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ESTIMATES OF ONE-DIMENSIONAL
OSCILLATORY INTEGRALS

by Detlef MULLER

1. Introduction.

If U is an open domain in R* and if f is a smooth, real valued
function on U, one may define the associated oscillatory integral as

E/®9) = J 9(x)e?™ =) dx
8]

where 3 belongs to 2(U), the space of testfunctions on U.
When f hasthe form f = ) n;y;, where the ;e C*(U) are real-
ji=1

valued functions and m; are real parameters, one is interested in the
asymptotic behaviour of Ezwj(S) as (ng,-...,Nn, tends to infinity, for
several reasons.

For example, if p is a smooth measure on a smooth submanifold of
R™, and if the support of p is sufficiently small, then the Fourier-Stieltjes
transform fi(n,,...,n,) may always be written as EXTWJ,(S) for certain
functions {; and 9.

Good information about the asymptotic behaviour of such Fourier-
Stieltjes transforms is needed to solve the synthesis problem for smooth
submanifolds of R™ (see e.g. [7]). And, as Professor Y. Domar has pointed
out to me, such knowledge would also yield information about the decay at
infinity of solutions of partial differential equations (see e.g. [5]).

As far as I know, satisfactory aswers to the above problem have only
been given for oscillatory integrals Eznj%(S) with

k
EnVi(xyg,..x) = Z X+ Mes 1Vis 1 (X150 0%,
i=1

i=
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which correspond to surface carried measures (see [2], [4], [6]). In some
sense, the other extreme is the case where Zn;y; is a function of only one
real variable, which corresponds to measures on curves. For this case, we
will prove some quite general results.

2.

Let Y e C*(LR"), ¥ = (Vy,...,V,), where I # & is some bounded
open interval in R. For §, neR"” let &-n denote the Euclidean inner
product on R", and correspondingly let

Y = X (.
Further let

Inl: = m?x In;l for neR".

Define the torsion t© of { by

t(x)=det (Y§'* V(X)) j=1,...=det (W " (x).. .Y D(x)),

where { is regarded as a column vector and y* denotes the k — th
derivative of . Atleastfor n = 2 we have t(x) = k(x)|V"(x)|*>, where k
is the torsion of the curve y = {(x,y(x)): xeI} in R"*!. Let

e(t) = et for teR, and e(g) =eog

for ge C*(LR). If {y,(x) = x for xeR, then for 3e 2(I), noeR
and N1 =(Mg,...,M,) eR”, we have

E, w‘(9) = (Se(n-¥)) (—No)-

nj

So it will be slightly more general to study the behaviour of [3e(n-{)lpy as
In] = oo, where

|Plpm = sup [o103]

for every ¢ € 2(R).
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For certain reasons (see [3]; [7], Th. 4.1), we will also study |3e(n-V)la,
where

Ipla = j (1)l dt

for every 9 e 2(R).

We will furst state our main results and prove some corollaries :

THEOREM 1. — Let Se 2(1). Then
1
(i) 18e(Mm-WIa = 0(n[?), as In| - o0.
(ii) If for some subinterval J of 1 and some o > 0

9x)| > o and |9(x)—9%(Y)| < /2 forall x,yel,

and if l5,...,\,l; are linearly independent modulo affine linear functions,
then there is a constant C > 0, such that

1

[Be(n-Y)la = C(1+Inl)?

for all neR".

CoROLLARY 1. — The following two conditions are equivalent :

(i) For each 3e€ 2(R), 8 # 0, there are constants ¢ >0, C >0,
such that for all neR"

c(L+nD? < 9e(m-Wla < C(1+n)2.

@ii) ¥y, ..., V, are linearly independent modulo affine linear functions on
every non empty open subinterval of 1.

Proof of Corollary 1. — (i) follows directly from (ii) by Theorem 1. Now
suppose that there exists a vector ve R”, v # 0, such that v-{ is affine
linear on some open subinterval # # J of I. Then we have for any non-
trivial 8 € 2( %)

[9e(sv-Y)|a = [9]a # 0 for all seR,

since e(sv- V) is the product of a unimodular complex number and a unitary
character of R.

Thus (i) is not fulfilled, q.e.d.
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Remark. — Condition (ii) of Corollary 1 is clearly satisfied if t~!({0})
has empty interior. As will be shown later (Lemma 3), this is always the
case if Y, ...,\, are real analytic and linearly independent modulo affine
mappings. However one should notice that global linear independence does
not in general imply local linear independence.

THeoreM 2. — (i) If T7'({0}) = &, then for 3€ ()
BeM-Wlem = 0(INI~H**Y)  as  In| - oo.

(i) If 3e€e2(1), and if there exists an xqel with 3(x,) # 0 and
T(xo) # 0, then there exists an € > 0 and a function & € C*((—¢,g), R")
with

det EWE'Y) ... E" V) #0  forall  ye(—eg),
such that, for some C > 0,
19e(SE() - W)lpm = C(1+[s]) ~ O+ D
for all seR and ye(—¢&g).

Assume that t7!({0}) has empty interior. Then we have

COROLLARY 2. — Thereexistsa 3e€ 2(1), 8 # 0, suchthat for all positive
Oy,...,8,€R  with Ya;<(n+1)"', there exists a constant
1

C = C(a,,...,a,) > 0 such that
2.1 [Se(m-Y)lpm < C l_[ Injl“"-
j=1

Conversely, if o, ...,a,€R are positive, and if there exists a e 2(1),
9#0, and a C > 0 such that (2.1) holds, then

Zai < (n+ l)_l.
1

Proof of Corollary 2. — If 1~*({0}) has empty interior, then there is of
course an xy €l with t(x,) # 0, and so, for 3e 2(I) with sufficiently
small support near x,,

[9e(M - V)lpy < C(1+|n])~ Vet D

by Theorem 2, (i).
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If a,...,o, are positive and Za; < (n+1)~", then

[T, < m*@*v  for Il >1,

J
hence

Bem Wlew < C[IIMI™  for ni>1,
j

and the same estimate holds for all n if one replaces C by C + |9|...
Conversely, let now 3e 2(I), 3 # 0, such that (2.1) holds for some
o; >0, and assume

J
To; = (n+1)"' + 3, 5>0.

Since t!({0}) has empty interior, thereis an xo €I with 8(x,) # 0 and
1(xo) # 0. Choose € > 0 and &e C®((—¢,c),R") as in Theorem 2 (ii).
Since det (E())E'(Y) ... E" V() # 0 for all ye(—¢,c), there exists a
Yo € (—¢&,€) with

Ei(yo) #0 for j=1,...,n.
It follows
[9e(SE(¥o) - Wlpm = C'(1 +|s|) " Mer+ 1),

On the other hand, (2.1) yields

[9e(sE(yo) W)lem < C n [sE;(yo)l ~%
- (C Il la,-(yo)r“f)lsr o jg 5.

For |s| sufficiently large this leads to a contradiction to (2.2), q.e.d.

Corollary 2 demonstrates that the result in Theorem 2 is in some sense
best possible.

3.

Before we start to prove the theoréms above we will state some lemmas.
The first one is due to J.-E. Bjérk and is cited in [3], Lemma 1.6 :

LeMMA 1. — Let 1 # & be a bounded, open interval in R, and let
0e2(), geCr(I) with

0<Ci<EMI+ 18N+ -+ + 18P < C,



194 DETLEF MULLER

if xel, where C, and C, are constants and p is a positive integer. Then
there exists a constant C not depending on g, such that

‘ j (e dx| < C(1+1d) "

for every teR.

The second lemma will be used to prove the remark following
Corollary 1. T would like to thank Professor H. Leptin for pointing out to
me a shorter proof than my original one. By « A » we denote the exterior
product in the Grassmann algebra A(R").

LEMMA 2. — Let ye C*(I,LR"). Then
VE) AV(X) ... AP D(x) =0
for all xel implies
V) A Y20 A L. AY*E(x) =0
for all xel and ky,...,k,eN,.

Proof. — Fix x, €1, and assume first y(x,) # 0. If ue C*(I,R), then
ko (k
(“‘l’)m — Z (‘>u(k—j)",(j),
=0 \J

so YAY A ... Ay® D =0 implies

@) A @) A ... A )"V =0.
So, it is no loss of generality to assume
Y, (x) =1 for xel.
If {e;}; denotes the canonical basis of R", we may thus write

n—1

V) = Y Vi(x)e; + e, = p(x) + e,, where p(x)eR"! x {0} < R".
j=1
This yiellds

0=\IJ(X)/\ \I’,(X) Ao A \p"—l(x)=p(x) A p’(x) AL A p(n—l)(x)
| +e, AP A ... Apt(x),
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and since p(x), p'(x), ..., p"" Y(x) are clearly linearly dependent, we get
0=p () AP (X)A ... Ap" I(x).

By induction over n, we now may assume
0 = p®2(x) A pB(x) A ... A p*(x)

for xel and k; > 1.
This implies
VR A LA YE(x) = €000 A p*2(x) A L. A p*(x) = 0

for 0 <k, <k, < --- <k,, where we considered e, as the function
e,(x) =e,.

Thus we have proved
Y (xo) A U 2(xg) A ... A ¥ (x) =0

for all xoel, = {xeI:y(x)#0} and k; > 0. By continuity, the same
holds true for x, €I, A I, hence for all x,e1, since for y e \I, clearly
Yy®(y) = 0 for every keN,.

Lemma 3. — If ¥ = (,,...,¥,) e C°(ILR") is real analytic, and if
Vi, ..., , are linearly independent modulo affine mappings, then t~'({0})
has empty interior, where T denotes the torsion of .

Proof. — Assume 1t(x) =0 for every x in some nonempty open
interval J = I. Fix x,eJ. Then, passing to a possibly smaller interval,
we may assume that \; has an absolute convergent series expansion

o0

Vi(x) = Y aj(x—xo)*, j=1,...,n, xel.

k=0

Define vectors

QG = (ai)j= 1,0,

and
aj = (ai)k=2 ..... 0 € RNI, Nl = N\{O,l}

By Lemma 2, V*’(x,), ..., ¥*?(x,) are linearly dependent for any
kieN with 2 <k, < ... <k,, ie. @, ...,a  are linearly dependent
for 2 <k, < ... <k, But this implies that a',...,a" are linearly
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dependent, i.e. there exist v,,...,v,€R, not all zero, with
0=)va, ie
j

Z vil;(x) = Z viah + vai(x—x,) for  xel.

J J

But, since  is real analytic, this equation holds for all x eI, ie. ) v;
j

is affine linear.

4.

Proof of Theorem 1. — It is well-known (see e.g.[l], [7]) that for
¢ € 92(R) one has the estimate

@1 |®la < {2 Isupp @l1le 1910} "2,

where |supp ¢| denotes the Lebesgue measure of the support of @. From
(4.1) one immediately gets (i) of Theorem 1.

Now, suppose there exists a subinterval J in I anda o > 0 such that
[9(x) 2 o and |9(x) — 9(y)| <o/2 for x,yel, and such that
V,, ..., V¥, are linearly independent modulo affine mappings on J.
Then a simple compactness argument yields :

There are constants € > 0, & > 0, such that for every n e R* with
In| = 1 there is an interval J, of length 2¢ in J with

4.2) MV ()| =8 forall xel

-
Now choose @€ P(—¢g), ¢ >0, with J‘(p(x) dx = 1. For fixed
neR", n #0, set 0" =|n|"'n, and choose J,, asin (4.2). Let § bea
suitable translate of ¢ such that supp < J,.. Then we get

43) 0<o/2< \JS(x)(b(x) dx

= | J 3(x)e(n-V)(x)P(x)e(—n-Y)(x) dx

< Be(m-V)la [Pe(—1-V)lpm »

since J, < J.
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For £ eR one has
{fe(m -} (-¢) = f@(x)e(—ix—n-\b(x» dx
= f(p(x)e(—lnlg(x)) dx,
where g is a function on [—g,6] which is a certain translate of the
function
x = Ex + n-Y(x) on Ty,
where & = |n| €.
But (4.2) implies
d < |g" (%) for every xe[—eg].
Moreover, if we set A =2 SUIJ) W), B= su;J) V" (x)|, then for
&l < Aln|:

g ()l + Ig”()l <'l§1 + In'I(A+B)
<2A+B

for every x €[—g,g].

Thus, by Lemma 1, there exists a C > 0, such that for |§| < An|

(4.4 U@(X)E(—&x—n “Y(x)) dx

< CA+nh~"2.

And, if |§| > A|n|, then integration by parts yields

4.5) U@(X)e(— Ex—1-¥(x)) dx

f e(—|n|g(x»<2niﬁ1lg,) (x) dx

[ oot )
< [ ot o

<Cml™

where C' is some constant depending on ¢, ¥ and A only, since for
x €[—¢,e] wehave |g"(x)] < B and |g’(x)] = [E'+n'V'(y)| = A — A/2 for
some yel.
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Now, by (4.4), (4.5),

[Pe(=n-Vlpy < (C+C)MI7Y2 if Il >1,
which together with (4.3) proves Theorem 1 (ii).

Proof of Theorem 2. — Assume t(x) # 0 for every xel, and let
3e2(), 9 # 0. Passing to a smaller interval, we may even assume that
I is closed.

Set A = 2sup |[¥'(x)|, and for & eR, || <A, neR", I0l=1,
xel
xel let

n+1

Qe (x) = ; IEx+0" Y (x)D(x)].

Since t7!'({0}) = &, we have Q.. (x) # 0 for every xel, and since
Q. (x) is continuous in &,n and x on the compact space
[-AA] x {n"eR": |n|=1} x I, there exist constants C, >0,
C, > 0, such that

(4.6) C < Qua(x) <G,
for all xel, &,y with || < A,|In|=1.

So, using quite the same arguments as in the proof of Theorem 1 (ii), we
can deduce from (4.6) by Lemma 1:

[e(n-Wlem < C(L+))~ 1O+
for some constant C > 0, which proves (i).

To prove (ii), we will assume, for convenience, x, = 0, i.e. 0el, and
9(0) # 0, t(0) #0.

Let € > 0 such that 1(x) # 0 for xe[—¢&E].

Since V¥'(x), V”(x), ..., ¥"*V(x) are linearly independent for
x e[—¢,g], thereexists a function § e C®([—g,g}, R"), such that for every
x € [—e&,¢g]

4.7 Ex)- ¥ (x)=0, j=2,...,n,

and

(4.8) E()- ¥ N(x) = 1.
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Differentiating (4.7) and inserting (4.8), we get

ExX)Y(x) =0 for j=2,...,n—1,
and

g™ (x) = — 1.

Repeating this process, one inductively obtains for k =0, ...,n — 1

EOx) yP(x) =0 for j=2,...,n—k,
4.9 {g(k)(x)_\'l(n+1—k)(x) = (=1~

So, if we define matrices

S(x) = (gg‘n_i)(x))i,j=l ..... ns T(x) = (\l’gjﬂ)(x))i.jﬂ

then (4.9) means that S(x)T(x) is an upper triangular matrix with
diagonal elements 1 or — 1, which yields

..... n>

(4.10) |det (E(x)E'(x) ... E" " V(x))| = |det S(X)| = |t(x)| ™" # 0
for all xe[—¢,g].
We now claim :

There is a constant C > 0, such that for all ye(—eg,e) and seR
(4.11) 19e(sE(y) - Wley = C(1 +]s) "1+ D,

Choose ye(—sgg). Then by (4.7), (EO)-WP(Q) =38, for
j=2,...,n+ 1, and so a Taylor expansion of &(y)-{y yields (for ¢
small enough)

“4.12) E@ V() = a + Bx + (x—y)""'g(x) for xe(—2¢2e),

where g is some smooth function on (—2¢,2¢) which depends on y, and
where o and P are some real numbers.

Let us remark here that although g = g, dependson y, l;li]:z)8 lgy ()| is
uniformly bounded for ye(—g.g).

Now take pe2(R) with supppc(—gg), p=>0 and
IP(X) dx =1, and set p(x) = p(ls|"/"*(x—y)).
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If we choose & small enough such that
1
130) =3l < 5 13(0)I

for xe(—2¢2¢), then we get

ISI— 1/(n+1)

U\‘)(x)f)(x) dx

IS(ISI'”‘"“’X + y)p(x) dx

> SISO, i o > 1
and since

’ J 9(x)p(x) dx

= ’ JS(x)e(Sﬂy)'\Il)f)(X)e(—Sé(Y) V) dx
< 19e(sE(y) - Wlom [Pe(—sE(¥) - W)la »

(4.11) will follow if we can show that |pe(—sE(y)- V)|, is uniformly
bounded for y e(—¢,) and |s| > 1.

Now, regular affine mappings of R induce isometries of the
Fourier algebra A = A(R), thus

pe(—sE()-V)la = Ipe(—sE(Y) - Vla,
where (x) = Y(Js|] Y+ Vx4 y).
Since for xesuppp and |s| =1,
s| "+ Dy 4+ ye(—2g,2¢),
(4.12) yields

80N V(x) = o + By + Bls| ™M+ Dx + 5|7 1x" g (s TV Vx4 ).

Thus
|Pe(—sE(¥)-W)la = Ipe(h)la,

where  h(x) = — s|s| " !x"*1g(s| Y™*Vx+y). If we again apply
estimate (4.1), we easily see that |pe(h)|s is uniformly bounded for
ye(—¢g) and |s| = 1, q.e.d.
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