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REGULAR HOLOMORPHIC IMAGES OF BALLS

by J. E. FORNAESS (1) and E. L. STOUT (2)

Dedicated to Walter Rudin on the occasion
of his sixtieth birthday. May 2, 1981.

A few years ago we proved [2] that every paracompact connected N-
dimensional complex manifold is the image of an N-dimensional polydisc
under a finite regular holomorphic map. When we wrote [2] it was not
clear to us that an analogous result could be obtained for the ball. In the
present paper we settle this question as follows :

THEOREM. — For each N = 1, 2, . . . , there is a positive integer 'ky such
that if 9M 15 a connected, paracompact ^-dimensional complex manifold, then
there is a regular holomorphic map <S> from the unit ball BN in CN onto Wl
such that for each p e 901,1 the fiber ^~l(p) contains not more than K^
points.

As we shall see, for ^ we can fake the value

(14- 412N(12N)2N)((2N + 1)^ + 2).

This is not the best possible value for 'k^ ' , at the cost of considerable
complication in the proof below, we could improve this bound somewhat,
but the gain would be more apparent than real. We have no inkling of the
best possible value of ^ nor of any way of finding it. (We point out
however that D. H. Bushnell [1] has improved our estimate for the polydisc
case from (2N + 1)4^ + 2 to (2N +1)2 + 1. This has the immediate effect
of reducing our ̂  to (l^^ni^^N+iy+l) as we shall see in the
course of the proof.)

We treat the ball case by reducing it to the case of the polydisc. Two
new ingredients in this work are these. First, we invoke a result from [3] to
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recognize that certain monotone unions of balls are again balls. Second,
based on some estimates in the plane, we have a lemma to the effect that
certain dumbbell-shaped sets in C^ admit rough approximations by
domains biholomorphically equivalent to balls.

The paper is organized as follows : In Section 1 we state two lemmas. In
Section 2 we give the proof of the theorem assuming the lemmas. Sections 3
and 4 are devoted to the proofs of the lemmas, and Section 5 contains some
concluding remarks.

The case N = 1 of the theorem was proved in [2]. Hence we will
assume in the rest of this paper that N ^ 2.

1. Two lemmas.

We shall use the notation that for x e C, x denotes the point
(x,0,.. .^eC1^. Also, for re (0,oo), K, denotes the compact set in CN

consisting of the union of BN, the interval [0,4] and the ball 4 -+- rB^ of
radius r, center 4.

LEMMA 1. — // U is a neighborhood of K^, then there is an open set W
biholomorphically equivalent to BN with K^/^ c= W <= U.

It would be of interest to know whether the dumbbell K^ has a
fundamental neighborhood basis consisting of balls, i.e., of domains
biholomorphically equivalent to balls.

Denote by E the union of the ray { x : x e R , x ^ O } and the balls
4j + B N , 7 = 0 , 1 , 2 . . . .

LEMMA 2. — If D 15 a domain in C^, then there is a regular
holomorphic map 0 from a neighborhood V of E onto D such that for
each p e D , the fiber (^~l(p) consists of no more than

oo ^
CN = 1 + 412N(12N)2N points and such that (J ^J + —B^ ^ D.

j=o 64

2. Proof of the theorem.

Let W be a connected paracompact complex manifold of dimension
N. The Main Theorem of [2] provides a regular holomorphic map from
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the unit polydisc in C^ onto 9M the multiplicity of which does not exceed
(2N+ 1)4N -+- 2. Thus, to prove the theorem, it would suffice to construct a
regular holomorphic map from BN onto a polydisc with multiplicity no
more than 1 + 412N(12N)2N. We shall do somewhat more : We shall treat
not only the case of the polydisc but rather the case of an arbitrary domain
in C^. Our reason for doing this is twofold. The case of a general domain
in C^ is not especially harder than the case of the polydisc, and by treating
the case of general domains in CN directly, we obtain a relatively simple
proof of our theorem for these special domains. Thus, we shall prove the
following result.

LEMMA 3. — J/ D is a domain in C^, then there is a regular
holomorphic map T from BN onto D such that for each p e D , the fiber
^ ¥ ~ l ( p ) consist of no more than CN points.

The CN of this lemma is the same as the CN of lemma 2.

Proof. - Let E, V and 0 : V -> D be as in lemma 2.

We shall construct a domain 0 biholomorphically equivalent to BN
with

00 / 1 \
(J 4 j + . BN < = O c = V .
j=0 \ 04 /

We may assume without loss of generality that

V c {z e CN : z = (zi , . . .,ZN) with |Im ẑ .| < 2 for j = 1, 2, . . . , N}.

The domain on the right is biholomorphically equivalent to a polydisc
and so is taut in the sense of [4]. By lemma 1 of [3], a monotone union of
balls in V is (biholomorphically equivalent to) a ball. Accordingly, we shall
construct a sequence {Q^}j=o of domains with the following properties :

(1) Q^ c: V for all j.

(2) 4j +—BN cc: Q, for all j.
16

(3) Qo <= c: Q^ c c 0^ c c . . . .

(4) Q^ n U (4k4-BN) = 0 for all j .
k>j
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(5) 0^ is biholomorphically equivalent to BN under a biholomorphic
map that extends to carry a neighborhood of BN biholomorph-
ically onto a domain in V.

Conditions (1), (2) and (3) are the ones of interest; (4) and (5) are used to
00

smooth the induction. Granted such a sequence, 0 = (J Oj; is a domain
j=o

in V biholomorphically equivalent to a ball, and it is carried onto D by
the map O with the desired bound on the multiplicity.

To construct the sequence {Ojj^o, let Q() = BN. Assume Qo,
QI, .. . ,Qfc have been constructed so as to satisfy conditions (1)-(5). Let
v|/j^ : BN -> ^k ^e a biholomorphic map that extends, as in (5), to carry a
neighborhood of BN biholomorphically onto a neighborhood of 0^.
Denote by ^ a smooth map from a neighborhood of K^ into V that
agrees with ^ near BN and that agrees on a neighborhood of 4 -j- 2BN

with the affme map z -> 4(k+l) + -(z—4) that carries the ball 4 + 2BN

onto the ball 4(k+l) + BN. We require, in addition, that % carry the

interval (0,4) diffeomorphically into V\(Qfc u (J (4m -h B^. We may
m^k+l

approximate % uniformly on a neighborhood of K^ by a holomorphic
map ^k+i from C^ to C^note that K^ is polynomially convex-and we
may insist, moreover, that the approximation be close in the <^1 sense on
[0,4]. By making the approximation close enough, we shall have that
\|/fc+i is one-to-one on K^. By replacing vf/^+i by ^+1 defined by
v|/̂  +1 (z) = v|/fc +1 (z + Zo) for a suitably chosen, small ZQ if necessary, we can
be sure that ^k+i is regular on a neighborhood of K^. As Q^_i c: c 0^,
there is a domain Q^ biholomorphically equivalent to a ball with
Q^ c= c= Q^ and such that Q^ satisfies (1)-(5). Granted that our
approximation of / by ^k+i ls dose enough, we shall have
Y|^I(BN) =^ "k and

i|/,^(4+^BN) =^ 4 ( k + l ) + ^ B N .

As v|/fc-n is one-to-one and regular on K^, there is a neighborhood U of

K^ carried biholomorphically into V\ (J (4m+BN) by v|^-n.
w > f c + l

Lemma 1 provides a domain W biholomorphically equivalent to BN
with K.i/i6 <= W c U. For Q^+i we take v|^+i(W). The sequence
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QO»- • •A-i?^k?^+i enjoys the properties (1)-(5). Thus, our sequence
{QjJLo can be constructed inductively; at each step we alter the last ^
constructed, but having altered it once, it remains unaltered through the
rest of the construction.

This proves lemma 3 and shows that to prove the theorem, it suffices to
prove lemmas 1 and 2.

3. Proof of lemma 1.

At one point in the argument below we will need the following
elementary geometric fact.

LEMMA 1.1. — For ^e(0,oo), let S^ be the union of all the discs in the
open unit disc mth centers on the real diameter and hyperbolic radius d . If
a(^) = 2 tanh rf/(l-tanh d)2, then S^ c= {z = x + iy : \y\ < a(^)(l -x)}.

Proof. — Denote by p the hyperbolic distance function on the disc so

that if [z.w] = z " w , then p(z,w) = ̂ log1^^- If xe(-l , l)|1 _^] 5 ——— 2 °1 -[z,w]
satisfies p(0,x) = d , then x •= ± t a n h r f . Under the non-Euclidean

translation z -> ——— = (p((z), the circle C^(0) = {z : p(z,0)=rf} goes
1 + tz

onto the circle C^) = {z : p(z,r)=^}. If we denote by T the number
tanh d, then the Euclidean radius 8 of C^(t) is determined by
28 = (P((T) — (p((—r) so that

T(l-r2)
^r^Tr2"

This means that for z = x + iy inside C^(t), we have

\y\/(l-x) < Td-t^l-t^2)-1/^ - ̂ -)

=T(l+t)/(l-tt)(l-T)

<2T/(1-T)2

which is the desired inequality.

The proof of lemma 1 depends on some estimates of conformal
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mappings in the plane. Fix small §1 and 83» an(! I61 ^n be the domain
shown in figure 1. Thus, explicitly, A^ is the union of the open disc of radius

Fig. 1. — The domain An.

1 -h §1 centered at 0, the disc of radius - centered at 4, the rectangle
8

{x-{-iy : 0<x<3 -, -6^<y<^}

and the rectangle

{x-^-iy : 0<x<4, — - < y <-r
[ n n\

Denote by (?„ the conformal map from the unit disc A to A^, (?„
normalized so that (p^(0) = 0 and (p^(0) > 0. Let ^ : A^ -> A be the
inverse of (?„. By symmetry, (?„ and v|/^ both map the real line to itself,

and we have that v | /^(4- j = 1 for all n.
\ °/

LEMMA 1.2. — The sequence {^nW}^=i converges to l e f c A .

Proof. — By symmetry, we know that the points \)/^(4) are real.
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A theorem of Caratheodory [5, p. 33] implies that the sequence {(pj^= i
converges, uniformly on compacta in A, to the conformal map, (p, from
A onto the kernel of the sequence {AJ^°=i which is defined to be the
largest domain D, 0 e D, with the property that if S is a closed subset of
D with S c: A^ for all large n, then S <= D. The kernel of the sequence
{^n}^=i ls ^e union of the disc of radius 1 + §i centered at 0 and the
rectangle

{x-^-iy :0<x<3 -, - S2<y<6^} .
4

The map (p is normalized to satisfy (p(0) = 0, (p'(0) > 0, of course.
Caratheodory's theorem asserts, moreover, that the sequence {v|^}n°=i
converges uniformly on compacta in D to (p~ 1 . This implies that if
K c: A is compact, then K c v|/^(D) for sufficiently large n. As v|/^ is
one-to-one on A^, it follows that v|/^(4) moves to fcA as n -> oo, and
this implies that v|/,,(4) -> 1, as we wished to show.

A consequence of this lemma, by way of Schwarz's lemma, is that if V

is the disc \z : |z—4| < —^, then the sets v)/^(V) move to 1 as n -> oo :
I 16J

If s > 0, there is n(e) so that for w e V , [^(w)—!] < £ provided
n > n(e).

LEMMA 1.3. — For large n, the set v|/^(V) is contained in the Stolz angle

{z :|z| < 1, |Imz| < 4(1-Re z)}.

Proof. - Put ^ = v|/^(4) so that the sequence {tj^=i in (0,1)
converges to 1. The points on the circle bV are all at the same distance,

d = - log 3, from the point 4, distance computed in the Caratheodory

metric on the disc V = {z : |z—4| < -}. The holomorphic map
8

v|/^ : V -> A decreases the Caratheodory distance, so if p is again the
Caratheodory (or hyperbolic) distance function on A, then

^ ( V ) c = ^ z : p ( ^ , z ) < J l o g 3 ^

The result now follows from lemma 1.1, for a(- log 3 j = 4.
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For 8e(0,7c), set Jg = [e^: |9| < 8}, and define ^ to be the
1

to the unit disc, A, where ^jharmonic extension of /j log

denotes the characteristic function of J§.

LEMMA 1.4. - There is So > 0 small enough that for all 8 e (0,8o),

(l-lzj2)^^
for z^ 6 A.

Proof. — The function log is harmonic on the unit disc and

is positive at z ^ e A if and only if |1 — zj < 1. For z^ = e11, this
K K

happens if and only if t e ( - -,-j (mod2jt). Fix £ > 0 small enough

that for z^ eA with Rez^ ^ 1 — e, log > 0. Since feg -> 0

uniformly on {z^ e A : Re z^ ^ 1 — e} when 8-^0, it suffices to prove
the inequality for z^ eA with Re z^ ^ 1 — e.

Fix 80 > 0 so small that the harmonic extension h^ of

(l-^)log——=
\/l-^i

is positive on A n {Re z^ = 1 — e} for all 8 e (0,8o). The function h^ is
nonnegative on A n {z^ : Re z^ ^ 1 — e} because it has nonnegative
values on the boundary of this set. For 8 e (0,8o) and Re z^ ^ 1 — e,
z^ e A, we have

(l-ZiZi)^!) ^ (l-ZiZi)^^^

= { l - z ^ ) ] —
1-zJ

= 2.

The lemma is proved.

We can now prove lemma 1. Fix a neighborhood U of the set K^.
Choose 80 > 0 so small that |z - w| > 80 if z e K.2, w ^ U. Fix a small
8 > 0, and let Jg be the arc of the unit circle as above. Define ^5 to be
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the function holomorphic on the unit disc determined by Im ^(0) = 0 and
Re ̂  = k^, feg as in the preceding lemma. Thus,

(i) ^ = —L r!^ ̂  i1 - ̂ iA-271 J _ 5 e1' - z

Define $„ : BN -> CN by

$n(Zi,. . .,ZN) = ((Pn(^lUl -^^e^\ . • ., (1 +82)ZN^5(Z1))

with (?„ the conformal map considered above and 83 as in the definition
of A^. The map (?„ is regular and one-to-one from BN onto a domain W
in C14. We shall show that for a suitable choice of the parameters on
which (?„ depends and a suitable choice of the interval Jg, the domain W
has the properties we seek.

We shall need the fact that as §2 -> 0, (p,.(zi) -^ (1 +§i)zi uniformly
on compacta in A as follows from [5, p. 33]. It is clear that the
convergence is, in fact, uniform on compacta in A\{1}.

Fix §2 < 81 < §o an^ n > —•
§2

We define (p;. : BN -> CN by

^) =((Mzi),(l+§i)zi, ...,(1+8^).

Provided 81 and 5^ are small enough, (?„ carries BN into U : Since
|zJ2 + • • • - ( - Iz^2 < 1 when Z € B N , it follows that for z e B N , if z^ is
near 1, then \z^\2 + • • • + [z^2 is small. Also, when z^ is away from 1,
(p^(zi) is near (l+§i)zi, provided n is large enough. It follows that, as
soon as 81 is small enough, we have BN c: c: (P^(BN) c= U.

From (1) we see that ^g(z) -> 0 uniformly on compacta in A\{1} as
8 -> ^+ . Therefore, for small 8, $„ is a small perturbation of $„ on a
given compact subset of BN\{I}, and so, provided 8 is small enough, $„

carries the part of BN on which Re (pn(zi) < 3 - onto a domain in U

that contains BN .

For Z € B N , the distance, d(z), from (p^(z) to 4 is given by

^(z) = |(p^(zi)-4|2 + (l-^i)2^!2 + • • • + IzNl2)^^2^.
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When Re (p^(zi) > 3 -, rf(z) is less than 2, for |zi —4[ is bounded by -

and
(l+8l)2(|z,|2+ • • • +|zNlVRe^l)

is no more than 2(1 +§i)2 as follows from lemma 1.4. Thus, for zeB^

with Re (p^(zi) ^ 3 -, ^(z) e U. The conclusion is that (P,,(BN) c: U as

soon as §1, §2 and 8 are sufficiently small.

Finally, by taking n large enough, we find that (P^(BN) contains a ball

of radius — centered at 4. To see this, denote by V^ the set
16

n\z e BN : |(p,(2i) - 4| <
16J

and write fcV^ = Si u £2 where 5^ = fcV^ n ^BN and

1
^ = b\, n { z e B ^ : |^(zi)-4| = -I

16J

For z e E ^ , ri(z) > —, and for z e Z i , we have
16

d\z) = |(p»(z,)-4|2 4- (l+5,)2(l-|zJVRe^l).

The function log is harmonic on the unit disc so

2Re Jc^zi) = log

= log

-1 f ^L logji-^l^
^ J.^^ 1^ - ^ll1 - Zj 71 J^jg |̂ 1 - Zi

+ V(Z,)

where v(zi) -^ 0 as z -> ^lt e int Jg and uniformly when e11 is constrained
to lie in a compact subset of int J§. Thus, provided only that n is large, we
have that for z e Z^ ,

2Re ^(z,) > log ———= - 1
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which implies

^(Z)>(1+§, ) 2 1 ——^ 1 1 2 . - 1 .
I1 ~ zl\

By lemma 1.3, z^ lies in the Stolz angle [ImzJ < 4 ( l — R e z i ) , so we have
the estimate that for large n,

d2(z)>(l^s,)2 1
5e

whence d(z) > —— > —'
J'3e 16

This completes the proof of lemma 1.

4. Proof of lemma 2.

We begin with a covering lemma.

LEMMA 2.1. — Given a domain D c: C1^, there is a family {Vj}j^o of
open balls in C^ with these properties :

(1) VJ c=c D.
(2) Every point in D has a neighborhood intersecting at most

c(N) = 412N(12N)2N of the VJ.

(3) ^/VJ denotes the ball concentric with VJ and of radius—— times that

of VJ, then \J VJ = D.
j=0

Proof. — According to [6, pp. 167 if.], there is a locally finite sequence
Q o , Q i , . . . of closed cubes with mutually disjoint interiors such that

(4) Q , < = D .

(5) U Q , = D .
j=0

(6) The sides of the Q are parallel to the coordinate axes.
9

(7) If QJ is the cube centered at the center of Qj and of edge - the
8

edge of Qj, then QJ c: c: D, and no point of D lies in more than
(12)^ of the Qf.
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Fix attention on Qo. By a change of coordinates, we may suppose it to
be the unit cube in the underlying R2^ so that

Q§ =\xeRW:--^x^...,x^^ 1 +-}•
(^ lo 16J

Put v = 46 N and let Ki, . . . , K^N be the subcubes of Qo of edge -

(P'1 ^2N\with vertices —, . . . , — for integers U i , . . . , u^. Let Vn .. be the
v v /

open ball of radius -^/2N centered at the center p y of K,., and let V^

128 i—
be the open ball centered at p y and of radius —— \/2N. The balls V'o r

v
cover Qo and the balls V^,. are contained in Qo. To see the latter

point, notice that the distance from p . to fcQn is at least — + —, so for
2v 16

1 1 1 ^0

x e VQ r to lie outside Qo, we must' have — + — < —— v/2N. As
2v 16 v

v = 4^^ ^ 2, this inequality is not satisfied.

We perform the analogous construction, appropriately scaled, on each
of the other cubes Qi, Q^, . • . In this way, we obtain two families of
concentric open balls

{V^=o,u... and {V^}^,
r=l,2,...,v2N r=l,2,. . . ,v2N

such that (J ^j',r c:<= ^ ^or ^U r? ̂ d the diameter of VJ y is 128 times
J, r

the diameter of V^. ̂ .

As no point of D is in more than (12)^ of the Qj", a given point can
belong to VJ,. for at most (12)21'4 distinct indices 7. For a given 7, there
are V21'1 = 412NN2N of the VJ,., so we see that no point of D lies in more
than c(N) of the VJ,.. The lemma is proved.

Finally, we turn to the proof of lemma 2.

Let the sequence {Vj}j°=o ^d {^j}j°=o be as in lemma 2.1. For each 7,
let \j c= c: VJ be a concentric ball whose radius is very nearly the same as
that of VJ.
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Specify a pair of diametrically opposite points on fcVy, say s and t - .
We may choose these points so that all of the s/s are distinct, all of the
t/s are distinct, and so that no Sj is a tj. For j = 0, 1, 2, . . . , let a. be
an invertible affme map of CN to itself that carries 4j + BN to V • with
4j - 1 and 4j + 1 going to Sj and tj respectively. Let (p : R -> D be a
smooth, regular one-to-one map such that for all x in a neighborhood (in
R) of the interval [4/-1,4/+1], (p(x) = a/x) and such that the curves

L ,= ( [4 / - l , 4 /+ l ] ) , 7=0 , l , 2 , . . .

have mutually disjoint neighborhoods Uj <= c: D. (NB. We do not require
that the family {LjJLo be locally finite in D; this additional condition
cannot be met unless &D is connected.)

If 0 : CN -^ CN is an entire map that approximates (p sufficiently well
on R and a, sufficiently well on a neighborhood of 4j -+- BN, then <5)
will be regular and one-to-one on a neighborhood of 4j + BN and will be
one-to-one from a neighborhood of [4j-l,4j+l] into Uy. Moreover, we
may take <I> to be regular on a neighborhood in CN of the ray
{x : x > 0}. (For the details of this kind of approximation, see [2,
lemma 2.3] where the context is only formally different from the present
one.) Notice finally that if the approximation is close enough on 4j + BN,
we shall have that

0(4j + ̂  BN) =3 V;. and <D(4j + B^ c V;.

It follows that if V is a suitably small neighborhood of the set E, then
0 is regular on V, that 0)(V) = D, and that no point is the image of
more than 1 4- 412N(12N)2N points in V.

This completes the proof of lemma 2 and hence the proof of the
theorem.

5. Remarks.

As we noted in the introduction, our estimate for the bound ^N is not
sharp, but we do not know what the sharp bound is.

In the other direction, it seems likely that on purely topological grounds,
there should be an interesting a priori lower bound for ^- The fact that
e.g., the ball and the polydisc are holomorphically distinct but topologically
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equivalent shows that topological considerations are probably insufficient
to determine the true lower bound for 'k^.

Granted the result of this paper and that of [2], it seems not
unreasonable to ask for a pair of domains 0', 0" in C^, D' a bounded
domain of holomorphy, such that 0' admits no regular holomorphic map
onto Q". Of course, if such Q' and 0" exist, then for Q" we may take
either a polydisc or a ball.
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