 1-forms connecting /?o with /?i. Since
a induces an isomorphism on the corresponding cohomology groups and
^*(/?i — A)) = 0 it follows that there exists a smooth function H on C so
that

dff=/3i-/?o.

By using explicit integration formulas one can achieve that H\M = 0,
dH\M = 0 and 'H.CSSM(H) = 0, since /?i — /?o vanishes of the first order
along M.

We look now for a curve t ^—> ft in Diff(C') with /o = id and f^(3t = f3o
(in particular / :== /i fulfills /*/? = a). This is equivalent to

o=^(/;A)=/;(r^+^)
by the Leibniz rule. Here t i—^ ^ denotes the corresponding curve in the
vector fields of C, i.e.,

M(x)) = ̂ ft(x),

and C^ denotes the Lie derivative in direction of the vector field ^. Since
C^ = i^d + c^ and —/?f = djFf, we end up with

0 = d(^/?t) -h i^Wt) +dH= d(i^f3t) - i^ + dH.
So far we have followed the familiar proof.

Now we observe that the desired curve of diffeomorphisms must satisfy
ft € Symp(C') = {/ | f^ = a;}; thus ^ C symp(C) = {$ | £^ = 0}.
Inside symp((7) there are the Hamiltonians ^, i.e., those which are
associated to functions g on C by i^uj == dg^ ham((7) = {^ | g G C°°((7)}.
Therefore we make the "ansatz"

^t:=^

and look for an equation of the desired curve t \—> gt in Diff(C). Obviously
we have i^uj = dgt and furthermore i^f3t = i^'nt^i where ^ is the
associated contracting vector field with respect to the Liouville form /?^.
But

i^ = Rt = A) + tdH = ̂ o+t^H^,

and therefore rjt = rjo + t^H'> since d; is non-degenerate and where 770 = T] is
the canonical vector field on C. We come down to

ktftt = i^^ = -V^ = -^t(dgt) = -(rj + ̂ jf)(^).
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Our equation to solve is therefore
0=-(77+^)(pi)-^+^

or
(id+77+^)(^)=^.

Observe now that ^H vanishes of the first order along M, because H
vanishes of the second order. Therefore T := id + 77 + t^n may be seen
as a perturbation of the differential operator id + rj. As a consequence
of the next lemma, we will prove that there exists a unique solution pi
which vanishes of the second order along M. This solution also depends
differentiably on t and thus we have found our curve t ̂  gt. D

Consider now M = R71 linearly embedded in X = R/1 x R/* as
M = {(^1,^2) ^ R714'7' | a;2 = 0}. Denote by £ = £n,r th^ set of germs
of smooth functions around M in X. Let m be the ideal of (germs of)
functions vanishing on M and more generally for any positive integer k let
m^ denote the functions vanishing on M up to the (k — 1) -st order.

LEMMA. — Let k be a non-negative integer and A: M —> Mat(r, R),
A(a;i) = (^(a;i))i<p^<y., a matrix-valued smooth function so that A(a-i)
is semi-simple and for any eigenvalue v(x\) of A(x\) let Re(^(rci)) <, —1.
Let $ be (a germ of) a vector Geld along M which vanishes of the first
order. Then the linear partial differential operator T: 8 —> 8,

T = A ; . i d + ̂  a^i)^^+^
P,<T=1 2

maps m^1 bijectively to itself.
Let ((p8) be the flow associated with the vector field rj := T — k ' id.

Then the now exists for all positive time s and for every h € m^1 the
preimage under T is given by

(2) 9(x)=- ^eksh^sx)ds.
Jo

Before going to the proof, let us first make some remarks concerning
the existence of the integral and on its smooth dependence on x. Denoting
by

^s{x)=^i(x)^s^x))eRnxBr

the components, it follows from standard results in dynamical systems (see
[Ha], chap. 9, e.g.) that the flow (y?5) converges almost as fast to its limit
as its linear part does. Precisely,

^(rr) = (^e^1-6)5)
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for every fixed x and every e > 0, since the real parts of the eigenvalues
of A have real part less or equal to —1. Therefore, since h vanishes up
to the A;-th order, we find that h^x) = o(e~(-k+l~E>)s) and this gives the
uniform convergence of the functions gs(x) = — f^ e^h^x) ds for s —>• oo.
Moreover, the limit g = lim gs is smooth and its ^-derivative, denoted in

s—^oo
the sequel by D, can be carried out under the integral,

Dg(x) =- l^ e^D^h^x)) ds.
Jo

A similar statement for the ^-derivative D^^x) of the flow and also the
higher derivatives implies that g is in fact smooth.

The second remark concerns the smoothness of the solution with
respect to an additional parameter in the case where the vector field rj
depends smoothly on some additional parameter. In particular, if

r r\r1t= Y.w-.+tfi2 Qxf,
P,(T==1

for t € R, then, again by standard results, the flow (^(x.t)) depends
smoothly on (s, .r, t) and one can see by similar arguments as above that
the solution of ( k ' id + ̂ )(^) = h, i.e.,

9t(x)=- I " e^h^^x^ds
Jo

is smooth in (x^t).

As a third remark, there is a version of the lemma in the manifold
setting. In fact, by the uniqueness of the solution, one may assume that M
is an arbitrary manifold (of dimension n) embedded as a submanifold in
another manifold X (of dimension n+r). Denoting by £ = SX,M the germs
of functions around M in X and by m^, k G Z+, its ideals as above, let rj
be (a germ of) a vector field on X which vanishes on M. Then rj induces a
derivative L: TX\M —> TX\M along M, and moreover, since rj\M = 0 and
therefore L\TM = 0, it induces a bundle homomorphism on the normal
bundle N^/M °f ^\ ^ ' - N ^ / M ~1' NX/M' Then we make the assumption
that A is semisimple and that the eigenvalues of A have real part less or
equal to -1. If ((^s) denotes the flow of T] on X, and if h G m^4'1, the
lemma asserts that the operator T = k ' id + rj gives a bijection of m^1 to
itself and moreover the preimage for any h e m^1 is given by the formula

g(x) = - { e^h^x) ds.
Jo
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Since the canonical vector field rf on C has exponents v = -\ and v = -1
on the geometrical normal bundle of M, applying the lemma in this version
with an additional parameter t and with k = 2 to the equation

(2id+277+2^)(^)=2^,
we find the desired solution curve 11—> Qi for the proof of the theorem.

Proof of the lemma. — For the uniqueness let / € m^1 and assume
that Tf = 0. We have to show that / = 0. Let (-, •) denote the standard
inner product on R^ and let o^R^ -^ R^ be the vector-valued
function describing the vector field r], i.e., rj{f) = (a,grad)(/). Now fix
x C X = R^ and consider the function A: [0,oo) -^ X, s ̂  e^f^x).
Since f € m^1 we have lim A(s) = 0 and of course A(0) = f(x). But

s—>-oo

Y(5) = e^ (k . /((^) + (a(^^),grad/(^^))) = e^Tf^x) = 0,
which implies f{x) = 0.

For the existence observe that
D{(psx)a{x) = a^x).

This is true for s = 0 and both sides give a solution of the non-autonomous
linear differential equation

z ' = Da{ip8x)z,
where / denotes differentiation with respect to s and x is fixed. In fact,

dWx))=Da^sx}a^sx\
ds

since {(p8) is the flow for the equation x ' = a{x). On the other hand,
differentiating the equation -^^{x} = a^x) with respect to x gives

-^-D^x) = Da^sx)D^S(x).
ds

So
^ (D^(x)a(x)) = Da{^x) {D^{x)a{x)) .

Computing directly, we have:

h{x) = - F d (e^h^x)) ds
Jo as
JQ

poopoo
= _ / e^ (k • h^x) + (grad/i(<^), a^x))) ds

Jo
= _ /" g^ (fc . h^x) + (grad/i^a;), ̂ (^(a-))) ds

Jo
= _ r e^ (k • h^x) + (a(x), grad) (/i(^a;))) ds

Jo

= - (k + (a(a;), grad)) f />00 e'^s/l(ysa;) ds\
\Jo /

=Tg(x). 0
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Remark. — An inspection of the proof shows that we can also give a
normal form for Liouville forms which are not necessarily special. Of course,
a necessary condition that (3o is a pullback of f3\ via a diffeomorphism is
that the induced transformations Ao and Ai of E must coincide up to
conjugation of a bundle isomorphism h: E —> E. But the proof only works,
if the eigenvalues of Aj are in the intervall [ — j ^ — j ] (i-e., the associated
contracting vector field has to contract C to M fast enough). Otherwise,
the explicit integration formula ([2]) does not necessarily converge.

3. Proof of the uniqueness theorem.

To formulate the uniqueness result we need some additional infor-
mation about the standard model C associated with a symplectic vector
bundle E over M. Let TT:P —> M be the associated J^-principal bundle
of symplectic frames of E —^ M, K = Sp2^(R), 2Z = rank(^). Denote by
prp: r*P —f P the natural projection, prp T*P x Q —> T*P the projection
onto the first factor, and by i: Z c-^ T*P x Q the inclusion of the moment
level Z == ^^(O) of T*P x Q. Since all these maps are J<T-equivariant
(where K acts trivially on M), the composition TT o pr? o pr^ oi'.Z —^ M
is K- invariant. Therefore there exists a unique map TTC'-C —> M so that
TCcv = TrprppriZ, where v\ Z —> C is the natural projection. It is not hard
to see (cf. [Lo]) that TTC gives C the structure of a fibre bundle over M with
fibre F := R/1 x Q. The structure group of TI-C is described by the following.
Let H be GLyi(R) x K and V be the linear space of homogeneous quadratic
polynomials from Q to R/1, V = Sym^Q.R/1). Then H acts on V by the
representation

(A,C).b(q)=Ab(C-lq),

for q € 0, b G V and (A, (7) G -H^. Thus we can form the semi-direct
product G := H x V corresponding to that representation. Now G acts on
F = R71 x Q via

((A, C7), &).(^, ̂  == (A^ + b(Cq)^ Cq).

This is the structure group of TTC'- C —>• M. Essentially it results from the
fact that the moment map on Q is homogeneous quadratic (the "angular
momentum part," so to say) while the moment map on T*P is linear on
the fibres (the "linear momentum part," so to say). Observe further that
the Reaction on F given by

t^q)^^^)
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commutes with the G-action. This induces a vector field on C which turns
out to be —2 times the contracting vector field T] associated with the
Liouville form a on C (see [Lo]). Moreover (0,0) G F is a G-fixpoint,
i.e., we have a zero section a: M c-^ (7, which turns out to be the standard
isotropic embedding. Finally we observe that the subspace R^CF is G-
invariant and G acts on R71 by its projection on GLyi(R). Similarly G acts
on the quotient F/TU1 ̂  Q via its projection on K. Thus we have an exact
sequence of G-spaces

0—^n—>F—>Q—>0.

To this corresponds an exact sequence of G-fibre bundles over M with fibres
R71, F and Q. Again a computation (see [Lo]) shows that this sequence is
given by

0—,r*M -^ G -^ E—.0

over M. Here g and h are defined in a natural way similar to the
construction of the map r^c'-C —> M.

Denote by Aut(G) the group of the associated bundle isomorphisms
of G, i.e., T C Aut(G), if r fixes every fibre Cm ''= ^c1^) ^ F and

every Tm'-Cm ~9' Cm is a transformation of F which is in G (depending
differentiably on m, of course).

UNIQUENESS THEOREM. — Let M be a manifold, E —^ M a
symplectic vector bundle, C the standard model associated with E —> M
and a its canonical 1-form. Let f'.C —> C be a diffeomorphism with
f\M = idM and /*a = a. Then f is a bundle isomorphism, f € Aut(G),
which fixes the subbundle T*M, /|T*M = id^M.

Proof. — Let us first consider the case E = 0, i.e., G = T*M. Since
the diffeomorphism / respects a, it respects the associated contracting
vector field T}. In particular, for any m G M, / respects the stable manifold
Sm = [c G G I lim <^(c) = m}, where ((/?*) is the flow associated with r}.

t—>00

Of course, in our case rj is just -1 times the Euler vector field on the vector
bundle T*M -> M, i.e., Sm = T*M^.

Next let us look at the derivative F of f along M, i.e., Fm '-•=
dfm'-TCm -^ TCm' We have TCm = TMm + T*Mm with its natural
symplectic structure. Furthermore, due to the fact that f\M = IO.M,
Fm\TMm = ^TMm and ^-^m is Fm-mvariant by the preceding remark. It
follows immediately from the definition that a symplectic transformation T
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of the symplectic vector space V + V^*, which is a direct sum, T = 5 +1 for
5: y -^ V and t: V* —>• V*, must satisfy ^ = 5*. Therefore Fm = idyCrn f01"
all me M. Now /^ := /[r*Myn, is a diffeomorphism ofT*M^ ^ R/1 which
commutes with the Euler vector field and which is therefore R+-equi variant
with respect to the natural R-i--action. The condition dfm(ft) == id implies
that fm fixes every orbit, which is just a straight line and therefore (using
again that dfm(0) = id) fm = idr-M^n, i.e., / = idx-

The next step is to transform as far as possible the preceding
discussion to the more general case. First, the stable manifold of the
canonical vector field 77 on C is again the fibre Cm '-= ^^(m) ^ F =
R71 x Q. Furthermore, inside the stable manifold Cm sits the "even more"
stable manifold corresponding to the eigenvalue 1 — £ for some 0 < e < ̂ ,
i.e.,

Sm = {c C Sm | ̂ (c) = 0(e-(1-^)}

(see [Ha], chap. 9), which is just T^Mm^Cm- Thus we see that T^MCC is
/-invariant. Now the restriction of the canonical 1-form a on T*M is just
the canonical 1-form on r*M, thereby showing that f\T*M = idr-M-

Let fm ''= f\Cm''Cm —> Cm- For each m € M we now construct an
element Tm = {(Am^Cm)^bm) ^ G induced by fm- First observe that every
diffeomorphism / respects the symplectic form uj on (7, i.e., f*uj = c^,
and fixing the zero-section pointwise, f\M = id^- Thus / induces a
symplectic bundle isomorphism 7 of E —> M. In fact, since the derivative
Fm'- (TC)m -^ (TC)m of / is symplectic, i.e.,

(o ,̂ Fm^l A Fm^2) = <^m,$l A $2)

for all $1,^2 e (TC)^, and Fm\TMm = idrM^, the ^-orthogonal TMm
is also F^-invariant: for ^i G TM^ and $2 ^ T^m compute

<^m, ̂ m$l A ^2) = < ,̂ F^ î A Fm^} = (^m, $1 A ̂ ) = 0 .

Therefore Fm induces a linear transformation ^m on £^ = TM^/TMm
which is clearly symplectic with respect to its natural induced structure.

For our diffeomorphism / of (7, which even respects a, we have
already seen that Fm\T*Mm = idr-M^- So we set Am '•== idr-M^ and
Cm '-= 7m ^ Sp(Em)- To find the element bm € Sym^^.^M^), we
consider the second derivative of fm'-Cm —> Cm in the origin which is a
symmetric bilinear map T(Cm)m xT{Cm)m —> T(Cm)m- By restricting this
map to Em x Em^=T(Cm)m x T(Cm)m and then projecting from T(Cm)m
to T*Mmi we obtain a symmetric bilinear map £'yyi x Em —^ T*Mm- Here
we have used the realization of Em in T^C^yn as the —^-eigenspace of
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Lm- Let bm ^ Sym^E'^T^Myyi) be the associated quadratic form. In
summary, using the first and second derivatives of /, for each m G M
we have Tm = ((•A^Cm^&m) ^ Aut(C^). These fit together to form an
automorphism r € Aut((7) with r|T*M = idr*M-

Now, in order to prove the uniqueness assertion, by composing / with
r~1, we may assume that bm = 0 and ^m = id^ for all m e M. We want
to show that / = idc. Since fm'-Cm —>- Cm respects the canonical vector
field 77, it is R+-equivariant with respect to the action t.(v,q) = (t^v^tq)
on Cm ^ F. Using the equivariance and the second derivative in 0, the
condition Tm = id implies that fm must stabilize every orbit. We conclude
that fm = id^, i.e., / = idc. This finishes the proof of the uniqueness
theorem. D

Remark. — (a) Although not explicitely formulated, the theorem
was proved by Kostant-Sternberg in [GuSt] in the Lagrangean case, i.e.,
E = (0). Note that this means that / is simply the identity.

(b) The proof shows that the theorem is true not only for special
Liouville forms. More precisely, the proof works for Liouville forms (3 where
the associated bundle A: E —^ E has its eigenvalues in the open interval
(—1,0), since 77 has to be contracting (cf. the remark in section 2).
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