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POINTWISE MULTIPLIERS AND CORONA TYPE
DECOMPOSITION IN BMOA

by J. M. ORTEGA and J. FABREGA

1. Introduction.

Let B be the unit ball of C71 and let S be its boundary. We will
consider BMO functions on S with respect to the non-isotropic metric on
6', that is, functions in L^^S) such that

•{rat.,'7-l | *=sup^n— / \f-fi^ r j e S , t > 0 } <oo
[I^IJj^t J

where Jy^ is the non-isotropic ball 7^ = {z C 5; |1 — rjz\ < t}^ \Irj,t\ is the
Lebesgue measure of J^ and

f^=\——\l f^'
l^^l r̂,,t

The space BMOA is defined by BMOA = ̂ (B) nBMO(5). There
exist several characterizations of this space. Among them we can mention
the one given by the boundedness of Garsia's norm and the one given in
terms of Carleson measures (see section 2 for details).

The first goal of this paper is to study the space of pointwise
multipliers of BMOA. We denote this space by M.(BMOA). For the
one-dimensional case a characterization was obtained by D. Stegenga [S].

Partially supported by the grant PB92-0804-C02-01 of the DGICYT, Spain.
Key words: BMOA — Pointwise multipliers — Corona problem.
Math. classification: 32A37 - 32A99.
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This result can be generalized to the n-dimensional case. He proved that
M(BMOA) = H°° D BMOiog(5) where

BMO^(S) = {/ € ^(5); ||/||*,iog < 00}
and

ll/lklog = sup { —— log —— { \f- fi^da; r] € 5, t > 0 \ .
[l^tl |A7,t I ̂ r,,t J

Note that this characterization is given in terms of the boundary
values. Therefore, it seems interesting to obtain another characterization
of this space in terms of the interior values of the function.

The first step is to give a description of the multipliers similar to the
one given by Garsia's norm for BMOA. As a consequence of this result, we
obtain a characterization of these multipliers in terms of "Carleson type"
estimates for the measure |9^(^)|2(1 — l^l^dy^).

To be precise we obtain the following theorem:

THEOREM A. — The following assertions are equivalent:

i) g is a pointwise multiplier of BMOA.

ii) g e H ° ° and

f log—— f , . 1
sup { ' Y ' / \g - gi^ J da; rj e 5, t > 0 } < oo.

[ |^,t| h^t ' ,. J

iii) g e H°° and for some 1 <p < oo

fsup {log^ ——— { |^(C) - ̂ ?,0^(0; z e B\\ < oo,
\ I i — M JS ) /

(1 — bl2)71

where P(z, () is the Poisson-Szego kernel given by P(z, ̂ ) = -——-——.[1 — zQ\ n

iv) g € H00 and

( ^(Ol^i-l^l^y^^G^log-^,
^.t

where Q^t = {z e B; |1 - f)z\ < t}, rj e S,t > 0.

A more complete list of characterizations of this space can be found
in section 2 (see Theorems 2.7, 2.9, and 2.13).

The second problem that we study in this paper is to give a corona
type decomposition for BMOA:
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Let g = (pi,.. . ,^m) be a vector valued holomorphic function on
B. We consider the map Mg : H{B) x . . . x B(B) —> H(B) defined

m
by Mg(f) = ^ ^j/j- We characterize those </s such that Mg maps

j=i
BMOA x ... x BMOA onto BMOA.

Results of this type for Hardy spaces, have been studied by many
authors, among them L. Carleson [C], E. Amar [A], M. Andersson and
H. Carlsson [AnCal], [AnCa2], S.Y. Li [Li] and K.C. Lin [Lin]. Corona
type decompositions for Besov spaces can be found in the papers of V.A.
Tolokonnikov [T], A. Nicolau [N] and ourselves [OF]. A result for the Bloch
space can be found in [OF].

For BMOA we obtain the following theorem:

THEOREM B. — Let g = (^i,... ,^m) be a vector valued holomor-
phic function on B. Then the operator

Mg(f){z)=^f,(z)g,(z)
j=i

maps BMOA x... x BMOA onto BMOA iff the functions gj are multipliers
of BMOA and satisfy the condition sup{|^(^)|; z € B} ^ 6 > 0.

The proof of this theorem for the unit disk of C can be obtained
from a result of V.A. Tolokonnikov [T]. Using techniques of one complex
variable, he obtained a decomposition

m

1 = ̂ ^, hj e M(BMOA(D)).
j==i

Finally, as a corollary of Theorem B we give an alternative proof of
the mentioned decomposition in the Bloch space.

The paper is organized in the following way. In section 2 we prove
Theorem A and we give some examples and properties of the multipliers
of BMOA. In section 3 we prove that the conditions of Theorem B are
necessary. In section 4 we recall some results about solving the 9— equation
with estimates in terms of Carleson measures and BMO{S) norms. Finally,
in section 5 we finish the proof of Theorem B.

As usual, different constants in the inequalities will be denoted by
the same c. Also, the notation F w G means that there exist constants
Ci, C2 > 0 which are independent of F and G and such that c\F < G < c^F.
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2. Pointwise multipliers of BMOA.

Let us start recalling several well-known definitions and results related
to BMOA functions.

DEFINITION 2.1. — A positive measure [i is a Carleson measure if
there exists a constant c > 0 such that

/^(0^)<cf1

for all Qr),f

The set of Carleson measures will be denoted by W1.

As usual, ifh is a positive function such that h(z)dV{z) is a Carleson
measure we will write h € W1 instead of hdV e W1.

It is well-known that a positive measure p, is Carleson if and only if

(2-1) sup{^^]i^d^zeB}<(x•
In order to state the main characterizations of BMOA functions we

need to introduce the following norms.

DEFINITION 2.2. — For 1 < p < oo we define

\\f\\^= (sup {—— / |/(C)-^,Jpda(C);J,4)•V [wJi^ } )

DEFINITION 2.3 (Garsia's norms). — For 1 < p < oo we define

H/ll^p = (sup U |/(C) - f^P^ 0^(0; z e B\}p

(1 — \z\2)n

where P(z, ̂ ) is the Poisson-Szego kernel i.e. P(z, ̂ ) = - . — — ^ .
|i — ZQ

The main property of this norm is its invariance by automorphisms.
This follows from

H/lkp = fsup U \fWw)) - /(^(0))|^a(w); ̂  C Aut(B)l^ p .
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THEOREM 2.4. — Let f € ^CB). Then the following properties
are equivalent:

i) / is in BMOA.

ii) ^^W^-^eW1.
iii) /^^I^A^/pely1 .
iv) ll/ll*,p«^ l<P<oo.

v) ||/||G,p<oo, Kp<oo.

Moreover, we have Cp||/||^p < ||/||* < Cp||/[|^p and Cp||/||G',p <
imi*<wiic^.

The equivalences between i), ii) and iii) were obtained by R. Coiffman,
R. Rochberg and R. Weiss [CoRoW], [CoW]. See also [ChoaChoe] and [J].
The equivalence between i) and iv) was noted by J. Shapiro [Sh]. Finally,
the equivalence between i) and v) was obtained for p = 2 by Garsia (see
[G]) for the one-dimensional case and by Sh. Axler and J. Shapiro [AxSh]
for the n-dimensional case. The case 1 < p < oo was obtained by P.S. Chee
[Chee].

The first result that we will prove is a reformulation of the Stegenga's
result for n > 1.

We will need the following lemmas.

LEMMA 2.5.— For s > -l,r,t > 0 and r + t - 5 > n + l we have
(1 - ICI 2) 8/. ^- Is' ) ^\r(^\dV(C)

a l l - C ^ l l - C w ^
c if r — s^t — s < n+ 1

if t — s < n + l < r — s
[1 _ ^[r+t-s-n-l

C

< ( (1 - hi2)7'-5-71-1]! - zw^
~ • c c

(i-l^l2)7-8-71-1!!-^!* (i-iwl2)*-8-71-1!!-^!
if r — s^t — s > n-\-1.

Proof. — The proof of this lemma is standard. See for instance
[OF]. D

LEMMA 2.6. — For j] € S and 0 < t < 1, the functions fr),t^) =
2

log -——7-——-r— satisfy:
1 — (1 — t)rjz
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1) ll/77,dl* < c < oo with c independent ofy^t.

ii) For z e Q^, we have |/^| w log .
L

m) ^Q^ ^ log7•

Proof. — To prove i), by Theorem 2.4 and (2.1) we need to show
that

uz) = SB ̂ ^ffl^^OI2^ - KI'WC) < ̂  < oo

But, this estimate follows from Lemma 2.5 and the estimate

(i-MTq-ICI2)
^)" ̂ JB \i-zW-(i-w^) ̂  c tJ BJ^t(z) ̂  c dy(c).

Parts ii) and iii) follow from

|1 - (1 - t)rjz\ ̂  t + (1 - t)\l -rjz\ ̂  t, z € Q^

THEOREM 2.7. — The following assertions are equivalent:

i) g is a pointwise multiplier of BMOA.

ii) g € H00 and

1
{ TT—^gTT—i / \9-9i^t\da',rjeS,0<t\ < oo.(2.2) ^nrrf0^ i /[ 1^,*1 l7^,*! ̂ ,[l^,*! |^,t| Jj^, J

D

Proof. — First we prove that i) implies ii). Note that by closed graph
theorem the map Mg is continuous.

^
To prove that g is bounded we recall that \f(z)\ < c||/||* log ————.

_ -L [ z [
Thus, we have

|,(.)| < c^ { 5(0 log ̂  log-1 ̂  }

^c ff(C)log < oo.i-^c
Let us prove that g satisfies condition (2.2). We write I instead J,,^.

For / e BMOA, we have

(2.3) gf - (gf)i = g(f - fi) + fi(g - gi) + figi - (/<,)/.
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Observe that

-^^\9(f-fl)\da<\\g\U\f^

and

\fi9i - {f9)i\ = ̂  f^(fi - f) da < I I^Hocl l /11*.

Thus, we have

^ ̂  IMIff - ffj|Ar < ||5/||. + lbllooll/11*.

^

Finally, taking /«) = log _ and applying Lemma 2.6 we
1 [L L)1^z

obtain (2.2).

That ii) implies i) follows from the decomposition (2.3) and the well-
known fact that |/j| < c||/||^ log -_. D

Remark. — We recall (see [S], [CRW]) that M(BMO(S)) is the
subspace of bounded functions on 5 which satisfy condition (2.2) of
Theorem 2.7. Thus, we have:

COROLLARY 2.8. — Ifg e M(BMOA), then

9\s^9\s C M(BMO(S)).

The next lemma gives a characterization ofM.(BMOA) in some sense
similar to the one given in terms of Garsia's norm for BMOA.

THEOREM 2.9. — The following assertions are equivalent:

i) g is a pointwise multiplier of BMOA.

ii) g C H°° and |||p|||G,p,iog < oo for all 1 <, p < oo, where

INI|G,p,iog = (sup/log^^——.y1 |^(C) -9(z)\PP(z^)da(^zeB\Y .

iii) g C H00 and \\\g\\\G,p,\og < oo for some 1 < p < oo.

Proof. — That ii) implies iii) is trivial. Thus, it remains to show that
i) implies ii) and that iii) implies i).
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First, note that in the proof of Theorem 2.7 we have shown that
condition i) implies that g € H°°. Hence, by the identity

^(C)/(C) - g(z)f(z) = ̂ (C)(/(C) - f(z)) + f(z)(g(0 - g(z))
and Theorem 2.4, we obtain

\\gf\\G,p^\\gf\\.<c\\f\\.

^ fsup{|/(^ I \g{Q - g(z)\PP(z^ (;)da(^z^B\Y < c||/||..
\ I J5 J /

2
Hence, taking the functions f(w) = log ——— we obtain that

J- ZuJ

i) implies ii). That iii) implies i) follows as before using the estimate
\f{z)\ ̂ c||/||. log ̂ ^. D

Finally, we will give a characterization of the multipliers of BMOA
in terms of an estimate of type Carleson measures. To do so, we will need
some lemmas.

The first lemma was proved by J.S. Choa and B.R. Choe [ChoaChoe].

LEMMA 2.10. — Let f e H2. Then

I Wz)\\l - \z\2rldV{z) ̂  ( |/(C) - /(O)!2^),
JB Js

where A is the invariant Laplacian

A/(^=4(1-H2)^(^-^•)
Z,J=1

6ij = = 0 i f i ^ j and 6i^ = 1.

For a holomorphic function /, we have

(2.4)A|/|2=4(1-M2)(|^/|2-|^/|2)

Q2^)
9zi9zj5

^-M2)!: (—-^)/2-(1-M2)?2A<-v "/^l^• I.I
where R denotes the radial derivative.

.-1 \UZ3 \z\ /

The next lemma gives estimates between some transforms of the
measures (\f(z)\2 + \9\z\2 A 9f{z)\'i\dV(z) and (|/(z)|2 + laA^Xl -
[z^dV^z).
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LEMMA 2.11. — Let g be a bounded holomorphic function on B.
For s > 0 we define

W = ̂  i^jjff^l^OI2 + |9|C12 A ̂ (OPWC)

w = ̂  î fil (i^(oi2 + l^(oi2) (i - ICPWC).
Then, for each s there exist constants Cs, s ' > 0 such that

Js(z) < Cls(z) < C s J s ' ( z ) , Z G B.

Proof. — The first inequality follows from the pointwise estimate

i^oi'o - ici2) = i^(oi2 - icn^oi2 < i^(oi2 - i^(oi2.
To prove the second inequality we will use the standard representation

formulas for holomorphic functions and some known integration by parts
formulas (see for instance [OF]). We have^(c)=-/.((/+^B)»(WO(a^&(..)
and differentiating we obtain

W A ^(C)|2 < c ( f (\g{w)\ + ̂ (w)!)/1"^!2^1^^
\JB |1 - wCI71"^7" /

Hence, for max ( 0, ——s ) < r < . Holder inequality and the estimates\ z / z
of Lemma 2.5 give
w -- -L ffi (^ î-'̂ i)2,11^^^

"(Li-wc^^O^)
^ Cr / (Iff(^)l + Î MD l̂ - IW)2)2^2

7B
/• _____________(l-l^l2^

x YB |1 - ̂ l^ll - wC|"+2+2"l-2r(l - ̂ 2)2^(0'^)

^ 4 /' (|5(w)| + ̂ (w)))2^ - Iwl2)2^2—0—!^1-2——^^)
JB [1 — ^;^n+2+2m-2r \ '

+ 4 / (|p(w)| + \9g{w)\f(l - \w\2)2rn^
JB

______(1-[^2)5

|1 - zd^^l - Iwl^+i^^
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^ c^ ̂ yiMw)\ + \Qg(w)\ni - \^)dV(w)

= c'^J^(z),

which proves the result. D

LEMMA 2.12. — Let p, be a positive measure. Then the following
statements are equivalent:

i) ^(O^^cf'log-2*

ii) sup ^log2 -^^ ^ ̂ ^^d^); zeB\ < oo, for aJ^ s>0.

( 9 /* fl _ l?;!^5 ^
iii) sup Hog2 y ^_j.^^(C); ^ € B ^ < oo, for some 5 > 0.

Proof. — The proof of this lemma is standard. To show that i)
implies ii) we take

^o=0, ^—{Ce^ll-zCl^^l- l^^i}, j=i , . . . ,A^).
Thus, ii) follows from

^^LW^
^c^ r^p S ara^S) '̂''"' \ "'-•) +c

I I j^ \ I I /

< clog2 r^F ̂  2^log-2 ^•(l2 |. |^) ) + c < °°-
That ii) implies iii) is trivial. Finally, that iii) implies i) follows from

|1 - (1 - t)rjz\ w t for z € Qr, t and

^^-^t^,^^/^,1,^^^.
D

THEOREM 2.13. — The following assertions are equivalent:

i) g is a pointwise multiplier of BMOA.

ii) g C H°° and

(sup ^log2 ^———— ̂  P(z, C)|9|C12 A ̂ (Ol^m z e B\Y < oo.
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iii) g e H°° and

I W^Qg^dV^^ct^og-2^
JQr,,t

iv) g e H00 and

f^pf10^—^ /^(^oi^oi'a-icFN^c);^^})2 <oo.\ I 1 ~ Fl JB } )
v) g e H00 and

t ^(opa-icD^o^^log-^.
JQr,,t

Proof. — First, note that Lemmas 2.11 and 2.12 give the equiva-
lences

iii) <==^ ii) ^==> iv) <^==^ v).

To complete the proof we will prove the equivalence between ii) and
the assertion ii) of Theorem 2.9 for p = 2.

Let -0 be an automorphism of B and let z == ^^(O). By Lemma 2.10
we have

{ A|^(w)|2(l - lO-^w) ̂  / |^(C)) -^(0))|2da(C).
^B Js

Since A|/(^(w))|2 == (A|/|2)(^(w)) (see [R]), the change of variables
^(w) = v gives

/ A|^(^(w)|2(l - \w\2)-ldV(w) = [ (\9g^)\2 - M^P^^dV^).
JB JB
Hence, by (2.4) we have

sup {log2 ———— ( Wt^Qg^P^dV^.z^B}
{. ± ~ \z\ JB )

w sup {log2 r4^ / ^(c) - ̂ P^Qda^)^ e al^ 1 ~ \z\ J s )
and thus the equivalence is proved. D

The following result gives a relation between the pointwise multipliers
of BMOA and the ones of the Bloch space.

PROPOSITION 2.14. — Let g be a multiplier of the Bloch space on
the unit ball Bn-i ofC71'1. Then the extension g defined by g(z) = g(zf),
where z ' = (^ i , . . . , Zn-i, 0), is a multiplier ofBMOA(Bn).
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Proof. — We recall (see [Z]) that a holomorphic function g is a
multiplier of the Bloch space if and only if it satisfies

i) g C H°°

ii) sup{(l - Izl^log-2-!^^)!; z C B\ < oo.
I 1 Fl J

It is clear that g is bounded. Thus, by part ii) of Theorem 2.4, we
need to show that

^gWz^l-^eW1.

By ii) it is enough to show that

^^4^^-^^w^1

i.e. IJL {Qr],t) < cf^, which follows from elementary computations. D

As a first application of this proposition we give an example of a
pointwise multiplier of BMOA which is not smooth on B.

log ̂ 4
Example 2.15. — The function / (^i,^, zs) = , — ^ is a multi-

^T^?
plier of BMOA{B^) which does not extend continuously to B^.

Proof. — By the above proposition, it is enough to show that the
function h{z\^z^) = /(^i,^2,0) is a multiplier of the Bloch space on B^.
This result follows trivially from the characterization of M{B) given in the
proof of the above proposition. D

To finish this section we give an example which shows that there
exist continuous functions on B such that are not pointwise multipliers of
BMOA.

Example 2.16. — Let D be the unit disc of C. Then, for 0 < s < 1
the function

/ ^ fz^l\^ -s 2,(.)=exp^Jlog ̂

is continuous on D and it is not a multiplier of BMOA.

Proof. — Let 77 = (1,0), t > 0 and ^2 = ̂  ^ = [z e Qr, t; 1 - \z\2 <
\l-z\2}.
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Q. ^ Z+l \Z\2 -1
bince ^e——- = -———- we obtain that

z — 1 |1 — z\2

i^i^i-i.n^—i^log-23—, .e».
I1 ^1 1-1- — ^1

Taking polar coordinates we obtain

/ |^)|2(l-|^)^log-252

J^ 6

and thus, by part v) of Theorem 2.13, g is not a multiplier of BMOA. D

3. Necessary conditions in Theorem B.

It is clear that if Mg maps BMOA x ... x BMOA into BMOA then
the functions gj are pointwise multipliers of BMOA.

Let us to prove that sup{|p(^)|; z e B} > 6 > 0. By the open map
Theorem, for every function / of BMOA there exist functions /, of BMOA
such that

771

i) / = E fi9i
.»'=!

ii) 11/dl* ^ c||/||,.

Using |/,(C)| ^ c||/||* log ———— for C € B, we obtain

"̂  ,, m
IAOI ̂  E 1^(01^(01 ^ c[|/||. log 2 ^ E |g,(C)|.

.?'=! ''•I j=l
o

Taking the functions /,(€) = log -.——: we have ||/^[, ^ c and

2 2 m

^r-i^^^^r^F^^^i-' j=i
This proves the result. Q

4. Estimates for the 9-equation.

We will begin recalling some results of N. Varopoulos, E. Amar,
A. Bonami, A. Cumenge, M. Andersson and H. Carlsson, which permit
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to obtain solutions of the 9— equation which are functions whose boundary
values are in BMO{S) or (0,^) forms whose coefficients have estimates of
type Carleson measures.

THEOREM 4.1 [VI]. —Ifu: is a 9-closed (0,1) form such that

(V) H + (1 - M2)^ \9\z\2 A uj\ (E W1

then there exists a function u such that 9u = uj and u\s € BMO.

THEOREM 4.2 [V2], [AnCa]. — Ifuj is a 9-closed (0,1) form such
that

(A) (1 - H2) (H2 + \9^\) + (1 - H2)* {\9\z\2 A 9uj\ + \9\z\2 A 9uj\}
+\Q\z\2 ^9\z\2 ^QuJ\^W\

then there exists a function u such that 9u = uj and u\s C BMO.

THEOREM 4.3 [AB], [Cu]. — Let uj be a 9-closed (0,9) form such
that

(C) (i - IzlV (M + (i - l^l2)^!^!^!2 A o;l) e iv1

for some a > 0. Then there exists a (0, g — 1) form u such that 9u = uj and

i) ( i - l^l2)^-* (H+^-lzl^iai^Acc;!) ew1 i f g > i ,
ii) (1 - l^l2)^-1^! € W1 ifq = 1.

The proof of these results can be obtained using explicit integral op-
erators. In particular, in the last result we can use Berndtsson-Andersson's
kernels, which we will recall later and whose estimates will be used to prove
Theorem B.

We will need kernels of the following type:

DEFINITION 4.4. — For r,s > 0,t > -l,n > 0 and 0 < v + -, we
define r ,. . (i-Kmi-kmc-^

L(.,t,r,u,.)^Z) - |l_^|«£»((^)n-^ '

where D(C, z) = |1 - C^|2 - (1 - |C|2)(1 - \z\2).

Let w{L) =n+l+s+t+--u-2(n-v).

The following estimates are well-known:
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. r c(l - H2)^) w(L) < 0

y ^.W)(C^WC) < < Clog^py W(L) =0

I c w(L) > 0.

The next result is contained in the proof of Lemma 2.3 of [Cu].

PROPOSITION 4.5. — Let L = L^^r^v) be a kernel with w(L) ̂  0
and s > 0, and let ^ be a measure in W1. Then

W= t L^^d^)ew1.
J B

To apply this result in a more general way, we introduce the following
definition:

DEFINITION 4.6. — A kernel K(^ z) is of type p if it satisfies
i

\K(^z)\ < ̂ c,L^^^^^z)
j'=i

withw(Lj) >p, j = I,...,/.

As a consequence of Proposition 4.5 we have

COROLLARY 4.7. — Let K = (1 - ICI2)^' with s > 0 and
uj{K') > -s. Let p, be a measure in W1. Then

| / Kd^) e W\
\JB

Now, we recall the weighted kernels introduced by B. Berndtsson and
M. Andersson [BAn].

Let

5(C, z) = (i - ̂ c)C - (l - ICI2)^ 0(C, z) = ——^

^(C, z) = E C^(0 - ̂ -), ^(C, ̂  = E ̂ d(c, - z,)j=i j=i
5(C, ^) = (l - ̂ CMC, ^) - (i - ICD^C, ̂ ), Q(C, z) = n-^y^^ ̂ •

For s > 0, consider the kernels



126 J.M. ORTEGA, J. FABREGA

_1 (i-icp)^ .A^r-^A^
"^ ^-^^ z)nrfc——5

fl _ |<:|2)5+n „
P8 — r v lsl / ^n^~cn 's(l-^)^w)

where D = D(C^) = |1 - ̂ |2 - (1 - |C|2)(1 - |z|2), and c^ =
1 fs + n\

(27r^^ fc )'
These kernels satisfy the fundamental formulas:

THEOREM 4.8 (Koppelman formulas). — Let Kp^q be the compo-
nent ofK of bidegree (p, q) in z and (n - p, n - q - 1) in (, and let P^q be
the component ofP of bidegree (p^ q) in z and (n — p, n — q) in (,. Then if
u;(Q is a (p^q) form with coefficients in C^B) one has

^ = I a; A K8^ + (-1)^+1 f Q^ A K8^
J s J B

+(-1)^^/^A^.i, q>l
J B

uj= /^A^o+^l)^1 /^A^o+^l^ / ^ A P ^ o , g=0 .
J s J B J B

We point out that if s > 0 the kernel K8 vanishes on the boundary
and thus the integrals on the boundary vanish, too. From now on we will
assume that this condition is satisfied.

A more explicit computation of the kernels K8 and P8 gives:

LEMMA 4.9.

n~l (\ — l^l^^^ / -, ,Ks =Y.^^^^^^ (((i - ̂  - (i - ICM"-^
k—{)

+ (n - 1 - A)((l - z^dv - (1 - ICI2)^)""2"'

A ( - d(0 A v + d|C|2 A 0)) A ((1 - ICD-'W1

+fc(l-|C|2)-fc- lW- lAd|C|2A^.),

fl — |^|2^s+7^

ps=cn's\l-^n^-^~n^n

+ n(l - ICI2)-"-1^)"-1 A d|C|2 A v).
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The following result, which is proved in [BrBu], gives a formula to
obtain derivatives of the function / uj A K^ n

J B '

_ LEMMA 4.10 [BrBu]. — Let uj be a (0,1) form with coefficients in
C2^). Then

0, ujf\K^=^ / -^A^os,oA^•+ / 9^ A ^,1,1 - / ^ A PJ 1 1
JB ^^ JB ^Si JB JB ' '

where ,̂1,1 denotes the component of K8 of bidegree (1,0) in z and
(n,n- 2) in <", and Po^i denotes the component of P8 of bidegree (1,0)
in z and (n, n — 1) in ^.

Koppelman formulas, the above lemma and the fact that P8 is
holomorphic in z give:

LEMMA 4 . 1 1 . — Let uj a (0,1) form with coefficients in C2 (B). Then

9,9, uj/\ K^o = -QUJ + V [ —QUJ A K^ i A d -̂ + ̂  { Q^/\K^^
^B ^^ JB ^i ' JB

The next result gives some estimates of the kernels which appears in
the above lemma.

LEMMA 4.12. — With the above notations we have:

i) K^ = K^ + K^ A 9|C|2 with w(K^) = 1, w(K^) = J.

ii) K^ = K^ + K8^ A 9|C|2 + K^ A 9|^|2 with w(K^) = 1,

w(^)=w(^)=J.

iii) W^ = fl^ + ̂ ;^ A 9\z\2 with w(^;^) = 0, w(^) =

T'
iv) Q\z\2 A ^^,1,1 = A^;^ + A^ A 9|z|2 with w(A^,) = J,

^(A^,i) = 0.

Proof. — Parts i) and ii) are known (see for instance [Cu]).

To prove part iii) we obtain a decomposition

^,1,1 = ̂ ;u + ̂ ;i2! A Q\z\\ with w(K^) = 1, w{K^) = 1

Zi
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such that w (<9^;i\i) = 0 and w (f),K^} = -1.

We give the proof of the decomposition for the first term of the
kernel K8

-(l^.AW-(l - C^D71 v /

which is more delicate, because it is the term which has components whose
derivatives are not integrable on B. The decomposition of the other terms
follows in the same way without the integrability problem.

First, we compute the component of s A (ds)71-1 of bidegree (1,0) in
z and (n, n — 2) in ^.

Note that
n

v=Y,W,-z,)=9\^-Q^z)
j=i
n

e = ̂ -d(o - z,) = ̂ (0 - Q\z\2.
3=1

By Lemma 4.9 and an easy computation of bidegrees, we have

iA (d5r-\^ = ((l-^O-O-IOl2)^) A (n-l^l-^)"-2^)"-2

A^^OA^+^AO)^

^n-lKl-C^-^ICI2)"-2

A^l-O^C^A^Ac^C)
-( l - ICI^I^A^^OA^ICI 2 )

= (n - 1)(1 - ̂ "^(^ICI2)"-2 A ((1 - zQQ^z)

-( l-ICnWA^OA^ICl2 .

Note that \9^) A 9JC12! ^ c|C - z\ and that

(l-iC)^(^)-(l-|C|2)^|^|2)=(l-zC)^((C-^)+(C(C-z))^|z|2).
Thus, we have

f1 _ \fft\s
^ Is! '' x A /•//et"-! _ I<'s,l,0 , ys,2,0 . Q|_|2

(1 - CzYD" • ' ~ °'1'1 °'1-1 ' '
with

1^ 1,0, ^ . ( i - I C I ^ K - ^ l 2 , ,,2,0, ^ ( i - I C I ^ K C - ^ C I I C - ^ l
1^0,1,11 S C ̂  _ ̂ _^^, 1^0,1,11 ^ C————^_^|,_^|^|n———
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and
w (K^) =1, w (̂ ;i2:?) = |.

Finally, differentiating these kernels, we obtain the decompositions of iii).
The same argument gives iv). D

5. Proof of sufficient conditions in Theorem B.

In the first part of this section we recall the well-known technique of
KoszuPs complex [H], which permits to reduce the proof of Theorem B to
solve a set of 9— equations with adequate estimates.

We will follow the notations that K.C. Lin [Lin] used to solve the
analogous problem for Hp on the polydisc.

The KoszuPs complex.

To simplify the notations we restrict the proof to the case n = 3,
although the arguments hold with the obvious changes for every n.

DEFINITION 5.1. — Let ^i , . . . ,gm be holomorphic functions on B
satisfying the condition \g{z}\ > 6 > 0 for all z € B. For 1 ̂  ij, k, I < m
we define

Gi=

Gk,i=

gi
\9\2

Gk Gi
9Gk 9Gi =Gk9Gi-Gi9Gk

Gj Gk Gi
Gj^i = 9Gj 9Gk 9Gi = Gj9Gk A 9Gi - Gj9Gi A 9Gk

9Gj 9Gk 9Gi
+Gk9Gi A 9Gj-Gk9Gj A 9Gi-^-Gi9Gj A 9Gk-Gi9Gk A 9Gj

G i n k J =

Gi Gj Gk Gi
9Gi 9Gj 9Gk 9Gi
9Gi 9Gj 9Gk 9Gi
9Gi 9Gj 9Gk 9Gi

= Gi9Gj A 9Gk A 9Gi - ...

LEMMA 5.2 [Lin]. — The forms Gk,i, Gj^,i, Gij^,i are alternating
and satisfy:

m m rn

^GW = ̂ 9iGij,k^ 9Gk,i = J^gjG^k^ 9Gi = ̂ ^G^.
1=1 j=i A;=l
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Using these properties we can obtain a solution of
m

/(^-E^W^)' W^H(B)
j=i

for / e H(B)^ in the following way:

Since Gij^,i are alternating 9— closed (0,3) forms (we recall that we
assume n = 3), there exist alternating (0,2) forms Uij^,i which satisfy
9uij,k,i = Gij,k,if'

Hence, by Lemma 5.2, we have that the forms ^j,k,i = Gj^,if —
m _
2^ Qi^'ij^k^ are alternating 9— closed (0,2) forms. Thus, there are alternat-
1=1
ing (0,1) forms Uj^,i such that 9u^k,i = ^j.k.i'

m
The same argument gives that (pk,i = Gk,if — ^ Qj^^.i are alter-

j=i
nating 9— closed (0,1) forms and thus there are alternating functions Uk i
such that 9uk,i = ^pk,i-

m
Finally, defining /; = Gif — ^ gk^k,i we obtain the solution.

fc==i
The next lemmas are devoted to obtain the adequate estimates of

the forms which appears in the above scheme, to conclude finally that the
functions fi are in BMOA.

LEMMA 5.3. — Ifgz,...,gm^M(BMOA),thenGieM(BMO(S)).

Proof. — We have to prove that Gi are bounded functions and that
satisfy condition (2.2) of Theorem 2.7.

Corollary 2.8 gives that g^j = l , . . . ,m and \g\2 are multipliers of
BMO(S).

Thus, to obtain the result, we need to show that —^ is a multiplier
\9V

of BMO(S). But clearly —^ is bounded and satisfy

l^l^i^-f^i2)/'
^m10^/i^-(i^'^^^ml/fc"^2)^
^log^ii'^-aAi^oo
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which proves the result. Q

LEMMA 5.4. — Ifgi,... ,g^ e M(BMOA), and / € BMOA, then

i) (1 - \z\^Gij,k.if\ + (1 - l^n^M2 A G^k,lf\ € W1

ii) (1 - M2)^,^/! + |̂ |2 A G,,k,lf\ 6 W

iii) (1 - \z^\9Gk,if\ + \9\z\2 A 9Gk,if\ 6 IV1

iv) (1 - H^dGfe,;!2 + |0(Gfc,;/)|) + (1 - 1^2)5 (|9|2|2 A 9Gfe ;/|
+|c^|2c»(Gfe,,/)|) +|9|^|2 A 9|z|2 A 9Gk,if\ e W1

v) (1 - ̂ ^^(Gfc,; /)| + (1 - |^|2)(|5|^|2 A ^Gfc,;/| + |9|^|2 A
99(Gk,if)\) +(1 - |^2)? |̂ |2 A 9\z\2 A ^Gfc,;/| e W1.

Proof. — Let -R be the radial derivative and let T, be the complex
vector fields defined by

T3=^~WR' J = l ' • • • ' 7 ^ •
Thus, we have

(5.1) 9h(z) = ̂ T,h{z)dzj 4- ——Rh(z)9\z\2.
j=i l^ l

We define \Tg\ = El^zl and |r/| = El^/1. Note that (1 -

M^ir^eL00^).
Let us prove i). By decomposition (5.1) we have

(1 - M^G^/I + (1 - \z\^\9\z\2 A G^if\

< c(i - H2)!^!2!^!!/! + c(i - l^i2)^^!3!/!
^ca-l^i^i^+cir^+cir^l/i
< c(i - |^|2)|^/)|2+c(l - |^|2)|9/|2+c|^^|2+c|^(p/)|2+c|^/|2.

Hence, by Theorem 2.4 and the fact that the functions gj e A^(BMOA),
we obtain i). The proof of the other parts follows in the same way. D

Proof of Theorem B. — We will follow the same notations that in
the section of the KoszuPs complex. Moreover, we take the kernels K8 with

o
^2-
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By part i) of Lemma 5.4 the forms Gij^,i satisfy condition (C)
of Theorem 4.3 with a = 1. Therefore, the forms Uij^.ii which solves
the equation 9uij^,i = Gij^,if^ can be taken satisfying condition (C)
with a = —. Thus, by part ii) of Lemma 5.4, the (0,2) forms ^j,k,i =

m ^
Gjkif — ^9iUijki satisfy condition (C) with a = -. Therefore, the

' ' 1=1 ' ' ' _ 2
(0,1) forms Uj^.i, which solve the equations 9uj^,i = ^.7,^5 can be taken
satisfying condition (C) with a = 0 i.e. condition (V) of Theorem 4.1.

The next step is to prove that the functions Uk,i, which solve the
— 7n

equations 9uk,i = (pk,i = Gjc,if — ^ Q^j.k.i have the boundary values in
j==i

BMO. Observe that (pk,i does not satisfy the conditions of Theorem 4.1 or
4.2. However, Gjc,if satisfies condition (A) of Theorem 4.2 (see part iv)

m
of Lemma 5.4) and ^ 9juj,k,l satisfies condition (V) of Theorem 4.1,

j=i
but these two (0, l)-forms are not 9— closed. Thus, we need to find a
decomposition ^k,i = W,z,i + ^fc,z,2 such that ^^,1 is a 9— closed (0,1)
form which satisfies condition (V) and ipk,i,2 is a 9— closed (0,1) form which
satisfies condition (A).

Assuming that we have this result, by Theorems 4.1 and 4.2, we can
take the functions Uk,i such that the boundary values are in BMO{S).

m
Finally, by Lemma 5.3, we conclude that the functions fi = Gif— ̂  gkUk,i

k=l
are in BMOA and hence Theorem B is proved.

To finish the proof we obtain the decomposition of (pk,i-

Define
f - m

^,z,i = \ 9Gk,if ̂ K^-^gjUj^i
J B ^

^,2 = Gk,if - I 9Gk,if A J^.i = -9z f G^if A ^0,0.
J B J B

The last inequality follows from Koppelman formulas. It is clear that the
forms ^pk,i,i^k,i,2 are 9-closed and that (pk,i = ̂ fc,z,i + ^k,i,2'

Let us show that ^fik,i,i satisfies condition (V). By part ii) of
Lemma 4.12, wehavew((l—|^|2)^"^ ^) = 0 and by part iii) of Lemma 5.4,
we have that (1 - |C|2)^ \9Gk,if\ C W1. Thus, the result follows from Corol-
lary 4.7.

To prove that (pk 1,2 satisfies condition (A) we need to show that:
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i) (i-M2)^!2^1

ii) (1- |^|2)|^^,2| CW1

iii) (1 - \z\2)^ (\9\z\2 A 9(^,2| + \9\z\2 A ̂ ^,2!) € W1

iv) ^PA^PA^^I eiv1.
To prove i) note that (1 - |^|2)|G^/|2 < c(l - l^2)^2!/!2 € TV1.

Thus, to obtain i), we need to show that

I r - 2
^={l-\z\2)\ 9G^iff\K^ eW\

\JB
Following the notations used in the above lemma, we have \QGki\ <
c\Tg\\9g\ and thus Holder inequality gives

^ < c(l - \z\2) ( [ IT^O - |C|2)-^ \K^\dV\
\JB )

( ( I^I/FO-ICI2)^^!!^).\JB ' /
But

v(z)=(i-\z\2) [ ir^o-ici2)-^^!!^JB
<C(1-\Z\2) /(l-ICl2)-^^!!^

J B

and thus v(z) is a bounded function on B. Since w((l - ICI2)"^ 1̂  i l ) = 0
and (1 - ICI2)!^!2!/!2 € W\ Corollary 4.7 gives

f \9g\W{l-\^\K^\dVeW1.
J B

Hence, [L e W1.

To prove part ii), iii) and iv) we will use Lemma 4.11. By this lemma
we have

Q^W=9^ [ G^/A^o
J B

= -9(Gk,if) + ̂  / ^-9(G^f) A K^ i A d^-
^i</^ u^

+9, / 9(G^/)A^ir
JB ' '

Hence, we need to show that conditions ii), iii) and iv) are true for the three
terms which appears in the right part of the last formula. But, by part iv)
of Lemma 5.4 it is clear that 9{Gk,if) satisfies the conditions. Thus we need
to prove that the two last terms satisfy the conditions. Let us prove ii).



134 J.M. ORTEGA, J. FABREGA

That

(1 - M2) E / -S-^^) A ̂  i A ̂  e w1

.7=1 -7B °̂

follows from Corollary 4.7, w ((1 - ICl2)"^ (1 - H2)!^!) = 0 and (1 -
|C|2)^ |99(Gfc,J)| € lY1 (see Lemmas 4.12 and 5.4).

Finally, by Lemmas 4.12 and 5.4, we have

^(( l - ICD^O-l^l^^uO-O and (1 - |C|2)^ \9G^f\ € W1.

Hence, by Corollary 4.7, we obtain

(1 - |2;|2) Q, f 9{Gk,if) A ̂  11 ^ W\
J B

which ends the proof of ii).

To prove that

( n r ^ \
h{z) = (1 - \z\2)^ 9\z\2 A ^ / —9(Gk,if} A ̂  i A dz, e W1

\j=iJB d^ v f
note that

1^)1^(1-I^E/,(^-4)^/)A^
i,J=1

n

^(i-i^E/^(l-\z\2^
Bl^^-^)^-^1^1^i j= l J E

+(i-M2)^ E /' |^(Gfe,j)||c-^|^,i|dy., ,_i JB 0,ll""'-
»,J=1 •

Thus the result follows from

^((i-M^i-ici2)!-1!^!)^

(l-IC12)|fo|--CiA^(G.,(/) €^1 ,SJ^ SI^
W ((l-l^l^^l-ICD^I^-Cll^i^O and (l-ICD^^G^/le^1.

The estimates of the other terms follows in the same way. D
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Finally, as a consequence of this theorem and Proposition 2.14, we
obtain a corona type decomposition for the Bloch space B. We point out
that this result was obtained by ourselves [OF] by other method, using
some explicit division formulas.

We recall that

B(B) = {/ e H{B)^ ||/||^ = sup {(1 - \z\2) |(J + K)f{z)\, z e B} < 00} .

COROLLARY 5.5. — Mg maps B x . . . B onto B iff the functions gj
are pointwise multipliers ofB and satisfy sup{|^(z)|; z € B} > 6 > 0.

Proof. — The necessity of the conditions follows in the same way
that for the BMOA space (see section 3 or [OF]).

Denote by Bk the unit ball in C^ and by h(z\^..., ̂ n+i) =^(^i,. . . , Zn).
An elementary computation gives that h € BMOA(Byi+i), if h € B{Bn).
Moreover, by Proposition 2.14, we have that gj G M{BMOA(Bn+i)).
Thus, by Theorem B, if feB{Bn) there exist functions fj eBMOA(Bn-^i)

~ ^
such that f= ̂  9jfj- Therefore, the result follows from

j'=i
BMOA(B^i)\B^ C B(B^)\B^ = B(Bn). D
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