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CONSTRUCTION OF A CERTAIN
SUPERHARMONIC MAJORANT

by Paul KOOSIS

1. Introduction.

Let W(z) > 1 be continuous for —oco < z < 0o, and suppose that

> logW(x)
(1) / ————dr < oo.
oo 1422
In that event, we can form the functions
1 [ |Sz|log W(t)
@) Fu) = = /_oo e dt—alye, zeC,

and it is known that as long as W () enjoys some mild regularity on R, the
existence, for a > 0, of a finite superharmonic majorant of F,(z) (on C) is
equivalent to that of a non-zero entire function ¢(z) of exponential type a
making ¢(z)W (z) bounded on R (see [1] and [2], Ch. XI, §B.3).

It was shown by Beurling and Malliavin in 1961 (see [3]) that when
either
i) W(z) = |®(z)| with ®(z) an entire function of exponential type
or
ii) log W(z) is uniformly Lip 1 on R,

W (z) already has enough regularity for the equivalence just spoken of to
obtain, and that then (1) is indeed enough to guarantee existence, for each

Key words : Poisson integrals — Superharmonic functions — Superharmonic majorants —
Multipliers — Multiplier theorems of Beurling and Malliavin.
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a > 0, of an entire function ¢(z) having the enumerated properties. This
statement (whether for case i) or for case ii)) is usually referred to as the
Beurling-Malliavin multiplier theorem, and the entire functions ¢(z) whose
existence it asserts are called multipliers (for W(z)).

The two forms of the multiplier theorem are actually equivalent. It
was shown in [4] that the version for case ii) can be deduced from the one for
case i) (see also [2], Ch. X §C.1 and [5]). Recently, the reverse implication
has been noted. One has, in fact, the following result ([5]) :

If ®(z) is an entire function of exponential type with |®(z)| > 1 on
R and

dr < o

/°° log |®(z)|

oo 1+ 22

there is, for any £ > 0, an f > 0 defined on R with

| u@ia+eni <
|f(z") — f(z)] < €]z’ — z| on R and f(x) > log |®(z)| there.

Since the volume containing [5] has not yet appeared (and may be hard to
locate when it does), a proof of this statement is sketched in the appendix
to the present paper.

Either version of the Beurling-Malliavin multiplier theorem can
thus be obtained from the other, and a weakened form of it indeed
implies both versions. The result just quoted shows that it is already
enough to know that for any W(z) > 1 satisfying (1) and the relation
[log W(z') —log W(z)| < £|z' — z| on R we have a multiplier ¢(z) of expo-
nential type A¢, with A a numerical constant independent of W. If that is
true, we can infer the version for case i), and from the latter the one for
case ii) will follow.

As said above, one can ensure existence of a multiplier ¢(z) of
exponential type A{ by verifying that F,(z), given by (2), has a finite
superharmonic majorant when a = Af. One way of doing that is to
use harmonic estimation (as in [1] and in [2], Ch. XI §§C.1-2), but it
seems worthwhile to instead proceed by exhibiting such a superharmonic
majorant. That is what we do in this paper.

I believe that the procedure followed below has some advantages :
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1. It is more constructive than the previous ones. The superharmonic
majorant in question is arrived at by solving a sequence of explicit
functional relations, and from it a multiplier can be obtained in fairly
straightforward fashion.

2. The proof of the multiplier theorem furnished by the following devel-
opment makes no use of a certain quadratic functional (the energy)
playing an essential role in all the earlier proofs (in [3], [4], [1], [2] and
[5]) despite its apparent irrelevance for the matter under consideration.
(The proof in [5] is based on a result about polynomials established with
the help of that same functional in [6] and in [7], Ch. VIII §B.)

3. A good part of the construction given below can most likely be carried
out in R™ x R as well as in C, after replacing Lemma 2.4 by a suitable
substitute based on a theorem of Sjégren ([15], [16]). This may well be
useful for the study of Lipschitz domains.

Lemma 2.4 is actually the basis for our construction. It is a quantita-
tive version of a theorem given by Beurling and Malliavin in 1967 and used
by them in [9] to study the distribution of the real zeros of an entire func-
tion ®(z) of exponential type with [~ _(log" |®(z)|/(1+ 2?))dz < co. (See
also [2], Ch.IX §E.2; the result was in fact almost surely known to Beurling
in 1965, see [8].) Our proof of the lemma is like that of the original result
published in 1967, and is a beautiful application of the Ahlfors-Carleman
estimate for harmonic measure.

The theorem from [5] quoted above provided the real motivation for
the following work, and it was also proved with the lemma’s help. The
latter may therefore be looked on as the workhorse for this whole subject.

I am grateful to L. Carleson for having pointed out to me a mistake
in equation (58) and the computation leading to it in an earlier version of
this paper, also to D. Drasin and the referee for having noticed some other
€rrors.

2. Construction of a majorant on R.

We start with a measurable function f(t) > 0 defined on R such that

(3) /_00 lf-|(-t22 dt < o0
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the generality of the following work is not affected if we also require that
(4) ft)=n>0, teR,

for some constant 1, and that property we henceforth assume.

NoTtaTioN. — For y > 0 we write
1 [ f(t)dt
5 J = = S\
(5) @ = 1 [ Lo

J(z,y) is just the ordinary Poisson integral of f for the upper half plane
divided by y. It is clear from (3) and (4) that J(z,y), for each real z, is
a strictly decreasing function of y > 0, tending to co when y — 0 and to
zero when y — oo.

DEFINITION. — Given p > 0 and z € R, Y, (f,z) is the unique y > 0
for which J(z,y) = p.

Our construction will make systematic use of the function Y,(f,z).
The behaviour of this object is at first sight not very transparent; it
certainly does not depend linearly or in convex fashion on f. However,
the following properties are obvious :

(6) Yu(f» :IZ) < Yu(g, -77) if f(t) < g(t) on R,

(7) Yu(f,.’L')<Y)\(f,.’E) if )‘<'u'

‘We have in fact

2.1. LEMMA. — Y)\(f,z) > /u/AY,(f,z) for 0 <A< p.

Proof. — Take y = (u/\)Y/2Y,(f,z) in (5) with 0 < A < p; the value
of J(z,y) thus obtained will be > A according to the definition of Y,,(f, z).
So y must be made yet larger in order to bring J(z,y) down to .

2.2. Lemma. — If |o' — x| < Yu(f,z), Y.s(f,2') > Y.(f ).
Proof. — For y > 0 we have, by (5),

@ — )% + 42

T e

J(z,y).
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In terms of £ = (¢’ — z)/y and the variable 7 = (2’ — t)/y, the infimum on

the right is
: (|£+2il—(€|)2= ( 2 )2
2 1€ + 24| + [¢]

(see (7], pp. 152-153). Assuming, then, that |£]| = |z’ — z|/y < 1, we have

J(x',y) > §J(.’E,y), so if Yy = Y”(f,CL‘), J(.’Bl,y) > ”/3a and Yu/3(f7xl)
must be > Y, (f,z).

&

1- -
T—1

inf
7eR

(o)
2.3. CoroLLARY. — If %/ (f(t)/(1 + t?))dt < 1, we have
—o0

Y#(fy [.’L’l) < max(l, lxl) fOI‘ »u' 2 3

Proof. — The condition on f makes Y1(f,0) < 1. If Y3(f,z) > |z| we
have, putting ' = 0 in the last lemma,

Yg(f,(lI) < Yl(fvo) <L

Otherwise Y3(f,z) < |z|, so the corollary holds when x = 3 and hence for
> 3 by (7).

As stated in the introduction, the real basis for our work is the
following result :

2.4. LEMMA. — When % / (f(t)/(1+t%))dt < 1, we have
1 [® Y,(fz) 1 12\ [3
— Al E A < — +2log — —
7r/_°° 1422 de 2+ = W

Proof. — Consider first the case p = 3; the argument there is
essentially that of [9].

for p > 3.

In the domain O = {z = z + iy; y > Y3(f,z)} the function

u(z) = 3y — yJ(z,y)

is harmonic and > 0; it is also zero on 80O by definition of Y3(f,z). Our
condition on f implies by (7) that Y3(f,0) < Y1(f,0) < 1,s0 % € O, and
each circle |2/ = 7 > 1 has on it an arc in O intersecting the positive
imaginary axis. For such r, we denote by ¢(r) the largest angle ¥ < m/2
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such that re® falls on the curve y = Y3(f, z), and by 7 — t(r) the smallest
angle ¥ > /2 for which re*® has that property. Then the arc

I, = {re?®;p(r) <9 <m—y(r)}

lies entirely in O except for its two endpoints. Given R > 1, we denote by
Opr the set of z € O lying below the arc I'g; OOg consists of I'g and part
of the curve y = Y3(f, ).

iR

PR y=)'§(f,z)

o

Y

Fig. 1.

We have u(z) < 3R onT'g, and u(z) = 0 on the rest of 9Og. Therefore,
since u(z) =3 — J(0,1) > 2, we have

(8) 2 < 3R wR(I‘R,i),

where wr( , ) denotes harmonic measure for Og.

For this harmonic measure, we can use the Ahlfors-Carleman estimate
(see [10], p. 102). Writing r6(r) for the length of the arc I';, we can express
the estimate thus :

R
9) wgr(Tg,t) < (% +0(1)) exp (—w/l ;6%7)—>

Here, o(1) denotes a quantity tending to zero when the exponential does.
The formula given in [10] has the coefficient 4 on the right ; for its refinement
to (8/7) + o(1) see problem 32 on p. 101 of [2].
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We have 0(r) =7 — p(r) — 9¥(r), so

1 w(r) + ()
o(r) w2

and thence, by (8) and (9),

2 < (2+ow) ane (- [ (14 H2EUD) ),

Making R — oo, this yields

1 [ o(r) +¢(r) 12
;/1 ———r———d < log .

)

1
> = +
™

The integral on the left is just an expression in polar coordinates of

// da:dy
an{|z|>1} 22 +y?

where Q is a subset of the upper half plane including (perhaps properly)
the complement of O therein. We thus surely have

1 / /Ya(f’f) dedy 12
T Jiz|>1Jo z? + y? 8

By Corollary 2.3, Y3(f,z) < |z| for |z| > 1, so the denominator in the last
integral is < 222, and we get

1 Y 12
—/ L(J;’—w)dx < 2log —
|z|>1 z ™

Again by Corollary 2.3, Y3(f,z) < 1 for |z| < 1, so
l /1 Y3(fa $) 1

d —.
—1 1+.’L‘2 T < 2

With the previous, this yields

YS(fvw) 12
W/oo s 5-dr < 2+210g

and the lemma is proved for p = 3.
3\ /2
When p > 3, we have Y,(f,z) < (;) Ys(f,z) by

Lemma 2.1, and substitution of this relation into the preceding one yields
our conclusion. We are done.
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Remark 1. — With f(t) known only to satisfy (3) and (4), we still
have / (Y.(f,z)/(1+2?))dz < oo, and this for every u > 0. Proof of this

statement is by an argument similar to the one just made, with i replaced
by iY3,(f,0) (which is at least finite). At the end, an appropriate substitute
for Corollary 2.3 (based again on Lemma 2.2) is used.

Remark 2. — We record the numerical estimate

! + 2log 12 < 3.2.
2 T

The functions f(t) considered in this paper satisfy a uniform Lipschitz
condition on R as well as (3) and (4). That implies some additional
properties for the Y, (f,z).

2.5. LEmmaA. —If f(t) satisfies (3), (4) and
[f@E)—f@)] < |t/ =t fort, teR,
we have Y, (f,z) > f(z)/4p for p > 1/2.

Proof. — The Lipschitz property makes f(t) > f(z)/2 for
|t — z| < f(z)/2, and thence, by (5),

f@) f@/2  g4r _ f@) (@)
J(z,y) > v/—f(z)/Z PO R arctan % )

If o > 1/2 we find, putting y = f(z)/4p (< f(z)/2), that
(f(z)/my) arctan(f(z)/2y) > u, so we must make y > f(z)/4p in order
to bring J(z,y) down to u. The lemma follows by definition of Y, (f, ).

DEFINITION. — Y,,(f,z) is the largest minorant of Y,,(f, ) having the
property that

V(5,2 = TalF, )| < 51! —al (sie)
forz’,z € R.
2.6. Lemma. — If, for f, satisfying (3) and (4), we have
If(t) = f@)] < |t'—t] fort',teR,

then Y, () 2 Yuo(f, 2).
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Proof. — Fix any zo. In view of (7), we need only consider the
case where Y,,(f,z0) < Yu(f, o) is in fact < Y, (f,20). Then the point
(2o, Y,.(f,20)) lies on a secant of slope 1/2 or —1/2 joining two points
of the curve y = Y,(f,z) and lying below that curve. (The possibility,
conceivable, of the secant’s degeneration to a semi-infinite ray starting from
a point on the curve cannot occur here on account of Remark 1 to Lemma
2.4.) Consider the case where the secant has slope 1/2; treatment of the
other is similar.

We have, then, a < zg < b with Y,,(f,b) =Y,.(f,a) + %(b —a), and
~ 1
Y“(f, ZII()) = Y;L(f, a’) + 5 (1170 - (1,).

Taking y = Y,,(f,z0), we get, by (7) and (5), J(a,y) < , i.e.,
o0
f(r+a) d

= <
T J oo T2+ y? TSH
Thence,
* frt+zo), / f(r+20) — (T+a)
— <
J(J;an) . 72 + y2 dr 1% + = 2 + y dr

By hypothesis, the last integral is < ((zo — a)/m) [*2 (72 + y?)~ldr =

(zo—a)/y. But y > —(:vo—a), so finally J(zg,y) < p+2fory = f/#(f, Zo),
making Y,,(f,zo) > Y,H.g( £, o) by definition. Done.

We proceed to our construction, starting with a function F'(t) satis-

fying (4),

(10) % /_ Z f:ftt)z dt < % (sic!)

and

(11) \F(#) - F(t)| < %It’ —¢| fort,teR.
Choose now and fix once and for all the value

(12) p=123.

According to Lemma 2.4 and Remark 2 to it, we will then have
(13) 17 Llha) dz < E

T Joo 1+ 22 2
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for any f satisfying (4) with
oo
l / 1) dt < 1.

T J_o 1+ 12

Let us put successively

fo(t)=F(t), Yo(x)=Y.(fo,2);
[{#)=F@) +Yo(t), Yi(z)=Y.(f1,2);

fn(t) = F(t) + Yao1(t), Yu(x)=Yu(fn,);

It is of course necessary to verify that the functions Y, (z) exist; that will
follow if we show by induction that the f, satisfy (3). We in fact have

1 [ Yu(z) 1
(14) ;/_oo Trad < 5

for each n. For n = 0 this follows from (10) on putting f = fo = F
in (13). But then (3) holds for f = fi = F + Y, and indeed we have
(1/m) [2 (f1(t)/(1 + t2))dt < 1. Therefore Yi(z) = Y,(f1,z) exists and
(13) implies (14) with n = 1. This reasoning may be repeated indefinitely.

The sequence of functions Y, (z) is increasing. Indeed, fi(t) > fo(t),
so Y, (f1,2) = Yu(fo,z) by (6). In other words, Y1(x) > Yp(x), but then
fa(z) = fi(z), so again Y, (f2,z) > Y,(f1,z). This argument also may be
repeated indefinitely.

These properties ensure the existence of T(z) = lim Y,(x) and the

n—00

finiteness of ffw(r(m) /(14 z?))dz; it is then easy to verify that
1 /°° F(t) +T(t)
T Jooo (& —1)? 4 (T(2))

for each z € R. We are not, however, assured of Y’s being uniformly Lip 1
on R. For that reason, we modify the preceding construction as follows.

~dt < p

For each n, put
(15) ?n(az) = i'/u(fm .’l?);
Y,(z) is by definition the Iargest minorant of Y,(z) for which

[Yo(z') — Yn(z)| < 3 |#" — z| on R. Then, since Y, (z) < Y,+1(z), we have

Yo(z) € Yoy1(z), n=0,1,2,... .
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Write for the moment
frar(t) = F(t) + Ya(t), n=0,1,2,... ;

then fn+1(t) < F(t) + Yn(t) = fn+1(t)a S0 Y#(fn—i—lax) < Y;t(fn+1,x) =
Y. +1(z) by (6), and we have

Yu(frt1,2) < Yoyi(z)
by (15). From (11) and the Lip 1 property of the Y, we have, for each n,
|far1 () = fann@®)] < [t —t, t,teR.
Thence, by Lemma 2.6,

qu(fn-{-ly (l:) 2 Y#+2(fn+l, CIT),

so by the above specification of fn_,.l,

Y/n.;.].(w) = Yy+2(F+?n7$)7

ie.,

1 [ F(t) + Yo (2)
(16) -/ @0+ Gy S HF?
for z € R.

The sequence {Y,(z)} has a limit, being, as we have seen, increasing.
NotaTION. — We write
H(z) = lim Y,(x).
n—o0o
Then we can state the following

2.7. THEOREM. — Let F(t) satisfy (4), (10) and (11). Then the
function H(x) just constructed satisfies

H() - H@)| < gla' 3], oz €k,

1 [® H(t) 1
- t < =,
w/_oo1+t2d 2

H(z) > F(z)/(4p+38),
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and finally
1 [ H(t)
— < 2 ,
W/—oo (x—t)2+(H(x))2dt p+2 for zeR
where p = 123.

Proof. — The first relation holds because each of the Yn(z) has the
same Lip 1 property. The second follows by (14) and monotone convergence,
since Y, (z) < Y, (z). For the third relation, we observe that

H(z) > 170(:1") = ?/A(sz) 2 Y#+2(F’x)

by (11) and Lemma 2.6, with then Y, o(F,z) > F(z)/(4p + 8) by Lemma
2.5.

To obtain the last relation, make n — oo in (16) and apply Fatou’s
lemma. One gets

T Jowo (z—1)% + (H(z))?

more than what is needed.

1/°° FO+HD 0y

NotaTiON. — We write henceforth
(17) o=p+2.
Note that by (12), this makes
o = 125.

3. The function H(z) and its companion Y (z).

NoratioN. — The function Y, (H,z) is henceforth denoted by Y (z).

We are, in other words, taking Y (x) so as to have

L [" H(t) ~
™ /_oo z—12+ (Y(2))? dt = o, z€R

According to the last relation furnished by Theorem 2.7, to (7) and to (17),
this makes

(18) Y(z) < H(z).
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At the same time, by the first relation from that theorem and Lemma 2.5,
Y (z) > H(z)/40. This and the theorem’s third relation yield

(19) Y(z) > F(z)/160°.

The function Y (z) also enjoys some remarkable smoothness proper-
ties.

3.1. LEmMA. — Y(z) is C; and uniformly Lip 1, with

Y'(z)| < 270, z€R.

Proof. — Take the function J(z,y) given by (5) with f(t) = H(t);
Y (z) is then determined by the relation

J(z,Y(x)) =0,
so Y'(z) exists and

with y put equal to Y (z) as long as the denominator on the right is # 0.

But for that denominator we have

2 [*® yH(z—T)
J’!l(x7y) = _;\/;oo (T2+y2)2 dTa

and for y = Y(z), the integral on the right, after change of sign, is

1 Y (z)
2 (Y (@) /_Y(z) H(z —)dr.

By (18) and the first relation from Theorem 2.7,

H(z-71) > H(z) - %Y(z) > %Y(a:) for |7| < Y(z),

so we find that

(21) T (2,y) < —-%—;m for y = Y (x).

The use of (20) is therefore legitimate, and we have, for the numerator

in its right side,
2 [ (z—t)H()
new = 2 [ ot
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The integral here is in absolute value < J(z,y)/y, so for y =Y (z),

o
Y(2)’

Our lemma now follows from (20), (21) and (22).

(22) |z (2, )| <

3.2. LEMMA. — Y () exists and is continuous, with

2 +47n%0 + 641303
"
< )
¥" (z)| A
Proof. — Taking the function J(z,y) used in the preceding proof, we

see that the asserted qualitative properties of Y (x) follow from (20) and
(21).

As to the estimate, (20) yields

Jz Jz J,

(23) Y"(fl)) = - J_a: + 2ﬁ J:cy + ‘_]% Jyyyl(x)a

v y ]
with the partial derivatives of J(z,y) evaluated for y = Y (z).

We have
1 [ Hz-1)
= - —=d
J(JJ, y) T Joo 7—2 + y2 T

and, according to the first relation from Theorem 2.7, H'(t) exists a.e., with

(24) \H'()] < % ac.

The preceding formula can now be differentiated under the integral sign
(that is justified by dominated convergence), and we get

1 [ H(zx—-7)dr 1 [* H'(t)dt
(25) Jz(fv,y) = - 7_2+y2 _— »/—oo (Z’—t)2+y2'

Differentiating the second integral with respect to  and then using (24),

we find that
1 [ |7|dr 1
< = T2 .22 3o
|JZ.’E($7/y)| T /—oo (7'2+Z/2)2 ﬂ'yz
making
1
(26) |Jez(2,Y (2))] < —<—vs

(Y (x))?
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By differentiating the second integral in (25) with respect to y and using
(24) we see in like manner that

1
(27) ,Jzy(.’L‘,Y(.’L‘))l < 2(—Y(_112_))—§

Finally, we have

(o) e e} 2
Jy(2,y) = _% / Hipd 8 / y2H(t)dt

—o (@=1)2+9%)2 7 (@ —1)2+92)%

When y = Y (z), J(z,y) = 0, so the first integral on the right lies between
0 and —20/(Y ())?, and the second between 0 and 80 /(Y (z))2. Thus,

8o

(28) | Jyy (2, Y (2))] < O

We now plug (21), (22), (26), (27) and (28) into (23), together with
the inequality furnished by Lemma 3.1. The asserted inequality for [Y"(z)]
follows, and we are done.

NoTtaTiON. — We henceforth write
(29) v = 2+ 4n?0 + 647303,

with o = 125.

In terms of the new constant -y, the result of Lemma 3.2 reads

" < Y .
(30) Y@< g
We shall see in §4 why it is useful to have a bound inversely proportional

to Y(z) on |Y"(z)|.

We now take the function

(31) Uz) = gy_%/_zg%,

harmonic for y > 0, and look at its behaviour in the domain
Dy = {z=z+iy; y>Y(z)}
and on 0D,.
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With J(z,y) as in the proofs of Lemmas 3.1 and 3.2, we have
U(Z) = y(O' - J(il?, y)),

so U(z) > 0 for z € Dy, and U(z) = 0 precisely on dD,, where
J(z,y) =J(z,Y(z)) =0.

Fig. 2.

The boundary 0D, (where y = Y (x)) is smooth by Lemma 3.1, so
we have at each of its points z a well defined inner normal n, of unit length
(pointing upwards into D, see figure 2). At such points z the function
U(z) given by (31) is Co, and we can speak of the directional derivative
0U(z)/0n, along n,; clearly

oU(z)
on,

> 0.

In the present circumstances, we can say more. The following result
will be crucial in our work.

3.3. THEOREM. — At each z on 0D, we have

U (z) 1

> .
on, 2T
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Proof. — Since U(z) = 0 along 0D, 9U(z)/dn, is there equal to
the magnitude of grad U. However, by (31),

oU(z) 1 /°° H(t)dt 2 /°° y2H(t)dt

Ay T oo (=82 +y? 7w o (z—1)2+y?)?

For y = Y'(z), the first two terms on the right cancel each other out (!),
and the third is - Y (z)Jy(z,Y (z)) > 1/2m by (21). So the magnitude of
grad U is surely > 1/27 on D, where y = Y (z). Done.

4. Construction in the strip — Y (z) < y < Y(z).

NotaTioN. — S ={z =z +1iy; |y| < Y(z)}.
The boundary OS of S consists of the two curves y = Y(z),
y=-Y(2).

DEFINITION. — For z € S, we put

S(z) = % /_ ” Gs(z )t

where Gs( , ) is the Green’s function for S.

4.1. LEmMMA. — For =Y (z9) < y < Y(zo),

. 2Y (z0)
< —/—,
S(zo + 1y) .

where

3
a = arctan —
4o

with o = 125 (see (17)).

Proof. — Fixing zy, we see by Lemma 3.1 that the whole strip S
is contained between 4 rays, of slopes 270, going out from the points
P = z9 4+ iY(x) and P = z¢ — iY(xo) (look at figure 3). An easy
calculation shows that the 4 rays in question are tangent to the branches
of the hyperbola

2 167202

(32) (z —20)* = 4(Y(20))?
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passing through the points Q = zo + 2iY (z¢) and Q = z¢ — 2iY (zo). The
strip S is therefore included in the region R lying between the two branches
of that hyperbola, so if Gr( , ) denotes the Green’s function for R,

(33) Gs(z,t) < Gr(z,t), 2z€S8,teR.
The asymptotes to the hyperbola (32) make angles

3
34 = tan ——
(34) o arctan ,—

(@-20) = 4(Y(0))?

Fig. 3.

with the vertical. The linear transformation

1 COS (¢
(35) zZ — w = m(z - .T())

takes R conformally onto the region £ of the w-plane bounded by the two
branches of the hyperbola

2 02
> T 2 = 1
cos? o sin® o

u

(we write w = u + 4v); this mapping takes the z-axis of the z plane
to the v-axis, and the vertical segment joining Q and @ to the interval
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[—cosa, cosa] of the u-axis. For —Y (z9) < y < Y(zo) we therefore have,
by (33) and (35),

(36) / Gs (o + iy, )dt (o) / Ge(u,iv)d

Cos

with —cosa < u < cosa, Gg(, ) being the Green’s function for £.

A conformal mapping of {¢ > 0} onto £ is available, making it
possible for us to express G¢( , ) in terms of the (known) Green’s function
for the right half plane. In terms of the parameter o given by (34), we put

T — 2«
(37) p=—;
then our mapping is given by
1 1
- = P
(38) ( — w = (z( +ZCP>

(composition of { — i(P with the Joukowski transformation). In this
mapping, points { = £ > 0 go to the points v of the imaginary w-axis,
where

N =

v = ('fp - &-—P)’

. i . 7T m .
and the points e with — 3 < B < = go to the real points u,
—cosa < u < cosa. In terms of £ and 3, we therefore have

e+ ¢

Gg (u, ’t’U) = log m

for such v and v, making

oo p oo
/ Ge(u,iv)dv = ¢ / log
—00 2 0

Differentiation shows that for each & > 0, log|(e®® + &£)/(e?? — &)|
attains its maximum on the interval —g < B < % for B = 0. The right
side of (39) is thus

o0
< 2/ log 1+¢
2 Jo 1-¢

eP + ¢
e —¢

e
G

d€.

1+¢

p—1
T—¢ §Pd¢,

g [
S - p/o log |
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for the substitution £ — 1/ leaves the second integral unchanged. The
value of that second integral is known, and equal to

w4
mtan —2— = Tmwcota

(see [11], p. 316). By (39) and (36) we thus have, for =Y (z¢) < y < Y (z0),

o0 Y
/ Gs(eo+iy, it < 2%

oo sin o
which, with the above definition of S(z), gives the lemma.

The argument just made can be applied to yield a useful result, best
stated as a

CoroLLARY. — The function S(z) is superharmonic in S and tends
to zero when z tends to any point of 0S.

Proof. — Both parts of the conclusion will follow from the uniform
convergence of the integral [ ix;o Gs(z,t)dt for z ranging over any compact
subset of S (sic!).

To verify that uniform convergence, look at (35), (36), (38), (39)
and the uniform estimate for the right side of the last relation. Note
that p < 1 by (37), and that Y (z¢) > 0 is a continuous function of zg.
Superharmonicity of S(z) is now manifest from that function’s definition,
and we see that it is in fact harmonic at the points of S off of the real axis.

In order to deduce the second asserted property of S(z), suppose that
z — zg € 0S8. Uniform convergence of the integral gives us an A such
that fItI>A Gs(z,t)dt < efor z € S and |z — 29| < 1 say. But then by
Harnack there is an M with Gs(z,t) < MGs(z,0) for all z € S sufficiently
close to zp (and hence bounded away from R!) when —A < t < A
Thence, by definition, S(z) < (¢/7)+ (2AM/7)Gs(z,0) for such z, where
Gs(2z,0) — 0 as z — zp. This does it.

Remark. — The reasoning shows that the convergence of S(z) to 0 is
uniform when z € S tends to any bounded arc of 3S.
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For the parameter « given by (34) we have

: V3

sine = ——————
V167202 + 3

with, as we know, ¢ = 125. We bring in another numerical constant.
NOTATION.
2 167202 1/2
K = - = 2 ( b0 + 1) .
sin o 3

Then the conclusion of Lemma 4.1 reads thus : for z =z + iy € S,

(40) S(z) < kY (z).

In &, the Riesz mass corresponding to the function
S(z) = (1/m) ffooo Gs(z,t)dt, superharmonic there, is supported on the real
axis, where it has the linear density 1/m. At the same time, the function

|Sz| = l/ log
T Jo

is subharmonic in the whole plane, and its Riesz mass, also supported on
R, has by inspection the same linear density, but with opposite sign. The
sum

2

1- dt

z
2

(41) V(z) = [92] + S(2)

is therefore harmonic in S. According to the last corollary and the remark
following it, V(2) extends continuously up to 8S, and

(42) V(z) = Y(z) for z=z=+iY(x)ondS.

Note that by (40) and (41) we have the upper bound
V(z) < (1 +4+k)Y(z) for 2z =z+iy € S. To get a lower bound is
easier ; we will need

4.2. LEMMA. — For real z, we have

Y (z)

\%4 > .
(@) 8o

Proof. — Fixing any real zg, we get, from Lemma 3.1,

Y(z) > Y(x9)/2 for |z—=z¢| < Y(zp)/4mo.
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Since ¢ = 125, 4mo > 2 (!), and the square Q of side Y (z¢)/2mo with
centre at =y and sides parallel to the coordinate axes lies entirely in the
strip S.

By (41) the function V(z), harmonic in S, is > |Jz| there and hence
> Y (z0)/4mo on the horizontal sides of Q. Seen from zg, those horizontal
sides have, in @, harmonic measure 1/2, so, since at any rate V(z) > 0 on
0Q, we have V(zg) > Y(z)/8mc. Done.

CoRrOLLARY. — V(z) > F(z)/128m0® for z €R.
Proof. — Refer to (19) near the beginning of §3.

We will need to know more about the behaviour of S(z) near the
points of 4S.

NotaTiON. — For z € 08, v, denotes the unit inner normal to 9S at
z, i.e., the unit normal pointing into S.

The reader should refer to figure 4 below; when z is on the curve
y =Y (z), v, is opposite in direction to the normal n, shown in figure 2.

NotaTION. — We write

D, S(z) = limsolip—s(z—;ﬂ/—zl
1]—')

for z€0S.

(Actually, the directional derivative dS(z)/dv, exists at each z € 4S; that
follows from the C; character of S (Lemma 3.2) by Kellog’s theorem ([12],
p. 361; [13], p. 374), by the harmonicity of S(z) for 0 < y < Y(z) and
for =Y (z) < y < 0, and by S(z)’s vanishing on 0S. For our purposes this
knowledge is not required.)

It is clear that D, S(z) > 0 for z € S. What will be crucial for our
construction is an upper bound.

4.3. THEOREM. — At each z € 8S we have

— 2Ky
D < — )
WS() <t (1+2m0)
where k is the numerical constant specified just before (40), v is given by

(29), and o = 125.
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Proof. — Let us look at a point zg = o + 1Y (z¢) on the upper part
of 0S. That curve y = Y (z) has at each of its points a radius of curvature
equal to

[Y"(z)| T Y@l

with the right side > Y (z)/v by (30). According to (29), v is much larger
than 4mo. Therefore, if |z — zo| < Y(20)/7, we will have Y(z) > Y (z0)/2
by Lemma 3.1, making the above radius of curvature > Y (zq)/27.

(Lt (R 1

Let T be a circle of radius Y (z¢)/2v with centre P outside S, tangent
to OS at zg. At any abscissa x of the horizontal diameter of T', the radius of
curvature of 88 is > Y (zg)/2v as we have just seen; that means however,
that S can never pass inside I', making that circle’s interior disjoint from
S (see second remark following this proof).

Fig. 4.

About P (which is higher than zg, see figure 4) we describe a larger
circle IV, of radius Y (zg)/2; the lowest point on I then lies above the z-
axis since the ordinate of zg is Y (zo). We denote by A the annulus bounded
by I’ and I'". The function S(2) is then harmonic in SN.A; that intersection
is certainly not empty because zy € 0S lies on T'.
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It is possible that SN.A consists of more than one component ; in that
event one of those has 2y on its boundary and we denote that component
by G; at least part of the normal vector v,, pointing into S from zo lies in
G. 0G consists of an arc (or arcs) on S and of one (or more) on I', lying
inS.

For z on I" (of diameter Y (z)), we surely have |z — zo| < Y (o), so
Y(z) < (14 270)Y (z0) by Lemma 3.1. Since S(z) < kY (z) in S by (40),
we see that

S(z) € (14 27r0)kY (o) for z€I'NS;

this holds in particular on 8G NI". The other points of G are on 8S where
S(2) = 0. Therefore, taking the function h(z) harmonic in A 2 G with
constant boundary values equal to (1 + 2wo)kY (z¢) on I'' and to zero on
T', we have

(42) S(z) < h(z) for z€G

by the principle of maximum.
However,
log |z — P| — log(Y (z0)/27)
log vy

for Y(zo)/2y < |z— P| < Y(z0)/2, and the unit normal v,, to S at 2o
is colinear with the radius of I' passing through 2. By (42) and (43) we
thus have, for small values > 0 of 2ny/Y (zo),

(44) S(ZO+7}VZ) < (1+2WU)RY(.’I20){ 2ny + O( 2ny )2}

(43) h(z) = (1+4+270)KY (x0)

log Y (zo) Y (z0)
_ 29k(1+2mo) O(n?)
N logy 1 Y(zo)"

This makes D,_S(z) < 2k7y(1 + 270)/log~y at z = z on the upper curve
of 8S. The argument for a point on the lower curve of dS is the same, and
we are done.

Remark 1. — The proof just given shows more than what the theorem
asserts. Write
2Ky

(45) L = Tog (14 2mo);
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this is a pure number, like k,y and o = 125. Then, corresponding to any
€ > 0 we have a 6 > 0 independent of z( such that, for any 2z on the inner
normal to 8§ at zo = zo £ 1Y (zg) with

|z — 20| < 6 Y(=o),

we have

S(z) < (14+¢€)L |z— .

This refinement, which will find use in the next §, follows from (42),
(43) and the fact that an open disk of radius Y(z)/2vy tangent to 4S
from inside S at zg lies entirely within S. The last property is verified by
reasoning like that at the beginning of the above proof.

Remark 2. — The statement about 8§ involving radius of curvature
and made near the beginning of the last theorem’s proof is geometrically
evident and everybody “knows” it, but I have been unable to find a
reference. Here is an easy way to check it.

We are given a circle I' of radius 1/k tangent to the Co curve
y = Y(z) at zp, with centre at (a,b), say, and it is assumed that
[Y"(x)|/(1 + (Y'(x))?)3/2 < k for | — a| < 1/k. One wishes to show that
the curve never passes inside I', and it is clearly enough to verify that for
the points (z,Y(z)) with | — a| < 1/k. There is no loss of generality in
taking zp = 0 and assuming I" to be tangent to the curve from above there,
making b > 0.

Put §(z) = arctanY’(z) (with —7/2 < 6(z) < m/2), and consider
the abscissae  with 0 < =z < a + e In terms of 6(z), we have
Y"(z)/(1+(Y'(2))?)3/? = 0'(z) cos (), so our assumption on Y (z) implies
that sinf(z) — sinf(0) < kz for 0 < z < a+ —. The given conditions
on I' make sinf(0) = —ak, whence sinf(z) < k(z — a) for the = under
consideration and, in terms of Y’(z), Y'(z) < k(z —a)/(1 — k?(z — a)?)1/2.

Thence, since Y(0) = 0, (Y (z)—b)?+(z—a)? > 1/k?for0 < z < a+ T

1
The argument for a — % < z < 0 is similar.
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5. Formation of a superharmonic majorant.

The curves y = +Y (z) divide the complex plane into 3 regions : Dy,
described shortly before Theorem 3.3 and shown in figure 2, S, defined at
the beginning of §4 (see figure 3), and

D_. = {z=z+1iy; y<-Y(x)}.

The functions U(z), given by (31) for Sz > 0, and S(z), defined at the
beginning of §4, both vanish on the curve y = Y (z); S(2) also vanishes for
y = =Y (x). We now put

—2n(L+1)U(z), z € D4,
(46) G(z) = { 8(2), z€ S,
—on(L+1)U(Z), z €D,

where L is the numerical constant defined by (45). Then G(z) is continuous
everywhere (see the corollary to Lemma 4.1), and we have the

5.1. LEMMA. — G(2) is everywhere superharmonic.

Proof. — G(z) is superharmonic in S by the corollary to Lemma 4.1
and (46), and it is even harmonic in D, and in D_ by (46) and (31). Since
it is also continuous at the points of S, we need only verify that it has the
mean value property at those points.

Let, wlog, zo = zo + 1Y (2¢); since then G(z9) = 0 by definition, it
will suffice to show that
(47) G(z0 +7r¢")d9 < 0
for all sufficiently small » > 0. Verification of this is based on Theorem
3.3 and Remark 1 to Theorem 4.3; it is essentially an exercise in advanced
calculus.

Take new cartesian coordinates with origin at zp, one axis pointing
along the tangent to y = Y (x) at zp, and the other directed along the
outward normal to that curve there. The polar coordinates corresponding
to these new axes are used to estimate the left side of (47). Computations
are actually the same for any orientation of the new coordinate system,
so we give them for the case of a horizontal tangent to 8S at zp in order
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Fig. 5.

not to confuse the reader with additional symbols. That involves no loss in
generality.

Assuming, then, that Y'(z¢) = 0, we fix a small 8 > 0 (according to
a specification to be furnished presently), and break up the integral in (47)
as

%] T+ T—p -B )
(48) / + / + / + / G(z + re™)d.
-8B m—p B —m+B

If 7 > 0 is small and z = 2z + re*? lies in S we have, by (46), Remark
1 to Theorem 4.3, and the continuity of Y (z) near zo,

(49) G(z) = S(z) < (1+¢)L-dist(z,85),

where € > 0 is small (with r) and dist(z,0S) denotes the shortest (i.e.,
perpendicular!) distance from z to the curve y = Y (z). Because Y'(zo) = 0,
the intersection of that curve with a disk of small radius r > 0 about zq lies
within the two sectors consisting of the points 2o + pe?® with either [9| < 7
or [9—7| <n (and 0 < p < 1), where 17 > 0 is also small with r. This makes

dist(zo + re’®,88) = r|sind| + o(r)

for small 7, which, substituted in (49), yields



756 PAUL KOOSIS

(50) G(z0 +re”) < Lr|sind| + o(r)
for zg + re?® € S with r > 0 small.

Consider now the points zo + re?? with —3 < ¢ < @ figuring in
the first integral of (48). If such a point lies in Dy, we of course have
G(zo + re’®) < 0 by (46) and (31). If, however, zg + re®’ € S, we have
G(zo + 7€) < Lrsin B+ o(r) by (50); the first integral in (48) is therefore

< LrBsin g+ o(r).
The same estimate holds for the second integral in (48).

When r > 0 is small, the points zg + re?® with —7 + 3 <9 < —f all
lie in S, so (50) can be used to estimate G(zq + re®?) for such 9. We see in
that way that the fourth integral in (48) is

< 2LrcosfB + ofr).

At the same time, the points 2o + re?? with 8 < ¥ < m — 3 lie
in Dy, making G(z + re®®) = —2n(L + 1)U(z + re”) by (46). Since
U(zp) = 0 and U(z) is Coo near zp, U’s partial derivatives at zp can be
used to approximate U(zg + re®’) for small r. Here, since U(z) vanishes
along 8S and the tangent to that boundary at zo is horizontal, we have
U, (20) = 0. For the same reason, the unit outward normal n,, to 4S at z
has the direction of the positive y-axis, making Uy(zp) > 1/27 by Theorem
3.3. Using these relations, we get U(zo + re®’) > 2—1-rsin19 + o(r) for
0 < ¥ <, or, in terms of G(z), i

G(zo +7r€¢"%) < —(L+1)rsind+o(r), f<d<n—0.
From this, we find that the third integral in (48) is
< —2(L+1)rcosfB + o(r).

The estimates just obtained for the four integrals in (48) are now combined,
and that yields the upper bound

—2rcosB + 4rLBsinfB + o(r)

on the integral in (47) when r is small. Taking 3 > 0 small enough at the
beginning to make cos 8 —2LBsin B > 0 will thus ensure (47)’s validity for
all sufficiently small values of r > 0. The lemma is proved.
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The superharmonic function G(z) has been defined by (46) in terms
of Y(z), U(z) and S(z). Y(z) and U(z) were in turn constructed from
H(z) (Y(x) at the beginning of §3 and U(z) near the end, by (31) ),
while S(z) was formed from Y (z) at the beginning of §4. H(z), finally,
was constructed from our initial function F(t) near the end of §2. Between
G(z) and the function F(t) from which it originates there holds a relation,
provided by the following

5.2. LEMMA. — We have

1 [ |92 F()
> - . —
G(z) > - /_Oo 2t 128703 dt 210 (L +1)|S2|,

with the right side interpreted as F(z)/128nc® for z=z € R.

Proof. — Denote the right side of the inequality to be proved by
W (2). Then, for z ¢ S, say wlog for z € D, we have by (46) and (31),

> QzH
G(z) = =2r(L+1)U(2) = 2n(L+1) 1 / SzH(t) dt — oSz,
T Jooo |2 =12
with the right side certainly > W(z) because H(t) > F'(t)/40 by Theorem
2.7 and (17). The desired relation therefore holds for z € D, and similarly
for z € D_. By continuity, it continues to be valid on 0S.

What remains is the verification of our relation in S. There,

G(z) = S(z) by (46), so it is enough, by symmetry, to show that

(51) S(z) > W(z) for z=z+iy with 0<y<Y(z).

When y = 0, S(2) = S(z) reduces to V(z) which is in turn
> F(z)/128m0® by (41) and the corollary to Lemma 4.2; (51) thus holds
for y = 0. For y = Y (), S(z) vanishes (continuously) by the corollary to
Lemma 4.1 whereas W (z) < G(z) = 0 as we have seen; (51) therefore holds
in this case also. The difference S(z) — W (z) is harmonic in the strip

St = {z=z+iy; 0<y<Y(z)}

by the discussion before and after (41); it is also continuous up to 98+
and > 0 there, as we have just verified. In order to deduce (51) from this,
a Phragmén-Lindel6f argument is needed.

Since S(z) > 0 in S we have, at any rate,

(52) S(z) —W(z) > —F(2) for z€e S8y,
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where

(53) F(z) = % /— - ;7%17 F(t)dt.

Taking a large zo, we look at the bounded region
Si(@o) = {z=2+1iy; —zo<z<z0, 0<y<Y(2)}

shown in figure 6.

On 88, (20)NIS;+ we know that S(z)—W (z) > 0. The rest of S+ (o)
consists of the two vertical segments J(zg), J(—xo) shown in figure 6, and
on them, by (52),

S(z) =W(z) =2 —M(z0), zE€ J(zo),
S(z) —W(z) > —M(-z0), z€ J(—xo),

where M (zo) is the supremum of F(z) on J(zg) and M(—z) that func-
tion’s supremum on J(—zg).

>

Fig. 6.

Denote harmonic measure for S;(z9) by wg( , ). Then, for
z' € 81+ (zo) we have, by the above relations,

(54) S()-W(z') > —M(zo)wazo(J(20),2")~M(~20)ws,(J(—T0),2");

we will be done if we can show that the right side tends to zero for each
fixed 2’ when z¢ — oo.



CONSTRUCTION OF A CERTAIN SUPERHARMONIC MAJORANT 759

To estimate M (zo) we take z = zo + iy with 0 <y < Y(zo) in (53),
and break up the integral occurring there as

(55) 1 / + / B S 2 O N
W [t—zo|>z0/2 zo0/2 (t — x0)? + 92

For large zo, the first integral in (55) is

*® F

< const. y/ i)zdt < const. Y(zp)
N R

by (10). By Lemma 3.1, Y(zo) < Y(0) 4+ 2moxo, so the last expression

is < const. g when z¢ is large. In the second integral of (55), where ¢

ranges over [zo/2, 3zo/2], we have F(t) < F(0)+ 3z¢/4 by (11). This

makes that second integral < const. zo for large zo, and finally,

F(zo+1iy) < const.zp, 0 < y < Y(z),
making
(56) M(zo) < const. zg

when z is large; for M(—zg) we clearly have the same estimate.

We turn to the examination of wy,(J(2o),2") and wg,(J(—20), 2")
for o tending to oo with 2’ fixed. According to Harnack, the asymptotic
behaviour of these quantities for any given 2’ is governed by that for the
special case 2z’ = ib where b = Y (0)/2, and it will suffice to work out the
behaviour in that particular situation. For that purpose, one may use a
version of the Ahlfors-Carleman formula for horizontal curvilinear strips
which, for J(zo), reads as follows :

) o dx
(57) wzo (J(20),tb) <  abs. const. exp (—7r | %>

Regarding this formula, see pp. 7-8 of [14]; it may be derived from the
more accessible polar version used in proving Lemma 2.4 by taking polar
coordinates with origin at —K on R and making K — ooc.

By Schwarz, we have

( /IO dz )2 /’0 dzx /20 Y(z)
— ) < — . —=L dg.
o VaZ+1 o Y(z) o 1422
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Here the left side is ~ (log zo)? for large xo, while [;°(Y (z)/(1+2%))dz <
oo by (18) and Theorem 2.7. Therefore, 7 [°(1/Y (z))dz > c(logzo)? for
large xo (with a constant ¢ > 0) and this, substituted in (57), yields

(58) wzo (J(20),1b) < abs. const. ¢—cllogzo)®

for o tending to co. The same estimate of course holds for w, (J(—zp),b).

As already noted, wg,(J(z0),2’) and wg,(J(—xo),2’) have, for any
fixed 2’ € Sy, the same general behaviour when ¢y — co. We thus see from
(56), (58) and their analogues for —z that the right side of (54) tends, for
any given 2’ € Sy, to zero (like zge~c(°8 20)* at least) when xg — co. But
this means that S(2’) — W(2') > 0, i.e., that (51) holds in S,. That is
what we needed to finish proving the lemma, and we are done.

From the preceding two lemmas, we now have, without further ado :
5.3. THEOREM. — Given F'(t) satisfying (4), (10) and (11), construct

the function G(z) using (46). Then 128m03G(z) is a (finite!) superhar-
monic majorant (in the whole complex plane) for

1 [ 92| 4
d N et B - 2 2]
- /_ PEE F(t)dt 56mc* (L + 1)|]z|

(this last interpreted as F'(z) for z = z € R).

We now specify one more numerical constant.

NoTATION. — With o = 125 and L given by (45), we put
(59) A = 512m0*(L+1).

In terms of the constants v, defined by (29), and «, specified just before
(40), we have

2
A = 512m4(ﬂ(1+2m) + 1).
logy

This quantity is very large; computation with a sliderule yields
A~ 3.03 x 10?7,

5.4. THEOREM. — If f(t) > O satisfies (3) and

(60) IF(#) = £ < £’ —t|, t,teR,
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the function

(61) 1 / T B e - agse

T Jooo |2 =t

(interpreted as f(x) for z = z € R) has a finite superharmonic majorant in
the complex plane.

Proof. — Consider first the case where ¢ = 1/2. In that event, we
take M large enough in the formula

Fit) = %ﬂ-max(f(t),M)—M

to make

1 [~ F(t)
F/_oo1+t2dt

the term 1/4 is added to ensure (4) for F.
The function F(t) satisfies (11) because f(t) does. The conclusion of
Theorem 5.3 therefore holds for this F' and the function G(z) constructed

from it. Then, however, 128703G(2) + M — (1/4) is a finite superharmonic
majorant of (61) (with £ =1/2).

N =

In the general case, form F' using f(t)/2¢ instead of f(t) and multiply
afterwards by 2¢.

From this last result we obtain the

CoroLLARY (Theorem of Beurling and Malliavin, 1961). — Let ®(z)
be entire and of exponential type, with

/°° log™ |®(x)|

dr < oo.
o 1422

Then there are entire functions p(z) # 0 of arbitrarily small exponential
type such that ®(z)p(zx) is bounded on R.

Proof. — One can, as in §2 of [5], use Akhiezer’s version of the Riesz-
Fejér theorem to reduce the general situation to one where |®(z)| is even
and > 1on R and all the zeros of ®(z) lie in {Sz < 0} (see [7], p. 556 and
pp. 55-58). Then, however, a result from §4 of [5] (whose proof is sketched
in the appendix to this paper) gives us, for any £ > 0, an f(z) > log|®(z)|
satisfying both (3) and (60).
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Theorem 5.4 now guarantees that (61) and a fortiori

1 [ 92|
%/_oo Iz =1 log |®(t)|dt — Af|Sz|

have a finite superharmonic majorant in C. By a known result ([1], pp. 68-
69 and p. 84, [2], pp. 388-389), this implies the existence of entire functions
©(z) # 0 of exponential type A¢ with ®(x)p(z) bounded on R. Hence, since
£ > 0 is arbitrary, the corollary holds.

Remark. — Under the circumstances arranged for at the beginning
of the corollary’s proof, f(z), like |®(z)|, will be even; that will then be
the case for the function F'(t) formed from f in proving Theorem 5.4, and
thus finally for the superharmonic function G(z) corresponding to that
F figuring in Theorem 5.3. This even superharmonic function G(z) can
already be used to construct a multiplier ¢(z) for |®(z)|.

To see how that is done, look first at the Riesz mass associated with
G(z) which, according to (46) and the discussion around (41), must all be
located on the real axis and on the two curves y = Y (z). On the real
axis this mass has constant linear density equal to 1/7, and on the curves
its linear density is at least bounded. The latter observation follows from
Theorem 4.3 and the upper bound 3o for dU(z)/On, > 0 on the curve
y =Y (z) (see end of §3) which is easily checked directly. These properties
permit us to obtain a global Riesz representation for G(z) analogous to the
one for (9MMF)(z) discussed on pp. 376-388 of 2], and, in a sense, simpler
than the latter on account of the evenness of G(z).

In order to get a multiplier ¢, one first projects G’s Riesz mass along
circles about 0 from the curves y = +Y (z) with z > 0 onto the positive
real axis. The total Riesz mass on those curves contained between the
circles |z| = r and |z| = r + Ar (in the right half plane) is in other words
transported to the segment [r, r + Ar] of the z-axis. That projected mass
is combined with the original Riesz mass (equal to Ar/7) already present
on that segment, and the total mass distribution thus obtained on [0, c0)
is denoted by dv(t).

Write v(t) = fot dv(7), and let [v(t)] denote the greatest integer < v/(t).
It suffices to take the entire function ¢(z) with

2
-
t2

log |(2)] =/ log

dlv(8)],
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where a > 0 is chosen to make v(a) = 2 (say). Cf. [2], pp. 162-4. The details
of the construction just sketched are left to the reader.

APPENDIX

Let us show how to obtain the result from [5] used in proving the
corollary at the end of the last paragraph.

THEOREM. — Let ®(z), entire, of exponential type, and in modulus
> 1 on R, have all its zeros in Sz < 0. Then, given any £ > 0, there is an
f(z) > log |®(x)| satisfying (3) and (60).

Proof. — For a suitable constant ¢ > 0, cy + log|®(z + iy)| is an
increasing function of y in the upper half plane; this may be verified by
performing logarithmic differentiation on the Hadamard product for ®(z)
and then taking account of the convergence of Y 3(1/z,) for the zeros z,

of ®. (That convergence follows in turn from a tﬁeorem of Lindel6f; see [7],
p. 20.) We may just as well work with e~**®(2) instead of ®(z) since both
have the same modulus on the real axis. Changing, then, our notation so as
to have ®(z) designate the former product, we have the function log |®(z)],
harmonic for 3z > 0 and an increasing function of y there. It is > 0 in the
upper half plane because |®(z)| > 1 on R, and, being continuous up to the
real axis, has the Poisson representation

(6) log|2(:) = BSz + - / Szlog|2(t)]

PETE dt, <z >0,

where (wlog) B > 0. See [7], pp. 41-42 and pp. 47-48 — our present
hypothesis implies in particular that

(63) /_o:o el < oo

We now take the smallest function f(z) > log|®(z)| with
fi(@) — fe(z) < €(z' —x) whenever ' >z, z',z€R,
and denote by f_(z) the smallest such function with

f-(z')— f-(z) > —4(z' —z) whenever 2’ >z, z',z€R.
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Putting then

f(z) = max(fi(z), f-(2)),

it is clear that f(x) satisfies (60) and is > log |®(z)|; we therefore need only
verify (3). That in turn follows if f;(z) and f_(z) each satisfy (3), and we
show this for f;(z), the treatment for f_(z) being analogous.

The function fi(z) actually coincides with log |®(z)| except over
certain disjoint intervals (ak, bx), where

(64) f+(z) = log|®(ax)| + £(z — ak), ax < x < bg.

Although it is conceivable that by = oo for some k, that cannot happen
here, for if it did, we would have limsup(log|®(z)|/z) > ¢ > 0 which
Tr—

oo
is impossible for entire functions ®(z) of exponential type satisfying (63)
(cf. [7], p. 174). Each by, is therefore finite, and we have

(65) log |®(bk)| = log|®(ax)| + £(bx — ax).
Fixing our attention on any interval (ak, bx) we put

1
v = 5 log|B(e)]
Since log|®(bx + iy)| increases with y when y > 0, we get, from (62),
. 1
u(bk +iyx) > 5 log |®(bk)| = By,

where

1 [ Szlog|®(t)|

—0o0
But by (65), since log |®(ax)| = 0,
> L(b — ag)
Ye =2 5B \Vk k)
Therefore, the harmonic function u(z) given by (66) being positive, we have
w(z+iyg) > cyp forap <z < by

by Harnack, where c is a certain constant > 0 depending only on B and #.
In terms of the notation introduced at the beginning of §2, this means that

Yo(log|®|,z) > cyp = 5%1og1<1>(bk)| for ar <z < by.
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Thence, in view of (63) and Remark 1 to Lemma 2.4,

Z/bk log|®(B)| , - _
1+ 22 ’

so by (64) and (65),

Since

% fi(x)

+.

E 1+2d:1£<oo.
K Yok

f+(z) =log|®(z)] for ¢ |Jy(ak, bx), the last relation and

(63) make

< fi(z)
/_ool+x2d$ < oo

We are done.
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