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1. Introduction.

The earliest paper devoted to the iteration theory of transcendental
entire functions f : C —> C was written by Fatou [F3] in 1926. He showed
that the first basic facts are very similar in the rational and transcendental
cases. However, further development of the subject showed that some
dynamical properties of entire functions may be quite different from those
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of polynomials and rational maps [B3], [EL5], This paper studies some
classes of entire functions for which the dynamics are more or less similar
to those of polynomials. The simplest examples of such classes are A exp z
and acos z + b.

Denote by /m the m-th iterate of an entire function /. All entire
functions considered in this paper are supposed to be non-linear. The
maximal open set N{f) where the family of iterates is normal in the
sense of Montel [Mo] is called the set of normality and its complement
J(f) = C\N(f) is called the Julia set. J{f) is a perfect completely invariant
set (i.e. , f~lJ = J ) which is either nowhere dense or coincides with C.
The Julia set of a transcendental entire function is unbounded.

A point a € C is called periodic if fpa = a for a natural number
p which is called a period. If p is the minimal period of the point a then
A = (fPy(a) is said to be the multiplier of a. The periodic point a is called
attracting, repelling, or neutral in the cases |A| < 1, |A| > 1, and |A| = 1
respectively. In the last case a is said to be rational (resp., irrational) if
A = e2^10 with rational 0 (resp., irrational 0). The Julia set of an arbitrary
entire function coincides with the closure of repelling periodic points. The
only known proof of this fact for transcendental functions [Bl] is based on
a deep theory of Ahlfors [N], Ch. 13.

Consider the class B consisting of all entire functions / such that
the set of singular points of the inverse function f~1 is bounded (in other
words, / is a covering map over {z : \z\ > R} for large R). Such functions
are studied in §2. First, we prove an elementary but useful fact that all
connected components of N(f) are simply connected for transcendental
/ G B (it is not the case for arbitrary transcendental entire functions [B4]).
Then we describe the logarithmic change of variable in a neighborhood of
oo. It is our main tool which permits us to study the dynamics of / near
oo. As the first application of the logarithmic change of variable we prove

THEOREM 1. — Let f € B be a transcendental entire function. If
z C N(f) then the orbit {f^z}^^ does not tend to °°'

Most of the results of this paper concern a more restricted class of
functions. Let S be the set of all entire functions / such that the set of
the singular points of the inverse function f~1 is finite. In other words,
there exists a finite set A such that / : C\f~lA —>• C\A is a (unramified)
covering map. The polynomials, the functions Xexpz and acos z-\-b belong
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to S. If h and p are polynomials then

(l.l) / (^^r^Oexp^cXe^.

The function f(z) = —— provides an elementary example outside of S.

The class S investigated systematically by Nevanlinna, Teichmiiller,
and others plays an important part in the value distribution theory [N],
[W], It was introduced into the iteration theory in works [EL1], [EL2] and
[GK].

In §3 we include every / € S to a finite dimensional complex analytic
manifold Mf C 5'. In §4 keeping in mind the further applications we prove
various analytical results on Mf. The main result is the following : the
periodic points of a function g C Mf considered as multi-valued functions
on Mf have only algebraic singularities (Theorem 2).

The main property of the manifold Mf is as follows : if g is an
entire function topologically conjugated to / then g € Mf. This property
allows one to extend Sullivan's theorem on the non-existence of wandering
domains [Sl] to the class S [EL1], [EL2], [GK].

Let D be a periodic component of N(f), fpD C D. If all orbits
originating in D tend to a cycle then D is called a Fatou domain. If fp\D
is conformally conjugate to an irrational rotation of the unit disk then D
is called a Siegel disk. We say that an orbit {/ma'}^^o is absorbed by an
invariant set X if f^x C X for some m.

Theorem 1 and the absence of wandering domains yield a complete
description of the dynamics of / € S on the set of normality : every orbit in

P-I
the set of normality N{f) is absorbed by a cycle |j / D of Fatou domains

k=0
or Siegel disks.

We conclude §5 with the finiteness theorem for non-repelling cycles.

In [B2] Baker stated the conjecture that if a transcendental entire
function f has a completely invariant component D of N(f) then D =
N(f). This conjecture for / G 6' is proven in §6 (Theorem 6).

In §7 we study the problem of the area of the Julia set J{f). The
main difference as compared with a rational case is related to the set
J(/) = {z\fnz —^ oo, n —> 00}. We prove that areaJ(/) = 0 provided f is
of finite order of growth and f~1 has a logarithmic singularity (Example :
Ae^).
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Let / 6 5, M = Mf. A function g e M is said to be structurally
stable if for every function h ̂  M close to ^ there exists a homeomorphism
(p : C —> C close to identity conjugating ^ and h : (p o g = h o (p. Using
the auxiliary results of §4 we prove in §8 that the set of structurally stable
functions is open and dense in M.

In the Appendix we discuss the exponential family Mexp of functions
z \—f a exp(bz) + c.

The results of the present paper were announced in [EL I], [ELS], and
their proofs in Russian were given in [EL2], [EL4].

Finally, let us refer to the surveys [Bla], [L3], [EL6], [Mi] for a general
introduction to holomorphic dynamics.

2. The logarithmic change of variable in the class B.

We begin with a simple proposition concerning arbitrary entire func-
tions [B4], [T]. Denote by ind7 the index of a curve 7 with respect to
0.

PROPOSITION 1. — Let f be a transcendental entire function and
D be a multiply connected component of N(f) Then

(a) f^z —> oo uniformly on compact subsets in D.

(b) For every Jordan curve 7 non-contractible in D ind^"^) ̂  0 for
all sufficiently large n. D

The following consequence of Proposition 1 is a convenient sufficient
condition of simply connectedness of all components of N{f).

PROPOSITION 2. — Let an entire function f be bounded on a
curve r tending to oo. Then all components ofN{f) are simply connected.

Proof. — Otherwise let us consider a non-contractible Jordan curve
7 C D. It follows from the above proposition that there exists a sequence
Zn —>• oo such that Zn 6 r n y^. This contradicts the boundedness of
/IF. • n

At this point we restrict the class of functions under consideration.
To this end we need some definitions concerning singularities of the inverse
function f~1.



DYNAMICS OF ENTIRE FUNCTIONS 993

A point a G C is said to be an asymptotic value of / if there exists
a curve r C C tending to oo such that f(z) —^ a as z —^ oo along F. If
/'(c) = 0 then c is called a critical point of / and f(c) is called a critical
value. By a singular point of /-1 we mean a critical or an asymptotic value
[N]. Denote the set of singular points by sing /-1. Note that this set may be
non-closed. It is known that for an open set G such that G H sing /-1 = 0
the map f : f~lG —^ G is on unramified covering [N].

Let B be the class of entire functions / such that the set sing/"1

is bounded. Denote D(zo,r) == {z : \z — ZQ\ < r}. Let / € B be a
transcendental function, sing/-1 C D(0,.R/2), A = C\D(0,R), G =
f~lA. It is easy to show that each component V of G is a simply connected
domain bounded by a single non-closed analytic curve both ends of which
tend to oo, and / : V —> A is a universal covering. We have \f{z)\ = R on
this curve, and Proposition 2 implies

PROPOSITION 3. — If f € B is transcendental then all compo-
nents of N(f) are simply connected. D

If R is chosen so large that |/(0)| < R, then 0 ^ G, and exp : W —> G
is a conformal isomorphism for any component W of the set U = \nG.
Considering the half-plane H = In A = {$ : Re$ > InJ?}, we have the
following commutative diagram :

F
U ——> H

(2.1) exp [ [ exp

G -L A

Here -F is a conformal isomorphism of each connected component
of U onto H. The existence of F is obvious because / o exp : W —> A
is a universal covering for each connected component W of U. We say
that F is obtained from / by the logarithmic change of variable in a
neighborhood of oo. A similar change of variable was used by Teichmiiller
in value distribution theory [W], 4.2.

LEMMA 1. — \F\z)\ ̂  l(ReF(z)-\nR).
47T

Proof (see Figure 1). — Let W be a connected component of U. Note
that W contains no vertical segments of length 27T because the exponential
map is univalent in W. Let <I> : H —> W be the inverse of F. The disk
D(F(z)^ReF(z)—\nR) is contained in H. Applying the Koebe 1/4-theorem
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(see [N], Ch. 4, §3) to the function <1> in this disk we obtain

^\F(z))\\ReF(z)-\nR\<7r^

and the lemma follows. D

F

Figure 1

THEOREM 1. — Let f G B be a transcendental entire function. If
z C N(f) then the orbit {/m^}^o does not tend to °°-

Proof. — Suppose the orbit {zm} of ZQ € N{f) tends to oo. Then
there exists a disk Bo = D{zQ,r), r > 0 such that the sequence {/m}
tends uniformly to oo in BQ. Thus all Bm = f^Bo except a finite number
are contained in G. Further the notations of the diagram (2.1) are used.
One may suppose Bm C G for all m > 0. Let Co be a component of the
set In Bo, Cm = F^^Co. Then expCm = Bm' Consequently Cm C U and
ReF^ tends to +00 uniformly in Co. Let Co ^ Co, Cm = F^C e Cm-
Denote by dm the supremum of radii of disks centered at C^m and contained
in Cm- We have by the Koebe 1/4-theorem that dm+i > -dm\F/{(m)\- In
view of ReF(Cm) —^ +00 and Lemma 1, one obtains IF^^)! —^ oo. Thus
dm —)> oo. This is a contradiction since Cm C U and U does not contain
vertical segments of length 27T. The theorem is proved. D

Recall that I(f) = {z : f^z -> oo}.
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COROLLARY. — Let f € B be transcendental. Then J(f) = I{f).

Proof. — It is proved in [E] that J(f) == 9I(f) for arbitrary entire
functions /. By Theorem 1 I(f) C J(f) for / G B and the corollary
follows. D

3. Class S and manifolds Mg.

We say that an entire function / belongs to the class Sq if the set
sing/~1 contains at most q points. In other words, there exists a set
A == { a i , . . . , a q } such that / : C\f~l(A) —> C\A is a covering map.

00

Set 5' = |j Sq. Some examples of functions of the class S were mentioned
9=1

in the introduction.

We call entire functions / and g topologically equivalent if there exist
homeomorphisms (^, ̂  : C —^ C such that

(3.1) ^ f o g = f o ^ .

Fix g € Sq and denote by Mg C Sq the set of all entire functions
topologically equivalent to g. The aim of this section is to define on Mg a
structure of (q + 2)-dimensional complex analytic manifold.

Choose /3-i and {3'z such that g(/3i) ^ sing^"1. Let Mg{{3^,13^} be
the set of functions / such that the homeomorphisms (^ and ^ in (3.1)
may be chosen in such a way that <^(ft) = f3i. One can easily verify
that Mg = UA^(/?i,/y. Fix (3^,^ t sing^-1 = {ai , . . . ,a j and put
a^+i = g(f3^), a^+2 = 9(^2)-

LEMMA 2. — Let ^o ° 9 = fo ° ^o, ^i ° 9 = fi ° ^Pi, fi ^ S,
(pi(bj) = (3j, j = 0,1. Assume that there exists an isotopy ̂  connecting
^o and ^i such that ^t(a^) = ^j(a^) for 0 ^ t < 1, 1 < j ^ q + 2. Then
fi = /o.

Proof. — By the Covering Homotopy Theorem there exists a contin-
uous family of homeomorphisms ht such that h\ = ̂ p\ and ^i o g == /i o ̂ ,
0 < t < 1. The functions 11-̂  ht((3i) are continuous and take a discrete set of
values. Hence ht((3i) = /3i. Putting t = 0 we obtain fooipo = ̂ /oog = /i°^o?
thus /o = fi ° (^o ° ^Po1)- The homeomorphism ho o (p^1 : C —> C has
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two fixed points and is conformal outside a discrete set. Consequently
ho o (pQ1 = id and /o = /i- D

Let us define an analytic structure on M^(/?i, /3s )• To this end consider
the space Y of homeomorphisms ^ : C —> C modulo the following
equivalence relation : ^o ~ ^i it there exists an isotopy ^ : C —> C
such that ^t(a^) = ^o(^), 0 < ^ < l , l ^ j < < 7 + 2 . The map
V —)> C94"2, ^ i-̂  (^(ai), . . . ,^(ag + 2)) being a local homeomorphism
defines on Y the structure of a ((? 4- 2)-dimensional complex analytic
manifold. Let us construct a map TT : Y —>• Mg(/3-i,/3^). Observe that every
element ^ of Y can be represented by a quasiconformal homeomorphism.
Consider a map ^ o g where ^ is such a representative. By the Measurable
Riemann Theorem [AB] there exists a homeomorphism (p : C —> C such
that ^>(l3j) == /3j, j = 1,2 and ^ o g o (p~1 = f is an entire function.
Set Tr(^) = /. Then TT is correctly defined (by Lemma 2). Note that
sing/-1 = {a i ( / ) , . . . , a,(/)} = Wai),... ,^(a,)}.

Clearly TT is surjective and locally injective. Consequently TT induces a
complex analytic structure on Mg(/?i, f3'z). The functions f t i ( / ) , . . . , 0^4-2 (/)
are local coordinates on Mg(ft\ ih}' Finally, the covering Mg = UM^(/?i, /?s)
gives the analytic structure on the whole space Mg.

Note that the topology on Mg is locally equivalent to the topology of
uniform convergence on compact subsets of C.

In conclusion let us show that the map

(3.2) A ^ x C - ^ C , (f^z)^f(z)

is analytic. Let a == (ai(/), . . . , aq^(f)) be the local parameters of / = fa.
Then the homeomorphism ^a m (3.1) can be chosen in such a way that
^a(^) analytically depends on a for any z € C. By the Ahlfors-Bers theorem
on the analytic dependence of the solution of the Beltrami equation on
parameters [AB] we conclude that <^a m (3.1) also analytically depends on
a. Hence fa = ̂ ao90(Pal analytically depends on a. Thus (3.2) is analytic
in both variables and we are done.
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4. Auxiliary analytic results.

The results of this section will be used only in §8.

In what follows we fix a transcendental function g € S and denote
Mg by M.

Consider periodic points of period p of a function / C M. They are
defined by the equation

(4.1) fpz = z.

The solution z = d{f) of this equation is a multi-valued analytic function
on M. The main result of this section is the following :

THEOREM 2. — All singularities of the function a on M are
algebraic.

For the proof we need several lemmas.

Let V be a domain bounded by a simple curve F both ends of which
tend to oo, 0 ^ V. Fix two points 61 and 62 in 9V. Let z € V. Consider
the circle L = {w : \w\ = \z\} and let (63,64) be the connected component
of V H L containing z. We say that the point z belongs to a gulf if 61
does not belong to the bounded arc of 9V between the points 63 and
64. The gulfs are relatively closed bounded sets in V. The complement
of all gulfs in V is unbounded. If we change 61 then the notion of gulf
will change only in a bounded part of the plane. That is why we shall not
emphasize the dependence on the choice of 61. If z e V does not belong
to a gulf and |2;| is sufficiently large then three bounded arcs of 9V with
ends at 61,62,63,64 and the arc (63,64) of the circle L form a curvilinear
quadrilateral [61,62,63,64]. If 7 C V is a curve tending to oo then there
exist points on 7 with arbitrarily large moduli which do not belong to any
gulf.

The following result is closely related to one due to Ahlfors [Al].

LEMMA 3. — Let V be any component of the set G from the
diagram (2.1), so that f : V —^ A = C\D(0, R) is a covering. Fix a branch
of SLTgz in V. Suppose that a point z € V does not belong to any gulf.
Then ^

In^l+arg^^GMexp^

for sufficiently large \z\. The constant C > 0 is independent of z.
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Figure 2

Proof.— Let (p = \nf : G ^ H, Ho = H\D(\nR,l), VQ =
(^Ho} n V. (We use the notation from the diagram (2.1).) Consider
the commutative diagram consisting of conformal homeomorphisms :

<^»r —> E
(4-2) ex? [ ^ exp+InT?

YO -^ ^0

Here T is a half-strip-like domain intersecting all lines {C : ReC = ^},
6 > 60 in a finite union of intervals of total length ^ 27r; E = {s : Res >
0, | Im5| < 7T/2} is a half-strip. Let 2; = re10 € V ((9 = argz is the branch
of the argument fixed above), ^ = In 2; € T.

Consider the connected component (^3,^4) of the intersection {t :
Ret = Inr} containing <'. Denote c?i = ^"^ - z^V ^2 == ^"^z^V If z
does not belong to a gulf and \z\ is sufficiently large, then the curvilinear
quadrilateral A = [di, d^ d^ d^] is well-defined. It is bounded by three arcs
[di,cy, [d-2,d3\ and [^1,^4] of the curve 9T and by the segment [^3,^4].

We are going to estimate from below the extremal length £ of the
family of the curves in A connecting the sides [^1,^2] and [d^, d^]. (For the
definition and the properties of extremal length see [A2], [W].) Consider a
metric coinciding with the Euclidean one on the set AQ = A D {t: Re t <
Inr}. Let 7 be a curve in our family, 70 = 7HAo. The horizontal projection
of 70 has length at least Inr + 0(1), r -^ oo. The length of the vertical
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B T 0

Figure 3

projection is at least 0 + 0(1), r —> oo. Thus the length of 70 is at least

V\n2 r + 02 + 0{1) r^oo.

The area of Ao does not exceed 27rlnr+0(l), r —> oo. Consequently

(4.3) - ' /• "2^(••"^id-^o- • 00.

Consider the curvilinear quadrilateral <I>(A) = — ^ — ^ — , 6 3 , 6 4 where
\- Zt Zi J

6^ = ̂ (dj). Observe that three sides of ^(A) are line segments and the
fourth side is the curve (63,64). The extremal length of the family of curves
in <I>(A) connecting the side — ^^-^ with the side (63,64) is equal to
£ because the extremal length is a conformal invariant. On the other hand
by the well-known estimate due to Ahlfors [A2], p.77 we have

(4.4) ^ r- + co
TV

where r = inf{Res : s € (63,64)}, CQ being an absolute constant. The
estimates (4.3), (4.4) imply

(4.5) r ^ J (Inr + ̂ ) + 0(1), r -^ oo.

From (4.2) and ^(C) € (63,64) we obtain

(4.6) In \^(z) - In R\ = Re <^(C) > r.
n2

It follows from (4.5), (4.6) that |(^(^)| >. c^/rexp ———, where c is indepen-
z In v

dent of z. Lemma 3 is proved since

In^/^l+arg2/^)^!^)!2.

a
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LEMMA 4. — Let ^ : C -^ C be a K-quasicon formal homeomor-
phism, ^(0) = 0. Let arg^(^) -arg 2: be a uniform branch of the difference
of arguments in C*. Suppose

B~1 < \^(zo)\ < B , | arg ̂ o) - arg^ol ^ B

for some ZQ € C*. Then for \z\ > \ZQ\ the following estimates hold :

(4.7) C-1 z\^1 < |̂ )| ̂ C^^

(4-8) I arg ̂ (z) - arg z\ < K^ In \z + C.

Here K^, C depend on K, ZQ, B but do not depend on ^ and z.

Proof. — This is a well-known property of quasiconformal homeo-
morphisms (see for example [LV]). Q

LEMMA 5. — Consider a curve z = ̂ (t), 0 < t < 1 such that
^(t) —. oo, t —^ 1 and a function f e S such that f(^(f}) —> co,
t —^ 1. Let [ht : 0 < t < 1} be a continuous family of K-quasicon formal
homeomorphisms satisfying the assumptions of Lemma 4. Then there exists
a curve z = 71 (t) such that

(4.9) f^iW)=htof^(t))^ to<t<l^

(4.10) In |7i(t)| = In \-r(t)\ + 0(1), ^ ̂  1,

(4.11) arg7i(^) =arg7(t)+0(l) , t-> 1.

Proof. — By Lemma 4, htof(^(t)) -^ oo, t -> 1. There exists J? > 0
such that

/ : C\f-\D{^R)) -^ C\D^R)

is an unramified covering. Consequently we can find a curve 71 satisfying
(4.9). Let us use the diagram (2.1). We have

(4.12) FW))=HtoF(6{t))^

where 6(t) = \n^(t), 6z(t) = ln7i(^), Ht = Ino^oexp. Lemma 4 and (4.12)
imply

(4.13) \F(^(t}) - F(6(t))\ = 0(ReF(6{t))) , t -^ 1,

(4.14) ReF(6,(t)) > K^ReF(6(t))-\nC.
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We deduce from Lemma 1 and (4.14) that

l^i(t) - <^)| <. R |̂̂ )l̂ î ) - -W))!'
Combining this estimate with (4.13) we obtain (4.10), (4.11). The lemma
is proved, n

Proof of Theorem 2. — Consider a germ z = Oi(f) of the analytic
function defined by the equation (4.1) in a neighborhood of /o ^ M. Let /<,
0 < t <_ 1 be a curve in M such that the element <^(/) can be analytically
continued along /i, 0 < t < 1. Two cases are possible :

1 : There exists a sequence tn —^ 1 such that a(ft^) tends to a finite
limit ai as n —> oo. If (/^/(ai) 7^ 1 then the element a(f) can be continued
to the point /i by the Implicit Function Theorem. If (/^/(ai) = 1 then
the function a{f) has an algebraic singularity at / = /i.

2 : a(t) = a(ft) —^ oo as t —^ 1. We will show that this is impossible.
One has ft = ^t ° f ° ^Pt where ^t and (^ are continuous families
of JC-quasiconformal homeomorphisms. We may suppose without loss of
generality that y?t(0) = 0, ^(0) = 0, 0 <, t < 1. Applying Lemmas 4 and 5
repeatedly we find a curve z = f3(t) such that

WW)-/^))-^
ln|a(t)| <C4n|/3(t)|,

|arga(t)-arg/?(t)| < C4n \f3(t)\, ^o < t < 1.

These estimates imply

In2 |/oW))| + arg2 f^W) ̂  3C2 In2 |/3(t)| + 2 arg2 /3(^)

which is impossible in view of Lemma 3. The proof is completed. D

Consider now the multiplier A(/) = (/^'(c^/)) of a periodic point a
as a function of / € M.

LEMMA 6. — All branches of \(f) are non-constant.

Proof. — Let / € M. Consider the subfamily fw = wf C M,
w € C*. It is sufficient to prove that A(w) = A(w/) is non-constant. Denote
ak(w) - /^(a(w)), 0 ^ k < p - 1. Then

p-i
(4.15) AH^w^JJ/ '^w)).

fc=0
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Suppose A(w) = A.

If \ = 0 then for some k^ 0 <: k <: p — 1 the function Ofc(w) is equal
identically to a critical point c of the function /. Consequently f^c = c.
Denote f^c = gc,k(^)' We have the recurrent equation

gc,k+l{^) = ̂ /^A^)) , ^c,o(w) = C.

This implies that the functions ^c,fc ^e non-constant for A; > 1. Thus A ̂  0.

It follows from Theorem 2 that there exists a curve w = 7(^)5 0 <t < 1
such that ^(t) 7^ 0, 0 ^ t < 1 and 7^) — ^ O a s ^ — ^ 1 and the function a(w)
can be analytically continued along 7.

The formula (4.15) is valid on 7. Suppose there exists a sequence
Wj —» 0, Wj C 7 such that lo^Wj)! < c. Then

n^^^^)))!^^
fc=0

and hence A(w^) —> 0 by (4.15). This is a contradiction.

The remaining case to consider is a(w) —>• oo as w —> 0 along 7. (We
cannot apply Theorem 2 since /o ^ -^O I11 such a case we have ak(w) —^ oo
along 7 , l < A * < p — 1. Make use of diagram (2.1). We have

/'(C)-^^ C=exp^ ^ G l / ,

consequently

/'(a,(w)) = F^z^w))^^^ , ^(w) = lna^(w).
OA;(W)

This relation and (4.15) imply

A^n^^n'^'-n^M)-
fc=0 fe==0 rcv / fe=0

The last product tends to oo in view of Lemma 1 and Re^(w) —> +00 as
w —> 0 along 7. This is a contradiction which proves the lemma. D

Consider an entire function
00

/(^)=^d^
fc=0

and include it in the one-parameter family /w^) = /('^^O^ ^ € C*.
Consider a point z = 6 and the sequence of entire functions

(4.16) ^(w)=.C(6), m = l , 2 , . . . .
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LEMMA 7. — If do ̂  b and di 7^ 0 then the functions gb,m, b C C,
m = 1,2,... are pairwise distinct.

Proof. — Let
00

g^mW =^ek(b,m)wk.
k=0

It is easy to see that

( d ^ b + S k , k=m
ek(b^m) = \

[ d^do -+- Sk , k <m,

where 5/c are independent of b and m. Consequently if (6, m) 7^ (V, m') and
m' >_m then em(b,m) ̂  e^(6/,m/). The lemma is proved. D

Let us consider the following sequence of holomorphic functions
on M :

(4.17) g^,m(f)=fmW))^ K z ^ g , m=l ,2 , . . .
where {ai( / ) , . . . ,a^(/)} =sing/~1.

LEMMA 8. — The functions gi^m Q-re pairwise distinct.

Proof. — Let / € M. Conjugating / by an affine mapping we
achieve /(O) -^ a%(/), 1 <. i < q ' , /'(O) 7^ 0. Then Lemma 7 is applicable
to the sequence ga^mW defined by (4.16). We have (ja^mW = gi,m(fw)
where fw(z) ̂  f(wz) and Lemma 8 follows from Lemma 7. D

LEMMA 9. — Let ft, 0 < t < 1 be a curve in M and -y{t), 0 < t < 1
be a curve in C. Suppose that 7^) —^ oo, ft(^(t)) —> b € C as t —> 1. Then
b is an asymptotic value of the function /i.

Proof. — We have ft = ̂ t ° fi ° ̂ t where ^i and ̂  —^ id as t —>• 1.
By Lemma 4 ^{^(t)) —> oo^ t —^ 1. Furthermore lim /i(^t(7(^))) = b and
the lemma is proved. D

5. The dynamics of / € S on the set of normality.

Recall that a domain D is called wandering if f^DH^D = 0 for
m > n > 0. The first example of an entire function having wandering
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components of the set of normality was constructed by Baker [B3]. Later
on, many other examples having interesting additional properties were
constructed [B4], [EL2], [EL5], [H]. On the other hand, rational functions
have no wandering components of the set of normality [Sl]. It was shown
in [EL1], [EL2] and [GK] that this result can be extended to the class S of
entire functions (also, Baker [B4] did this for a smaller class of functions).
Let us start with a brief discussion of this fact.

Let / C Sq. Then / belongs to the (q + 2)-dimensional complex
analytic manifold Mj (see §3). By the definition of Mf it satisfies the
following property : if an entire function g is topologically conjugate to /
then g G Mf. This remark permits one to repeat word by word the proof
by Sullivan. Moreover, the argument for a transcendental function f E S
is even easier than the argument for a rational function due to the fact
that all components of N(f) are simply connected (Proposition 3). Thus
we have

THEOREM 3. — Let f C S. Then N(f) has no wandering
components.

This theorem immediately implies that for / 6 S each orbit in
N{f) is absorbed by a cycle of components of N{f). One may obtain the
classification of such cycles by an argument similar to the one used for
the proof of the Denjoy-WoIff theorem (see [L3], [S2], [V]). Let / be an
arbitrary entire function, D be a periodic component of A^(/), fpD C D.
Then one of the following possibilities holds :

(i) D is a Fatou domain. In such a case all orbits originating in D
tend to an attracting or to a neutral rational cycle {c^k}^^' ^e ̂ ^ °^

p-i
domains |j f^D is called an immediate attractive region of {o^}. Each

k=0
immediate attractive region contains a singular point of f~1 (for the proof
see [F2], [Bla], [L3], [Mo]).

(ii) D is a Siegel disk. Then f^^D is conformally conjugate to an
irrational rotation of the round disk. Hence each cycle of Siegel disks
contains a neutral irrational cycle. In addition, the following inclusion
holds :

00

(5.1) 9DC (J/^sing/-1)
fc=i

(see [F2], [L3]).
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(iii) D is a Baker domain. We call a Baker domain a periodic component
D of N(f) such that f^z -^ oo as m -^ oo for z C D.

It follows from Theorem 1 that a transcendental entire function / e S
cannot have Baker domains. Thus we obtain

THEOREM 4. — Let f e S . Then every orbit in N(f) is absorbed
by a cycle of Fatou domains or by a cycle of Siegel disks.

For examples of transcendental entire functions having Baker domains
see [EL5], [H].

In conclusion we show that the number of Fatou domains and Siegel
disks is finite. Denote by rip the number of the cycles of Fatou domains
and by ni the number of irrational neutral cycles. It is clear that rip < q
for / C Sq because every cycle of Fatou domains contains a singular point
of/-1.

THEOREM 5. — Let f C Sq. Then up + ni < q.

Sketch of the proof (Compare [S]). — Suppose first that there is
only one irrational neutral periodic point ZQ . If rip < 9—1, there is nothing
to prove. Otherwise all singular points of f~1 are attracted to attracting
and neutral rational cycles. In view of (5.1) ZQ cannot be the center of a
Siegel disk. So ZQ e J(f) (a "Cremer point"). But then

zoe (J/^sing/-1)
fc==i

(see [L3], §1.14) which gives a contradiction again.

Now assume that there are at least two neutral irrational periodic
points. Then one of them, say ZQ, has a preimage z\ which does not belong
to the cycle of ZQ. One can construct a homeomorphism h : C —> C
conformal in C\D(z-i,e) and having the following properties :

(i) h{oo) = oo,

(ii) M/°^^(/)+MA

(iii) ZQ is an attracting periodic point of foh with immediate attractive
region V and / o h(D(z^, e)) C V.

Then using the Measurable Riemann Theorem one can find a quasi-
conformal homeomorphism (p : C —> C such that /i = (p~lofoho(p [s a.n
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entire function. Thus np{f) + nj(/) ^ n^(/i) ^ g because /i e My c
0
5g. D

Remark. — One can deduce from Lemma 6 the weaker estimate
i^F^f) + ^nJ(/) ^ 9 using the following elementary

LEMMA 10 (See [F2], [Mo]). — Consider n functions \i,...,\n
analytic and non-constant in a neighborhood of the origin, |A^(0)| = 1,
1 ^ J ^ ri. Then there exists an arbitrarily small t such that at least n/2
of the functions satisfy \\j(t)\ < 1. D

6. Completely invariant components of N(f).

In what follows we shall need a more detailed description of singulari-
ties of functions /-1, where / is entire. A point a € C is called a logarithmic
singularity of f~1 if there exists a disk V = D(a, r) such that /"^V) con-
tains an unbounded component W such that f : W —> V\{a} is a universal
covering. For / e S all asymptotic values are logarithmic singularities. We
shall use

GROSS THEOREM [N]. — Let f be an entire function and g be
an element of f~1 defined in a neighborhood of WQ € C. Then g can be
analytically continued along almost all rays {wo -J- te10 : 0 < t < oo},
^e[-7r,7r].

The following result is an extension of Theorem 2 from [B2].

LEMMA 11. — Assume that a transcendental entire function f has
a completely invariant domain D. Then all critical values and logarithmic
singularities of f~1 are contained in D.

Proof. — Assume that a ^ D is a critical value or a logarithmic
singularity. Let V = D(a,r)\{a} with a sufficiently small r > 0 and W
be a component of f~^V such that / : W —^ V is an unramified covering
but not a homeomorphism. (If a is a logarithmic singularity then f\W is a
universal covering. If a is a critical value then W is double connected and
f\W is a covering with finite valency).

Fix two points &i and 62 in W such that /(6i) = f(b^) = b. Denote
by gi the branches of f~1 such that gi(b) = bi, i = 1,2. Using the Gross
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theorem we find a segment [&,c], c 6 D such that gi can be analytically
continued along [6,c]. Let 7^ = <^([&,c]). The curves 7^ connect bi with
some c^, i = 1,2. We have /(ci) == /(c2) = c e D. Thus ci and 02 belong
to D since J9 is completely invariant. There exists a simple curve 70 C -D
which connects ci and c^. We have /(7o) C D since jD is invariant. There
exists a small r', 0 < r ' < r such that D(a, 2r') D /(7o U 71 U 72) = 0.
Thus the component Wi of f~l(D(a^2rf)\{a}) which belongs to W does
not intersect 70 U 71 U 72. (When r' —> 0, TYi tends uniformly either
to a critical point ZQ ^ D or to infinity.) Choose a point d € 9D{a^ r')
such that the segment [&,d] has the properties : [b^d] D D(a,r') = 0 and
[&, d] D [6, c] = {6}. The elements gi can be analytically continued along [6, d]
because / : W —> V is a covering. We obtain two disjoint simple curves
^ = gi([b^ d}) which connect the points bi with points di, f(d-t) == f(d^) = d.
Then we connect d\ and d^ by a simple curve f3 such that f3 D f3i = {di}
and /(/?) is the circle 9D{a,r').

Denote 6i = /3^ U 7^, z = 1,2. Then the simple curves 5i,^2 and /3
have pairwise disjoint interiors and /3 D 70 = 0. Let 70(^)5 0 ^ ^ <, 1 be
a parametrization of 70, 7o(0) = ci, 7o(l) = 02. There exist ^i and ^2 in
[0,1] such that 7' = {^o(t) : t^ < t < t^} H (^i U 62) = 0, 7o(ti) = c[ € ^i
and 70(^2) = ^2 e ^2- Denote by ^ the part of ^ from ^ to c[. Then
r = (3U6[ U^2 U7' is a Jordan curve. Denote by A the bounded component
of its complement. The image f(T) consists of the following parts :

(i) the circle 9D (a, r'),

(ii) the curve f(6[ U 6^) which is a part of [b, d] U [b, c],

(iii) the curve f{Y) C /(7o) C D which is disjoint from D(a,2r').

Note that D is simply connected since all unbounded components of N(f)
for entire transcendental / are simply connected [B2]. Thus D(a,2r') lies
in an unbounded component of C\/(7').

Consider the point {w} = 9D{a, 2r') H /(F) = 9D(a, 2r') H [b, d]
and a disk C = D{w,e). Here e > 0 is so small that e < r' and
C H ([^c] U /(Y)) = 0. It follows from (i)-(iii) that the index of /(F)
with respect to all points of C\[b^d\ is equal to zero. On the other hand
w e [b^d] C /(A) and /(A) is an open set. This is a contradiction which
proves the lemma. D
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Remarks. — 1. Essentially the same proof shows that if an entire
function / has a completely invariant domain D then all direct transcen-
dental singularities of f~1 lie in D. (For the classification of singularities
see [N]). The question of whether indirect singularities are contained in D
remains open.

2. If / C S then the use of the Gross Theorem becomes unnecessary.

THEOREM 6. — Let f € S be a transcendental entire function
having a completely invariant component D of the set N(f). Then D ==
N(f).

Proof. — If D ^ N(f) then there exists a periodic component
G of the set N(f) different from D. This follows from Theorem 3. This
component G cannot be a Fatou domain because sing/"1 C D. On the
other hand it is evident that D is a Fatou domain. Thus the set

(J /"(sing/-1)
n>0

has only one limit point. Consequently G cannot be a Siegel disk in view
of (5.1). The theorem is proved. . D

7. The area of the Julia set.

Let Opi(r^f) be the linear measure of the set {6 : \f(Te^e)\ < R}. In
this section we consider entire functions satisfying the following property :

(7.1) l i m i n f 1 fe^tj)^ > 0.r->oo Inr ji t

There exists a simple sufficient condition for (7.1). To state it recall
that the order of growth of an entire function / is

. ,lnlnM(r,/)p = hm inf ——,—-——- ,r—^oo Inr
where M(r, /) = max |/(2:)|. Observe that all functions of class S mentioned

in the introduction have finite order.

PROPOSITION 4. — If the order of an entire function f is finite
and its inverse f~1 has a logarithmic singularity a e C (see ^6) then (7.1)
is satisfied.
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This proposition may be proved by the argument used in the proof
of the Denjoy-Carleman-Ahlfors Theorem [N], Ch. XI, §4.

It is plausible that for a function / e S of a finite order the property
(7.1) is equivalent to having a (finite) asymptotic value.

Recall that I(f) = [z : fz —> oo}.

THEOREM 7. — Let f G B be a transcendental entire function
satisfying (7.1). Then area I{f) = 0. Moreover, there exists an M > 0 such
that

liminf \fnz\ < M a.e. in C.
n—f-oo

Remark. — For any function of the form fa,b{^) = acosz + b € 62
(7.1) fails (it has a finite order but f^^ has no (finite) logarithmic singular-
ities). McMullen [McM] obtained a surprising result that areaJ(/o^) > 0
for arbitrary a, b (a 7^ 0). So (7.1) is essential in Theorem 7.

We shall use the following classical

KOBE DISTORTION THEOREM (see [V]). — Let g be a univalent
holomorphic function in the disk D(zo,r) and k < 1. Then

A*71 A*y*
(i) l^o)1^^2 ^ l^)-^o)l < l^o)l^^ zEQD(z^kr)

(ii) ^4|<7W; z^z^D^kr).
9 ^2)

Proof of Theorem 7. — If the assumption (7.1) holds for some R > 0
then it holds for every R' > R. Fix R > 1 so large that in addition to (7.1)
we have sing/"1 C D(0,R/2)^ |/(0)| < R. We use the notation of diagram
(2.1). Let (p(t) be the length of the intersection of the set U with the
segment [t^t + 2m}^ t > 0. It follows from (7.1) that for some constants
to > 0 and T] > 0

/ tp(t]dt <, t(27r - r j ) , t > to.
Jo

Consequently there exist the constants Co > 0 and e > 0 such that

are.(^/4)nl7) ,, Re, > %
areaD(^,r/4)

Choose C such that C > Co and C > 2 In J?+327r. Then in view of Lemma 1

(7.3) F\z) >8 if Ref(z) > C.
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Denote by Y the set [z : Re Fmz > C, m = 0,1,2,...}. We shall prove that
area Y = 0. By the Lebesgue Theorem it is sufficient to prove that the
lower density of the set Y at an arbitrary point z 6 Y is less than 1.

Let ZQ € V, Zn = F'^ZO, rn = Rezn. Denote by F^1 : H —> U the
branch of the inverse function for which F^z-m = z-m-i' The function
F^1 is univalent in the disk D{zm^m/^) C H. The image of this disk is
contained in U and thus it cannot contain a vertical segment of length 27T.
By the 1/4-theorem we have ^F^Y {zm)\ <: 87r/r^. Applying the Kobe
Distortion Theorem (i) one obtains

(7.4) F^D(z^rm/^CD(zm-^d)^ d = STT.

Now let 1 < n <_ m— 1. The function F^1 is univalent in the disk D(zn-> 2cQ
and KI^V\Zn)\ < 1/8 in view of (7.3). Using the Kobe Distortion Theorem
(i), we obtain that

(7.5) F^D{z^d) C P(^-i,d/2), 1 < n ̂  m - 1.

It follows from (7.4), (7.5) that

(7.6) Bm = F^D^ r^/4) C D(z^ 2-m+ld),

where F'^ = F^loF^lo• • -oF^1. Applying the Kobe Distortion Theorem
(i) to the function F"^ univalent in D(^,r^/2) we see that the oval Bm
has bounded distortion, i.e. ,

(7.7) D(ZQ, tSm) C Bm C D(ZQ, Sm)

where t is independent of m, and Sm is the radius of the smallest disk
centered at ZQ containing Bm' It follows from (7.6) that

(7.8) Sm —> 0 as m —»• oo.

Applying the Kobe Distortion Theorem (ii) to the function F"771 in view
of (7.2) we obtain

area(^ny)^^_ ^
areaB^

From this and (7.7), (7.8) it follows that the lower density of Y at ZQ is less
than 1. Consequently area Y = 0. D

THEOREM 8 (cf. [DH2], [LI]). — Let f (E S be a transcendental
entire function satisfying (7.1). Assume that the orbit of every singular
point of f~1 is either absorbed by a cycle or converges to an attracting or
to a neutral rational cycle. Then either J{f) = C or area J(/) = 0.
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Remark. — In the latter case all orbits in N{f) converge to attract-
ing or neutral rational cycles in view of Theorem 4. One may show that
in such a case there exists a singular point whose orbit is not absorbed by
a cycle (see [L3], Theorem 1.4). So if the orbits of all singular points are
absorbed by cycles then J(f) = C. Example : f{z) = 27^ze2:.

Proof. — Observe first that there are no neutral irrational cycles.
Indeed, if a is such a cycle then

a C {/-c^oVF^o
for some point c e sing/-1 ([L3], Prop. 1.11) which contradicts the
assumptions.

Further, by Theorem 7
(7.10) liminfl/^l <M

m—^-oo

for almost all z e J(/). Consider a point z C J(f) satisfying (7.10), the
orbit of which is not absorbed by any cycle. Then it is not attracted by any
cycle. It is obvious for repelling cycles and follows from the results due to
Fatou for neutral rational cycles (Fatou [Fl] proved that a rational neutral
cycle may attract only points of N{f)).

n

Let Cn = U /^(smg/"1), 1 < n < oo. Since z is not attracted by
A;=l

any cycle, there exists a sequence mj —^ oo such that
f^ z -^ w, dist(/^ z, Coo) > 26 > 0

for some w € C and 6 > 0. But Cn = sing^-71). Hence there exist branches
f-^ which map univalently the disks D^f^z^S) onto neighborhoods
of z. If J(f) is nowhere dense, we have

inf areaCPM)nAT(/))^^
ici^2|wi 9Lreo,D(z,6} ~cew) v ' /

This inequality and the Kobe Distortion Theorem (ii) imply
area(B,n7v(/)) ^/ly2

>T - e
f7 in area(B,n7v(/)) ^ / l x
v ' / areaB^ - \2/
where Bj == f-^D^f^ z,6). Furthermore K/-^)'] -^ 0 uniformly in
D(w, .6\ (see [F2] or [L3]) and hence diam^ -> 0.

Using the Kobe Distortion Theorem once more, we see that the Bj
are ovals with uniformly bounded ratio of axes. This and (7.11) imply that
the lower density of J(f) at z is less than one. By the Lebesgue Theorem
area J(f) =0. n
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8. The structural stability.

Let W be a simply connected manifold, fo (=:W.

DEFINITION. — A holomorphic motion of a set A C C over W
(originating at fo) is a map (p : W x A —>• C satisfying the following
conditions :

a) The map f i—^ (p(f, a) is analytic in f for every a € A;

b) The map ^pf : a i—> (^(/, a) is injective for every f € W;

c) (^ = id.

A-LEMMA. — a) A holomorphic motion (p of a set A may be
extended to a holomorphic motion of the closure A [L2], [MSS];

b) The map (pf : A —> C is quasiconformal for any f e W [MSS]. D

Remark. — The quasiconformality of a map defined in a non-open
set is understood in the sense of I.N. Pesin (see [BRo]).

Let us consider a manifold M defined in §3. An entire function fo^M
is said to be J-stable (in M) if for all / e M sufficiently close to /o the
transformations fo\J(fo) and f\J(f) are topologically conjugate and the
conjugating homeomorphism (pf : J(fo) —^ J(f) depends continuously on
/ (the space of maps J{fo) —> C is endowed with the topology of uniform
convergence on compact sets).

Let us consider the multi-valued analytic function a? : M —> C
satisfying the equation fp(a) = a. By Theorem 2 this function has only
algebraic singularities. Denote by Np the set of these singularities (this is

00

a subset of M). Put N = \J Np, S = M\N. The following result is an
p=i

analog of the theorem obtained in [L2], [MSS] for rational maps.

THEOREM 9. — All functions f G S are J-stable. The set S is
open and dense in M.

Proof. — Let \p(f) = (/p)/(^p(./')). (Ap(/) is the multiplier of a?(f)
or some power of it). It follows from the Implicit Function Theorem that
if / € Np then Ap(/) == 1 for a branch of \p (thus / has a neutral rational
cycle).
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Let /o € S- Consider a simply connected neighborhood U C S
of /o- Then all branches a?^ of a? are single-valued in U. Furthermore
if Op^(/) = Oiqj(f) for some f e U then o;p^ = Ogj. For otherwise
/ is a singular point of Opq. The family of functions a?^ defines the
holomorphic motion of the set of periodic points Per /o over U. Namely
^pf : o^p,z(/o) i—^ ap^(f). By the A-Lemma this motion may be extended
to Per/o- This extension conjugates /o|Per/o to /|Per/. But the Julia
set J(f) C Per/ is distinguished from Per/ by the purely topological
property : J{f) consists of non-isolated points in Per/. Hence (pf maps
J(/o) onto J(/), and J-stability is proved.

Let us show that S is dense in M. Denote by s(f) the number of
attracting cycles of /. Let fo ^ N and e > 0. Then there exists / € Np
such that dist(/o?/) < £• We have \p,i(f) = 1 for a suitable branch of
Ap, and Xp^ ^ 1 by Lemma 6. Consequently there exists /i € M such
that |A(/i)| < 1 and dist(/,/i) < e. Since attracting cycles are stable
under perturbation, ^(/i) > s(fo) for sufficiently small e. If /i € N , the
process can be repeated, and the number of attracting cycles increases. By
Theorem 5 the process breaks off no later than at the g-th step. As a result
we obtain a function / G S close to /o- The theorem is proved. D

Remark. — One may show that the set of J-stable functions coin-
cides with S and give some other characterizations of S (see [L2]).

Recall that an entire function fo e M is called structurally stable
(in M) if for every / € M close enough to /o the transformations
fo:C—^C and / : C —)• C are topologically conjugate, and the conjugating
homeomorphism depends continuously on /.

THEOREM 10. — The set of structurally stable endomorphisms is
open and dense in M. The conjugating homeomorphisms can be chosen to
be quasiconformal.

Proof (Compare [MSS]). — Let /o ^ S be a J-stable function. Then
/o has no neutral rational cycles (see the definition of S). Hence /o has no
neutral cycles at all. Otherwise /o can be perturbed so that an irrational
neutral cycle turns into a rational one (apply Lemma 6). By Theorem 4
all orbits in N(fo) tend to attracting cycles. To simplify the notation we
assume that there is a unique attracting fixed point a(/o) which attracts
all points of N(fo).

Let (pf : J(fo) —> J{f) be a homeomorphism conjugating /o to a close
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function / € M. The problem is to extend (pf to the attracting region of
a(/o)- Let o^(f) be the attracting fixed point of / obtained by a perturbation
of a(fo). The singular points ai( /) , . . . , dq(f) can be enumerated so that
they depend continuously on / (recall that dj(f) are local parameters on
M). Suppose that the first r singular points of /o'1 ne m tne attracting
region of a(fo) while the others lie in the Julia set J(fo). It follows from
the J-stability of /o that the same properties hold for any close function
/. Let all the above-mentioned properties be valid in a neighborhood Wo
of/o.

Consider the set A C WQ such that for some m^i > 0, i^j C [1, q]

(8.1) rW)) = f\a,(f)).

Let us show that A is closed and nowhere dense in WQ. Denote by
Z the set of / € Wo for which the multiplier A(/) of the fixed point a(f)
vanishes. By Lemma 6, Z is a proper analytic subset of Wo. Therefore, it
is sufficient to show that A is closed and nowhere dense in a neighborhood
Wi of /i € Wo\Z.

Let W\ C WQ\Z. Then there is an e > 0 such that any function
/ C W\ univalently maps the disk D(a(f),e) into itself. On the other
hand, there is such a number k that

\fma,{f)-a(f)\<£ f o r m > A ; , feW^ 1 < j < r.
Consequently, if / C W\ DA then / satisfies some equality (8.1) with £ = k.

Consider now the set X of / e Wi such that ./^(o^/)) = a(f) for
some j. By Lemma 8, X is a proper analytic subset of W\. Hence it is
sufficient to show that A is closed and nowhere dense in a neighborhood
W^ satisfying W^ C W^\X. But

inf{|A,(/) - a(/)| : / C TV2 , 1 ^ i ̂  r} > 0

while ./^a^/) —> a{f), m —» oo uniformly in W^. Therefore the equations
(8.1) for £ = k and large m have no solutions in W^. Thus there exists a N
such that

(8.2) AnW2= \J (A^n^),
m<N

where A^ = {/ € WQ : f^a^f) = /S(/) for some ^3 e I1^]}' ̂
Lemma 8 each Ak,m is a proper analytic subset of Wo. Thus A D W^ is also
a proper analytic subset of W^.

Now we show that every endomorphism / € Wo\A is structurally
stable. If / € Wo\A then the multiplier A(/) is not zero. Denote by
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Kf : z ^ z + l3(f)z2 + • • • the normalized Konig function for / (see [V]).
It is univalent in a neighborhood Vf of a(f) and satisfies the Schroder
equation Kf(fz) = \(f)Kf(z). One may easily verify that Kf(z) is analytic
in both variables. Diminish the neighborhood |j Vf (without changing

fewo
the notation) so that Kf(Vf) = D(0,e) and the orbits {/m^•(/)}^o are

disjoint with 9Vf. Let dj(f) be the first point of {/m^•(/)}^o that falls

into Vf, 1 ̂  j < r. Then d,(jf) ^ dj{f) for all i + j and / € WQ\A. Set
b,(f)= Kf(d,{f)).

It is easy to construct a holomorphic motion g/ : D(0^e) —> D(0^e)
over some neighborhood fl C W such that

(i) gf conjugates z ^—> \{fo}z to z \—> \(f)z

(ii) 9f : bi{fo) ̂  b,(f), 1 ̂  i ̂  r.

Let (ftf = KJ1 ogj-oKf. Then (pf : Vf^ —> Vf is a holomorphic motion
over f^ conjugating /o|y/o to /IVf an(^ sucn tnat

(8.3) ^ : d,(/o) ̂  ̂ (/).

We will extend (pf to the whole attracting region of a(/o)-

Let z G /o'^Yfo an(^ fS2' ^ smg/(^fc• Consider the functional equation

(8.4) /'W/)) := ̂ (/o^), ^(/o)=^.

By the Implicit Function Theorem it has an analytic solution ^ = ̂ z{f) m
a neighborhood of /o- Let us show that ̂  may be analytically extended to
the whole domain fl. (assuming without loss of generality that f^ is simply
connected).

Let {/i}o<t<i be a path in f2 such that ̂  is analytically continued
along the path {/t}o<t<i- If fi is an algebraic singularity of ^z then ̂ z(fi)
is a critical point of /^. Hence /^(^(/i)) = /^^•(/i) for some j € [l,r]
and m e [0,/c- 1]. By (8.4)

^i(^) = A .̂W - A^W
for some s € [0,m], Now (8.3) implies

^z=fSd,(fo)esmgfQk

which contradicts the assumption.

Assume now that ^z(ft) — ^ o o a s ^ — ^ l . B y Lemma 9 ̂  (f^z) is an
asymptotic value of /^, i.e. ^/i(/^) = fmaj{f^) ^or some m ^ [0^ — 1]?
and we obtain a contradiction through the same argument as we just used
above.
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oo
Thus, </?y may be extended to the set (J /o~ Y/o punctured in the

fe=o
inverse images of Oy(/o) of all orders. Since the closure of this set is C, the
application of the A-Lemma completes the proof. D

Remarks. — 1. As in [L2], [MSS] Theorems 9 and 10 may be proved
for any analytic subfamily M. C M.

2. Let W be a connected component of the set of structurally stable
functions in M modulo the action of the affine group by conjugations. Then
W can be represented as T(/)/Mod(/) where T(f) is the Teichmiiller space
and Mod(/) is the modular group associated with / (Sullivan [S2]).

We say that an entire function / e S satisfies Axiom A if the orbits
of all singular points of f~1 tend to attracting cycles.

PROPOSITION 5. — A function f 6 S satisfying Axiom A is J-
stable (in the family Mf).

Proof. — It is easy to see that all functions g C Mf close to / also
satisfy Axiom A and hence have no neutral cycles. Thus / 6 S. D

The converse statement is one of the central problems of holomorphic
dynamics. For rational maps it is known as Fatou's conjecture (see [F2],
p.73).

9. Appendix : The exponential family.

In conclusion let us discuss the family Mexp of entire functions
z i—)- Xexpwz + a equivalent to expz (in the sense of §3), attracting a
good deal of interest during the last decade [BR], [D], [DGH], [EL1-4], [L4],
[M], [McM], [R]. Factorizing Mexp modulo the action of the affine group
by conjugations we obtain the reduced family Mexp == {expwz : w € C*}.
We would like to consider the family {fa : z ^—> expz + a}. The natural
projection of this family onto the reduced family is w = exp a. The following
theorem was independently proved in [BR] (except the results concerning
the area of J(/), which were independently proved in [McM]) :

THEOREM 11.— Let fa: z^ exp z+a. Then one of the following
possibilities holds :
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(i) The function fa has a unique attracting cycle {<^A;}^=^- The set of
normality N(fa) coincides with the attractive region of this cycle. The area
of J{fo) is equal to zero. The singular point a belongs to the immediate
attractive region of {o^} but its orbit is not absorbed by this cycle. The
function fa has no neutral cycles.

(ii) The function fa has a unique neutral rational cycle {a/,;}^!^. The
other properties of fa are the same as in case (i).

(iii) The function fa has a cycle of Siegel disks.

(iv) The Julia set J{fa) coincides with the entire plane C.

The theorem follows immediately from the results of §5 and Theo-
rem 8. For real a cases (i), (ii), and (iv) hold f o r a < — l , a = — l and
a > —1 respectively. The fact that J(fa) = C for a = 0 was proved for
the first time by Misiurewicz [M]. The Hausdorff dimension of J(fa) m all
cases is equal to 2 [McM].

Let S C C be as in §8 the set of a for which the function fa is J-
stable. In view of Theorem 11, S consists of two parts : S = Si U ^2. Here
EI is the set of a for which fa has an attracting cycle, Ss is the interior of
the set of a for which J(fa) = C. If a € Si then by Theorem 11 the orbit
{/^a}^o ls not absorbed by the cycle. Hence fa is structurally stable (see
the description of structurally stable functions in the proof of Theorem 10).
Thus in the exponential family J-stability implies structural stability. The
analogue of the "Fatou conjecture" stated in §8 is the following :

CONJECTURE. — ES = 0. If J(fa) = C then the function z \->
exp z + a is not structurally stable.

It is known that /o is not structurally stable [D]. It also follows from
the result of [L4] stating that z i—^ exp z has no ergodic components of
positive measure.

Denote by Wp the subset of Si in which the minimal period of
the attracting cycle a (a) of fa is equal to p. Let Wp^n be the connected
components of Wp and Ap^(^) be the multiplier of a(a). One can easily
prove

PROPOSITION 6. — The domains Wp^n are simply connected and
unbounded.

One may describe explicitly the sets W\ and W^. Wi is the domain
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lying on the left of the cycloid a = iO—e10^ —oo < 0 < oo. W^ has the unique
component W^^n in each strip Il2,n = {a : 27rm < Ima < 2m{n + 1)},
n = 0, = L 1 , . . . . The boundary of W^^n is a curve a = i(0 + ^) — e^*9"^
where ZA = n(^) satisfies the equation (sinu)/n = —e10 and Imu > 0,
n(7r(2n + 1)) = 0. The curve QW^.n is tangent to the cycloid <9Wi at the
point dn = 1 + %7r(2n + 1).

There are infinitely many other components Wp^n touching the cycloid
QW\ at the dense set of points (for which the multiplier is rational).
Infinitely many new components touch each of these components and so
on. The situation is quite similar to that which occurs for the quadratic
family z2 + c.

We conclude the section by stating an analogue of the Douady-
Hubbard Theorem on the Multiplier [DH1] :

THEOREM 12. — The multiplier Xp^n : Hp,n -^ D*={z :
0<\z\<l} is the universal covering map.

Sketch of the proof. — Following Sullivan [S2] (see also [L3], proof
of Theorem 2.8) one may construct the following commutative diagram

Wp^n ^- T{Sa) ̂  {z : 1m z > 0}
\ ^P.n 7T y

D*

Here a e Wp^n, So. is the Riemann surface associated with fa (a torus),
T(Sa) is the corresponding Teichmiiller space (the half-plane), ^ is the
projection modulo the action of modular group Mod(/a) on T(5a), TT is
the projection modulo the action of the cyclic group T = {z i—>- z + ^}nez
generated by the Dehn twist map of the torus. So, TT is a covering map and
hence Xp^n is also a covering map. Since Wp^n is simply connected, Xp^n is
the universal covering map. D
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